Skipped tabs:
Job-Infos
Main-Log
Debug-Logs
Single Logs
Copy raw data to clipboard
Download »export.html« as file
<!DOCTYPE html>
<html lang='en'>
<head>
<meta charset='UTF-8'>
<meta name='viewport' content='width=device-width, initial-scale=1.0'>
<title>Exported »pwinkler/vergl_botorch/1« from OmniOpt2-Share</title>
<script src='https://code.jquery.com/jquery-3.7.1.js'></script>
<script src='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/gridjs.production.min.js'></script>
<script src='https://cdn.jsdelivr.net/npm/plotly.js-dist@3.0.1/plotly.min.js'></script>
<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/theme/mermaid.css'>
<style>
#share_path {
color: black;
}
.debug_log_pre {
min-width: 300px;
}
body.dark-mode {
background-color: #1e1e1e; color: #fff;
}
.plot-container {
margin-bottom: 2rem;
}
.spinner {
border: 4px solid #f3f3f3;
border-top: 4px solid #3498db;
border-radius: 50%;
width: 40px;
height: 40px;
animation: spin 2s linear infinite;
margin: auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.tabs {
margin-bottom: 20px;
}
.tab-content {
display: none;
}
.tab-content.active {
display: block;
}
pre {
color: #00CC00 !important;
background-color: black !important;
font-family: monospace !important;
line-break: anywhere;
}
menu[role="tablist"] {
display: flex;
flex-wrap: wrap;
gap: 4px;
max-width: 100%;
max-height: 100px;
overflow: scroll;
}
menu[role="tablist"] button {
white-space: nowrap;
min-width: 100px;
}
.container {
max-width: 100% !important;
}
.gridjs-sort {
min-width: 1px !important;
}
td.gridjs-td {
overflow: clip;
}
.title-bar-text {
font-size: 22px;
display: block ruby;
}
.title-bar {
height: fit-content;
}
.window {
width: fit-content;
min-width: 100%;
}
.top_link {
display: inline-block;
padding: 5px 5px;
background-color: #007bff; /* Blau, kannst du anpassen */
color: white;
text-decoration: none;
font-size: 16px;
font-weight: bold;
border-radius: 6px;
border: 2px solid #0056b3;
text-align: center;
transition: all 0.3s ease-in-out;
}
.top_link:hover {
background-color: #0056b3;
border-color: #004494;
}
.top_link:active {
background-color: #003366;
border-color: #002244;
}
button {
color: black;
}
.share_folder_buttons {
width: fit-content;
}
button {
background: #fcfcfe;
border-color: #919b9c;
border-top-color: rgb(145, 155, 156);
border-bottom-color: rgb(145, 155, 156);
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c;
}
button {
padding-bottom: 2px;
margin-top: -2px;
background-color: #ece9d8;
position: relative;
z-index: 8;
margin-left: -3px;
margin-bottom: 1px;
}
.window {
min-width: 1100px;
}
[role="tab"] {
padding: 10px !important;
}
[role="tabpanel"] {
min-width: fit-content;
}
select {
border: 1px solid #7f9db9;
background-image: url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 -0.5 15 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e6eefc' d='M0 0h1'/%3E%3Cpath stroke='%23d1e0fd' d='M1 0h1M0 1h1m3 0h2M2 3h1M2 4h1'/%3E%3Cpath stroke='%23cad8f9' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23c4d3f7' d='M3 0h1M0 3h1M0 4h1'/%3E%3Cpath stroke='%23bfd0f8' d='M4 0h2M0 5h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 0h1M0 6h1'/%3E%3Cpath stroke='%23baccf4' d='M7 0h1m6 2h1m-1 5h1m-1 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M8 0h1M0 7h1M0 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M9 0h2M0 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 0h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 0h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 0h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 0h1'/%3E%3Cpath stroke='%23e1eafe' d='M1 1h1'/%3E%3Cpath stroke='%23dae6fe' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23d4e1fc' d='M3 1h1M1 3h1M1 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 1h1M1 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 1h1M4 2h2'/%3E%3Cpath stroke='%23cad9fd' d='M8 1h1M6 2h1M3 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M9 1h2'/%3E%3Cpath stroke='%23c5d6fc' d='M11 1h1M2 11h4'/%3E%3Cpath stroke='%23c2d3fc' d='M12 1h1m-2 1h1M1 11h1m0 1h2m-2 1h2'/%3E%3Cpath stroke='%23bccefa' d='M13 1h1m-1 1h1m-1 1h1m-1 1h1M3 15h4'/%3E%3Cpath stroke='%23b9c9f3' d='M14 1h1M3 16h4'/%3E%3Cpath stroke='%23d8e3fc' d='M2 2h1'/%3E%3Cpath stroke='%23d1defd' d='M3 2h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 2h1M4 3h3M4 4h3M3 6h1m1 0h2M1 7h1M1 8h1'/%3E%3Cpath stroke='%23c5d5fc' d='M8 2h1m-8 8h5'/%3E%3Cpath stroke='%23c5d3fc' d='M9 2h2'/%3E%3Cpath stroke='%23bed0fc' d='M12 2h1M8 3h1M8 4h1m-8 8h1m-1 1h1m0 1h1m1 0h3'/%3E%3Cpath stroke='%23cddbfc' d='M3 3h1M3 4h1M1 6h2'/%3E%3Cpath stroke='%23c8d5fb' d='M7 3h1M7 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M9 3h4M9 4h4M8 5h1M7 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 3h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23ceddfd' d='M2 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M4 5h4M1 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M9 5h2m1 0h2M1 14h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M8 6h2m2 0h2m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%234d6185' d='M4 6h1m5 0h1M3 7h3m3 0h3M4 8h3m1 0h3M5 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1m-1 1h1'/%3E%3Cpath stroke='%23cad8fd' d='M2 7h1M2 8h2'/%3E%3Cpath stroke='%23c1d3fb' d='M6 7h2M7 8h1M4 9h1'/%3E%3Cpath stroke='%23b6cefb' d='M8 7h1m2 1h1m-2 1h3m-2 1h2'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-6 6h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b4c8f6' d='M0 10h1'/%3E%3Cpath stroke='%23bdd3fb' d='M9 10h2m-4 4h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 10h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 10h1'/%3E%3Cpath stroke='%23b1c7f6' d='M0 11h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M8 11h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M9 11h4m-2 3h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 11h1m-3 4h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 11h1m-7 5h3'/%3E%3Cpath stroke='%23adc3f6' d='M0 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c2d5fc' d='M4 12h4m-4 1h4'/%3E%3Cpath stroke='%23b7d3fc' d='M9 12h2m-2 1h2m-3 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 12h1m-1 1h1'/%3E%3Cpath stroke='%23afcdfb' d='M12 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afcbfa' d='M13 12h1m-1 1h1'/%3E%3Cpath stroke='%23b2c8f4' d='M14 12h1m-1 1h1m-4 3h1'/%3E%3Cpath stroke='%23c1d2fb' d='M3 14h1'/%3E%3Cpath stroke='%23b6d1fb' d='M9 14h2'/%3E%3Cpath stroke='%23adc9f9' d='M13 14h1m-2 1h1'/%3E%3Cpath stroke='%23b1c6f3' d='M14 14h1m-3 2h1'/%3E%3Cpath stroke='%23abc1f4' d='M0 15h1'/%3E%3Cpath stroke='%23b7cbf9' d='M1 15h1'/%3E%3Cpath stroke='%23b9cefb' d='M2 15h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 15h1'/%3E%3Cpath stroke='%23b2cdfb' d='M9 15h2'/%3E%3Cpath stroke='%23aec8f7' d='M13 15h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 15h1m-2 1h1'/%3E%3Cpath stroke='%23dbe3f8' d='M0 16h1'/%3E%3Cpath stroke='%23b7c6f1' d='M1 16h1'/%3E%3Cpath stroke='%23b8c9f2' d='M2 16h1m4 0h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 16h1'/%3E%3C/svg%3E");
background-size: 15px;
font-size: 11px;
border: none;
background-color: #fff;
box-sizing: border-box;
height: 21px;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
position: relative;
padding: 5px 32px 32px 5px;
background-position: top 50% right 2px;
background-repeat: no-repeat;
border-radius: 0;
border: 1px solid black;
}
body {
font-variant: oldstyle-nums;
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
background-color: #fafafa;
text-shadow: 0 0.05em 0.1em rgba(0,0,0,0.2);
scroll-behavior: smooth;
text-wrap: balance;
text-rendering: optimizeLegibility;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
font-feature-settings: "ss02", "liga", "onum";
}
.marked_text {
background-color: yellow;
}
.time_picker_container {
font-variant: small-caps;
width: 100%;
}
.time_picker_container > input {
width: 50px;
}
#loader {
display: grid;
justify-content: center;
align-items: center;
height: 100%;
}
.no_linebreak {
line-break: auto;
}
.dark_code_bg {
background-color: #363636;
color: white;
}
.code_bg {
background-color: #C0C0C0;
}
#commands {
line-break: anywhere;
}
.color_red {
color: red;
}
.color_orange {
color: orange;
}
table > tbody > tr:nth-child(odd) {
background-color: #fafafa;
}
table > tbody > tr:nth-child(even) {
background-color: #ddd;
}
table {
border-collapse: collapse;
margin: 0 0;
min-width: 200px;
}
th {
background-color: #4eae46;
color: #ffffff;
text-align: left;
border: 0px;
}
.error_element {
background-color: #e57373;
border-radius: 10px;
padding: 4px;
display: none;
}
button {
background-color: #4eae46;
border: 1px solid #2A8387;
border-radius: 4px;
box-shadow: rgba(0, 0, 0, 0.12) 0 1px 1px;
cursor: pointer;
display: block;
line-height: 100%;
outline: 0;
padding: 11px 15px 12px;
text-align: center;
transition: box-shadow .05s ease-in-out, opacity .05s ease-in-out;
user-select: none;
-webkit-user-select: none;
touch-action: manipulation;
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
}
button:hover {
box-shadow: rgba(255, 255, 255, 0.3) 0 0 2px inset, rgba(0, 0, 0, 0.4) 0 1px 2px;
text-decoration: none;
transition-duration: .15s, .15s;
}
button:active {
box-shadow: rgba(0, 0, 0, 0.15) 0 2px 4px inset, rgba(0, 0, 0, 0.4) 0 1px 1px;
}
button:disabled {
cursor: not-allowed;
opacity: .6;
}
button:disabled:active {
pointer-events: none;
}
button:disabled:hover {
box-shadow: none;
}
.half_width_td {
vertical-align: baseline;
width: 50%;
}
#scads_bar {
width: 100%;
margin: 0;
padding: 0;
user-select: none;
user-drag: none;
-webkit-user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-select: none;
-ms-user-select: none;
display: -webkit-box;
}
.tab {
display: inline-block;
padding: 0px;
margin: 0px;
font-size: 16px;
font-weight: bold;
text-align: center;
border-radius: 25px;
text-decoration: none !important;
transition: background-color 0.3s, color 0.3s;
color: unset !important;
}
.tooltipster-base {
border: 1px solid black;
position: absolute;
border-radius: 8px;
padding: 2px;
color: white;
background-color: #61686f;
width: 70%;
min-width: 200px;
pointer-events: none;
}
td {
padding-top: 3px;
padding-bottom: 3px;
}
.left_side {
text-align: right;
}
.right_side {
text-align: left;
}
.spinner {
border: 8px solid rgba(0, 0, 0, 0.1);
border-left: 8px solid #3498db;
border-radius: 50%;
width: 50px;
height: 50px;
animation: spin 1s linear infinite;
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
#spinner-overlay {
-webkit-text-stroke: 1px black;
white !important;
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
display: flex;
justify-content: center;
align-items: center;
z-index: 9999;
}
#spinner-container {
text-align: center;
color: #fff;
display: contents;
}
#spinner-text {
font-size: 3vw;
margin-left: 10px;
}
a, a:visited, a:active, a:hover, a:link {
color: #007bff;
text-decoration: none;
}
.copy-container {
display: inline-block;
position: relative;
cursor: pointer;
margin-left: 10px;
color: blue;
}
.copy-container:hover {
text-decoration: underline;
}
.clipboard-icon {
position: absolute;
top: 5px;
right: 5px;
font-size: 1.5em;
}
#main_tab {
overflow: scroll;
width: max-content;
}
.ui-tabs .ui-tabs-nav li {
user-select: none;
}
.stacktrace_table {
background-color: black !important;
color: white !important;
}
#breadcrumb {
user-select: none;
}
#statusBar {
user-select: none;
}
.error_line {
background-color: red !important;
color: white !important;
}
.header_table {
border: 0px !important;
padding: 0px !important;
width: revert !important;
min-width: revert !important;
}
.img_auto_width {
max-width: revert !important;
}
#main_dir_or_plot_view {
display: inline-grid;
}
#refresh_button {
width: 300px;
}
._share_link {
color: black !important;
}
#footer_element {
height: 30px;
background-color: #f8f9fa;
padding: 0px;
text-align: center;
border-top: 1px solid #dee2e6;
width: 100%;
box-sizing: border-box;
position: fixed;
bottom: 0;
z-index: 2;
margin-left: -9px;
z-index: 99;
}
.switch {
position: relative;
display: inline-block;
width: 50px;
height: 26px;
}
.switch input {
opacity: 0;
width: 0;
height: 0;
}
.slider {
position: absolute;
cursor: pointer;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #ccc;
transition: .4s;
border-radius: 26px;
}
.slider:before {
position: absolute;
content: "";
height: 20px;
width: 20px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #444;
}
input:checked + .slider:before {
transform: translateX(24px);
}
.mode-text {
position: absolute;
top: 5px;
left: 65px;
font-size: 14px;
color: black;
transition: .4s;
width: 65px;
display: block;
font-size: 0.7rem;
text-align: center;
}
input:checked + .slider .mode-text {
content: "Dark Mode";
color: white;
}
#mainContent {
height: fit-content;
min-height: 100%;
}
li {
text-align: left;
}
#share_path {
margin-bottom: 20px;
margin-top: 20px;
}
#sortForm {
margin-bottom: 20px;
}
.share_folder_buttons {
margin-top: 10px;
margin-bottom: 10px;
}
.nav_tab_button {
margin: 10px;
}
.header_table {
margin: 10px;
}
.no_border {
border: unset !important;
}
.gui_table {
padding: 5px !important;
}
.gui_parameter_row {
}
.gui_parameter_row_cell {
border: unset !important;
}
.gui_param_table {
width: 95%;
margin: unset !important;
}
table td, table tr,
.parameterRow table {
padding: 2px !important;
}
.parameterRow table {
margin: 0px;
border: unset;
}
.parameterRow > td {
border: 0px !important;
}
.parameter_config_table td, .parameter_config_table tr, #config_table th, #config_table td, #hidden_config_table th, #hidden_config_table td {
border: 0px !important;
}
.green_text {
color: green;
}
.remove_parameter {
white-space: pre;
}
select {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
background-color: #fff;
color: #222;
padding: 5px 30px 5px 5px;
border: 1px solid #555;
border-radius: 5px;
cursor: pointer;
outline: none;
transition: all 0.3s ease;
background:
url("data:image/svg+xml;charset=UTF-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 10 6'%3E%3Cpath fill='%23888' d='M0 0l5 6 5-6z'/%3E%3C/svg%3E")
no-repeat right 10px center,
linear-gradient(180deg, #fff, #ecebe5 86%, #d8d0c4);
background-size: 12px, auto;
}
select:hover {
border-color: #888;
}
select:focus {
border-color: #4caf50;
box-shadow: 0 0 5px rgba(76, 175, 80, 0.5);
}
select::-ms-expand {
display: none;
}
input, textarea {
border-radius: 5px;
}
#search {
width: 200px;
max-width: 70%;
background-image: url(images/search.svg);
background-repeat: no-repeat;
background-size: auto 40px;
height: 40px;
line-height: 40px;
padding-left: 40px;
box-sizing: border-box;
}
input[type="checkbox"] {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
width: 25px;
height: 25px;
border: 2px solid #3498db;
border-radius: 5px;
background-color: #fff;
position: relative;
cursor: pointer;
transition: all 0.3s ease;
width: 25px !important;
}
input[type="checkbox"]:checked {
background-color: #3498db;
border-color: #2980b9;
}
input[type="checkbox"]:checked::before {
content: '✔';
position: absolute;
left: 4px;
top: 2px;
color: #fff;
}
input[type="checkbox"]:hover {
border-color: #2980b9;
background-color: #3caffc;
}
.toc {
margin-bottom: 20px;
}
.toc li {
margin-bottom: 5px;
}
.toc a {
text-decoration: none;
color: #007bff;
}
.toc a:hover {
text-decoration: underline;
}
.table-container {
width: 100%;
overflow-x: auto;
}
.section-header {
background-color: #1d6f9a !important;
color: white;
}
.warning {
color: red;
}
.li_list a {
text-decoration: none;
}
.gridjs-td {
white-space: nowrap;
}
th, td {
border: 1px solid gray !important;
}
.no_border {
border: 0px !important;
}
.no_break {
}
img {
user-select: none;
pointer-events: none;
}
#config_table, #hidden_config_table {
user-select: none;
}
.copy_clipboard_button {
margin-bottom: 10px;
}
.badge_table {
background-color: unset !important;
}
.make_markable {
user-select: text;
}
.header-container {
display: flex;
flex-wrap: wrap;
align-items: center;
justify-content: space-between;
gap: 1rem;
padding: 10px;
background: var(--header-bg, #fff);
border-bottom: 1px solid #ccc;
}
.header-logo-group {
display: flex;
gap: 1rem;
align-items: center;
flex: 1 1 auto;
min-width: 200px;
}
.logo-img {
max-height: 45px;
height: auto;
width: auto;
object-fit: contain;
pointer-events: unset;
}
.header-badges {
flex-direction: column;
gap: 5px;
align-items: flex-start;
flex: 0 1 auto;
margin-top: auto;
margin-bottom: auto;
}
.badge-img {
height: auto;
max-width: 130px;
margin-top: 3px;
}
.header-tabs {
margin-top: 10px;
display: flex;
flex-wrap: wrap;
gap: 10px;
flex: 2 1 100%;
justify-content: center;
}
.nav-tab {
display: inline-block;
text-decoration: none;
padding: 8px 16px;
border-radius: 20px;
background: linear-gradient(to right, #4a90e2, #357ABD);
color: white;
font-weight: bold;
white-space: nowrap;
transition: background 0.2s ease-in-out, transform 0.2s;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
}
.nav-tab:hover {
background: linear-gradient(to right, #5aa0f2, #4a90e2);
transform: translateY(-2px);
}
.current-tag {
padding-left: 10px;
font-size: 0.9rem;
color: #666;
}
.header-theme-toggle {
flex: 1 1 auto;
align-items: center;
margin-top: 20px;
min-width: 120px;
}
.switch {
position: relative;
display: inline-block;
width: 60px;
height: 30px;
}
.switch input {
display: none;
}
.slider {
position: absolute;
top: 0; left: 0; right: 0; bottom: 0;
background-color: #ccc;
border-radius: 34px;
cursor: pointer;
}
.slider::before {
content: "";
position: absolute;
height: 24px;
width: 24px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #2196F3;
}
input:checked + .slider::before {
transform: translateX(30px);
}
@media (max-width: 768px) {
.header-logo-group,
.header-badges,
.header-theme-toggle {
justify-content: center;
flex: 1 1 100%;
text-align: center;
width: inherit;
}
.logo-img {
max-height: 50px;
pointer-events: unset;
}
.badge-img {
max-width: 100px;
}
.hide_on_mobile {
display: none;
}
.nav-tab {
font-size: 0.9rem;
padding: 6px 12px;
}
.header_button {
white-space: pre;
font-size: 2em;
}
}
.header_button {
white-space: pre;
margin-top: 20px;
margin: 5px;
}
.line_break_anywhere {
line-break: anywhere;
}
.responsive-container {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
gap: 20px;
}
.responsive-container .half {
flex: 1 1 48%;
box-sizing: border-box;
min-width: 500px;
}
.config-section table {
width: 100%;
border-collapse: collapse;
}
@media (max-width: 768px) {
.responsive-container .half {
flex: 1 1 100%;
}
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
.rotate {
animation: spin 2s linear infinite;
display: inline-block;
}
input::placeholder {
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
}
.gridjs-th-content {
overflow: visible !important;
}
.error_text {
color: red;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1em;
font-weight: bold;
color: #333;
border-left: 5px solid #ccc;
padding-left: 0.5em;
}
.no_cursive {
font-style: normal;
}
.caveat {
background-color: #fff8b3;
border: 1px solid #f2d600;
padding: 1em 1em 1em 70px;
position: relative;
font-family: sans-serif;
color: #665500;
margin: 1em 0;
border-radius: 4px;
}
.caveat h1, .caveat h2, .caveat h3, .caveat h4 {
margin-top: 0;
margin-bottom: 0.5em;
font-weight: bold;
}
.caveat::before {
content: "⚠️";
font-size: 50px;
line-height: 1;
position: absolute;
left: 10px;
top: 50%;
transform: translateY(-50%);
pointer-events: none;
user-select: none;
}
.caveat.warning::before { content: "⚠️"; }
.caveat.stop::before { content: "🛑"; }
.caveat.exclamation::before { content: "❗"; }
.caveat.alarm::before { content: "🚨"; }
.caveat.tip::before { content: "💡"; }
.tutorial_icon {
display: inline-block;
font-size: 1.3em;
line-height: 1;
vertical-align: middle;
transform: translateY(-10%);
padding: 0.2em 0;
}
.highlight {
background-color: yellow;
font-weight: bold;
}
#searchResults li {
opacity: 0;
transform: translateY(8px);
animation: fadeInUp 0.3s ease-out forwards;
animation-delay: 0.05s;
list-style: none;
margin-bottom: 5px;
}
@keyframes fadeInUp {
to {
opacity: 1;
transform: translateY(0);
}
}
.search_headline {
font-weight: bold;
margin-top: 1em;
margin-bottom: 0.3em;
color: #444;
}
.search_share_path {
color: black;
display: block ruby;
margin-top: 20px;
}
@media print {
#scads_bar {
display: none !important;
}
}
/*! XP.css v0.2.6 - https: //botoxparty.github.io/XP.css/ */
body{
color: #222
}
.surface{
background: #ece9d8
}
u{
text-decoration: none;
border-bottom: .5px solid #222
}
a{
color: #00f
}
a: focus{
outline: 1px dotted #00f
}
code,code *{
font-family: monospace
}
pre{
display: block;
padding: 12px 8px;
background-color: #000;
color: silver;
font-size: 1rem;
margin: 0;
overflow: scroll;
}
summary: focus{
outline: 1px dotted #000
}
: :-webkit-scrollbar{
width: 16px
}
: :-webkit-scrollbar: horizontal{
height: 17px
}
: :-webkit-scrollbar-track{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='2' height='2' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 0H0v1h1v1h1V1H1V0z' fill='silver'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 0H1v1H0v1h1V1h1V0z' fill='%23fff'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-color: #dfdfdf;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
: :-webkit-scrollbar-button: horizontal: end: increment,: :-webkit-scrollbar-button: horizontal: start: decrement,: :-webkit-scrollbar-button: vertical: end: increment,: :-webkit-scrollbar-button: vertical: start: decrement{
display: block
}
: :-webkit-scrollbar-button: vertical: start{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 6H7v1H6v1H5v1H4v1h7V9h-1V8H9V7H8V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 6H4v1h1v1h1v1h1v1h1V9h1V8h1V7h1V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 4H8v1H7v1H6v1H5v1h1v1h1v1h1v1h1V4z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M7 4H6v7h1v-1h1V9h1V8h1V7H9V6H8V5H7V4z' fill='%23000'/%3E%3C/svg%3E")
}
button{
border: none;
background: #ece9d8;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf;
border-radius: 0;
min-width: 75px;
min-height: 23px;
padding: 0 12px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: inset -1px -1px #fff,inset 1px 1px #0a0a0a,inset -2px -2px #dfdfdf,inset 2px 2px grey
}
button.focused,button: focus{
outline: 1px dotted #000;
outline-offset: -4px
}
label{
display: inline-flex;
align-items: center
}
textarea{
padding: 3px 4px;
border: none;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0
}
textarea: focus{
outline: none
}
select: focus option{
color: #000;
background-color: #fff
}
.vertical-bar{
width: 4px;
height: 20px;
background: silver;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
&: disabled,&: disabled+label{
color: grey;
text-shadow: 1px 1px 0 #fff
}
input[type=radio]+label{
line-height: 13px;
position: relative;
margin-left: 19px
}
input[type=radio]+label: before{
content: "";
position: absolute;
top: 0;
left: -19px;
display: inline-block;
width: 13px;
height: 13px;
margin-right: 6px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='%23fff'/%3E%3C/svg%3E")
}
input[type=radio]: active+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio]: checked+label: after{
content: "";
display: block;
width: 5px;
height: 5px;
top: 5px;
left: -14px;
position: absolute;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=radio][disabled]+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='gray'/%3E%3C/svg%3E")
}
input[type=email],input[type=password]{
padding: 3px 4px;
border: 1px solid #7f9db9;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0;
height: 21px;
line-height: 2
}
input[type=email]: focus,input[type=password]: focus{
outline: none
}
input[type=range]{
-webkit-appearance: none;
width: 100%;
background: transparent
}
input[type=range]: focus{
outline: none
}
input[type=range]: :-webkit-slider-thumb{
-webkit-appearance: none;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-webkit-slider-runnable-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range]: :-moz-range-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
.is-vertical{
display: inline-block;
width: 4px;
height: 150px;
transform: translateY(50%)
}
.is-vertical>input[type=range]{
width: 150px;
height: 4px;
margin: 0 16px 0 10px;
transform-origin: left;
transform: rotate(270deg) translateX(calc(-50% + 8px))
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-webkit-slider-thumb{
transform: translateY(-8px) scaleX(-1)
}
.is-vertical>input[type=range]: :-moz-range-thumb{
transform: translateY(2px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-webkit-slider-thumb{
transform: translateY(-10px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-moz-range-thumb{
transform: translateY(0) scaleX(-1)
}
.window{
font-size: 11px;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #dfdfdf,inset -2px -2px grey,inset 2px 2px #fff;
background: #ece9d8;
padding: 3px
}
.window fieldset{
margin-bottom: 9px
}
.title-bar{
background: #000;
padding: 3px 2px 3px 3px;
display: flex;
justify-content: space-between;
align-items: center
}
.title-bar-text{
font-weight: 700;
color: #fff;
letter-spacing: 0;
margin-right: 24px
}
.title-bar-controls button{
padding: 0;
display: block;
min-width: 16px;
min-height: 14px
}
.title-bar-controls button: focus{
outline: none
}
.window-body{
margin: 8px
}
.window-body pre{
margin: -8px
}
.status-bar{
margin: 0 1px;
display: flex;
gap: 1px
}
.status-bar-field{
box-shadow: inset -1px -1px #dfdfdf,inset 1px 1px grey;
flex-grow: 1;
padding: 2px 3px;
margin: 0
}
ul.tree-view{
display: block;
background: #fff;
padding: 6px;
margin: 0
}
ul.tree-view li{
list-style-type: none;
margin-top: 3px
}
ul.tree-view a{
text-decoration: none;
color: #000
}
ul.tree-view a: focus{
background-color: #2267cb;
color: #fff
}
ul.tree-view ul{
margin-top: 3px;
margin-left: 16px;
padding-left: 16px;
border-left: 1px dotted grey
}
ul.tree-view ul>li{
position: relative
}
ul.tree-view ul>li: before{
content: "";
display: block;
position: absolute;
left: -16px;
top: 6px;
width: 12px;
border-bottom: 1px dotted grey
}
ul.tree-view ul>li: last-child: after{
content: "";
display: block;
position: absolute;
left: -20px;
top: 7px;
bottom: 0;
width: 8px;
background: #fff
}
ul.tree-view ul details>summary: before{
margin-left: -22px;
position: relative;
z-index: 1
}
ul.tree-view details{
margin-top: 0
}
ul.tree-view details>summary: before{
text-align: center;
display: block;
float: left;
content: "+";
border: 1px solid grey;
width: 8px;
height: 9px;
line-height: 9px;
margin-right: 5px;
padding-left: 1px;
background-color: #fff
}
ul.tree-view details[open] summary{
margin-bottom: 0
}
ul.tree-view details[open]>summary: before{
content: "-"
}
fieldset{
border-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='5' height='5' fill='gray' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h5v5H0V2h2v1h1V2H0' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h4v4H0V1h1v2h2V1H0'/%3E%3C/svg%3E") 2;
padding: 10px;
padding-block-start: 8px;
margin: 0
}
legend{
background: #ece9d8
}
menu[role=tablist]{
position: relative;
margin: 0 0 -2px;
text-indent: 0;
list-style-type: none;
display: flex;
padding-left: 3px
}
menu[role=tablist] button{
z-index: 1;
display: block;
color: #222;
text-decoration: none;
min-width: unset
}
menu[role=tablist] button[aria-selected=true]{
padding-bottom: 2px;margin-top: -2px;background-color: #ece9d8;position: relative;z-index: 8;margin-left: -3px;margin-bottom: 1px
}
menu[role=tablist] button: focus{
outline: 1px dotted #222;outline-offset: -4px
}
menu[role=tablist].justified button{
flex-grow: 1;text-align: center
}
[role=tabpanel]{
padding: 14px;clear: both;background: linear-gradient(180deg,#fcfcfe,#f4f3ee);border: 1px solid #919b9c;position: relative;z-index: 2;margin-bottom: 9px
}
: :-webkit-scrollbar{
width: 17px
}
: :-webkit-scrollbar-corner{
background: #dfdfdf
}
: :-webkit-scrollbar-track: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 1' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1'/%3E%3Cpath stroke='%23f3f1ec' d='M1 0h1'/%3E%3Cpath stroke='%23f4f1ec' d='M2 0h1'/%3E%3Cpath stroke='%23f4f3ee' d='M3 0h1'/%3E%3Cpath stroke='%23f5f4ef' d='M4 0h1'/%3E%3Cpath stroke='%23f6f5f0' d='M5 0h1'/%3E%3Cpath stroke='%23f7f7f3' d='M6 0h1'/%3E%3Cpath stroke='%23f9f8f4' d='M7 0h1'/%3E%3Cpath stroke='%23f9f9f7' d='M8 0h1'/%3E%3Cpath stroke='%23fbfbf8' d='M9 0h1'/%3E%3Cpath stroke='%23fbfbf9' d='M10 0h2'/%3E%3Cpath stroke='%23fdfdfa' d='M12 0h1'/%3E%3Cpath stroke='%23fefefb' d='M13 0h3'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-track: horizontal{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 1 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1M0 16h1'/%3E%3Cpath stroke='%23f3f1ec' d='M0 1h1'/%3E%3Cpath stroke='%23f4f1ec' d='M0 2h1'/%3E%3Cpath stroke='%23f4f3ee' d='M0 3h1'/%3E%3Cpath stroke='%23f5f4ef' d='M0 4h1'/%3E%3Cpath stroke='%23f6f5f0' d='M0 5h1'/%3E%3Cpath stroke='%23f7f7f3' d='M0 6h1'/%3E%3Cpath stroke='%23f9f8f4' d='M0 7h1'/%3E%3Cpath stroke='%23f9f9f7' d='M0 8h1'/%3E%3Cpath stroke='%23fbfbf8' d='M0 9h1'/%3E%3Cpath stroke='%23fbfbf9' d='M0 10h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 12h1'/%3E%3Cpath stroke='%23fefefb' d='M0 13h1m-1 1h1m-1 1h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-position: 50%;
background-repeat: no-repeat;
background-color: #c8d6fb;
background-size: 7px;
border: 1px solid #fff;
border-radius: 2px;
box-shadow: inset -3px 0 #bad1fc,inset 1px 1px #b7caf5
}
: :-webkit-scrollbar-thumb: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 7 8' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h6M0 2h6M0 4h6M0 6h6'/%3E%3Cpath stroke='%23bad1fc' d='M6 0h1M6 2h1M6 4h1'/%3E%3Cpath stroke='%23c8d6fb' d='M0 1h1M0 3h1M0 5h1M0 7h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h6M1 3h6M1 5h6M1 7h6'/%3E%3Cpath stroke='%23bad3fc' d='M6 6h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb: horizontal{
background-size: 8px;background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 8 7' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h1m1 0h1m1 0h1m1 0h1M0 1h1m1 0h1m1 0h1m1 0h1M0 2h1m1 0h1m1 0h1m1 0h1M0 3h1m1 0h1m1 0h1m1 0h1M0 4h1m1 0h1m1 0h1m1 0h1M0 5h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23c8d6fb' d='M1 0h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h1m1 0h1m1 0h1m1 0h1M1 2h1m1 0h1m1 0h1m1 0h1M1 3h1m1 0h1m1 0h1m1 0h1M1 4h1m1 0h1m1 0h1m1 0h1M1 5h1m1 0h1m1 0h1m1 0h1M1 6h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23bad1fc' d='M0 6h1m1 0h1'/%3E%3Cpath stroke='%23bad3fc' d='M4 6h1m1 0h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: start{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h1m1 0h1'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M5 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h1m3 0h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h2M3 8h2'/%3E%3Cpath stroke='%234d6185' d='M8 5h1M7 6h3M6 7h5M5 8h3m1 0h3M4 9h3m3 0h3m-8 1h1m5 0h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1m-2 1h1m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23cad8fd' d='M4 7h2'/%3E%3Cpath stroke='%23b6cefb' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23c1d3fb' d='M8 8h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M8 9h1m-1 1h1m-3 1h2'/%3E%3Cpath stroke='%23bdd3fb' d='M9 9h1m-2 3h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M7 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h1m1 0h1m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c1d5fb' d='M8 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M6 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h3'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1M8 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h3M3 8h2'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M9 6h2m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%234d6185' d='M5 6h1m5 0h1M4 7h3m3 0h3M5 8h3m1 0h3M6 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 7h2M8 8h1'/%3E%3Cpath stroke='%23b6cefb' d='M9 7h1m2 1h1m-2 1h2'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M6 11h2'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23bdd3fb' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1M1 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 4h1M5 5h2M4 7h1M2 8h1'/%3E%3Cpath stroke='%234d6185' d='M8 4h1M7 5h3M6 6h3M5 7h3M4 8h3M5 9h3m-2 1h3m-2 1h3m-2 1h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M2 11h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M9 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23c8d6fb' d='M5 6h1M2 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1M8 7h3m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 8h2'/%3E%3Cpath stroke='%23b6cefb' d='M9 8h3M9 9h4'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 1h1m-1 4h1'/%3E%3Cpath stroke='%23bdd3fb' d='M8 9h1m-2 3h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-5 4h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%239fb5d2' d='M16 10h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M5 11h2'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%234d6185' d='M7 4h1M6 5h3M7 6h3M8 7h3M9 8h3M8 9h3m-4 1h3m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23c8d6fb' d='M8 4h1M5 6h2'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1M2 9h5'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M9 5h1m-8 6h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23c9d8fc' d='M5 5h1M4 7h3M2 8h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M7 7h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1m0 1h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h3'/%3E%3Cpath stroke='%23c1d3fb' d='M6 8h3'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 5h1'/%3E%3Cpath stroke='%23b4c8f6' d='M1 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M7 9h1m-3 2h1'/%3E%3Cpath stroke='%23b6cefb' d='M11 9h2'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23bbd3fd' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b6cdfb' d='M9 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
.window{
box-shadow: inset -1px -1px #00138c,inset 1px 1px #0831d9,inset -2px -2px #001ea0,inset 2px 2px #166aee,inset -3px -3px #003bda,inset 3px 3px #0855dd;
border-top-left-radius: 8px;
border-top-right-radius: 8px;
padding: 0 0 3px;
-webkit-font-smoothing: antialiased
}
.title-bar{
background: linear-gradient(180deg,#0997ff,#0053ee 8%,#0050ee 40%,#06f 88%,#06f 93%,#005bff 95%,#003dd7 96%,#003dd7);
padding: 3px 5px 3px 3px;
border-top: 1px solid #0831d9;
border-left: 1px solid #0831d9;
border-right: 1px solid #001ea0;
border-top-left-radius: 8px;
border-top-right-radius: 7px;
font-size: 13px;
text-shadow: 1px 1px #0f1089;
height: 21px
}
.title-bar-text{
padding-left: 3px
}
.title-bar-controls{
display: flex
}
.title-bar-controls button{
min-width: 21px;
min-height: 21px;
margin-left: 2px;
background-repeat: no-repeat;
background-position: 50%;
box-shadow: none;
background-color: #0050ee;
transition: background .1s;
border: none
}
.title-bar-controls button: active,.title-bar-controls button: focus,.title-bar-controls button: hover{
box-shadow: none!important
}
.title-bar-controls button[aria-label=Minimize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%235985f7' d='M7 5h1'/%3E%3Cpath stroke='%235381f6' d='M8 5h1M6 9h1'/%3E%3Cpath stroke='%234d7bf6' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%234677f5' d='M10 5h1'/%3E%3Cpath stroke='%234173f5' d='M11 5h1'/%3E%3Cpath stroke='%233a6ff4' d='M12 5h1'/%3E%3Cpath stroke='%23386ef4' d='M13 5h1'/%3E%3Cpath stroke='%23346cf4' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%235480f7' d='M7 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%233a6ff5' d='M11 6h1'/%3E%3Cpath stroke='%23346df4' d='M12 6h1'/%3E%3Cpath stroke='%23306bf4' d='M13 6h1'/%3E%3Cpath stroke='%232d69f4' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23507ef6' d='M7 7h1'/%3E%3Cpath stroke='%234a79f6' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236694eb' d='M19 0h1'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1m-6 6h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23427ff6' d='M9 13h1'/%3E%3Cpath stroke='%233c7ff6' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23366ef4' d='M2 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%236699f3' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23afc2ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h1'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1m-5 6h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M6 13h1'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23539fff' d='M9 13h1'/%3E%3Cpath stroke='%234fa4ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-7 7h1m-3 1h1'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m-7 7h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-1 1h1m-1 1h1M7 12h1m-2 1h1m-3 1h1m1 0h1m-3 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 5h11M5 6h11M5 7h11M5 8h1m9 0h1M5 9h1m9 0h1M5 10h1m9 0h1M5 11h1m9 0h1M5 12h1m9 0h1M5 13h1m9 0h1M5 14h1m9 0h1M5 15h11'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%23004fb4' d='M16 7h2m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1'/%3E%3Cpath stroke='%230049ae' d='M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M10 8h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 2h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h1m-6 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230051b6' d='M18 9h1m0 2h1m-1 1h1M8 14h1m10 3h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 1h1m-1 3h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h1m-4 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230049ac' d='M4 11h1m-2 1h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h1m-3 1h1m4 0h1m-7 2h1m0 3h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-1 2h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 3h1'/%3E%3Cpath stroke='%23005ec3' d='M13 13h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230060c5' d='M14 14h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23b2c3ee' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 5h1M8 5h1M6 9h1M9 5h1M8 6h1M10 5h1M11 5h1M12 5h1M13 5h1M14 5h1M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%23FFF' d='M7 6h1M8 6h1M9 6h1M10 6h1M11 6h1M12 6h1M13 6h1M14 6h1M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23FFF' d='M7 7h1'/%3E%3Cpath stroke='%234375f5' d='M8 7h1M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%23FFF' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 8h1'/%3E%3Cpath stroke='%234174f5' d='M8 8h1M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%23FFF' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%23FFF' d='M5 9h1M6 9h1M7 9h1M8 9h1M9 9h1M10 9h1M11 9h1M12 9h1M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%23FFF' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1M4 10h1'/%3E%3Cpath stroke='%23FFF' d='M5 10h1M6 10h1M7 10h1M8 10h1M9 10h1M10 10h1M11 10h1M12 10h1M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%23FFF' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%23FFF' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232673f7' d='M12 11h1'/%3E%3Cpath stroke='%23FFF' d='M13 11h1M14 11h1M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%23FFF' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232677f7' d='M12 12h1'/%3E%3Cpath stroke='%23FFF' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1M6 13h1M7 13h1'/%3E%3Cpath stroke='%23437ff6' d='M8 13h1'/%3E%3Cpath stroke='%232d7df7' d='M9 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M10 13h1M11 13h1'/%3E%3Cpath stroke='%232679f8' d='M12 13h1'/%3E%3Cpath stroke='%23FFF' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1M6 14h1'/%3E%3Cpath stroke='%232d7df7' d='M7 14h1M8 14h1M9 14h1M10 14h1M11 14h1'/%3E%3Cpath stroke='%23257af8' d='M12 14h1'/%3E%3Cpath stroke='%23FFF' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23FFF' d='M11 15h1M12 15h1M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%23FFF' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23548DFF' d='M5 13h1'/%3E%3Cpath stroke='%235991FF' d='M6 13h1'/%3E%3Cpath stroke='%235792FF' d='M7 13h1'/%3E%3Cpath stroke='%235496FF' d='M8 13h1'/%3E%3Cpath stroke='%23539CFF' d='M9 13h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 13h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23548DFF' d='M5 14h1'/%3E%3Cpath stroke='%235991FF' d='M6 14h1'/%3E%3Cpath stroke='%235792FF' d='M7 14h1'/%3E%3Cpath stroke='%235496FF' d='M8 14h1'/%3E%3Cpath stroke='%23539CFF' d='M9 14h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 14h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M12 12h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7M5 13h1'/%3E%3Cpath stroke='%23004BB0' d='M6 13h1'/%3E%3Cpath stroke='%23004DB1' d='M7 13h1'/%3E%3Cpath stroke='%23004FB4' d='M8 13h1'/%3E%3Cpath stroke='%230052B7' d='M9 13h1'/%3E%3Cpath stroke='%230055B9' d='M10 13h1'/%3E%3Cpath stroke='%230157BC' d='M11 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m1 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23004BB0' d='M6 14h1'/%3E%3Cpath stroke='%23004DB1' d='M7 14h1'/%3E%3Cpath stroke='%23004FB4' d='M8 14h1'/%3E%3Cpath stroke='%230052B7' d='M9 14h1'/%3E%3Cpath stroke='%230055B9' d='M10 14h1'/%3E%3Cpath stroke='%230157BC' d='M11 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 14h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M12 15h1M13 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1M5 14h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%2392aff9' d='M7 4h1'/%3E%3Cpath stroke='%23e1e9fd' d='M8 4h1'/%3E%3Cpath stroke='%23e0e8fd' d='M12 4h1'/%3E%3Cpath stroke='%2381a4f8' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%238eacf9' d='M6 5h1'/%3E%3Cpath stroke='%23f3f6fe' d='M7 5h1'/%3E%3Cpath stroke='%23d8e2fd' d='M9 5h1'/%3E%3Cpath stroke='%23cfdcfc' d='M10 5h1'/%3E%3Cpath stroke='%23ecf1fe' d='M11 5h1'/%3E%3Cpath stroke='%23eff4fe' d='M13 5h1'/%3E%3Cpath stroke='%23749af7' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%23d3dffd' d='M6 6h1'/%3E%3Cpath stroke='%23b2c6fb' d='M8 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%234a7bf6' d='M11 6h1'/%3E%3Cpath stroke='%23c8d7fc' d='M12 6h1'/%3E%3Cpath stroke='%23c6d6fc' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%23e6edfe' d='M6 7h1'/%3E%3Cpath stroke='%23e5ecfe' d='M7 7h1'/%3E%3Cpath stroke='%235a85f7' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%236c97f8' d='M12 7h1'/%3E%3Cpath stroke='%23cfddfd' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%2385a9f9' d='M12 8h1'/%3E%3Cpath stroke='%23cbdbfd' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235986f7' d='M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%2396b6fa' d='M11 9h1'/%3E%3Cpath stroke='%23f2f6fe' d='M12 9h1'/%3E%3Cpath stroke='%2393b6fb' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234e82f7' d='M9 10h1'/%3E%3Cpath stroke='%23cadafc' d='M10 10h1'/%3E%3Cpath stroke='%23a0c0fb' d='M13 10h1'/%3E%3Cpath stroke='%232a72f6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23bcd1fc' d='M9 11h1'/%3E%3Cpath stroke='%23dde8fd' d='M11 11h1'/%3E%3Cpath stroke='%235f97f8' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23dfe9fd' d='M9 12h1'/%3E%3Cpath stroke='%234687f7' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%235081f6' d='M5 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23d2e0fd' d='M9 13h1'/%3E%3Cpath stroke='%23edf3fe' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23467af5' d='M5 15h1'/%3E%3Cpath stroke='%23457af6' d='M6 15h1'/%3E%3Cpath stroke='%23437bf6' d='M7 15h1'/%3E%3Cpath stroke='%23417cf6' d='M8 15h1'/%3E%3Cpath stroke='%23cbdcfd' d='M9 15h1'/%3E%3Cpath stroke='%23327df7' d='M11 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%23f5f8fe' d='M9 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ee' d='M1 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b1ed' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m2 5h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2393b0ed' d='M20 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1m7 1h1'/%3E%3Cpath stroke='%239bbdff' d='M7 4h1'/%3E%3Cpath stroke='%23e3edff' d='M8 4h1'/%3E%3Cpath stroke='%23e1ebff' d='M12 4h1'/%3E%3Cpath stroke='%2387afff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1m-6 9h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%239bf' d='M6 5h1'/%3E%3Cpath stroke='%23f4f7ff' d='M7 5h1'/%3E%3Cpath stroke='%23dbe7ff' d='M9 5h1'/%3E%3Cpath stroke='%23d2e1ff' d='M10 5h1'/%3E%3Cpath stroke='%23edf3ff' d='M11 5h1'/%3E%3Cpath stroke='%23f0f5ff' d='M13 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%23548dff' d='M1 6h1m2 7h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%23d8e5ff' d='M6 6h1'/%3E%3Cpath stroke='%23b9d0ff' d='M8 6h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%23538dff' d='M11 6h1'/%3E%3Cpath stroke='%23cbdcff' d='M12 6h1'/%3E%3Cpath stroke='%23c9dbff' d='M14 6h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23e8f0ff' d='M6 7h1'/%3E%3Cpath stroke='%23e7efff' d='M7 7h1'/%3E%3Cpath stroke='%23679aff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%2374a5ff' d='M12 7h1'/%3E%3Cpath stroke='%23d1e1ff' d='M14 7h1'/%3E%3Cpath stroke='%23317aff' d='M15 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%238cb7ff' d='M12 8h1'/%3E%3Cpath stroke='%23cde0ff' d='M14 8h1'/%3E%3Cpath stroke='%232f7fff' d='M15 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%239dc5ff' d='M11 9h1'/%3E%3Cpath stroke='%23f3f8ff' d='M12 9h1'/%3E%3Cpath stroke='%239ac5ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%236297ff' d='M5 10h1'/%3E%3Cpath stroke='%235f95ff' d='M6 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235c9aff' d='M9 10h1'/%3E%3Cpath stroke='%23cee2ff' d='M10 10h1'/%3E%3Cpath stroke='%23a7d0ff' d='M13 10h1'/%3E%3Cpath stroke='%233897ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%23c2dbff' d='M9 11h1'/%3E%3Cpath stroke='%23e0efff' d='M11 11h1'/%3E%3Cpath stroke='%236eb6ff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23e2eeff' d='M9 12h1'/%3E%3Cpath stroke='%2359adff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M5 13h2'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23d6e8ff' d='M9 13h1'/%3E%3Cpath stroke='%23eef6ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528cff' d='M5 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%234d89ff' d='M6 15h1'/%3E%3Cpath stroke='%234c8cff' d='M7 15h1'/%3E%3Cpath stroke='%234d94ff' d='M8 15h1'/%3E%3Cpath stroke='%23cfe4ff' d='M9 15h1'/%3E%3Cpath stroke='%2347aaff' d='M11 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%23f6faff' d='M9 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%2393b2f1' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bdef' d='M1 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h1m5 0h9'/%3E%3Cpath stroke='%23a7bdee' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23a7bcee' d='M20 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230a4aa5' d='M7 4h1'/%3E%3Cpath stroke='%234e7ec0' d='M8 4h1'/%3E%3Cpath stroke='%23789ed1' d='M9 4h1'/%3E%3Cpath stroke='%23789ed3' d='M10 4h1'/%3E%3Cpath stroke='%23789fd4' d='M11 4h1m0 1h1'/%3E%3Cpath stroke='%235184c7' d='M12 4h1'/%3E%3Cpath stroke='%230b54b3' d='M13 4h1m0 1h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-2 1h2M7 12h1m-2 1h1m-3 1h3m-3 1h2m-2 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230949a4' d='M6 5h1'/%3E%3Cpath stroke='%23668ec8' d='M7 5h1'/%3E%3Cpath stroke='%23789dd1' d='M8 5h1M7 6h1'/%3E%3Cpath stroke='%23497cc1' d='M9 5h1'/%3E%3Cpath stroke='%234178c0' d='M10 5h1'/%3E%3Cpath stroke='%23608dcb' d='M11 5h1'/%3E%3Cpath stroke='%236693cf' d='M13 5h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230042a1' d='M5 6h1'/%3E%3Cpath stroke='%234073bb' d='M6 6h1'/%3E%3Cpath stroke='%232661b6' d='M8 6h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1'/%3E%3Cpath stroke='%230049ad' d='M10 6h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M11 6h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%234077c4' d='M12 6h1'/%3E%3Cpath stroke='%2378a1d6' d='M13 6h1'/%3E%3Cpath stroke='%234079c4' d='M14 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%235684c6' d='M6 7h1'/%3E%3Cpath stroke='%235686c8' d='M7 7h1'/%3E%3Cpath stroke='%230049ac' d='M8 7h1m-4 3h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230a53b5' d='M12 7h1'/%3E%3Cpath stroke='%2378a1d7' d='M13 7h1'/%3E%3Cpath stroke='%234881c8' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m0 1h1m0 1h1M8 12h1m-2 3h1m0 3h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230046a8' d='M5 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%23145db9' d='M12 8h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 8h1'/%3E%3Cpath stroke='%23457fc8' d='M14 8h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1M8 14h1m-1 1h1m10 2h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%230050b5' d='M16 8h2m1 2h1M8 13h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230047a8' d='M4 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1m-2 1h1'/%3E%3Cpath stroke='%231b62bd' d='M11 9h1'/%3E%3Cpath stroke='%236899d4' d='M12 9h1'/%3E%3Cpath stroke='%2378a4d9' d='M13 9h1'/%3E%3Cpath stroke='%231f68c1' d='M14 9h1'/%3E%3Cpath stroke='%230054b9' d='M15 9h1m-7 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230053b8' d='M16 9h2m0 1h1m0 4h1m-1 2h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230048ab' d='M4 10h1'/%3E%3Cpath stroke='%23407cc7' d='M10 10h1'/%3E%3Cpath stroke='%2378a3d9' d='M11 10h1m-2 1h1'/%3E%3Cpath stroke='%2378a5da' d='M12 10h1m-3 2h1'/%3E%3Cpath stroke='%23256ec4' d='M13 10h1'/%3E%3Cpath stroke='%230057bb' d='M14 10h1'/%3E%3Cpath stroke='%230057bc' d='M15 10h1m-5 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%230056bb' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%230055ba' d='M17 10h1m0 1h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%23004cb0' d='M7 11h1m-4 2h1'/%3E%3Cpath stroke='%233272c4' d='M9 11h1'/%3E%3Cpath stroke='%23538cd0' d='M11 11h1'/%3E%3Cpath stroke='%23065cbf' d='M12 11h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%230058bd' d='M17 11h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%23538ace' d='M9 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 2h1m-1 1h1'/%3E%3Cpath stroke='%234581cb' d='M9 13h1'/%3E%3Cpath stroke='%236297d5' d='M10 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230052b7' d='M19 13h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23407fca' d='M9 15h1'/%3E%3Cpath stroke='%2378a6dc' d='M10 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%236c9bd5' d='M9 16h1'/%3E%3Cpath stroke='%2378a6db' d='M10 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M4 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M5 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M6 20h1'/%3E%3Cpath stroke='%23a7bdf0' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23fae1dc' d='M1 1h1'/%3E%3Cpath stroke='%23eb8b73' d='M2 1h1'/%3E%3Cpath stroke='%23e97b60' d='M3 1h1'/%3E%3Cpath stroke='%23e77155' d='M4 1h1'/%3E%3Cpath stroke='%23e66a4d' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23e56648' d='M6 1h1'/%3E%3Cpath stroke='%23e46142' d='M7 1h1'/%3E%3Cpath stroke='%23e46344' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%23e45f3e' d='M9 1h2'/%3E%3Cpath stroke='%23e35c3b' d='M11 1h2'/%3E%3Cpath stroke='%23e25633' d='M13 1h2'/%3E%3Cpath stroke='%23e25330' d='M15 1h1'/%3E%3Cpath stroke='%23e04d28' d='M16 1h1'/%3E%3Cpath stroke='%23dc451f' d='M17 1h1'/%3E%3Cpath stroke='%23d05334' d='M18 1h1'/%3E%3Cpath stroke='%23efd8d2' d='M19 1h1'/%3E%3Cpath stroke='%23ec8d76' d='M1 2h1'/%3E%3Cpath stroke='%23efa390' d='M2 2h1'/%3E%3Cpath stroke='%23f0a694' d='M3 2h1'/%3E%3Cpath stroke='%23ee9a85' d='M4 2h1'/%3E%3Cpath stroke='%23eb8d75' d='M5 2h1'/%3E%3Cpath stroke='%23ea876e' d='M6 2h1'/%3E%3Cpath stroke='%23ea8168' d='M7 2h1'/%3E%3Cpath stroke='%23e97f66' d='M8 2h1'/%3E%3Cpath stroke='%23e97c62' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%23e8795f' d='M10 2h1'/%3E%3Cpath stroke='%23e8795e' d='M11 2h1'/%3E%3Cpath stroke='%23e87559' d='M12 2h1'/%3E%3Cpath stroke='%23e77256' d='M13 2h1'/%3E%3Cpath stroke='%23e66e50' d='M14 2h1'/%3E%3Cpath stroke='%23e56849' d='M15 2h1'/%3E%3Cpath stroke='%23e4603f' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23e05532' d='M17 2h1'/%3E%3Cpath stroke='%23d04623' d='M18 2h1'/%3E%3Cpath stroke='%23b64b30' d='M19 2h1'/%3E%3Cpath stroke='%23e97f65' d='M1 3h1'/%3E%3Cpath stroke='%23f0a997' d='M2 3h1'/%3E%3Cpath stroke='%23f1ac9a' d='M3 3h1'/%3E%3Cpath stroke='%23ee9d89' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%23ec917a' d='M5 3h1'/%3E%3Cpath stroke='%23eb8b72' d='M6 3h1'/%3E%3Cpath stroke='%23ea856d' d='M7 3h1'/%3E%3Cpath stroke='%23e98168' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23e87e65' d='M9 3h1'/%3E%3Cpath stroke='%23e97b61' d='M11 3h1'/%3E%3Cpath stroke='%23e8775d' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%23e87459' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%23e66f52' d='M14 3h1'/%3E%3Cpath stroke='%23e56a4c' d='M15 3h1'/%3E%3Cpath stroke='%23e46343' d='M16 3h1'/%3E%3Cpath stroke='%23e15937' d='M17 3h1'/%3E%3Cpath stroke='%23d24a28' d='M18 3h1'/%3E%3Cpath stroke='%23aa3315' d='M19 3h1'/%3E%3Cpath stroke='%23e87458' d='M1 4h1'/%3E%3Cpath stroke='%23efa18d' d='M3 4h1'/%3E%3Cpath stroke='%23ed957f' d='M4 4h1'/%3E%3Cpath stroke='%23eb8a71' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%23ea836a' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23e97d64' d='M7 4h1'/%3E%3Cpath stroke='%23e8785e' d='M8 4h1'/%3E%3Cpath stroke='%23e77359' d='M9 4h1'/%3E%3Cpath stroke='%23e76f54' d='M10 4h1'/%3E%3Cpath stroke='%23e66d51' d='M11 4h1'/%3E%3Cpath stroke='%23e5684b' d='M12 4h1'/%3E%3Cpath stroke='%23e5684a' d='M13 4h1'/%3E%3Cpath stroke='%23e35c3a' d='M16 4h1m-7 4h1m-8 7h1'/%3E%3Cpath stroke='%23e05634' d='M17 4h1'/%3E%3Cpath stroke='%23d24c2a' d='M18 4h1'/%3E%3Cpath stroke='%23ac3618' d='M19 4h1'/%3E%3Cpath stroke='%23e76f52' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23ec9179' d='M2 5h1'/%3E%3Cpath stroke='%23ec937c' d='M3 5h1'/%3E%3Cpath stroke='%23f7ccc2' d='M5 5h1'/%3E%3Cpath stroke='%23e77259' d='M7 5h1M5 9h1'/%3E%3Cpath stroke='%23e76d53' d='M8 5h1'/%3E%3Cpath stroke='%23e5684d' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%23e46446' d='M10 5h1'/%3E%3Cpath stroke='%23e45f41' d='M11 5h1'/%3E%3Cpath stroke='%23e35b3a' d='M12 5h1m-2 1h1'/%3E%3Cpath stroke='%23e35938' d='M13 5h1'/%3E%3Cpath stroke='%23f3bbad' d='M15 5h1'/%3E%3Cpath stroke='%23e25531' d='M16 5h1'/%3E%3Cpath stroke='%23df5330' d='M17 5h1'/%3E%3Cpath stroke='%23d34e2c' d='M18 5h1'/%3E%3Cpath stroke='%23ad3a1d' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%23eb876e' d='M2 6h1'/%3E%3Cpath stroke='%23eb8a70' d='M3 6h1'/%3E%3Cpath stroke='%23e46447' d='M9 6h1'/%3E%3Cpath stroke='%23e45f40' d='M10 6h1'/%3E%3Cpath stroke='%23e25634' d='M12 6h1'/%3E%3Cpath stroke='%23e2522d' d='M16 6h1'/%3E%3Cpath stroke='%23df522e' d='M17 6h1'/%3E%3Cpath stroke='%23d34d2c' d='M18 6h1'/%3E%3Cpath stroke='%23e56546' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23e97e65' d='M4 7h1'/%3E%3Cpath stroke='%23e8775e' d='M5 7h1'/%3E%3Cpath stroke='%23e46143' d='M9 7h1'/%3E%3Cpath stroke='%23e45d3d' d='M10 7h1'/%3E%3Cpath stroke='%23e35836' d='M11 7h1'/%3E%3Cpath stroke='%23e24e27' d='M15 7h1'/%3E%3Cpath stroke='%23e2502a' d='M16 7h1'/%3E%3Cpath stroke='%23e0512c' d='M17 7h1'/%3E%3Cpath stroke='%23d34d2a' d='M18 7h1'/%3E%3Cpath stroke='%23ad391c' d='M19 7h1'/%3E%3Cpath stroke='%23e87a60' d='M2 8h1m1 0h1'/%3E%3Cpath stroke='%23e87c62' d='M3 8h1'/%3E%3Cpath stroke='%23e8745b' d='M5 8h1'/%3E%3Cpath stroke='%23e76e54' d='M6 8h1'/%3E%3Cpath stroke='%23e24d24' d='M14 8h1'/%3E%3Cpath stroke='%23e24b22' d='M15 8h1'/%3E%3Cpath stroke='%23e24d25' d='M16 8h1'/%3E%3Cpath stroke='%23e05029' d='M17 8h1'/%3E%3Cpath stroke='%23d44c29' d='M18 8h1'/%3E%3Cpath stroke='%23ae391b' d='M19 8h1'/%3E%3Cpath stroke='%23e35d3c' d='M1 9h1'/%3E%3Cpath stroke='%23e8765d' d='M4 9h1'/%3E%3Cpath stroke='%23e66f53' d='M6 9h1'/%3E%3Cpath stroke='%23e56b4e' d='M7 9h1'/%3E%3Cpath stroke='%23e45127' d='M13 9h1'/%3E%3Cpath stroke='%23e44f23' d='M14 9h1'/%3E%3Cpath stroke='%23e34c20' d='M15 9h1'/%3E%3Cpath stroke='%23e34d22' d='M16 9h1'/%3E%3Cpath stroke='%23e14f25' d='M17 9h1'/%3E%3Cpath stroke='%23d54a25' d='M18 9h1'/%3E%3Cpath stroke='%23af3719' d='M19 9h1'/%3E%3Cpath stroke='%23e35937' d='M1 10h1'/%3E%3Cpath stroke='%23e76d51' d='M2 10h1'/%3E%3Cpath stroke='%23e87257' d='M3 10h1'/%3E%3Cpath stroke='%23e87359' d='M4 10h1'/%3E%3Cpath stroke='%23e77157' d='M5 10h1'/%3E%3Cpath stroke='%23e66e52' d='M6 10h1'/%3E%3Cpath stroke='%23e56747' d='M8 10h1'/%3E%3Cpath stroke='%23e5572c' d='M12 10h1'/%3E%3Cpath stroke='%23e55326' d='M13 10h1'/%3E%3Cpath stroke='%23e55022' d='M14 10h1'/%3E%3Cpath stroke='%23e54d1e' d='M15 10h1'/%3E%3Cpath stroke='%23e54d1f' d='M16 10h1'/%3E%3Cpath stroke='%23e24e21' d='M17 10h1'/%3E%3Cpath stroke='%23d64921' d='M18 10h1'/%3E%3Cpath stroke='%23af3516' d='M19 10h1'/%3E%3Cpath stroke='%23e25432' d='M1 11h1'/%3E%3Cpath stroke='%23e5694b' d='M2 11h1'/%3E%3Cpath stroke='%23e77054' d='M3 11h1'/%3E%3Cpath stroke='%23e77156' d='M4 11h1'/%3E%3Cpath stroke='%23e87055' d='M5 11h1'/%3E%3Cpath stroke='%23e66c4d' d='M7 11h1'/%3E%3Cpath stroke='%23e75526' d='M13 11h1'/%3E%3Cpath stroke='%23e75221' d='M14 11h1'/%3E%3Cpath stroke='%23e64e1c' d='M15 11h1'/%3E%3Cpath stroke='%23e64d1c' d='M16 11h1'/%3E%3Cpath stroke='%23e34c1c' d='M17 11h1'/%3E%3Cpath stroke='%23d6461c' d='M18 11h1'/%3E%3Cpath stroke='%23b03312' d='M19 11h1'/%3E%3Cpath stroke='%23e14f2b' d='M1 12h1'/%3E%3Cpath stroke='%23e66b4e' d='M3 12h1'/%3E%3Cpath stroke='%23e76f53' d='M5 12h1'/%3E%3Cpath stroke='%23e66e51' d='M6 12h1'/%3E%3Cpath stroke='%23e7653d' d='M10 12h1'/%3E%3Cpath stroke='%23fef5f1' d='M13 12h1'/%3E%3Cpath stroke='%23e85421' d='M14 12h1'/%3E%3Cpath stroke='%23e8501b' d='M15 12h1'/%3E%3Cpath stroke='%23e74d18' d='M16 12h1'/%3E%3Cpath stroke='%23e44a18' d='M17 12h1'/%3E%3Cpath stroke='%23d74216' d='M18 12h1'/%3E%3Cpath stroke='%23b2310f' d='M19 12h1'/%3E%3Cpath stroke='%23e04b25' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23e35e3d' d='M2 13h1'/%3E%3Cpath stroke='%23e56748' d='M3 13h1'/%3E%3Cpath stroke='%23e66c4e' d='M4 13h1'/%3E%3Cpath stroke='%23e66d50' d='M5 13h1'/%3E%3Cpath stroke='%23e76842' d='M9 13h1'/%3E%3Cpath stroke='%23e7653c' d='M10 13h1'/%3E%3Cpath stroke='%23e86236' d='M11 13h1'/%3E%3Cpath stroke='%23e95019' d='M15 13h1m-2 3h1'/%3E%3Cpath stroke='%23e84c16' d='M16 13h1'/%3E%3Cpath stroke='%23e44713' d='M17 13h1'/%3E%3Cpath stroke='%23d83f10' d='M18 13h1'/%3E%3Cpath stroke='%23b12d0a' d='M19 13h1'/%3E%3Cpath stroke='%23df451e' d='M1 14h1'/%3E%3Cpath stroke='%23e25836' d='M2 14h1'/%3E%3Cpath stroke='%23e46242' d='M3 14h1m0 1h1'/%3E%3Cpath stroke='%23e56749' d='M4 14h1'/%3E%3Cpath stroke='%23e66845' d='M8 14h1'/%3E%3Cpath stroke='%23e76741' d='M9 14h1'/%3E%3Cpath stroke='%23e7643b' d='M10 14h1'/%3E%3Cpath stroke='%23e86235' d='M11 14h1'/%3E%3Cpath stroke='%23ea5e2d' d='M12 14h1'/%3E%3Cpath stroke='%23e94a11' d='M16 14h1m-2 2h1'/%3E%3Cpath stroke='%23e6440d' d='M17 14h1'/%3E%3Cpath stroke='%23d73b0b' d='M18 14h1'/%3E%3Cpath stroke='%23b12b06' d='M19 14h1'/%3E%3Cpath stroke='%23de4018' d='M1 15h1'/%3E%3Cpath stroke='%23e1512e' d='M2 15h1'/%3E%3Cpath stroke='%23f5c1b5' d='M5 15h1'/%3E%3Cpath stroke='%23e66543' d='M7 15h1'/%3E%3Cpath stroke='%23e66541' d='M8 15h1'/%3E%3Cpath stroke='%23e6643d' d='M9 15h1'/%3E%3Cpath stroke='%23e76238' d='M10 15h1'/%3E%3Cpath stroke='%23e86032' d='M11 15h1'/%3E%3Cpath stroke='%23e95c2a' d='M12 15h1'/%3E%3Cpath stroke='%23ea5924' d='M13 15h1'/%3E%3Cpath stroke='%23f7b8a1' d='M15 15h1'/%3E%3Cpath stroke='%23e9480e' d='M16 15h1'/%3E%3Cpath stroke='%23e54009' d='M17 15h1'/%3E%3Cpath stroke='%23d73605' d='M18 15h1'/%3E%3Cpath stroke='%23b02702' d='M19 15h1'/%3E%3Cpath stroke='%23dd3c14' d='M1 16h1'/%3E%3Cpath stroke='%23e15431' d='M3 16h1'/%3E%3Cpath stroke='%23e35b39' d='M4 16h1'/%3E%3Cpath stroke='%23e45e3d' d='M5 16h1'/%3E%3Cpath stroke='%23e45f3d' d='M6 16h1'/%3E%3Cpath stroke='%23e45e3b' d='M7 16h1'/%3E%3Cpath stroke='%23e55e39' d='M8 16h1'/%3E%3Cpath stroke='%23e55e37' d='M9 16h1'/%3E%3Cpath stroke='%23e65d32' d='M10 16h1'/%3E%3Cpath stroke='%23e75b2c' d='M11 16h1'/%3E%3Cpath stroke='%23e85725' d='M12 16h1'/%3E%3Cpath stroke='%23e9541f' d='M13 16h1'/%3E%3Cpath stroke='%23e8440b' d='M16 16h1'/%3E%3Cpath stroke='%23e43d05' d='M17 16h1'/%3E%3Cpath stroke='%23d63302' d='M18 16h1'/%3E%3Cpath stroke='%23af2601' d='M19 16h1'/%3E%3Cpath stroke='%23d8370e' d='M1 17h1'/%3E%3Cpath stroke='%23db431c' d='M2 17h1'/%3E%3Cpath stroke='%23dd4c28' d='M3 17h1'/%3E%3Cpath stroke='%23de522f' d='M4 17h1'/%3E%3Cpath stroke='%23df5533' d='M5 17h1'/%3E%3Cpath stroke='%23e05734' d='M6 17h1'/%3E%3Cpath stroke='%23e05531' d='M7 17h1'/%3E%3Cpath stroke='%23e05631' d='M8 17h1'/%3E%3Cpath stroke='%23e1562e' d='M9 17h1'/%3E%3Cpath stroke='%23e2552a' d='M10 17h1'/%3E%3Cpath stroke='%23e45325' d='M11 17h1'/%3E%3Cpath stroke='%23e4501f' d='M12 17h1'/%3E%3Cpath stroke='%23e54c19' d='M13 17h1'/%3E%3Cpath stroke='%23e54813' d='M14 17h1'/%3E%3Cpath stroke='%23e5430d' d='M15 17h1'/%3E%3Cpath stroke='%23e43e07' d='M16 17h1'/%3E%3Cpath stroke='%23e03802' d='M17 17h1'/%3E%3Cpath stroke='%23d12f00' d='M18 17h1'/%3E%3Cpath stroke='%23aa2300' d='M19 17h1'/%3E%3Cpath stroke='%23cd4928' d='M1 18h1'/%3E%3Cpath stroke='%23cc3813' d='M2 18h1'/%3E%3Cpath stroke='%23cc3e1b' d='M3 18h1'/%3E%3Cpath stroke='%23cf4421' d='M4 18h1'/%3E%3Cpath stroke='%23cf4725' d='M5 18h1'/%3E%3Cpath stroke='%23cf4726' d='M6 18h1'/%3E%3Cpath stroke='%23cf4624' d='M7 18h1'/%3E%3Cpath stroke='%23d04723' d='M8 18h1'/%3E%3Cpath stroke='%23d14621' d='M9 18h1'/%3E%3Cpath stroke='%23d2451e' d='M10 18h1'/%3E%3Cpath stroke='%23d5451b' d='M11 18h1'/%3E%3Cpath stroke='%23d54216' d='M12 18h1'/%3E%3Cpath stroke='%23d64013' d='M13 18h1'/%3E%3Cpath stroke='%23d53d0e' d='M14 18h1'/%3E%3Cpath stroke='%23d63909' d='M15 18h1'/%3E%3Cpath stroke='%23d53504' d='M16 18h1'/%3E%3Cpath stroke='%23d13001' d='M17 18h1'/%3E%3Cpath stroke='%23c22a00' d='M18 18h1'/%3E%3Cpath stroke='%23ab3c1f' d='M19 18h1'/%3E%3Cpath stroke='%23eed6d0' d='M1 19h1'/%3E%3Cpath stroke='%23b54428' d='M2 19h1'/%3E%3Cpath stroke='%23a62b0d' d='M3 19h1'/%3E%3Cpath stroke='%23ac3011' d='M4 19h1'/%3E%3Cpath stroke='%23ab3112' d='M5 19h1'/%3E%3Cpath stroke='%23a93214' d='M6 19h1'/%3E%3Cpath stroke='%23a93012' d='M7 19h1'/%3E%3Cpath stroke='%23ac3213' d='M8 19h1'/%3E%3Cpath stroke='%23ad3213' d='M9 19h1'/%3E%3Cpath stroke='%23ae3110' d='M10 19h1'/%3E%3Cpath stroke='%23b1300d' d='M11 19h1'/%3E%3Cpath stroke='%23b22e0a' d='M12 19h1'/%3E%3Cpath stroke='%23b42d08' d='M13 19h1'/%3E%3Cpath stroke='%23b12a06' d='M14 19h1'/%3E%3Cpath stroke='%23b12803' d='M15 19h1'/%3E%3Cpath stroke='%23b42701' d='M16 19h1'/%3E%3Cpath stroke='%23ae2400' d='M17 19h1'/%3E%3Cpath stroke='%23ac3c1f' d='M18 19h1'/%3E%3Cpath stroke='%23ead4cf' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h3m5 0h7'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23ffe4e1' d='M1 1h1'/%3E%3Cpath stroke='%23ff9285' d='M2 1h1m4 3h1M2 7h1'/%3E%3Cpath stroke='%23ff8c7f' d='M3 1h1'/%3E%3Cpath stroke='%23ff8375' d='M4 1h1m5 3h1'/%3E%3Cpath stroke='%23ff7b6c' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23ff7868' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%23ff7362' d='M7 1h1'/%3E%3Cpath stroke='%23ff7363' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%23ff705f' d='M9 1h1M6 16h1'/%3E%3Cpath stroke='%23ff6f5f' d='M10 1h1'/%3E%3Cpath stroke='%23ff6e5d' d='M11 1h1m4 1h1m-5 3h1M2 13h1'/%3E%3Cpath stroke='%23ff6b5a' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%23f65' d='M13 1h2'/%3E%3Cpath stroke='%23ff6250' d='M15 1h1M2 15h1'/%3E%3Cpath stroke='%23ff5d4a' d='M16 1h1'/%3E%3Cpath stroke='%23fa5643' d='M17 1h1'/%3E%3Cpath stroke='%23eb6151' d='M18 1h1'/%3E%3Cpath stroke='%23f5dad7' d='M19 1h1'/%3E%3Cpath stroke='%23ff9386' d='M1 2h1'/%3E%3Cpath stroke='%23ffaea5' d='M2 2h1'/%3E%3Cpath stroke='%23ffb2a9' d='M3 2h1'/%3E%3Cpath stroke='%23ffa99f' d='M4 2h1'/%3E%3Cpath stroke='%23ff9e93' d='M5 2h1m0 1h1M5 4h1'/%3E%3Cpath stroke='%23ff998d' d='M6 2h1M4 6h1'/%3E%3Cpath stroke='%23ff9488' d='M7 2h1m0 1h1'/%3E%3Cpath stroke='%23ff9083' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%23ff8e80' d='M9 2h1'/%3E%3Cpath stroke='%23ff8b7d' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%23ff887a' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%23ff8475' d='M12 2h1M8 5h1'/%3E%3Cpath stroke='%23ff8172' d='M13 2h1M7 9h1m-3 3h1'/%3E%3Cpath stroke='%23ff7c6d' d='M14 2h1'/%3E%3Cpath stroke='%23ff7666' d='M15 2h1M1 7h1m1 6h1m0 1h1'/%3E%3Cpath stroke='%23fc6352' d='M17 2h1'/%3E%3Cpath stroke='%23e54' d='M18 2h1'/%3E%3Cpath stroke='%23d3594b' d='M19 2h1'/%3E%3Cpath stroke='%23ff8d80' d='M1 3h1'/%3E%3Cpath stroke='%23ffb3ab' d='M2 3h1'/%3E%3Cpath stroke='%23ffb8b0' d='M3 3h1'/%3E%3Cpath stroke='%23ffb0a6' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23ffa49a' d='M5 3h1'/%3E%3Cpath stroke='%23ff988d' d='M7 3h1M6 4h1'/%3E%3Cpath stroke='%23ff9184' d='M9 3h1'/%3E%3Cpath stroke='%23ff8e81' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23ff8c7e' d='M11 3h1M2 8h1'/%3E%3Cpath stroke='%23ff8576' d='M13 3h1M6 9h1m-4 1h1'/%3E%3Cpath stroke='%23ff7f70' d='M14 3h1M1 5h1m0 5h1m1 2h1'/%3E%3Cpath stroke='%23ff796a' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%23ff7161' d='M16 3h1M3 14h1'/%3E%3Cpath stroke='%23fc6857' d='M17 3h1'/%3E%3Cpath stroke='%23ed5948' d='M18 3h1M6 18h1'/%3E%3Cpath stroke='%23cb4233' d='M19 3h1'/%3E%3Cpath stroke='%23ff8577' d='M1 4h1m0 5h1'/%3E%3Cpath stroke='%23ffaaa0' d='M2 4h1'/%3E%3Cpath stroke='%23ffa89e' d='M4 4h1'/%3E%3Cpath stroke='%23ff8d7f' d='M8 4h1'/%3E%3Cpath stroke='%23ff8879' d='M9 4h1'/%3E%3Cpath stroke='%23ff8071' d='M11 4h1M8 6h1'/%3E%3Cpath stroke='%23ff7a6b' d='M12 4h1M1 6h1m7 0h1m-6 7h1'/%3E%3Cpath stroke='%23ff7969' d='M13 4h1'/%3E%3Cpath stroke='%23ff7464' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%23ff7060' d='M15 4h1'/%3E%3Cpath stroke='%23ff6c5b' d='M16 4h1m-4 1h1'/%3E%3Cpath stroke='%23fc6655' d='M17 4h1'/%3E%3Cpath stroke='%23ef5c4b' d='M18 4h1'/%3E%3Cpath stroke='%23cc4636' d='M19 4h1'/%3E%3Cpath stroke='%23ffa095' d='M2 5h1'/%3E%3Cpath stroke='%23ffa59b' d='M3 5h1'/%3E%3Cpath stroke='%23ff9f94' d='M4 5h1'/%3E%3Cpath stroke='%23ffd5d1' d='M5 5h1'/%3E%3Cpath stroke='%23ff8a7c' d='M7 5h1'/%3E%3Cpath stroke='%23ff7e6f' d='M9 5h1'/%3E%3Cpath stroke='%23ffc2bb' d='M15 5h1'/%3E%3Cpath stroke='%23ff6554' d='M16 5h1'/%3E%3Cpath stroke='%23fc6453' d='M17 5h1'/%3E%3Cpath stroke='%23ee5d4d' d='M18 5h1'/%3E%3Cpath stroke='%23cd4939' d='M19 5h1'/%3E%3Cpath stroke='%23ff998e' d='M2 6h1'/%3E%3Cpath stroke='%23ff9d92' d='M3 6h1'/%3E%3Cpath stroke='%23ff6f5e' d='M11 6h1'/%3E%3Cpath stroke='%23ff6a58' d='M12 6h1'/%3E%3Cpath stroke='%23ff6451' d='M16 6h1'/%3E%3Cpath stroke='%23fd6451' d='M17 6h1'/%3E%3Cpath stroke='%23ee5e4d' d='M18 6h1'/%3E%3Cpath stroke='%23ce4a3a' d='M19 6h1'/%3E%3Cpath stroke='%23ff968a' d='M3 7h1'/%3E%3Cpath stroke='%23ff9487' d='M4 7h1'/%3E%3Cpath stroke='%23ff8f82' d='M5 7h1'/%3E%3Cpath stroke='%23ff7968' d='M9 7h1m-3 8h1'/%3E%3Cpath stroke='%23ff7463' d='M10 7h1'/%3E%3Cpath stroke='%23ff6f5d' d='M11 7h1'/%3E%3Cpath stroke='%23ff6450' d='M15 7h1'/%3E%3Cpath stroke='%23ff6552' d='M16 7h1'/%3E%3Cpath stroke='%23fd6653' d='M17 7h1'/%3E%3Cpath stroke='%23f0604e' d='M18 7h1'/%3E%3Cpath stroke='%23ce4a3b' d='M19 7h1'/%3E%3Cpath stroke='%23ff7565' d='M1 8h1'/%3E%3Cpath stroke='%23ff8677' d='M6 8h1m-2 2h1'/%3E%3Cpath stroke='%23ff7664' d='M10 8h1'/%3E%3Cpath stroke='%23ff6a53' d='M14 8h1'/%3E%3Cpath stroke='%23ff6953' d='M15 8h1'/%3E%3Cpath stroke='%23ff6b55' d='M16 8h1'/%3E%3Cpath stroke='%23fd6b56' d='M17 8h1'/%3E%3Cpath stroke='%23f06350' d='M18 8h1'/%3E%3Cpath stroke='%23cf4c3b' d='M19 8h1'/%3E%3Cpath stroke='%23ff6d5d' d='M1 9h1'/%3E%3Cpath stroke='%23ff8b7c' d='M4 9h1'/%3E%3Cpath stroke='%23ff775d' d='M13 9h1'/%3E%3Cpath stroke='%23ff745a' d='M14 9h1'/%3E%3Cpath stroke='%23ff7359' d='M15 9h1'/%3E%3Cpath stroke='%23ff735a' d='M16 9h1'/%3E%3Cpath stroke='%23fd715a' d='M17 9h1'/%3E%3Cpath stroke='%23f16752' d='M18 9h1'/%3E%3Cpath stroke='%23d24e3c' d='M19 9h1'/%3E%3Cpath stroke='%23ff6a59' d='M1 10h1m2 6h1'/%3E%3Cpath stroke='%23ff8778' d='M4 10h1'/%3E%3Cpath stroke='%23ff8374' d='M6 10h1m-3 1h2'/%3E%3Cpath stroke='%23ff8171' d='M7 10h1m-5 1h1'/%3E%3Cpath stroke='%23ff8271' d='M8 10h1m-2 1h1'/%3E%3Cpath stroke='%23ff8369' d='M12 10h1'/%3E%3Cpath stroke='%23ff8165' d='M13 10h1'/%3E%3Cpath stroke='%23ff7e61' d='M14 10h1'/%3E%3Cpath stroke='%23ff7d5f' d='M15 10h1'/%3E%3Cpath stroke='%23ff7b5f' d='M16 10h1'/%3E%3Cpath stroke='%23fd775d' d='M17 10h1'/%3E%3Cpath stroke='%23f36a53' d='M18 10h1'/%3E%3Cpath stroke='%23d34e3c' d='M19 10h1'/%3E%3Cpath stroke='%23ff6553' d='M1 11h1'/%3E%3Cpath stroke='%23ff8273' d='M6 11h1'/%3E%3Cpath stroke='%23ff8c6c' d='M13 11h1'/%3E%3Cpath stroke='%23ff8969' d='M14 11h1'/%3E%3Cpath stroke='%23ff8665' d='M15 11h1'/%3E%3Cpath stroke='%23ff8262' d='M16 11h1'/%3E%3Cpath stroke='%23fd7c5e' d='M17 11h1'/%3E%3Cpath stroke='%23f46d54' d='M18 11h1'/%3E%3Cpath stroke='%23d64f3b' d='M19 11h1'/%3E%3Cpath stroke='%23ff5f4d' d='M1 12h1'/%3E%3Cpath stroke='%23ff8070' d='M6 12h1'/%3E%3Cpath stroke='%23ff9279' d='M10 12h1'/%3E%3Cpath stroke='%23fff8f6' d='M13 12h1'/%3E%3Cpath stroke='%23ff936f' d='M14 12h1'/%3E%3Cpath stroke='%23ff906c' d='M15 12h1'/%3E%3Cpath stroke='%23ff8967' d='M16 12h1'/%3E%3Cpath stroke='%23fe7f5f' d='M17 12h1'/%3E%3Cpath stroke='%23f56e52' d='M18 12h1'/%3E%3Cpath stroke='%23d84f39' d='M19 12h1'/%3E%3Cpath stroke='%23ff5c4a' d='M1 13h1'/%3E%3Cpath stroke='%23ff7d6e' d='M5 13h1'/%3E%3Cpath stroke='%23ff907a' d='M9 13h1'/%3E%3Cpath stroke='%23ff957c' d='M10 13h1'/%3E%3Cpath stroke='%23ff9a7e' d='M11 13h1'/%3E%3Cpath stroke='%23ff9670' d='M15 13h1'/%3E%3Cpath stroke='%23ff8e68' d='M16 13h1'/%3E%3Cpath stroke='%23fe815e' d='M17 13h1'/%3E%3Cpath stroke='%23f66c4f' d='M18 13h1'/%3E%3Cpath stroke='%23da4d36' d='M19 13h1'/%3E%3Cpath stroke='%23ff5744' d='M1 14h1'/%3E%3Cpath stroke='%23ff6857' d='M2 14h1'/%3E%3Cpath stroke='%23ff8672' d='M8 14h1'/%3E%3Cpath stroke='%23ff8f78' d='M9 14h1'/%3E%3Cpath stroke='%23ff967c' d='M10 14h1'/%3E%3Cpath stroke='%23ff9c7e' d='M11 14h1'/%3E%3Cpath stroke='%23ffa07e' d='M12 14h1'/%3E%3Cpath stroke='%23ff8e66' d='M16 14h1'/%3E%3Cpath stroke='%23fe7f5a' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%23f76a4b' d='M18 14h1'/%3E%3Cpath stroke='%23da4a33' d='M19 14h1'/%3E%3Cpath stroke='%23ff523f' d='M1 15h1'/%3E%3Cpath stroke='%23ff7160' d='M4 15h1'/%3E%3Cpath stroke='%23ffc7c1' d='M5 15h1'/%3E%3Cpath stroke='%23ff836f' d='M8 15h1'/%3E%3Cpath stroke='%23ff8b74' d='M9 15h1'/%3E%3Cpath stroke='%23ff9379' d='M10 15h1'/%3E%3Cpath stroke='%23ff9a7c' d='M11 15h1'/%3E%3Cpath stroke='%23ff9e7c' d='M12 15h1'/%3E%3Cpath stroke='%23ffa07a' d='M13 15h1'/%3E%3Cpath stroke='%23ffd5c5' d='M15 15h1'/%3E%3Cpath stroke='%23ff8b62' d='M16 15h1'/%3E%3Cpath stroke='%23fe7c56' d='M17 15h1'/%3E%3Cpath stroke='%23f76545' d='M18 15h1'/%3E%3Cpath stroke='%23db4931' d='M19 15h1'/%3E%3Cpath stroke='%23ff4f3a' d='M1 16h1'/%3E%3Cpath stroke='%23ff5c49' d='M2 16h1'/%3E%3Cpath stroke='%23ff6452' d='M3 16h1'/%3E%3Cpath stroke='%23ff6e5e' d='M5 16h1'/%3E%3Cpath stroke='%23ff7462' d='M7 16h1'/%3E%3Cpath stroke='%23ff7c68' d='M8 16h1'/%3E%3Cpath stroke='%23ff846d' d='M9 16h1'/%3E%3Cpath stroke='%23ff8b71' d='M10 16h1'/%3E%3Cpath stroke='%23ff9174' d='M11 16h1'/%3E%3Cpath stroke='%23ff9674' d='M12 16h1'/%3E%3Cpath stroke='%23ff9571' d='M13 16h1'/%3E%3Cpath stroke='%23ff946d' d='M14 16h1'/%3E%3Cpath stroke='%23ff8d66' d='M15 16h1'/%3E%3Cpath stroke='%23ff855c' d='M16 16h1'/%3E%3Cpath stroke='%23fe7650' d='M17 16h1'/%3E%3Cpath stroke='%23f66141' d='M18 16h1'/%3E%3Cpath stroke='%23da462f' d='M19 16h1'/%3E%3Cpath stroke='%23fa4935' d='M1 17h1'/%3E%3Cpath stroke='%23fb5441' d='M2 17h1'/%3E%3Cpath stroke='%23fc5c4a' d='M3 17h1'/%3E%3Cpath stroke='%23fb6150' d='M4 17h1'/%3E%3Cpath stroke='%23fc6554' d='M5 17h1'/%3E%3Cpath stroke='%23fc6756' d='M6 17h1'/%3E%3Cpath stroke='%23fc6a58' d='M7 17h1'/%3E%3Cpath stroke='%23fc715c' d='M8 17h1'/%3E%3Cpath stroke='%23fc7761' d='M9 17h1'/%3E%3Cpath stroke='%23fd7e64' d='M10 17h1'/%3E%3Cpath stroke='%23fd8367' d='M11 17h1'/%3E%3Cpath stroke='%23fe8566' d='M12 17h1'/%3E%3Cpath stroke='%23fe8664' d='M13 17h1'/%3E%3Cpath stroke='%23fe8460' d='M14 17h1'/%3E%3Cpath stroke='%23fe7651' d='M16 17h1'/%3E%3Cpath stroke='%23fc6b47' d='M17 17h1'/%3E%3Cpath stroke='%23f2573a' d='M18 17h1'/%3E%3Cpath stroke='%23d4402a' d='M19 17h1'/%3E%3Cpath stroke='%23e85848' d='M1 18h1'/%3E%3Cpath stroke='%23ed4a37' d='M2 18h1'/%3E%3Cpath stroke='%23ec4f3d' d='M3 18h1'/%3E%3Cpath stroke='%23ee5443' d='M4 18h1'/%3E%3Cpath stroke='%23ed5746' d='M5 18h1'/%3E%3Cpath stroke='%23ee5a48' d='M7 18h1'/%3E%3Cpath stroke='%23ef5e4b' d='M8 18h1'/%3E%3Cpath stroke='%23f0644e' d='M9 18h1'/%3E%3Cpath stroke='%23f16750' d='M10 18h1'/%3E%3Cpath stroke='%23f46c52' d='M11 18h1'/%3E%3Cpath stroke='%23f66d51' d='M12 18h1'/%3E%3Cpath stroke='%23f66e51' d='M13 18h1'/%3E%3Cpath stroke='%23f66c4e' d='M14 18h1'/%3E%3Cpath stroke='%23f86a4a' d='M15 18h1'/%3E%3Cpath stroke='%23f76343' d='M16 18h1'/%3E%3Cpath stroke='%23f3583a' d='M17 18h1'/%3E%3Cpath stroke='%23e54930' d='M18 18h1'/%3E%3Cpath stroke='%23cd5140' d='M19 18h1'/%3E%3Cpath stroke='%23f6d9d6' d='M1 19h1'/%3E%3Cpath stroke='%23d25344' d='M2 19h1'/%3E%3Cpath stroke='%23c93c2b' d='M3 19h1'/%3E%3Cpath stroke='%23ca3f2f' d='M4 19h1'/%3E%3Cpath stroke='%23ca4131' d='M5 19h1'/%3E%3Cpath stroke='%23ca4333' d='M6 19h1'/%3E%3Cpath stroke='%23cc4332' d='M7 19h1'/%3E%3Cpath stroke='%23cf4434' d='M8 19h1'/%3E%3Cpath stroke='%23d24936' d='M9 19h1'/%3E%3Cpath stroke='%23d34936' d='M10 19h1'/%3E%3Cpath stroke='%23d84b37' d='M11 19h1'/%3E%3Cpath stroke='%23da4c36' d='M12 19h1'/%3E%3Cpath stroke='%23dc4d36' d='M13 19h1'/%3E%3Cpath stroke='%23d94933' d='M14 19h1'/%3E%3Cpath stroke='%23de4a32' d='M15 19h1'/%3E%3Cpath stroke='%23dd482f' d='M16 19h1'/%3E%3Cpath stroke='%23d6402a' d='M17 19h1'/%3E%3Cpath stroke='%23cf5140' d='M18 19h1'/%3E%3Cpath stroke='%23f1d8d5' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M6 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M7 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M8 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bced' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7baec' d='M19 0h1m0 1h1'/%3E%3Cpath stroke='%23dad2d0' d='M1 1h1'/%3E%3Cpath stroke='%23643529' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%235a1d0d' d='M3 1h1'/%3E%3Cpath stroke='%235d1e0d' d='M4 1h1'/%3E%3Cpath stroke='%235f1e0e' d='M5 1h1'/%3E%3Cpath stroke='%2363200e' d='M6 1h1'/%3E%3Cpath stroke='%2368210f' d='M7 1h1'/%3E%3Cpath stroke='%236f2310' d='M8 1h1'/%3E%3Cpath stroke='%23732511' d='M9 1h1'/%3E%3Cpath stroke='%23752511' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%237c2712' d='M11 1h1'/%3E%3Cpath stroke='%23822912' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%23852a13' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%23892b13' d='M14 1h1'/%3E%3Cpath stroke='%238a2b14' d='M15 1h1M6 2h1'/%3E%3Cpath stroke='%238e2d14' d='M16 1h1M7 2h1'/%3E%3Cpath stroke='%238c2c14' d='M17 1h1M2 6h1'/%3E%3Cpath stroke='%239d4732' d='M18 1h1M1 18h1'/%3E%3Cpath stroke='%23ebd8d3' d='M19 1h1'/%3E%3Cpath stroke='%2369220f' d='M2 2h1'/%3E%3Cpath stroke='%23782611' d='M3 2h1'/%3E%3Cpath stroke='%237e2812' d='M4 2h1'/%3E%3Cpath stroke='%23932e15' d='M8 2h1'/%3E%3Cpath stroke='%239a3016' d='M9 2h1'/%3E%3Cpath stroke='%239c3116' d='M10 2h1'/%3E%3Cpath stroke='%23a03217' d='M11 2h1'/%3E%3Cpath stroke='%23a43418' d='M12 2h1'/%3E%3Cpath stroke='%23a73518' d='M13 2h1'/%3E%3Cpath stroke='%23aa3618' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%23ab3618' d='M15 2h1'/%3E%3Cpath stroke='%23ad3719' d='M16 2h1m1 0h1M2 16h1m-1 1h1'/%3E%3Cpath stroke='%23ac3618' d='M17 2h1'/%3E%3Cpath stroke='%23b24e35' d='M19 2h1'/%3E%3Cpath stroke='%23591c0d' d='M1 3h1M1 4h1'/%3E%3Cpath stroke='%23792711' d='M2 3h1'/%3E%3Cpath stroke='%238d2c14' d='M3 3h1'/%3E%3Cpath stroke='%23962e15' d='M4 3h1'/%3E%3Cpath stroke='%239a2f16' d='M5 3h1'/%3E%3Cpath stroke='%23a13117' d='M6 3h1'/%3E%3Cpath stroke='%23a63317' d='M7 3h1'/%3E%3Cpath stroke='%23aa3418' d='M8 3h1'/%3E%3Cpath stroke='%23af3619' d='M9 3h1'/%3E%3Cpath stroke='%23b23719' d='M10 3h1M8 4h1M4 8h1'/%3E%3Cpath stroke='%23b5391a' d='M11 3h1'/%3E%3Cpath stroke='%23b73a1b' d='M12 3h1'/%3E%3Cpath stroke='%23b93b1b' d='M13 3h1'/%3E%3Cpath stroke='%23ba3b1b' d='M14 3h2m3 0h1M3 13h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23bb3b1b' d='M16 3h3M3 15h1'/%3E%3Cpath stroke='%23802812' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23962f15' d='M3 4h1'/%3E%3Cpath stroke='%239e3016' d='M4 4h1'/%3E%3Cpath stroke='%23a43216' d='M5 4h1'/%3E%3Cpath stroke='%23aa3317' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%23ae3518' d='M7 4h1'/%3E%3Cpath stroke='%23b5381a' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%23b8391a' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%23ba3a1b' d='M11 4h1m-8 7h2'/%3E%3Cpath stroke='%23bc3b1c' d='M12 4h1m-9 8h1'/%3E%3Cpath stroke='%23bd3c1c' d='M13 4h1m-1 1h1m-2 1h1m-7 6h1m-3 1h2'/%3E%3Cpath stroke='%23be3d1c' d='M14 4h3m-1 1h1m-1 1h1M4 14h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23bf3d1c' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1M4 17h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%235b1d0d' d='M1 5h1'/%3E%3Cpath stroke='%239c3016' d='M3 5h1'/%3E%3Cpath stroke='%23a43217' d='M4 5h1'/%3E%3Cpath stroke='%23b8553e' d='M5 5h1'/%3E%3Cpath stroke='%23d59485' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%23b33619' d='M7 5h1'/%3E%3Cpath stroke='%23b53719' d='M8 5h1'/%3E%3Cpath stroke='%23b8381a' d='M9 5h1M6 8h1'/%3E%3Cpath stroke='%23b9391b' d='M10 5h1'/%3E%3Cpath stroke='%23ba391b' d='M11 5h1M6 9h1m-2 1h1'/%3E%3Cpath stroke='%23bc3b1b' d='M12 5h1m-2 1h1m-6 5h1m-2 1h1'/%3E%3Cpath stroke='%23dc9887' d='M14 5h1'/%3E%3Cpath stroke='%23c85d42' d='M15 5h1M5 15h1'/%3E%3Cpath stroke='%23611f0e' d='M1 6h1'/%3E%3Cpath stroke='%23a23217' d='M3 6h1'/%3E%3Cpath stroke='%23d79585' d='M6 6h1'/%3E%3Cpath stroke='%23d89585' d='M7 6h1'/%3E%3Cpath stroke='%23b8371a' d='M8 6h1'/%3E%3Cpath stroke='%23ba391a' d='M9 6h1'/%3E%3Cpath stroke='%23bb3a1b' d='M10 6h1m-5 4h1'/%3E%3Cpath stroke='%23dd9887' d='M13 6h3m-4 1h1m-2 1h1M9 9h1m-2 2h1m-2 1h1m-2 1h1m-2 1h2'/%3E%3Cpath stroke='%23c03e1d' d='M17 6h1m-2 1h3m0 1h1m-1 1h1M7 16h1m-2 1h2m0 1h1'/%3E%3Cpath stroke='%2365200e' d='M1 7h1'/%3E%3Cpath stroke='%23902d15' d='M2 7h1'/%3E%3Cpath stroke='%23a73418' d='M3 7h1'/%3E%3Cpath stroke='%23af3518' d='M4 7h1'/%3E%3Cpath stroke='%23b43619' d='M5 7h1'/%3E%3Cpath stroke='%23d99585' d='M6 7h1'/%3E%3Cpath stroke='%23da9686' d='M7 7h1'/%3E%3Cpath stroke='%23db9686' d='M8 7h1M7 8h1'/%3E%3Cpath stroke='%23bc3a1b' d='M9 7h1M7 9h1'/%3E%3Cpath stroke='%23bd3b1b' d='M10 7h1m-4 3h1'/%3E%3Cpath stroke='%23be3c1c' d='M11 7h1m-2 1h1m-3 2h1m-2 1h1'/%3E%3Cpath stroke='%23de9987' d='M13 7h2m-3 1h2m-4 1h2m-3 1h1m-2 2h1m-2 2h1'/%3E%3Cpath stroke='%23c03f1d' d='M15 7h1m-9 8h1'/%3E%3Cpath stroke='%236a220f' d='M1 8h1'/%3E%3Cpath stroke='%23952f15' d='M2 8h1'/%3E%3Cpath stroke='%23ac3518' d='M3 8h1'/%3E%3Cpath stroke='%23b63719' d='M5 8h1'/%3E%3Cpath stroke='%23dc9786' d='M8 8h2M8 9h1'/%3E%3Cpath stroke='%23c2401d' d='M14 8h1m2 0h1m1 3h1M8 14h1m-1 2h1m-1 1h1m0 1h1m1 1h1'/%3E%3Cpath stroke='%23c2401e' d='M15 8h2m1 1h1M8 15h1'/%3E%3Cpath stroke='%23c13f1d' d='M18 8h1m0 2h1M9 19h2'/%3E%3Cpath stroke='%23702410' d='M1 9h1'/%3E%3Cpath stroke='%239b3016' d='M2 9h1'/%3E%3Cpath stroke='%23b03619' d='M3 9h1'/%3E%3Cpath stroke='%23b9381a' d='M5 9h1'/%3E%3Cpath stroke='%23df9a88' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23c4421e' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1m-1 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h3'/%3E%3Cpath stroke='%23c5431e' d='M14 9h1'/%3E%3Cpath stroke='%23c5431f' d='M15 9h1m-4 1h1m5 1h1m-9 1h1m-2 2h1m-1 1h1m0 2h1m0 1h1m6 0h1'/%3E%3Cpath stroke='%239e3217' d='M2 10h1'/%3E%3Cpath stroke='%23b4381a' d='M3 10h1'/%3E%3Cpath stroke='%23df9a87' d='M10 10h1m-2 1h1m-2 2h1'/%3E%3Cpath stroke='%23c6441f' d='M13 10h1m3 0h1m-8 3h1m-1 3h1'/%3E%3Cpath stroke='%23c74520' d='M14 10h2m-6 4h1m-1 1h1m7 2h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23c7451f' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%237b2711' d='M1 11h1'/%3E%3Cpath stroke='%23a13217' d='M2 11h1'/%3E%3Cpath stroke='%23b7391a' d='M3 11h1'/%3E%3Cpath stroke='%23e09b88' d='M11 11h1'/%3E%3Cpath stroke='%23e29d89' d='M12 11h1'/%3E%3Cpath stroke='%23c94621' d='M13 11h1m-3 2h1'/%3E%3Cpath stroke='%23ca4721' d='M14 11h1m2 1h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%23ca4821' d='M15 11h1m1 6h1'/%3E%3Cpath stroke='%23c94620' d='M16 11h1m1 3h1m-8 2h1m6 0h1'/%3E%3Cpath stroke='%23c84620' d='M17 11h1m0 2h1'/%3E%3Cpath stroke='%23a53418' d='M2 12h1'/%3E%3Cpath stroke='%23b83a1b' d='M3 12h1'/%3E%3Cpath stroke='%23e19d89' d='M11 12h1'/%3E%3Cpath stroke='%23e39e89' d='M12 12h1'/%3E%3Cpath stroke='%23e0947c' d='M13 12h1'/%3E%3Cpath stroke='%23cc4a22' d='M14 12h1m-3 2h1m4 0h1m-6 1h1'/%3E%3Cpath stroke='%23cd4a22' d='M15 12h1m0 1h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23cb4922' d='M16 12h1m0 1h1m-5 4h1'/%3E%3Cpath stroke='%23c3411e' d='M19 12h1m-1 1h1m-1 4h1m-8 2h2m3 0h1'/%3E%3Cpath stroke='%23a93618' d='M2 13h1'/%3E%3Cpath stroke='%23dd9987' d='M7 13h1m-2 2h1'/%3E%3Cpath stroke='%23e39f8a' d='M12 13h1'/%3E%3Cpath stroke='%23e59f8b' d='M13 13h1'/%3E%3Cpath stroke='%23e5a08b' d='M14 13h1m-2 1h1'/%3E%3Cpath stroke='%23ce4c23' d='M15 13h1m0 3h1'/%3E%3Cpath stroke='%23882b13' d='M1 14h1'/%3E%3Cpath stroke='%23e6a08b' d='M14 14h1'/%3E%3Cpath stroke='%23e6a18b' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23ce4b23' d='M16 14h1m-4 1h1'/%3E%3Cpath stroke='%238b2c14' d='M1 15h1m-1 1h1'/%3E%3Cpath stroke='%23ac3619' d='M2 15h1'/%3E%3Cpath stroke='%23d76b48' d='M15 15h1'/%3E%3Cpath stroke='%23cf4c23' d='M16 15h1m-2 1h1'/%3E%3Cpath stroke='%23c94721' d='M18 15h1m-3 3h1'/%3E%3Cpath stroke='%23bb3c1b' d='M3 16h1'/%3E%3Cpath stroke='%23bf3e1d' d='M6 16h1'/%3E%3Cpath stroke='%23cb4821' d='M12 16h1'/%3E%3Cpath stroke='%23cd4b23' d='M14 16h1'/%3E%3Cpath stroke='%23cc4922' d='M17 16h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%238d2d14' d='M1 17h1'/%3E%3Cpath stroke='%23bc3c1b' d='M3 17h1m-1 1h1'/%3E%3Cpath stroke='%23c84520' d='M11 17h1m1 1h1'/%3E%3Cpath stroke='%23ae3719' d='M2 18h1'/%3E%3Cpath stroke='%23c94720' d='M14 18h1'/%3E%3Cpath stroke='%23c95839' d='M19 18h1'/%3E%3Cpath stroke='%23a7bdf0' d='M0 19h1m0 1h1'/%3E%3Cpath stroke='%23ead7d3' d='M1 19h1'/%3E%3Cpath stroke='%23b34e35' d='M2 19h1'/%3E%3Cpath stroke='%23c03e1c' d='M8 19h1'/%3E%3Cpath stroke='%23c9583a' d='M18 19h1'/%3E%3Cpath stroke='%23f3dbd4' d='M19 19h1'/%3E%3Cpath stroke='%23a7bcef' d='M20 19h1m-2 1h1'/%3E%3C/svg%3E")
}
.status-bar{
margin: 0 3px;
box-shadow: inset 0 1px 2px grey;
padding: 2px 1px;
gap: 0
}
.status-bar-field{
-webkit-font-smoothing: antialiased;
box-shadow: none;
padding: 1px 2px;
border-right: 1px solid rgba(208,206,191,.75);
border-left: 1px solid hsla(0,0%,100%,.75)
}
.status-bar-field: first-of-type{
border-left: none
}
.status-bar-field: last-of-type{
border-right: none
}
button{
-webkit-font-smoothing: antialiased;
box-sizing: border-box;
border: 1px solid #003c74;
background: linear-gradient(180deg,#fff,#ecebe5 86%,#d8d0c4);
box-shadow: none;
border-radius: 3px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: none;
background: linear-gradient(180deg,#cdcac3,#e3e3db 8%,#e5e5de 94%,#f2f2f1)
}
button: not(: disabled): hover{
box-shadow: inset -1px 1px #fff0cf,inset 1px 2px #fdd889,inset -2px 2px #fbc761,inset 2px -2px #e5a01a
}
button.focused,button: focus{
box-shadow: inset -1px 1px #cee7ff,inset 1px 2px #98b8ea,inset -2px 2px #bcd4f6,inset 1px -1px #89ade4,inset 2px -2px #89ade4
}
button: :-moz-focus-inner{
border: 0
}
input,label,option,select,textarea{
-webkit-font-smoothing: antialiased
}
input[type=radio]{
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
margin: 0;
background: 0;
position: fixed;
opacity: 0;
border: none
}
input[type=radio]+label{
line-height: 16px
}
input[type=radio]+label: before{
background: linear-gradient(135deg,#dcdcd7,#fff);
border-radius: 50%;
border: 1px solid #1d5281
}
input[type=radio]: not([disabled]): not(: active)+label: hover: before{
box-shadow: inset -2px -2px #f8b636,inset 2px 2px #fedf9c
}
input[type=radio]: active+label: before{
background: linear-gradient(135deg,#b0b0a7,#e3e1d2)
}
input[type=radio]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a9dca6' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%234dbf4a' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23a0d29e' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%2355d551' d='M1 1h1'/%3E%3Cpath stroke='%2343c33f' d='M2 1h1'/%3E%3Cpath stroke='%2329a826' d='M3 1h1'/%3E%3Cpath stroke='%239acc98' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%2342c33f' d='M1 2h1'/%3E%3Cpath stroke='%2338b935' d='M2 2h1'/%3E%3Cpath stroke='%2321a121' d='M3 2h1'/%3E%3Cpath stroke='%23269623' d='M4 2h1'/%3E%3Cpath stroke='%232aa827' d='M1 3h1'/%3E%3Cpath stroke='%2322a220' d='M2 3h1'/%3E%3Cpath stroke='%23139210' d='M3 3h1'/%3E%3Cpath stroke='%2398c897' d='M4 3h1'/%3E%3Cpath stroke='%23249624' d='M2 4h1'/%3E%3Cpath stroke='%2398c997' d='M3 4h1'/%3E%3C/svg%3E")
}
input[type=radio]: focus+label{
outline: 1px dotted #000
}
input[type=radio][disabled]+label: before{
border: 1px solid #cac8bb;
background: #fff
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e8e6da' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23d2ceb5' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23e5e3d4' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%23d7d3bd' d='M1 1h1'/%3E%3Cpath stroke='%23d0ccb2' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23c7c2a2' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%23e2dfd0' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%23cdc8ac' d='M2 2h1'/%3E%3Cpath stroke='%23c5bf9f' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%23c3bd9c' d='M4 2h1'/%3E%3Cpath stroke='%23bfb995' d='M3 3h1'/%3E%3Cpath stroke='%23e2dfcf' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23c4be9d' d='M2 4h1'/%3E%3C/svg%3E")
}
input[type=email],input[type=password],textarea: :selection{
background: #2267cb;
color: #fff
}
input[type=range]: :-webkit-slider-thumb{
height: 21px;
width: 11px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(-8px)
}
input[type=range]: :-moz-range-thumb{
height: 21px;
width: 11px;
border: 0;
border-radius: 0;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(2px)
}
input[type=range]: :-webkit-slider-runnable-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range]: :-moz-range-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(-10px)
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(0)
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
fieldset{
box-shadow: none;
background: #fff;
border: 1px solid #d0d0bf;
border-radius: 4px;
padding-top: 10px
}
legend{
background: transparent;
color: #0046d5
}
.field-row{
display: flex;
align-items: center
}
.field-row>*+*{
margin-left: 6px
}
[class^=field-row]+[class^=field-row]{
margin-top: 6px
}
.field-row-stacked{
display: flex;
flex-direction: column
}
.field-row-stacked *+*{
margin-top: 6px
}
menu[role=tablist] button{
background: linear-gradient(180deg,#fff,#fafaf9 26%,#f0f0ea 95%,#ecebe5);
margin-left: -1px;
margin-right: 2px;
border-radius: 0;
border-color: #91a7b4;
border-top-right-radius: 3px;
border-top-left-radius: 3px;
padding: 0 12px 3px
}
menu[role=tablist] button: hover{
box-shadow: unset;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]{
border-color: #919b9c;
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]: first-of-type: before{
content: "";
display: block;
position: absolute;
z-index: -1;
top: 100%;
left: -1px;
height: 2px;
width: 0;
border-left: 1px solid #919b9c
}
[role=tabpanel]{
box-shadow: inset 1px 1px #fcfcfe,inset -1px -1px #fcfcfe,1px 2px 2px 0 rgba(208,206,191,.75)
}
ul.tree-view{
-webkit-font-smoothing: auto;
border: 1px solid #7f9db9;
padding: 2px 5px
}
@keyframes sliding{
0%{
transform: translateX(-30px)
}
to{
transform: translateX(100%)
}
}
progress{
box-sizing: border-box;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
height: 14px;
border: 1px solid #686868;
border-radius: 4px;
padding: 1px 2px 1px 0;
overflow: hidden;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress,progress: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px
}
progress[value]: :-webkit-progress-bar{
background-color: transparent
}
progress[value]: :-webkit-progress-value{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress[value]: :-moz-progress-bar{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-webkit-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-webkit-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]){
position: relative
}
progress: not([value]): before{
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before,progress: not([value]): before: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): after{
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): after,progress: not([value]): after: not([value]){
animation: sliding 2s linear 0s infinite
}
progress: not([value]): after: not([value]){
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-moz-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-moz-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress:not([value])::-moz-progress-bar {
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite;
}
progress:not([value])::after {
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
}
progress:not([value])::before {
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868;
}
Element {
}
progress:not([value]) {
position: relative;
}
progress:not([value]) {
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px;
}
</style>
</head>
<body>
<script>
var log = console.log;
var theme = 'light';
var special_col_names = ["trial_index","arm_name","trial_status","generation_method","generation_node","hostname","run_time","start_time","exit_code","signal","end_time","program_string"]
var result_names = [
"RESULT"
];
var result_min_max = [
"min"
];
var tab_results_headers_json = [
"trial_index",
"arm_name",
"trial_status",
"generation_method",
"generation_node",
"RESULT",
"epochs",
"lr",
"bsz",
"da",
"db"
];
var tab_results_csv_json = [
[
0,
"0_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.30000000000000004,
72,
0.002159496855735779,
5,
10,
43
],
[
1,
"1_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.24736842105263157,
152,
0.008417613819148392,
20,
76,
63
],
[
2,
"2_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.27368421052631575,
187,
0.004052058681845666,
11,
39,
88
],
[
3,
"3_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.6210526315789473,
12,
0.005219838040601462,
25,
93,
16
],
[
4,
"4_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3052631578947368,
53,
0.0034848991801962256,
22,
82,
25
],
[
5,
"5_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.23684210526315785,
169,
0.007131449778471143,
8,
50,
92
],
[
6,
"6_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.4157894736842105,
110,
0.0002921498278155923,
31,
65,
70
],
[
7,
"7_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2684210526315789,
90,
0.009019060893822461,
16,
21,
44
],
[
8,
"8_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3631578947368421,
104,
0.004684118163399399,
31,
47,
59
],
[
9,
"9_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2947368421052632,
119,
0.005856737259868533,
17,
85,
33
],
[
10,
"10_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2894736842105263,
155,
0.0015685167999938132,
25,
30,
14
],
[
11,
"11_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2947368421052632,
45,
0.007821812945324929,
10,
56,
80
],
[
12,
"12_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.4052631578947369,
27,
0.0008854876827448608,
14,
67,
99
],
[
13,
"13_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2684210526315789,
197,
0.00961726238494739,
29,
18,
27
],
[
14,
"14_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.35789473684210527,
137,
0.0028552780814468863,
6,
96,
54
],
[
15,
"15_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2789473684210526,
62,
0.006497021691780538,
20,
36,
74
],
[
16,
"16_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.34736842105263155,
67,
0.0031815722849220037,
17,
63,
20
],
[
17,
"17_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3052631578947368,
130,
0.006828149437066168,
32,
25,
86
],
[
18,
"18_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.35789473684210527,
189,
0.0012166159443557263,
10,
80,
64
],
[
19,
"19_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.33684210526315794,
31,
0.009943555924575777,
24,
54,
38
],
[
20,
"20_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.43157894736842106,
36,
0.0018561386121436956,
27,
43,
48
],
[
21,
"21_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2947368421052632,
159,
0.008114269184414297,
13,
92,
69
],
[
22,
"22_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3315789473684211,
124,
0.004976573886163534,
21,
14,
93
],
[
23,
"23_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.24736842105263157,
97,
0.006144359735865147,
6,
75,
21
],
[
24,
"24_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.41052631578947374,
81,
0.0005797720825299622,
18,
100,
82
],
[
25,
"25_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3631578947368421,
114,
0.009311516690347344,
4,
34,
10
],
[
26,
"26_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3315789473684211,
175,
0.0037773556405678393,
27,
71,
37
],
[
27,
"27_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3421052631578947,
46,
0.007419071516860277,
12,
17,
58
],
[
28,
"28_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3157894736842105,
16,
0.0043783524427562955,
8,
28,
76
],
[
29,
"29_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.30000000000000004,
181,
0.005550966228451581,
23,
60,
50
],
[
30,
"30_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3631578947368421,
145,
0.0024906243428587916,
15,
46,
31
],
[
31,
"31_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2789473684210526,
75,
0.008743908096384256,
29,
89,
98
],
[
32,
"32_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.4052631578947369,
80,
0.003919512849114837,
25,
73,
46
],
[
33,
"33_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.31052631578947365,
143,
0.005072050877008588,
10,
13,
71
],
[
34,
"34_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3421052631578947,
179,
0.002022226462699473,
32,
89,
89
],
[
35,
"35_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3526315789473684,
20,
0.008293810995388775,
16,
42,
25
],
[
36,
"36_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.4631578947368421,
50,
0.00010034811384975911,
6,
53,
18
],
[
37,
"37_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2684210526315789,
173,
0.008853110256697983,
21,
78,
88
],
[
38,
"38_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3526315789473684,
114,
0.0033271250694990157,
14,
25,
61
],
[
39,
"39_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.32105263157894737,
87,
0.006950882416497917,
28,
61,
42
],
[
40,
"40_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.4789473684210527,
95,
0.0013781327676028014,
11,
87,
72
],
[
41,
"41_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3263157894736842,
128,
0.007654519567545504,
26,
44,
53
],
[
42,
"42_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.26315789473684215,
165,
0.004527379948645831,
5,
58,
29
],
[
43,
"43_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.28421052631578947,
36,
0.0056750590610317895,
19,
28,
99
],
[
44,
"44_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3526315789473684,
30,
0.0027216538665816186,
30,
17,
78
],
[
45,
"45_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3631578947368421,
194,
0.006350236789230258,
16,
70,
13
],
[
46,
"46_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.41052631578947374,
134,
0.0007469176622107626,
22,
33,
35
],
[
47,
"47_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3631578947368421,
65,
0.009494835346657782,
7,
98,
60
],
[
48,
"48_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.368421052631579,
58,
0.0010345394743606448,
26,
23,
23
],
[
49,
"49_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.22631578947368425,
139,
0.009787291585747152,
12,
66,
93
],
[
50,
"50_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.31052631578947365,
114,
0.009191625632155344,
26,
49,
75
],
[
51,
"51_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21052631578947367,
122,
0.008973844702663847,
8,
48,
92
],
[
52,
"52_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
151,
0.009665452023960833,
20,
56,
96
],
[
53,
"53_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
126,
0.008561401127126512,
4,
56,
100
],
[
54,
"54_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
126,
0.01,
4,
45,
98
],
[
55,
"55_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
172,
0.006149551698917648,
13,
19,
50
],
[
56,
"56_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
119,
0.01,
11,
97,
27
],
[
57,
"57_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
179,
0.01,
4,
33,
100
],
[
58,
"58_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
196,
0.007391579804199999,
18,
64,
97
],
[
59,
"59_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
180,
0.00828522579556223,
32,
10,
100
],
[
60,
"60_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
178,
0.01,
32,
46,
100
],
[
61,
"61_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
172,
0.01,
4,
38,
45
],
[
62,
"62_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.0075194369110654245,
4,
10,
100
],
[
63,
"63_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3526315789473684,
56,
0.01,
4,
10,
100
],
[
64,
"64_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
200,
0.01,
4,
60,
63
],
[
65,
"65_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
168,
0.009319292839995365,
32,
41,
22
],
[
66,
"66_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.19999999999999996,
169,
0.01,
4,
11,
14
],
[
67,
"67_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
175,
0.01,
4,
55,
62
],
[
68,
"68_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.01,
4,
21,
32
],
[
69,
"69_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
181,
0.01,
4,
31,
17
],
[
70,
"70_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
170,
0.007276118271745542,
4,
10,
10
],
[
71,
"71_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.33684210526315794,
200,
0.01,
32,
94,
100
],
[
72,
"72_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
200,
0.01,
4,
89,
100
],
[
73,
"73_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
200,
0.01,
32,
50,
61
],
[
74,
"74_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3421052631578947,
141,
0.009347902986113378,
32,
10,
30
],
[
75,
"75_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3526315789473684,
200,
0.007619937421204865,
4,
57,
77
],
[
76,
"76_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
200,
0.00774158302718716,
32,
41,
67
],
[
77,
"77_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.01,
4,
94,
10
],
[
78,
"78_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
154,
0.01,
32,
68,
99
],
[
79,
"79_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
149,
0.01,
32,
38,
74
],
[
80,
"80_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
200,
0.01,
32,
61,
100
],
[
81,
"81_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.31052631578947365,
124,
0.01,
32,
56,
100
],
[
82,
"82_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
163,
0.008221007450340026,
32,
43,
99
],
[
83,
"83_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2684210526315789,
180,
0.00553910098952549,
32,
12,
12
],
[
84,
"84_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3157894736842105,
200,
0.008217068266138187,
32,
62,
77
],
[
85,
"85_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
200,
0.0066353053649033196,
32,
49,
14
],
[
86,
"86_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2894736842105263,
188,
0.0028497976849034146,
16,
10,
10
],
[
87,
"87_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
129,
0.01,
4,
86,
100
],
[
88,
"88_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.01,
32,
13,
86
],
[
89,
"89_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21052631578947367,
200,
0.005718411287274551,
32,
37,
93
],
[
90,
"90_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
200,
0.005890238504006059,
4,
28,
20
],
[
91,
"91_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
198,
0.00747333089164665,
10,
47,
100
],
[
92,
"92_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
195,
0.006947588586385951,
32,
57,
96
],
[
93,
"93_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
200,
0.006999312336574543,
4,
47,
55
],
[
94,
"94_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
200,
0.0038624842212837737,
9,
12,
76
],
[
95,
"95_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
148,
0.0074965725191353605,
32,
60,
100
],
[
96,
"96_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
200,
0.006388692916692818,
4,
39,
83
],
[
97,
"97_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
200,
0.004015615504888953,
31,
13,
10
],
[
98,
"98_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
197,
0.008814566263303845,
4,
48,
87
],
[
99,
"99_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
198,
0.006395623121673585,
32,
19,
81
],
[
100,
"100_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.33684210526315794,
199,
0.0001,
6,
14,
99
],
[
101,
"101_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.33684210526315794,
200,
0.003832715794613859,
32,
14,
100
],
[
102,
"102_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.005647053488861258,
4,
39,
100
],
[
103,
"103_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
132,
0.006992551159871015,
4,
44,
100
],
[
104,
"104_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.33684210526315794,
197,
0.00665061325255802,
31,
47,
59
],
[
105,
"105_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
178,
0.005200489102998382,
4,
10,
10
],
[
106,
"106_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
125,
0.006618492573964776,
4,
11,
68
],
[
107,
"107_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3157894736842105,
200,
0.0034055017706982028,
4,
10,
10
],
[
108,
"108_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
198,
0.006353666458654739,
16,
10,
10
],
[
109,
"109_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.00741169061614021,
8,
29,
36
],
[
110,
"110_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
171,
0.007444835264396485,
4,
28,
58
],
[
111,
"111_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
113,
0.007303532469567609,
6,
10,
10
],
[
112,
"112_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
185,
0.006379777375644119,
12,
100,
99
],
[
113,
"113_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
131,
0.01,
32,
41,
99
],
[
114,
"114_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.4052631578947369,
13,
0.009639939004401117,
32,
12,
100
],
[
115,
"115_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
196,
0.006964278907844177,
6,
79,
100
],
[
116,
"116_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
137,
0.007201578440295737,
32,
10,
10
],
[
117,
"117_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3315789473684211,
196,
0.007269895243506474,
32,
97,
100
],
[
118,
"118_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
176,
0.007715661976693974,
5,
68,
100
],
[
119,
"119_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
182,
0.007126128842221519,
32,
13,
36
],
[
120,
"120_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
150,
0.0056085103258371105,
4,
37,
10
],
[
121,
"121_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
199,
0.01,
4,
58,
100
],
[
122,
"122_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
176,
0.0075440400899953255,
4,
54,
100
],
[
123,
"123_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2684210526315789,
200,
0.006587876248689403,
24,
74,
98
],
[
124,
"124_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.007245983778395013,
32,
35,
10
],
[
125,
"125_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
199,
0.007716978661716038,
32,
53,
100
],
[
126,
"126_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
200,
0.01,
11,
100,
28
],
[
127,
"127_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
164,
0.008732151751778333,
4,
61,
100
],
[
128,
"128_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
200,
0.007955268831545598,
4,
100,
100
],
[
129,
"129_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3315789473684211,
171,
0.01,
32,
65,
36
],
[
130,
"130_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
146,
0.01,
32,
96,
85
],
[
131,
"131_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.009247274038975425,
32,
100,
10
],
[
132,
"132_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
170,
0.01,
15,
100,
100
],
[
133,
"133_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
139,
0.01,
4,
10,
62
],
[
134,
"134_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
200,
0.005300411505429713,
22,
10,
60
],
[
135,
"135_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
200,
0.009147550775024407,
32,
100,
100
],
[
136,
"136_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
200,
0.006276218137709642,
4,
14,
10
],
[
137,
"137_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
200,
0.008090331956127596,
4,
100,
72
],
[
138,
"138_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
170,
0.008065431311046046,
32,
65,
100
],
[
139,
"139_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
200,
0.01,
25,
72,
81
],
[
140,
"140_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
200,
0.006818927987493387,
4,
67,
74
],
[
141,
"141_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
181,
0.009807948852069752,
18,
71,
100
],
[
142,
"142_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
192,
0.008778703904754869,
10,
78,
86
],
[
143,
"143_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
200,
0.008723836780966809,
20,
72,
100
],
[
144,
"144_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
200,
0.01,
21,
82,
100
],
[
145,
"145_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.008205562673371776,
4,
83,
97
],
[
146,
"146_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3157894736842105,
200,
0.008188855513530147,
32,
71,
100
],
[
147,
"147_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
194,
0.005240123944012949,
32,
10,
29
],
[
148,
"148_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
149,
0.008456781280274028,
4,
82,
94
],
[
149,
"149_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
107,
0.01,
32,
88,
100
],
[
150,
"150_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.009220205928450166,
13,
93,
100
],
[
151,
"151_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
200,
0.006636325520254724,
4,
53,
14
],
[
152,
"152_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
16,
0.009224157563270179,
4,
72,
100
],
[
153,
"153_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
131,
0.009055002469130545,
4,
42,
19
],
[
154,
"154_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
200,
0.005210675979331394,
4,
10,
35
],
[
155,
"155_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
194,
0.0064402831864553475,
30,
10,
94
],
[
156,
"156_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3421052631578947,
64,
0.01,
32,
66,
96
],
[
157,
"157_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
200,
0.006366795333871818,
32,
10,
47
],
[
158,
"158_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
187,
0.006161156915159204,
6,
22,
60
],
[
159,
"159_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3526315789473684,
200,
0.006093395887556598,
4,
10,
62
],
[
160,
"160_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
200,
0.008410195902360366,
19,
55,
77
],
[
161,
"161_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.42105263157894735,
200,
0.0001,
4,
10,
10
],
[
162,
"162_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3526315789473684,
11,
0.009195792340030113,
17,
63,
98
],
[
163,
"163_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
200,
0.006861979032168726,
4,
61,
100
],
[
164,
"164_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
79,
0.00430589325503959,
4,
10,
97
],
[
165,
"165_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.31052631578947365,
197,
0.006910819569921326,
32,
81,
79
],
[
166,
"166_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
200,
0.005523384869178977,
13,
64,
100
],
[
167,
"167_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
199,
0.00729648405551466,
32,
17,
100
],
[
168,
"168_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
200,
0.01,
4,
100,
100
],
[
169,
"169_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
146,
0.005685671836950515,
25,
10,
98
],
[
170,
"170_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.006732117230026759,
32,
46,
100
],
[
171,
"171_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
169,
0.005610212921339535,
4,
10,
91
],
[
172,
"172_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
200,
0.007191064665225876,
16,
34,
100
],
[
173,
"173_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
200,
0.005883680150030682,
14,
17,
100
],
[
174,
"174_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
194,
0.006791375637041745,
5,
27,
100
],
[
175,
"175_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
151,
0.007240478928850011,
4,
14,
100
],
[
176,
"176_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
160,
0.007236919143649459,
32,
21,
100
],
[
177,
"177_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.4052631578947369,
29,
0.007337152006347317,
32,
10,
16
],
[
178,
"178_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3421052631578947,
11,
0.005664558821845148,
4,
10,
23
],
[
179,
"179_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
200,
0.007048677748485666,
20,
55,
95
],
[
180,
"180_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
101,
0.008653011502511639,
4,
100,
100
],
[
181,
"181_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.007186284729407228,
19,
21,
64
],
[
182,
"182_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
194,
0.008167460065066396,
25,
44,
98
],
[
183,
"183_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3526315789473684,
200,
0.005884680410065626,
4,
93,
97
],
[
184,
"184_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
186,
0.008263050788502663,
23,
98,
100
],
[
185,
"185_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
199,
0.007572659872840815,
14,
57,
68
],
[
186,
"186_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21052631578947367,
200,
0.01,
32,
28,
100
],
[
187,
"187_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3157894736842105,
137,
0.006198461673078726,
32,
10,
100
],
[
188,
"188_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2684210526315789,
162,
0.007151458931079013,
28,
10,
99
],
[
189,
"189_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.008358907818288859,
32,
10,
63
],
[
190,
"190_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
162,
0.00836239741418455,
21,
57,
99
],
[
191,
"191_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
200,
0.008014716077195765,
4,
73,
24
],
[
192,
"192_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
100,
0.008622640024968035,
19,
95,
100
],
[
193,
"193_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.009279379162970364,
4,
71,
44
],
[
194,
"194_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
150,
0.007395487117138772,
4,
98,
37
],
[
195,
"195_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
161,
0.009788062287147382,
27,
15,
100
],
[
196,
"196_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
136,
0.007633403568166305,
16,
48,
96
],
[
197,
"197_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3526315789473684,
10,
0.01,
21,
97,
96
],
[
198,
"198_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3526315789473684,
200,
0.005019583766906519,
32,
10,
100
],
[
199,
"199_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
200,
0.01,
24,
54,
100
],
[
200,
"200_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3526315789473684,
150,
0.008452201967786758,
28,
91,
100
],
[
201,
"201_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.31052631578947365,
200,
0.007682419943136788,
27,
53,
100
],
[
202,
"202_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
200,
0.007060821289075202,
26,
40,
81
],
[
203,
"203_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
200,
0.005675232543736552,
17,
41,
67
],
[
204,
"204_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
197,
0.00908073334226182,
7,
46,
10
],
[
205,
"205_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.34736842105263155,
143,
0.0073933779124535715,
32,
36,
100
],
[
206,
"206_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.006901989778956894,
4,
97,
32
],
[
207,
"207_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
200,
0.01,
4,
98,
70
],
[
208,
"208_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
132,
0.006962284509711036,
4,
72,
100
],
[
209,
"209_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
200,
0.006647987949018534,
8,
33,
10
],
[
210,
"210_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
200,
0.008494435748330803,
32,
45,
82
],
[
211,
"211_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2684210526315789,
200,
0.007109808041845007,
32,
10,
10
],
[
212,
"212_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
116,
0.009037189097683408,
32,
14,
100
],
[
213,
"213_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.007050754517434965,
5,
17,
47
],
[
214,
"214_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
200,
0.01,
31,
11,
10
],
[
215,
"215_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.34736842105263155,
200,
0.007079465356634386,
20,
12,
10
],
[
216,
"216_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
200,
0.01,
20,
48,
56
],
[
217,
"217_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
200,
0.01,
19,
18,
100
],
[
218,
"218_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
22,
0.009551570578135821,
4,
100,
100
],
[
219,
"219_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
200,
0.008540657780068186,
22,
35,
94
],
[
220,
"220_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.00809092199705768,
18,
47,
100
],
[
221,
"221_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
200,
0.009203202713349602,
14,
55,
100
],
[
222,
"222_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
38,
0.01,
4,
15,
10
],
[
223,
"223_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
200,
0.01,
18,
100,
100
],
[
224,
"224_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.01,
4,
10,
31
],
[
225,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
188,
0.008323822847507559,
23,
10,
88
],
[
226,
"226_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.18947368421052635,
183,
0.009432517781791624,
25,
42,
100
],
[
227,
"227_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
200,
0.008795069051441036,
32,
50,
100
],
[
228,
"228_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
173,
0.01,
20,
55,
100
],
[
229,
"229_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
110,
0.01,
32,
10,
100
],
[
230,
"230_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
197,
0.01,
18,
69,
100
],
[
231,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.19999999999999996,
198,
0.01,
16,
40,
76
],
[
232,
"232_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
200,
0.01,
15,
67,
97
],
[
233,
"233_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21052631578947367,
200,
0.008722545113936928,
18,
60,
100
],
[
234,
"234_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
196,
0.008447888951106666,
24,
37,
15
],
[
235,
"235_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
200,
0.01,
19,
55,
89
],
[
236,
"236_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.01,
32,
40,
10
],
[
237,
"237_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2894736842105263,
200,
0.008373797244966077,
21,
46,
92
],
[
238,
"238_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
200,
0.007788979215599344,
14,
62,
99
],
[
239,
"239_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
187,
0.00898699563738936,
22,
56,
100
],
[
240,
"240_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
200,
0.005372494801945831,
12,
46,
25
],
[
241,
"241_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
194,
0.007619482658711061,
21,
52,
100
],
[
242,
"242_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
199,
0.01,
18,
67,
71
],
[
243,
"243_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
200,
0.00863585760464388,
24,
54,
100
],
[
244,
"244_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
195,
0.008350780281565615,
4,
82,
51
],
[
245,
"245_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3315789473684211,
200,
0.01,
32,
46,
100
],
[
246,
"246_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
200,
0.01,
22,
44,
100
],
[
247,
"247_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3157894736842105,
199,
0.006859634022091962,
24,
27,
98
],
[
248,
"248_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.00795402096648014,
17,
40,
66
],
[
249,
"249_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.33684210526315794,
158,
0.00796743593792501,
22,
39,
100
],
[
250,
"250_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
200,
0.008107368603441198,
20,
46,
61
],
[
251,
"251_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
200,
0.00941532097767349,
21,
66,
63
],
[
252,
"252_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.01,
17,
89,
71
],
[
253,
"253_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
135,
0.0059076368885461585,
19,
11,
69
],
[
254,
"254_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.01,
12,
78,
78
],
[
255,
"255_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
200,
0.01,
16,
83,
100
],
[
256,
"256_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3263157894736842,
200,
0.00602715932744473,
16,
32,
49
],
[
257,
"257_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
186,
0.01,
23,
10,
43
],
[
258,
"258_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.008689520534490793,
15,
57,
67
],
[
259,
"259_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.31052631578947365,
200,
0.01,
19,
47,
100
],
[
260,
"260_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3315789473684211,
200,
0.008771778642056216,
26,
92,
100
],
[
261,
"261_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2684210526315789,
200,
0.008346937921320465,
21,
67,
76
],
[
262,
"262_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.01,
22,
67,
100
],
[
263,
"263_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
200,
0.0049961068531061475,
19,
17,
11
],
[
264,
"264_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
200,
0.004639546748404329,
4,
84,
29
],
[
265,
"265_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3315789473684211,
193,
0.003534065841138753,
15,
22,
10
],
[
266,
"266_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.008197525385286774,
14,
54,
39
],
[
267,
"267_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
200,
0.01,
9,
72,
100
],
[
268,
"268_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.31052631578947365,
200,
0.0043457711565755034,
24,
10,
11
],
[
269,
"269_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
196,
0.008952552377585502,
18,
68,
84
],
[
270,
"270_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
200,
0.00827305164506669,
16,
68,
66
],
[
271,
"271_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
191,
0.006917195431729271,
19,
52,
71
],
[
272,
"272_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21052631578947367,
179,
0.007081260330705821,
23,
11,
98
],
[
273,
"273_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
198,
0.01,
16,
61,
16
],
[
274,
"274_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21052631578947367,
200,
0.0077175680910606,
21,
22,
100
],
[
275,
"275_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
182,
0.01,
23,
65,
100
],
[
276,
"276_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
200,
0.008112877661988498,
12,
66,
75
],
[
277,
"277_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
200,
0.007488419040197007,
17,
46,
68
],
[
278,
"278_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
191,
0.0068170543912105495,
20,
12,
21
],
[
279,
"279_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.01,
26,
100,
15
],
[
280,
"280_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
200,
0.008613244195159506,
11,
100,
78
],
[
281,
"281_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
200,
0.008070014064729146,
15,
79,
84
],
[
282,
"282_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
200,
0.009141647815845722,
11,
71,
99
],
[
283,
"283_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
200,
0.00869427732738482,
32,
10,
93
],
[
284,
"284_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
200,
0.00920007739341605,
20,
47,
66
],
[
285,
"285_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.0075076890572763144,
4,
94,
10
],
[
286,
"286_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
200,
0.01,
32,
10,
100
],
[
287,
"287_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
199,
0.008517063318861985,
28,
32,
96
],
[
288,
"288_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
126,
0.008564522668471838,
13,
90,
99
],
[
289,
"289_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
181,
0.009585620321582309,
14,
63,
80
],
[
290,
"290_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
167,
0.0067405030757965514,
25,
13,
48
],
[
291,
"291_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2894736842105263,
200,
0.007712873278365775,
17,
46,
82
],
[
292,
"292_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
199,
0.01,
24,
54,
81
],
[
293,
"293_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
85,
0.008950620350548381,
4,
96,
100
],
[
294,
"294_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
200,
0.008800850862490604,
23,
19,
74
],
[
295,
"295_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.01,
18,
95,
75
],
[
296,
"296_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
199,
0.009118120316465956,
21,
45,
100
],
[
297,
"297_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2894736842105263,
196,
0.007625751617686566,
23,
21,
69
],
[
298,
"298_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.007916451674653921,
25,
10,
80
],
[
299,
"299_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2684210526315789,
155,
0.01,
16,
73,
100
],
[
300,
"300_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
138,
0.006630719446577614,
4,
69,
100
],
[
301,
"301_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
177,
0.008422487308230952,
15,
86,
100
],
[
302,
"302_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.01,
4,
78,
77
],
[
303,
"303_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
174,
0.004049985575069868,
20,
15,
100
],
[
304,
"304_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
182,
0.01,
23,
69,
63
],
[
305,
"305_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
200,
0.0088979209813217,
19,
66,
86
],
[
306,
"306_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
186,
0.008114307449238266,
18,
59,
86
],
[
307,
"307_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
82,
0.01,
4,
98,
89
],
[
308,
"308_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
199,
0.005081986995639385,
4,
37,
27
],
[
309,
"309_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
200,
0.009084563763158011,
23,
54,
89
],
[
310,
"310_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
167,
0.0067737203355960765,
4,
100,
88
],
[
311,
"311_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
193,
0.00793805213751717,
4,
67,
46
],
[
312,
"312_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
177,
0.00765124360332251,
21,
66,
100
],
[
313,
"313_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
174,
0.00922855900372173,
10,
87,
62
],
[
314,
"314_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.33684210526315794,
169,
0.00902085152692559,
30,
11,
45
],
[
315,
"315_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
178,
0.008754222440827873,
17,
53,
100
],
[
316,
"316_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21052631578947367,
200,
0.007018616354017095,
11,
99,
100
],
[
317,
"317_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
200,
0.008668048713510448,
17,
54,
87
],
[
318,
"318_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
197,
0.006927245078039013,
21,
10,
51
],
[
319,
"319_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
126,
0.006899321816495437,
6,
93,
98
],
[
320,
"320_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
149,
0.0064462191563627366,
20,
25,
39
],
[
321,
"321_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
200,
0.009065353316835808,
17,
71,
100
],
[
322,
"322_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2894736842105263,
134,
0.009213101923850482,
22,
100,
100
],
[
323,
"323_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
200,
0.008215123645444806,
13,
94,
100
],
[
324,
"324_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
200,
0.0077658907166339945,
16,
73,
100
],
[
325,
"325_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
111,
0.00865315345630718,
32,
16,
99
],
[
326,
"326_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
134,
0.008338424920946162,
19,
56,
100
],
[
327,
"327_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2684210526315789,
190,
0.008665603428693384,
24,
11,
23
],
[
328,
"328_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.16842105263157892,
196,
0.01,
23,
14,
100
],
[
329,
"329_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3263157894736842,
165,
0.008283471963658843,
28,
10,
100
],
[
330,
"330_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
200,
0.01,
26,
13,
100
],
[
331,
"331_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
163,
0.007138298909025158,
14,
68,
98
],
[
332,
"332_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
142,
0.01,
8,
95,
61
],
[
333,
"333_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
90,
0.006958279122684181,
8,
91,
100
],
[
334,
"334_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.007004839123860503,
16,
81,
100
],
[
335,
"335_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2894736842105263,
200,
0.008926864613218772,
18,
87,
100
],
[
336,
"336_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
148,
0.005325037396815216,
23,
10,
10
],
[
337,
"337_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
162,
0.00848548752598725,
18,
73,
100
],
[
338,
"338_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
179,
0.006686999131018938,
18,
30,
79
],
[
339,
"339_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
116,
0.008837301459464991,
14,
94,
97
],
[
340,
"340_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
102,
0.006074442441503001,
21,
14,
98
],
[
341,
"341_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.01,
12,
15,
10
],
[
342,
"342_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
200,
0.006605195460404013,
7,
100,
99
],
[
343,
"343_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.1947368421052632,
199,
0.005157929654024255,
11,
10,
25
],
[
344,
"344_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2684210526315789,
200,
0.005593363859429217,
13,
52,
55
],
[
345,
"345_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
189,
0.003232736700506972,
19,
15,
96
]
];
var tab_job_infos_headers_json = [
"start_time",
"end_time",
"run_time",
"program_string",
"epochs",
"lr",
"bsz",
"da",
"db",
"RESULT",
"exit_code",
"signal",
"hostname",
"OO_Info_SLURM_JOB_ID"
];
var tab_job_infos_csv_json = [
[
1746613856,
1746613881,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 72 0.002159496855735779 5 10 43",
72,
0.002159496855735779,
5,
10,
43,
0.30000000000000004,
0,
"None",
"n1719",
16915845
],
[
1746613889,
1746613907,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 152 0.008417613819148392 20 76 63",
152,
0.008417613819148392,
20,
76,
63,
0.24736842105263157,
0,
"None",
"n1719",
16915847
],
[
1746613889,
1746613907,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 187 0.004052058681845666 11 39 88",
187,
0.004052058681845666,
11,
39,
88,
0.27368421052631575,
0,
"None",
"n1719",
16915848
],
[
1746613921,
1746613939,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 12 0.005219838040601462 25 93 16",
12,
0.005219838040601462,
25,
93,
16,
0.6210526315789473,
0,
"None",
"n1719",
16915850
],
[
1746613921,
1746613939,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 53 0.0034848991801962256 22 82 25",
53,
0.0034848991801962256,
22,
82,
25,
0.3052631578947368,
0,
"None",
"n1719",
16915855
],
[
1746613953,
1746613978,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 169 0.007131449778471143 8 50 92",
169,
0.007131449778471143,
8,
50,
92,
0.23684210526315785,
0,
"None",
"n1719",
16915859
],
[
1746613985,
1746614003,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 110 0.0002921498278155923 31 65 70",
110,
0.0002921498278155923,
31,
65,
70,
0.4157894736842105,
0,
"None",
"n1719",
16915863
],
[
1746614018,
1746614043,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 90 0.009019060893822461 16 21 44",
90,
0.009019060893822461,
16,
21,
44,
0.2684210526315789,
0,
"None",
"n1719",
16915876
],
[
1746614050,
1746614068,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 104 0.004684118163399399 31 47 59",
104,
0.004684118163399399,
31,
47,
59,
0.3631578947368421,
0,
"None",
"n1719",
16915879
],
[
1746614082,
1746614101,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 119 0.005856737259868533 17 85 33",
119,
0.005856737259868533,
17,
85,
33,
0.2947368421052632,
0,
"None",
"n1719",
16915881
],
[
1746614120,
1746614132,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 45 0.007821812945324929 10 56 80",
45,
0.007821812945324929,
10,
56,
80,
0.2947368421052632,
0,
"None",
"n1719",
16915884
],
[
1746614115,
1746614133,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 155 0.0015685167999938132 25 30 14",
155,
0.0015685167999938132,
25,
30,
14,
0.2894736842105263,
0,
"None",
"n1719",
16915882
],
[
1746614147,
1746614166,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 27 0.0008854876827448608 14 67 99",
27,
0.0008854876827448608,
14,
67,
99,
0.4052631578947369,
0,
"None",
"n1719",
16915885
],
[
1746614180,
1746614199,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.00961726238494739 29 18 27",
197,
0.00961726238494739,
29,
18,
27,
0.2684210526315789,
0,
"None",
"n1719",
16915888
],
[
1746614212,
1746614237,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 137 0.0028552780814468863 6 96 54",
137,
0.0028552780814468863,
6,
96,
54,
0.35789473684210527,
0,
"None",
"n1719",
16915890
],
[
1746614245,
1746614257,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 62 0.006497021691780538 20 36 74",
62,
0.006497021691780538,
20,
36,
74,
0.2789473684210526,
0,
"None",
"n1719",
16915893
],
[
1746614278,
1746614290,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 67 0.0031815722849220037 17 63 20",
67,
0.0031815722849220037,
17,
63,
20,
0.34736842105263155,
0,
"None",
"n1719",
16915894
],
[
1746614310,
1746614328,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 130 0.006828149437066168 32 25 86",
130,
0.006828149437066168,
32,
25,
86,
0.3052631578947368,
0,
"None",
"n1719",
16915896
],
[
1746614315,
1746614333,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 189 0.0012166159443557263 10 80 64",
189,
0.0012166159443557263,
10,
80,
64,
0.35789473684210527,
0,
"None",
"n1719",
16915899
],
[
1746614342,
1746614354,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 31 0.009943555924575777 24 54 38",
31,
0.009943555924575777,
24,
54,
38,
0.33684210526315794,
0,
"None",
"n1719",
16915902
],
[
1746614374,
1746614386,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 36 0.0018561386121436956 27 43 48",
36,
0.0018561386121436956,
27,
43,
48,
0.43157894736842106,
0,
"None",
"n1719",
16915903
],
[
1746614407,
1746614425,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 159 0.008114269184414297 13 92 69",
159,
0.008114269184414297,
13,
92,
69,
0.2947368421052632,
0,
"None",
"n1719",
16915906
],
[
1746614437,
1746614450,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 124 0.004976573886163534 21 14 93",
124,
0.004976573886163534,
21,
14,
93,
0.3315789473684211,
0,
"None",
"n1719",
16915907
],
[
1746614470,
1746614482,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 81 0.0005797720825299622 18 100 82",
81,
0.0005797720825299622,
18,
100,
82,
0.41052631578947374,
0,
"None",
"n1719",
16915912
],
[
1746614470,
1746614488,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 97 0.006144359735865147 6 75 21",
97,
0.006144359735865147,
6,
75,
21,
0.24736842105263157,
0,
"None",
"n1719",
16915910
],
[
1746614501,
1746614526,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 114 0.009311516690347344 4 34 10",
114,
0.009311516690347344,
4,
34,
10,
0.3631578947368421,
0,
"None",
"n1719",
16915914
],
[
1746614534,
1746614546,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 175 0.0037773556405678393 27 71 37",
175,
0.0037773556405678393,
27,
71,
37,
0.3315789473684211,
0,
"None",
"n1719",
16915916
],
[
1746614565,
1746614577,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 46 0.007419071516860277 12 17 58",
46,
0.007419071516860277,
12,
17,
58,
0.3421052631578947,
0,
"None",
"n1719",
16915920
],
[
1746614598,
1746614616,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 16 0.0043783524427562955 8 28 76",
16,
0.0043783524427562955,
8,
28,
76,
0.3157894736842105,
0,
"None",
"n1719",
16915922
],
[
1746614632,
1746614699,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 181 0.005550966228451581 23 60 50",
181,
0.005550966228451581,
23,
60,
50,
0.30000000000000004,
0,
"None",
"n1719",
16915925
],
[
1746614697,
1746614740,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 145 0.0024906243428587916 15 46 31",
145,
0.0024906243428587916,
15,
46,
31,
0.3631578947368421,
0,
"None",
"n1719",
16915983
],
[
1746614762,
1746614811,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 75 0.008743908096384256 29 89 98",
75,
0.008743908096384256,
29,
89,
98,
0.2789473684210526,
0,
"None",
"n1719",
16915986
],
[
1746614826,
1746614862,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 80 0.003919512849114837 25 73 46",
80,
0.003919512849114837,
25,
73,
46,
0.4052631578947369,
0,
"None",
"n1719",
16915988
],
[
1746614857,
1746614937,
80,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 143 0.005072050877008588 10 13 71",
143,
0.005072050877008588,
10,
13,
71,
0.31052631578947365,
0,
"None",
"n1719",
16915996
],
[
1746614928,
1746615044,
116,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 179 0.002022226462699473 32 89 89",
179,
0.002022226462699473,
32,
89,
89,
0.3421052631578947,
0,
"None",
"n1719",
16915999
],
[
1746615027,
1746615076,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 20 0.008293810995388775 16 42 25",
20,
0.008293810995388775,
16,
42,
25,
0.3526315789473684,
0,
"None",
"n1719",
16916005
],
[
1746615088,
1746615119,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 50 0.00010034811384975911 6 53 18",
50,
0.00010034811384975911,
6,
53,
18,
0.4631578947368421,
0,
"None",
"n1719",
16916011
],
[
1746615153,
1746615196,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 173 0.008853110256697983 21 78 88",
173,
0.008853110256697983,
21,
78,
88,
0.2684210526315789,
0,
"None",
"n1719",
16916014
],
[
1746615184,
1746615215,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 114 0.0033271250694990157 14 25 61",
114,
0.0033271250694990157,
14,
25,
61,
0.3526315789473684,
0,
"None",
"n1719",
16916017
],
[
1746615218,
1746615254,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 87 0.006950882416497917 28 61 42",
87,
0.006950882416497917,
28,
61,
42,
0.32105263157894737,
0,
"None",
"n1719",
16916019
],
[
1746615283,
1746615326,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 95 0.0013781327676028014 11 87 72",
95,
0.0013781327676028014,
11,
87,
72,
0.4789473684210527,
0,
"None",
"n1719",
16916023
],
[
1746615348,
1746615385,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 128 0.007654519567545504 26 44 53",
128,
0.007654519567545504,
26,
44,
53,
0.3263157894736842,
0,
"None",
"n1719",
16916025
],
[
1746615380,
1746615417,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 165 0.004527379948645831 5 58 29",
165,
0.004527379948645831,
5,
58,
29,
0.26315789473684215,
0,
"None",
"n1719",
16916026
],
[
1746615413,
1746615437,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 36 0.0056750590610317895 19 28 99",
36,
0.0056750590610317895,
19,
28,
99,
0.28421052631578947,
0,
"None",
"n1719",
16916030
],
[
1746615510,
1746615529,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 30 0.0027216538665816186 30 17 78",
30,
0.0027216538665816186,
30,
17,
78,
0.3526315789473684,
0,
"None",
"n1719",
16916033
],
[
1746615541,
1746615560,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 194 0.006350236789230258 16 70 13",
194,
0.006350236789230258,
16,
70,
13,
0.3631578947368421,
0,
"None",
"n1719",
16916034
],
[
1746615574,
1746615587,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 134 0.0007469176622107626 22 33 35",
134,
0.0007469176622107626,
22,
33,
35,
0.41052631578947374,
0,
"None",
"n1719",
16916036
],
[
1746615613,
1746615625,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 58 0.0010345394743606448 26 23 23",
58,
0.0010345394743606448,
26,
23,
23,
0.368421052631579,
0,
"None",
"n1719",
16916040
],
[
1746615607,
1746615626,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 65 0.009494835346657782 7 98 60",
65,
0.009494835346657782,
7,
98,
60,
0.3631578947368421,
0,
"None",
"n1719",
16916039
],
[
1746615640,
1746615659,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 139 0.009787291585747152 12 66 93",
139,
0.009787291585747152,
12,
66,
93,
0.22631578947368425,
0,
"None",
"n1719",
16916042
],
[
1746615706,
1746615718,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 114 0.009191625632155344 26 49 75",
114,
0.009191625632155344,
26,
49,
75,
0.31052631578947365,
0,
"None",
"n1719",
16916052
],
[
1746615738,
1746615756,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 122 0.008973844702663847 8 48 92",
122,
0.008973844702663847,
8,
48,
92,
0.21052631578947367,
0,
"None",
"n1719",
16916054
],
[
1746615772,
1746615790,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 151 0.009665452023960833 20 56 96",
151,
0.009665452023960833,
20,
56,
96,
0.27368421052631575,
0,
"None",
"n1719",
16916057
],
[
1746615839,
1746615869,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 126 0.008561401127126512 4 56 100",
126,
0.008561401127126512,
4,
56,
100,
0.3631578947368421,
0,
"None",
"n1719",
16916060
],
[
1746615871,
1746615907,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 126 0.01 4 45 98",
126,
0.01,
4,
45,
98,
0.3631578947368421,
0,
"None",
"n1719",
16916070
],
[
1746615936,
1746615967,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 172 0.006149551698917648 13 19 50",
172,
0.006149551698917648,
13,
19,
50,
0.26315789473684215,
0,
"None",
"n1719",
16916074
],
[
1746616002,
1746616033,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 119 0.01 11 97 27",
119,
0.01,
11,
97,
27,
0.3631578947368421,
0,
"None",
"n1719",
16916077
],
[
1746616067,
1746616110,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 179 0.01 4 33 100",
179,
0.01,
4,
33,
100,
0.2421052631578947,
0,
"None",
"n1719",
16916079
],
[
1746616134,
1746616177,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.007391579804199999 18 64 97",
196,
0.007391579804199999,
18,
64,
97,
0.2789473684210526,
0,
"None",
"n1719",
16916082
],
[
1746616198,
1746616241,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 180 0.00828522579556223 32 10 100",
180,
0.00828522579556223,
32,
10,
100,
0.28421052631578947,
0,
"None",
"n1719",
16916084
],
[
1746616262,
1746616287,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 178 0.01 32 46 100",
178,
0.01,
32,
46,
100,
0.26315789473684215,
0,
"None",
"n1719",
16916086
],
[
1746616329,
1746616378,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 172 0.01 4 38 45",
172,
0.01,
4,
38,
45,
0.20526315789473681,
0,
"None",
"n1719",
16916098
],
[
1746616392,
1746616429,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0075194369110654245 4 10 100",
200,
0.0075194369110654245,
4,
10,
100,
0.3631578947368421,
0,
"None",
"n1719",
16916100
],
[
1746616459,
1746616489,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 56 0.01 4 10 100",
56,
0.01,
4,
10,
100,
0.3526315789473684,
0,
"None",
"n1719",
16916104
],
[
1746616524,
1746616567,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 4 60 63",
200,
0.01,
4,
60,
63,
0.2315789473684211,
0,
"None",
"n1719",
16916106
],
[
1746616589,
1746616614,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 168 0.009319292839995365 32 41 22",
168,
0.009319292839995365,
32,
41,
22,
0.2578947368421053,
0,
"None",
"n1719",
16916108
],
[
1746616622,
1746616659,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 169 0.01 4 11 14",
169,
0.01,
4,
11,
14,
0.19999999999999996,
0,
"None",
"n1719",
16916110
],
[
1746616691,
1746616752,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 175 0.01 4 55 62",
175,
0.01,
4,
55,
62,
0.28421052631578947,
0,
"None",
"n1719",
16916115
],
[
1746616789,
1746616832,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 4 21 32",
200,
0.01,
4,
21,
32,
0.3631578947368421,
0,
"None",
"n1719",
16916117
],
[
1746616856,
1746616893,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 181 0.01 4 31 17",
181,
0.01,
4,
31,
17,
0.3631578947368421,
0,
"None",
"n1719",
16916119
],
[
1746616888,
1746616925,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 170 0.007276118271745542 4 10 10",
170,
0.007276118271745542,
4,
10,
10,
0.32105263157894737,
0,
"None",
"n1719",
16916120
],
[
1746616952,
1746616971,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 32 94 100",
200,
0.01,
32,
94,
100,
0.33684210526315794,
0,
"None",
"n1719",
16916122
],
[
1746617019,
1746617049,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 4 89 100",
200,
0.01,
4,
89,
100,
0.28421052631578947,
0,
"None",
"n1720",
16916126
],
[
1746617050,
1746617063,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 32 50 61",
200,
0.01,
32,
50,
61,
0.2789473684210526,
0,
"None",
"n1720",
16916129
],
[
1746617149,
1746617167,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 141 0.009347902986113378 32 10 30",
141,
0.009347902986113378,
32,
10,
30,
0.3421052631578947,
0,
"None",
"n1720",
16916133
],
[
1746617182,
1746617231,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007619937421204865 4 57 77",
200,
0.007619937421204865,
4,
57,
77,
0.3526315789473684,
0,
"None",
"n1720",
16916135
],
[
1746617249,
1746617274,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00774158302718716 32 41 67",
200,
0.00774158302718716,
32,
41,
67,
0.2315789473684211,
0,
"None",
"n1720",
16916137
],
[
1746617347,
1746617389,
42,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 4 94 10",
200,
0.01,
4,
94,
10,
0.3631578947368421,
0,
"None",
"n1720",
16916140
],
[
1746617411,
1746617441,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 154 0.01 32 68 99",
154,
0.01,
32,
68,
99,
0.20526315789473681,
0,
"None",
"n1720",
16916144
],
[
1746617478,
1746617508,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 149 0.01 32 38 74",
149,
0.01,
32,
38,
74,
0.2947368421052632,
0,
"None",
"n1720",
16916147
],
[
1746617577,
1746617608,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 32 61 100",
200,
0.01,
32,
61,
100,
0.27368421052631575,
0,
"None",
"n1720",
16916158
],
[
1746617676,
1746617707,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 124 0.01 32 56 100",
124,
0.01,
32,
56,
100,
0.31052631578947365,
0,
"None",
"n1720",
16916170
],
[
1746617741,
1746617772,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 163 0.008221007450340026 32 43 99",
163,
0.008221007450340026,
32,
43,
99,
0.2421052631578947,
0,
"None",
"n1720",
16916172
],
[
1746617839,
1746617875,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 180 0.00553910098952549 32 12 12",
180,
0.00553910098952549,
32,
12,
12,
0.2684210526315789,
0,
"None",
"n1720",
16916175
],
[
1746617937,
1746617962,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008217068266138187 32 62 77",
200,
0.008217068266138187,
32,
62,
77,
0.3157894736842105,
0,
"None",
"n1720",
16916187
],
[
1746618036,
1746618061,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0066353053649033196 32 49 14",
200,
0.0066353053649033196,
32,
49,
14,
0.32105263157894737,
0,
"None",
"n1720",
16916191
],
[
1746618101,
1746618125,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 188 0.0028497976849034146 16 10 10",
188,
0.0028497976849034146,
16,
10,
10,
0.2894736842105263,
0,
"None",
"n1720",
16916196
],
[
1746618166,
1746618216,
50,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 129 0.01 4 86 100",
129,
0.01,
4,
86,
100,
0.35789473684210527,
0,
"None",
"n1720",
16916204
],
[
1746618266,
1746618303,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 32 13 86",
200,
0.01,
32,
13,
86,
0.3631578947368421,
0,
"None",
"n1720",
16916207
],
[
1746618363,
1746618393,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005718411287274551 32 37 93",
200,
0.005718411287274551,
32,
37,
93,
0.21052631578947367,
0,
"None",
"n1720",
16916211
],
[
1746618429,
1746618465,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005890238504006059 4 28 20",
200,
0.005890238504006059,
4,
28,
20,
0.21578947368421053,
0,
"None",
"n1720",
16916215
],
[
1746618492,
1746618517,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.00747333089164665 10 47 100",
198,
0.00747333089164665,
10,
47,
100,
0.2210526315789474,
0,
"None",
"n1720",
16916218
],
[
1746618588,
1746618613,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 195 0.006947588586385951 32 57 96",
195,
0.006947588586385951,
32,
57,
96,
0.26315789473684215,
0,
"None",
"n1720",
16916220
],
[
1746618652,
1746618701,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006999312336574543 4 47 55",
200,
0.006999312336574543,
4,
47,
55,
0.2578947368421053,
0,
"None",
"n1720",
16916224
],
[
1746618746,
1746618795,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0038624842212837737 9 12 76",
200,
0.0038624842212837737,
9,
12,
76,
0.24736842105263157,
0,
"None",
"n1720",
16916231
],
[
1746618813,
1746618929,
116,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 148 0.0074965725191353605 32 60 100",
148,
0.0074965725191353605,
32,
60,
100,
0.27368421052631575,
0,
"None",
"n1720",
16916234
],
[
1746619010,
1746619133,
123,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006388692916692818 4 39 83",
200,
0.006388692916692818,
4,
39,
83,
0.25263157894736843,
0,
"None",
"n1720",
16916240
],
[
1746619174,
1746619278,
104,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.004015615504888953 31 13 10",
200,
0.004015615504888953,
31,
13,
10,
0.30000000000000004,
0,
"None",
"n1720",
16916244
],
[
1746619403,
1746619507,
104,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.008814566263303845 4 48 87",
197,
0.008814566263303845,
4,
48,
87,
0.3631578947368421,
0,
"None",
"n1720",
16916273
],
[
1746619570,
1746619735,
165,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.006395623121673585 32 19 81",
198,
0.006395623121673585,
32,
19,
81,
0.24736842105263157,
0,
"None",
"n1720",
16916281
],
[
1746619956,
1746620091,
135,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.0001 6 14 99",
199,
0.0001,
6,
14,
99,
0.33684210526315794,
0,
"None",
"n1720",
16916323
],
[
1746620086,
1746620184,
98,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.003832715794613859 32 14 100",
200,
0.003832715794613859,
32,
14,
100,
0.33684210526315794,
0,
"None",
"n1720",
16916327
],
[
1746620287,
1746620524,
237,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005647053488861258 4 39 100",
200,
0.005647053488861258,
4,
39,
100,
0.3631578947368421,
0,
"None",
"n1719",
16916336
],
[
1746620538,
1746620673,
135,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 132 0.006992551159871015 4 44 100",
132,
0.006992551159871015,
4,
44,
100,
0.2789473684210526,
0,
"None",
"n1720",
16916350
],
[
1746620668,
1746620772,
104,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.00665061325255802 31 47 59",
197,
0.00665061325255802,
31,
47,
59,
0.33684210526315794,
0,
"None",
"n1720",
16916354
],
[
1746621025,
1746621172,
147,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 178 0.005200489102998382 4 10 10",
178,
0.005200489102998382,
4,
10,
10,
0.24736842105263157,
0,
"None",
"n1720",
16916370
],
[
1746621186,
1746621333,
147,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 125 0.006618492573964776 4 11 68",
125,
0.006618492573964776,
4,
11,
68,
0.27368421052631575,
0,
"None",
"n1720",
16916378
],
[
1746621414,
1746621494,
80,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0034055017706982028 4 10 10",
200,
0.0034055017706982028,
4,
10,
10,
0.3157894736842105,
0,
"None",
"n1720",
16916397
],
[
1746621577,
1746621632,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.006353666458654739 16 10 10",
198,
0.006353666458654739,
16,
10,
10,
0.2578947368421053,
0,
"None",
"n1720",
16916406
],
[
1746621708,
1746621769,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00741169061614021 8 29 36",
200,
0.00741169061614021,
8,
29,
36,
0.3631578947368421,
0,
"None",
"n1720",
16916416
],
[
1746621840,
1746621914,
74,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 171 0.007444835264396485 4 28 58",
171,
0.007444835264396485,
4,
28,
58,
0.35789473684210527,
0,
"None",
"n1720",
16916424
],
[
1746622015,
1746622149,
134,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 113 0.007303532469567609 6 10 10",
113,
0.007303532469567609,
6,
10,
10,
0.28421052631578947,
0,
"None",
"n1694",
16917349
],
[
1746622116,
1746622256,
140,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 185 0.006379777375644119 12 100 99",
185,
0.006379777375644119,
12,
100,
99,
0.26315789473684215,
0,
"None",
"n1716",
16918836
],
[
1746622299,
1746622415,
116,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 131 0.01 32 41 99",
131,
0.01,
32,
41,
99,
0.24736842105263157,
0,
"None",
"n1716",
16920669
],
[
1746622653,
1746622696,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 13 0.009639939004401117 32 12 100",
13,
0.009639939004401117,
32,
12,
100,
0.4052631578947369,
0,
"None",
"n1716",
16921193
],
[
1746622751,
1746622806,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.006964278907844177 6 79 100",
196,
0.006964278907844177,
6,
79,
100,
0.22631578947368425,
0,
"None",
"n1716",
16921206
],
[
1746622914,
1746622962,
48,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 137 0.007201578440295737 32 10 10",
137,
0.007201578440295737,
32,
10,
10,
0.2421052631578947,
0,
"None",
"n1716",
16921214
],
[
1746623044,
1746623099,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.007269895243506474 32 97 100",
196,
0.007269895243506474,
32,
97,
100,
0.3315789473684211,
0,
"None",
"n1716",
16921223
],
[
1746623188,
1746623274,
86,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 176 0.007715661976693974 5 68 100",
176,
0.007715661976693974,
5,
68,
100,
0.20526315789473681,
0,
"None",
"n1717",
16921236
],
[
1746623305,
1746623348,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 182 0.007126128842221519 32 13 36",
182,
0.007126128842221519,
32,
13,
36,
0.28421052631578947,
0,
"None",
"n1717",
16921240
],
[
1746623467,
1746623497,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 150 0.0056085103258371105 4 37 10",
150,
0.0056085103258371105,
4,
37,
10,
0.3631578947368421,
0,
"None",
"n1717",
16921255
],
[
1746623663,
1746623699,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.01 4 58 100",
199,
0.01,
4,
58,
100,
0.2421052631578947,
0,
"None",
"n1717",
16921276
],
[
1746623758,
1746623789,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 176 0.0075440400899953255 4 54 100",
176,
0.0075440400899953255,
4,
54,
100,
0.3631578947368421,
0,
"None",
"n1717",
16921284
],
[
1746623891,
1746623915,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006587876248689403 24 74 98",
200,
0.006587876248689403,
24,
74,
98,
0.2684210526315789,
0,
"None",
"n1717",
16921296
],
[
1746624084,
1746624108,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007245983778395013 32 35 10",
200,
0.007245983778395013,
32,
35,
10,
0.3631578947368421,
0,
"None",
"n1717",
16921314
],
[
1746624182,
1746624212,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.007716978661716038 32 53 100",
199,
0.007716978661716038,
32,
53,
100,
0.24736842105263157,
0,
"None",
"n1717",
16921320
],
[
1746624377,
1746624401,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 11 100 28",
200,
0.01,
11,
100,
28,
0.21578947368421053,
0,
"None",
"n1717",
16921328
],
[
1746624508,
1746624538,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 164 0.008732151751778333 4 61 100",
164,
0.008732151751778333,
4,
61,
100,
0.32105263157894737,
0,
"None",
"n1717",
16921335
],
[
1746624735,
1746624778,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007955268831545598 4 100 100",
200,
0.007955268831545598,
4,
100,
100,
0.26315789473684215,
0,
"None",
"n1717",
16921367
],
[
1746624918,
1746625113,
195,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 171 0.01 32 65 36",
171,
0.01,
32,
65,
36,
0.3315789473684211,
0,
"None",
"n1715",
16921375
],
[
1746625095,
1746625151,
56,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 146 0.01 32 96 85",
146,
0.01,
32,
96,
85,
0.27368421052631575,
0,
"None",
"n1718",
16921403
],
[
1746625194,
1746625231,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.009247274038975425 32 100 10",
200,
0.009247274038975425,
32,
100,
10,
0.3631578947368421,
0,
"None",
"n1718",
16921406
],
[
1746625415,
1746625440,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 170 0.01 15 100 100",
170,
0.01,
15,
100,
100,
0.3052631578947368,
0,
"None",
"n1717",
16921416
],
[
1746625518,
1746625573,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 139 0.01 4 10 62",
139,
0.01,
4,
10,
62,
0.3631578947368421,
0,
"None",
"n1717",
16921421
],
[
1746625678,
1746625715,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005300411505429713 22 10 60",
200,
0.005300411505429713,
22,
10,
60,
0.3052631578947368,
0,
"None",
"n1715",
16921431
],
[
1746625806,
1746625867,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.009147550775024407 32 100 100",
200,
0.009147550775024407,
32,
100,
100,
0.24736842105263157,
0,
"None",
"n1715",
16921446
],
[
1746625971,
1746626026,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006276218137709642 4 14 10",
200,
0.006276218137709642,
4,
14,
10,
0.25263157894736843,
0,
"None",
"n1715",
16921452
],
[
1746626131,
1746626180,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008090331956127596 4 100 72",
200,
0.008090331956127596,
4,
100,
72,
0.22631578947368425,
0,
"None",
"n1715",
16921463
],
[
1746626347,
1746626517,
170,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 170 0.008065431311046046 32 65 100",
170,
0.008065431311046046,
32,
65,
100,
0.21578947368421053,
0,
"None",
"n1714",
16921469
],
[
1746626652,
1746626671,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 25 72 81",
200,
0.01,
25,
72,
81,
0.23684210526315785,
0,
"None",
"n1717",
16921491
],
[
1746626843,
1746626886,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006818927987493387 4 67 74",
200,
0.006818927987493387,
4,
67,
74,
0.2210526315789474,
0,
"None",
"n1717",
16921496
],
[
1746626976,
1746627025,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 181 0.009807948852069752 18 71 100",
181,
0.009807948852069752,
18,
71,
100,
0.21578947368421053,
0,
"None",
"n1717",
16921499
],
[
1746627364,
1746627455,
91,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 192 0.008778703904754869 10 78 86",
192,
0.008778703904754869,
10,
78,
86,
0.2789473684210526,
0,
"None",
"n1676",
16921569
],
[
1746627441,
1746627557,
116,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008723836780966809 20 72 100",
200,
0.008723836780966809,
20,
72,
100,
0.28421052631578947,
0,
"None",
"n1708",
16921574
],
[
1746627542,
1746627652,
110,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 21 82 100",
200,
0.01,
21,
82,
100,
0.35789473684210527,
0,
"None",
"n1671",
16921583
],
[
1746627718,
1746627754,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008205562673371776 4 83 97",
200,
0.008205562673371776,
4,
83,
97,
0.2421052631578947,
0,
"None",
"n1717",
16921593
],
[
1746627921,
1746627952,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008188855513530147 32 71 100",
200,
0.008188855513530147,
32,
71,
100,
0.3157894736842105,
0,
"None",
"n1717",
16921635
],
[
1746628029,
1746628060,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 194 0.005240123944012949 32 10 29",
194,
0.005240123944012949,
32,
10,
29,
0.30000000000000004,
0,
"None",
"n1717",
16921639
],
[
1746628219,
1746628304,
85,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 149 0.008456781280274028 4 82 94",
149,
0.008456781280274028,
4,
82,
94,
0.3631578947368421,
0,
"None",
"n1717",
16921647
],
[
1746628337,
1746628361,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 107 0.01 32 88 100",
107,
0.01,
32,
88,
100,
0.2789473684210526,
0,
"None",
"n1717",
16921652
],
[
1746628557,
1746628582,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.009220205928450166 13 93 100",
200,
0.009220205928450166,
13,
93,
100,
0.3631578947368421,
0,
"None",
"n1717",
16921662
],
[
1746628680,
1746628722,
42,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006636325520254724 4 53 14",
200,
0.006636325520254724,
4,
53,
14,
0.2315789473684211,
0,
"None",
"n1718",
16921664
],
[
1746628836,
1746628861,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 16 0.009224157563270179 4 72 100",
16,
0.009224157563270179,
4,
72,
100,
0.23684210526315785,
0,
"None",
"n1717",
16921683
],
[
1746628960,
1746629003,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 131 0.009055002469130545 4 42 19",
131,
0.009055002469130545,
4,
42,
19,
0.3631578947368421,
0,
"None",
"n1717",
16921693
],
[
1746629188,
1746629237,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005210675979331394 4 10 35",
200,
0.005210675979331394,
4,
10,
35,
0.22631578947368425,
0,
"None",
"n1717",
16921702
],
[
1746629274,
1746629305,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 194 0.0064402831864553475 30 10 94",
194,
0.0064402831864553475,
30,
10,
94,
0.2421052631578947,
0,
"None",
"n1717",
16921707
],
[
1746629502,
1746629551,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 64 0.01 32 66 96",
64,
0.01,
32,
66,
96,
0.3421052631578947,
0,
"None",
"n1717",
16921820
],
[
1746629629,
1746629690,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006366795333871818 32 10 47",
200,
0.006366795333871818,
32,
10,
47,
0.2947368421052632,
0,
"None",
"n1717",
16921825
],
[
1746629818,
1746629861,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 187 0.006161156915159204 6 22 60",
187,
0.006161156915159204,
6,
22,
60,
0.26315789473684215,
0,
"None",
"n1717",
16921831
],
[
1746629972,
1746630021,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006093395887556598 4 10 62",
200,
0.006093395887556598,
4,
10,
62,
0.3526315789473684,
0,
"None",
"n1718",
16921839
],
[
1746630162,
1746630198,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008410195902360366 19 55 77",
200,
0.008410195902360366,
19,
55,
77,
0.32105263157894737,
0,
"None",
"n1717",
16921845
],
[
1746630223,
1746630254,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0001 4 10 10",
200,
0.0001,
4,
10,
10,
0.42105263157894735,
0,
"None",
"n1717",
16921848
],
[
1746630321,
1746630339,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 11 0.009195792340030113 17 63 98",
11,
0.009195792340030113,
17,
63,
98,
0.3526315789473684,
0,
"None",
"n1717",
16921853
],
[
1746630384,
1746630415,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006861979032168726 4 61 100",
200,
0.006861979032168726,
4,
61,
100,
0.2210526315789474,
0,
"None",
"n1717",
16921857
],
[
1746630453,
1746630478,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 79 0.00430589325503959 4 10 97",
79,
0.00430589325503959,
4,
10,
97,
0.32105263157894737,
0,
"None",
"n1717",
16921860
],
[
1746630511,
1746630530,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.006910819569921326 32 81 79",
197,
0.006910819569921326,
32,
81,
79,
0.31052631578947365,
0,
"None",
"n1717",
16921863
],
[
1746630574,
1746630592,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005523384869178977 13 64 100",
200,
0.005523384869178977,
13,
64,
100,
0.2947368421052632,
0,
"None",
"n1717",
16921867
],
[
1746630704,
1746630735,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.00729648405551466 32 17 100",
199,
0.00729648405551466,
32,
17,
100,
0.20526315789473681,
0,
"None",
"n1717",
16921874
],
[
1746630765,
1746630826,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 4 100 100",
200,
0.01,
4,
100,
100,
0.22631578947368425,
0,
"None",
"n1717",
16921882
],
[
1746630861,
1746630880,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 146 0.005685671836950515 25 10 98",
146,
0.005685671836950515,
25,
10,
98,
0.2578947368421053,
0,
"None",
"n1717",
16921894
],
[
1746630922,
1746630946,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006732117230026759 32 46 100",
200,
0.006732117230026759,
32,
46,
100,
0.2421052631578947,
0,
"None",
"n1717",
16921896
],
[
1746630987,
1746631018,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 169 0.005610212921339535 4 10 91",
169,
0.005610212921339535,
4,
10,
91,
0.22631578947368425,
0,
"None",
"n1717",
16921900
],
[
1746631048,
1746631067,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007191064665225876 16 34 100",
200,
0.007191064665225876,
16,
34,
100,
0.2210526315789474,
0,
"None",
"n1717",
16921905
],
[
1746631144,
1746631162,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005883680150030682 14 17 100",
200,
0.005883680150030682,
14,
17,
100,
0.32105263157894737,
0,
"None",
"n1717",
16921909
],
[
1746631207,
1746631231,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 194 0.006791375637041745 5 27 100",
194,
0.006791375637041745,
5,
27,
100,
0.3631578947368421,
0,
"None",
"n1717",
16921912
],
[
1746631302,
1746631333,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 151 0.007240478928850011 4 14 100",
151,
0.007240478928850011,
4,
14,
100,
0.3631578947368421,
0,
"None",
"n1717",
16922020
],
[
1746631379,
1746631440,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 160 0.007236919143649459 32 21 100",
160,
0.007236919143649459,
32,
21,
100,
0.23684210526315785,
0,
"None",
"n1700",
16922023
],
[
1746631463,
1746631487,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 29 0.007337152006347317 32 10 16",
29,
0.007337152006347317,
32,
10,
16,
0.4052631578947369,
0,
"None",
"n1700",
16922027
],
[
1746631493,
1746631505,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 11 0.005664558821845148 4 10 23",
11,
0.005664558821845148,
4,
10,
23,
0.3421052631578947,
0,
"None",
"n1717",
16922031
],
[
1746631622,
1746631641,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007048677748485666 20 55 95",
200,
0.007048677748485666,
20,
55,
95,
0.32105263157894737,
0,
"None",
"n1717",
16922041
],
[
1746631651,
1746631676,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 101 0.008653011502511639 4 100 100",
101,
0.008653011502511639,
4,
100,
100,
0.27368421052631575,
0,
"None",
"n1717",
16922044
],
[
1746631716,
1746631741,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007186284729407228 19 21 64",
200,
0.007186284729407228,
19,
21,
64,
0.2421052631578947,
0,
"None",
"n1700",
16922048
],
[
1746631813,
1746631831,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 194 0.008167460065066396 25 44 98",
194,
0.008167460065066396,
25,
44,
98,
0.25263157894736843,
0,
"None",
"n1717",
16922050
],
[
1746631888,
1746631949,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005884680410065626 4 93 97",
200,
0.005884680410065626,
4,
93,
97,
0.3526315789473684,
0,
"None",
"n1698",
16922054
],
[
1746631971,
1746631989,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 186 0.008263050788502663 23 98 100",
186,
0.008263050788502663,
23,
98,
100,
0.2789473684210526,
0,
"None",
"n1698",
16922056
],
[
1746632066,
1746632091,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.007572659872840815 14 57 68",
199,
0.007572659872840815,
14,
57,
68,
0.27368421052631575,
0,
"None",
"n1717",
16922101
],
[
1746632150,
1746632242,
92,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 32 28 100",
200,
0.01,
32,
28,
100,
0.21052631578947367,
0,
"None",
"n1666",
16922113
],
[
1746632234,
1746632308,
74,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 137 0.006198461673078726 32 10 100",
137,
0.006198461673078726,
32,
10,
100,
0.3157894736842105,
0,
"None",
"n1706",
16922114
],
[
1746632290,
1746632327,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 162 0.007151458931079013 28 10 99",
162,
0.007151458931079013,
28,
10,
99,
0.2684210526315789,
0,
"None",
"n1706",
16922116
],
[
1746632383,
1746632414,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008358907818288859 32 10 63",
200,
0.008358907818288859,
32,
10,
63,
0.3631578947368421,
0,
"None",
"n1706",
16922128
],
[
1746632480,
1746632517,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 162 0.00836239741418455 21 57 99",
162,
0.00836239741418455,
21,
57,
99,
0.2789473684210526,
0,
"None",
"n1706",
16922131
],
[
1746632572,
1746632609,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008014716077195765 4 73 24",
200,
0.008014716077195765,
4,
73,
24,
0.20526315789473681,
0,
"None",
"n1706",
16922140
],
[
1746632635,
1746632654,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 100 0.008622640024968035 19 95 100",
100,
0.008622640024968035,
19,
95,
100,
0.24736842105263157,
0,
"None",
"n1706",
16922150
],
[
1746632738,
1746632781,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.009279379162970364 4 71 44",
200,
0.009279379162970364,
4,
71,
44,
0.3631578947368421,
0,
"None",
"n1705",
16922153
],
[
1746632802,
1746632839,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 150 0.007395487117138772 4 98 37",
150,
0.007395487117138772,
4,
98,
37,
0.3631578947368421,
0,
"None",
"n1699",
16922599
],
[
1746632896,
1746632921,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 161 0.009788062287147382 27 15 100",
161,
0.009788062287147382,
27,
15,
100,
0.30000000000000004,
0,
"None",
"n1667",
16922602
],
[
1746632989,
1746633014,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 136 0.007633403568166305 16 48 96",
136,
0.007633403568166305,
16,
48,
96,
0.2947368421052632,
0,
"None",
"n1661",
16922604
],
[
1746633054,
1746633078,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 10 0.01 21 97 96",
10,
0.01,
21,
97,
96,
0.3526315789473684,
0,
"None",
"n1657",
16922611
],
[
1746633149,
1746633204,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005019583766906519 32 10 100",
200,
0.005019583766906519,
32,
10,
100,
0.3526315789473684,
0,
"None",
"n1586",
16922615
],
[
1746633212,
1746633243,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 24 54 100",
200,
0.01,
24,
54,
100,
0.2947368421052632,
0,
"None",
"n1585",
16922620
],
[
1746633370,
1746633394,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 150 0.008452201967786758 28 91 100",
150,
0.008452201967786758,
28,
91,
100,
0.3526315789473684,
0,
"None",
"n1573",
16922628
],
[
1746633402,
1746633433,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007682419943136788 27 53 100",
200,
0.007682419943136788,
27,
53,
100,
0.31052631578947365,
0,
"None",
"n1556",
16922631
],
[
1746633498,
1746633523,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007060821289075202 26 40 81",
200,
0.007060821289075202,
26,
40,
81,
0.2578947368421053,
0,
"None",
"n1580",
16922635
],
[
1746633593,
1746633630,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005675232543736552 17 41 67",
200,
0.005675232543736552,
17,
41,
67,
0.28421052631578947,
0,
"None",
"n1578",
16922653
],
[
1746633657,
1746633693,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.00908073334226182 7 46 10",
197,
0.00908073334226182,
7,
46,
10,
0.3631578947368421,
0,
"None",
"n1442",
16922663
],
[
1746633754,
1746633778,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 143 0.0073933779124535715 32 36 100",
143,
0.0073933779124535715,
32,
36,
100,
0.34736842105263155,
0,
"None",
"n1353",
16922667
],
[
1746633819,
1746633862,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006901989778956894 4 97 32",
200,
0.006901989778956894,
4,
97,
32,
0.3631578947368421,
0,
"None",
"n1412",
16922671
],
[
1746633916,
1746633965,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 4 98 70",
200,
0.01,
4,
98,
70,
0.24736842105263157,
0,
"None",
"n1337",
16922673
],
[
1746634013,
1746634056,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 132 0.006962284509711036 4 72 100",
132,
0.006962284509711036,
4,
72,
100,
0.3631578947368421,
0,
"None",
"n1328",
16922675
],
[
1746634080,
1746634123,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006647987949018534 8 33 10",
200,
0.006647987949018534,
8,
33,
10,
0.20526315789473681,
0,
"None",
"n1578",
16922678
],
[
1746634177,
1746634226,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008494435748330803 32 45 82",
200,
0.008494435748330803,
32,
45,
82,
0.25263157894736843,
0,
"None",
"n1390",
16922680
],
[
1746634261,
1746634279,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007109808041845007 32 10 10",
200,
0.007109808041845007,
32,
10,
10,
0.2684210526315789,
0,
"None",
"n1390",
16922684
],
[
1746634333,
1746634357,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 116 0.009037189097683408 32 14 100",
116,
0.009037189097683408,
32,
14,
100,
0.21578947368421053,
0,
"None",
"n1654",
16922692
],
[
1746634417,
1746634442,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007050754517434965 5 17 47",
200,
0.007050754517434965,
5,
17,
47,
0.3631578947368421,
0,
"None",
"n1654",
16922695
],
[
1746634512,
1746634524,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 31 11 10",
200,
0.01,
31,
11,
10,
0.26315789473684215,
0,
"None",
"n1654",
16922700
],
[
1746634607,
1746634619,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007079465356634386 20 12 10",
200,
0.007079465356634386,
20,
12,
10,
0.34736842105263155,
0,
"None",
"n1654",
16922704
],
[
1746634671,
1746634683,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 20 48 56",
200,
0.01,
20,
48,
56,
0.24736842105263157,
0,
"None",
"n1654",
16922707
],
[
1746634807,
1746634819,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 19 18 100",
200,
0.01,
19,
18,
100,
0.22631578947368425,
0,
"None",
"n1654",
16922711
],
[
1746634866,
1746634878,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 22 0.009551570578135821 4 100 100",
22,
0.009551570578135821,
4,
100,
100,
0.35789473684210527,
0,
"None",
"n1654",
16922717
],
[
1746634941,
1746634966,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008540657780068186 22 35 94",
200,
0.008540657780068186,
22,
35,
94,
0.24736842105263157,
0,
"None",
"n1676",
16922720
],
[
1746635027,
1746635039,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00809092199705768 18 47 100",
200,
0.00809092199705768,
18,
47,
100,
0.2421052631578947,
0,
"None",
"n1676",
16922737
],
[
1746635156,
1746635175,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.009203202713349602 14 55 100",
200,
0.009203202713349602,
14,
55,
100,
0.22631578947368425,
0,
"None",
"n1716",
16922747
],
[
1746635221,
1746635234,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 38 0.01 4 15 10",
38,
0.01,
4,
15,
10,
0.3631578947368421,
0,
"None",
"n1716",
16922750
],
[
1746635286,
1746635299,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 18 100 100",
200,
0.01,
18,
100,
100,
0.2578947368421053,
0,
"None",
"n1716",
16922754
],
[
1746635425,
1746635456,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 4 10 31",
200,
0.01,
4,
10,
31,
0.3631578947368421,
0,
"None",
"n1715",
16922758
],
[
1746635481,
1746635493,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 188 0.008323822847507559 23 10 88",
188,
0.008323822847507559,
23,
10,
88,
0.3631578947368421,
0,
"None",
"n1715",
16922761
],
[
1746635579,
1746635591,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 183 0.009432517781791624 25 42 100",
183,
0.009432517781791624,
25,
42,
100,
0.18947368421052635,
0,
"None",
"n1715",
16922766
],
[
1746635644,
1746635656,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008795069051441036 32 50 100",
200,
0.008795069051441036,
32,
50,
100,
0.28421052631578947,
0,
"None",
"n1715",
16922769
],
[
1746635774,
1746635786,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 173 0.01 20 55 100",
173,
0.01,
20,
55,
100,
0.21578947368421053,
0,
"None",
"n1715",
16922777
],
[
1746635839,
1746635851,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 110 0.01 32 10 100",
110,
0.01,
32,
10,
100,
0.35789473684210527,
0,
"None",
"n1715",
16922781
],
[
1746635905,
1746635917,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.01 18 69 100",
197,
0.01,
18,
69,
100,
0.23684210526315785,
0,
"None",
"n1715",
16922785
],
[
1746636034,
1746636047,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.01 16 40 76",
198,
0.01,
16,
40,
76,
0.19999999999999996,
0,
"None",
"n1715",
16922791
],
[
1746636100,
1746636112,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 15 67 97",
200,
0.01,
15,
67,
97,
0.21578947368421053,
0,
"None",
"n1715",
16922794
],
[
1746636197,
1746636209,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008722545113936928 18 60 100",
200,
0.008722545113936928,
18,
60,
100,
0.21052631578947367,
0,
"None",
"n1716",
16922799
],
[
1746636262,
1746636274,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.008447888951106666 24 37 15",
196,
0.008447888951106666,
24,
37,
15,
0.26315789473684215,
0,
"None",
"n1716",
16922802
],
[
1746636392,
1746636405,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 19 55 89",
200,
0.01,
19,
55,
89,
0.3052631578947368,
0,
"None",
"n1716",
16922806
],
[
1746636457,
1746636470,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 32 40 10",
200,
0.01,
32,
40,
10,
0.3631578947368421,
0,
"None",
"n1716",
16922810
],
[
1746636555,
1746636567,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008373797244966077 21 46 92",
200,
0.008373797244966077,
21,
46,
92,
0.2894736842105263,
0,
"None",
"n1716",
16922818
],
[
1746636651,
1746636664,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007788979215599344 14 62 99",
200,
0.007788979215599344,
14,
62,
99,
0.22631578947368425,
0,
"None",
"n1716",
16922823
],
[
1746636715,
1746636728,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 187 0.00898699563738936 22 56 100",
187,
0.00898699563738936,
22,
56,
100,
0.21578947368421053,
0,
"None",
"n1716",
16922826
],
[
1746636846,
1746636864,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005372494801945831 12 46 25",
200,
0.005372494801945831,
12,
46,
25,
0.27368421052631575,
0,
"None",
"n1716",
16922831
],
[
1746636911,
1746636923,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 194 0.007619482658711061 21 52 100",
194,
0.007619482658711061,
21,
52,
100,
0.24736842105263157,
0,
"None",
"n1716",
16922836
],
[
1746637040,
1746637052,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.01 18 67 71",
199,
0.01,
18,
67,
71,
0.20526315789473681,
0,
"None",
"n1717",
16922843
],
[
1746637102,
1746637115,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00863585760464388 24 54 100",
200,
0.00863585760464388,
24,
54,
100,
0.25263157894736843,
0,
"None",
"n1717",
16922848
],
[
1746637198,
1746637229,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 195 0.008350780281565615 4 82 51",
195,
0.008350780281565615,
4,
82,
51,
0.2210526315789474,
0,
"None",
"n1717",
16922849
],
[
1746637292,
1746637305,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 32 46 100",
200,
0.01,
32,
46,
100,
0.3315789473684211,
0,
"None",
"n1717",
16922851
],
[
1746637386,
1746637398,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 22 44 100",
200,
0.01,
22,
44,
100,
0.24736842105263157,
0,
"None",
"n1717",
16922853
],
[
1746637480,
1746637492,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.006859634022091962 24 27 98",
199,
0.006859634022091962,
24,
27,
98,
0.3157894736842105,
0,
"None",
"n1717",
16922855
],
[
1746637574,
1746637586,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00795402096648014 17 40 66",
200,
0.00795402096648014,
17,
40,
66,
0.2421052631578947,
0,
"None",
"n1717",
16922858
],
[
1746637673,
1746637685,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 158 0.00796743593792501 22 39 100",
158,
0.00796743593792501,
22,
39,
100,
0.33684210526315794,
0,
"None",
"n1717",
16922860
],
[
1746637790,
1746637803,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008107368603441198 20 46 61",
200,
0.008107368603441198,
20,
46,
61,
0.24736842105263157,
0,
"None",
"n1717",
16922862
],
[
1746637884,
1746637896,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00941532097767349 21 66 63",
200,
0.00941532097767349,
21,
66,
63,
0.2315789473684211,
0,
"None",
"n1717",
16922863
],
[
1746637977,
1746637990,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 17 89 71",
200,
0.01,
17,
89,
71,
0.2421052631578947,
0,
"None",
"n1717",
16922867
],
[
1746638101,
1746638114,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 135 0.0059076368885461585 19 11 69",
135,
0.0059076368885461585,
19,
11,
69,
0.2210526315789474,
0,
"None",
"n1717",
16922873
],
[
1746638164,
1746638182,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 12 78 78",
200,
0.01,
12,
78,
78,
0.2421052631578947,
0,
"None",
"n1717",
16922876
],
[
1746638321,
1746638339,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 16 83 100",
200,
0.01,
16,
83,
100,
0.20526315789473681,
0,
"None",
"n1720",
16922883
],
[
1746638383,
1746638402,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00602715932744473 16 32 49",
200,
0.00602715932744473,
16,
32,
49,
0.3263157894736842,
0,
"None",
"n1719",
16922885
],
[
1746638476,
1746638494,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 186 0.01 23 10 43",
186,
0.01,
23,
10,
43,
0.3631578947368421,
0,
"None",
"n1720",
16922892
],
[
1746638568,
1746638586,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008689520534490793 15 57 67",
200,
0.008689520534490793,
15,
57,
67,
0.2421052631578947,
0,
"None",
"n1720",
16922896
],
[
1746638692,
1746638711,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 19 47 100",
200,
0.01,
19,
47,
100,
0.31052631578947365,
0,
"None",
"n1720",
16922903
],
[
1746638754,
1746638773,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008771778642056216 26 92 100",
200,
0.008771778642056216,
26,
92,
100,
0.3315789473684211,
0,
"None",
"n1720",
16922906
],
[
1746638878,
1746638897,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008346937921320465 21 67 76",
200,
0.008346937921320465,
21,
67,
76,
0.2684210526315789,
0,
"None",
"n1720",
16922913
],
[
1746638971,
1746638990,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 22 67 100",
200,
0.01,
22,
67,
100,
0.2421052631578947,
0,
"None",
"n1720",
16922915
],
[
1746639065,
1746639083,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0049961068531061475 19 17 11",
200,
0.0049961068531061475,
19,
17,
11,
0.3052631578947368,
0,
"None",
"n1720",
16922920
],
[
1746639158,
1746639195,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.004639546748404329 4 84 29",
200,
0.004639546748404329,
4,
84,
29,
0.24736842105263157,
0,
"None",
"n1720",
16922924
],
[
1746639252,
1746639271,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 193 0.003534065841138753 15 22 10",
193,
0.003534065841138753,
15,
22,
10,
0.3315789473684211,
0,
"None",
"n1720",
16922926
],
[
1746639346,
1746639365,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008197525385286774 14 54 39",
200,
0.008197525385286774,
14,
54,
39,
0.2421052631578947,
0,
"None",
"n1720",
16922930
],
[
1746639440,
1746639465,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 9 72 100",
200,
0.01,
9,
72,
100,
0.32105263157894737,
0,
"None",
"n1720",
16922933
],
[
1746639534,
1746639553,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0043457711565755034 24 10 11",
200,
0.0043457711565755034,
24,
10,
11,
0.31052631578947365,
0,
"None",
"n1720",
16922938
],
[
1746639628,
1746639647,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.008952552377585502 18 68 84",
196,
0.008952552377585502,
18,
68,
84,
0.25263157894736843,
0,
"None",
"n1720",
16922942
],
[
1746639722,
1746639741,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00827305164506669 16 68 66",
200,
0.00827305164506669,
16,
68,
66,
0.23684210526315785,
0,
"None",
"n1720",
16922952
],
[
1746639816,
1746639834,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 191 0.006917195431729271 19 52 71",
191,
0.006917195431729271,
19,
52,
71,
0.2789473684210526,
0,
"None",
"n1720",
16922955
],
[
1746639910,
1746639928,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 179 0.007081260330705821 23 11 98",
179,
0.007081260330705821,
23,
11,
98,
0.21052631578947367,
0,
"None",
"n1720",
16922959
],
[
1746640035,
1746640053,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.01 16 61 16",
198,
0.01,
16,
61,
16,
0.3631578947368421,
0,
"None",
"n1720",
16922963
],
[
1746640097,
1746640116,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0077175680910606 21 22 100",
200,
0.0077175680910606,
21,
22,
100,
0.21052631578947367,
0,
"None",
"n1720",
16922966
],
[
1746640254,
1746640272,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 182 0.01 23 65 100",
182,
0.01,
23,
65,
100,
0.2947368421052632,
0,
"None",
"n1720",
16922970
],
[
1746640316,
1746640334,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008112877661988498 12 66 75",
200,
0.008112877661988498,
12,
66,
75,
0.23684210526315785,
0,
"None",
"n1720",
16922972
],
[
1746640410,
1746640429,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007488419040197007 17 46 68",
200,
0.007488419040197007,
17,
46,
68,
0.27368421052631575,
0,
"None",
"n1720",
16922976
],
[
1746640540,
1746640558,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 191 0.0068170543912105495 20 12 21",
191,
0.0068170543912105495,
20,
12,
21,
0.2789473684210526,
0,
"None",
"n1720",
16922981
],
[
1746640605,
1746640623,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 26 100 15",
200,
0.01,
26,
100,
15,
0.3631578947368421,
0,
"None",
"n1720",
16922988
],
[
1746640736,
1746640755,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008613244195159506 11 100 78",
200,
0.008613244195159506,
11,
100,
78,
0.21578947368421053,
0,
"None",
"n1720",
16922992
],
[
1746640835,
1746640853,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008070014064729146 15 79 84",
200,
0.008070014064729146,
15,
79,
84,
0.27368421052631575,
0,
"None",
"n1720",
16922994
],
[
1746640932,
1746640950,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.009141647815845722 11 71 99",
200,
0.009141647815845722,
11,
71,
99,
0.27368421052631575,
0,
"None",
"n1720",
16922999
],
[
1746641030,
1746641048,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00869427732738482 32 10 93",
200,
0.00869427732738482,
32,
10,
93,
0.21578947368421053,
0,
"None",
"n1720",
16923001
],
[
1746641127,
1746641146,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00920007739341605 20 47 66",
200,
0.00920007739341605,
20,
47,
66,
0.2947368421052632,
0,
"None",
"n1720",
16923004
],
[
1746641258,
1746641295,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0075076890572763144 4 94 10",
200,
0.0075076890572763144,
4,
94,
10,
0.3631578947368421,
0,
"None",
"n1720",
16923007
],
[
1746641324,
1746641336,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 32 10 100",
200,
0.01,
32,
10,
100,
0.21578947368421053,
0,
"None",
"n1720",
16923009
],
[
1746641455,
1746641467,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.008517063318861985 28 32 96",
199,
0.008517063318861985,
28,
32,
96,
0.30000000000000004,
0,
"None",
"n1720",
16923013
],
[
1746641552,
1746641564,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 126 0.008564522668471838 13 90 99",
126,
0.008564522668471838,
13,
90,
99,
0.2421052631578947,
0,
"None",
"n1720",
16923021
],
[
1746641651,
1746641669,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 181 0.009585620321582309 14 63 80",
181,
0.009585620321582309,
14,
63,
80,
0.24736842105263157,
0,
"None",
"n1720",
16923025
],
[
1746641749,
1746641761,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 167 0.0067405030757965514 25 13 48",
167,
0.0067405030757965514,
25,
13,
48,
0.24736842105263157,
0,
"None",
"n1720",
16923031
],
[
1746641880,
1746641898,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007712873278365775 17 46 82",
200,
0.007712873278365775,
17,
46,
82,
0.2894736842105263,
0,
"None",
"n1720",
16923035
],
[
1746641977,
1746641996,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.01 24 54 81",
199,
0.01,
24,
54,
81,
0.22631578947368425,
0,
"None",
"n1720",
16923037
],
[
1746642075,
1746642100,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 85 0.008950620350548381 4 96 100",
85,
0.008950620350548381,
4,
96,
100,
0.2315789473684211,
0,
"None",
"n1720",
16923041
],
[
1746642173,
1746642192,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008800850862490604 23 19 74",
200,
0.008800850862490604,
23,
19,
74,
0.21578947368421053,
0,
"None",
"n1720",
16923045
],
[
1746642303,
1746642322,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 18 95 75",
200,
0.01,
18,
95,
75,
0.2421052631578947,
0,
"None",
"n1720",
16923052
],
[
1746643167,
1746643185,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.007625751617686566 23 21 69",
196,
0.007625751617686566,
23,
21,
69,
0.2894736842105263,
0,
"None",
"n1720",
16923057
],
[
1746643167,
1746643185,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007916451674653921 25 10 80",
200,
0.007916451674653921,
25,
10,
80,
0.3631578947368421,
0,
"None",
"n1720",
16923060
],
[
1746643167,
1746643186,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.009118120316465956 21 45 100",
199,
0.009118120316465956,
21,
45,
100,
0.26315789473684215,
0,
"None",
"n1720",
16923055
],
[
1746643167,
1746643192,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 155 0.01 16 73 100",
155,
0.01,
16,
73,
100,
0.2684210526315789,
0,
"None",
"n1720",
16923063
],
[
1746643409,
1746643446,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 138 0.006630719446577614 4 69 100",
138,
0.006630719446577614,
4,
69,
100,
0.22631578947368425,
0,
"None",
"n1720",
16923088
],
[
1746643508,
1746643532,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 177 0.008422487308230952 15 86 100",
177,
0.008422487308230952,
15,
86,
100,
0.2421052631578947,
0,
"None",
"n1720",
16923091
],
[
1746643607,
1746643668,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 4 78 77",
200,
0.01,
4,
78,
77,
0.3631578947368421,
0,
"None",
"n1720",
16923096
],
[
1746643737,
1746643774,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 174 0.004049985575069868 20 15 100",
174,
0.004049985575069868,
20,
15,
100,
0.32105263157894737,
0,
"None",
"n1720",
16923101
],
[
1746643866,
1746643903,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 182 0.01 23 69 63",
182,
0.01,
23,
69,
63,
0.2789473684210526,
0,
"None",
"n1720",
16923106
],
[
1746644063,
1746644106,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0088979209813217 19 66 86",
200,
0.0088979209813217,
19,
66,
86,
0.21578947368421053,
0,
"None",
"n1720",
16923111
],
[
1746644161,
1746644210,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 186 0.008114307449238266 18 59 86",
186,
0.008114307449238266,
18,
59,
86,
0.26315789473684215,
0,
"None",
"n1720",
16923116
],
[
1746644290,
1746644339,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 82 0.01 4 98 89",
82,
0.01,
4,
98,
89,
0.3631578947368421,
0,
"None",
"n1720",
16923122
],
[
1746644418,
1746644468,
50,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.005081986995639385 4 37 27",
199,
0.005081986995639385,
4,
37,
27,
0.28421052631578947,
0,
"None",
"n1720",
16923127
],
[
1746644547,
1746644572,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.009084563763158011 23 54 89",
200,
0.009084563763158011,
23,
54,
89,
0.24736842105263157,
0,
"None",
"n1720",
16923130
],
[
1746644708,
1746644752,
44,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 167 0.0067737203355960765 4 100 88",
167,
0.0067737203355960765,
4,
100,
88,
0.26315789473684215,
0,
"None",
"n1720",
16923133
],
[
1746644807,
1746644851,
44,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 193 0.00793805213751717 4 67 46",
193,
0.00793805213751717,
4,
67,
46,
0.3631578947368421,
0,
"None",
"n1720",
16923137
],
[
1746644937,
1746644962,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 177 0.00765124360332251 21 66 100",
177,
0.00765124360332251,
21,
66,
100,
0.3052631578947368,
0,
"None",
"n1720",
16923140
],
[
1746645034,
1746645059,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 174 0.00922855900372173 10 87 62",
174,
0.00922855900372173,
10,
87,
62,
0.24736842105263157,
0,
"None",
"n1720",
16923143
],
[
1746645199,
1746645242,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 169 0.00902085152692559 30 11 45",
169,
0.00902085152692559,
30,
11,
45,
0.33684210526315794,
0,
"None",
"n1720",
16923147
],
[
1746645330,
1746645379,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 178 0.008754222440827873 17 53 100",
178,
0.008754222440827873,
17,
53,
100,
0.24736842105263157,
0,
"None",
"n1720",
16923149
],
[
1746645459,
1746645502,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007018616354017095 11 99 100",
200,
0.007018616354017095,
11,
99,
100,
0.21052631578947367,
0,
"None",
"n1720",
16923154
],
[
1746645587,
1746645624,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008668048713510448 17 54 87",
200,
0.008668048713510448,
17,
54,
87,
0.30000000000000004,
0,
"None",
"n1720",
16923158
],
[
1746645715,
1746645752,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.006927245078039013 21 10 51",
197,
0.006927245078039013,
21,
10,
51,
0.23684210526315785,
0,
"None",
"n1720",
16923161
],
[
1746645907,
1746645957,
50,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 126 0.006899321816495437 6 93 98",
126,
0.006899321816495437,
6,
93,
98,
0.2210526315789474,
0,
"None",
"n1720",
16923165
],
[
1746646003,
1746646046,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 149 0.0064462191563627366 20 25 39",
149,
0.0064462191563627366,
20,
25,
39,
0.2789473684210526,
0,
"None",
"n1720",
16923168
],
[
1746646191,
1746646234,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.009065353316835808 17 71 100",
200,
0.009065353316835808,
17,
71,
100,
0.27368421052631575,
0,
"None",
"n1720",
16923173
],
[
1746646290,
1746646339,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 134 0.009213101923850482 22 100 100",
134,
0.009213101923850482,
22,
100,
100,
0.2894736842105263,
0,
"None",
"n1720",
16923180
],
[
1746646445,
1746646500,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008215123645444806 13 94 100",
200,
0.008215123645444806,
13,
94,
100,
0.26315789473684215,
0,
"None",
"n1720",
16923184
],
[
1746646609,
1746646665,
56,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0077658907166339945 16 73 100",
200,
0.0077658907166339945,
16,
73,
100,
0.2210526315789474,
0,
"None",
"n1720",
16923188
],
[
1746646771,
1746646820,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 111 0.00865315345630718 32 16 99",
111,
0.00865315345630718,
32,
16,
99,
0.30000000000000004,
0,
"None",
"n1720",
16923193
],
[
1746646899,
1746646935,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 134 0.008338424920946162 19 56 100",
134,
0.008338424920946162,
19,
56,
100,
0.27368421052631575,
0,
"None",
"n1720",
16923198
],
[
1746647028,
1746647059,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 190 0.008665603428693384 24 11 23",
190,
0.008665603428693384,
24,
11,
23,
0.2684210526315789,
0,
"None",
"n1720",
16923201
],
[
1746647225,
1746647268,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.01 23 14 100",
196,
0.01,
23,
14,
100,
0.16842105263157892,
0,
"None",
"n1720",
16923205
],
[
1746647322,
1746647359,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 165 0.008283471963658843 28 10 100",
165,
0.008283471963658843,
28,
10,
100,
0.3263157894736842,
0,
"None",
"n1720",
16923209
],
[
1746647550,
1746647593,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 26 13 100",
200,
0.01,
26,
13,
100,
0.35789473684210527,
0,
"None",
"n1720",
16923215
],
[
1746647648,
1746647691,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 163 0.007138298909025158 14 68 98",
163,
0.007138298909025158,
14,
68,
98,
0.25263157894736843,
0,
"None",
"n1720",
16923218
],
[
1746647779,
1746647822,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 142 0.01 8 95 61",
142,
0.01,
8,
95,
61,
0.3631578947368421,
0,
"None",
"n1720",
16923221
],
[
1746647907,
1746647944,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 90 0.006958279122684181 8 91 100",
90,
0.006958279122684181,
8,
91,
100,
0.23684210526315785,
0,
"None",
"n1720",
16923225
],
[
1746648132,
1746648169,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007004839123860503 16 81 100",
200,
0.007004839123860503,
16,
81,
100,
0.3631578947368421,
0,
"None",
"n1720",
16923229
],
[
1746648228,
1746648258,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008926864613218772 18 87 100",
200,
0.008926864613218772,
18,
87,
100,
0.2894736842105263,
0,
"None",
"n1720",
16923233
],
[
1746648357,
1746648394,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 148 0.005325037396815216 23 10 10",
148,
0.005325037396815216,
23,
10,
10,
0.30000000000000004,
0,
"None",
"n1720",
16923236
],
[
1746648486,
1746648516,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 162 0.00848548752598725 18 73 100",
162,
0.00848548752598725,
18,
73,
100,
0.2578947368421053,
0,
"None",
"n1720",
16923239
],
[
1746648676,
1746648719,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 179 0.006686999131018938 18 30 79",
179,
0.006686999131018938,
18,
30,
79,
0.26315789473684215,
0,
"None",
"n1720",
16923243
],
[
1746648800,
1746648843,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 116 0.008837301459464991 14 94 97",
116,
0.008837301459464991,
14,
94,
97,
0.2789473684210526,
0,
"None",
"n1720",
16923245
],
[
1746649016,
1746649059,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 102 0.006074442441503001 21 14 98",
102,
0.006074442441503001,
21,
14,
98,
0.2947368421052632,
0,
"None",
"n1720",
16923249
],
[
1746649142,
1746649185,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 12 15 10",
200,
0.01,
12,
15,
10,
0.3631578947368421,
0,
"None",
"n1720",
16923252
],
[
1746649360,
1746649409,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006605195460404013 7 100 99",
200,
0.006605195460404013,
7,
100,
99,
0.26315789473684215,
0,
"None",
"n1720",
16923257
],
[
1746649450,
1746649493,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.005157929654024255 11 10 25",
199,
0.005157929654024255,
11,
10,
25,
0.1947368421052632,
0,
"None",
"n1720",
16923259
],
[
1746649670,
1746649719,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005593363859429217 13 52 55",
200,
0.005593363859429217,
13,
52,
55,
0.2684210526315789,
0,
"None",
"n1720",
16923265
]
];
var tab_worker_usage_csv_json = [
[
1746613821.807602,
50,
0,
0
],
[
1746613827.677354,
50,
0,
0
],
[
1746613831.4367335,
50,
0,
0
],
[
1746613835.1547027,
50,
0,
0
],
[
1746613838.875928,
50,
1,
2
],
[
1746613843.599275,
50,
1,
2
],
[
1746613846.0988812,
50,
1,
2
],
[
1746613849.3623512,
50,
1,
2
],
[
1746613854.247394,
50,
2,
4
],
[
1746613860.5341938,
50,
2,
4
],
[
1746613863.8025851,
50,
2,
4
],
[
1746613866.9652565,
50,
2,
4
],
[
1746613871.3357224,
50,
3,
6
],
[
1746613877.268527,
50,
3,
6
],
[
1746613880.0158553,
50,
3,
6
],
[
1746613883.2289128,
50,
3,
6
],
[
1746613887.3157363,
50,
4,
8
],
[
1746613891.3677504,
50,
4,
8
],
[
1746613898.4755108,
50,
3,
6
],
[
1746613901.0791237,
50,
3,
6
],
[
1746613904.877478,
50,
3,
6
],
[
1746613908.0984557,
50,
3,
6
],
[
1746613913.8577769,
50,
4,
8
],
[
1746613917.2932916,
50,
4,
8
],
[
1746613925.1977894,
50,
3,
6
],
[
1746613931.7033715,
50,
2,
4
],
[
1746613934.8111308,
50,
2,
4
],
[
1746613938.105713,
50,
2,
4
],
[
1746613941.2655795,
50,
2,
4
],
[
1746613945.4457643,
50,
3,
6
],
[
1746613949.3299274,
50,
3,
6
],
[
1746613957.5309587,
50,
2,
4
],
[
1746613963.6133292,
50,
1,
2
],
[
1746613966.230154,
50,
1,
2
],
[
1746613968.9756155,
50,
1,
2
],
[
1746613971.9193075,
50,
1,
2
],
[
1746613976.198625,
50,
2,
4
],
[
1746613980.6648328,
50,
2,
4
],
[
1746613986.6672225,
50,
1,
2
],
[
1746613989.2061186,
50,
1,
2
],
[
1746613993.4940805,
50,
1,
2
],
[
1746613997.6282191,
50,
1,
2
],
[
1746614003.3498497,
50,
2,
4
],
[
1746614007.0392957,
50,
2,
4
],
[
1746614014.208099,
50,
1,
2
],
[
1746614019.7013059,
50,
1,
2
],
[
1746614026.0136523,
50,
1,
2
],
[
1746614030.1341763,
50,
1,
2
],
[
1746614035.6556435,
50,
2,
4
],
[
1746614044.080949,
50,
2,
4
],
[
1746614047.752109,
50,
2,
4
],
[
1746614051.1157646,
50,
2,
4
],
[
1746614056.0212102,
50,
3,
6
],
[
1746614060.792835,
50,
3,
6
],
[
1746614066.8693888,
50,
2,
4
],
[
1746614069.9523015,
50,
2,
4
],
[
1746614073.1354785,
50,
2,
4
],
[
1746614076.5542166,
50,
2,
4
],
[
1746614081.1394947,
50,
3,
6
],
[
1746614085.0960176,
50,
3,
6
],
[
1746614092.7505193,
50,
2,
4
],
[
1746614096.5436213,
50,
2,
4
],
[
1746614099.69904,
50,
2,
4
],
[
1746614104.0901785,
50,
2,
4
],
[
1746614108.0927129,
50,
3,
6
],
[
1746614111.9256177,
50,
3,
6
],
[
1746614119.4110649,
50,
2,
4
],
[
1746614122.8187046,
50,
2,
4
],
[
1746614126.3920584,
50,
2,
4
],
[
1746614130.3880432,
50,
2,
4
],
[
1746614135.0318272,
50,
3,
6
],
[
1746614138.9104407,
50,
3,
6
],
[
1746614146.2714097,
50,
2,
4
],
[
1746614155.031067,
50,
1,
2
],
[
1746614158.2352972,
50,
1,
2
],
[
1746614162.8771136,
50,
1,
2
],
[
1746614166.0463758,
50,
1,
2
],
[
1746614170.5859623,
50,
2,
4
],
[
1746614175.424636,
50,
2,
4
],
[
1746614184.2805307,
50,
1,
2
],
[
1746614187.5331357,
50,
1,
2
],
[
1746614190.6628356,
50,
1,
2
],
[
1746614193.6168168,
50,
1,
2
],
[
1746614198.4334676,
50,
2,
4
],
[
1746614202.0268574,
50,
2,
4
],
[
1746614208.1442964,
50,
1,
2
],
[
1746614211.3115177,
50,
1,
2
],
[
1746614214.7182994,
50,
1,
2
],
[
1746614218.3166256,
50,
1,
2
],
[
1746614224.3494942,
50,
2,
4
],
[
1746614231.0935366,
50,
2,
4
],
[
1746614234.243307,
50,
2,
4
],
[
1746614237.6392486,
50,
2,
4
],
[
1746614242.8465693,
50,
3,
6
],
[
1746614247.0519593,
50,
3,
6
],
[
1746614254.7488973,
50,
2,
4
],
[
1746614257.5292263,
50,
2,
4
],
[
1746614261.1713355,
50,
2,
4
],
[
1746614269.7169514,
50,
2,
4
],
[
1746614275.5332227,
50,
3,
6
],
[
1746614279.8789952,
50,
3,
6
],
[
1746614287.007154,
50,
2,
4
],
[
1746614290.119208,
50,
2,
4
],
[
1746614293.222023,
50,
2,
4
],
[
1746614296.5264957,
50,
2,
4
],
[
1746614300.7274115,
50,
3,
6
],
[
1746614304.543368,
50,
3,
6
],
[
1746614312.1513515,
50,
2,
4
],
[
1746614315.2145002,
50,
2,
4
],
[
1746614319.1466386,
50,
2,
4
],
[
1746614322.7809749,
50,
2,
4
],
[
1746614327.1777613,
50,
3,
6
],
[
1746614330.9590218,
50,
3,
6
],
[
1746614337.7607553,
50,
2,
4
],
[
1746614344.7180052,
50,
1,
2
],
[
1746614348.3619666,
50,
1,
2
],
[
1746614352.6645763,
50,
1,
2
],
[
1746614355.9601583,
50,
1,
2
],
[
1746614361.4127388,
50,
2,
4
],
[
1746614365.6237235,
50,
2,
4
],
[
1746614371.9764569,
50,
1,
2
],
[
1746614375.562739,
50,
1,
2
],
[
1746614379.0291493,
50,
1,
2
],
[
1746614382.6058633,
50,
1,
2
],
[
1746614387.630909,
50,
2,
4
],
[
1746614391.688166,
50,
2,
4
],
[
1746614397.980931,
50,
1,
2
],
[
1746614401.3316934,
50,
1,
2
],
[
1746614406.2257154,
50,
1,
2
],
[
1746614410.9381373,
50,
1,
2
],
[
1746614417.0920968,
50,
2,
4
],
[
1746614423.8682039,
50,
2,
4
],
[
1746614427.2890906,
50,
2,
4
],
[
1746614430.6668158,
50,
2,
4
],
[
1746614435.324742,
50,
3,
6
],
[
1746614439.9227896,
50,
3,
6
],
[
1746614447.3189857,
50,
2,
4
],
[
1746614450.3004737,
50,
2,
4
],
[
1746614454.0392728,
50,
2,
4
],
[
1746614457.5017195,
50,
2,
4
],
[
1746614461.928732,
50,
3,
6
],
[
1746614466.0783005,
50,
3,
6
],
[
1746614474.730307,
50,
2,
4
],
[
1746614478.5787077,
50,
2,
4
],
[
1746614482.0064948,
50,
2,
4
],
[
1746614485.4229069,
50,
2,
4
],
[
1746614490.2360213,
50,
3,
6
],
[
1746614494.837747,
50,
3,
6
],
[
1746614503.7350671,
50,
2,
4
],
[
1746614510.539408,
50,
1,
2
],
[
1746614513.6108286,
50,
1,
2
],
[
1746614517.1360123,
50,
1,
2
],
[
1746614520.4502325,
50,
1,
2
],
[
1746614525.9966893,
50,
2,
4
],
[
1746614530.7220314,
50,
2,
4
],
[
1746614539.5579102,
50,
1,
2
],
[
1746614543.470583,
50,
1,
2
],
[
1746614547.165253,
50,
1,
2
],
[
1746614550.6442819,
50,
1,
2
],
[
1746614555.4542797,
50,
2,
4
],
[
1746614559.7006736,
50,
2,
4
],
[
1746614567.1961532,
50,
1,
2
],
[
1746614570.8500383,
50,
1,
2
],
[
1746614574.8108976,
50,
1,
2
],
[
1746614578.2131786,
50,
1,
2
],
[
1746614582.7256932,
50,
2,
4
],
[
1746614587.268407,
50,
2,
4
],
[
1746614594.9013789,
50,
1,
2
],
[
1746614598.780297,
50,
1,
2
],
[
1746614603.595275,
50,
1,
2
],
[
1746614608.3338232,
50,
1,
2
],
[
1746614615.173326,
50,
2,
4
],
[
1746614620.710717,
50,
2,
4
],
[
1746614640.2341897,
50,
1,
2
],
[
1746614650.8438392,
50,
1,
2
],
[
1746614661.2575996,
50,
1,
2
],
[
1746614669.2912965,
50,
1,
2
],
[
1746614680.4447677,
50,
2,
4
],
[
1746614699.3637235,
50,
2,
4
],
[
1746614707.251801,
50,
2,
4
],
[
1746614715.2469141,
50,
2,
4
],
[
1746614724.264441,
50,
3,
6
],
[
1746614735.673215,
50,
3,
6
],
[
1746614750.222806,
50,
2,
4
],
[
1746614764.8938003,
50,
1,
2
],
[
1746614772.4692335,
50,
1,
2
],
[
1746614781.5829487,
50,
1,
2
],
[
1746614788.7992826,
50,
1,
2
],
[
1746614799.1306794,
50,
2,
4
],
[
1746614812.9154477,
50,
2,
4
],
[
1746614820.0439916,
50,
2,
4
],
[
1746614826.0697193,
50,
2,
4
],
[
1746614833.5912528,
50,
3,
6
],
[
1746614840.3190396,
50,
3,
6
],
[
1746614852.9723043,
50,
2,
4
],
[
1746614861.8210342,
50,
2,
4
],
[
1746614867.732504,
50,
2,
4
],
[
1746614874.210248,
50,
2,
4
],
[
1746614889.409209,
50,
3,
6
],
[
1746614904.29549,
50,
3,
6
],
[
1746614937.1695905,
50,
2,
4
],
[
1746614949.377435,
50,
2,
4
],
[
1746614955.3427963,
50,
2,
4
],
[
1746614962.346286,
50,
2,
4
],
[
1746614985.625757,
50,
3,
6
],
[
1746615006.3798468,
50,
3,
6
],
[
1746615044.3129823,
50,
2,
4
],
[
1746615052.5752888,
50,
2,
4
],
[
1746615058.4493449,
50,
2,
4
],
[
1746615064.6017718,
50,
2,
4
],
[
1746615072.2070074,
50,
3,
6
],
[
1746615078.9985454,
50,
3,
6
],
[
1746615092.7879279,
50,
2,
4
],
[
1746615106.0422359,
50,
1,
2
],
[
1746615111.9061387,
50,
1,
2
],
[
1746615117.9320798,
50,
1,
2
],
[
1746615124.615356,
50,
1,
2
],
[
1746615131.9861984,
50,
2,
4
],
[
1746615138.5839288,
50,
2,
4
],
[
1746615152.5784075,
50,
1,
2
],
[
1746615158.35776,
50,
1,
2
],
[
1746615165.2165372,
50,
1,
2
],
[
1746615171.3223472,
50,
1,
2
],
[
1746615178.753138,
50,
2,
4
],
[
1746615191.596899,
50,
2,
4
],
[
1746615197.7417562,
50,
2,
4
],
[
1746615203.7751558,
50,
2,
4
],
[
1746615211.6621237,
50,
3,
6
],
[
1746615218.9648519,
50,
3,
6
],
[
1746615232.4582832,
50,
2,
4
],
[
1746615245.687764,
50,
1,
2
],
[
1746615251.4480145,
50,
1,
2
],
[
1746615258.0038657,
50,
1,
2
],
[
1746615264.3935728,
50,
1,
2
],
[
1746615273.584247,
50,
2,
4
],
[
1746615280.0973961,
50,
2,
4
],
[
1746615292.2906992,
50,
1,
2
],
[
1746615298.4029093,
50,
1,
2
],
[
1746615304.7542906,
50,
1,
2
],
[
1746615311.3687654,
50,
1,
2
],
[
1746615318.8037846,
50,
2,
4
],
[
1746615331.2964556,
50,
2,
4
],
[
1746615337.420223,
50,
2,
4
],
[
1746615344.04646,
50,
2,
4
],
[
1746615351.913255,
50,
3,
6
],
[
1746615358.8651788,
50,
3,
6
],
[
1746615371.8010306,
50,
2,
4
],
[
1746615378.2525058,
50,
2,
4
],
[
1746615385.6393628,
50,
2,
4
],
[
1746615391.8691485,
50,
2,
4
],
[
1746615399.1411588,
50,
3,
6
],
[
1746615405.8605442,
50,
3,
6
],
[
1746615451.3167973,
50,
2,
4
],
[
1746615461.9082696,
50,
1,
2
],
[
1746615471.4582608,
50,
0,
0
],
[
1746615475.8314922,
50,
0,
0
],
[
1746615480.146126,
50,
0,
0
],
[
1746615484.454141,
50,
0,
0
],
[
1746615490.3061433,
50,
1,
2
],
[
1746615500.1845102,
50,
1,
2
],
[
1746615504.9052463,
50,
1,
2
],
[
1746615510.5015209,
50,
1,
2
],
[
1746615516.8727427,
50,
2,
4
],
[
1746615526.0043616,
50,
2,
4
],
[
1746615530.3848188,
50,
2,
4
],
[
1746615534.581338,
50,
2,
4
],
[
1746615540.212379,
50,
3,
6
],
[
1746615545.3346157,
50,
3,
6
],
[
1746615554.2319407,
50,
2,
4
],
[
1746615558.254043,
50,
2,
4
],
[
1746615562.2004867,
50,
2,
4
],
[
1746615566.3521647,
50,
2,
4
],
[
1746615571.8977656,
50,
3,
6
],
[
1746615576.7581742,
50,
3,
6
],
[
1746615586.1770744,
50,
2,
4
],
[
1746615590.1735277,
50,
2,
4
],
[
1746615594.0810843,
50,
2,
4
],
[
1746615598.0643203,
50,
2,
4
],
[
1746615603.2571933,
50,
3,
6
],
[
1746615608.3975985,
50,
3,
6
],
[
1746615618.0594287,
50,
2,
4
],
[
1746615621.8592193,
50,
2,
4
],
[
1746615626.1764004,
50,
2,
4
],
[
1746615630.2157443,
50,
2,
4
],
[
1746615635.2938466,
50,
3,
6
],
[
1746615640.7933962,
50,
3,
6
],
[
1746615649.8198814,
50,
2,
4
],
[
1746615658.155966,
50,
1,
2
],
[
1746615662.495899,
50,
1,
2
],
[
1746615670.4842749,
50,
0,
0
],
[
1746615675.7233675,
50,
0,
0
],
[
1746615682.3491268,
50,
0,
0
],
[
1746615686.3421783,
50,
0,
0
],
[
1746615691.9539044,
50,
1,
2
],
[
1746615701.1500835,
50,
1,
2
],
[
1746615707.5707948,
50,
1,
2
],
[
1746615712.8582594,
50,
1,
2
],
[
1746615718.1658056,
50,
2,
4
],
[
1746615723.4328692,
50,
2,
4
],
[
1746615732.719154,
50,
1,
2
],
[
1746615736.5781946,
50,
1,
2
],
[
1746615754.9827905,
50,
1,
2
],
[
1746615760.389391,
50,
1,
2
],
[
1746615766.4577317,
50,
2,
4
],
[
1746615772.9736924,
50,
2,
4
],
[
1746615783.4539921,
50,
1,
2
],
[
1746615788.0062203,
50,
1,
2
],
[
1746615797.9067948,
50,
1,
2
],
[
1746615803.173867,
50,
1,
2
],
[
1746615810.550682,
50,
2,
4
],
[
1746615818.156892,
50,
2,
4
],
[
1746615831.0570831,
50,
1,
2
],
[
1746615837.1795208,
50,
1,
2
],
[
1746615845.1184258,
50,
1,
2
],
[
1746615850.5414827,
50,
1,
2
],
[
1746615857.4200432,
50,
2,
4
],
[
1746615872.9345589,
50,
2,
4
],
[
1746615883.5070028,
50,
2,
4
],
[
1746615892.255184,
50,
2,
4
],
[
1746615902.2595325,
50,
3,
6
],
[
1746615910.6424289,
50,
3,
6
],
[
1746615925.1512663,
50,
2,
4
],
[
1746615940.1935236,
50,
1,
2
],
[
1746615947.9028356,
50,
1,
2
],
[
1746615958.791562,
50,
1,
2
],
[
1746615968.1462533,
50,
1,
2
],
[
1746615976.532156,
50,
2,
4
],
[
1746615984.0823097,
50,
2,
4
],
[
1746616001.2652256,
50,
1,
2
],
[
1746616009.3995755,
50,
1,
2
],
[
1746616023.8816092,
50,
1,
2
],
[
1746616032.2532375,
50,
1,
2
],
[
1746616041.4110541,
50,
2,
4
],
[
1746616048.9346783,
50,
2,
4
],
[
1746616062.5043352,
50,
1,
2
],
[
1746616068.8277094,
50,
1,
2
],
[
1746616080.163788,
50,
1,
2
],
[
1746616087.5693204,
50,
1,
2
],
[
1746616096.9103122,
50,
2,
4
],
[
1746616114.5948055,
50,
2,
4
],
[
1746616130.4119139,
50,
1,
2
],
[
1746616140.7378325,
50,
1,
2
],
[
1746616155.4568589,
50,
1,
2
],
[
1746616164.0954192,
50,
1,
2
],
[
1746616174.9543424,
50,
2,
4
],
[
1746616183.8630254,
50,
2,
4
],
[
1746616202.5904741,
50,
1,
2
],
[
1746616212.8502169,
50,
1,
2
],
[
1746616230.3801148,
50,
1,
2
],
[
1746616239.7152646,
50,
1,
2
],
[
1746616249.6872642,
50,
2,
4
],
[
1746616259.1072357,
50,
2,
4
],
[
1746616275.523169,
50,
1,
2
],
[
1746616282.1268725,
50,
1,
2
],
[
1746616293.4484918,
50,
1,
2
],
[
1746616302.564052,
50,
1,
2
],
[
1746616313.8174047,
50,
2,
4
],
[
1746616321.5709803,
50,
2,
4
],
[
1746616338.115129,
50,
1,
2
],
[
1746616354.1863205,
50,
1,
2
],
[
1746616365.1273992,
50,
1,
2
],
[
1746616372.349919,
50,
1,
2
],
[
1746616382.304059,
50,
2,
4
],
[
1746616391.8302813,
50,
2,
4
],
[
1746616407.052547,
50,
1,
2
],
[
1746616413.3671248,
50,
1,
2
],
[
1746616427.8912802,
50,
1,
2
],
[
1746616434.651837,
50,
1,
2
],
[
1746616443.055845,
50,
2,
4
],
[
1746616450.9137156,
50,
2,
4
],
[
1746616467.9865365,
50,
1,
2
],
[
1746616475.5822153,
50,
1,
2
],
[
1746616488.5648692,
50,
1,
2
],
[
1746616495.8635874,
50,
1,
2
],
[
1746616504.7464647,
50,
2,
4
],
[
1746616513.2540302,
50,
2,
4
],
[
1746616526.5608017,
50,
1,
2
],
[
1746616533.0550797,
50,
1,
2
],
[
1746616542.7607822,
50,
1,
2
],
[
1746616550.2298675,
50,
1,
2
],
[
1746616559.187987,
50,
2,
4
],
[
1746616573.6866238,
50,
2,
4
],
[
1746616583.4671307,
50,
2,
4
],
[
1746616590.3554864,
50,
2,
4
],
[
1746616599.4509954,
50,
3,
6
],
[
1746616607.1421993,
50,
3,
6
],
[
1746616621.0709703,
50,
2,
4
],
[
1746616638.212666,
50,
1,
2
],
[
1746616645.6737525,
50,
1,
2
],
[
1746616657.5509808,
50,
1,
2
],
[
1746616667.0612826,
50,
1,
2
],
[
1746616676.9948616,
50,
2,
4
],
[
1746616688.2607303,
50,
2,
4
],
[
1746616710.0834377,
50,
1,
2
],
[
1746616718.8700807,
50,
1,
2
],
[
1746616733.152905,
50,
1,
2
],
[
1746616742.634836,
50,
1,
2
],
[
1746616755.3174906,
50,
2,
4
],
[
1746616766.7834146,
50,
2,
4
],
[
1746616784.1709883,
50,
1,
2
],
[
1746616791.5511315,
50,
1,
2
],
[
1746616802.6460223,
50,
1,
2
],
[
1746616810.0344374,
50,
1,
2
],
[
1746616819.2474637,
50,
2,
4
],
[
1746616835.7863672,
50,
2,
4
],
[
1746616846.8441846,
50,
2,
4
],
[
1746616855.015072,
50,
2,
4
],
[
1746616862.8774493,
50,
3,
6
],
[
1746616870.4356606,
50,
3,
6
],
[
1746616888.7052906,
50,
2,
4
],
[
1746616897.6083167,
50,
2,
4
],
[
1746616911.772804,
50,
2,
4
],
[
1746616920.0581753,
50,
2,
4
],
[
1746616928.0598779,
50,
3,
6
],
[
1746616935.9284906,
50,
3,
6
],
[
1746616950.013561,
50,
2,
4
],
[
1746616963.0491288,
50,
1,
2
],
[
1746616969.0289996,
50,
1,
2
],
[
1746616979.1227129,
50,
1,
2
],
[
1746616985.633654,
50,
1,
2
],
[
1746616993.4837866,
50,
2,
4
],
[
1746617000.4203799,
50,
2,
4
],
[
1746617014.5813665,
50,
1,
2
],
[
1746617021.1994948,
50,
1,
2
],
[
1746617029.4955497,
50,
1,
2
],
[
1746617037.1416528,
50,
1,
2
],
[
1746617044.5374625,
50,
2,
4
],
[
1746617052.3277807,
50,
2,
4
],
[
1746617066.5174346,
50,
1,
2
],
[
1746617081.1886675,
50,
0,
0
],
[
1746617087.867851,
50,
0,
0
],
[
1746617098.1033697,
50,
0,
0
],
[
1746617103.9910085,
50,
0,
0
],
[
1746617113.3781195,
50,
1,
2
],
[
1746617129.2178872,
50,
1,
2
],
[
1746617138.2049718,
50,
1,
2
],
[
1746617144.9977236,
50,
1,
2
],
[
1746617154.4023259,
50,
2,
4
],
[
1746617172.196357,
50,
2,
4
],
[
1746617184.9358087,
50,
2,
4
],
[
1746617203.5097287,
50,
2,
4
],
[
1746617216.9513934,
50,
3,
6
],
[
1746617227.9592052,
50,
3,
6
],
[
1746617248.5952737,
50,
2,
4
],
[
1746617267.9500604,
50,
1,
2
],
[
1746617276.4035416,
50,
1,
2
],
[
1746617290.197008,
50,
1,
2
],
[
1746617301.2498007,
50,
1,
2
],
[
1746617315.886067,
50,
2,
4
],
[
1746617328.3967197,
50,
2,
4
],
[
1746617353.4900827,
50,
1,
2
],
[
1746617363.2442389,
50,
1,
2
],
[
1746617374.5915093,
50,
1,
2
],
[
1746617385.2485688,
50,
1,
2
],
[
1746617396.9879358,
50,
2,
4
],
[
1746617406.009924,
50,
2,
4
],
[
1746617426.0029438,
50,
1,
2
],
[
1746617434.6957226,
50,
1,
2
],
[
1746617448.4348054,
50,
1,
2
],
[
1746617458.602562,
50,
1,
2
],
[
1746617470.9960759,
50,
2,
4
],
[
1746617483.7530808,
50,
2,
4
],
[
1746617507.0028136,
50,
1,
2
],
[
1746617519.4742317,
50,
1,
2
],
[
1746617535.1494648,
50,
1,
2
],
[
1746617547.4321244,
50,
1,
2
],
[
1746617563.213482,
50,
2,
4
],
[
1746617575.2517924,
50,
2,
4
],
[
1746617596.3514524,
50,
1,
2
],
[
1746617603.961214,
50,
1,
2
],
[
1746617617.633687,
50,
1,
2
],
[
1746617627.654703,
50,
1,
2
],
[
1746617638.5371203,
50,
2,
4
],
[
1746617648.180536,
50,
2,
4
],
[
1746617674.7926936,
50,
1,
2
],
[
1746617685.0028398,
50,
1,
2
],
[
1746617699.2975028,
50,
1,
2
],
[
1746617709.0818307,
50,
1,
2
],
[
1746617720.4232674,
50,
2,
4
],
[
1746617729.9296324,
50,
2,
4
],
[
1746617751.5308967,
50,
1,
2
],
[
1746617764.8999066,
50,
1,
2
],
[
1746617779.2186403,
50,
1,
2
],
[
1746617792.692132,
50,
1,
2
],
[
1746617805.544188,
50,
2,
4
],
[
1746617818.3494208,
50,
2,
4
],
[
1746617844.8408284,
50,
1,
2
],
[
1746617860.910336,
50,
1,
2
],
[
1746617876.7727902,
50,
1,
2
],
[
1746617886.034351,
50,
1,
2
],
[
1746617901.5792496,
50,
2,
4
],
[
1746617914.6237729,
50,
2,
4
],
[
1746617941.1215353,
50,
1,
2
],
[
1746617953.2852335,
50,
1,
2
],
[
1746617968.8082168,
50,
1,
2
],
[
1746617985.0161023,
50,
1,
2
],
[
1746618000.0649621,
50,
2,
4
],
[
1746618014.1430979,
50,
2,
4
],
[
1746618038.0257769,
50,
1,
2
],
[
1746618049.13228,
50,
1,
2
],
[
1746618061.880068,
50,
1,
2
],
[
1746618070.664167,
50,
1,
2
],
[
1746618080.0352733,
50,
2,
4
],
[
1746618089.473107,
50,
2,
4
],
[
1746618107.3572016,
50,
1,
2
],
[
1746618115.137213,
50,
1,
2
],
[
1746618127.3880043,
50,
1,
2
],
[
1746618136.6806402,
50,
1,
2
],
[
1746618147.3495119,
50,
2,
4
],
[
1746618157.077285,
50,
2,
4
],
[
1746618178.8202848,
50,
1,
2
],
[
1746618191.064716,
50,
1,
2
],
[
1746618207.1144705,
50,
1,
2
],
[
1746618220.3604398,
50,
1,
2
],
[
1746618238.068661,
50,
2,
4
],
[
1746618255.2728791,
50,
2,
4
],
[
1746618278.9168096,
50,
1,
2
],
[
1746618292.4059165,
50,
1,
2
],
[
1746618305.967526,
50,
1,
2
],
[
1746618317.3741314,
50,
1,
2
],
[
1746618330.0839088,
50,
2,
4
],
[
1746618341.0533254,
50,
2,
4
],
[
1746618366.4331994,
50,
1,
2
],
[
1746618379.1958878,
50,
1,
2
],
[
1746618393.3405242,
50,
1,
2
],
[
1746618405.5927415,
50,
1,
2
],
[
1746618416.3117943,
50,
2,
4
],
[
1746618426.2887075,
50,
2,
4
],
[
1746618448.1560352,
50,
1,
2
],
[
1746618456.9612384,
50,
1,
2
],
[
1746618469.3170383,
50,
1,
2
],
[
1746618477.378456,
50,
1,
2
],
[
1746618486.1914032,
50,
2,
4
],
[
1746618495.168698,
50,
2,
4
],
[
1746618511.134297,
50,
1,
2
],
[
1746618520.66595,
50,
1,
2
],
[
1746618532.9500072,
50,
1,
2
],
[
1746618542.4635327,
50,
1,
2
],
[
1746618552.9711235,
50,
2,
4
],
[
1746618563.0231652,
50,
2,
4
],
[
1746618581.7655678,
50,
1,
2
],
[
1746618590.284841,
50,
1,
2
],
[
1746618603.2191224,
50,
1,
2
],
[
1746618611.8863382,
50,
1,
2
],
[
1746618623.8542492,
50,
2,
4
],
[
1746618634.7057102,
50,
2,
4
],
[
1746618657.516614,
50,
1,
2
],
[
1746618669.6125147,
50,
1,
2
],
[
1746618682.801252,
50,
1,
2
],
[
1746618695.5579102,
50,
1,
2
],
[
1746618710.4585721,
50,
2,
4
],
[
1746618719.9067776,
50,
2,
4
],
[
1746618740.3991628,
50,
1,
2
],
[
1746618751.0685146,
50,
1,
2
],
[
1746618767.1065376,
50,
1,
2
],
[
1746618784.4258096,
50,
1,
2
],
[
1746618797.8629959,
50,
2,
4
],
[
1746618818.3213422,
50,
2,
4
],
[
1746618868.4038506,
50,
1,
2
],
[
1746618896.5775616,
50,
1,
2
],
[
1746618935.1274843,
50,
1,
2
],
[
1746618967.4781814,
50,
1,
2
],
[
1746618987.980328,
50,
2,
4
],
[
1746619007.6017401,
50,
2,
4
],
[
1746619061.626019,
50,
1,
2
],
[
1746619092.2845716,
50,
1,
2
],
[
1746619117.3008263,
50,
1,
2
],
[
1746619134.4214478,
50,
1,
2
],
[
1746619156.672033,
50,
2,
4
],
[
1746619185.3885741,
50,
2,
4
],
[
1746619239.7468908,
50,
1,
2
],
[
1746619261.3536835,
50,
1,
2
],
[
1746619301.573733,
50,
1,
2
],
[
1746619333.0882893,
50,
1,
2
],
[
1746619360.1102343,
50,
2,
4
],
[
1746619386.471086,
50,
2,
4
],
[
1746619444.106228,
50,
1,
2
],
[
1746619467.487737,
50,
1,
2
],
[
1746619487.0482588,
50,
1,
2
],
[
1746619511.4558012,
50,
1,
2
],
[
1746619533.8618596,
50,
2,
4
],
[
1746619570.2246706,
50,
2,
4
],
[
1746619633.8016331,
50,
1,
2
],
[
1746619675.6154172,
50,
1,
2
],
[
1746619717.2118065,
50,
1,
2
],
[
1746619774.0931108,
50,
1,
2
],
[
1746619826.0485365,
50,
0,
0
],
[
1746619851.3108976,
50,
0,
0
],
[
1746619885.8142776,
50,
0,
0
],
[
1746619909.9776833,
50,
0,
0
],
[
1746619930.8792787,
50,
1,
2
],
[
1746619987.54166,
50,
1,
2
],
[
1746620020.990613,
50,
1,
2
],
[
1746620043.4472792,
50,
1,
2
],
[
1746620068.878544,
50,
2,
4
],
[
1746620095.3066242,
50,
2,
4
],
[
1746620145.24646,
50,
1,
2
],
[
1746620164.239989,
50,
1,
2
],
[
1746620192.1718247,
50,
1,
2
],
[
1746620221.445169,
50,
1,
2
],
[
1746620254.0527241,
50,
2,
4
],
[
1746620287.1489236,
50,
2,
4
],
[
1746620361.1776226,
50,
1,
2
],
[
1746620402.5748987,
50,
1,
2
],
[
1746620430.4580193,
50,
1,
2
],
[
1746620466.7656653,
50,
1,
2
],
[
1746620497.5191183,
50,
2,
4
],
[
1746620554.148192,
50,
2,
4
],
[
1746620591.802819,
50,
2,
4
],
[
1746620618.3575108,
50,
2,
4
],
[
1746620651.1390195,
50,
3,
6
],
[
1746620678.6673737,
50,
3,
6
],
[
1746620742.5620124,
50,
2,
4
],
[
1746620809.7525907,
50,
1,
2
],
[
1746620864.46509,
50,
0,
0
],
[
1746620884.5675888,
50,
0,
0
],
[
1746620926.4249406,
50,
0,
0
],
[
1746620957.1128561,
50,
0,
0
],
[
1746620994.3789322,
50,
1,
2
],
[
1746621056.4170616,
50,
1,
2
],
[
1746621102.7168086,
50,
1,
2
],
[
1746621135.4013042,
50,
1,
2
],
[
1746621165.868836,
50,
2,
4
],
[
1746621196.7184355,
50,
2,
4
],
[
1746621276.800851,
50,
1,
2
],
[
1746621302.789313,
50,
1,
2
],
[
1746621345.4563599,
50,
1,
2
],
[
1746621374.0865545,
50,
1,
2
],
[
1746621394.0102308,
50,
2,
4
],
[
1746621414.8571985,
50,
2,
4
],
[
1746621460.935892,
50,
1,
2
],
[
1746621479.7189403,
50,
1,
2
],
[
1746621504.6874585,
50,
1,
2
],
[
1746621521.4323313,
50,
1,
2
],
[
1746621539.0909946,
50,
2,
4
],
[
1746621556.5723574,
50,
2,
4
],
[
1746621589.6250837,
50,
1,
2
],
[
1746621608.3514287,
50,
1,
2
],
[
1746621628.298399,
50,
1,
2
],
[
1746621652.5369885,
50,
1,
2
],
[
1746621676.9108844,
50,
2,
4
],
[
1746621695.5928123,
50,
2,
4
],
[
1746621739.437767,
50,
1,
2
],
[
1746621760.8999486,
50,
1,
2
],
[
1746621785.7504504,
50,
1,
2
],
[
1746621801.1617854,
50,
1,
2
],
[
1746621818.2151413,
50,
2,
4
],
[
1746621834.9294724,
50,
2,
4
],
[
1746621878.057487,
50,
1,
2
],
[
1746621910.5503144,
50,
1,
2
],
[
1746621932.858045,
50,
1,
2
],
[
1746621954.6182973,
50,
1,
2
],
[
1746621971.5851707,
50,
2,
4
],
[
1746621988.3075013,
50,
2,
4
],
[
1746622017.6969724,
50,
1,
2
],
[
1746622040.8283308,
50,
1,
2
],
[
1746622061.929019,
50,
1,
2
],
[
1746622075.7027767,
50,
1,
2
],
[
1746622089.306323,
50,
2,
4
],
[
1746622145.7245352,
50,
2,
4
],
[
1746622192.1363657,
50,
2,
4
],
[
1746622225.3166013,
50,
2,
4
],
[
1746622258.3124554,
50,
3,
6
],
[
1746622291.2684073,
50,
3,
6
],
[
1746622398.6718469,
50,
2,
4
],
[
1746622489.74222,
50,
1,
2
],
[
1746622551.8156512,
50,
0,
0
],
[
1746622575.3177283,
50,
0,
0
],
[
1746622597.1088898,
50,
0,
0
],
[
1746622614.8411663,
50,
0,
0
],
[
1746622632.9746826,
50,
1,
2
],
[
1746622672.4890053,
50,
1,
2
],
[
1746622691.9027975,
50,
1,
2
],
[
1746622711.968849,
50,
1,
2
],
[
1746622736.3261366,
50,
2,
4
],
[
1746622753.3931446,
50,
2,
4
],
[
1746622790.0221424,
50,
1,
2
],
[
1746622815.2284315,
50,
1,
2
],
[
1746622837.0123851,
50,
1,
2
],
[
1746622855.2496552,
50,
1,
2
],
[
1746622876.1309974,
50,
2,
4
],
[
1746622898.7846131,
50,
2,
4
],
[
1746622934.5888782,
50,
1,
2
],
[
1746622959.4977472,
50,
1,
2
],
[
1746622981.3427274,
50,
1,
2
],
[
1746623003.1145,
50,
1,
2
],
[
1746623022.8610756,
50,
2,
4
],
[
1746623040.40983,
50,
2,
4
],
[
1746623075.3840091,
50,
1,
2
],
[
1746623090.804736,
50,
1,
2
],
[
1746623108.5304835,
50,
1,
2
],
[
1746623127.5045242,
50,
1,
2
],
[
1746623146.1227047,
50,
2,
4
],
[
1746623165.2174566,
50,
2,
4
],
[
1746623203.8356643,
50,
1,
2
],
[
1746623221.7860868,
50,
1,
2
],
[
1746623241.7837331,
50,
1,
2
],
[
1746623261.8268912,
50,
1,
2
],
[
1746623282.3989413,
50,
2,
4
],
[
1746623304.5775087,
50,
2,
4
],
[
1746623343.560294,
50,
1,
2
],
[
1746623364.5835857,
50,
1,
2
],
[
1746623384.1622639,
50,
1,
2
],
[
1746623406.0371,
50,
1,
2
],
[
1746623431.0941315,
50,
2,
4
],
[
1746623455.1963723,
50,
2,
4
],
[
1746623503.8511455,
50,
1,
2
],
[
1746623541.990844,
50,
0,
0
],
[
1746623560.4668856,
50,
0,
0
],
[
1746623586.6678061,
50,
0,
0
],
[
1746623609.1074317,
50,
0,
0
],
[
1746623630.3142538,
50,
1,
2
],
[
1746623671.9205005,
50,
1,
2
],
[
1746623691.5466485,
50,
1,
2
],
[
1746623708.2424102,
50,
1,
2
],
[
1746623724.2774203,
50,
2,
4
],
[
1746623742.4182858,
50,
2,
4
],
[
1746623781.7268608,
50,
1,
2
],
[
1746623802.7266245,
50,
1,
2
],
[
1746623828.7519968,
50,
1,
2
],
[
1746623846.894361,
50,
1,
2
],
[
1746623869.3814635,
50,
2,
4
],
[
1746623898.2568233,
50,
2,
4
],
[
1746623936.9514873,
50,
1,
2
],
[
1746623979.7695272,
50,
0,
0
],
[
1746623998.2586575,
50,
0,
0
],
[
1746624025.0459328,
50,
0,
0
],
[
1746624047.9614828,
50,
0,
0
],
[
1746624069.708202,
50,
1,
2
],
[
1746624109.9906063,
50,
1,
2
],
[
1746624130.9328299,
50,
1,
2
],
[
1746624149.7077553,
50,
1,
2
],
[
1746624168.698687,
50,
2,
4
],
[
1746624190.9680796,
50,
2,
4
],
[
1746624235.82778,
50,
1,
2
],
[
1746624283.112436,
50,
0,
0
],
[
1746624304.711656,
50,
0,
0
],
[
1746624326.918775,
50,
0,
0
],
[
1746624347.9781928,
50,
0,
0
],
[
1746624369.5373344,
50,
1,
2
],
[
1746624413.4563603,
50,
1,
2
],
[
1746624437.9993205,
50,
1,
2
],
[
1746624458.606455,
50,
1,
2
],
[
1746624484.2451825,
50,
2,
4
],
[
1746624505.2743025,
50,
2,
4
],
[
1746624552.9199777,
50,
1,
2
],
[
1746624599.9588904,
50,
0,
0
],
[
1746624619.7211285,
50,
0,
0
],
[
1746624650.4888935,
50,
0,
0
],
[
1746624683.4253743,
50,
0,
0
],
[
1746624716.1587543,
50,
1,
2
],
[
1746624779.1298218,
50,
1,
2
],
[
1746624818.3146381,
50,
1,
2
],
[
1746624855.3983455,
50,
1,
2
],
[
1746624884.4144502,
50,
2,
4
],
[
1746624920.4536896,
50,
2,
4
],
[
1746624967.7608998,
50,
1,
2
],
[
1746624983.3881683,
50,
1,
2
],
[
1746625007.7376163,
50,
1,
2
],
[
1746625040.9462142,
50,
1,
2
],
[
1746625069.337376,
50,
2,
4
],
[
1746625113.742135,
50,
2,
4
],
[
1746625136.9990249,
50,
2,
4
],
[
1746625158.6149814,
50,
2,
4
],
[
1746625180.9113069,
50,
3,
6
],
[
1746625200.0485692,
50,
3,
6
],
[
1746625252.6451883,
50,
2,
4
],
[
1746625295.2742233,
50,
1,
2
],
[
1746625332.4082713,
50,
0,
0
],
[
1746625348.4575434,
50,
0,
0
],
[
1746625373.3575232,
50,
0,
0
],
[
1746625387.338943,
50,
0,
0
],
[
1746625406.098311,
50,
1,
2
],
[
1746625439.5060472,
50,
1,
2
],
[
1746625461.417212,
50,
1,
2
],
[
1746625475.9973524,
50,
1,
2
],
[
1746625498.2139227,
50,
2,
4
],
[
1746625514.7788935,
50,
2,
4
],
[
1746625561.421871,
50,
1,
2
],
[
1746625577.5338302,
50,
1,
2
],
[
1746625596.2516494,
50,
1,
2
],
[
1746625614.034892,
50,
1,
2
],
[
1746625640.4924307,
50,
2,
4
],
[
1746625660.22003,
50,
2,
4
],
[
1746625704.9720945,
50,
1,
2
],
[
1746625724.5111983,
50,
1,
2
],
[
1746625751.4262445,
50,
1,
2
],
[
1746625769.8478403,
50,
1,
2
],
[
1746625792.016888,
50,
2,
4
],
[
1746625814.5147095,
50,
2,
4
],
[
1746625852.7515612,
50,
1,
2
],
[
1746625875.9936972,
50,
1,
2
],
[
1746625900.4970212,
50,
1,
2
],
[
1746625922.0189664,
50,
1,
2
],
[
1746625945.0281334,
50,
2,
4
],
[
1746625967.7912567,
50,
2,
4
],
[
1746626013.2862623,
50,
1,
2
],
[
1746626036.6303914,
50,
1,
2
],
[
1746626065.018681,
50,
1,
2
],
[
1746626087.0776312,
50,
1,
2
],
[
1746626106.3247252,
50,
2,
4
],
[
1746626127.1320753,
50,
2,
4
],
[
1746626171.194789,
50,
1,
2
],
[
1746626192.6468434,
50,
1,
2
],
[
1746626222.0675983,
50,
1,
2
],
[
1746626249.9782093,
50,
1,
2
],
[
1746626288.4183724,
50,
2,
4
],
[
1746626319.5683422,
50,
2,
4
],
[
1746626374.4003894,
50,
1,
2
],
[
1746626479.48085,
50,
1,
2
],
[
1746626515.729026,
50,
1,
2
],
[
1746626597.2878337,
50,
1,
2
],
[
1746626621.5296342,
50,
2,
4
],
[
1746626648.0932732,
50,
2,
4
],
[
1746626678.2704613,
50,
1,
2
],
[
1746626721.3079412,
50,
0,
0
],
[
1746626741.8115206,
50,
0,
0
],
[
1746626766.8709185,
50,
0,
0
],
[
1746626789.0984511,
50,
0,
0
],
[
1746626819.4914794,
50,
1,
2
],
[
1746626872.9924219,
50,
1,
2
],
[
1746626908.8419278,
50,
1,
2
],
[
1746626934.1872406,
50,
1,
2
],
[
1746626962.111141,
50,
2,
4
],
[
1746626989.368571,
50,
2,
4
],
[
1746627035.1604428,
50,
1,
2
],
[
1746627160.6348763,
50,
0,
0
],
[
1746627204.5518985,
50,
0,
0
],
[
1746627261.8853831,
50,
0,
0
],
[
1746627291.0545113,
50,
0,
0
],
[
1746627316.02126,
50,
1,
2
],
[
1746627350.0987916,
50,
1,
2
],
[
1746627372.6255867,
50,
1,
2
],
[
1746627390.0901766,
50,
1,
2
],
[
1746627412.6810567,
50,
2,
4
],
[
1746627450.3990188,
50,
2,
4
],
[
1746627473.2168508,
50,
2,
4
],
[
1746627492.9266512,
50,
2,
4
],
[
1746627512.266989,
50,
3,
6
],
[
1746627534.05281,
50,
3,
6
],
[
1746627576.852507,
50,
2,
4
],
[
1746627613.6948626,
50,
1,
2
],
[
1746627635.0657163,
50,
1,
2
],
[
1746627656.8196003,
50,
1,
2
],
[
1746627680.763088,
50,
1,
2
],
[
1746627703.0813975,
50,
2,
4
],
[
1746627723.0725837,
50,
2,
4
],
[
1746627760.4771454,
50,
1,
2
],
[
1746627801.5880792,
50,
0,
0
],
[
1746627821.2017221,
50,
0,
0
],
[
1746627842.6046133,
50,
0,
0
],
[
1746627867.7322247,
50,
0,
0
],
[
1746627895.9905736,
50,
1,
2
],
[
1746627942.6713982,
50,
1,
2
],
[
1746627968.6723673,
50,
1,
2
],
[
1746627987.173106,
50,
1,
2
],
[
1746628007.1506515,
50,
2,
4
],
[
1746628026.5398185,
50,
2,
4
],
[
1746628063.0847063,
50,
1,
2
],
[
1746628106.5808597,
50,
0,
0
],
[
1746628126.571721,
50,
0,
0
],
[
1746628149.6524382,
50,
0,
0
],
[
1746628172.061568,
50,
0,
0
],
[
1746628199.4226124,
50,
1,
2
],
[
1746628253.8932903,
50,
1,
2
],
[
1746628287.0292711,
50,
1,
2
],
[
1746628307.9636729,
50,
1,
2
],
[
1746628329.3733666,
50,
2,
4
],
[
1746628352.0852327,
50,
2,
4
],
[
1746628394.8972356,
50,
1,
2
],
[
1746628438.146684,
50,
0,
0
],
[
1746628463.6355872,
50,
0,
0
],
[
1746628495.4445112,
50,
0,
0
],
[
1746628517.1583343,
50,
0,
0
],
[
1746628539.475237,
50,
1,
2
],
[
1746628578.4371262,
50,
1,
2
],
[
1746628603.0507705,
50,
1,
2
],
[
1746628625.4074407,
50,
1,
2
],
[
1746628647.4708538,
50,
2,
4
],
[
1746628674.0980396,
50,
2,
4
],
[
1746628715.980887,
50,
1,
2
],
[
1746628733.055947,
50,
1,
2
],
[
1746628757.7417233,
50,
1,
2
],
[
1746628780.7681627,
50,
1,
2
],
[
1746628799.0662374,
50,
2,
4
],
[
1746628819.6188498,
50,
2,
4
],
[
1746628856.687146,
50,
1,
2
],
[
1746628872.1444216,
50,
1,
2
],
[
1746628894.04641,
50,
1,
2
],
[
1746628917.290537,
50,
1,
2
],
[
1746628940.1194763,
50,
2,
4
],
[
1746628964.5026636,
50,
2,
4
],
[
1746629008.6969805,
50,
1,
2
],
[
1746629059.8563657,
50,
0,
0
],
[
1746629083.979282,
50,
0,
0
],
[
1746629106.6782513,
50,
0,
0
],
[
1746629128.7983334,
50,
0,
0
],
[
1746629145.6560528,
50,
1,
2
],
[
1746629196.1421514,
50,
1,
2
],
[
1746629216.9991353,
50,
1,
2
],
[
1746629241.0490167,
50,
1,
2
],
[
1746629265.5185347,
50,
2,
4
],
[
1746629289.0944324,
50,
2,
4
],
[
1746629333.6787431,
50,
1,
2
],
[
1746629376.331353,
50,
0,
0
],
[
1746629403.4626975,
50,
0,
0
],
[
1746629427.179425,
50,
0,
0
],
[
1746629455.3554056,
50,
0,
0
],
[
1746629481.9379296,
50,
1,
2
],
[
1746629539.8731105,
50,
1,
2
],
[
1746629563.907704,
50,
1,
2
],
[
1746629582.0094707,
50,
1,
2
],
[
1746629606.916442,
50,
2,
4
],
[
1746629627.8408558,
50,
2,
4
],
[
1746629680.3885353,
50,
1,
2
],
[
1746629706.4894266,
50,
1,
2
],
[
1746629736.1251614,
50,
1,
2
],
[
1746629761.7647047,
50,
1,
2
],
[
1746629789.7117143,
50,
2,
4
],
[
1746629811.0312538,
50,
2,
4
],
[
1746629860.6108105,
50,
1,
2
],
[
1746629884.9672098,
50,
1,
2
],
[
1746629910.0513892,
50,
1,
2
],
[
1746629936.3861775,
50,
1,
2
],
[
1746629962.6681385,
50,
2,
4
],
[
1746629995.0049593,
50,
2,
4
],
[
1746630039.2191162,
50,
1,
2
],
[
1746630090.3031788,
50,
0,
0
],
[
1746630110.4469726,
50,
0,
0
],
[
1746630133.234269,
50,
0,
0
],
[
1746630141.657038,
50,
0,
0
],
[
1746630152.1085954,
50,
1,
2
],
[
1746630176.4706397,
50,
1,
2
],
[
1746630188.8701944,
50,
1,
2
],
[
1746630196.5584404,
50,
1,
2
],
[
1746630207.750982,
50,
2,
4
],
[
1746630216.6881483,
50,
2,
4
],
[
1746630238.3790593,
50,
1,
2
],
[
1746630247.596384,
50,
1,
2
],
[
1746630265.9614887,
50,
1,
2
],
[
1746630275.1147156,
50,
1,
2
],
[
1746630283.9570491,
50,
2,
4
],
[
1746630294.171821,
50,
2,
4
],
[
1746630316.1614156,
50,
1,
2
],
[
1746630327.2394052,
50,
1,
2
],
[
1746630338.7538724,
50,
1,
2
],
[
1746630348.14865,
50,
1,
2
],
[
1746630357.4612083,
50,
2,
4
],
[
1746630365.5071874,
50,
2,
4
],
[
1746630381.4156022,
50,
1,
2
],
[
1746630389.806817,
50,
1,
2
],
[
1746630402.7305727,
50,
1,
2
],
[
1746630411.163805,
50,
1,
2
],
[
1746630420.5437734,
50,
2,
4
],
[
1746630428.2233791,
50,
2,
4
],
[
1746630444.2738554,
50,
1,
2
],
[
1746630456.261685,
50,
1,
2
],
[
1746630468.0064263,
50,
1,
2
],
[
1746630477.8876314,
50,
1,
2
],
[
1746630486.575302,
50,
2,
4
],
[
1746630494.8361087,
50,
2,
4
],
[
1746630522.1816165,
50,
1,
2
],
[
1746630530.6068492,
50,
1,
2
],
[
1746630543.3976781,
50,
1,
2
],
[
1746630553.6726496,
50,
1,
2
],
[
1746630567.9177759,
50,
2,
4
],
[
1746630581.2276497,
50,
2,
4
],
[
1746630608.8148313,
50,
1,
2
],
[
1746630633.266061,
50,
0,
0
],
[
1746630641.9421089,
50,
0,
0
],
[
1746630658.3861678,
50,
0,
0
],
[
1746630668.6214156,
50,
0,
0
],
[
1746630681.7481241,
50,
1,
2
],
[
1746630703.257178,
50,
1,
2
],
[
1746630717.4935746,
50,
1,
2
],
[
1746630726.064118,
50,
1,
2
],
[
1746630744.5328753,
50,
2,
4
],
[
1746630754.408785,
50,
2,
4
],
[
1746630775.0054147,
50,
1,
2
],
[
1746630783.8478749,
50,
1,
2
],
[
1746630797.8818035,
50,
1,
2
],
[
1746630811.8745298,
50,
1,
2
],
[
1746630824.401227,
50,
2,
4
],
[
1746630834.6553972,
50,
2,
4
],
[
1746630855.4193943,
50,
1,
2
],
[
1746630870.1631663,
50,
1,
2
],
[
1746630885.6046598,
50,
1,
2
],
[
1746630894.359423,
50,
1,
2
],
[
1746630902.8693793,
50,
2,
4
],
[
1746630911.454352,
50,
2,
4
],
[
1746630930.4761286,
50,
1,
2
],
[
1746630939.379229,
50,
1,
2
],
[
1746630951.8798852,
50,
1,
2
],
[
1746630961.941556,
50,
1,
2
],
[
1746630971.0028265,
50,
2,
4
],
[
1746630979.470978,
50,
2,
4
],
[
1746631002.5083187,
50,
1,
2
],
[
1746631011.2228084,
50,
1,
2
],
[
1746631024.9148717,
50,
1,
2
],
[
1746631032.4120023,
50,
1,
2
],
[
1746631040.5853162,
50,
2,
4
],
[
1746631051.130547,
50,
2,
4
],
[
1746631073.2277904,
50,
1,
2
],
[
1746631092.4158945,
50,
0,
0
],
[
1746631099.878891,
50,
0,
0
],
[
1746631112.6272032,
50,
0,
0
],
[
1746631124.6085103,
50,
0,
0
],
[
1746631136.3498445,
50,
1,
2
],
[
1746631155.1262372,
50,
1,
2
],
[
1746631167.5531046,
50,
1,
2
],
[
1746631179.0903385,
50,
1,
2
],
[
1746631191.6856441,
50,
2,
4
],
[
1746631203.7797313,
50,
2,
4
],
[
1746631223.6932564,
50,
1,
2
],
[
1746631232.1069958,
50,
1,
2
],
[
1746631247.553546,
50,
1,
2
],
[
1746631256.3941221,
50,
1,
2
],
[
1746631267.587931,
50,
2,
4
],
[
1746631276.9567235,
50,
2,
4
],
[
1746631295.4344008,
50,
1,
2
],
[
1746631308.5843382,
50,
1,
2
],
[
1746631326.0797217,
50,
1,
2
],
[
1746631334.4139984,
50,
1,
2
],
[
1746631344.002924,
50,
2,
4
],
[
1746631352.192473,
50,
2,
4
],
[
1746631373.6366205,
50,
1,
2
],
[
1746631384.7513826,
50,
1,
2
],
[
1746631402.120371,
50,
1,
2
],
[
1746631413.591296,
50,
1,
2
],
[
1746631426.9969687,
50,
2,
4
],
[
1746631445.7591882,
50,
2,
4
],
[
1746631460.467294,
50,
2,
4
],
[
1746631470.5445273,
50,
2,
4
],
[
1746631479.3856084,
50,
3,
6
],
[
1746631488.0847092,
50,
3,
6
],
[
1746631506.2223701,
50,
2,
4
],
[
1746631525.64076,
50,
1,
2
],
[
1746631542.017802,
50,
0,
0
],
[
1746631550.4372926,
50,
0,
0
],
[
1746631564.2765079,
50,
0,
0
],
[
1746631573.4167955,
50,
0,
0
],
[
1746631585.1553996,
50,
1,
2
],
[
1746631607.523457,
50,
1,
2
],
[
1746631619.4373868,
50,
1,
2
],
[
1746631629.0950844,
50,
1,
2
],
[
1746631639.1269073,
50,
2,
4
],
[
1746631647.3867674,
50,
2,
4
],
[
1746631666.4237502,
50,
1,
2
],
[
1746631675.0621095,
50,
1,
2
],
[
1746631690.8403046,
50,
1,
2
],
[
1746631699.6409848,
50,
1,
2
],
[
1746631710.1104174,
50,
2,
4
],
[
1746631720.5686998,
50,
2,
4
],
[
1746631739.0102217,
50,
1,
2
],
[
1746631748.2983108,
50,
1,
2
],
[
1746631762.2106361,
50,
1,
2
],
[
1746631770.858363,
50,
1,
2
],
[
1746631782.1685736,
50,
2,
4
],
[
1746631791.5315876,
50,
2,
4
],
[
1746631811.6993785,
50,
1,
2
],
[
1746631821.3902955,
50,
1,
2
],
[
1746631836.153172,
50,
1,
2
],
[
1746631846.196243,
50,
1,
2
],
[
1746631858.3951921,
50,
2,
4
],
[
1746631870.3771327,
50,
2,
4
],
[
1746631905.3723233,
50,
1,
2
],
[
1746631917.390323,
50,
1,
2
],
[
1746631932.685381,
50,
1,
2
],
[
1746631948.035762,
50,
1,
2
],
[
1746631958.1505473,
50,
2,
4
],
[
1746631968.3406897,
50,
2,
4
],
[
1746631989.7593744,
50,
1,
2
],
[
1746632002.2191527,
50,
1,
2
],
[
1746632018.162155,
50,
1,
2
],
[
1746632027.3775494,
50,
1,
2
],
[
1746632038.2719615,
50,
2,
4
],
[
1746632047.399514,
50,
2,
4
],
[
1746632068.1825745,
50,
1,
2
],
[
1746632078.397268,
50,
1,
2
],
[
1746632092.480825,
50,
1,
2
],
[
1746632101.667145,
50,
1,
2
],
[
1746632112.1375456,
50,
2,
4
],
[
1746632123.4277415,
50,
2,
4
],
[
1746632155.271188,
50,
1,
2
],
[
1746632165.4150026,
50,
1,
2
],
[
1746632182.0385554,
50,
1,
2
],
[
1746632193.5142946,
50,
1,
2
],
[
1746632205.5026703,
50,
2,
4
],
[
1746632228.2703004,
50,
2,
4
],
[
1746632245.3032186,
50,
2,
4
],
[
1746632256.0883646,
50,
2,
4
],
[
1746632268.0001845,
50,
3,
6
],
[
1746632278.9248474,
50,
3,
6
],
[
1746632302.0285356,
50,
2,
4
],
[
1746632311.8744652,
50,
2,
4
],
[
1746632330.269393,
50,
2,
4
],
[
1746632340.4588645,
50,
2,
4
],
[
1746632351.9283764,
50,
3,
6
],
[
1746632363.8565342,
50,
3,
6
],
[
1746632387.1712418,
50,
2,
4
],
[
1746632410.8134942,
50,
1,
2
],
[
1746632420.9174933,
50,
1,
2
],
[
1746632440.1141582,
50,
1,
2
],
[
1746632451.0555923,
50,
1,
2
],
[
1746632462.74563,
50,
2,
4
],
[
1746632473.8148222,
50,
2,
4
],
[
1746632500.9288383,
50,
1,
2
],
[
1746632510.7705357,
50,
1,
2
],
[
1746632526.1127334,
50,
1,
2
],
[
1746632535.4956005,
50,
1,
2
],
[
1746632546.204143,
50,
2,
4
],
[
1746632556.07165,
50,
2,
4
],
[
1746632577.4944654,
50,
1,
2
],
[
1746632586.7610161,
50,
1,
2
],
[
1746632603.297043,
50,
1,
2
],
[
1746632612.9041922,
50,
1,
2
],
[
1746632623.5929465,
50,
2,
4
],
[
1746632633.3794777,
50,
2,
4
],
[
1746632654.8408968,
50,
1,
2
],
[
1746632664.3726912,
50,
1,
2
],
[
1746632682.0871854,
50,
1,
2
],
[
1746632691.496518,
50,
1,
2
],
[
1746632702.719443,
50,
2,
4
],
[
1746632712.68143,
50,
2,
4
],
[
1746632733.5022137,
50,
1,
2
],
[
1746632743.8089676,
50,
1,
2
],
[
1746632759.6648433,
50,
1,
2
],
[
1746632769.3701704,
50,
1,
2
],
[
1746632780.1327937,
50,
2,
4
],
[
1746632790.6343658,
50,
2,
4
],
[
1746632812.9174912,
50,
1,
2
],
[
1746632822.1347132,
50,
1,
2
],
[
1746632846.1273534,
50,
1,
2
],
[
1746632855.8271306,
50,
1,
2
],
[
1746632867.0418382,
50,
2,
4
],
[
1746632877.0996342,
50,
2,
4
],
[
1746632898.9029322,
50,
1,
2
],
[
1746632908.7002254,
50,
1,
2
],
[
1746632925.0703483,
50,
1,
2
],
[
1746632934.8519871,
50,
1,
2
],
[
1746632946.7464983,
50,
2,
4
],
[
1746632957.2320628,
50,
2,
4
],
[
1746632978.209802,
50,
1,
2
],
[
1746632988.1438456,
50,
1,
2
],
[
1746633004.1978617,
50,
1,
2
],
[
1746633013.936758,
50,
1,
2
],
[
1746633026.4042907,
50,
2,
4
],
[
1746633036.445651,
50,
2,
4
],
[
1746633058.5397599,
50,
1,
2
],
[
1746633068.3937254,
50,
1,
2
],
[
1746633086.4926956,
50,
1,
2
],
[
1746633096.374743,
50,
1,
2
],
[
1746633107.5575244,
50,
2,
4
],
[
1746633117.7898343,
50,
2,
4
],
[
1746633139.702959,
50,
1,
2
],
[
1746633149.9825854,
50,
1,
2
],
[
1746633166.715818,
50,
1,
2
],
[
1746633176.5538669,
50,
1,
2
],
[
1746633188.7615948,
50,
2,
4
],
[
1746633210.910288,
50,
2,
4
],
[
1746633232.6425679,
50,
1,
2
],
[
1746633243.4567506,
50,
1,
2
],
[
1746633258.858258,
50,
1,
2
],
[
1746633280.1121824,
50,
0,
0
],
[
1746633290.8826535,
50,
0,
0
],
[
1746633308.7923214,
50,
0,
0
],
[
1746633318.6628146,
50,
0,
0
],
[
1746633329.570502,
50,
1,
2
],
[
1746633350.233106,
50,
1,
2
],
[
1746633366.1953235,
50,
1,
2
],
[
1746633376.2717602,
50,
1,
2
],
[
1746633387.4303854,
50,
2,
4
],
[
1746633398.6452599,
50,
2,
4
],
[
1746633421.9010887,
50,
1,
2
],
[
1746633431.8125458,
50,
1,
2
],
[
1746633447.7831233,
50,
1,
2
],
[
1746633458.142021,
50,
1,
2
],
[
1746633469.3869402,
50,
2,
4
],
[
1746633479.9452963,
50,
2,
4
],
[
1746633502.935169,
50,
1,
2
],
[
1746633512.7243822,
50,
1,
2
],
[
1746633529.7689226,
50,
1,
2
],
[
1746633539.6868134,
50,
1,
2
],
[
1746633551.204988,
50,
2,
4
],
[
1746633561.8463967,
50,
2,
4
],
[
1746633583.877975,
50,
1,
2
],
[
1746633594.485386,
50,
1,
2
],
[
1746633612.6761725,
50,
1,
2
],
[
1746633623.2361891,
50,
1,
2
],
[
1746633634.5241284,
50,
2,
4
],
[
1746633644.718029,
50,
2,
4
],
[
1746633667.449041,
50,
1,
2
],
[
1746633677.6646783,
50,
1,
2
],
[
1746633694.5998802,
50,
1,
2
],
[
1746633704.7044277,
50,
1,
2
],
[
1746633715.7318485,
50,
2,
4
],
[
1746633725.9473248,
50,
2,
4
],
[
1746633747.5555959,
50,
1,
2
],
[
1746633758.436595,
50,
1,
2
],
[
1746633776.8333642,
50,
1,
2
],
[
1746633786.9154224,
50,
1,
2
],
[
1746633798.1915128,
50,
2,
4
],
[
1746633809.8131764,
50,
2,
4
],
[
1746633832.1112063,
50,
1,
2
],
[
1746633841.9986877,
50,
1,
2
],
[
1746633861.073697,
50,
1,
2
],
[
1746633871.507489,
50,
1,
2
],
[
1746633883.087078,
50,
2,
4
],
[
1746633895.0065086,
50,
2,
4
],
[
1746633918.0157318,
50,
1,
2
],
[
1746633927.849392,
50,
1,
2
],
[
1746633945.9330273,
50,
1,
2
],
[
1746633956.640169,
50,
1,
2
],
[
1746633968.5520344,
50,
2,
4
],
[
1746633979.8062155,
50,
2,
4
],
[
1746634002.4739022,
50,
1,
2
],
[
1746634012.7370493,
50,
1,
2
],
[
1746634030.5319524,
50,
1,
2
],
[
1746634041.6936035,
50,
1,
2
],
[
1746634053.16429,
50,
2,
4
],
[
1746634067.087112,
50,
2,
4
],
[
1746634090.8209023,
50,
1,
2
],
[
1746634101.2416878,
50,
1,
2
],
[
1746634122.6389074,
50,
1,
2
],
[
1746634133.0116062,
50,
1,
2
],
[
1746634144.5846295,
50,
2,
4
],
[
1746634155.6051264,
50,
2,
4
],
[
1746634179.2370512,
50,
1,
2
],
[
1746634189.3749294,
50,
1,
2
],
[
1746634207.8505557,
50,
1,
2
],
[
1746634218.413786,
50,
1,
2
],
[
1746634229.7935102,
50,
2,
4
],
[
1746634240.213692,
50,
2,
4
],
[
1746634267.8754666,
50,
1,
2
],
[
1746634278.573621,
50,
1,
2
],
[
1746634295.2016208,
50,
1,
2
],
[
1746634305.4231682,
50,
1,
2
],
[
1746634316.805338,
50,
2,
4
],
[
1746634327.7285018,
50,
2,
4
],
[
1746634349.9235032,
50,
1,
2
],
[
1746634360.0286198,
50,
1,
2
],
[
1746634381.2695198,
50,
1,
2
],
[
1746634391.5032544,
50,
1,
2
],
[
1746634403.1999273,
50,
2,
4
],
[
1746634414.0500708,
50,
2,
4
],
[
1746634437.6402187,
50,
1,
2
],
[
1746634447.8474972,
50,
1,
2
],
[
1746634466.531086,
50,
1,
2
],
[
1746634476.9696078,
50,
1,
2
],
[
1746634488.7174304,
50,
2,
4
],
[
1746634499.61123,
50,
2,
4
],
[
1746634522.8801143,
50,
1,
2
],
[
1746634533.2458925,
50,
1,
2
],
[
1746634551.1040747,
50,
1,
2
],
[
1746634561.855321,
50,
1,
2
],
[
1746634573.5046594,
50,
2,
4
],
[
1746634584.83116,
50,
2,
4
],
[
1746634608.1791263,
50,
1,
2
],
[
1746634619.05347,
50,
1,
2
],
[
1746634638.230788,
50,
1,
2
],
[
1746634648.8389943,
50,
1,
2
],
[
1746634661.2330732,
50,
2,
4
],
[
1746634672.2578113,
50,
2,
4
],
[
1746634695.0014958,
50,
1,
2
],
[
1746634717.34802,
50,
0,
0
],
[
1746634727.9699178,
50,
0,
0
],
[
1746634746.8972197,
50,
0,
0
],
[
1746634757.4357538,
50,
0,
0
],
[
1746634769.2636662,
50,
1,
2
],
[
1746634791.276161,
50,
1,
2
],
[
1746634809.965586,
50,
1,
2
],
[
1746634821.6046257,
50,
1,
2
],
[
1746634833.6680684,
50,
2,
4
],
[
1746634845.0922108,
50,
2,
4
],
[
1746634869.1520104,
50,
1,
2
],
[
1746634880.3522408,
50,
1,
2
],
[
1746634899.304942,
50,
1,
2
],
[
1746634909.9124873,
50,
1,
2
],
[
1746634921.9343445,
50,
2,
4
],
[
1746634933.1176994,
50,
2,
4
],
[
1746634957.412241,
50,
1,
2
],
[
1746634967.7303145,
50,
1,
2
],
[
1746634986.3082557,
50,
1,
2
],
[
1746634996.9188805,
50,
1,
2
],
[
1746635008.8331919,
50,
2,
4
],
[
1746635019.8405013,
50,
2,
4
],
[
1746635043.1952767,
50,
1,
2
],
[
1746635066.2171092,
50,
0,
0
],
[
1746635077.5477338,
50,
0,
0
],
[
1746635097.4730523,
50,
0,
0
],
[
1746635109.689238,
50,
0,
0
],
[
1746635123.2337909,
50,
1,
2
],
[
1746635147.1400564,
50,
1,
2
],
[
1746635167.2254288,
50,
1,
2
],
[
1746635178.4478104,
50,
1,
2
],
[
1746635190.6414351,
50,
2,
4
],
[
1746635201.789118,
50,
2,
4
],
[
1746635224.889286,
50,
1,
2
],
[
1746635236.1252673,
50,
1,
2
],
[
1746635255.1882854,
50,
1,
2
],
[
1746635265.9119225,
50,
1,
2
],
[
1746635278.1924078,
50,
2,
4
],
[
1746635289.5856957,
50,
2,
4
],
[
1746635312.8007338,
50,
1,
2
],
[
1746635335.7873847,
50,
0,
0
],
[
1746635346.1921873,
50,
0,
0
],
[
1746635368.5139751,
50,
0,
0
],
[
1746635379.1255913,
50,
0,
0
],
[
1746635390.90479,
50,
1,
2
],
[
1746635414.0450218,
50,
1,
2
],
[
1746635432.6390042,
50,
1,
2
],
[
1746635443.83259,
50,
1,
2
],
[
1746635455.6606398,
50,
2,
4
],
[
1746635466.7320838,
50,
2,
4
],
[
1746635490.4651601,
50,
1,
2
],
[
1746635500.8232203,
50,
1,
2
],
[
1746635519.9922414,
50,
1,
2
],
[
1746635530.5782487,
50,
1,
2
],
[
1746635545.432831,
50,
2,
4
],
[
1746635556.4502585,
50,
2,
4
],
[
1746635579.9175944,
50,
1,
2
],
[
1746635590.8424976,
50,
1,
2
],
[
1746635610.3606932,
50,
1,
2
],
[
1746635621.013934,
50,
1,
2
],
[
1746635632.9866872,
50,
2,
4
],
[
1746635644.5054512,
50,
2,
4
],
[
1746635667.8122423,
50,
1,
2
],
[
1746635691.633352,
50,
0,
0
],
[
1746635701.952423,
50,
0,
0
],
[
1746635720.2285962,
50,
0,
0
],
[
1746635731.4286983,
50,
0,
0
],
[
1746635743.3444152,
50,
1,
2
],
[
1746635765.695587,
50,
1,
2
],
[
1746635783.7987864,
50,
1,
2
],
[
1746635794.7911909,
50,
1,
2
],
[
1746635806.6300302,
50,
2,
4
],
[
1746635817.7206886,
50,
2,
4
],
[
1746635845.0683718,
50,
1,
2
],
[
1746635855.2038965,
50,
1,
2
],
[
1746635877.5502892,
50,
1,
2
],
[
1746635888.264146,
50,
1,
2
],
[
1746635900.0168915,
50,
2,
4
],
[
1746635911.569488,
50,
2,
4
],
[
1746635934.0335445,
50,
1,
2
],
[
1746635957.0857556,
50,
0,
0
],
[
1746635967.5078046,
50,
0,
0
],
[
1746635992.3774273,
50,
0,
0
],
[
1746636003.1419687,
50,
0,
0
],
[
1746636015.48896,
50,
1,
2
],
[
1746636039.3497303,
50,
1,
2
],
[
1746636057.8265076,
50,
1,
2
],
[
1746636069.2807946,
50,
1,
2
],
[
1746636081.44554,
50,
2,
4
],
[
1746636092.6707351,
50,
2,
4
],
[
1746636116.0299404,
50,
1,
2
],
[
1746636138.88697,
50,
0,
0
],
[
1746636149.432038,
50,
0,
0
],
[
1746636168.816588,
50,
0,
0
],
[
1746636179.6633785,
50,
0,
0
],
[
1746636191.6867578,
50,
1,
2
],
[
1746636215.156045,
50,
1,
2
],
[
1746636233.2991607,
50,
1,
2
],
[
1746636244.5534055,
50,
1,
2
],
[
1746636256.6908422,
50,
2,
4
],
[
1746636268.4743612,
50,
2,
4
],
[
1746636291.3853996,
50,
1,
2
],
[
1746636315.7770586,
50,
0,
0
],
[
1746636326.79561,
50,
0,
0
],
[
1746636345.9513462,
50,
0,
0
],
[
1746636356.7282598,
50,
0,
0
],
[
1746636369.1061306,
50,
1,
2
],
[
1746636392.8950493,
50,
1,
2
],
[
1746636411.7259502,
50,
1,
2
],
[
1746636422.6805472,
50,
1,
2
],
[
1746636436.312099,
50,
2,
4
],
[
1746636447.6046484,
50,
2,
4
],
[
1746636472.357628,
50,
1,
2
],
[
1746636496.2428412,
50,
0,
0
],
[
1746636507.2527268,
50,
0,
0
],
[
1746636526.82208,
50,
0,
0
],
[
1746636537.670282,
50,
0,
0
],
[
1746636549.7418451,
50,
1,
2
],
[
1746636573.5405421,
50,
1,
2
],
[
1746636591.1588938,
50,
1,
2
],
[
1746636606.0816681,
50,
1,
2
],
[
1746636618.5396514,
50,
2,
4
],
[
1746636629.9551094,
50,
2,
4
],
[
1746636654.6462677,
50,
1,
2
],
[
1746636665.797987,
50,
1,
2
],
[
1746636686.0037124,
50,
1,
2
],
[
1746636697.4763412,
50,
1,
2
],
[
1746636710.3114994,
50,
2,
4
],
[
1746636722.678834,
50,
2,
4
],
[
1746636745.8251717,
50,
1,
2
],
[
1746636772.322855,
50,
0,
0
],
[
1746636783.7943091,
50,
0,
0
],
[
1746636804.6365168,
50,
0,
0
],
[
1746636815.8718276,
50,
0,
0
],
[
1746636828.526991,
50,
1,
2
],
[
1746636853.9029846,
50,
1,
2
],
[
1746636872.1672502,
50,
1,
2
],
[
1746636883.5596147,
50,
1,
2
],
[
1746636896.1290743,
50,
2,
4
],
[
1746636907.8502483,
50,
2,
4
],
[
1746636931.4172688,
50,
1,
2
],
[
1746636955.8220925,
50,
0,
0
],
[
1746636966.8145285,
50,
0,
0
],
[
1746636987.1384711,
50,
0,
0
],
[
1746636998.385298,
50,
0,
0
],
[
1746637010.7501945,
50,
1,
2
],
[
1746637033.9678922,
50,
1,
2
],
[
1746637053.9203184,
50,
1,
2
],
[
1746637065.9719229,
50,
1,
2
],
[
1746637078.7584138,
50,
2,
4
],
[
1746637090.3135455,
50,
2,
4
],
[
1746637116.919422,
50,
1,
2
],
[
1746637127.61286,
50,
1,
2
],
[
1746637146.7944925,
50,
1,
2
],
[
1746637157.7847452,
50,
1,
2
],
[
1746637170.2484632,
50,
2,
4
],
[
1746637182.084788,
50,
2,
4
],
[
1746637207.1617985,
50,
1,
2
],
[
1746637218.0783355,
50,
1,
2
],
[
1746637239.936625,
50,
1,
2
],
[
1746637251.0784755,
50,
1,
2
],
[
1746637263.6022987,
50,
2,
4
],
[
1746637275.502269,
50,
2,
4
],
[
1746637301.9796298,
50,
1,
2
],
[
1746637313.291886,
50,
1,
2
],
[
1746637333.5885084,
50,
1,
2
],
[
1746637344.6379094,
50,
1,
2
],
[
1746637357.0715964,
50,
2,
4
],
[
1746637369.0440578,
50,
2,
4
],
[
1746637394.7997816,
50,
1,
2
],
[
1746637405.8529289,
50,
1,
2
],
[
1746637425.5552118,
50,
1,
2
],
[
1746637437.1912448,
50,
1,
2
],
[
1746637449.9660168,
50,
2,
4
],
[
1746637462.3590407,
50,
2,
4
],
[
1746637488.6730516,
50,
1,
2
],
[
1746637500.0804315,
50,
1,
2
],
[
1746637520.598711,
50,
1,
2
],
[
1746637532.426547,
50,
1,
2
],
[
1746637545.6629682,
50,
2,
4
],
[
1746637558.3218522,
50,
2,
4
],
[
1746637584.5840325,
50,
1,
2
],
[
1746637596.3834648,
50,
1,
2
],
[
1746637617.1308954,
50,
1,
2
],
[
1746637628.505698,
50,
1,
2
],
[
1746637641.5814104,
50,
2,
4
],
[
1746637653.7588615,
50,
2,
4
],
[
1746637681.053762,
50,
1,
2
],
[
1746637693.0248816,
50,
1,
2
],
[
1746637718.364377,
50,
0,
0
],
[
1746637732.9244323,
50,
0,
0
],
[
1746637755.008922,
50,
0,
0
],
[
1746637767.0077891,
50,
0,
0
],
[
1746637779.9496236,
50,
1,
2
],
[
1746637806.3663437,
50,
1,
2
],
[
1746637825.684133,
50,
1,
2
],
[
1746637838.0049157,
50,
1,
2
],
[
1746637850.9531333,
50,
2,
4
],
[
1746637863.6300519,
50,
2,
4
],
[
1746637891.1406977,
50,
1,
2
],
[
1746637903.696132,
50,
1,
2
],
[
1746637927.3106816,
50,
1,
2
],
[
1746637939.4803104,
50,
1,
2
],
[
1746637954.2439516,
50,
2,
4
],
[
1746637966.548741,
50,
2,
4
],
[
1746637992.5644388,
50,
1,
2
],
[
1746638017.7225451,
50,
0,
0
],
[
1746638029.2473376,
50,
0,
0
],
[
1746638054.2207427,
50,
0,
0
],
[
1746638065.669294,
50,
0,
0
],
[
1746638079.029782,
50,
1,
2
],
[
1746638104.7163227,
50,
1,
2
],
[
1746638127.6812673,
50,
1,
2
],
[
1746638140.9174745,
50,
1,
2
],
[
1746638155.7915761,
50,
2,
4
],
[
1746638169.111753,
50,
2,
4
],
[
1746638200.718866,
50,
1,
2
],
[
1746638225.3045902,
50,
0,
0
],
[
1746638236.5037284,
50,
0,
0
],
[
1746638263.4848127,
50,
0,
0
],
[
1746638275.3890793,
50,
0,
0
],
[
1746638288.563948,
50,
1,
2
],
[
1746638313.3136032,
50,
1,
2
],
[
1746638334.3827872,
50,
1,
2
],
[
1746638346.3392406,
50,
1,
2
],
[
1746638359.1597435,
50,
2,
4
],
[
1746638371.8257904,
50,
2,
4
],
[
1746638399.074823,
50,
1,
2
],
[
1746638410.8427699,
50,
1,
2
],
[
1746638430.9205601,
50,
1,
2
],
[
1746638442.8479345,
50,
1,
2
],
[
1746638456.1342583,
50,
2,
4
],
[
1746638468.653021,
50,
2,
4
],
[
1746638495.1448553,
50,
1,
2
],
[
1746638506.639058,
50,
1,
2
],
[
1746638529.8877711,
50,
1,
2
],
[
1746638541.4628067,
50,
1,
2
],
[
1746638554.330305,
50,
2,
4
],
[
1746638566.4610844,
50,
2,
4
],
[
1746638591.9462624,
50,
1,
2
],
[
1746638617.208276,
50,
0,
0
],
[
1746638628.5552268,
50,
0,
0
],
[
1746638650.9939215,
50,
0,
0
],
[
1746638662.5594537,
50,
0,
0
],
[
1746638675.3774526,
50,
1,
2
],
[
1746638701.4511898,
50,
1,
2
],
[
1746638720.1937637,
50,
1,
2
],
[
1746638731.7784977,
50,
1,
2
],
[
1746638745.0597215,
50,
2,
4
],
[
1746638757.4370592,
50,
2,
4
],
[
1746638783.653544,
50,
1,
2
],
[
1746638808.5597978,
50,
0,
0
],
[
1746638819.83337,
50,
0,
0
],
[
1746638843.9510603,
50,
0,
0
],
[
1746638855.468941,
50,
0,
0
],
[
1746638868.2017674,
50,
1,
2
],
[
1746638895.5321386,
50,
1,
2
],
[
1746638916.146019,
50,
1,
2
],
[
1746638928.429895,
50,
1,
2
],
[
1746638941.2304783,
50,
2,
4
],
[
1746638953.1035402,
50,
2,
4
],
[
1746638979.0426142,
50,
1,
2
],
[
1746638990.2145848,
50,
1,
2
],
[
1746639009.8752913,
50,
1,
2
],
[
1746639021.2026148,
50,
1,
2
],
[
1746639033.8358705,
50,
2,
4
],
[
1746639045.4871914,
50,
2,
4
],
[
1746639071.3605769,
50,
1,
2
],
[
1746639082.5033815,
50,
1,
2
],
[
1746639102.4593916,
50,
1,
2
],
[
1746639114.3792539,
50,
1,
2
],
[
1746639127.0850594,
50,
2,
4
],
[
1746639138.9961562,
50,
2,
4
],
[
1746639164.8253984,
50,
1,
2
],
[
1746639175.9913964,
50,
1,
2
],
[
1746639198.2816083,
50,
1,
2
],
[
1746639210.313366,
50,
1,
2
],
[
1746639223.3979309,
50,
2,
4
],
[
1746639235.1860843,
50,
2,
4
],
[
1746639261.3770783,
50,
1,
2
],
[
1746639272.685772,
50,
1,
2
],
[
1746639297.5851042,
50,
1,
2
],
[
1746639308.997495,
50,
1,
2
],
[
1746639321.5938344,
50,
2,
4
],
[
1746639333.5484433,
50,
2,
4
],
[
1746639359.412256,
50,
1,
2
],
[
1746639370.6034482,
50,
1,
2
],
[
1746639391.8041248,
50,
1,
2
],
[
1746639403.4229167,
50,
1,
2
],
[
1746639416.136812,
50,
2,
4
],
[
1746639427.98751,
50,
2,
4
],
[
1746639454.4509432,
50,
1,
2
],
[
1746639465.639882,
50,
1,
2
],
[
1746639486.5752814,
50,
1,
2
],
[
1746639497.9930296,
50,
1,
2
],
[
1746639511.0425718,
50,
2,
4
],
[
1746639522.920456,
50,
2,
4
],
[
1746639549.0861926,
50,
1,
2
],
[
1746639560.2700717,
50,
1,
2
],
[
1746639581.8957403,
50,
1,
2
],
[
1746639593.1870773,
50,
1,
2
],
[
1746639605.869734,
50,
2,
4
],
[
1746639617.976675,
50,
2,
4
],
[
1746639644.0975728,
50,
1,
2
],
[
1746639655.690356,
50,
1,
2
],
[
1746639675.4657915,
50,
1,
2
],
[
1746639687.2820535,
50,
1,
2
],
[
1746639700.0163395,
50,
2,
4
],
[
1746639711.87844,
50,
2,
4
],
[
1746639738.5729425,
50,
1,
2
],
[
1746639749.9020698,
50,
1,
2
],
[
1746639769.835363,
50,
1,
2
],
[
1746639781.192859,
50,
1,
2
],
[
1746639793.7124944,
50,
2,
4
],
[
1746639805.5108342,
50,
2,
4
],
[
1746639831.932902,
50,
1,
2
],
[
1746639843.2281258,
50,
1,
2
],
[
1746639864.6560853,
50,
1,
2
],
[
1746639876.226719,
50,
1,
2
],
[
1746639892.4251144,
50,
2,
4
],
[
1746639904.227979,
50,
2,
4
],
[
1746639930.275319,
50,
1,
2
],
[
1746639955.8722332,
50,
0,
0
],
[
1746639967.5034623,
50,
0,
0
],
[
1746639988.846146,
50,
0,
0
],
[
1746640000.9904506,
50,
0,
0
],
[
1746640014.953298,
50,
1,
2
],
[
1746640040.133706,
50,
1,
2
],
[
1746640061.3788352,
50,
1,
2
],
[
1746640073.3440008,
50,
1,
2
],
[
1746640086.1905167,
50,
2,
4
],
[
1746640098.7676299,
50,
2,
4
],
[
1746640124.1171737,
50,
1,
2
],
[
1746640149.2621443,
50,
0,
0
],
[
1746640161.0427163,
50,
0,
0
],
[
1746640196.441847,
50,
0,
0
],
[
1746640208.117106,
50,
0,
0
],
[
1746640220.9685454,
50,
1,
2
],
[
1746640246.2185442,
50,
1,
2
],
[
1746640269.953584,
50,
1,
2
],
[
1746640282.4049366,
50,
1,
2
],
[
1746640295.7579474,
50,
2,
4
],
[
1746640308.7289724,
50,
2,
4
],
[
1746640335.5072336,
50,
1,
2
],
[
1746640347.4418693,
50,
1,
2
],
[
1746640370.0382705,
50,
1,
2
],
[
1746640382.6979146,
50,
1,
2
],
[
1746640396.1059203,
50,
2,
4
],
[
1746640409.343638,
50,
2,
4
],
[
1746640435.6406505,
50,
1,
2
],
[
1746640461.900841,
50,
0,
0
],
[
1746640473.8654847,
50,
0,
0
],
[
1746640496.3054585,
50,
0,
0
],
[
1746640508.9997811,
50,
0,
0
],
[
1746640522.4602757,
50,
1,
2
],
[
1746640548.7370467,
50,
1,
2
],
[
1746640572.1147714,
50,
1,
2
],
[
1746640584.6594872,
50,
1,
2
],
[
1746640598.2002146,
50,
2,
4
],
[
1746640611.3152127,
50,
2,
4
],
[
1746640636.9736383,
50,
1,
2
],
[
1746640663.141039,
50,
0,
0
],
[
1746640676.0408785,
50,
0,
0
],
[
1746640700.0281186,
50,
0,
0
],
[
1746640711.877994,
50,
0,
0
],
[
1746640725.1821423,
50,
1,
2
],
[
1746640751.4280362,
50,
1,
2
],
[
1746640775.383146,
50,
1,
2
],
[
1746640787.8837504,
50,
1,
2
],
[
1746640801.3595147,
50,
2,
4
],
[
1746640813.7860932,
50,
2,
4
],
[
1746640841.534065,
50,
1,
2
],
[
1746640853.4989965,
50,
1,
2
],
[
1746640876.5199828,
50,
1,
2
],
[
1746640888.7292283,
50,
1,
2
],
[
1746640902.1951478,
50,
2,
4
],
[
1746640915.081437,
50,
2,
4
],
[
1746640942.8207448,
50,
1,
2
],
[
1746640955.3432248,
50,
1,
2
],
[
1746640977.4768062,
50,
1,
2
],
[
1746640989.8828347,
50,
1,
2
],
[
1746641003.861535,
50,
2,
4
],
[
1746641016.6263137,
50,
2,
4
],
[
1746641046.4506433,
50,
1,
2
],
[
1746641059.0134242,
50,
1,
2
],
[
1746641081.4614792,
50,
1,
2
],
[
1746641093.8053257,
50,
1,
2
],
[
1746641107.4758816,
50,
2,
4
],
[
1746641120.3364842,
50,
2,
4
],
[
1746641147.2058842,
50,
1,
2
],
[
1746641174.2711966,
50,
0,
0
],
[
1746641186.4540064,
50,
0,
0
],
[
1746641211.4560206,
50,
0,
0
],
[
1746641223.690304,
50,
0,
0
],
[
1746641237.5529149,
50,
1,
2
],
[
1746641264.5494993,
50,
1,
2
],
[
1746641288.4129314,
50,
1,
2
],
[
1746641300.8298604,
50,
1,
2
],
[
1746641314.63645,
50,
2,
4
],
[
1746641327.3511915,
50,
2,
4
],
[
1746641354.0993013,
50,
1,
2
],
[
1746641380.6830742,
50,
0,
0
],
[
1746641393.179516,
50,
0,
0
],
[
1746641419.9629683,
50,
0,
0
],
[
1746641432.368962,
50,
0,
0
],
[
1746641446.051838,
50,
1,
2
],
[
1746641473.12872,
50,
1,
2
],
[
1746641495.2881892,
50,
1,
2
],
[
1746641507.73991,
50,
1,
2
],
[
1746641521.345808,
50,
2,
4
],
[
1746641534.1886215,
50,
2,
4
],
[
1746641562.5671973,
50,
1,
2
],
[
1746641574.8741074,
50,
1,
2
],
[
1746641599.7820487,
50,
1,
2
],
[
1746641613.1753576,
50,
1,
2
],
[
1746641627.0421312,
50,
2,
4
],
[
1746641640.3303297,
50,
2,
4
],
[
1746641668.8402352,
50,
1,
2
],
[
1746641682.0620067,
50,
1,
2
],
[
1746641705.9967773,
50,
1,
2
],
[
1746641718.5785136,
50,
1,
2
],
[
1746641732.6930344,
50,
2,
4
],
[
1746641746.638529,
50,
2,
4
],
[
1746641774.686307,
50,
1,
2
],
[
1746641801.483104,
50,
0,
0
],
[
1746641813.7512176,
50,
0,
0
],
[
1746641839.2133725,
50,
0,
0
],
[
1746641851.747104,
50,
0,
0
],
[
1746641865.4785116,
50,
1,
2
],
[
1746641892.255127,
50,
1,
2
],
[
1746641914.9190874,
50,
1,
2
],
[
1746641927.4870288,
50,
1,
2
],
[
1746641941.8973906,
50,
2,
4
],
[
1746641954.8773177,
50,
2,
4
],
[
1746641982.94445,
50,
1,
2
],
[
1746641995.6345265,
50,
1,
2
],
[
1746642019.1739876,
50,
1,
2
],
[
1746642032.0117126,
50,
1,
2
],
[
1746642045.6162596,
50,
2,
4
],
[
1746642058.4603631,
50,
2,
4
],
[
1746642086.0302975,
50,
1,
2
],
[
1746642098.2220986,
50,
1,
2
],
[
1746642124.5755022,
50,
1,
2
],
[
1746642137.1282518,
50,
1,
2
],
[
1746642150.8921235,
50,
2,
4
],
[
1746642164.6664867,
50,
2,
4
],
[
1746642195.387503,
50,
1,
2
],
[
1746642222.4105945,
50,
0,
0
],
[
1746642234.4719024,
50,
0,
0
],
[
1746642260.9513946,
50,
0,
0
],
[
1746642278.4942555,
50,
0,
0
],
[
1746642293.1163225,
50,
1,
2
],
[
1746642321.833162,
50,
1,
2
],
[
1746642345.3567567,
50,
1,
2
],
[
1746642358.2796054,
50,
1,
2
],
[
1746642371.8893387,
50,
2,
4
],
[
1746642384.7955399,
50,
2,
4
],
[
1746642413.2137654,
50,
1,
2
],
[
1746642425.6531017,
50,
1,
2
],
[
1746642449.637084,
50,
1,
2
],
[
1746642462.4033742,
50,
1,
2
],
[
1746642476.8966622,
50,
2,
4
],
[
1746642507.7988167,
50,
2,
4
],
[
1746642532.208064,
50,
2,
4
],
[
1746642544.9513242,
50,
2,
4
],
[
1746642559.631669,
50,
3,
6
],
[
1746642593.6477408,
50,
3,
6
],
[
1746642617.395843,
50,
3,
6
],
[
1746642630.4623418,
50,
3,
6
],
[
1746642645.2899709,
50,
4,
8
]
];
var tab_main_worker_cpu_ram_csv_json = [
[
1746613817,
622.0859375,
14
],
[
1746613821,
622.34375,
14
],
[
1746613824,
622.34375,
14
],
[
1746613824,
622.34375,
16.7
],
[
1746613824,
622.34375,
13.3
],
[
1746613824,
622.34375,
13.6
],
[
1746613824,
622.34375,
16.7
],
[
1746615675,
647.9921875,
14.1
],
[
1746615675,
647.9921875,
14.1
],
[
1746615675,
647.9921875,
14.6
],
[
1746615675,
647.9921875,
13
],
[
1746619675,
708.21875,
12.8
],
[
1746619675,
708.21875,
7.2
],
[
1746619675,
708.21875,
7.5
],
[
1746619675,
708.21875,
3.8
],
[
1746628462,
726.45703125,
7.7
],
[
1746628462,
726.45703125,
9.1
],
[
1746628462,
726.45703125,
8.7
],
[
1746628462,
726.45703125,
13.3
],
[
1746633243,
752.13671875,
11.6
],
[
1746633243,
752.13671875,
17.4
],
[
1746633243,
752.13671875,
21.1
],
[
1746633243,
752.13671875,
21.7
],
[
1746637730,
765.0546875,
20.4
],
[
1746637730,
765.0546875,
21.2
],
[
1746637730,
765.0546875,
23.5
],
[
1746637730,
765.0546875,
23.3
],
[
1746642681,
786.328125,
18.1
],
[
1746642681,
786.328125,
15.4
],
[
1746642681,
786.328125,
16.7
],
[
1746642681,
786.328125,
17.4
]
];
var tab_main_worker_cpu_ram_headers_json = [
"timestamp",
"ram_usage_mb",
"cpu_usage_percent"
];
"use strict";
function add_default_layout_data (layout, no_height = 0) {
layout["width"] = get_graph_width();
if (!no_height) {
layout["height"] = get_graph_height();
}
layout["paper_bgcolor"] = 'rgba(0,0,0,0)';
layout["plot_bgcolor"] = 'rgba(0,0,0,0)';
return layout;
}
function get_marker_size() {
return 12;
}
function get_text_color() {
return theme == "dark" ? "white" : "black";
}
function get_font_size() {
return 14;
}
function get_graph_height() {
return 800;
}
function get_font_data() {
return {
size: get_font_size(),
color: get_text_color()
}
}
function get_axis_title_data(name, axis_type = "") {
if(axis_type) {
return {
text: name,
type: axis_type,
font: get_font_data()
};
}
return {
text: name,
font: get_font_data()
};
}
function get_graph_width() {
var width = document.body.clientWidth || window.innerWidth || document.documentElement.clientWidth;
return Math.max(800, Math.floor(width * 0.9));
}
function createTable(data, headers, table_name) {
if (!$("#" + table_name).length) {
console.error("#" + table_name + " not found");
return;
}
new gridjs.Grid({
columns: headers,
data: data,
search: true,
sort: true,
ellipsis: false
}).render(document.getElementById(table_name));
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
colorize_table_entries();
add_colorize_to_gridjs_table();
}
function download_as_file(id, filename) {
var text = $("#" + id).text();
var blob = new Blob([text], {
type: "text/plain"
});
var link = document.createElement("a");
link.href = URL.createObjectURL(blob);
link.download = filename;
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
}
function copy_to_clipboard_from_id (id) {
var text = $("#" + id).text();
copy_to_clipboard(text);
}
function copy_to_clipboard(text) {
if (!navigator.clipboard) {
let textarea = document.createElement("textarea");
textarea.value = text;
document.body.appendChild(textarea);
textarea.select();
try {
document.execCommand("copy");
} catch (err) {
console.error("Copy failed:", err);
}
document.body.removeChild(textarea);
return;
}
navigator.clipboard.writeText(text).then(() => {
console.log("Text copied to clipboard");
}).catch(err => {
console.error("Failed to copy text:", err);
});
}
function filterNonEmptyRows(data) {
var new_data = [];
for (var row_idx = 0; row_idx < data.length; row_idx++) {
var line = data[row_idx];
var line_has_empty_data = false;
for (var col_idx = 0; col_idx < line.length; col_idx++) {
var col_header_name = tab_results_headers_json[col_idx];
var single_data_point = line[col_idx];
if(single_data_point === "" && !special_col_names.includes(col_header_name)) {
line_has_empty_data = true;
continue;
}
}
if(!line_has_empty_data) {
new_data.push(line);
}
}
return new_data;
}
function make_text_in_parallel_plot_nicer() {
$(".parcoords g > g > text").each(function() {
if (theme == "dark") {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "white")
.css("stroke", "black")
.css("stroke-width", "2px")
.css("paint-order", "stroke fill");
} else {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "black")
.css("stroke", "unset")
.css("stroke-width", "unset")
.css("paint-order", "stroke fill");
}
});
}
function createParallelPlot(dataArray, headers, resultNames, ignoreColumns = []) {
if ($("#parallel-plot").data("loaded") == "true") {
return;
}
dataArray = filterNonEmptyRows(dataArray);
const ignoreSet = new Set(ignoreColumns);
const numericalCols = [];
const categoricalCols = [];
const categoryMappings = {};
headers.forEach((header, colIndex) => {
if (ignoreSet.has(header)) return;
const values = dataArray.map(row => row[colIndex]);
if (values.every(val => !isNaN(parseFloat(val)))) {
numericalCols.push({ name: header, index: colIndex });
} else {
categoricalCols.push({ name: header, index: colIndex });
const uniqueValues = [...new Set(values)];
categoryMappings[header] = Object.fromEntries(uniqueValues.map((val, i) => [val, i]));
}
});
const dimensions = [];
numericalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => parseFloat(row[col.index])),
range: [
Math.min(...dataArray.map(row => parseFloat(row[col.index]))),
Math.max(...dataArray.map(row => parseFloat(row[col.index])))
]
});
});
categoricalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => categoryMappings[col.name][row[col.index]]),
tickvals: Object.values(categoryMappings[col.name]),
ticktext: Object.keys(categoryMappings[col.name])
});
});
let colorScale = null;
let colorValues = null;
if (resultNames.length > 1) {
let selectBox = '<select id="result-select" style="margin-bottom: 10px;">';
selectBox += '<option value="none">No color</option>';
var k = 0;
resultNames.forEach(resultName => {
var minMax = result_min_max[k];
if(minMax === undefined) {
minMax = "min [automatically chosen]"
}
selectBox += `<option value="${resultName}">${resultName} (${minMax})</option>`;
k = k + 1;
});
selectBox += '</select>';
$("#parallel-plot").before(selectBox);
$("#result-select").change(function() {
const selectedResult = $(this).val();
if (selectedResult === "none") {
colorValues = null;
colorScale = null;
} else {
const resultCol = numericalCols.find(col => col.name.toLowerCase() === selectedResult.toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
let minResult = Math.min(...colorValues);
let maxResult = Math.max(...colorValues);
var _result_min_max_idx = result_names.indexOf(selectedResult);
let invertColor = false;
if (result_min_max.length > _result_min_max_idx) {
invertColor = result_min_max[_result_min_max_idx] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
}
updatePlot();
});
} else {
let invertColor = false;
if (Object.keys(result_min_max).length == 1) {
invertColor = result_min_max[0] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
const resultCol = numericalCols.find(col => col.name.toLowerCase() === resultNames[0].toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
}
function updatePlot() {
const trace = {
type: 'parcoords',
dimensions: dimensions,
line: colorValues ? { color: colorValues, colorscale: colorScale } : {},
unselected: {
line: {
color: get_text_color(),
opacity: 0
}
},
};
dimensions.forEach(dim => {
if (!dim.line) {
dim.line = {};
}
if (!dim.line.color) {
dim.line.color = 'rgba(169,169,169, 0.01)';
}
});
Plotly.newPlot('parallel-plot', [trace], add_default_layout_data({}));
make_text_in_parallel_plot_nicer();
}
updatePlot();
$("#parallel-plot").data("loaded", "true");
make_text_in_parallel_plot_nicer();
}
function plotWorkerUsage() {
if($("#workerUsagePlot").data("loaded") == "true") {
return;
}
var data = tab_worker_usage_csv_json;
if (!Array.isArray(data) || data.length === 0) {
console.error("Invalid or empty data provided.");
return;
}
let timestamps = [];
let desiredWorkers = [];
let realWorkers = [];
for (let i = 0; i < data.length; i++) {
let entry = data[i];
if (!Array.isArray(entry) || entry.length < 3) {
console.warn("Skipping invalid entry:", entry);
continue;
}
let unixTime = parseFloat(entry[0]);
let desired = parseInt(entry[1], 10);
let real = parseInt(entry[2], 10);
if (isNaN(unixTime) || isNaN(desired) || isNaN(real)) {
console.warn("Skipping invalid numerical values:", entry);
continue;
}
timestamps.push(new Date(unixTime * 1000).toISOString());
desiredWorkers.push(desired);
realWorkers.push(real);
}
let trace1 = {
x: timestamps,
y: desiredWorkers,
mode: 'lines+markers',
name: 'Desired Workers',
line: {
color: 'blue'
}
};
let trace2 = {
x: timestamps,
y: realWorkers,
mode: 'lines+markers',
name: 'Real Workers',
line: {
color: 'red'
}
};
let layout = {
title: "Worker Usage Over Time",
xaxis: {
title: get_axis_title_data("Time", "date")
},
yaxis: {
title: get_axis_title_data("Number of Workers")
},
legend: {
x: 0,
y: 1
}
};
Plotly.newPlot('workerUsagePlot', [trace1, trace2], add_default_layout_data(layout));
$("#workerUsagePlot").data("loaded", "true");
}
function plotCPUAndRAMUsage() {
if($("#mainWorkerCPURAM").data("loaded") == "true") {
return;
}
var timestamps = tab_main_worker_cpu_ram_csv_json.map(row => new Date(row[0] * 1000));
var ramUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[1]);
var cpuUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[2]);
var trace1 = {
x: timestamps,
y: cpuUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'CPU Usage (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: ramUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'RAM Usage (MB)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'CPU and RAM Usage Over Time',
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
overlaying: 'y',
side: 'right',
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var data = [trace1, trace2];
Plotly.newPlot('mainWorkerCPURAM', data, add_default_layout_data(layout));
$("#mainWorkerCPURAM").data("loaded", "true");
}
function plotScatter2d() {
if ($("#plotScatter2d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter2d");
var minInput = document.getElementById("minValue");
var maxInput = document.getElementById("maxValue");
if (!minInput || !maxInput) {
minInput = document.createElement("input");
minInput.id = "minValue";
minInput.type = "number";
minInput.placeholder = "Min Value";
minInput.step = "any";
maxInput = document.createElement("input");
maxInput.id = "maxValue";
maxInput.type = "number";
maxInput.placeholder = "Max Value";
maxInput.step = "any";
var inputContainer = document.createElement("div");
inputContainer.style.marginBottom = "10px";
inputContainer.appendChild(minInput);
inputContainer.appendChild(maxInput);
plotDiv.appendChild(inputContainer);
}
var resultSelect = document.getElementById("resultSelect");
if (result_names.length > 1 && !resultSelect) {
resultSelect = document.createElement("select");
resultSelect.id = "resultSelect";
resultSelect.style.marginBottom = "10px";
var sortedResults = [...result_names].sort();
sortedResults.forEach(result => {
var option = document.createElement("option");
option.value = result;
option.textContent = result;
resultSelect.appendChild(option);
});
var selectContainer = document.createElement("div");
selectContainer.style.marginBottom = "10px";
selectContainer.appendChild(resultSelect);
plotDiv.appendChild(selectContainer);
}
minInput.addEventListener("input", updatePlots);
maxInput.addEventListener("input", updatePlots);
if (resultSelect) {
resultSelect.addEventListener("change", updatePlots);
}
updatePlots();
async function updatePlots() {
var minValue = parseFloat(minInput.value);
var maxValue = parseFloat(maxInput.value);
if (isNaN(minValue)) minValue = -Infinity;
if (isNaN(maxValue)) maxValue = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var selectedResult = resultSelect ? resultSelect.value : result_names[0];
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue !== -Infinity) minResult = Math.max(minResult, minValue);
if (maxValue !== Infinity) maxResult = Math.min(maxResult, maxValue);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 2) {
console.error("Not enough columns for Scatter-Plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
showlegend: false
};
let subDiv = document.createElement("div");
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
symbol: data.map(d => d.result === null ? 'x' : 'circle'),
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter',
showlegend: false
};
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
$("#plotScatter2d").data("loaded", "true");
}
function plotScatter3d() {
if ($("#plotScatter3d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter3d");
if (!plotDiv) {
console.error("Div element with id 'plotScatter3d' not found");
return;
}
plotDiv.innerHTML = "";
var minInput3d = document.getElementById("minValue3d");
var maxInput3d = document.getElementById("maxValue3d");
if (!minInput3d || !maxInput3d) {
minInput3d = document.createElement("input");
minInput3d.id = "minValue3d";
minInput3d.type = "number";
minInput3d.placeholder = "Min Value";
minInput3d.step = "any";
maxInput3d = document.createElement("input");
maxInput3d.id = "maxValue3d";
maxInput3d.type = "number";
maxInput3d.placeholder = "Max Value";
maxInput3d.step = "any";
var inputContainer3d = document.createElement("div");
inputContainer3d.style.marginBottom = "10px";
inputContainer3d.appendChild(minInput3d);
inputContainer3d.appendChild(maxInput3d);
plotDiv.appendChild(inputContainer3d);
}
var select3d = document.getElementById("select3dScatter");
if (result_names.length > 1 && !select3d) {
if (!select3d) {
select3d = document.createElement("select");
select3d.id = "select3dScatter";
select3d.style.marginBottom = "10px";
select3d.innerHTML = result_names.map(name => `<option value="${name}">${name}</option>`).join("");
select3d.addEventListener("change", updatePlots3d);
plotDiv.appendChild(select3d);
}
}
minInput3d.addEventListener("input", updatePlots3d);
maxInput3d.addEventListener("input", updatePlots3d);
updatePlots3d();
async function updatePlots3d() {
var selectedResult = select3d ? select3d.value : result_names[0];
var minValue3d = parseFloat(minInput3d.value);
var maxValue3d = parseFloat(maxInput3d.value);
if (isNaN(minValue3d)) minValue3d = -Infinity;
if (isNaN(maxValue3d)) maxValue3d = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue3d !== -Infinity) minResult = Math.max(minResult, minValue3d);
if (maxValue3d !== Infinity) maxResult = Math.min(maxResult, maxValue3d);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 3) {
console.error("Not enough columns for 3D scatter plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
for (let k = j + 1; k < numericColumns.length; k++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let zCol = numericColumns[k];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let zIndex = tab_results_headers_json.indexOf(zCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
z: parseFloat(row[zIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y) vs ${zCol} (z), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
scene: {
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
zaxis: {
title: get_axis_title_data(zCol)
}
},
showlegend: false
};
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
z: data.map(d => d.z),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter3d',
showlegend: false
};
let subDiv = document.createElement("div");
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
}
$("#plotScatter3d").data("loaded", "true");
}
async function plot_worker_cpu_ram() {
if($("#worker_cpu_ram_pre").data("loaded") == "true") {
return;
}
const logData = $("#worker_cpu_ram_pre").text();
const regex = /^Unix-Timestamp: (\d+), Hostname: ([\w-]+), CPU: ([\d.]+)%, RAM: ([\d.]+) MB \/ ([\d.]+) MB$/;
const hostData = {};
logData.split("\n").forEach(line => {
line = line.trim();
const match = line.match(regex);
if (match) {
const timestamp = new Date(parseInt(match[1]) * 1000);
const hostname = match[2];
const cpu = parseFloat(match[3]);
const ram = parseFloat(match[4]);
if (!hostData[hostname]) {
hostData[hostname] = { timestamps: [], cpuUsage: [], ramUsage: [] };
}
hostData[hostname].timestamps.push(timestamp);
hostData[hostname].cpuUsage.push(cpu);
hostData[hostname].ramUsage.push(ram);
}
});
if (!Object.keys(hostData).length) {
console.log("No valid data found");
return;
}
const container = document.getElementById("cpuRamWorkerChartContainer");
container.innerHTML = "";
var i = 1;
Object.entries(hostData).forEach(([hostname, { timestamps, cpuUsage, ramUsage }], index) => {
const chartId = `workerChart_${index}`;
const chartDiv = document.createElement("div");
chartDiv.id = chartId;
chartDiv.style.marginBottom = "40px";
container.appendChild(chartDiv);
const cpuTrace = {
x: timestamps,
y: cpuUsage,
mode: "lines+markers",
name: "CPU Usage (%)",
yaxis: "y1",
line: {
color: "red"
}
};
const ramTrace = {
x: timestamps,
y: ramUsage,
mode: "lines+markers",
name: "RAM Usage (MB)",
yaxis: "y2",
line: {
color: "blue"
}
};
const layout = {
title: `Worker CPU and RAM Usage - ${hostname}`,
xaxis: {
title: get_axis_title_data("Timestamp", "date")
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
side: "left",
color: "red"
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
side: "right",
overlaying: "y",
color: "blue"
},
showlegend: true
};
Plotly.newPlot(chartId, [cpuTrace, ramTrace], add_default_layout_data(layout));
i++;
});
$("#plot_worker_cpu_ram_button").remove();
$("#worker_cpu_ram_pre").data("loaded", "true");
}
function load_log_file(log_nr, filename) {
var pre_id = `single_run_${log_nr}_pre`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}&filename=${filename}`;
fetch(url)
.then(response => response.json())
.then(data => {
if (data.data) {
$("#" + pre_id).html(data.data);
$("#" + pre_id).data("loaded", true);
} else {
log(`No 'data' key found in response.`);
}
$("#spinner_log_" + log_nr).remove();
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#spinner_log_" + log_nr).remove();
});
}
}
function load_debug_log () {
var pre_id = `here_debuglogs_go`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_debug_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}`;
fetch(url)
.then(response => response.json())
.then(data => {
$("#debug_log_spinner").remove();
if (data.data) {
try {
$("#" + pre_id).html(data.data);
} catch (err) {
$("#" + pre_id).text(`Error loading data: ${err}`);
}
$("#" + pre_id).data("loaded", true);
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
} else {
log(`No 'data' key found in response.`);
}
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#debug_log_spinner").remove();
});
}
}
function plotBoxplot() {
if ($("#plotBoxplot").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough numeric columns for Boxplot");
return;
}
var resultIndex = tab_results_headers_json.findIndex(function(header) {
return result_names.includes(header.toLowerCase());
});
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
var plotDiv = document.getElementById("plotBoxplot");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'box',
name: col,
boxmean: 'sd',
marker: {
color: 'rgb(0, 255, 0)'
},
};
});
let layout = {
title: 'Boxplot of Numerical Columns',
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Value")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotBoxplot").data("loaded", "true");
}
function plotHeatmap() {
if ($("#plotHeatmap").data("loaded") === "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col => {
if (special_col_names.includes(col) || result_names.includes(col)) {
return false;
}
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.every(row => {
let value = parseFloat(row[index]);
return !isNaN(value) && isFinite(value);
});
});
if (numericColumns.length < 2) {
console.error("Not enough valid numeric columns for Heatmap");
return;
}
var columnData = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.map(row => parseFloat(row[index]));
});
var dataMatrix = numericColumns.map((_, i) =>
numericColumns.map((_, j) => {
let values = columnData[i].map((val, index) => (val + columnData[j][index]) / 2);
return values.reduce((a, b) => a + b, 0) / values.length;
})
);
var trace = {
z: dataMatrix,
x: numericColumns,
y: numericColumns,
colorscale: 'Viridis',
type: 'heatmap'
};
var layout = {
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
var plotDiv = document.getElementById("plotHeatmap");
plotDiv.innerHTML = "";
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotHeatmap").data("loaded", "true");
}
function plotHistogram() {
if ($("#plotHistogram").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Histogram");
return;
}
var plotDiv = document.getElementById("plotHistogram");
plotDiv.innerHTML = "";
const colorPalette = ['#ff9999', '#66b3ff', '#99ff99', '#ffcc99', '#c2c2f0', '#ffb3e6'];
let traces = numericColumns.map((col, index) => {
let data = tab_results_csv_json.map(row => parseFloat(row[tab_results_headers_json.indexOf(col)]));
return {
x: data,
type: 'histogram',
name: col,
opacity: 0.7,
marker: {
color: colorPalette[index % colorPalette.length]
},
autobinx: true
};
});
let layout = {
title: 'Histogram of Numerical Columns',
xaxis: {
title: get_axis_title_data("Value")
},
yaxis: {
title: get_axis_title_data("Frequency")
},
showlegend: true,
barmode: 'overlay'
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotHistogram").data("loaded", "true");
}
function plotViolin() {
if ($("#plotViolin").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Violin Plot");
return;
}
var plotDiv = document.getElementById("plotViolin");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'violin',
name: col,
box: {
visible: true
},
line: {
color: 'rgb(0, 255, 0)'
},
marker: {
color: 'rgb(0, 255, 0)'
},
meanline: {
visible: true
},
};
});
let layout = {
title: 'Violin Plot of Numerical Columns',
yaxis: {
title: get_axis_title_data("Value")
},
xaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotViolin").data("loaded", "true");
}
function plotExitCodesPieChart() {
if ($("#plotExitCodesPieChart").data("loaded") == "true") {
return;
}
var exitCodes = tab_job_infos_csv_json.map(row => row[tab_job_infos_headers_json.indexOf("exit_code")]);
var exitCodeCounts = exitCodes.reduce(function(counts, exitCode) {
counts[exitCode] = (counts[exitCode] || 0) + 1;
return counts;
}, {});
var labels = Object.keys(exitCodeCounts);
var values = Object.values(exitCodeCounts);
var plotDiv = document.getElementById("plotExitCodesPieChart");
plotDiv.innerHTML = "";
var trace = {
labels: labels,
values: values,
type: 'pie',
hoverinfo: 'label+percent',
textinfo: 'label+value',
marker: {
colors: ['#ff9999','#66b3ff','#99ff99','#ffcc99','#c2c2f0']
}
};
var layout = {
title: 'Exit Code Distribution',
showlegend: true
};
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotExitCodesPieChart").data("loaded", "true");
}
function plotResultEvolution() {
if ($("#plotResultEvolution").data("loaded") == "true") {
return;
}
result_names.forEach(resultName => {
var relevantColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !col.startsWith("OO_Info") && col.toLowerCase() !== resultName.toLowerCase()
);
var xColumnIndex = tab_results_headers_json.indexOf("trial_index");
var resultIndex = tab_results_headers_json.indexOf(resultName);
let data = tab_results_csv_json.map(row => ({
x: row[xColumnIndex],
y: parseFloat(row[resultIndex])
}));
data.sort((a, b) => a.x - b.x);
let xData = data.map(item => item.x);
let yData = data.map(item => item.y);
let trace = {
x: xData,
y: yData,
mode: 'lines+markers',
name: resultName,
line: {
shape: 'linear'
},
marker: {
size: get_marker_size()
}
};
let layout = {
title: `Evolution of ${resultName} over time`,
xaxis: {
title: get_axis_title_data("Trial-Index")
},
yaxis: {
title: get_axis_title_data(resultName)
},
showlegend: true
};
let subDiv = document.createElement("div");
document.getElementById("plotResultEvolution").appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
});
$("#plotResultEvolution").data("loaded", "true");
}
function plotResultPairs() {
if ($("#plotResultPairs").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotResultPairs");
plotDiv.innerHTML = "";
for (let i = 0; i < result_names.length; i++) {
for (let j = i + 1; j < result_names.length; j++) {
let xName = result_names[i];
let yName = result_names[j];
let xIndex = tab_results_headers_json.indexOf(xName);
let yIndex = tab_results_headers_json.indexOf(yName);
let data = tab_results_csv_json
.filter(row => row[xIndex] !== "" && row[yIndex] !== "")
.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
status: row[tab_results_headers_json.indexOf("trial_status")]
}));
let colors = data.map(d => d.status === "COMPLETED" ? 'green' : (d.status === "FAILED" ? 'red' : 'gray'));
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: colors
},
text: data.map(d => `Status: ${d.status}`),
type: 'scatter',
showlegend: false
};
let layout = {
xaxis: {
title: get_axis_title_data(xName)
},
yaxis: {
title: get_axis_title_data(yName)
},
showlegend: false
};
let subDiv = document.createElement("div");
plotDiv.appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
$("#plotResultPairs").data("loaded", "true");
}
function add_up_down_arrows_for_scrolling () {
const upArrow = document.createElement('div');
const downArrow = document.createElement('div');
const style = document.createElement('style');
style.innerHTML = `
.scroll-arrow {
position: fixed;
right: 10px;
z-index: 100;
cursor: pointer;
font-size: 25px;
display: none;
background-color: green;
color: white;
padding: 5px;
outline: 2px solid white;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.5);
transition: background-color 0.3s, transform 0.3s;
}
.scroll-arrow:hover {
background-color: darkgreen;
transform: scale(1.1);
}
#up-arrow {
top: 10px;
}
#down-arrow {
bottom: 10px;
}
`;
document.head.appendChild(style);
upArrow.id = "up-arrow";
upArrow.classList.add("scroll-arrow");
upArrow.classList.add("invert_in_dark_mode");
upArrow.innerHTML = "↑";
downArrow.id = "down-arrow";
downArrow.classList.add("scroll-arrow");
downArrow.classList.add("invert_in_dark_mode");
downArrow.innerHTML = "↓";
document.body.appendChild(upArrow);
document.body.appendChild(downArrow);
function checkScrollPosition() {
const scrollPosition = window.scrollY;
const pageHeight = document.documentElement.scrollHeight;
const windowHeight = window.innerHeight;
if (scrollPosition > 0) {
upArrow.style.display = "block";
} else {
upArrow.style.display = "none";
}
if (scrollPosition + windowHeight < pageHeight) {
downArrow.style.display = "block";
} else {
downArrow.style.display = "none";
}
}
window.addEventListener("scroll", checkScrollPosition);
upArrow.addEventListener("click", function () {
window.scrollTo({ top: 0, behavior: 'smooth' });
});
downArrow.addEventListener("click", function () {
window.scrollTo({ top: document.documentElement.scrollHeight, behavior: 'smooth' });
});
checkScrollPosition();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
function plotGPUUsage() {
if ($("#tab_gpu_usage").data("loaded") === "true") {
return;
}
Object.keys(gpu_usage).forEach(node => {
const nodeData = gpu_usage[node];
var timestamps = [];
var gpuUtilizations = [];
var temperatures = [];
nodeData.forEach(entry => {
try {
var timestamp = new Date(entry[0]* 1000);
var utilization = parseFloat(entry[1]);
var temperature = parseFloat(entry[2]);
if (!isNaN(timestamp) && !isNaN(utilization) && !isNaN(temperature)) {
timestamps.push(timestamp);
gpuUtilizations.push(utilization);
temperatures.push(temperature);
} else {
console.warn("Invalid data point:", entry);
}
} catch (error) {
console.error("Error processing GPU data entry:", error, entry);
}
});
var trace1 = {
x: timestamps,
y: gpuUtilizations,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Utilization (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: temperatures,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Temperature (°C)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'GPU Usage Over Time - ' + node,
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("GPU Utilization (%)"),
overlaying: 'y',
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("GPU Temperature (°C)"),
overlaying: 'y',
side: 'right',
position: 0.85,
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var divId = 'gpu_usage_plot_' + node;
if (!document.getElementById(divId)) {
var div = document.createElement('div');
div.id = divId;
div.className = 'gpu-usage-plot';
document.getElementById('tab_gpu_usage').appendChild(div);
}
var plotData = [trace1, trace2];
Plotly.newPlot(divId, plotData, add_default_layout_data(layout));
});
$("#tab_gpu_usage").data("loaded", "true");
}
function plotResultsDistributionByGenerationMethod() {
if ("true" === $("#plotResultsDistributionByGenerationMethod").data("loaded")) {
return;
}
var res_col = result_names[0];
var gen_method_col = "generation_node";
var data = {};
tab_results_csv_json.forEach(row => {
var gen_method = row[tab_results_headers_json.indexOf(gen_method_col)];
var result = row[tab_results_headers_json.indexOf(res_col)];
if (!data[gen_method]) {
data[gen_method] = [];
}
data[gen_method].push(result);
});
var traces = Object.keys(data).map(method => {
return {
y: data[method],
type: 'box',
name: method,
boxpoints: 'outliers',
jitter: 0.5,
pointpos: 0
};
});
var layout = {
title: 'Distribution of Results by Generation Method',
yaxis: {
title: get_axis_title_data(res_col)
},
xaxis: {
title: get_axis_title_data("Generation Method")
},
boxmode: 'group'
};
Plotly.newPlot("plotResultsDistributionByGenerationMethod", traces, add_default_layout_data(layout));
$("#plotResultsDistributionByGenerationMethod").data("loaded", "true");
}
function plotJobStatusDistribution() {
if ($("#plotJobStatusDistribution").data("loaded") === "true") {
return;
}
var status_col = "trial_status";
var status_counts = {};
tab_results_csv_json.forEach(row => {
var status = row[tab_results_headers_json.indexOf(status_col)];
if (status) {
status_counts[status] = (status_counts[status] || 0) + 1;
}
});
var statuses = Object.keys(status_counts);
var counts = Object.values(status_counts);
var colors = statuses.map((status, i) =>
status === "FAILED" ? "#FF0000" : `hsl(${30 + ((i * 137) % 330)}, 70%, 50%)`
);
var trace = {
x: statuses,
y: counts,
type: 'bar',
marker: { color: colors }
};
var layout = {
title: 'Distribution of Job Status',
xaxis: { title: 'Trial Status' },
yaxis: { title: 'Nr. of jobs' }
};
Plotly.newPlot("plotJobStatusDistribution", [trace], add_default_layout_data(layout));
$("#plotJobStatusDistribution").data("loaded", "true");
}
function _colorize_table_entries_by_generation_method () {
document.querySelectorAll('[data-column-id="generation_node"]').forEach(el => {
let text = el.textContent.toLowerCase();
let color = text.includes("manual") ? "green" :
text.includes("sobol") ? "orange" :
text.includes("saasbo") ? "pink" :
text.includes("uniform") ? "lightblue" :
text.includes("legacy_gpei") ? "sienna" :
text.includes("bo_mixed") ? "aqua" :
text.includes("randomforest") ? "darkseagreen" :
text.includes("external_generator") ? "purple" :
text.includes("botorch") ? "yellow" : "";
if (color !== "") {
el.style.backgroundColor = color;
}
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_trial_status () {
document.querySelectorAll('[data-column-id="trial_status"]').forEach(el => {
let color = el.textContent.includes("COMPLETED") ? "lightgreen" :
el.textContent.includes("RUNNING") ? "orange" :
el.textContent.includes("FAILED") ? "red" :
el.textContent.includes("ABANDONED") ? "yellow" : "";
if (color) el.style.backgroundColor = color;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_run_time() {
let cells = [...document.querySelectorAll('[data-column-id="run_time"]')];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => !isNaN(v));
if (values.length === 0) return;
let min = Math.min(...values);
let max = Math.max(...values);
let range = max - min || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value)) return;
let ratio = (value - min) / range;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_results() {
result_names.forEach((name, index) => {
let minMax = result_min_max[index];
let selector_query = `[data-column-id="${name}"]`;
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => v > 0 && !isNaN(v));
if (values.length === 0) return;
let logValues = values.map(v => Math.log(v));
let logMin = Math.min(...logValues);
let logMax = Math.max(...logValues);
let logRange = logMax - logMin || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value) || value <= 0) return;
let logValue = Math.log(value);
let ratio = (logValue - logMin) / logRange;
if (minMax === "max") ratio = 1 - ratio;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
});
}
function _colorize_table_entries_by_generation_node_or_hostname() {
["hostname", "generation_node"].forEach(element => {
let selector_query = '[data-column-id="' + element + '"]:not(.gridjs-th)';
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let uniqueValues = [...new Set(cells.map(el => el.textContent.trim()))];
let colorMap = {};
uniqueValues.forEach((value, index) => {
let hue = Math.round((360 / uniqueValues.length) * index);
colorMap[value] = `hsl(${hue}, 70%, 60%)`;
});
cells.forEach(el => {
let value = el.textContent.trim();
if (colorMap[value]) {
el.style.backgroundColor = colorMap[value];
el.classList.add("invert_in_dark_mode");
}
});
});
}
function colorize_table_entries () {
setTimeout(() => {
if (typeof result_names !== "undefined" && Array.isArray(result_names) && result_names.length > 0) {
_colorize_table_entries_by_trial_status();
_colorize_table_entries_by_results();
_colorize_table_entries_by_run_time();
_colorize_table_entries_by_generation_method();
_colorize_table_entries_by_generation_node_or_hostname();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
}, 300);
}
function add_colorize_to_gridjs_table () {
let searchInput = document.querySelector(".gridjs-search-input");
if (searchInput) {
searchInput.addEventListener("input", colorize_table_entries);
}
}
function updatePreWidths() {
var width = window.innerWidth * 0.95;
var pres = document.getElementsByTagName('pre');
for (var i = 0; i < pres.length; i++) {
pres[i].style.width = width + 'px';
}
}
function demo_mode(nr_sec = 3) {
let i = 0;
let tabs = $('menu[role="tablist"] > button');
setInterval(() => {
tabs.attr('aria-selected', 'false').removeClass('active');
let tab = tabs.eq(i % tabs.length);
tab.attr('aria-selected', 'true').addClass('active');
tab.trigger('click');
i++;
}, nr_sec * 1000);
}
function resizePlotlyCharts() {
const plotlyElements = document.querySelectorAll('.js-plotly-plot');
if (plotlyElements.length) {
const windowWidth = window.innerWidth;
const windowHeight = window.innerHeight;
const newWidth = windowWidth * 0.9;
const newHeight = windowHeight * 0.9;
plotlyElements.forEach(function(element, index) {
const layout = {
width: newWidth,
height: newHeight,
plot_bgcolor: 'rgba(0, 0, 0, 0)',
paper_bgcolor: 'rgba(0, 0, 0, 0)',
};
Plotly.relayout(element, layout)
});
}
make_text_in_parallel_plot_nicer();
apply_theme_based_on_system_preferences();
}
window.addEventListener('load', updatePreWidths);
window.addEventListener('resize', updatePreWidths);
$(document).ready(function() {
colorize_table_entries();
add_up_down_arrows_for_scrolling();
add_colorize_to_gridjs_table();
});
window.addEventListener('resize', function() {
resizePlotlyCharts();
});
"use strict";
function get_row_by_index(idx) {
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
var trial_index_col_idx = tab_results_headers_json.indexOf("trial_index");
if(trial_index_col_idx == -1) {
error(`"trial_index" could not be found in tab_results_headers_json. Cannot continue`);
return null;
}
for (var i = 0; i < tab_results_csv_json.length; i++) {
var row = tab_results_csv_json[i];
var trial_index = row[trial_index_col_idx];
if (trial_index == idx) {
return row;
}
}
return null;
}
function load_pareto_graph_from_idxs () {
if (!Object.keys(window).includes("pareto_idxs")) {
error("pareto_idxs is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
if(pareto_idxs === null) {
var err_msg = "pareto_idxs is null. Cannot plot or create tables from empty data. This can be caused by a defective <tt>pareto_idxs.json</tt> file. Please try reloading, or re-calculating the pareto-front and re-submitting if this problem persists.";
$("#pareto_from_idxs_table").html(`<div class="caveat alarm">${err_msg}</div>`);
return;
}
var table = get_pareto_table_data_from_idx();
var html_tables = createParetoTablesFromData(table);
$("#pareto_from_idxs_table").html(html_tables);
renderParetoFrontPlots(table);
apply_theme_based_on_system_preferences();
}
function renderParetoFrontPlots(data) {
try {
let container = document.getElementById("pareto_front_idxs_plot_container");
if (!container) {
console.error("DIV with id 'pareto_front_idxs_plot_container' not found.");
return;
}
container.innerHTML = "";
if(data === undefined || data === null) {
var err_msg = "There was an error getting the data for Pareto-Fronts. See the developer's console to see further details.";
$("#pareto_from_idxs_table").html(`<div class="caveat alarm">${err_msg}</div>`);
return;
}
Object.keys(data).forEach((key, idx) => {
if (!key.startsWith("Pareto front for ")) return;
let label = key.replace("Pareto front for ", "");
let [xKey, yKey] = label.split("/");
if (!xKey || !yKey) {
console.warn("Could not extract two objectives from key:", key);
return;
}
let entries = data[key];
let x = [];
let y = [];
let hoverTexts = [];
entries.forEach((entry) => {
let results = entry.results || {};
let values = entry.values || {};
let xVal = (results[xKey] || [])[0];
let yVal = (results[yKey] || [])[0];
if (xVal === undefined || yVal === undefined) {
console.warn("Missing values for", xKey, yKey, "in", entry);
return;
}
x.push(xVal);
y.push(yVal);
let hoverInfo = [];
if ("trial_index" in values) {
hoverInfo.push(`<b>Trial Index:</b> ${values.trial_index[0]}`);
}
Object.keys(values)
.filter(k => k !== "trial_index")
.sort()
.forEach(k => {
hoverInfo.push(`<b>${k}:</b> ${values[k][0]}`);
});
Object.keys(results)
.sort()
.forEach(k => {
hoverInfo.push(`<b>${k}:</b> ${results[k][0]}`);
});
hoverTexts.push(hoverInfo.join("<br>"));
});
let wrapper = document.createElement("div");
wrapper.style.marginBottom = "30px";
let titleEl = document.createElement("h3");
titleEl.textContent = `Pareto Front: ${xKey} (${getMinMaxByResultName(xKey)}) vs ${yKey} (${getMinMaxByResultName(yKey)})`;
wrapper.appendChild(titleEl);
let divId = `pareto_plot_${idx}`;
let plotDiv = document.createElement("div");
plotDiv.id = divId;
plotDiv.style.width = "100%";
plotDiv.style.height = "400px";
wrapper.appendChild(plotDiv);
container.appendChild(wrapper);
let trace = {
x: x,
y: y,
text: hoverTexts,
hoverinfo: "text",
mode: "markers",
type: "scatter",
marker: {
size: 8,
color: 'rgb(31, 119, 180)',
line: {
width: 1,
color: 'black'
}
},
name: label
};
let layout = {
xaxis: { title: { text: xKey } },
yaxis: { title: { text: yKey } },
margin: { t: 10, l: 60, r: 20, b: 50 },
hovermode: "closest",
showlegend: false
};
Plotly.newPlot(divId, [trace], add_default_layout_data(layout, 1));
});
} catch (e) {
console.error("Error while rendering Pareto front plots:", e);
}
}
function createParetoTablesFromData(data) {
try {
var container = document.createElement("div");
var parsedData;
try {
parsedData = typeof data === "string" ? JSON.parse(data) : data;
} catch (e) {
console.error("JSON parsing failed:", e);
return container;
}
for (var sectionTitle in parsedData) {
if (!parsedData.hasOwnProperty(sectionTitle)) {
continue;
}
var sectionData = parsedData[sectionTitle];
var heading = document.createElement("h2");
heading.textContent = sectionTitle;
container.appendChild(heading);
var table = document.createElement("table");
table.style.borderCollapse = "collapse";
table.style.marginBottom = "2em";
table.style.width = "100%";
var thead = document.createElement("thead");
var headerRow = document.createElement("tr");
var allValueKeys = new Set();
var allResultKeys = new Set();
sectionData.forEach(entry => {
var values = entry.values || {};
var results = entry.results || {};
Object.keys(values).forEach(key => {
allValueKeys.add(key);
});
Object.keys(results).forEach(key => {
allResultKeys.add(key);
});
});
var sortedValueKeys = Array.from(allValueKeys).sort();
var sortedResultKeys = Array.from(allResultKeys).sort();
if (sortedValueKeys.includes("trial_index")) {
sortedValueKeys = sortedValueKeys.filter(k => k !== "trial_index");
sortedValueKeys.unshift("trial_index");
}
var allColumns = [...sortedValueKeys, ...sortedResultKeys];
allColumns.forEach(col => {
var th = document.createElement("th");
th.textContent = col;
th.style.border = "1px solid black";
th.style.padding = "4px";
headerRow.appendChild(th);
});
thead.appendChild(headerRow);
table.appendChild(thead);
var tbody = document.createElement("tbody");
sectionData.forEach(entry => {
var tr = document.createElement("tr");
allColumns.forEach(col => {
var td = document.createElement("td");
td.style.border = "1px solid black";
td.style.padding = "4px";
var value = null;
if (col in entry.values) {
value = entry.values[col];
} else if (col in entry.results) {
value = entry.results[col];
}
if (Array.isArray(value)) {
td.textContent = value.join(", ");
} else {
td.textContent = value !== null && value !== undefined ? value : "";
}
tr.appendChild(td);
});
tbody.appendChild(tr);
});
table.appendChild(tbody);
container.appendChild(table);
}
return container;
} catch (err) {
console.error("Unexpected error:", err);
var errorDiv = document.createElement("div");
errorDiv.textContent = "Error generating tables.";
return errorDiv;
}
}
function get_pareto_table_data_from_idx () {
if (!Object.keys(window).includes("pareto_idxs")) {
error("pareto_idxs is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
var x_keys = Object.keys(pareto_idxs);
var tables = {};
for (var i = 0; i < x_keys.length; i++) {
var x_key = x_keys[i];
var y_keys = Object.keys(pareto_idxs[x_key]);
for (var j = 0; j < y_keys.length; j++) {
var y_key = y_keys[j];
var indices = pareto_idxs[x_key][y_key];
for (var k = 0; k < indices.length; k++) {
var idx = indices[k];
var row = get_row_by_index(idx);
if(row === null) {
error(`Error getting the row for index ${idx}`);
return;
}
var row_dict = {
"results": {},
"values": {},
};
for (var l = 0; l < tab_results_headers_json.length; l++) {
var header = tab_results_headers_json[l];
if (!special_col_names.includes(header) || header == "trial_index") {
var val = row[l];
if (result_names.includes(header)) {
if (!Object.keys(row_dict["results"]).includes(header)) {
row_dict["results"][header] = [];
}
row_dict["results"][header].push(val);
} else {
if (!Object.keys(row_dict["values"]).includes(header)) {
row_dict["values"][header] = [];
}
row_dict["values"][header].push(val);
}
}
}
var table_key = `Pareto front for ${x_key}/${y_key}`;
if(!Object.keys(tables).includes(table_key)) {
tables[table_key] = [];
}
tables[table_key].push(row_dict);
}
}
}
return tables;
}
function getMinMaxByResultName(resultName) {
try {
if (typeof resultName !== "string") {
error("Parameter resultName must be a string");
return;
}
if (!Array.isArray(result_names)) {
error("Global variable result_names is not an array or undefined");
return;
}
if (!Array.isArray(result_min_max)) {
error("Global variable result_min_max is not an array or undefined");
return;
}
if (result_names.length !== result_min_max.length) {
error("Global arrays result_names and result_min_max must have the same length");
return;
}
var index = result_names.indexOf(resultName);
if (index === -1) {
error("Result name '" + resultName + "' not found in result_names");
return;
}
var minMaxValue = result_min_max[index];
if (minMaxValue !== "min" && minMaxValue !== "max") {
error("Value for result name '" + resultName + "' is invalid: expected 'min' or 'max'");
return;
}
return minMaxValue;
} catch (e) {
error("Unexpected error: " + e.message);
}
}
$(document).ready(function() {
colorize_table_entries();;
plotWorkerUsage();;
plotCPUAndRAMUsage();;
createParallelPlot(tab_results_csv_json, tab_results_headers_json, result_names, special_col_names);;
plotScatter2d();;
plotScatter3d();
plotResultsDistributionByGenerationMethod();;
plotJobStatusDistribution();;
plotBoxplot();;
plotViolin();;
plotHistogram();;
plotHeatmap();;
plotResultEvolution();
colorize_table_entries();
});
</script>
<h1> Overview</h1>
<button onclick="window.open('https://imageseg.scads.de/omniax/gui?partition=barnard&experiment_name=vergl_botorch&reservation=&account=&mem_gb=10&time=600&worker_timeout=30&max_eval=2000&num_parallel_jobs=50&gpus=0&num_random_steps=50&follow=1&live_share=1&send_anonymized_usage_stats=1&checkout_to_latest_tested_version=1&constraints=&result_names=RESULT%3Dmin&run_program=bash%20%2Fdata%2Fhorse%2Fws%2Fpwinkler-oopt%2Frun.sh%20%25(epochs)%20%25(lr)%20%25(bsz)%20%25(da)%20%25(db)&cpus_per_task=1&nodes_per_job=1&seed=&verbose=0&generate_all_jobs_at_once=0&debug=0&revert_to_random_when_seemingly_exhausted=1&gridsearch=0&model=BOTORCH_MODULAR&external_generator=&n_estimators_randomforest=100&installation_method=clone&run_mode=local&decimalrounding=4&disable_tqdm=0&verbose_tqdm=0&force_local_execution=0&auto_exclude_defective_hosts=0&show_sixel_general=0&show_sixel_trial_index_result=0&show_sixel_scatter=0&show_worker_percentage_table_at_end=0&enforce_sequential_optimization=0&occ=0&occ_type=euclid&no_sleep=0&slurm_use_srun=0&verbose_break_run_search_table=0&abbreviate_job_names=0&main_process_gb=8&max_nr_of_zero_results=50&pareto_front_confidence=1&slurm_signal_delay_s=0&max_failed_jobs=0&exclude=&username=&generation_strategy=&root_venv_dir=&workdir=&parameter_0_name=epochs&parameter_0_type=range&parameter_0_min=10&parameter_0_max=200&parameter_0_number_type=int&parameter_0_log_scale=false&parameter_1_name=lr&parameter_1_type=range&parameter_1_min=0.0001&parameter_1_max=0.01&parameter_1_number_type=float&parameter_1_log_scale=false&parameter_2_name=bsz&parameter_2_type=range&parameter_2_min=4&parameter_2_max=32&parameter_2_number_type=int&parameter_2_log_scale=false&parameter_3_name=da&parameter_3_type=range&parameter_3_min=10&parameter_3_max=100&parameter_3_number_type=int&parameter_3_log_scale=false&parameter_4_name=db&parameter_4_type=range&parameter_4_min=10&parameter_4_max=100&parameter_4_number_type=int&parameter_4_log_scale=false&partition=barnard&num_parameters=5', '_blank')">GUI page with all the settings of this job</button><br><br><h2>Experiment overview: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Setting</th><th>Value </th></tr></thead><tbody><tr><td> Model for non-random steps</td><td>BOTORCH_MODULAR </td></tr><tr><td> Max. nr. evaluations</td><td>2000 </td></tr><tr><td> Number random steps</td><td>50 </td></tr><tr><td> Nr. of workers (parameter)</td><td>50 </td></tr><tr><td> Main process memory (GB)</td><td>8 </td></tr><tr><td> Worker memory (GB)</td><td>10 </td></tr></tbody></table><h2>Experiment parameters: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Name</th><th>Type</th><th>Lower bound</th><th>Upper bound</th><th>Type</th><th>Log Scale? </th></tr></thead><tbody><tr><td> epochs</td><td>range</td><td>10</td><td>200</td><td>int</td><td>No </td></tr><tr><td> lr</td><td>range</td><td>0.0001</td><td>0.01</td><td>float</td><td>No </td></tr><tr><td> bsz</td><td>range</td><td>4</td><td>32</td><td>int</td><td>No </td></tr><tr><td> da</td><td>range</td><td>10</td><td>100</td><td>int</td><td>No </td></tr><tr><td> db</td><td>range</td><td>10</td><td>100</td><td>int</td><td>No </td></tr></tbody></table><h2>Number of evaluations</h2>
<table>
<tbody>
<tr>
<th>Failed</th>
<th>Succeeded</th>
<th>Running</th>
<th>Total</th>
</tr>
<tr>
<td>0</td>
<td>345</td>
<td>1</td>
<td>346</td>
</tr>
</tbody>
</table>
<h2>Result names and types</h2>
<table>
<tr><th>name</th><th>min/max</th></tr>
<tr>
<td>RESULT</td>
<td>min</td>
</tr>
</table>
<h2>Last progressbar status</h2>
<tt>2025-05-07 22:30:19: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job</tt><br>
<h2>Git-Version</h2>
<tt>Commit: 239ad60f178b387e77b7a08ec08d8ede567899b7 (6091)
</tt>
<h1> Results</h1>
<div id='tab_results_csv_table'></div>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<pre id='tab_results_csv_table_pre'>trial_index,arm_name,trial_status,generation_method,generation_node,RESULT,epochs,lr,bsz,da,db
0,0_0,COMPLETED,Sobol,SOBOL,0.300000000000000044408920985006,72,0.002159496855735779010515562604,5,10,43
1,1_0,COMPLETED,Sobol,SOBOL,0.247368421052631570766777713288,152,0.008417613819148392351188192606,20,76,63
2,2_0,COMPLETED,Sobol,SOBOL,0.273684210526315752076698117889,187,0.004052058681845665741305673180,11,39,88
3,3_0,COMPLETED,Sobol,SOBOL,0.621052631578947300639015338675,12,0.005219838040601462378353936344,25,93,16
4,4_0,COMPLETED,Sobol,SOBOL,0.305263157894736791853063095914,53,0.003484899180196225632055728738,22,82,25
5,5_0,COMPLETED,Sobol,SOBOL,0.236842105263157853833888566442,169,0.007131449778471143224889416956,8,50,92
6,6_0,COMPLETED,Sobol,SOBOL,0.415789473684210486581491750258,110,0.000292149827815592290271989873,31,65,70
7,7_0,COMPLETED,Sobol,SOBOL,0.268421052631578893610253544466,90,0.009019060893822461108526589157,16,21,44
8,8_0,COMPLETED,Sobol,SOBOL,0.363157894736842123961650941055,104,0.004684118163399399181745508258,31,47,59
9,9_0,COMPLETED,Sobol,SOBOL,0.294736842105263185942476411583,119,0.005856737259868532823048337121,17,85,33
10,10_0,COMPLETED,Sobol,SOBOL,0.289473684210526327476031838160,155,0.001568516799993813215507998393,25,30,14
11,11_0,COMPLETED,Sobol,SOBOL,0.294736842105263185942476411583,45,0.007821812945324928614820869655,10,56,80
12,12_0,COMPLETED,Sobol,SOBOL,0.405263157894736880670905065926,27,0.000885487682744860770192585342,14,67,99
13,13_0,COMPLETED,Sobol,SOBOL,0.268421052631578893610253544466,197,0.009617262384947389622369406936,29,18,27
14,14_0,COMPLETED,Sobol,SOBOL,0.357894736842105265495206367632,137,0.002855278081446886283972785847,6,96,54
15,15_0,COMPLETED,Sobol,SOBOL,0.278947368421052610543142691313,62,0.006497021691780537760996239172,20,36,74
16,16_0,COMPLETED,Sobol,SOBOL,0.347368421052631548562317220785,67,0.003181572284922003657908762264,17,63,20
17,17_0,COMPLETED,Sobol,SOBOL,0.305263157894736791853063095914,130,0.006828149437066168350729533643,32,25,86
18,18_0,COMPLETED,Sobol,SOBOL,0.357894736842105265495206367632,189,0.001216615944355726314229926288,10,80,64
19,19_0,COMPLETED,Sobol,SOBOL,0.336842105263157942651730536454,31,0.009943555924575776805429683236,24,54,38
20,20_0,COMPLETED,Sobol,SOBOL,0.431578947368421061980825470528,36,0.001856138612143695557424316611,27,43,48
21,21_0,COMPLETED,Sobol,SOBOL,0.294736842105263185942476411583,159,0.008114269184414296676166600264,13,92,69
22,22_0,COMPLETED,Sobol,SOBOL,0.331578947368421084185285963031,124,0.004976573886163533806670233872,21,14,93
23,23_0,COMPLETED,Sobol,SOBOL,0.247368421052631570766777713288,97,0.006144359735865146873723396936,6,75,21
24,24_0,COMPLETED,Sobol,SOBOL,0.410526315789473739137349639350,81,0.000579772082529962239257070866,18,100,82
25,25_0,COMPLETED,Sobol,SOBOL,0.363157894736842123961650941055,114,0.009311516690347344110678662332,4,34,10
26,26_0,COMPLETED,Sobol,SOBOL,0.331578947368421084185285963031,175,0.003777355640567839258764371024,27,71,37
27,27_0,COMPLETED,Sobol,SOBOL,0.342105263157894690095872647362,46,0.007419071516860276972737953116,12,17,58
28,28_0,COMPLETED,Sobol,SOBOL,0.315789473684210508785952242761,16,0.004378352442756295453962778197,8,28,76
29,29_0,COMPLETED,Sobol,SOBOL,0.300000000000000044408920985006,181,0.005550966228451580629366102215,23,60,50
30,30_0,COMPLETED,Sobol,SOBOL,0.363157894736842123961650941055,145,0.002490624342858791580995747594,15,46,31
31,31_0,COMPLETED,Sobol,SOBOL,0.278947368421052610543142691313,75,0.008743908096384256367628040607,29,89,98
32,32_0,COMPLETED,Sobol,SOBOL,0.405263157894736880670905065926,80,0.003919512849114836598729549877,25,73,46
33,33_0,COMPLETED,Sobol,SOBOL,0.310526315789473650319507669337,143,0.005072050877008587969896336034,10,13,71
34,34_0,COMPLETED,Sobol,SOBOL,0.342105263157894690095872647362,179,0.002022226462699473151923834635,32,89,89
35,35_0,COMPLETED,Sobol,SOBOL,0.352631578947368407028761794209,20,0.008293810995388775295089622830,16,42,25
36,36_0,COMPLETED,Sobol,SOBOL,0.463157894736842101757190448552,50,0.000100348113849759110476241031,6,53,18
37,37_0,COMPLETED,Sobol,SOBOL,0.268421052631578893610253544466,173,0.008853110256697983154738906819,21,78,88
38,38_0,COMPLETED,Sobol,SOBOL,0.352631578947368407028761794209,114,0.003327125069499015704715949582,14,25,61
39,39_0,COMPLETED,Sobol,SOBOL,0.321052631578947367252396816184,87,0.006950882416497917125342009825,28,61,42
40,40_0,COMPLETED,Sobol,SOBOL,0.478947368421052677156524168822,95,0.001378132767602801428408199058,11,87,72
41,41_0,COMPLETED,Sobol,SOBOL,0.326315789473684225718841389607,128,0.007654519567545503902494807846,26,44,53
42,42_0,COMPLETED,Sobol,SOBOL,0.263157894736842146166111433558,165,0.004527379948645830938513956454,5,58,29
43,43_0,COMPLETED,Sobol,SOBOL,0.284210526315789469009587264736,36,0.005675059061031789524320867457,19,28,99
44,44_0,COMPLETED,Sobol,SOBOL,0.352631578947368407028761794209,30,0.002721653866581618622794147555,30,17,78
45,45_0,COMPLETED,Sobol,SOBOL,0.363157894736842123961650941055,194,0.006350236789230257958283054620,16,70,13
46,46_0,COMPLETED,Sobol,SOBOL,0.410526315789473739137349639350,134,0.000746917662210762616122050606,22,33,35
47,47_0,COMPLETED,Sobol,SOBOL,0.363157894736842123961650941055,65,0.009494835346657782421120330696,7,98,60
48,48_0,COMPLETED,Sobol,SOBOL,0.368421052631578982428095514479,58,0.001034539474360644849618151575,26,23,23
49,49_0,COMPLETED,Sobol,SOBOL,0.226315789473684247923301882111,139,0.009787291585747152217189537282,12,66,93
50,50_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.310526315789473650319507669337,114,0.009191625632155343839091443670,26,49,75
51,51_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.210526315789473672523968161840,122,0.008973844702663847164303412285,8,48,92
52,52_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,151,0.009665452023960833041749118877,20,56,96
53,53_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,126,0.008561401127126512175524730708,4,56,100
54,54_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,126,0.010000000000000000208166817117,4,45,98
55,55_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,172,0.006149551698917648211162312322,13,19,50
56,56_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,119,0.010000000000000000208166817117,11,97,27
57,57_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,179,0.010000000000000000208166817117,4,33,100
58,58_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,196,0.007391579804199998812719307750,18,64,97
59,59_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,180,0.008285225795562229170188039973,32,10,100
60,60_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,178,0.010000000000000000208166817117,32,46,100
61,61_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,172,0.010000000000000000208166817117,4,38,45
62,62_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.007519436911065424493372244541,4,10,100
63,63_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.352631578947368407028761794209,56,0.010000000000000000208166817117,4,10,100
64,64_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,200,0.010000000000000000208166817117,4,60,63
65,65_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,168,0.009319292839995364785554698983,32,41,22
66,66_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.199999999999999955591079014994,169,0.010000000000000000208166817117,4,11,14
67,67_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,175,0.010000000000000000208166817117,4,55,62
68,68_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.010000000000000000208166817117,4,21,32
69,69_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,181,0.010000000000000000208166817117,4,31,17
70,70_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,170,0.007276118271745541689343728109,4,10,10
71,71_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.336842105263157942651730536454,200,0.010000000000000000208166817117,32,94,100
72,72_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,200,0.010000000000000000208166817117,4,89,100
73,73_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,200,0.010000000000000000208166817117,32,50,61
74,74_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.342105263157894690095872647362,141,0.009347902986113378401289430997,32,10,30
75,75_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.352631578947368407028761794209,200,0.007619937421204864627655162224,4,57,77
76,76_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,200,0.007741583027187160306881175131,32,41,67
77,77_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.010000000000000000208166817117,4,94,10
78,78_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,154,0.010000000000000000208166817117,32,68,99
79,79_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,149,0.010000000000000000208166817117,32,38,74
80,80_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,200,0.010000000000000000208166817117,32,61,100
81,81_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.310526315789473650319507669337,124,0.010000000000000000208166817117,32,56,100
82,82_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,163,0.008221007450340026348478694729,32,43,99
83,83_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.268421052631578893610253544466,180,0.005539100989525490119358419605,32,12,12
84,84_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.315789473684210508785952242761,200,0.008217068266138187124236758052,32,62,77
85,85_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,200,0.006635305364903319562397410181,32,49,14
86,86_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.289473684210526327476031838160,188,0.002849797684903414632384688332,16,10,10
87,87_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,129,0.010000000000000000208166817117,4,86,100
88,88_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.010000000000000000208166817117,32,13,86
89,89_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.210526315789473672523968161840,200,0.005718411287274551002557387847,32,37,93
90,90_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,200,0.005890238504006059007400697425,4,28,20
91,91_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,198,0.007473330891646649994097817427,10,47,100
92,92_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,195,0.006947588586385951281432227233,32,57,96
93,93_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,200,0.006999312336574543130796044466,4,47,55
94,94_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,200,0.003862484221283773652699800039,9,12,76
95,95_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,148,0.007496572519135360525288636069,32,60,100
96,96_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,200,0.006388692916692817642954071999,4,39,83
97,97_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,200,0.004015615504888952851103578467,31,13,10
98,98_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,197,0.008814566263303845114474022182,4,48,87
99,99_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,198,0.006395623121673584855761962586,32,19,81
100,100_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.336842105263157942651730536454,199,0.000100000000000000004792173602,6,14,99
101,101_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.336842105263157942651730536454,200,0.003832715794613859080358642117,32,14,100
102,102_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.005647053488861257866671117256,4,39,100
103,103_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,132,0.006992551159871015359348334073,4,44,100
104,104_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.336842105263157942651730536454,197,0.006650613252558020167815033830,31,47,59
105,105_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,178,0.005200489102998382372200492085,4,10,10
106,106_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,125,0.006618492573964776005956966998,4,11,68
107,107_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.315789473684210508785952242761,200,0.003405501770698202753523409214,4,10,10
108,108_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,198,0.006353666458654739189471083449,16,10,10
109,109_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.007411690616140210324802595210,8,29,36
110,110_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,171,0.007444835264396485081939136563,4,28,58
111,111_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,113,0.007303532469567609354543780142,6,10,10
112,112_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,185,0.006379777375644118779518532136,12,100,99
113,113_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,131,0.010000000000000000208166817117,32,41,99
114,114_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.405263157894736880670905065926,13,0.009639939004401116770526236621,32,12,100
115,115_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,196,0.006964278907844177399222296287,6,79,100
116,116_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,137,0.007201578440295736648069091501,32,10,10
117,117_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.331578947368421084185285963031,196,0.007269895243506473841987869378,32,97,100
118,118_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,176,0.007715661976693974355434590962,5,68,100
119,119_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,182,0.007126128842221518891464349110,32,13,36
120,120_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,150,0.005608510325837110475910574081,4,37,10
121,121_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,199,0.010000000000000000208166817117,4,58,100
122,122_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,176,0.007544040089995325548688498429,4,54,100
123,123_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.268421052631578893610253544466,200,0.006587876248689402726432806645,24,74,98
124,124_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.007245983778395012619988335700,32,35,10
125,125_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,199,0.007716978661716038072337919829,32,53,100
126,126_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,200,0.010000000000000000208166817117,11,100,28
127,127_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,164,0.008732151751778332790521197637,4,61,100
128,128_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,200,0.007955268831545597718601925408,4,100,100
129,129_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.331578947368421084185285963031,171,0.010000000000000000208166817117,32,65,36
130,130_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,146,0.010000000000000000208166817117,32,96,85
131,131_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.009247274038975425089481596785,32,100,10
132,132_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,170,0.010000000000000000208166817117,15,100,100
133,133_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,139,0.010000000000000000208166817117,4,10,62
134,134_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,200,0.005300411505429713371340127992,22,10,60
135,135_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,200,0.009147550775024406582991431947,32,100,100
136,136_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,200,0.006276218137709642375110519197,4,14,10
137,137_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,200,0.008090331956127596452210681832,4,100,72
138,138_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,170,0.008065431311046046200519121783,32,65,100
139,139_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,200,0.010000000000000000208166817117,25,72,81
140,140_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,200,0.006818927987493387209150252914,4,67,74
141,141_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,181,0.009807948852069751921600726519,18,71,100
142,142_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,192,0.008778703904754868794779731900,10,78,86
143,143_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,200,0.008723836780966809020809726860,20,72,100
144,144_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,200,0.010000000000000000208166817117,21,82,100
145,145_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.008205562673371776319375392461,4,83,97
146,146_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.315789473684210508785952242761,200,0.008188855513530147317569074517,32,71,100
147,147_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,194,0.005240123944012948717374733576,32,10,29
148,148_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,149,0.008456781280274027964849459238,4,82,94
149,149_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,107,0.010000000000000000208166817117,32,88,100
150,150_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.009220205928450166121823627918,13,93,100
151,151_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,200,0.006636325520254724059932005531,4,53,14
152,152_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,16,0.009224157563270178952774536185,4,72,100
153,153_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,131,0.009055002469130544670572469101,4,42,19
154,154_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,200,0.005210675979331394307159097679,4,10,35
155,155_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,194,0.006440283186455347461119025354,30,10,94
156,156_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.342105263157894690095872647362,64,0.010000000000000000208166817117,32,66,96
157,157_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,200,0.006366795333871817959281447230,32,10,47
158,158_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,187,0.006161156915159203724396963509,6,22,60
159,159_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.352631578947368407028761794209,200,0.006093395887556598243539607296,4,10,62
160,160_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,200,0.008410195902360365766137206833,19,55,77
161,161_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.421052631578947345047936323681,200,0.000100000000000000004792173602,4,10,10
162,162_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.352631578947368407028761794209,11,0.009195792340030112949067486738,17,63,98
163,163_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,200,0.006861979032168725838036760223,4,61,100
164,164_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,79,0.004305893255039590014621175840,4,10,97
165,165_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.310526315789473650319507669337,197,0.006910819569921325747352547353,32,81,79
166,166_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,200,0.005523384869178977162051946692,13,64,100
167,167_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,199,0.007296484055514660359287315572,32,17,100
168,168_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,200,0.010000000000000000208166817117,4,100,100
169,169_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,146,0.005685671836950514750064211711,25,10,98
170,170_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.006732117230026759061023433617,32,46,100
171,171_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,169,0.005610212921339534884734856490,4,10,91
172,172_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,200,0.007191064665225875736365157564,16,34,100
173,173_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,200,0.005883680150030681961503820077,14,17,100
174,174_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,194,0.006791375637041745412514348601,5,27,100
175,175_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,151,0.007240478928850010639783896238,4,14,100
176,176_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,160,0.007236919143649459158773584733,32,21,100
177,177_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.405263157894736880670905065926,29,0.007337152006347317199919100261,32,10,16
178,178_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.342105263157894690095872647362,11,0.005664558821845147584816970721,4,10,23
179,179_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,200,0.007048677748485666395839022158,20,55,95
180,180_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,101,0.008653011502511638586288000852,4,100,100
181,181_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.007186284729407227574171646012,19,21,64
182,182_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,194,0.008167460065066396365796030921,25,44,98
183,183_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.352631578947368407028761794209,200,0.005884680410065626192384069526,4,93,97
184,184_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,186,0.008263050788502663418499949444,23,98,100
185,185_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,199,0.007572659872840815063754771330,14,57,68
186,186_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.210526315789473672523968161840,200,0.010000000000000000208166817117,32,28,100
187,187_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.315789473684210508785952242761,137,0.006198461673078726162644525033,32,10,100
188,188_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.268421052631578893610253544466,162,0.007151458931079012794340687975,28,10,99
189,189_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.008358907818288859037370031047,32,10,63
190,190_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,162,0.008362397414184550084592650876,21,57,99
191,191_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,200,0.008014716077195765259189030871,4,73,24
192,192_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,100,0.008622640024968035443730940415,19,95,100
193,193_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.009279379162970363692508612985,4,71,44
194,194_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,150,0.007395487117138771840374467104,4,98,37
195,195_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,161,0.009788062287147382412033636001,27,15,100
196,196_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,136,0.007633403568166305212805422542,16,48,96
197,197_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.352631578947368407028761794209,10,0.010000000000000000208166817117,21,97,96
198,198_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.352631578947368407028761794209,200,0.005019583766906519396722163862,32,10,100
199,199_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,200,0.010000000000000000208166817117,24,54,100
200,200_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.352631578947368407028761794209,150,0.008452201967786758182721307264,28,91,100
201,201_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.310526315789473650319507669337,200,0.007682419943136787644777374595,27,53,100
202,202_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,200,0.007060821289075202254748031550,26,40,81
203,203_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,200,0.005675232543736551983626359430,17,41,67
204,204_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,197,0.009080733342261820134622141154,7,46,10
205,205_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.347368421052631548562317220785,143,0.007393377912453571489115322635,32,36,100
206,206_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.006901989778956893646644221718,4,97,32
207,207_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,200,0.010000000000000000208166817117,4,98,70
208,208_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,132,0.006962284509711036406542916666,4,72,100
209,209_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,200,0.006647987949018534063749807927,8,33,10
210,210_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,200,0.008494435748330803406802580469,32,45,82
211,211_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.268421052631578893610253544466,200,0.007109808041845007073322726399,32,10,10
212,212_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,116,0.009037189097683407529304489003,32,14,100
213,213_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.007050754517434964889488480111,5,17,47
214,214_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,200,0.010000000000000000208166817117,31,11,10
215,215_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.347368421052631548562317220785,200,0.007079465356634386148659832116,20,12,10
216,216_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,200,0.010000000000000000208166817117,20,48,56
217,217_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,200,0.010000000000000000208166817117,19,18,100
218,218_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,22,0.009551570578135821013021633519,4,100,100
219,219_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,200,0.008540657780068185503385969071,22,35,94
220,220_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.008090921997057680392639866795,18,47,100
221,221_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,200,0.009203202713349602215320288678,14,55,100
222,222_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,38,0.010000000000000000208166817117,4,15,10
223,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,200,0.010000000000000000208166817117,18,100,100
224,224_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.010000000000000000208166817117,4,10,31
225,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,188,0.008323822847507558742030653320,23,10,88
226,226_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.189473684210526349680492330663,183,0.009432517781791624131293438893,25,42,100
227,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,200,0.008795069051441036303562448495,32,50,100
228,228_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,173,0.010000000000000000208166817117,20,55,100
229,229_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,110,0.010000000000000000208166817117,32,10,100
230,230_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,197,0.010000000000000000208166817117,18,69,100
231,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.199999999999999955591079014994,198,0.010000000000000000208166817117,16,40,76
232,232_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,200,0.010000000000000000208166817117,15,67,97
233,233_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.210526315789473672523968161840,200,0.008722545113936927552167333033,18,60,100
234,234_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,196,0.008447888951106666266532840837,24,37,15
235,235_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,200,0.010000000000000000208166817117,19,55,89
236,236_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.010000000000000000208166817117,32,40,10
237,237_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.289473684210526327476031838160,200,0.008373797244966077468752985169,21,46,92
238,238_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,200,0.007788979215599343627896011810,14,62,99
239,239_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,187,0.008986995637389359400937216549,22,56,100
240,240_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,200,0.005372494801945831149891930067,12,46,25
241,241_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,194,0.007619482658711060861500552477,21,52,100
242,242_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,199,0.010000000000000000208166817117,18,67,71
243,243_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,200,0.008635857604643880358619156823,24,54,100
244,244_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,195,0.008350780281565614929228935637,4,82,51
245,245_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.331578947368421084185285963031,200,0.010000000000000000208166817117,32,46,100
246,246_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,200,0.010000000000000000208166817117,22,44,100
247,247_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.315789473684210508785952242761,199,0.006859634022091961810807525524,24,27,98
248,248_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.007954020966480139856469300241,17,40,66
249,249_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.336842105263157942651730536454,158,0.007967435937925010369653477937,22,39,100
250,250_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,200,0.008107368603441198265380229770,20,46,61
251,251_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,200,0.009415320977673490368542452700,21,66,63
252,252_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.010000000000000000208166817117,17,89,71
253,253_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,135,0.005907636888546158489277093651,19,11,69
254,254_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.010000000000000000208166817117,12,78,78
255,255_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,200,0.010000000000000000208166817117,16,83,100
256,256_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.326315789473684225718841389607,200,0.006027159327444729999823103128,16,32,49
257,257_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,186,0.010000000000000000208166817117,23,10,43
258,258_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.008689520534490792827431171474,15,57,67
259,259_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.310526315789473650319507669337,200,0.010000000000000000208166817117,19,47,100
260,260_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.331578947368421084185285963031,200,0.008771778642056216393485534866,26,92,100
261,261_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.268421052631578893610253544466,200,0.008346937921320464817687145853,21,67,76
262,262_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.010000000000000000208166817117,22,67,100
263,263_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,200,0.004996106853106147514809176613,19,17,11
264,264_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,200,0.004639546748404329429282810793,4,84,29
265,265_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.331578947368421084185285963031,193,0.003534065841138753129996308289,15,22,10
266,266_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.008197525385286773616511091234,14,54,39
267,267_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,200,0.010000000000000000208166817117,9,72,100
268,268_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.310526315789473650319507669337,200,0.004345771156575503439689622809,24,10,11
269,269_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,196,0.008952552377585501833245906766,18,68,84
270,270_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,200,0.008273051645066689316343477856,16,68,66
271,271_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,191,0.006917195431729271370979716949,19,52,71
272,272_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.210526315789473672523968161840,179,0.007081260330705821046115566730,23,11,98
273,273_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,198,0.010000000000000000208166817117,16,61,16
274,274_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.210526315789473672523968161840,200,0.007717568091060600203590080781,21,22,100
275,275_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,182,0.010000000000000000208166817117,23,65,100
276,276_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,200,0.008112877661988497982048507140,12,66,75
277,277_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,200,0.007488419040197006812387137131,17,46,68
278,278_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,191,0.006817054391210549540991436857,20,12,21
279,279_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.010000000000000000208166817117,26,100,15
280,280_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,200,0.008613244195159505678383027316,11,100,78
281,281_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,200,0.008070014064729146008314586425,15,79,84
282,282_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,200,0.009141647815845721850025462629,11,71,99
283,283_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,200,0.008694277327384819162303664086,32,10,93
284,284_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,200,0.009200077393416050686170137851,20,47,66
285,285_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.007507689057276314449629328607,4,94,10
286,286_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,200,0.010000000000000000208166817117,32,10,100
287,287_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,199,0.008517063318861985490859645154,28,32,96
288,288_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,126,0.008564522668471838406922813647,13,90,99
289,289_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,181,0.009585620321582308950292272698,14,63,80
290,290_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,167,0.006740503075796551446519089268,25,13,48
291,291_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.289473684210526327476031838160,200,0.007712873278365775173148755073,17,46,82
292,292_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,199,0.010000000000000000208166817117,24,54,81
293,293_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,85,0.008950620350548381398692043831,4,96,100
294,294_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,200,0.008800850862490603929155774665,23,19,74
295,295_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.010000000000000000208166817117,18,95,75
296,296_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,199,0.009118120316465956262663716814,21,45,100
297,297_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.289473684210526327476031838160,196,0.007625751617686566015408278219,23,21,69
298,298_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.007916451674653920966839848461,25,10,80
299,299_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.268421052631578893610253544466,155,0.010000000000000000208166817117,16,73,100
300,300_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,138,0.006630719446577613626625513632,4,69,100
301,301_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,177,0.008422487308230952249288314704,15,86,100
302,302_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.010000000000000000208166817117,4,78,77
303,303_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,174,0.004049985575069868330710942672,20,15,100
304,304_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,182,0.010000000000000000208166817117,23,69,63
305,305_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,200,0.008897920981321699382404766254,19,66,86
306,306_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,186,0.008114307449238265801394476284,18,59,86
307,307_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,82,0.010000000000000000208166817117,4,98,89
308,308_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,199,0.005081986995639385315537417398,4,37,27
309,309_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,200,0.009084563763158011104326128304,23,54,89
310,310_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,167,0.006773720335596076537465481948,4,100,88
311,311_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,193,0.007938052137517170522840181945,4,67,46
312,312_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,177,0.007651243603322510286601776386,21,66,100
313,313_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,174,0.009228559003721730283342772339,10,87,62
314,314_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.336842105263157942651730536454,169,0.009020851526925589836114482978,30,11,45
315,315_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,178,0.008754222440827873208402110095,17,53,100
316,316_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.210526315789473672523968161840,200,0.007018616354017095243511548119,11,99,100
317,317_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,200,0.008668048713510448019525789221,17,54,87
318,318_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,197,0.006927245078039013029269632682,21,10,51
319,319_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,126,0.006899321816495437159622028389,6,93,98
320,320_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,149,0.006446219156362736554810588530,20,25,39
321,321_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,200,0.009065353316835807542806158210,17,71,100
322,322_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.289473684210526327476031838160,134,0.009213101923850481808631052161,22,100,100
323,323_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,200,0.008215123645444806499416046108,13,94,100
324,324_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,200,0.007765890716633994453332867636,16,73,100
325,325_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,111,0.008653153456307179774986693133,32,16,99
326,326_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,134,0.008338424920946161875145996589,19,56,100
327,327_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.268421052631578893610253544466,190,0.008665603428693383764036539674,24,11,23
328,328_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.168421052631578915814714036969,196,0.010000000000000000208166817117,23,14,100
329,329_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.326315789473684225718841389607,165,0.008283471963658842543432037075,28,10,100
330,330_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,200,0.010000000000000000208166817117,26,13,100
331,331_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,163,0.007138298909025157616692336404,14,68,98
332,332_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,142,0.010000000000000000208166817117,8,95,61
333,333_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,90,0.006958279122684180896529770877,8,91,100
334,334_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.007004839123860503134755273180,16,81,100
335,335_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.289473684210526327476031838160,200,0.008926864613218772268043998963,18,87,100
336,336_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,148,0.005325037396815215581802327449,23,10,10
337,337_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,162,0.008485487525987250173598042124,18,73,100
338,338_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,179,0.006686999131018937780890354361,18,30,79
339,339_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,116,0.008837301459464990890935176537,14,94,97
340,340_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,102,0.006074442441503001034741604514,21,14,98
341,341_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.010000000000000000208166817117,12,15,10
342,342_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,200,0.006605195460404012994248823532,7,100,99
343,343_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.194736842105263208146936904086,199,0.005157929654024255225475137365,11,10,25
344,344_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.268421052631578893610253544466,200,0.005593363859429216662644268609,13,52,55
345,345_0,RUNNING,BoTorch,BOTORCH_MODULAR,,189,0.003232736700506971816437840062,19,15,96
</pre>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<script>
createTable(tab_results_csv_json, tab_results_headers_json, 'tab_results_csv_table');</script>
<h1> Progressbar log</h1>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_progressbar_log")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_progressbar_log", "progressbar")'> Download »progressbar« as file</button>
<pre id='simple_pre_tab_tab_progressbar_log'>2025-05-07 12:30:21: SOBOL, Started OmniOpt2 run...
2025-05-07 12:30:27: SOBOL, getting new HP set
2025-05-07 12:30:31: Sobol, eval start
2025-05-07 12:30:35: Sobol, starting new job
2025-05-07 12:30:38: Sobol, unknown 1∑1 (2%/50), started new job
2025-05-07 12:30:43: Sobol, unknown 1∑1 (2%/50), getting new HP set
2025-05-07 12:30:46: Sobol, pending 1∑1 (2%/50), eval start
2025-05-07 12:30:49: Sobol, pending 1∑1 (2%/50), starting new job
2025-05-07 12:30:54: Sobol, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:31:00: Sobol, running/unknown 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:31:03: Sobol, running/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:31:06: Sobol, running/pending 1/1∑2 (4%/50), starting new job
2025-05-07 12:31:11: Sobol, running/pending/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:31:17: Sobol, running/pending 1/2∑3 (6%/50), getting new HP set
2025-05-07 12:31:20: Sobol, running/pending 1/2∑3 (6%/50), eval start
2025-05-07 12:31:23: Sobol, running/pending 1/2∑3 (6%/50), starting new job
2025-05-07 12:31:27: Sobol, completed/running/unknown 1/2/1∑4 (8%/50), started new job
2025-05-07 12:31:31: Sobol, completed/running/pending 1/2/1∑4 (8%/50), new result: 0.30000000000000004
2025-05-07 12:31:38: Sobol, best RESULT: 0.30000000000000004, running/pending 2/1∑3 (6%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:31:41: Sobol, best RESULT: 0.30000000000000004, running/pending 2/1∑3 (6%/50), getting new HP set
2025-05-07 12:31:44: Sobol, best RESULT: 0.30000000000000004, running/pending 2/1∑3 (6%/50), eval start
2025-05-07 12:31:48: Sobol, best RESULT: 0.30000000000000004, running/pending 2/1∑3 (6%/50), starting new job
2025-05-07 12:31:53: Sobol, best RESULT: 0.30000000000000004, completed/pending/unknown 2/1/1∑4 (8%/50), started new job
2025-05-07 12:31:57: Sobol, best RESULT: 0.30000000000000004, completed/running/unknown 2/1/1∑4 (8%/50), new result: 0.24736842105263157
2025-05-07 12:32:05: Sobol, best RESULT: 0.24736842105263157, completed/running 1/2∑3 (6%/50), new result: 0.27368421052631575
2025-05-07 12:32:11: Sobol, best RESULT: 0.24736842105263157, running 2∑2 (4%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 12:32:14: Sobol, best RESULT: 0.24736842105263157, running 2∑2 (4%/50), getting new HP set
2025-05-07 12:32:18: Sobol, best RESULT: 0.24736842105263157, running 2∑2 (4%/50), eval start
2025-05-07 12:32:21: Sobol, best RESULT: 0.24736842105263157, running 2∑2 (4%/50), starting new job
2025-05-07 12:32:25: Sobol, best RESULT: 0.24736842105263157, completed/unknown 2/1∑3 (6%/50), started new job
2025-05-07 12:32:29: Sobol, best RESULT: 0.24736842105263157, completed/unknown 2/1∑3 (6%/50), new result: 0.6210526315789473
2025-05-07 12:32:37: Sobol, best RESULT: 0.24736842105263157, completed/running 1/1∑2 (4%/50), new result: 0.3052631578947368
2025-05-07 12:32:43: Sobol, best RESULT: 0.24736842105263157, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 12:32:46: Sobol, best RESULT: 0.24736842105263157, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:32:48: Sobol, best RESULT: 0.24736842105263157, running 1∑1 (2%/50), eval start
2025-05-07 12:32:52: Sobol, best RESULT: 0.24736842105263157, running 1∑1 (2%/50), starting new job
2025-05-07 12:32:56: Sobol, best RESULT: 0.24736842105263157, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:33:00: Sobol, best RESULT: 0.24736842105263157, completed/unknown 1/1∑2 (4%/50), new result: 0.23684210526315785
2025-05-07 12:33:06: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:33:09: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:33:13: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:33:17: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:33:23: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:33:27: Sobol, best RESULT: 0.23684210526315785, completed/unknown 1/1∑2 (4%/50), new result: 0.4157894736842105
2025-05-07 12:33:34: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:33:39: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:33:46: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:33:50: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:33:55: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:34:04: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:34:07: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), eval start
2025-05-07 12:34:11: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 12:34:16: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:34:20: Sobol, best RESULT: 0.23684210526315785, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.2684210526315789
2025-05-07 12:34:26: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:34:29: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:34:33: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:34:36: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), starting new job
2025-05-07 12:34:41: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:34:45: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), new result: 0.3631578947368421
2025-05-07 12:34:52: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:34:56: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:35:00: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:35:04: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), starting new job
2025-05-07 12:35:08: Sobol, best RESULT: 0.23684210526315785, completed/pending/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:35:11: Sobol, best RESULT: 0.23684210526315785, completed/running 1/2∑3 (6%/50), new result: 0.2947368421052632
2025-05-07 12:35:19: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:35:22: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), getting new HP set
2025-05-07 12:35:26: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), eval start
2025-05-07 12:35:30: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), starting new job
2025-05-07 12:35:35: Sobol, best RESULT: 0.23684210526315785, running/completed/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:35:38: Sobol, best RESULT: 0.23684210526315785, completed/pending 2/1∑3 (6%/50), new result: 0.2894736842105263
2025-05-07 12:35:46: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), new result: 0.2947368421052632
2025-05-07 12:35:55: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 12:35:58: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:36:02: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:36:06: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:36:10: Sobol, best RESULT: 0.23684210526315785, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:36:15: Sobol, best RESULT: 0.23684210526315785, completed/unknown 1/1∑2 (4%/50), new result: 0.4052631578947369
2025-05-07 12:36:24: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:36:27: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:36:30: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:36:33: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:36:38: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:36:42: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), new result: 0.2684210526315789
2025-05-07 12:36:48: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:36:51: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:36:54: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:36:58: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:37:04: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:37:11: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:37:14: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:37:17: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), starting new job
2025-05-07 12:37:22: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:37:27: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), new result: 0.35789473684210527
2025-05-07 12:37:34: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:37:37: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:37:41: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:37:49: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), starting new job
2025-05-07 12:37:55: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:37:59: Sobol, best RESULT: 0.23684210526315785, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.2789473684210526
2025-05-07 12:38:07: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:38:10: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:38:13: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:38:16: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), starting new job
2025-05-07 12:38:20: Sobol, best RESULT: 0.23684210526315785, completed/pending/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:38:24: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/2∑3 (6%/50), new result: 0.34736842105263155
2025-05-07 12:38:32: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:38:35: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), getting new HP set
2025-05-07 12:38:39: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), eval start
2025-05-07 12:38:42: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), starting new job
2025-05-07 12:38:47: Sobol, best RESULT: 0.23684210526315785, running/unknown 2/1∑3 (6%/50), started new job
2025-05-07 12:38:50: Sobol, best RESULT: 0.23684210526315785, running/pending 2/1∑3 (6%/50), new result: 0.3052631578947368
2025-05-07 12:38:57: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), new result: 0.35789473684210527
2025-05-07 12:39:04: Sobol, best RESULT: 0.23684210526315785, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 12:39:08: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:39:12: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:39:15: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:39:21: Sobol, best RESULT: 0.23684210526315785, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:39:25: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), new result: 0.33684210526315794
2025-05-07 12:39:31: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:39:35: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:39:39: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:39:42: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:39:47: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:39:51: Sobol, best RESULT: 0.23684210526315785, completed/unknown 1/1∑2 (4%/50), new result: 0.43157894736842106
2025-05-07 12:39:57: Sobol, best RESULT: 0.23684210526315785, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:40:01: Sobol, best RESULT: 0.23684210526315785, pending 1∑1 (2%/50), getting new HP set
2025-05-07 12:40:06: Sobol, best RESULT: 0.23684210526315785, pending 1∑1 (2%/50), eval start
2025-05-07 12:40:11: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:40:17: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:40:23: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:40:27: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:40:30: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), starting new job
2025-05-07 12:40:35: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:40:39: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), new result: 0.2947368421052632
2025-05-07 12:40:47: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:40:50: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:40:54: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:40:57: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), starting new job
2025-05-07 12:41:01: Sobol, best RESULT: 0.23684210526315785, completed/pending/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:41:06: Sobol, best RESULT: 0.23684210526315785, completed/pending/unknown 1/1/1∑3 (6%/50), new result: 0.3315789473684211
2025-05-07 12:41:14: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:41:18: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), getting new HP set
2025-05-07 12:41:22: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), eval start
2025-05-07 12:41:25: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), starting new job
2025-05-07 12:41:30: Sobol, best RESULT: 0.23684210526315785, running/completed/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:41:34: Sobol, best RESULT: 0.23684210526315785, completed/pending 2/1∑3 (6%/50), new result: 0.24736842105263157
2025-05-07 12:41:43: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), new result: 0.41052631578947374
2025-05-07 12:41:50: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 12:41:53: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:41:57: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:42:00: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:42:05: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:42:10: Sobol, best RESULT: 0.23684210526315785, completed/unknown 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 12:42:19: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:42:23: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:42:27: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:42:30: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:42:35: Sobol, best RESULT: 0.23684210526315785, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:42:39: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), new result: 0.3315789473684211
2025-05-07 12:42:47: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:42:50: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:42:54: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:42:58: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:43:02: Sobol, best RESULT: 0.23684210526315785, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:43:07: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), new result: 0.3421052631578947
2025-05-07 12:43:14: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:43:18: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:43:23: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:43:28: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:43:35: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:43:40: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), new result: 0.3157894736842105
2025-05-07 12:44:00: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:44:10: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:44:21: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:44:29: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:44:40: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:44:59: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), getting new HP set
2025-05-07 12:45:07: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), eval start
2025-05-07 12:45:15: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 12:45:24: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:45:35: Sobol, best RESULT: 0.23684210526315785, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.30000000000000004
2025-05-07 12:45:50: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 12:46:04: Sobol, best RESULT: 0.23684210526315785, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 12:46:12: Sobol, best RESULT: 0.23684210526315785, pending 1∑1 (2%/50), getting new HP set
2025-05-07 12:46:21: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:46:28: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:46:39: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:46:52: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:47:00: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), eval start
2025-05-07 12:47:06: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 12:47:13: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:47:20: Sobol, best RESULT: 0.23684210526315785, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.2789473684210526
2025-05-07 12:47:32: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:47:41: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), getting new HP set
2025-05-07 12:47:47: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), eval start
2025-05-07 12:47:54: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 12:48:09: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:48:24: Sobol, best RESULT: 0.23684210526315785, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.4052631578947369
2025-05-07 12:48:57: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:49:09: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), getting new HP set
2025-05-07 12:49:15: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), eval start
2025-05-07 12:49:22: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), starting new job
2025-05-07 12:49:45: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:50:06: Sobol, best RESULT: 0.23684210526315785, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.31052631578947365
2025-05-07 12:50:44: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:50:52: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), getting new HP set
2025-05-07 12:50:58: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), eval start
2025-05-07 12:51:04: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), starting new job
2025-05-07 12:51:12: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:51:18: Sobol, best RESULT: 0.23684210526315785, completed/pending 2/1∑3 (6%/50), new result: 0.3421052631578947
2025-05-07 12:51:32: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), new result: 0.3526315789473684
2025-05-07 12:51:46: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 12:51:51: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:51:58: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:52:04: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:52:11: Sobol, best RESULT: 0.23684210526315785, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:52:18: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), new result: 0.4631578947368421
2025-05-07 12:52:32: Sobol, best RESULT: 0.23684210526315785, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:52:38: Sobol, best RESULT: 0.23684210526315785, pending 1∑1 (2%/50), getting new HP set
2025-05-07 12:52:45: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:52:51: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:52:58: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:53:11: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), getting new HP set
2025-05-07 12:53:17: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), eval start
2025-05-07 12:53:23: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 12:53:31: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:53:38: Sobol, best RESULT: 0.23684210526315785, completed/running 2/1∑3 (6%/50), new result: 0.2684210526315789
2025-05-07 12:53:52: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), new result: 0.3526315789473684
2025-05-07 12:54:05: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 12:54:11: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:54:18: Sobol, best RESULT: 0.23684210526315785, completed 1∑1 (2%/50), eval start
2025-05-07 12:54:24: Sobol, best RESULT: 0.23684210526315785, completed 1∑1 (2%/50), starting new job
2025-05-07 12:54:33: Sobol, best RESULT: 0.23684210526315785, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:54:40: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), new result: 0.32105263157894737
2025-05-07 12:54:52: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:54:58: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), getting new HP set
2025-05-07 12:55:04: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), eval start
2025-05-07 12:55:11: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), starting new job
2025-05-07 12:55:18: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:55:31: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:55:37: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:55:44: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), starting new job
2025-05-07 12:55:51: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:55:58: Sobol, best RESULT: 0.23684210526315785, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.4789473684210527
2025-05-07 12:56:11: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:56:18: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:56:25: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:56:31: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), starting new job
2025-05-07 12:56:39: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:56:45: Sobol, best RESULT: 0.23684210526315785, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.3263157894736842
2025-05-07 12:57:31: Sobol, best RESULT: 0.23684210526315785, completed 2∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 12:57:41: Sobol, best RESULT: 0.23684210526315785, completed 1∑1 (2%/50), new result: 0.28421052631578947
2025-05-07 12:57:51: Sobol, best RESULT: 0.23684210526315785, finishing jobs (_get_next_trials), finished 3 jobs
2025-05-07 12:57:55: Sobol, best RESULT: 0.23684210526315785, getting new HP set
2025-05-07 12:58:00: Sobol, best RESULT: 0.23684210526315785, eval start
2025-05-07 12:58:04: Sobol, best RESULT: 0.23684210526315785, starting new job
2025-05-07 12:58:10: Sobol, best RESULT: 0.23684210526315785, unknown 1∑1 (2%/50), started new job
2025-05-07 12:58:20: Sobol, best RESULT: 0.23684210526315785, pending 1∑1 (2%/50), getting new HP set
2025-05-07 12:58:25: Sobol, best RESULT: 0.23684210526315785, pending 1∑1 (2%/50), eval start
2025-05-07 12:58:30: Sobol, best RESULT: 0.23684210526315785, pending 1∑1 (2%/50), starting new job
2025-05-07 12:58:36: Sobol, best RESULT: 0.23684210526315785, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 12:58:46: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:58:50: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:58:54: Sobol, best RESULT: 0.23684210526315785, completed/pending 1/1∑2 (4%/50), starting new job
2025-05-07 12:59:00: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:59:05: Sobol, best RESULT: 0.23684210526315785, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.3526315789473684
2025-05-07 12:59:14: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:59:18: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:59:22: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:59:26: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), starting new job
2025-05-07 12:59:31: Sobol, best RESULT: 0.23684210526315785, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 12:59:36: Sobol, best RESULT: 0.23684210526315785, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.3631578947368421
2025-05-07 12:59:46: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 12:59:50: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 12:59:54: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), eval start
2025-05-07 12:59:58: Sobol, best RESULT: 0.23684210526315785, running/pending 1/1∑2 (4%/50), starting new job
2025-05-07 13:00:03: Sobol, best RESULT: 0.23684210526315785, completed/pending/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 13:00:08: Sobol, best RESULT: 0.23684210526315785, completed/running 1/2∑3 (6%/50), new result: 0.41052631578947374
2025-05-07 13:00:18: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:00:21: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), getting new HP set
2025-05-07 13:00:26: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), eval start
2025-05-07 13:00:30: Sobol, best RESULT: 0.23684210526315785, running 2∑2 (4%/50), starting new job
2025-05-07 13:00:35: Sobol, best RESULT: 0.23684210526315785, completed/unknown 2/1∑3 (6%/50), started new job
2025-05-07 13:00:40: Sobol, best RESULT: 0.23684210526315785, completed/running 2/1∑3 (6%/50), new result: 0.3631578947368421
2025-05-07 13:00:49: Sobol, best RESULT: 0.23684210526315785, completed/running 1/1∑2 (4%/50), new result: 0.368421052631579
2025-05-07 13:00:58: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), finishing jobs, finished 2 jobs
2025-05-07 13:01:02: Sobol, best RESULT: 0.23684210526315785, running 1∑1 (2%/50), new result: 0.22631578947368425
2025-05-07 13:01:10: Sobol, best RESULT: 0.22631578947368425, finishing previous jobs (1), finished 1 job
2025-05-07 13:01:15: Sobol, best RESULT: 0.22631578947368425, getting new HP set
2025-05-07 13:01:22: BoTorchModel, best RESULT: 0.22631578947368425, eval start
2025-05-07 13:01:26: BoTorchModel, best RESULT: 0.22631578947368425, starting new job
2025-05-07 13:01:31: BoTorchModel, best RESULT: 0.22631578947368425, unknown 1∑1 (2%/50), started new job
2025-05-07 13:01:41: BoTorchModel, best RESULT: 0.22631578947368425, pending 1∑1 (2%/50), getting new HP set
2025-05-07 13:01:47: BoTorchModel, best RESULT: 0.22631578947368425, running 1∑1 (2%/50), eval start
2025-05-07 13:01:52: BoTorchModel, best RESULT: 0.22631578947368425, running 1∑1 (2%/50), starting new job
2025-05-07 13:01:58: BoTorchModel, best RESULT: 0.22631578947368425, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:02:03: BoTorchModel, best RESULT: 0.22631578947368425, completed/pending 1/1∑2 (4%/50), new result: 0.31052631578947365
2025-05-07 13:02:12: BoTorchModel, best RESULT: 0.22631578947368425, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:02:16: BoTorchModel, best RESULT: 0.22631578947368425, pending 1∑1 (2%/50), getting new HP set
2025-05-07 13:02:35: BoTorchModel, best RESULT: 0.22631578947368425, running 1∑1 (2%/50), eval start
2025-05-07 13:02:40: BoTorchModel, best RESULT: 0.22631578947368425, running 1∑1 (2%/50), starting new job
2025-05-07 13:02:46: BoTorchModel, best RESULT: 0.22631578947368425, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:02:52: BoTorchModel, best RESULT: 0.22631578947368425, completed/running 1/1∑2 (4%/50), new result: 0.21052631578947367
2025-05-07 13:03:03: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:03:08: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:03:17: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), eval start
2025-05-07 13:03:23: BoTorchModel, best RESULT: 0.21052631578947367, completed 1∑1 (2%/50), starting new job
2025-05-07 13:03:30: BoTorchModel, best RESULT: 0.21052631578947367, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:03:38: BoTorchModel, best RESULT: 0.21052631578947367, completed/pending 1/1∑2 (4%/50), new result: 0.27368421052631575
2025-05-07 13:03:51: BoTorchModel, best RESULT: 0.21052631578947367, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:03:57: BoTorchModel, best RESULT: 0.21052631578947367, pending 1∑1 (2%/50), getting new HP set
2025-05-07 13:04:05: BoTorchModel, best RESULT: 0.21052631578947367, pending 1∑1 (2%/50), eval start
2025-05-07 13:04:10: BoTorchModel, best RESULT: 0.21052631578947367, pending 1∑1 (2%/50), starting new job
2025-05-07 13:04:17: BoTorchModel, best RESULT: 0.21052631578947367, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:04:32: BoTorchModel, best RESULT: 0.21052631578947367, completed/running 1/1∑2 (4%/50), getting new HP set
2025-05-07 13:04:43: BoTorchModel, best RESULT: 0.21052631578947367, completed/running 1/1∑2 (4%/50), eval start
2025-05-07 13:04:52: BoTorchModel, best RESULT: 0.21052631578947367, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 13:05:02: BoTorchModel, best RESULT: 0.21052631578947367, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 13:05:10: BoTorchModel, best RESULT: 0.21052631578947367, completed/pending 2/1∑3 (6%/50), new result: 0.3631578947368421
2025-05-07 13:05:25: BoTorchModel, best RESULT: 0.21052631578947367, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 13:05:40: BoTorchModel, best RESULT: 0.21052631578947367, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 13:05:47: BoTorchModel, best RESULT: 0.21052631578947367, pending 1∑1 (2%/50), getting new HP set
2025-05-07 13:05:58: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), eval start
2025-05-07 13:06:08: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), starting new job
2025-05-07 13:06:16: BoTorchModel, best RESULT: 0.21052631578947367, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:06:24: BoTorchModel, best RESULT: 0.21052631578947367, completed/pending 1/1∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 13:06:41: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:06:49: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:07:03: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), eval start
2025-05-07 13:07:12: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), starting new job
2025-05-07 13:07:21: BoTorchModel, best RESULT: 0.21052631578947367, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:07:28: BoTorchModel, best RESULT: 0.21052631578947367, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 13:07:42: BoTorchModel, best RESULT: 0.21052631578947367, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:07:48: BoTorchModel, best RESULT: 0.21052631578947367, pending 1∑1 (2%/50), getting new HP set
2025-05-07 13:08:00: BoTorchModel, best RESULT: 0.21052631578947367, pending 1∑1 (2%/50), eval start
2025-05-07 13:08:07: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), starting new job
2025-05-07 13:08:16: BoTorchModel, best RESULT: 0.21052631578947367, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:08:34: BoTorchModel, best RESULT: 0.21052631578947367, completed/pending 1/1∑2 (4%/50), new result: 0.2421052631578947
2025-05-07 13:08:50: BoTorchModel, best RESULT: 0.21052631578947367, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:09:00: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:09:15: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), eval start
2025-05-07 13:09:24: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), starting new job
2025-05-07 13:09:34: BoTorchModel, best RESULT: 0.21052631578947367, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:09:43: BoTorchModel, best RESULT: 0.21052631578947367, completed/pending 1/1∑2 (4%/50), new result: 0.2789473684210526
2025-05-07 13:10:02: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:10:12: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:10:30: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), eval start
2025-05-07 13:10:39: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), starting new job
2025-05-07 13:10:49: BoTorchModel, best RESULT: 0.21052631578947367, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:10:59: BoTorchModel, best RESULT: 0.21052631578947367, completed/running 1/1∑2 (4%/50), new result: 0.28421052631578947
2025-05-07 13:11:15: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:11:22: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:11:33: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), eval start
2025-05-07 13:11:43: BoTorchModel, best RESULT: 0.21052631578947367, completed 1∑1 (2%/50), starting new job
2025-05-07 13:11:53: BoTorchModel, best RESULT: 0.21052631578947367, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:12:01: BoTorchModel, best RESULT: 0.21052631578947367, completed/pending 1/1∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 13:12:18: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:12:34: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:12:45: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), eval start
2025-05-07 13:12:52: BoTorchModel, best RESULT: 0.21052631578947367, running 1∑1 (2%/50), starting new job
2025-05-07 13:13:02: BoTorchModel, best RESULT: 0.21052631578947367, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:13:11: BoTorchModel, best RESULT: 0.21052631578947367, completed/running 1/1∑2 (4%/50), new result: 0.20526315789473681
2025-05-07 13:13:27: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:13:33: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:13:47: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), eval start
2025-05-07 13:13:54: BoTorchModel, best RESULT: 0.20526315789473681, completed 1∑1 (2%/50), starting new job
2025-05-07 13:14:03: BoTorchModel, best RESULT: 0.20526315789473681, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:14:10: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 13:14:27: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:14:35: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:14:48: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), eval start
2025-05-07 13:14:55: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), starting new job
2025-05-07 13:15:04: BoTorchModel, best RESULT: 0.20526315789473681, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:15:13: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 1/1∑2 (4%/50), new result: 0.3526315789473684
2025-05-07 13:15:26: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:15:33: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:15:42: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), eval start
2025-05-07 13:15:50: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), starting new job
2025-05-07 13:15:59: BoTorchModel, best RESULT: 0.20526315789473681, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:16:13: BoTorchModel, best RESULT: 0.20526315789473681, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 13:16:23: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 1/1∑2 (4%/50), eval start
2025-05-07 13:16:30: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 1/1∑2 (4%/50), starting new job
2025-05-07 13:16:39: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 13:16:47: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.2315789473684211
2025-05-07 13:17:01: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 1/1∑2 (4%/50), new result: 0.2578947368421053
2025-05-07 13:17:18: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 13:17:25: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:17:37: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), eval start
2025-05-07 13:17:47: BoTorchModel, best RESULT: 0.20526315789473681, running 1∑1 (2%/50), starting new job
2025-05-07 13:17:56: BoTorchModel, best RESULT: 0.20526315789473681, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:18:08: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 1/1∑2 (4%/50), new result: 0.19999999999999996
2025-05-07 13:18:30: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:18:38: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:18:53: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:19:02: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:19:15: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:19:26: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.28421052631578947
2025-05-07 13:19:44: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:19:51: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:20:02: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:20:10: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:20:19: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:20:35: BoTorchModel, best RESULT: 0.19999999999999996, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 13:20:46: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), eval start
2025-05-07 13:20:55: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), starting new job
2025-05-07 13:21:02: BoTorchModel, best RESULT: 0.19999999999999996, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 13:21:10: BoTorchModel, best RESULT: 0.19999999999999996, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.3631578947368421
2025-05-07 13:21:28: BoTorchModel, best RESULT: 0.19999999999999996, running 2∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:21:37: BoTorchModel, best RESULT: 0.19999999999999996, running 2∑2 (4%/50), getting new HP set
2025-05-07 13:21:51: BoTorchModel, best RESULT: 0.19999999999999996, running 2∑2 (4%/50), eval start
2025-05-07 13:22:00: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 13:22:08: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 2/1∑3 (6%/50), started new job
2025-05-07 13:22:15: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 2/1∑3 (6%/50), new result: 0.3631578947368421
2025-05-07 13:22:30: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.32105263157894737
2025-05-07 13:22:43: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 13:22:49: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:22:59: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 13:23:05: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 13:23:13: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:23:20: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.33684210526315794
2025-05-07 13:23:34: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:23:41: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 13:23:50: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:23:57: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:24:04: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:24:12: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.28421052631578947
2025-05-07 13:24:26: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.2789473684210526
2025-05-07 13:24:41: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 13:24:47: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 13:24:58: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 13:25:03: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 13:25:13: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 13:25:29: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 13:25:38: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), eval start
2025-05-07 13:25:44: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), starting new job
2025-05-07 13:25:54: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:26:12: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 13:26:24: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), eval start
2025-05-07 13:26:43: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 13:26:56: BoTorchModel, best RESULT: 0.19999999999999996, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 13:27:07: BoTorchModel, best RESULT: 0.19999999999999996, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.3421052631578947
2025-05-07 13:27:28: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3526315789473684
2025-05-07 13:27:47: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 13:27:56: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:28:10: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 13:28:21: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 13:28:35: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:28:48: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2315789473684211
2025-05-07 13:29:13: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:29:23: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:29:34: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:29:45: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:29:56: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:30:06: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 13:30:26: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:30:34: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:30:48: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:30:58: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:31:10: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:31:23: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.20526315789473681
2025-05-07 13:31:47: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:31:59: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:32:15: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 13:32:27: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 13:32:43: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:32:55: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.2947368421052632
2025-05-07 13:33:16: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:33:23: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:33:37: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:33:47: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:33:58: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:34:08: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.27368421052631575
2025-05-07 13:34:34: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:34:45: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:34:59: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:35:09: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:35:20: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:35:29: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.31052631578947365
2025-05-07 13:35:51: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:36:04: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:36:19: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:36:32: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:36:45: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:36:58: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2421052631578947
2025-05-07 13:37:24: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:37:40: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:37:56: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:38:06: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:38:21: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:38:34: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2684210526315789
2025-05-07 13:39:01: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:39:13: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 13:39:28: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 13:39:45: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 13:40:00: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:40:14: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3157894736842105
2025-05-07 13:40:38: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:40:49: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:41:01: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:41:10: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:41:20: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:41:29: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.32105263157894737
2025-05-07 13:41:47: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:41:55: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:42:07: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:42:16: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 13:42:27: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:42:37: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2894736842105263
2025-05-07 13:42:58: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:43:11: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:43:27: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:43:40: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:43:58: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:44:15: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.35789473684210527
2025-05-07 13:44:38: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:44:52: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:45:05: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:45:17: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:45:30: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:45:41: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 13:46:06: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:46:19: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:46:33: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:46:45: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:46:56: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:47:06: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.21052631578947367
2025-05-07 13:47:28: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:47:36: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:47:49: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:47:57: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:48:06: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:48:15: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.21578947368421053
2025-05-07 13:48:31: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:48:40: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:48:52: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:49:02: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 13:49:12: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:49:23: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2210526315789474
2025-05-07 13:49:41: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:49:50: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 13:50:03: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), eval start
2025-05-07 13:50:12: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:50:23: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:50:34: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 13:50:57: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:51:09: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:51:22: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:51:35: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:51:50: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:51:59: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2578947368421053
2025-05-07 13:52:20: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:52:31: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 13:52:47: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:53:04: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:53:17: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:53:38: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.24736842105263157
2025-05-07 13:54:28: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:54:56: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:55:35: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:56:07: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:56:27: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:56:47: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.27368421052631575
2025-05-07 13:57:41: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 13:58:12: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 13:58:37: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 13:58:54: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 13:59:16: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 13:59:45: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.25263157894736843
2025-05-07 14:00:39: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 14:01:01: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:01:41: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:02:13: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 14:02:40: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:03:06: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.30000000000000004
2025-05-07 14:04:04: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 14:04:27: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:04:47: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:05:11: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 14:05:33: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:06:10: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 14:07:13: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs, finished 1 job
2025-05-07 14:07:55: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), waiting for 1 job
2025-05-07 14:08:37: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), waiting for 1 job
2025-05-07 14:09:34: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.24736842105263157
2025-05-07 14:10:26: BoTorchModel, best RESULT: 0.19999999999999996, waiting for 1 job), finished 1 job
2025-05-07 14:10:51: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 14:11:25: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 14:11:49: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 14:12:10: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 14:13:07: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:13:41: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:14:03: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 14:14:28: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:14:55: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.33684210526315794
2025-05-07 14:15:45: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 14:16:04: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:16:32: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:17:01: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 14:17:34: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:18:07: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.33684210526315794
2025-05-07 14:19:21: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 14:20:02: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:20:30: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:21:06: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 14:21:37: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:22:34: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), getting new HP set
2025-05-07 14:23:11: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), eval start
2025-05-07 14:23:38: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 14:24:11: BoTorchModel, best RESULT: 0.19999999999999996, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 14:24:38: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 2/1∑3 (6%/50), new result: 0.3631578947368421
2025-05-07 14:25:42: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.2789473684210526
2025-05-07 14:26:49: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.33684210526315794
2025-05-07 14:27:44: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 3 jobs
2025-05-07 14:28:04: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 14:28:46: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 14:29:17: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 14:29:54: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 14:30:56: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:31:42: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:32:15: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 14:32:45: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:33:16: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.24736842105263157
2025-05-07 14:34:36: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 14:35:02: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:35:45: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:36:14: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 14:36:34: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:36:54: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.27368421052631575
2025-05-07 14:37:40: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 14:37:59: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:38:24: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:38:41: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 14:38:59: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:39:16: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3157894736842105
2025-05-07 14:39:49: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 14:40:08: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:40:28: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:40:52: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 14:41:16: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:41:35: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2578947368421053
2025-05-07 14:42:19: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 14:42:40: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:43:05: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:43:21: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 14:43:38: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:43:54: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 14:44:38: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 14:45:10: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:45:32: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:45:54: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 14:46:11: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:46:28: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.35789473684210527
2025-05-07 14:46:57: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 14:47:20: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:47:41: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:47:55: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 14:48:09: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:49:05: BoTorchModel, best RESULT: 0.19999999999999996, running 2∑2 (4%/50), getting new HP set
2025-05-07 14:49:52: BoTorchModel, best RESULT: 0.19999999999999996, running 2∑2 (4%/50), eval start
2025-05-07 14:50:25: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 14:50:58: BoTorchModel, best RESULT: 0.19999999999999996, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 14:51:31: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 2/1∑3 (6%/50), new result: 0.28421052631578947
2025-05-07 14:53:18: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 14:54:49: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.24736842105263157
2025-05-07 14:55:51: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 3 jobs
2025-05-07 14:56:15: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 14:56:37: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 14:56:54: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 14:57:12: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 14:57:52: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 14:58:11: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 14:58:31: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 14:58:56: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 14:59:13: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.4052631578947369
2025-05-07 14:59:50: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 15:00:15: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), getting new HP set
2025-05-07 15:00:37: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 15:00:55: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 15:01:16: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:01:38: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.22631578947368425
2025-05-07 15:02:14: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 15:02:39: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:03:01: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:03:23: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 15:03:42: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:04:00: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.2421052631578947
2025-05-07 15:04:35: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 15:04:50: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:05:08: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:05:27: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 15:05:46: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:06:05: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3315789473684211
2025-05-07 15:06:43: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 15:07:01: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:07:21: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:07:41: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 15:08:02: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:08:24: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.20526315789473681
2025-05-07 15:09:03: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 15:09:24: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:09:44: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:10:06: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 15:10:31: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:10:55: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.28421052631578947
2025-05-07 15:11:43: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), new result: 0.3631578947368421
2025-05-07 15:12:21: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 15:12:40: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 15:13:06: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 15:13:29: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 15:13:50: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 15:14:31: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 15:14:51: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:15:08: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 15:15:24: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:15:42: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2421052631578947
2025-05-07 15:16:21: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 15:16:42: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:17:08: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:17:26: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 15:17:49: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:18:18: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 15:18:56: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.2684210526315789
2025-05-07 15:19:39: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 15:19:58: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 15:20:25: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 15:20:47: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 15:21:09: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 15:21:49: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:22:10: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:22:29: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 15:22:48: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:23:10: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 15:23:55: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.24736842105263157
2025-05-07 15:24:43: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 15:25:04: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 15:25:26: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 15:25:47: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 15:26:09: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 15:26:53: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:27:18: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 15:27:38: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 15:28:04: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:28:25: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.21578947368421053
2025-05-07 15:29:12: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), new result: 0.32105263157894737
2025-05-07 15:29:59: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 15:30:19: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 15:30:50: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 15:31:23: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 15:31:56: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 15:32:59: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:33:38: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:34:15: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 15:34:44: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:35:20: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 15:36:07: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 15:36:23: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:36:47: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:37:20: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 15:37:49: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:38:33: BoTorchModel, best RESULT: 0.19999999999999996, running 2∑2 (4%/50), getting new HP set
2025-05-07 15:38:57: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), eval start
2025-05-07 15:39:18: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 15:39:40: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 2/1∑3 (6%/50), started new job
2025-05-07 15:40:00: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 2/1∑3 (6%/50), new result: 0.3315789473684211
2025-05-07 15:40:52: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.27368421052631575
2025-05-07 15:41:35: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.3631578947368421
2025-05-07 15:42:12: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 3 jobs
2025-05-07 15:42:28: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 15:42:53: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 15:43:07: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 15:43:26: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 15:43:59: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:44:21: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:44:36: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 15:44:58: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:45:14: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3052631578947368
2025-05-07 15:46:01: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 15:46:17: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:46:36: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 15:46:54: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 15:47:20: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:47:40: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 15:48:24: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 15:48:44: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), getting new HP set
2025-05-07 15:49:11: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 15:49:29: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 15:49:52: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:50:14: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3052631578947368
2025-05-07 15:50:52: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 15:51:15: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:51:40: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:52:02: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 15:52:25: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:52:47: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.24736842105263157
2025-05-07 15:53:33: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 15:53:56: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:54:25: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:54:47: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 15:55:06: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:55:27: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.25263157894736843
2025-05-07 15:56:11: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 15:56:32: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 15:57:02: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 15:57:30: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 15:58:08: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 15:58:39: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.22631578947368425
2025-05-07 15:59:34: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 16:01:19: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 16:01:55: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 16:03:17: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 16:03:41: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:04:08: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.21578947368421053
2025-05-07 16:04:38: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.23684210526315785
2025-05-07 16:05:21: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 16:05:41: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 16:06:06: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 16:06:29: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 16:06:59: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 16:07:52: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 16:08:28: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 16:08:54: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 16:09:22: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:09:49: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.2210526315789474
2025-05-07 16:10:35: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.21578947368421053
2025-05-07 16:12:40: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 16:13:24: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 16:14:21: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 16:14:51: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 16:15:16: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 16:15:50: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 16:16:12: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 16:16:30: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 16:16:52: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:17:30: BoTorchModel, best RESULT: 0.19999999999999996, running 2∑2 (4%/50), getting new HP set
2025-05-07 16:17:53: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), eval start
2025-05-07 16:18:12: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 16:18:32: BoTorchModel, best RESULT: 0.19999999999999996, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 16:18:54: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/2∑3 (6%/50), new result: 0.2789473684210526
2025-05-07 16:19:36: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.28421052631578947
2025-05-07 16:20:13: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 16:20:35: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 16:20:56: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 16:21:20: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 16:21:43: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:22:03: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.35789473684210527
2025-05-07 16:22:40: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.2421052631578947
2025-05-07 16:23:21: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 16:23:41: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 16:24:02: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 16:24:27: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 16:24:55: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 16:25:42: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 16:26:08: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 16:26:27: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 16:26:47: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:27:06: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3157894736842105
2025-05-07 16:27:43: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.30000000000000004
2025-05-07 16:28:26: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 16:28:46: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 16:29:09: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 16:29:32: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 16:29:59: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 16:30:53: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 16:31:27: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 16:31:47: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 16:32:09: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:32:32: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 16:33:14: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.2789473684210526
2025-05-07 16:33:58: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs, finished 2 jobs
2025-05-07 16:34:23: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 16:34:55: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 16:35:17: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 16:35:39: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 16:36:18: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 16:36:43: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 16:37:05: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 16:37:27: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:37:54: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 16:38:35: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 16:38:53: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 16:39:17: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 16:39:40: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 16:39:59: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:40:19: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2315789473684211
2025-05-07 16:40:56: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 16:41:12: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 16:41:34: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 16:41:57: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 16:42:20: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:42:44: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.23684210526315785
2025-05-07 16:43:28: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.3631578947368421
2025-05-07 16:44:19: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 16:44:43: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 16:45:06: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 16:45:28: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 16:45:45: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 16:46:36: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 16:46:57: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 16:47:21: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 16:47:45: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:48:09: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.22631578947368425
2025-05-07 16:48:53: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.2421052631578947
2025-05-07 16:49:36: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 16:50:03: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 16:50:27: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 16:50:55: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 16:51:21: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 16:52:19: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 16:52:43: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 16:53:02: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 16:53:26: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:53:47: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3421052631578947
2025-05-07 16:54:40: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 16:55:06: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), getting new HP set
2025-05-07 16:55:36: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 16:56:01: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 16:56:29: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:56:51: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.2947368421052632
2025-05-07 16:57:40: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 16:58:04: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), getting new HP set
2025-05-07 16:58:30: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 16:58:56: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 16:59:22: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 16:59:55: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 17:00:39: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.3526315789473684
2025-05-07 17:01:30: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 17:01:50: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 17:02:13: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 17:02:21: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 17:02:32: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 17:02:56: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:03:08: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:03:16: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:03:27: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:03:36: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.32105263157894737
2025-05-07 17:03:58: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:04:07: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:04:26: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 17:04:35: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:04:43: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:04:54: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.42105263157894735
2025-05-07 17:05:16: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:05:27: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:05:38: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:05:48: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:05:57: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:06:05: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3526315789473684
2025-05-07 17:06:21: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:06:29: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:06:42: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:06:51: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:07:00: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:07:08: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2210526315789474
2025-05-07 17:07:24: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:07:36: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:07:48: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:07:57: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:08:06: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:08:14: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.32105263157894737
2025-05-07 17:08:42: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:08:50: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:09:03: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 17:09:13: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:09:27: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:09:41: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.31052631578947365
2025-05-07 17:10:08: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.2947368421052632
2025-05-07 17:10:33: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 17:10:41: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 17:10:58: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 17:11:08: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 17:11:21: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 17:11:43: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:11:57: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:12:06: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:12:24: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:12:34: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.20526315789473681
2025-05-07 17:12:55: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:13:03: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:13:17: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:13:31: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:13:44: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:13:54: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.22631578947368425
2025-05-07 17:14:15: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:14:30: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:14:45: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:14:54: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:15:02: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:15:11: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2578947368421053
2025-05-07 17:15:30: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:15:39: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:15:51: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:16:02: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:16:11: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:16:19: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2421052631578947
2025-05-07 17:16:42: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:16:51: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:17:04: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:17:12: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:17:20: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:17:31: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.22631578947368425
2025-05-07 17:17:53: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), new result: 0.2210526315789474
2025-05-07 17:18:12: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 17:18:19: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 17:18:32: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 17:18:44: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 17:18:56: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 17:19:15: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:19:27: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:19:39: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:19:51: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:20:03: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.32105263157894737
2025-05-07 17:20:23: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:20:32: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:20:47: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:20:56: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:21:07: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:21:16: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 17:21:35: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:21:48: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 17:22:06: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:22:14: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:22:24: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:22:32: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 17:22:53: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:23:04: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:23:22: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:23:33: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:23:46: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:24:05: BoTorchModel, best RESULT: 0.19999999999999996, running/pending 1/1∑2 (4%/50), getting new HP set
2025-05-07 17:24:20: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), eval start
2025-05-07 17:24:30: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 17:24:39: BoTorchModel, best RESULT: 0.19999999999999996, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 17:24:48: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/2∑3 (6%/50), new result: 0.23684210526315785
2025-05-07 17:25:06: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.4052631578947369
2025-05-07 17:25:25: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), new result: 0.3421052631578947
2025-05-07 17:25:42: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 3 jobs
2025-05-07 17:25:50: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 17:26:04: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 17:26:13: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 17:26:25: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 17:26:47: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 17:26:59: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:27:09: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:27:19: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:27:27: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.32105263157894737
2025-05-07 17:27:46: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:27:55: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:28:10: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:28:19: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:28:30: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:28:40: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.27368421052631575
2025-05-07 17:28:59: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:29:08: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:29:22: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:29:30: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:29:42: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:29:51: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2421052631578947
2025-05-07 17:30:11: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:30:21: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:30:36: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:30:46: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:30:58: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:31:10: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.25263157894736843
2025-05-07 17:31:45: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:31:57: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:32:12: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:32:28: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:32:38: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:32:48: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3526315789473684
2025-05-07 17:33:09: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:33:22: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:33:38: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:33:47: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:33:58: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:34:07: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2789473684210526
2025-05-07 17:34:28: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:34:38: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:34:52: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:35:01: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:35:12: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:35:23: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.27368421052631575
2025-05-07 17:35:55: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:36:05: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:36:22: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:36:33: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:36:45: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:37:08: BoTorchModel, best RESULT: 0.19999999999999996, running 2∑2 (4%/50), getting new HP set
2025-05-07 17:37:25: BoTorchModel, best RESULT: 0.19999999999999996, running 2∑2 (4%/50), eval start
2025-05-07 17:37:36: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), starting new job
2025-05-07 17:37:48: BoTorchModel, best RESULT: 0.19999999999999996, completed/running/unknown 1/1/1∑3 (6%/50), started new job
2025-05-07 17:37:58: BoTorchModel, best RESULT: 0.19999999999999996, completed/running/pending 1/1/1∑3 (6%/50), new result: 0.21052631578947367
2025-05-07 17:38:22: BoTorchModel, best RESULT: 0.19999999999999996, running 2∑2 (4%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:38:31: BoTorchModel, best RESULT: 0.19999999999999996, running 2∑2 (4%/50), getting new HP set
2025-05-07 17:38:50: BoTorchModel, best RESULT: 0.19999999999999996, running 2∑2 (4%/50), eval start
2025-05-07 17:39:00: BoTorchModel, best RESULT: 0.19999999999999996, completed 2∑2 (4%/50), starting new job
2025-05-07 17:39:11: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 2/1∑3 (6%/50), started new job
2025-05-07 17:39:23: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 2/1∑3 (6%/50), new result: 0.3157894736842105
2025-05-07 17:39:47: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.2684210526315789
2025-05-07 17:40:10: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 17:40:20: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:40:40: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 17:40:51: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:41:02: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:41:13: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 17:41:40: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:41:50: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:42:06: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 17:42:15: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:42:26: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:42:36: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2789473684210526
2025-05-07 17:42:57: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:43:06: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:43:23: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:43:32: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:43:43: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:43:53: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.20526315789473681
2025-05-07 17:44:14: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:44:24: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:44:42: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:44:51: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:45:02: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:45:12: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.24736842105263157
2025-05-07 17:45:33: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:45:43: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:45:59: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:46:09: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:46:20: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:46:30: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 17:46:52: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:47:02: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:47:26: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), eval start
2025-05-07 17:47:35: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:47:47: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:47:57: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 17:48:18: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:48:28: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:48:45: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:48:54: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:49:06: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:49:17: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.30000000000000004
2025-05-07 17:49:38: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:49:48: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:50:04: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:50:14: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:50:26: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:50:36: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2947368421052632
2025-05-07 17:50:58: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:51:08: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:51:26: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:51:36: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:51:47: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:51:57: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3526315789473684
2025-05-07 17:52:19: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:52:29: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:52:46: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:52:56: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:53:08: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:53:30: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3526315789473684
2025-05-07 17:53:52: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing previous jobs (2), finished 1 job
2025-05-07 17:54:03: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), waiting for 1 job
2025-05-07 17:54:18: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), new result: 0.2947368421052632
2025-05-07 17:54:40: BoTorchModel, best RESULT: 0.19999999999999996, waiting for 1 job), finished 1 job
2025-05-07 17:54:50: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 17:55:08: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 17:55:18: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 17:55:29: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 17:55:50: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 17:56:06: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), eval start
2025-05-07 17:56:16: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 17:56:27: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:56:38: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3526315789473684
2025-05-07 17:57:01: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:57:11: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:57:27: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:57:38: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:57:49: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:57:59: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.31052631578947365
2025-05-07 17:58:22: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:58:32: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 17:58:49: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 17:58:59: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 17:59:11: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 17:59:21: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.2578947368421053
2025-05-07 17:59:43: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 17:59:54: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:00:12: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:00:23: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 18:00:34: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:00:44: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.28421052631578947
2025-05-07 18:01:07: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:01:17: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:01:34: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:01:44: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 18:01:55: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:02:05: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 18:02:27: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:02:38: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:02:56: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:03:07: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:03:18: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:03:29: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.34736842105263155
2025-05-07 18:03:52: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:04:01: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:04:21: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:04:31: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:04:43: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:04:55: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 18:05:18: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:05:27: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:05:45: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:05:56: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 18:06:08: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:06:19: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.24736842105263157
2025-05-07 18:06:42: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:06:52: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:07:10: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:07:21: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 18:07:33: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:07:47: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 18:08:10: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:08:21: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:08:42: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:08:53: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:09:04: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:09:15: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.20526315789473681
2025-05-07 18:09:39: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:09:49: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:10:07: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:10:18: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 18:10:29: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:10:40: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.25263157894736843
2025-05-07 18:11:07: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:11:18: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:11:35: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:11:45: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:11:56: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:12:07: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.2684210526315789
2025-05-07 18:12:29: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:12:40: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:13:01: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:13:11: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:13:23: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:13:34: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.21578947368421053
2025-05-07 18:13:57: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:14:07: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:14:26: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:14:37: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:14:48: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:14:59: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 18:15:22: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:15:33: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:15:51: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:16:01: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:16:13: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:16:24: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 18:16:48: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:16:59: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:17:18: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:17:28: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:17:41: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:17:52: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.34736842105263155
2025-05-07 18:18:15: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.24736842105263157
2025-05-07 18:18:37: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 18:18:47: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 18:19:06: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 18:19:17: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 18:19:29: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 18:19:51: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 18:20:10: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:20:21: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 18:20:33: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:20:45: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.22631578947368425
2025-05-07 18:21:09: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:21:20: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:21:39: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:21:50: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:22:01: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:22:13: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.35789473684210527
2025-05-07 18:22:37: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:22:47: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:23:06: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:23:17: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:23:28: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:23:39: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.24736842105263157
2025-05-07 18:24:03: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.2421052631578947
2025-05-07 18:24:26: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 18:24:37: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 18:24:57: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 18:25:09: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 18:25:23: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 18:25:47: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 18:26:07: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), eval start
2025-05-07 18:26:18: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:26:30: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:26:41: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.22631578947368425
2025-05-07 18:27:04: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:27:16: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:27:35: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:27:46: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:27:58: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:28:09: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 18:28:32: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), new result: 0.2578947368421053
2025-05-07 18:28:55: BoTorchModel, best RESULT: 0.19999999999999996, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 18:29:06: BoTorchModel, best RESULT: 0.19999999999999996, getting new HP set
2025-05-07 18:29:28: BoTorchModel, best RESULT: 0.19999999999999996, eval start
2025-05-07 18:29:39: BoTorchModel, best RESULT: 0.19999999999999996, starting new job
2025-05-07 18:29:50: BoTorchModel, best RESULT: 0.19999999999999996, unknown 1∑1 (2%/50), started new job
2025-05-07 18:30:14: BoTorchModel, best RESULT: 0.19999999999999996, pending 1∑1 (2%/50), getting new HP set
2025-05-07 18:30:32: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:30:43: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), starting new job
2025-05-07 18:30:55: BoTorchModel, best RESULT: 0.19999999999999996, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:31:06: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 18:31:30: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:31:40: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:31:59: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:32:10: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:32:25: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:32:36: BoTorchModel, best RESULT: 0.19999999999999996, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 18:32:59: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:33:10: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:33:30: BoTorchModel, best RESULT: 0.19999999999999996, running 1∑1 (2%/50), eval start
2025-05-07 18:33:41: BoTorchModel, best RESULT: 0.19999999999999996, completed 1∑1 (2%/50), starting new job
2025-05-07 18:33:52: BoTorchModel, best RESULT: 0.19999999999999996, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:34:04: BoTorchModel, best RESULT: 0.19999999999999996, completed/running 1/1∑2 (4%/50), new result: 0.18947368421052635
2025-05-07 18:34:27: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.28421052631578947
2025-05-07 18:34:51: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 18:35:01: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 18:35:20: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 18:35:31: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 18:35:43: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 18:36:05: BoTorchModel, best RESULT: 0.18947368421052635, pending 1∑1 (2%/50), getting new HP set
2025-05-07 18:36:23: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 18:36:34: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), starting new job
2025-05-07 18:36:46: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:36:57: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.21578947368421053
2025-05-07 18:37:25: BoTorchModel, best RESULT: 0.18947368421052635, pending 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:37:35: BoTorchModel, best RESULT: 0.18947368421052635, pending 1∑1 (2%/50), getting new HP set
2025-05-07 18:37:57: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 18:38:08: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 18:38:20: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:38:31: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.35789473684210527
2025-05-07 18:38:54: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.23684210526315785
2025-05-07 18:39:17: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 18:39:27: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 18:39:52: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 18:40:03: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 18:40:15: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 18:40:39: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:40:57: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 18:41:09: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 18:41:21: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:41:32: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.19999999999999996
2025-05-07 18:41:56: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.21578947368421053
2025-05-07 18:42:18: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 18:42:29: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 18:42:48: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 18:42:59: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 18:43:11: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 18:43:35: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:43:53: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 18:44:04: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 18:44:16: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:44:28: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.21052631578947367
2025-05-07 18:44:51: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.26315789473684215
2025-05-07 18:45:15: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 18:45:26: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 18:45:45: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 18:45:56: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 18:46:09: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 18:46:32: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:46:51: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 18:47:02: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 18:47:16: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:47:27: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.3052631578947368
2025-05-07 18:47:52: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.3631578947368421
2025-05-07 18:48:16: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 18:48:27: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 18:48:46: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 18:48:57: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 18:49:09: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 18:49:33: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:49:51: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 18:50:06: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 18:50:18: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:50:29: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2894736842105263
2025-05-07 18:50:54: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:51:05: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:51:26: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 18:51:37: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 18:51:50: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:52:02: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.22631578947368425
2025-05-07 18:52:25: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.21578947368421053
2025-05-07 18:52:52: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 18:53:03: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 18:53:24: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 18:53:35: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 18:53:48: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 18:54:13: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:54:32: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 18:54:43: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 18:54:56: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:55:07: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.27368421052631575
2025-05-07 18:55:31: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.24736842105263157
2025-05-07 18:55:55: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 18:56:06: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 18:56:27: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 18:56:38: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 18:56:50: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 18:57:13: BoTorchModel, best RESULT: 0.18947368421052635, pending 1∑1 (2%/50), getting new HP set
2025-05-07 18:57:34: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 18:57:45: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 18:57:58: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:58:10: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.20526315789473681
2025-05-07 18:58:36: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 18:58:47: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 18:59:06: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 18:59:17: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 18:59:30: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 18:59:42: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.25263157894736843
2025-05-07 19:00:07: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:00:18: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:00:39: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:00:51: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:01:03: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:01:15: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2210526315789474
2025-05-07 19:01:41: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:01:53: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:02:13: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:02:24: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:02:37: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:02:49: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.3315789473684211
2025-05-07 19:03:14: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:03:25: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:03:45: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:03:57: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:04:09: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:04:22: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.24736842105263157
2025-05-07 19:04:48: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:05:00: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:05:20: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:05:32: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:05:45: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:05:58: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.3157894736842105
2025-05-07 19:06:24: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:06:36: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:06:57: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:07:08: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:07:21: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:07:33: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2421052631578947
2025-05-07 19:08:01: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs, finished 1 job
2025-05-07 19:08:13: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), new result: 0.33684210526315794
2025-05-07 19:08:38: BoTorchModel, best RESULT: 0.18947368421052635, finishing previous jobs (1), finished 1 job
2025-05-07 19:08:52: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 19:09:15: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 19:09:27: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 19:09:39: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 19:10:06: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), getting new HP set
2025-05-07 19:10:25: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 19:10:38: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:10:50: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:11:03: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.24736842105263157
2025-05-07 19:11:31: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:11:43: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:12:07: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:12:20: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:12:34: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:12:46: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2315789473684211
2025-05-07 19:13:12: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.2421052631578947
2025-05-07 19:13:37: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 19:13:49: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 19:14:14: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 19:14:25: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 19:14:39: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 19:15:04: BoTorchModel, best RESULT: 0.18947368421052635, pending 1∑1 (2%/50), getting new HP set
2025-05-07 19:15:27: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 19:15:40: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:15:55: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:16:09: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.2210526315789474
2025-05-07 19:16:40: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.2421052631578947
2025-05-07 19:17:05: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 19:17:16: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 19:17:43: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 19:17:55: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 19:18:08: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 19:18:33: BoTorchModel, best RESULT: 0.18947368421052635, pending 1∑1 (2%/50), getting new HP set
2025-05-07 19:18:54: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:19:06: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), starting new job
2025-05-07 19:19:19: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:19:31: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.20526315789473681
2025-05-07 19:19:59: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:20:10: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:20:30: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:20:42: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:20:56: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:21:08: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.3263157894736842
2025-05-07 19:21:35: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:21:46: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:22:09: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:22:21: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:22:34: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:22:46: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 19:23:11: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.2421052631578947
2025-05-07 19:23:37: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 19:23:48: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 19:24:10: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 19:24:22: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 19:24:35: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 19:25:01: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:25:20: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 19:25:31: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:25:45: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:25:57: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.31052631578947365
2025-05-07 19:26:23: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.3315789473684211
2025-05-07 19:26:48: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 19:26:59: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 19:27:23: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 19:27:35: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 19:27:48: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 19:28:15: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:28:36: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:28:48: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:29:01: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:29:13: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2684210526315789
2025-05-07 19:29:39: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:29:50: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:30:09: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:30:21: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:30:33: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:30:45: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2421052631578947
2025-05-07 19:31:11: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:31:22: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:31:42: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:31:54: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:32:07: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:32:18: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.3052631578947368
2025-05-07 19:32:44: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:32:55: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:33:18: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:33:30: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:33:43: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:33:55: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.24736842105263157
2025-05-07 19:34:21: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:34:32: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:34:57: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 19:35:08: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:35:21: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:35:33: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.3315789473684211
2025-05-07 19:35:59: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:36:10: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:36:31: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:36:43: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:36:56: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:37:07: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2421052631578947
2025-05-07 19:37:34: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:37:45: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:38:06: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:38:18: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:38:31: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:38:42: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.32105263157894737
2025-05-07 19:39:09: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:39:20: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:39:41: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:39:53: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:40:05: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:40:17: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.31052631578947365
2025-05-07 19:40:44: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:40:55: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:41:15: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:41:27: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:41:40: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:41:51: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.25263157894736843
2025-05-07 19:42:18: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:42:29: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:42:49: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:43:01: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:43:13: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:43:25: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.23684210526315785
2025-05-07 19:43:51: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:44:03: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:44:24: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:44:36: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:44:52: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:45:04: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2789473684210526
2025-05-07 19:45:30: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), new result: 0.21052631578947367
2025-05-07 19:45:55: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 19:46:07: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 19:46:28: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 19:46:40: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 19:46:54: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 19:47:20: BoTorchModel, best RESULT: 0.18947368421052635, pending 1∑1 (2%/50), getting new HP set
2025-05-07 19:47:41: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 19:47:53: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:48:06: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:48:18: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 19:48:44: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.21052631578947367
2025-05-07 19:49:09: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 19:49:21: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 19:49:56: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 19:50:08: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 19:50:20: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 19:50:46: BoTorchModel, best RESULT: 0.18947368421052635, pending 1∑1 (2%/50), getting new HP set
2025-05-07 19:51:09: BoTorchModel, best RESULT: 0.18947368421052635, pending 1∑1 (2%/50), eval start
2025-05-07 19:51:22: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:51:35: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:51:48: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2947368421052632
2025-05-07 19:52:15: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 19:52:27: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:52:50: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:53:02: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:53:16: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:53:29: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.23684210526315785
2025-05-07 19:53:55: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.27368421052631575
2025-05-07 19:54:21: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 19:54:33: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 19:54:56: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 19:55:08: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 19:55:22: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 19:55:48: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:56:12: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:56:24: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 19:56:38: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 19:56:51: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.2789473684210526
2025-05-07 19:57:16: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.3631578947368421
2025-05-07 19:57:43: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 19:57:56: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 19:58:20: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 19:58:31: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 19:58:45: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 19:59:11: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 19:59:35: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 19:59:47: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:00:01: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:00:13: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.21578947368421053
2025-05-07 20:00:41: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:00:53: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:01:16: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:01:28: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:01:42: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:01:55: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.27368421052631575
2025-05-07 20:02:22: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:02:35: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:02:57: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:03:09: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:03:23: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:03:36: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.27368421052631575
2025-05-07 20:04:06: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:04:19: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:04:41: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:04:53: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:05:07: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:05:20: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.21578947368421053
2025-05-07 20:05:47: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), new result: 0.2947368421052632
2025-05-07 20:06:14: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 20:06:26: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 20:06:51: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 20:07:03: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 20:07:17: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 20:07:44: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:08:08: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:08:20: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:08:34: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:08:47: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 20:09:14: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.21578947368421053
2025-05-07 20:09:40: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 20:09:53: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 20:10:19: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 20:10:32: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 20:10:46: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 20:11:13: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), getting new HP set
2025-05-07 20:11:35: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 20:11:47: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:12:01: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:12:14: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.30000000000000004
2025-05-07 20:12:42: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:12:54: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:13:19: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:13:33: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:13:47: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:14:00: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2421052631578947
2025-05-07 20:14:28: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:14:42: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:15:05: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:15:18: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:15:32: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:15:46: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.24736842105263157
2025-05-07 20:16:14: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.24736842105263157
2025-05-07 20:16:41: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 20:16:53: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 20:17:19: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 20:17:31: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 20:17:45: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 20:18:12: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:18:34: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:18:47: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:19:01: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:19:14: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2894736842105263
2025-05-07 20:19:42: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:19:55: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:20:19: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:20:32: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:20:45: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:20:58: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.22631578947368425
2025-05-07 20:21:26: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:21:38: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:22:04: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 20:22:17: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:22:30: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:22:44: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2315789473684211
2025-05-07 20:23:15: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), new result: 0.21578947368421053
2025-05-07 20:23:42: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 20:23:54: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 20:24:20: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 20:24:38: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 20:24:53: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 20:25:21: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:25:45: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:25:58: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:26:11: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:26:24: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2421052631578947
2025-05-07 20:26:53: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:27:05: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:27:29: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:27:42: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), starting new job
2025-05-07 20:27:56: BoTorchModel, best RESULT: 0.18947368421052635, running/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:28:27: BoTorchModel, best RESULT: 0.18947368421052635, running 2∑2 (4%/50), getting new HP set
2025-05-07 20:28:52: BoTorchModel, best RESULT: 0.18947368421052635, running 2∑2 (4%/50), eval start
2025-05-07 20:29:04: BoTorchModel, best RESULT: 0.18947368421052635, running 2∑2 (4%/50), starting new job
2025-05-07 20:29:19: BoTorchModel, best RESULT: 0.18947368421052635, running/unknown 2/1∑3 (6%/50), started new job
2025-05-07 20:29:53: BoTorchModel, best RESULT: 0.18947368421052635, running 3∑3 (6%/50), getting new HP set
2025-05-07 20:30:17: BoTorchModel, best RESULT: 0.18947368421052635, running 3∑3 (6%/50), eval start
2025-05-07 20:30:30: BoTorchModel, best RESULT: 0.18947368421052635, running 3∑3 (6%/50), starting new job
2025-05-07 20:30:45: BoTorchModel, best RESULT: 0.18947368421052635, running/unknown 3/1∑4 (8%/50), started new job
2025-05-07 20:31:21: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:31:43: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:32:05: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:32:28: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:32:51: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:33:17: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:33:39: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:34:02: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:34:25: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:34:50: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:35:13: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:35:36: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:35:59: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:36:21: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:36:44: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:37:07: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:37:31: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:37:54: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:38:18: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:38:42: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:39:07: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:39:30: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), waiting for 4 jobs
2025-05-07 20:39:50: BoTorchModel, best RESULT: 0.18947368421052635, running 4∑4 (8%/50), new result: 0.26315789473684215
2025-05-07 20:40:20: BoTorchModel, best RESULT: 0.18947368421052635, running 3∑3 (6%/50), new result: 0.2894736842105263
2025-05-07 20:40:49: BoTorchModel, best RESULT: 0.18947368421052635, running 2∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 20:41:19: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), new result: 0.2684210526315789
2025-05-07 20:41:51: BoTorchModel, best RESULT: 0.18947368421052635, waiting for 4 jobs, finished 4 jobs
2025-05-07 20:42:07: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 20:42:34: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 20:42:48: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 20:43:05: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 20:43:36: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:44:03: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:44:18: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:44:34: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:44:48: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.22631578947368425
2025-05-07 20:45:21: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:45:35: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:46:01: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:46:16: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:46:32: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:46:49: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.2421052631578947
2025-05-07 20:47:26: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:47:42: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:48:11: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 20:48:28: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:48:45: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:49:00: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 20:49:35: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:49:51: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:50:25: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 20:50:40: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:50:58: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:51:16: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.32105263157894737
2025-05-07 20:51:51: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.2789473684210526
2025-05-07 20:52:28: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 20:52:44: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 20:53:15: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 20:53:31: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 20:53:50: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 20:54:24: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:54:54: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:55:11: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 20:55:29: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:55:45: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.21578947368421053
2025-05-07 20:56:23: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:56:40: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:57:09: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:57:26: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), starting new job
2025-05-07 20:57:44: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 20:58:02: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 20:58:39: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 20:58:56: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 20:59:30: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 20:59:49: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:00:05: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:00:21: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 21:00:56: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:01:11: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:01:44: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:01:59: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:02:15: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:02:30: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.28421052631578947
2025-05-07 21:03:00: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.24736842105263157
2025-05-07 21:03:32: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 21:03:47: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 21:04:15: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 21:04:30: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 21:04:47: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 21:05:19: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:05:49: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:06:05: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:06:21: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:06:36: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 21:07:08: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:07:22: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:07:51: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:08:05: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:08:22: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:08:38: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 21:09:11: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:09:26: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:09:53: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:10:07: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:10:22: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:10:37: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.3052631578947368
2025-05-07 21:11:08: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.24736842105263157
2025-05-07 21:11:40: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 21:11:56: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 21:12:26: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 21:12:45: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 21:13:07: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 21:13:47: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:14:25: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 21:14:42: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:14:59: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:15:16: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.33684210526315794
2025-05-07 21:15:53: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:16:10: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:16:39: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:16:55: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:17:13: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:17:33: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.24736842105263157
2025-05-07 21:18:08: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:18:26: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:18:57: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:19:13: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:19:31: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:19:48: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.21052631578947367
2025-05-07 21:20:24: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:20:40: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:21:08: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:21:24: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:21:43: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:22:03: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.30000000000000004
2025-05-07 21:22:37: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.23684210526315785
2025-05-07 21:23:11: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 21:23:28: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 21:24:00: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 21:24:17: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 21:24:37: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 21:25:15: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:26:00: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), eval start
2025-05-07 21:26:17: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:26:35: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:26:53: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.2210526315789474
2025-05-07 21:27:30: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.2789473684210526
2025-05-07 21:28:06: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 21:28:21: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 21:28:52: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 21:29:09: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 21:29:27: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 21:30:07: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:30:38: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:30:57: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:31:17: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:31:35: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.27368421052631575
2025-05-07 21:32:16: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:32:35: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:33:10: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:33:29: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:33:51: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:34:10: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.2894736842105263
2025-05-07 21:34:53: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:35:10: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:35:44: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:36:01: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:36:20: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:36:40: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 21:37:20: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:37:43: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:38:15: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:38:32: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), starting new job
2025-05-07 21:38:52: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:39:10: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1∑2 (4%/50), new result: 0.2210526315789474
2025-05-07 21:39:48: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:40:08: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:40:38: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:41:00: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:41:20: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:41:37: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.30000000000000004
2025-05-07 21:42:13: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:42:30: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:43:02: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:43:22: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:43:40: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:43:57: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.27368421052631575
2025-05-07 21:44:33: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), new result: 0.2684210526315789
2025-05-07 21:45:10: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 21:45:27: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set
2025-05-07 21:46:04: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-07 21:46:28: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-07 21:46:48: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1∑1 (2%/50), started new job
2025-05-07 21:47:25: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:47:54: BoTorchModel, best RESULT: 0.18947368421052635, running 1∑1 (2%/50), eval start
2025-05-07 21:48:12: BoTorchModel, best RESULT: 0.18947368421052635, completed 1∑1 (2%/50), starting new job
2025-05-07 21:48:32: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:48:54: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1∑2 (4%/50), new result: 0.16842105263157892
2025-05-07 21:49:32: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), new result: 0.3263157894736842
2025-05-07 21:50:12: BoTorchModel, best RESULT: 0.16842105263157892, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 21:50:32: BoTorchModel, best RESULT: 0.16842105263157892, getting new HP set
2025-05-07 21:51:15: BoTorchModel, best RESULT: 0.16842105263157892, eval start
2025-05-07 21:51:33: BoTorchModel, best RESULT: 0.16842105263157892, starting new job
2025-05-07 21:51:51: BoTorchModel, best RESULT: 0.16842105263157892, unknown 1∑1 (2%/50), started new job
2025-05-07 21:52:29: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:53:00: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), eval start
2025-05-07 21:53:19: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), starting new job
2025-05-07 21:53:37: BoTorchModel, best RESULT: 0.16842105263157892, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:53:55: BoTorchModel, best RESULT: 0.16842105263157892, completed/pending 1/1∑2 (4%/50), new result: 0.35789473684210527
2025-05-07 21:54:33: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:54:50: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:55:21: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), eval start
2025-05-07 21:55:38: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), starting new job
2025-05-07 21:55:57: BoTorchModel, best RESULT: 0.16842105263157892, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:56:16: BoTorchModel, best RESULT: 0.16842105263157892, completed/running 1/1∑2 (4%/50), new result: 0.25263157894736843
2025-05-07 21:56:53: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 21:57:09: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), getting new HP set
2025-05-07 21:57:45: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), eval start
2025-05-07 21:58:02: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), starting new job
2025-05-07 21:58:20: BoTorchModel, best RESULT: 0.16842105263157892, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 21:58:40: BoTorchModel, best RESULT: 0.16842105263157892, completed/running 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 21:59:15: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), new result: 0.23684210526315785
2025-05-07 21:59:52: BoTorchModel, best RESULT: 0.16842105263157892, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 22:00:07: BoTorchModel, best RESULT: 0.16842105263157892, getting new HP set
2025-05-07 22:00:56: BoTorchModel, best RESULT: 0.16842105263157892, eval start
2025-05-07 22:01:15: BoTorchModel, best RESULT: 0.16842105263157892, starting new job
2025-05-07 22:01:35: BoTorchModel, best RESULT: 0.16842105263157892, unknown 1∑1 (2%/50), started new job
2025-05-07 22:02:12: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), getting new HP set
2025-05-07 22:02:43: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), eval start
2025-05-07 22:02:59: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), starting new job
2025-05-07 22:03:15: BoTorchModel, best RESULT: 0.16842105263157892, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 22:03:33: BoTorchModel, best RESULT: 0.16842105263157892, completed/pending 1/1∑2 (4%/50), new result: 0.3631578947368421
2025-05-07 22:04:07: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 22:04:23: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), getting new HP set
2025-05-07 22:04:55: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), eval start
2025-05-07 22:05:12: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), starting new job
2025-05-07 22:05:29: BoTorchModel, best RESULT: 0.16842105263157892, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 22:05:48: BoTorchModel, best RESULT: 0.16842105263157892, completed/pending 1/1∑2 (4%/50), new result: 0.2894736842105263
2025-05-07 22:06:24: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
2025-05-07 22:06:40: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), getting new HP set
2025-05-07 22:07:19: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), eval start
2025-05-07 22:07:37: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), starting new job
2025-05-07 22:07:55: BoTorchModel, best RESULT: 0.16842105263157892, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 22:08:14: BoTorchModel, best RESULT: 0.16842105263157892, completed/running 1/1∑2 (4%/50), new result: 0.30000000000000004
2025-05-07 22:08:48: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), new result: 0.2578947368421053
2025-05-07 22:09:30: BoTorchModel, best RESULT: 0.16842105263157892, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 22:09:50: BoTorchModel, best RESULT: 0.16842105263157892, getting new HP set
2025-05-07 22:10:28: BoTorchModel, best RESULT: 0.16842105263157892, eval start
2025-05-07 22:10:47: BoTorchModel, best RESULT: 0.16842105263157892, starting new job
2025-05-07 22:11:06: BoTorchModel, best RESULT: 0.16842105263157892, unknown 1∑1 (2%/50), started new job
2025-05-07 22:11:52: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), getting new HP set
2025-05-07 22:12:29: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), eval start
2025-05-07 22:12:49: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), starting new job
2025-05-07 22:13:09: BoTorchModel, best RESULT: 0.16842105263157892, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 22:13:29: BoTorchModel, best RESULT: 0.16842105263157892, completed/running 1/1∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 22:14:11: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), new result: 0.2789473684210526
2025-05-07 22:14:51: BoTorchModel, best RESULT: 0.16842105263157892, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 22:15:15: BoTorchModel, best RESULT: 0.16842105263157892, getting new HP set
2025-05-07 22:16:00: BoTorchModel, best RESULT: 0.16842105263157892, eval start
2025-05-07 22:16:25: BoTorchModel, best RESULT: 0.16842105263157892, starting new job
2025-05-07 22:16:50: BoTorchModel, best RESULT: 0.16842105263157892, unknown 1∑1 (2%/50), started new job
2025-05-07 22:17:37: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), getting new HP set
2025-05-07 22:18:14: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), eval start
2025-05-07 22:18:32: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), starting new job
2025-05-07 22:18:52: BoTorchModel, best RESULT: 0.16842105263157892, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 22:19:11: BoTorchModel, best RESULT: 0.16842105263157892, completed/running 1/1∑2 (4%/50), new result: 0.2947368421052632
2025-05-07 22:19:49: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), new result: 0.3631578947368421
2025-05-07 22:20:28: BoTorchModel, best RESULT: 0.16842105263157892, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 22:20:51: BoTorchModel, best RESULT: 0.16842105263157892, getting new HP set
2025-05-07 22:21:32: BoTorchModel, best RESULT: 0.16842105263157892, eval start
2025-05-07 22:21:50: BoTorchModel, best RESULT: 0.16842105263157892, starting new job
2025-05-07 22:22:09: BoTorchModel, best RESULT: 0.16842105263157892, unknown 1∑1 (2%/50), started new job
2025-05-07 22:22:47: BoTorchModel, best RESULT: 0.16842105263157892, pending 1∑1 (2%/50), getting new HP set
2025-05-07 22:23:19: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), eval start
2025-05-07 22:23:36: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), starting new job
2025-05-07 22:23:55: BoTorchModel, best RESULT: 0.16842105263157892, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 22:24:13: BoTorchModel, best RESULT: 0.16842105263157892, completed/running 1/1∑2 (4%/50), new result: 0.26315789473684215
2025-05-07 22:24:56: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), new result: 0.1947368421052632
2025-05-07 22:25:42: BoTorchModel, best RESULT: 0.16842105263157892, finishing jobs (_get_next_trials), finished 2 jobs
2025-05-07 22:26:01: BoTorchModel, best RESULT: 0.16842105263157892, getting new HP set
2025-05-07 22:26:40: BoTorchModel, best RESULT: 0.16842105263157892, eval start
2025-05-07 22:26:58: BoTorchModel, best RESULT: 0.16842105263157892, starting new job
2025-05-07 22:27:17: BoTorchModel, best RESULT: 0.16842105263157892, unknown 1∑1 (2%/50), started new job
2025-05-07 22:27:58: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), getting new HP set
2025-05-07 22:28:35: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), eval start
2025-05-07 22:28:56: BoTorchModel, best RESULT: 0.16842105263157892, completed 1∑1 (2%/50), starting new job
2025-05-07 22:29:16: BoTorchModel, best RESULT: 0.16842105263157892, completed/unknown 1/1∑2 (4%/50), started new job
2025-05-07 22:29:35: BoTorchModel, best RESULT: 0.16842105263157892, completed/pending 1/1∑2 (4%/50), new result: 0.2684210526315789
2025-05-07 22:30:19: BoTorchModel, best RESULT: 0.16842105263157892, running 1∑1 (2%/50), finishing jobs (_get_next_trials), finished 1 job
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_progressbar_log")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_progressbar_log", "progressbar")'> Download »progressbar« as file</button>
<h1> Args Overview</h1>
<h2>Arguments Overview: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Key</th><th>Value </th></tr></thead><tbody><tr><td> config_yaml</td><td>None </td></tr><tr><td> config_toml</td><td>None </td></tr><tr><td> config_json</td><td>None </td></tr><tr><td> num_random_steps</td><td>50 </td></tr><tr><td> max_eval</td><td>2000 </td></tr><tr><td> run_program</td><td>[['YmFzaCAvZGF0YS9ob3JzZS93cy9wd2lua2xlci1vb3B0L3J1bi5zaCAlKGVwb2NocykgJShscikgJShic3opICUoZGEpICUoZGIp']] </td></tr><tr><td> experiment_name</td><td>vergl_botorch </td></tr><tr><td> mem_gb</td><td>10 </td></tr><tr><td> parameter</td><td>[['epochs', 'range', '10', '200', 'int', 'false'], ['lr', 'range', '0.0001', '0.01', 'float', 'false'], ['bsz', 'range', '4', '32', 'int', 'false'], </td></tr><tr><td></td><td>['da', 'range', '10', '100', 'int', 'false'], ['db', 'range', '10', '100', 'int', 'false']] </td></tr><tr><td> continue_previous_job</td><td>None </td></tr><tr><td> experiment_constraints</td><td>None </td></tr><tr><td> run_dir</td><td>runs </td></tr><tr><td> seed</td><td>None </td></tr><tr><td> decimalrounding</td><td>4 </td></tr><tr><td> enforce_sequential_optimization</td><td>False </td></tr><tr><td> verbose_tqdm</td><td>False </td></tr><tr><td> model</td><td>BOTORCH_MODULAR </td></tr><tr><td> gridsearch</td><td>False </td></tr><tr><td> occ</td><td>False </td></tr><tr><td> show_sixel_scatter</td><td>False </td></tr><tr><td> show_sixel_general</td><td>False </td></tr><tr><td> show_sixel_trial_index_result</td><td>False </td></tr><tr><td> follow</td><td>True </td></tr><tr><td> send_anonymized_usage_stats</td><td>True </td></tr><tr><td> ui_url</td><td>aHR0cHM6Ly9pbWFnZXNlZy5zY2Fkcy5kZS9vbW5pYXgvZ3VpP3BhcnRpdGlvbj1iYXJuYXJkJmV4cGVyaW1lbnRfbmFtZT12ZXJnbF9ib3RvcmNoJnJlc2VydmF0aW9uPSZhY2NvdW50PSZtZW1fZ2I… </td></tr><tr><td> root_venv_dir</td><td>/home/pwinkler </td></tr><tr><td> exclude</td><td>None </td></tr><tr><td> main_process_gb</td><td>8 </td></tr><tr><td> pareto_front_confidence</td><td>1.0 </td></tr><tr><td> max_nr_of_zero_results</td><td>50 </td></tr><tr><td> abbreviate_job_names</td><td>False </td></tr><tr><td> orchestrator_file</td><td>None </td></tr><tr><td> checkout_to_latest_tested_version</td><td>True </td></tr><tr><td> live_share</td><td>True </td></tr><tr><td> disable_tqdm</td><td>False </td></tr><tr><td> workdir</td><td></td></tr><tr><td> occ_type</td><td>euclid </td></tr><tr><td> result_names</td><td>['RESULT=min'] </td></tr><tr><td> minkowski_p</td><td>2 </td></tr><tr><td> signed_weighted_euclidean_weights</td><td></td></tr><tr><td> generation_strategy</td><td>None </td></tr><tr><td> generate_all_jobs_at_once</td><td>False </td></tr><tr><td> revert_to_random_when_seemingly_exhausted</td><td>True </td></tr><tr><td> load_data_from_existing_jobs</td><td>[] </td></tr><tr><td> n_estimators_randomforest</td><td>100 </td></tr><tr><td> external_generator</td><td>None </td></tr><tr><td> username</td><td>None </td></tr><tr><td> max_failed_jobs</td><td>0 </td></tr><tr><td> num_parallel_jobs</td><td>50 </td></tr><tr><td> worker_timeout</td><td>30 </td></tr><tr><td> slurm_use_srun</td><td>False </td></tr><tr><td> time</td><td>600 </td></tr><tr><td> partition</td><td>barnard </td></tr><tr><td> reservation</td><td>None </td></tr><tr><td> force_local_execution</td><td>False </td></tr><tr><td> slurm_signal_delay_s</td><td>0 </td></tr><tr><td> nodes_per_job</td><td>1 </td></tr><tr><td> cpus_per_task</td><td>1 </td></tr><tr><td> account</td><td>None </td></tr><tr><td> gpus</td><td>0 </td></tr><tr><td> run_mode</td><td>local </td></tr><tr><td> verbose</td><td>False </td></tr><tr><td> verbose_break_run_search_table</td><td>False </td></tr><tr><td> debug</td><td>False </td></tr><tr><td> no_sleep</td><td>False </td></tr><tr><td> tests</td><td>False </td></tr><tr><td> show_worker_percentage_table_at_end</td><td>False </td></tr><tr><td> auto_exclude_defective_hosts</td><td>False </td></tr><tr><td> run_tests_that_fail_on_taurus</td><td>False </td></tr><tr><td> raise_in_eval</td><td>False </td></tr><tr><td> show_ram_every_n_seconds</td><td>0 </td></tr></tbody></table>
<h1> Worker-Usage</h1>
<div class='invert_in_dark_mode' id='workerUsagePlot'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_worker_usage")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_worker_usage", "worker_usage.csv")'> Download »worker_usage.csv« as file</button>
<pre id="pre_tab_worker_usage">1746613821.807602,50,0,0
1746613827.677354,50,0,0
1746613831.4367335,50,0,0
1746613835.1547027,50,0,0
1746613838.875928,50,1,2
1746613843.599275,50,1,2
1746613846.0988812,50,1,2
1746613849.3623512,50,1,2
1746613854.247394,50,2,4
1746613860.5341938,50,2,4
1746613863.8025851,50,2,4
1746613866.9652565,50,2,4
1746613871.3357224,50,3,6
1746613877.268527,50,3,6
1746613880.0158553,50,3,6
1746613883.2289128,50,3,6
1746613887.3157363,50,4,8
1746613891.3677504,50,4,8
1746613898.4755108,50,3,6
1746613901.0791237,50,3,6
1746613904.877478,50,3,6
1746613908.0984557,50,3,6
1746613913.8577769,50,4,8
1746613917.2932916,50,4,8
1746613925.1977894,50,3,6
1746613931.7033715,50,2,4
1746613934.8111308,50,2,4
1746613938.105713,50,2,4
1746613941.2655795,50,2,4
1746613945.4457643,50,3,6
1746613949.3299274,50,3,6
1746613957.5309587,50,2,4
1746613963.6133292,50,1,2
1746613966.230154,50,1,2
1746613968.9756155,50,1,2
1746613971.9193075,50,1,2
1746613976.198625,50,2,4
1746613980.6648328,50,2,4
1746613986.6672225,50,1,2
1746613989.2061186,50,1,2
1746613993.4940805,50,1,2
1746613997.6282191,50,1,2
1746614003.3498497,50,2,4
1746614007.0392957,50,2,4
1746614014.208099,50,1,2
1746614019.7013059,50,1,2
1746614026.0136523,50,1,2
1746614030.1341763,50,1,2
1746614035.6556435,50,2,4
1746614044.080949,50,2,4
1746614047.752109,50,2,4
1746614051.1157646,50,2,4
1746614056.0212102,50,3,6
1746614060.792835,50,3,6
1746614066.8693888,50,2,4
1746614069.9523015,50,2,4
1746614073.1354785,50,2,4
1746614076.5542166,50,2,4
1746614081.1394947,50,3,6
1746614085.0960176,50,3,6
1746614092.7505193,50,2,4
1746614096.5436213,50,2,4
1746614099.69904,50,2,4
1746614104.0901785,50,2,4
1746614108.0927129,50,3,6
1746614111.9256177,50,3,6
1746614119.4110649,50,2,4
1746614122.8187046,50,2,4
1746614126.3920584,50,2,4
1746614130.3880432,50,2,4
1746614135.0318272,50,3,6
1746614138.9104407,50,3,6
1746614146.2714097,50,2,4
1746614155.031067,50,1,2
1746614158.2352972,50,1,2
1746614162.8771136,50,1,2
1746614166.0463758,50,1,2
1746614170.5859623,50,2,4
1746614175.424636,50,2,4
1746614184.2805307,50,1,2
1746614187.5331357,50,1,2
1746614190.6628356,50,1,2
1746614193.6168168,50,1,2
1746614198.4334676,50,2,4
1746614202.0268574,50,2,4
1746614208.1442964,50,1,2
1746614211.3115177,50,1,2
1746614214.7182994,50,1,2
1746614218.3166256,50,1,2
1746614224.3494942,50,2,4
1746614231.0935366,50,2,4
1746614234.243307,50,2,4
1746614237.6392486,50,2,4
1746614242.8465693,50,3,6
1746614247.0519593,50,3,6
1746614254.7488973,50,2,4
1746614257.5292263,50,2,4
1746614261.1713355,50,2,4
1746614269.7169514,50,2,4
1746614275.5332227,50,3,6
1746614279.8789952,50,3,6
1746614287.007154,50,2,4
1746614290.119208,50,2,4
1746614293.222023,50,2,4
1746614296.5264957,50,2,4
1746614300.7274115,50,3,6
1746614304.543368,50,3,6
1746614312.1513515,50,2,4
1746614315.2145002,50,2,4
1746614319.1466386,50,2,4
1746614322.7809749,50,2,4
1746614327.1777613,50,3,6
1746614330.9590218,50,3,6
1746614337.7607553,50,2,4
1746614344.7180052,50,1,2
1746614348.3619666,50,1,2
1746614352.6645763,50,1,2
1746614355.9601583,50,1,2
1746614361.4127388,50,2,4
1746614365.6237235,50,2,4
1746614371.9764569,50,1,2
1746614375.562739,50,1,2
1746614379.0291493,50,1,2
1746614382.6058633,50,1,2
1746614387.630909,50,2,4
1746614391.688166,50,2,4
1746614397.980931,50,1,2
1746614401.3316934,50,1,2
1746614406.2257154,50,1,2
1746614410.9381373,50,1,2
1746614417.0920968,50,2,4
1746614423.8682039,50,2,4
1746614427.2890906,50,2,4
1746614430.6668158,50,2,4
1746614435.324742,50,3,6
1746614439.9227896,50,3,6
1746614447.3189857,50,2,4
1746614450.3004737,50,2,4
1746614454.0392728,50,2,4
1746614457.5017195,50,2,4
1746614461.928732,50,3,6
1746614466.0783005,50,3,6
1746614474.730307,50,2,4
1746614478.5787077,50,2,4
1746614482.0064948,50,2,4
1746614485.4229069,50,2,4
1746614490.2360213,50,3,6
1746614494.837747,50,3,6
1746614503.7350671,50,2,4
1746614510.539408,50,1,2
1746614513.6108286,50,1,2
1746614517.1360123,50,1,2
1746614520.4502325,50,1,2
1746614525.9966893,50,2,4
1746614530.7220314,50,2,4
1746614539.5579102,50,1,2
1746614543.470583,50,1,2
1746614547.165253,50,1,2
1746614550.6442819,50,1,2
1746614555.4542797,50,2,4
1746614559.7006736,50,2,4
1746614567.1961532,50,1,2
1746614570.8500383,50,1,2
1746614574.8108976,50,1,2
1746614578.2131786,50,1,2
1746614582.7256932,50,2,4
1746614587.268407,50,2,4
1746614594.9013789,50,1,2
1746614598.780297,50,1,2
1746614603.595275,50,1,2
1746614608.3338232,50,1,2
1746614615.173326,50,2,4
1746614620.710717,50,2,4
1746614640.2341897,50,1,2
1746614650.8438392,50,1,2
1746614661.2575996,50,1,2
1746614669.2912965,50,1,2
1746614680.4447677,50,2,4
1746614699.3637235,50,2,4
1746614707.251801,50,2,4
1746614715.2469141,50,2,4
1746614724.264441,50,3,6
1746614735.673215,50,3,6
1746614750.222806,50,2,4
1746614764.8938003,50,1,2
1746614772.4692335,50,1,2
1746614781.5829487,50,1,2
1746614788.7992826,50,1,2
1746614799.1306794,50,2,4
1746614812.9154477,50,2,4
1746614820.0439916,50,2,4
1746614826.0697193,50,2,4
1746614833.5912528,50,3,6
1746614840.3190396,50,3,6
1746614852.9723043,50,2,4
1746614861.8210342,50,2,4
1746614867.732504,50,2,4
1746614874.210248,50,2,4
1746614889.409209,50,3,6
1746614904.29549,50,3,6
1746614937.1695905,50,2,4
1746614949.377435,50,2,4
1746614955.3427963,50,2,4
1746614962.346286,50,2,4
1746614985.625757,50,3,6
1746615006.3798468,50,3,6
1746615044.3129823,50,2,4
1746615052.5752888,50,2,4
1746615058.4493449,50,2,4
1746615064.6017718,50,2,4
1746615072.2070074,50,3,6
1746615078.9985454,50,3,6
1746615092.7879279,50,2,4
1746615106.0422359,50,1,2
1746615111.9061387,50,1,2
1746615117.9320798,50,1,2
1746615124.615356,50,1,2
1746615131.9861984,50,2,4
1746615138.5839288,50,2,4
1746615152.5784075,50,1,2
1746615158.35776,50,1,2
1746615165.2165372,50,1,2
1746615171.3223472,50,1,2
1746615178.753138,50,2,4
1746615191.596899,50,2,4
1746615197.7417562,50,2,4
1746615203.7751558,50,2,4
1746615211.6621237,50,3,6
1746615218.9648519,50,3,6
1746615232.4582832,50,2,4
1746615245.687764,50,1,2
1746615251.4480145,50,1,2
1746615258.0038657,50,1,2
1746615264.3935728,50,1,2
1746615273.584247,50,2,4
1746615280.0973961,50,2,4
1746615292.2906992,50,1,2
1746615298.4029093,50,1,2
1746615304.7542906,50,1,2
1746615311.3687654,50,1,2
1746615318.8037846,50,2,4
1746615331.2964556,50,2,4
1746615337.420223,50,2,4
1746615344.04646,50,2,4
1746615351.913255,50,3,6
1746615358.8651788,50,3,6
1746615371.8010306,50,2,4
1746615378.2525058,50,2,4
1746615385.6393628,50,2,4
1746615391.8691485,50,2,4
1746615399.1411588,50,3,6
1746615405.8605442,50,3,6
1746615451.3167973,50,2,4
1746615461.9082696,50,1,2
1746615471.4582608,50,0,0
1746615475.8314922,50,0,0
1746615480.146126,50,0,0
1746615484.454141,50,0,0
1746615490.3061433,50,1,2
1746615500.1845102,50,1,2
1746615504.9052463,50,1,2
1746615510.5015209,50,1,2
1746615516.8727427,50,2,4
1746615526.0043616,50,2,4
1746615530.3848188,50,2,4
1746615534.581338,50,2,4
1746615540.212379,50,3,6
1746615545.3346157,50,3,6
1746615554.2319407,50,2,4
1746615558.254043,50,2,4
1746615562.2004867,50,2,4
1746615566.3521647,50,2,4
1746615571.8977656,50,3,6
1746615576.7581742,50,3,6
1746615586.1770744,50,2,4
1746615590.1735277,50,2,4
1746615594.0810843,50,2,4
1746615598.0643203,50,2,4
1746615603.2571933,50,3,6
1746615608.3975985,50,3,6
1746615618.0594287,50,2,4
1746615621.8592193,50,2,4
1746615626.1764004,50,2,4
1746615630.2157443,50,2,4
1746615635.2938466,50,3,6
1746615640.7933962,50,3,6
1746615649.8198814,50,2,4
1746615658.155966,50,1,2
1746615662.495899,50,1,2
1746615670.4842749,50,0,0
1746615675.7233675,50,0,0
1746615682.3491268,50,0,0
1746615686.3421783,50,0,0
1746615691.9539044,50,1,2
1746615701.1500835,50,1,2
1746615707.5707948,50,1,2
1746615712.8582594,50,1,2
1746615718.1658056,50,2,4
1746615723.4328692,50,2,4
1746615732.719154,50,1,2
1746615736.5781946,50,1,2
1746615754.9827905,50,1,2
1746615760.389391,50,1,2
1746615766.4577317,50,2,4
1746615772.9736924,50,2,4
1746615783.4539921,50,1,2
1746615788.0062203,50,1,2
1746615797.9067948,50,1,2
1746615803.173867,50,1,2
1746615810.550682,50,2,4
1746615818.156892,50,2,4
1746615831.0570831,50,1,2
1746615837.1795208,50,1,2
1746615845.1184258,50,1,2
1746615850.5414827,50,1,2
1746615857.4200432,50,2,4
1746615872.9345589,50,2,4
1746615883.5070028,50,2,4
1746615892.255184,50,2,4
1746615902.2595325,50,3,6
1746615910.6424289,50,3,6
1746615925.1512663,50,2,4
1746615940.1935236,50,1,2
1746615947.9028356,50,1,2
1746615958.791562,50,1,2
1746615968.1462533,50,1,2
1746615976.532156,50,2,4
1746615984.0823097,50,2,4
1746616001.2652256,50,1,2
1746616009.3995755,50,1,2
1746616023.8816092,50,1,2
1746616032.2532375,50,1,2
1746616041.4110541,50,2,4
1746616048.9346783,50,2,4
1746616062.5043352,50,1,2
1746616068.8277094,50,1,2
1746616080.163788,50,1,2
1746616087.5693204,50,1,2
1746616096.9103122,50,2,4
1746616114.5948055,50,2,4
1746616130.4119139,50,1,2
1746616140.7378325,50,1,2
1746616155.4568589,50,1,2
1746616164.0954192,50,1,2
1746616174.9543424,50,2,4
1746616183.8630254,50,2,4
1746616202.5904741,50,1,2
1746616212.8502169,50,1,2
1746616230.3801148,50,1,2
1746616239.7152646,50,1,2
1746616249.6872642,50,2,4
1746616259.1072357,50,2,4
1746616275.523169,50,1,2
1746616282.1268725,50,1,2
1746616293.4484918,50,1,2
1746616302.564052,50,1,2
1746616313.8174047,50,2,4
1746616321.5709803,50,2,4
1746616338.115129,50,1,2
1746616354.1863205,50,1,2
1746616365.1273992,50,1,2
1746616372.349919,50,1,2
1746616382.304059,50,2,4
1746616391.8302813,50,2,4
1746616407.052547,50,1,2
1746616413.3671248,50,1,2
1746616427.8912802,50,1,2
1746616434.651837,50,1,2
1746616443.055845,50,2,4
1746616450.9137156,50,2,4
1746616467.9865365,50,1,2
1746616475.5822153,50,1,2
1746616488.5648692,50,1,2
1746616495.8635874,50,1,2
1746616504.7464647,50,2,4
1746616513.2540302,50,2,4
1746616526.5608017,50,1,2
1746616533.0550797,50,1,2
1746616542.7607822,50,1,2
1746616550.2298675,50,1,2
1746616559.187987,50,2,4
1746616573.6866238,50,2,4
1746616583.4671307,50,2,4
1746616590.3554864,50,2,4
1746616599.4509954,50,3,6
1746616607.1421993,50,3,6
1746616621.0709703,50,2,4
1746616638.212666,50,1,2
1746616645.6737525,50,1,2
1746616657.5509808,50,1,2
1746616667.0612826,50,1,2
1746616676.9948616,50,2,4
1746616688.2607303,50,2,4
1746616710.0834377,50,1,2
1746616718.8700807,50,1,2
1746616733.152905,50,1,2
1746616742.634836,50,1,2
1746616755.3174906,50,2,4
1746616766.7834146,50,2,4
1746616784.1709883,50,1,2
1746616791.5511315,50,1,2
1746616802.6460223,50,1,2
1746616810.0344374,50,1,2
1746616819.2474637,50,2,4
1746616835.7863672,50,2,4
1746616846.8441846,50,2,4
1746616855.015072,50,2,4
1746616862.8774493,50,3,6
1746616870.4356606,50,3,6
1746616888.7052906,50,2,4
1746616897.6083167,50,2,4
1746616911.772804,50,2,4
1746616920.0581753,50,2,4
1746616928.0598779,50,3,6
1746616935.9284906,50,3,6
1746616950.013561,50,2,4
1746616963.0491288,50,1,2
1746616969.0289996,50,1,2
1746616979.1227129,50,1,2
1746616985.633654,50,1,2
1746616993.4837866,50,2,4
1746617000.4203799,50,2,4
1746617014.5813665,50,1,2
1746617021.1994948,50,1,2
1746617029.4955497,50,1,2
1746617037.1416528,50,1,2
1746617044.5374625,50,2,4
1746617052.3277807,50,2,4
1746617066.5174346,50,1,2
1746617081.1886675,50,0,0
1746617087.867851,50,0,0
1746617098.1033697,50,0,0
1746617103.9910085,50,0,0
1746617113.3781195,50,1,2
1746617129.2178872,50,1,2
1746617138.2049718,50,1,2
1746617144.9977236,50,1,2
1746617154.4023259,50,2,4
1746617172.196357,50,2,4
1746617184.9358087,50,2,4
1746617203.5097287,50,2,4
1746617216.9513934,50,3,6
1746617227.9592052,50,3,6
1746617248.5952737,50,2,4
1746617267.9500604,50,1,2
1746617276.4035416,50,1,2
1746617290.197008,50,1,2
1746617301.2498007,50,1,2
1746617315.886067,50,2,4
1746617328.3967197,50,2,4
1746617353.4900827,50,1,2
1746617363.2442389,50,1,2
1746617374.5915093,50,1,2
1746617385.2485688,50,1,2
1746617396.9879358,50,2,4
1746617406.009924,50,2,4
1746617426.0029438,50,1,2
1746617434.6957226,50,1,2
1746617448.4348054,50,1,2
1746617458.602562,50,1,2
1746617470.9960759,50,2,4
1746617483.7530808,50,2,4
1746617507.0028136,50,1,2
1746617519.4742317,50,1,2
1746617535.1494648,50,1,2
1746617547.4321244,50,1,2
1746617563.213482,50,2,4
1746617575.2517924,50,2,4
1746617596.3514524,50,1,2
1746617603.961214,50,1,2
1746617617.633687,50,1,2
1746617627.654703,50,1,2
1746617638.5371203,50,2,4
1746617648.180536,50,2,4
1746617674.7926936,50,1,2
1746617685.0028398,50,1,2
1746617699.2975028,50,1,2
1746617709.0818307,50,1,2
1746617720.4232674,50,2,4
1746617729.9296324,50,2,4
1746617751.5308967,50,1,2
1746617764.8999066,50,1,2
1746617779.2186403,50,1,2
1746617792.692132,50,1,2
1746617805.544188,50,2,4
1746617818.3494208,50,2,4
1746617844.8408284,50,1,2
1746617860.910336,50,1,2
1746617876.7727902,50,1,2
1746617886.034351,50,1,2
1746617901.5792496,50,2,4
1746617914.6237729,50,2,4
1746617941.1215353,50,1,2
1746617953.2852335,50,1,2
1746617968.8082168,50,1,2
1746617985.0161023,50,1,2
1746618000.0649621,50,2,4
1746618014.1430979,50,2,4
1746618038.0257769,50,1,2
1746618049.13228,50,1,2
1746618061.880068,50,1,2
1746618070.664167,50,1,2
1746618080.0352733,50,2,4
1746618089.473107,50,2,4
1746618107.3572016,50,1,2
1746618115.137213,50,1,2
1746618127.3880043,50,1,2
1746618136.6806402,50,1,2
1746618147.3495119,50,2,4
1746618157.077285,50,2,4
1746618178.8202848,50,1,2
1746618191.064716,50,1,2
1746618207.1144705,50,1,2
1746618220.3604398,50,1,2
1746618238.068661,50,2,4
1746618255.2728791,50,2,4
1746618278.9168096,50,1,2
1746618292.4059165,50,1,2
1746618305.967526,50,1,2
1746618317.3741314,50,1,2
1746618330.0839088,50,2,4
1746618341.0533254,50,2,4
1746618366.4331994,50,1,2
1746618379.1958878,50,1,2
1746618393.3405242,50,1,2
1746618405.5927415,50,1,2
1746618416.3117943,50,2,4
1746618426.2887075,50,2,4
1746618448.1560352,50,1,2
1746618456.9612384,50,1,2
1746618469.3170383,50,1,2
1746618477.378456,50,1,2
1746618486.1914032,50,2,4
1746618495.168698,50,2,4
1746618511.134297,50,1,2
1746618520.66595,50,1,2
1746618532.9500072,50,1,2
1746618542.4635327,50,1,2
1746618552.9711235,50,2,4
1746618563.0231652,50,2,4
1746618581.7655678,50,1,2
1746618590.284841,50,1,2
1746618603.2191224,50,1,2
1746618611.8863382,50,1,2
1746618623.8542492,50,2,4
1746618634.7057102,50,2,4
1746618657.516614,50,1,2
1746618669.6125147,50,1,2
1746618682.801252,50,1,2
1746618695.5579102,50,1,2
1746618710.4585721,50,2,4
1746618719.9067776,50,2,4
1746618740.3991628,50,1,2
1746618751.0685146,50,1,2
1746618767.1065376,50,1,2
1746618784.4258096,50,1,2
1746618797.8629959,50,2,4
1746618818.3213422,50,2,4
1746618868.4038506,50,1,2
1746618896.5775616,50,1,2
1746618935.1274843,50,1,2
1746618967.4781814,50,1,2
1746618987.980328,50,2,4
1746619007.6017401,50,2,4
1746619061.626019,50,1,2
1746619092.2845716,50,1,2
1746619117.3008263,50,1,2
1746619134.4214478,50,1,2
1746619156.672033,50,2,4
1746619185.3885741,50,2,4
1746619239.7468908,50,1,2
1746619261.3536835,50,1,2
1746619301.573733,50,1,2
1746619333.0882893,50,1,2
1746619360.1102343,50,2,4
1746619386.471086,50,2,4
1746619444.106228,50,1,2
1746619467.487737,50,1,2
1746619487.0482588,50,1,2
1746619511.4558012,50,1,2
1746619533.8618596,50,2,4
1746619570.2246706,50,2,4
1746619633.8016331,50,1,2
1746619675.6154172,50,1,2
1746619717.2118065,50,1,2
1746619774.0931108,50,1,2
1746619826.0485365,50,0,0
1746619851.3108976,50,0,0
1746619885.8142776,50,0,0
1746619909.9776833,50,0,0
1746619930.8792787,50,1,2
1746619987.54166,50,1,2
1746620020.990613,50,1,2
1746620043.4472792,50,1,2
1746620068.878544,50,2,4
1746620095.3066242,50,2,4
1746620145.24646,50,1,2
1746620164.239989,50,1,2
1746620192.1718247,50,1,2
1746620221.445169,50,1,2
1746620254.0527241,50,2,4
1746620287.1489236,50,2,4
1746620361.1776226,50,1,2
1746620402.5748987,50,1,2
1746620430.4580193,50,1,2
1746620466.7656653,50,1,2
1746620497.5191183,50,2,4
1746620554.148192,50,2,4
1746620591.802819,50,2,4
1746620618.3575108,50,2,4
1746620651.1390195,50,3,6
1746620678.6673737,50,3,6
1746620742.5620124,50,2,4
1746620809.7525907,50,1,2
1746620864.46509,50,0,0
1746620884.5675888,50,0,0
1746620926.4249406,50,0,0
1746620957.1128561,50,0,0
1746620994.3789322,50,1,2
1746621056.4170616,50,1,2
1746621102.7168086,50,1,2
1746621135.4013042,50,1,2
1746621165.868836,50,2,4
1746621196.7184355,50,2,4
1746621276.800851,50,1,2
1746621302.789313,50,1,2
1746621345.4563599,50,1,2
1746621374.0865545,50,1,2
1746621394.0102308,50,2,4
1746621414.8571985,50,2,4
1746621460.935892,50,1,2
1746621479.7189403,50,1,2
1746621504.6874585,50,1,2
1746621521.4323313,50,1,2
1746621539.0909946,50,2,4
1746621556.5723574,50,2,4
1746621589.6250837,50,1,2
1746621608.3514287,50,1,2
1746621628.298399,50,1,2
1746621652.5369885,50,1,2
1746621676.9108844,50,2,4
1746621695.5928123,50,2,4
1746621739.437767,50,1,2
1746621760.8999486,50,1,2
1746621785.7504504,50,1,2
1746621801.1617854,50,1,2
1746621818.2151413,50,2,4
1746621834.9294724,50,2,4
1746621878.057487,50,1,2
1746621910.5503144,50,1,2
1746621932.858045,50,1,2
1746621954.6182973,50,1,2
1746621971.5851707,50,2,4
1746621988.3075013,50,2,4
1746622017.6969724,50,1,2
1746622040.8283308,50,1,2
1746622061.929019,50,1,2
1746622075.7027767,50,1,2
1746622089.306323,50,2,4
1746622145.7245352,50,2,4
1746622192.1363657,50,2,4
1746622225.3166013,50,2,4
1746622258.3124554,50,3,6
1746622291.2684073,50,3,6
1746622398.6718469,50,2,4
1746622489.74222,50,1,2
1746622551.8156512,50,0,0
1746622575.3177283,50,0,0
1746622597.1088898,50,0,0
1746622614.8411663,50,0,0
1746622632.9746826,50,1,2
1746622672.4890053,50,1,2
1746622691.9027975,50,1,2
1746622711.968849,50,1,2
1746622736.3261366,50,2,4
1746622753.3931446,50,2,4
1746622790.0221424,50,1,2
1746622815.2284315,50,1,2
1746622837.0123851,50,1,2
1746622855.2496552,50,1,2
1746622876.1309974,50,2,4
1746622898.7846131,50,2,4
1746622934.5888782,50,1,2
1746622959.4977472,50,1,2
1746622981.3427274,50,1,2
1746623003.1145,50,1,2
1746623022.8610756,50,2,4
1746623040.40983,50,2,4
1746623075.3840091,50,1,2
1746623090.804736,50,1,2
1746623108.5304835,50,1,2
1746623127.5045242,50,1,2
1746623146.1227047,50,2,4
1746623165.2174566,50,2,4
1746623203.8356643,50,1,2
1746623221.7860868,50,1,2
1746623241.7837331,50,1,2
1746623261.8268912,50,1,2
1746623282.3989413,50,2,4
1746623304.5775087,50,2,4
1746623343.560294,50,1,2
1746623364.5835857,50,1,2
1746623384.1622639,50,1,2
1746623406.0371,50,1,2
1746623431.0941315,50,2,4
1746623455.1963723,50,2,4
1746623503.8511455,50,1,2
1746623541.990844,50,0,0
1746623560.4668856,50,0,0
1746623586.6678061,50,0,0
1746623609.1074317,50,0,0
1746623630.3142538,50,1,2
1746623671.9205005,50,1,2
1746623691.5466485,50,1,2
1746623708.2424102,50,1,2
1746623724.2774203,50,2,4
1746623742.4182858,50,2,4
1746623781.7268608,50,1,2
1746623802.7266245,50,1,2
1746623828.7519968,50,1,2
1746623846.894361,50,1,2
1746623869.3814635,50,2,4
1746623898.2568233,50,2,4
1746623936.9514873,50,1,2
1746623979.7695272,50,0,0
1746623998.2586575,50,0,0
1746624025.0459328,50,0,0
1746624047.9614828,50,0,0
1746624069.708202,50,1,2
1746624109.9906063,50,1,2
1746624130.9328299,50,1,2
1746624149.7077553,50,1,2
1746624168.698687,50,2,4
1746624190.9680796,50,2,4
1746624235.82778,50,1,2
1746624283.112436,50,0,0
1746624304.711656,50,0,0
1746624326.918775,50,0,0
1746624347.9781928,50,0,0
1746624369.5373344,50,1,2
1746624413.4563603,50,1,2
1746624437.9993205,50,1,2
1746624458.606455,50,1,2
1746624484.2451825,50,2,4
1746624505.2743025,50,2,4
1746624552.9199777,50,1,2
1746624599.9588904,50,0,0
1746624619.7211285,50,0,0
1746624650.4888935,50,0,0
1746624683.4253743,50,0,0
1746624716.1587543,50,1,2
1746624779.1298218,50,1,2
1746624818.3146381,50,1,2
1746624855.3983455,50,1,2
1746624884.4144502,50,2,4
1746624920.4536896,50,2,4
1746624967.7608998,50,1,2
1746624983.3881683,50,1,2
1746625007.7376163,50,1,2
1746625040.9462142,50,1,2
1746625069.337376,50,2,4
1746625113.742135,50,2,4
1746625136.9990249,50,2,4
1746625158.6149814,50,2,4
1746625180.9113069,50,3,6
1746625200.0485692,50,3,6
1746625252.6451883,50,2,4
1746625295.2742233,50,1,2
1746625332.4082713,50,0,0
1746625348.4575434,50,0,0
1746625373.3575232,50,0,0
1746625387.338943,50,0,0
1746625406.098311,50,1,2
1746625439.5060472,50,1,2
1746625461.417212,50,1,2
1746625475.9973524,50,1,2
1746625498.2139227,50,2,4
1746625514.7788935,50,2,4
1746625561.421871,50,1,2
1746625577.5338302,50,1,2
1746625596.2516494,50,1,2
1746625614.034892,50,1,2
1746625640.4924307,50,2,4
1746625660.22003,50,2,4
1746625704.9720945,50,1,2
1746625724.5111983,50,1,2
1746625751.4262445,50,1,2
1746625769.8478403,50,1,2
1746625792.016888,50,2,4
1746625814.5147095,50,2,4
1746625852.7515612,50,1,2
1746625875.9936972,50,1,2
1746625900.4970212,50,1,2
1746625922.0189664,50,1,2
1746625945.0281334,50,2,4
1746625967.7912567,50,2,4
1746626013.2862623,50,1,2
1746626036.6303914,50,1,2
1746626065.018681,50,1,2
1746626087.0776312,50,1,2
1746626106.3247252,50,2,4
1746626127.1320753,50,2,4
1746626171.194789,50,1,2
1746626192.6468434,50,1,2
1746626222.0675983,50,1,2
1746626249.9782093,50,1,2
1746626288.4183724,50,2,4
1746626319.5683422,50,2,4
1746626374.4003894,50,1,2
1746626479.48085,50,1,2
1746626515.729026,50,1,2
1746626597.2878337,50,1,2
1746626621.5296342,50,2,4
1746626648.0932732,50,2,4
1746626678.2704613,50,1,2
1746626721.3079412,50,0,0
1746626741.8115206,50,0,0
1746626766.8709185,50,0,0
1746626789.0984511,50,0,0
1746626819.4914794,50,1,2
1746626872.9924219,50,1,2
1746626908.8419278,50,1,2
1746626934.1872406,50,1,2
1746626962.111141,50,2,4
1746626989.368571,50,2,4
1746627035.1604428,50,1,2
1746627160.6348763,50,0,0
1746627204.5518985,50,0,0
1746627261.8853831,50,0,0
1746627291.0545113,50,0,0
1746627316.02126,50,1,2
1746627350.0987916,50,1,2
1746627372.6255867,50,1,2
1746627390.0901766,50,1,2
1746627412.6810567,50,2,4
1746627450.3990188,50,2,4
1746627473.2168508,50,2,4
1746627492.9266512,50,2,4
1746627512.266989,50,3,6
1746627534.05281,50,3,6
1746627576.852507,50,2,4
1746627613.6948626,50,1,2
1746627635.0657163,50,1,2
1746627656.8196003,50,1,2
1746627680.763088,50,1,2
1746627703.0813975,50,2,4
1746627723.0725837,50,2,4
1746627760.4771454,50,1,2
1746627801.5880792,50,0,0
1746627821.2017221,50,0,0
1746627842.6046133,50,0,0
1746627867.7322247,50,0,0
1746627895.9905736,50,1,2
1746627942.6713982,50,1,2
1746627968.6723673,50,1,2
1746627987.173106,50,1,2
1746628007.1506515,50,2,4
1746628026.5398185,50,2,4
1746628063.0847063,50,1,2
1746628106.5808597,50,0,0
1746628126.571721,50,0,0
1746628149.6524382,50,0,0
1746628172.061568,50,0,0
1746628199.4226124,50,1,2
1746628253.8932903,50,1,2
1746628287.0292711,50,1,2
1746628307.9636729,50,1,2
1746628329.3733666,50,2,4
1746628352.0852327,50,2,4
1746628394.8972356,50,1,2
1746628438.146684,50,0,0
1746628463.6355872,50,0,0
1746628495.4445112,50,0,0
1746628517.1583343,50,0,0
1746628539.475237,50,1,2
1746628578.4371262,50,1,2
1746628603.0507705,50,1,2
1746628625.4074407,50,1,2
1746628647.4708538,50,2,4
1746628674.0980396,50,2,4
1746628715.980887,50,1,2
1746628733.055947,50,1,2
1746628757.7417233,50,1,2
1746628780.7681627,50,1,2
1746628799.0662374,50,2,4
1746628819.6188498,50,2,4
1746628856.687146,50,1,2
1746628872.1444216,50,1,2
1746628894.04641,50,1,2
1746628917.290537,50,1,2
1746628940.1194763,50,2,4
1746628964.5026636,50,2,4
1746629008.6969805,50,1,2
1746629059.8563657,50,0,0
1746629083.979282,50,0,0
1746629106.6782513,50,0,0
1746629128.7983334,50,0,0
1746629145.6560528,50,1,2
1746629196.1421514,50,1,2
1746629216.9991353,50,1,2
1746629241.0490167,50,1,2
1746629265.5185347,50,2,4
1746629289.0944324,50,2,4
1746629333.6787431,50,1,2
1746629376.331353,50,0,0
1746629403.4626975,50,0,0
1746629427.179425,50,0,0
1746629455.3554056,50,0,0
1746629481.9379296,50,1,2
1746629539.8731105,50,1,2
1746629563.907704,50,1,2
1746629582.0094707,50,1,2
1746629606.916442,50,2,4
1746629627.8408558,50,2,4
1746629680.3885353,50,1,2
1746629706.4894266,50,1,2
1746629736.1251614,50,1,2
1746629761.7647047,50,1,2
1746629789.7117143,50,2,4
1746629811.0312538,50,2,4
1746629860.6108105,50,1,2
1746629884.9672098,50,1,2
1746629910.0513892,50,1,2
1746629936.3861775,50,1,2
1746629962.6681385,50,2,4
1746629995.0049593,50,2,4
1746630039.2191162,50,1,2
1746630090.3031788,50,0,0
1746630110.4469726,50,0,0
1746630133.234269,50,0,0
1746630141.657038,50,0,0
1746630152.1085954,50,1,2
1746630176.4706397,50,1,2
1746630188.8701944,50,1,2
1746630196.5584404,50,1,2
1746630207.750982,50,2,4
1746630216.6881483,50,2,4
1746630238.3790593,50,1,2
1746630247.596384,50,1,2
1746630265.9614887,50,1,2
1746630275.1147156,50,1,2
1746630283.9570491,50,2,4
1746630294.171821,50,2,4
1746630316.1614156,50,1,2
1746630327.2394052,50,1,2
1746630338.7538724,50,1,2
1746630348.14865,50,1,2
1746630357.4612083,50,2,4
1746630365.5071874,50,2,4
1746630381.4156022,50,1,2
1746630389.806817,50,1,2
1746630402.7305727,50,1,2
1746630411.163805,50,1,2
1746630420.5437734,50,2,4
1746630428.2233791,50,2,4
1746630444.2738554,50,1,2
1746630456.261685,50,1,2
1746630468.0064263,50,1,2
1746630477.8876314,50,1,2
1746630486.575302,50,2,4
1746630494.8361087,50,2,4
1746630522.1816165,50,1,2
1746630530.6068492,50,1,2
1746630543.3976781,50,1,2
1746630553.6726496,50,1,2
1746630567.9177759,50,2,4
1746630581.2276497,50,2,4
1746630608.8148313,50,1,2
1746630633.266061,50,0,0
1746630641.9421089,50,0,0
1746630658.3861678,50,0,0
1746630668.6214156,50,0,0
1746630681.7481241,50,1,2
1746630703.257178,50,1,2
1746630717.4935746,50,1,2
1746630726.064118,50,1,2
1746630744.5328753,50,2,4
1746630754.408785,50,2,4
1746630775.0054147,50,1,2
1746630783.8478749,50,1,2
1746630797.8818035,50,1,2
1746630811.8745298,50,1,2
1746630824.401227,50,2,4
1746630834.6553972,50,2,4
1746630855.4193943,50,1,2
1746630870.1631663,50,1,2
1746630885.6046598,50,1,2
1746630894.359423,50,1,2
1746630902.8693793,50,2,4
1746630911.454352,50,2,4
1746630930.4761286,50,1,2
1746630939.379229,50,1,2
1746630951.8798852,50,1,2
1746630961.941556,50,1,2
1746630971.0028265,50,2,4
1746630979.470978,50,2,4
1746631002.5083187,50,1,2
1746631011.2228084,50,1,2
1746631024.9148717,50,1,2
1746631032.4120023,50,1,2
1746631040.5853162,50,2,4
1746631051.130547,50,2,4
1746631073.2277904,50,1,2
1746631092.4158945,50,0,0
1746631099.878891,50,0,0
1746631112.6272032,50,0,0
1746631124.6085103,50,0,0
1746631136.3498445,50,1,2
1746631155.1262372,50,1,2
1746631167.5531046,50,1,2
1746631179.0903385,50,1,2
1746631191.6856441,50,2,4
1746631203.7797313,50,2,4
1746631223.6932564,50,1,2
1746631232.1069958,50,1,2
1746631247.553546,50,1,2
1746631256.3941221,50,1,2
1746631267.587931,50,2,4
1746631276.9567235,50,2,4
1746631295.4344008,50,1,2
1746631308.5843382,50,1,2
1746631326.0797217,50,1,2
1746631334.4139984,50,1,2
1746631344.002924,50,2,4
1746631352.192473,50,2,4
1746631373.6366205,50,1,2
1746631384.7513826,50,1,2
1746631402.120371,50,1,2
1746631413.591296,50,1,2
1746631426.9969687,50,2,4
1746631445.7591882,50,2,4
1746631460.467294,50,2,4
1746631470.5445273,50,2,4
1746631479.3856084,50,3,6
1746631488.0847092,50,3,6
1746631506.2223701,50,2,4
1746631525.64076,50,1,2
1746631542.017802,50,0,0
1746631550.4372926,50,0,0
1746631564.2765079,50,0,0
1746631573.4167955,50,0,0
1746631585.1553996,50,1,2
1746631607.523457,50,1,2
1746631619.4373868,50,1,2
1746631629.0950844,50,1,2
1746631639.1269073,50,2,4
1746631647.3867674,50,2,4
1746631666.4237502,50,1,2
1746631675.0621095,50,1,2
1746631690.8403046,50,1,2
1746631699.6409848,50,1,2
1746631710.1104174,50,2,4
1746631720.5686998,50,2,4
1746631739.0102217,50,1,2
1746631748.2983108,50,1,2
1746631762.2106361,50,1,2
1746631770.858363,50,1,2
1746631782.1685736,50,2,4
1746631791.5315876,50,2,4
1746631811.6993785,50,1,2
1746631821.3902955,50,1,2
1746631836.153172,50,1,2
1746631846.196243,50,1,2
1746631858.3951921,50,2,4
1746631870.3771327,50,2,4
1746631905.3723233,50,1,2
1746631917.390323,50,1,2
1746631932.685381,50,1,2
1746631948.035762,50,1,2
1746631958.1505473,50,2,4
1746631968.3406897,50,2,4
1746631989.7593744,50,1,2
1746632002.2191527,50,1,2
1746632018.162155,50,1,2
1746632027.3775494,50,1,2
1746632038.2719615,50,2,4
1746632047.399514,50,2,4
1746632068.1825745,50,1,2
1746632078.397268,50,1,2
1746632092.480825,50,1,2
1746632101.667145,50,1,2
1746632112.1375456,50,2,4
1746632123.4277415,50,2,4
1746632155.271188,50,1,2
1746632165.4150026,50,1,2
1746632182.0385554,50,1,2
1746632193.5142946,50,1,2
1746632205.5026703,50,2,4
1746632228.2703004,50,2,4
1746632245.3032186,50,2,4
1746632256.0883646,50,2,4
1746632268.0001845,50,3,6
1746632278.9248474,50,3,6
1746632302.0285356,50,2,4
1746632311.8744652,50,2,4
1746632330.269393,50,2,4
1746632340.4588645,50,2,4
1746632351.9283764,50,3,6
1746632363.8565342,50,3,6
1746632387.1712418,50,2,4
1746632410.8134942,50,1,2
1746632420.9174933,50,1,2
1746632440.1141582,50,1,2
1746632451.0555923,50,1,2
1746632462.74563,50,2,4
1746632473.8148222,50,2,4
1746632500.9288383,50,1,2
1746632510.7705357,50,1,2
1746632526.1127334,50,1,2
1746632535.4956005,50,1,2
1746632546.204143,50,2,4
1746632556.07165,50,2,4
1746632577.4944654,50,1,2
1746632586.7610161,50,1,2
1746632603.297043,50,1,2
1746632612.9041922,50,1,2
1746632623.5929465,50,2,4
1746632633.3794777,50,2,4
1746632654.8408968,50,1,2
1746632664.3726912,50,1,2
1746632682.0871854,50,1,2
1746632691.496518,50,1,2
1746632702.719443,50,2,4
1746632712.68143,50,2,4
1746632733.5022137,50,1,2
1746632743.8089676,50,1,2
1746632759.6648433,50,1,2
1746632769.3701704,50,1,2
1746632780.1327937,50,2,4
1746632790.6343658,50,2,4
1746632812.9174912,50,1,2
1746632822.1347132,50,1,2
1746632846.1273534,50,1,2
1746632855.8271306,50,1,2
1746632867.0418382,50,2,4
1746632877.0996342,50,2,4
1746632898.9029322,50,1,2
1746632908.7002254,50,1,2
1746632925.0703483,50,1,2
1746632934.8519871,50,1,2
1746632946.7464983,50,2,4
1746632957.2320628,50,2,4
1746632978.209802,50,1,2
1746632988.1438456,50,1,2
1746633004.1978617,50,1,2
1746633013.936758,50,1,2
1746633026.4042907,50,2,4
1746633036.445651,50,2,4
1746633058.5397599,50,1,2
1746633068.3937254,50,1,2
1746633086.4926956,50,1,2
1746633096.374743,50,1,2
1746633107.5575244,50,2,4
1746633117.7898343,50,2,4
1746633139.702959,50,1,2
1746633149.9825854,50,1,2
1746633166.715818,50,1,2
1746633176.5538669,50,1,2
1746633188.7615948,50,2,4
1746633210.910288,50,2,4
1746633232.6425679,50,1,2
1746633243.4567506,50,1,2
1746633258.858258,50,1,2
1746633280.1121824,50,0,0
1746633290.8826535,50,0,0
1746633308.7923214,50,0,0
1746633318.6628146,50,0,0
1746633329.570502,50,1,2
1746633350.233106,50,1,2
1746633366.1953235,50,1,2
1746633376.2717602,50,1,2
1746633387.4303854,50,2,4
1746633398.6452599,50,2,4
1746633421.9010887,50,1,2
1746633431.8125458,50,1,2
1746633447.7831233,50,1,2
1746633458.142021,50,1,2
1746633469.3869402,50,2,4
1746633479.9452963,50,2,4
1746633502.935169,50,1,2
1746633512.7243822,50,1,2
1746633529.7689226,50,1,2
1746633539.6868134,50,1,2
1746633551.204988,50,2,4
1746633561.8463967,50,2,4
1746633583.877975,50,1,2
1746633594.485386,50,1,2
1746633612.6761725,50,1,2
1746633623.2361891,50,1,2
1746633634.5241284,50,2,4
1746633644.718029,50,2,4
1746633667.449041,50,1,2
1746633677.6646783,50,1,2
1746633694.5998802,50,1,2
1746633704.7044277,50,1,2
1746633715.7318485,50,2,4
1746633725.9473248,50,2,4
1746633747.5555959,50,1,2
1746633758.436595,50,1,2
1746633776.8333642,50,1,2
1746633786.9154224,50,1,2
1746633798.1915128,50,2,4
1746633809.8131764,50,2,4
1746633832.1112063,50,1,2
1746633841.9986877,50,1,2
1746633861.073697,50,1,2
1746633871.507489,50,1,2
1746633883.087078,50,2,4
1746633895.0065086,50,2,4
1746633918.0157318,50,1,2
1746633927.849392,50,1,2
1746633945.9330273,50,1,2
1746633956.640169,50,1,2
1746633968.5520344,50,2,4
1746633979.8062155,50,2,4
1746634002.4739022,50,1,2
1746634012.7370493,50,1,2
1746634030.5319524,50,1,2
1746634041.6936035,50,1,2
1746634053.16429,50,2,4
1746634067.087112,50,2,4
1746634090.8209023,50,1,2
1746634101.2416878,50,1,2
1746634122.6389074,50,1,2
1746634133.0116062,50,1,2
1746634144.5846295,50,2,4
1746634155.6051264,50,2,4
1746634179.2370512,50,1,2
1746634189.3749294,50,1,2
1746634207.8505557,50,1,2
1746634218.413786,50,1,2
1746634229.7935102,50,2,4
1746634240.213692,50,2,4
1746634267.8754666,50,1,2
1746634278.573621,50,1,2
1746634295.2016208,50,1,2
1746634305.4231682,50,1,2
1746634316.805338,50,2,4
1746634327.7285018,50,2,4
1746634349.9235032,50,1,2
1746634360.0286198,50,1,2
1746634381.2695198,50,1,2
1746634391.5032544,50,1,2
1746634403.1999273,50,2,4
1746634414.0500708,50,2,4
1746634437.6402187,50,1,2
1746634447.8474972,50,1,2
1746634466.531086,50,1,2
1746634476.9696078,50,1,2
1746634488.7174304,50,2,4
1746634499.61123,50,2,4
1746634522.8801143,50,1,2
1746634533.2458925,50,1,2
1746634551.1040747,50,1,2
1746634561.855321,50,1,2
1746634573.5046594,50,2,4
1746634584.83116,50,2,4
1746634608.1791263,50,1,2
1746634619.05347,50,1,2
1746634638.230788,50,1,2
1746634648.8389943,50,1,2
1746634661.2330732,50,2,4
1746634672.2578113,50,2,4
1746634695.0014958,50,1,2
1746634717.34802,50,0,0
1746634727.9699178,50,0,0
1746634746.8972197,50,0,0
1746634757.4357538,50,0,0
1746634769.2636662,50,1,2
1746634791.276161,50,1,2
1746634809.965586,50,1,2
1746634821.6046257,50,1,2
1746634833.6680684,50,2,4
1746634845.0922108,50,2,4
1746634869.1520104,50,1,2
1746634880.3522408,50,1,2
1746634899.304942,50,1,2
1746634909.9124873,50,1,2
1746634921.9343445,50,2,4
1746634933.1176994,50,2,4
1746634957.412241,50,1,2
1746634967.7303145,50,1,2
1746634986.3082557,50,1,2
1746634996.9188805,50,1,2
1746635008.8331919,50,2,4
1746635019.8405013,50,2,4
1746635043.1952767,50,1,2
1746635066.2171092,50,0,0
1746635077.5477338,50,0,0
1746635097.4730523,50,0,0
1746635109.689238,50,0,0
1746635123.2337909,50,1,2
1746635147.1400564,50,1,2
1746635167.2254288,50,1,2
1746635178.4478104,50,1,2
1746635190.6414351,50,2,4
1746635201.789118,50,2,4
1746635224.889286,50,1,2
1746635236.1252673,50,1,2
1746635255.1882854,50,1,2
1746635265.9119225,50,1,2
1746635278.1924078,50,2,4
1746635289.5856957,50,2,4
1746635312.8007338,50,1,2
1746635335.7873847,50,0,0
1746635346.1921873,50,0,0
1746635368.5139751,50,0,0
1746635379.1255913,50,0,0
1746635390.90479,50,1,2
1746635414.0450218,50,1,2
1746635432.6390042,50,1,2
1746635443.83259,50,1,2
1746635455.6606398,50,2,4
1746635466.7320838,50,2,4
1746635490.4651601,50,1,2
1746635500.8232203,50,1,2
1746635519.9922414,50,1,2
1746635530.5782487,50,1,2
1746635545.432831,50,2,4
1746635556.4502585,50,2,4
1746635579.9175944,50,1,2
1746635590.8424976,50,1,2
1746635610.3606932,50,1,2
1746635621.013934,50,1,2
1746635632.9866872,50,2,4
1746635644.5054512,50,2,4
1746635667.8122423,50,1,2
1746635691.633352,50,0,0
1746635701.952423,50,0,0
1746635720.2285962,50,0,0
1746635731.4286983,50,0,0
1746635743.3444152,50,1,2
1746635765.695587,50,1,2
1746635783.7987864,50,1,2
1746635794.7911909,50,1,2
1746635806.6300302,50,2,4
1746635817.7206886,50,2,4
1746635845.0683718,50,1,2
1746635855.2038965,50,1,2
1746635877.5502892,50,1,2
1746635888.264146,50,1,2
1746635900.0168915,50,2,4
1746635911.569488,50,2,4
1746635934.0335445,50,1,2
1746635957.0857556,50,0,0
1746635967.5078046,50,0,0
1746635992.3774273,50,0,0
1746636003.1419687,50,0,0
1746636015.48896,50,1,2
1746636039.3497303,50,1,2
1746636057.8265076,50,1,2
1746636069.2807946,50,1,2
1746636081.44554,50,2,4
1746636092.6707351,50,2,4
1746636116.0299404,50,1,2
1746636138.88697,50,0,0
1746636149.432038,50,0,0
1746636168.816588,50,0,0
1746636179.6633785,50,0,0
1746636191.6867578,50,1,2
1746636215.156045,50,1,2
1746636233.2991607,50,1,2
1746636244.5534055,50,1,2
1746636256.6908422,50,2,4
1746636268.4743612,50,2,4
1746636291.3853996,50,1,2
1746636315.7770586,50,0,0
1746636326.79561,50,0,0
1746636345.9513462,50,0,0
1746636356.7282598,50,0,0
1746636369.1061306,50,1,2
1746636392.8950493,50,1,2
1746636411.7259502,50,1,2
1746636422.6805472,50,1,2
1746636436.312099,50,2,4
1746636447.6046484,50,2,4
1746636472.357628,50,1,2
1746636496.2428412,50,0,0
1746636507.2527268,50,0,0
1746636526.82208,50,0,0
1746636537.670282,50,0,0
1746636549.7418451,50,1,2
1746636573.5405421,50,1,2
1746636591.1588938,50,1,2
1746636606.0816681,50,1,2
1746636618.5396514,50,2,4
1746636629.9551094,50,2,4
1746636654.6462677,50,1,2
1746636665.797987,50,1,2
1746636686.0037124,50,1,2
1746636697.4763412,50,1,2
1746636710.3114994,50,2,4
1746636722.678834,50,2,4
1746636745.8251717,50,1,2
1746636772.322855,50,0,0
1746636783.7943091,50,0,0
1746636804.6365168,50,0,0
1746636815.8718276,50,0,0
1746636828.526991,50,1,2
1746636853.9029846,50,1,2
1746636872.1672502,50,1,2
1746636883.5596147,50,1,2
1746636896.1290743,50,2,4
1746636907.8502483,50,2,4
1746636931.4172688,50,1,2
1746636955.8220925,50,0,0
1746636966.8145285,50,0,0
1746636987.1384711,50,0,0
1746636998.385298,50,0,0
1746637010.7501945,50,1,2
1746637033.9678922,50,1,2
1746637053.9203184,50,1,2
1746637065.9719229,50,1,2
1746637078.7584138,50,2,4
1746637090.3135455,50,2,4
1746637116.919422,50,1,2
1746637127.61286,50,1,2
1746637146.7944925,50,1,2
1746637157.7847452,50,1,2
1746637170.2484632,50,2,4
1746637182.084788,50,2,4
1746637207.1617985,50,1,2
1746637218.0783355,50,1,2
1746637239.936625,50,1,2
1746637251.0784755,50,1,2
1746637263.6022987,50,2,4
1746637275.502269,50,2,4
1746637301.9796298,50,1,2
1746637313.291886,50,1,2
1746637333.5885084,50,1,2
1746637344.6379094,50,1,2
1746637357.0715964,50,2,4
1746637369.0440578,50,2,4
1746637394.7997816,50,1,2
1746637405.8529289,50,1,2
1746637425.5552118,50,1,2
1746637437.1912448,50,1,2
1746637449.9660168,50,2,4
1746637462.3590407,50,2,4
1746637488.6730516,50,1,2
1746637500.0804315,50,1,2
1746637520.598711,50,1,2
1746637532.426547,50,1,2
1746637545.6629682,50,2,4
1746637558.3218522,50,2,4
1746637584.5840325,50,1,2
1746637596.3834648,50,1,2
1746637617.1308954,50,1,2
1746637628.505698,50,1,2
1746637641.5814104,50,2,4
1746637653.7588615,50,2,4
1746637681.053762,50,1,2
1746637693.0248816,50,1,2
1746637718.364377,50,0,0
1746637732.9244323,50,0,0
1746637755.008922,50,0,0
1746637767.0077891,50,0,0
1746637779.9496236,50,1,2
1746637806.3663437,50,1,2
1746637825.684133,50,1,2
1746637838.0049157,50,1,2
1746637850.9531333,50,2,4
1746637863.6300519,50,2,4
1746637891.1406977,50,1,2
1746637903.696132,50,1,2
1746637927.3106816,50,1,2
1746637939.4803104,50,1,2
1746637954.2439516,50,2,4
1746637966.548741,50,2,4
1746637992.5644388,50,1,2
1746638017.7225451,50,0,0
1746638029.2473376,50,0,0
1746638054.2207427,50,0,0
1746638065.669294,50,0,0
1746638079.029782,50,1,2
1746638104.7163227,50,1,2
1746638127.6812673,50,1,2
1746638140.9174745,50,1,2
1746638155.7915761,50,2,4
1746638169.111753,50,2,4
1746638200.718866,50,1,2
1746638225.3045902,50,0,0
1746638236.5037284,50,0,0
1746638263.4848127,50,0,0
1746638275.3890793,50,0,0
1746638288.563948,50,1,2
1746638313.3136032,50,1,2
1746638334.3827872,50,1,2
1746638346.3392406,50,1,2
1746638359.1597435,50,2,4
1746638371.8257904,50,2,4
1746638399.074823,50,1,2
1746638410.8427699,50,1,2
1746638430.9205601,50,1,2
1746638442.8479345,50,1,2
1746638456.1342583,50,2,4
1746638468.653021,50,2,4
1746638495.1448553,50,1,2
1746638506.639058,50,1,2
1746638529.8877711,50,1,2
1746638541.4628067,50,1,2
1746638554.330305,50,2,4
1746638566.4610844,50,2,4
1746638591.9462624,50,1,2
1746638617.208276,50,0,0
1746638628.5552268,50,0,0
1746638650.9939215,50,0,0
1746638662.5594537,50,0,0
1746638675.3774526,50,1,2
1746638701.4511898,50,1,2
1746638720.1937637,50,1,2
1746638731.7784977,50,1,2
1746638745.0597215,50,2,4
1746638757.4370592,50,2,4
1746638783.653544,50,1,2
1746638808.5597978,50,0,0
1746638819.83337,50,0,0
1746638843.9510603,50,0,0
1746638855.468941,50,0,0
1746638868.2017674,50,1,2
1746638895.5321386,50,1,2
1746638916.146019,50,1,2
1746638928.429895,50,1,2
1746638941.2304783,50,2,4
1746638953.1035402,50,2,4
1746638979.0426142,50,1,2
1746638990.2145848,50,1,2
1746639009.8752913,50,1,2
1746639021.2026148,50,1,2
1746639033.8358705,50,2,4
1746639045.4871914,50,2,4
1746639071.3605769,50,1,2
1746639082.5033815,50,1,2
1746639102.4593916,50,1,2
1746639114.3792539,50,1,2
1746639127.0850594,50,2,4
1746639138.9961562,50,2,4
1746639164.8253984,50,1,2
1746639175.9913964,50,1,2
1746639198.2816083,50,1,2
1746639210.313366,50,1,2
1746639223.3979309,50,2,4
1746639235.1860843,50,2,4
1746639261.3770783,50,1,2
1746639272.685772,50,1,2
1746639297.5851042,50,1,2
1746639308.997495,50,1,2
1746639321.5938344,50,2,4
1746639333.5484433,50,2,4
1746639359.412256,50,1,2
1746639370.6034482,50,1,2
1746639391.8041248,50,1,2
1746639403.4229167,50,1,2
1746639416.136812,50,2,4
1746639427.98751,50,2,4
1746639454.4509432,50,1,2
1746639465.639882,50,1,2
1746639486.5752814,50,1,2
1746639497.9930296,50,1,2
1746639511.0425718,50,2,4
1746639522.920456,50,2,4
1746639549.0861926,50,1,2
1746639560.2700717,50,1,2
1746639581.8957403,50,1,2
1746639593.1870773,50,1,2
1746639605.869734,50,2,4
1746639617.976675,50,2,4
1746639644.0975728,50,1,2
1746639655.690356,50,1,2
1746639675.4657915,50,1,2
1746639687.2820535,50,1,2
1746639700.0163395,50,2,4
1746639711.87844,50,2,4
1746639738.5729425,50,1,2
1746639749.9020698,50,1,2
1746639769.835363,50,1,2
1746639781.192859,50,1,2
1746639793.7124944,50,2,4
1746639805.5108342,50,2,4
1746639831.932902,50,1,2
1746639843.2281258,50,1,2
1746639864.6560853,50,1,2
1746639876.226719,50,1,2
1746639892.4251144,50,2,4
1746639904.227979,50,2,4
1746639930.275319,50,1,2
1746639955.8722332,50,0,0
1746639967.5034623,50,0,0
1746639988.846146,50,0,0
1746640000.9904506,50,0,0
1746640014.953298,50,1,2
1746640040.133706,50,1,2
1746640061.3788352,50,1,2
1746640073.3440008,50,1,2
1746640086.1905167,50,2,4
1746640098.7676299,50,2,4
1746640124.1171737,50,1,2
1746640149.2621443,50,0,0
1746640161.0427163,50,0,0
1746640196.441847,50,0,0
1746640208.117106,50,0,0
1746640220.9685454,50,1,2
1746640246.2185442,50,1,2
1746640269.953584,50,1,2
1746640282.4049366,50,1,2
1746640295.7579474,50,2,4
1746640308.7289724,50,2,4
1746640335.5072336,50,1,2
1746640347.4418693,50,1,2
1746640370.0382705,50,1,2
1746640382.6979146,50,1,2
1746640396.1059203,50,2,4
1746640409.343638,50,2,4
1746640435.6406505,50,1,2
1746640461.900841,50,0,0
1746640473.8654847,50,0,0
1746640496.3054585,50,0,0
1746640508.9997811,50,0,0
1746640522.4602757,50,1,2
1746640548.7370467,50,1,2
1746640572.1147714,50,1,2
1746640584.6594872,50,1,2
1746640598.2002146,50,2,4
1746640611.3152127,50,2,4
1746640636.9736383,50,1,2
1746640663.141039,50,0,0
1746640676.0408785,50,0,0
1746640700.0281186,50,0,0
1746640711.877994,50,0,0
1746640725.1821423,50,1,2
1746640751.4280362,50,1,2
1746640775.383146,50,1,2
1746640787.8837504,50,1,2
1746640801.3595147,50,2,4
1746640813.7860932,50,2,4
1746640841.534065,50,1,2
1746640853.4989965,50,1,2
1746640876.5199828,50,1,2
1746640888.7292283,50,1,2
1746640902.1951478,50,2,4
1746640915.081437,50,2,4
1746640942.8207448,50,1,2
1746640955.3432248,50,1,2
1746640977.4768062,50,1,2
1746640989.8828347,50,1,2
1746641003.861535,50,2,4
1746641016.6263137,50,2,4
1746641046.4506433,50,1,2
1746641059.0134242,50,1,2
1746641081.4614792,50,1,2
1746641093.8053257,50,1,2
1746641107.4758816,50,2,4
1746641120.3364842,50,2,4
1746641147.2058842,50,1,2
1746641174.2711966,50,0,0
1746641186.4540064,50,0,0
1746641211.4560206,50,0,0
1746641223.690304,50,0,0
1746641237.5529149,50,1,2
1746641264.5494993,50,1,2
1746641288.4129314,50,1,2
1746641300.8298604,50,1,2
1746641314.63645,50,2,4
1746641327.3511915,50,2,4
1746641354.0993013,50,1,2
1746641380.6830742,50,0,0
1746641393.179516,50,0,0
1746641419.9629683,50,0,0
1746641432.368962,50,0,0
1746641446.051838,50,1,2
1746641473.12872,50,1,2
1746641495.2881892,50,1,2
1746641507.73991,50,1,2
1746641521.345808,50,2,4
1746641534.1886215,50,2,4
1746641562.5671973,50,1,2
1746641574.8741074,50,1,2
1746641599.7820487,50,1,2
1746641613.1753576,50,1,2
1746641627.0421312,50,2,4
1746641640.3303297,50,2,4
1746641668.8402352,50,1,2
1746641682.0620067,50,1,2
1746641705.9967773,50,1,2
1746641718.5785136,50,1,2
1746641732.6930344,50,2,4
1746641746.638529,50,2,4
1746641774.686307,50,1,2
1746641801.483104,50,0,0
1746641813.7512176,50,0,0
1746641839.2133725,50,0,0
1746641851.747104,50,0,0
1746641865.4785116,50,1,2
1746641892.255127,50,1,2
1746641914.9190874,50,1,2
1746641927.4870288,50,1,2
1746641941.8973906,50,2,4
1746641954.8773177,50,2,4
1746641982.94445,50,1,2
1746641995.6345265,50,1,2
1746642019.1739876,50,1,2
1746642032.0117126,50,1,2
1746642045.6162596,50,2,4
1746642058.4603631,50,2,4
1746642086.0302975,50,1,2
1746642098.2220986,50,1,2
1746642124.5755022,50,1,2
1746642137.1282518,50,1,2
1746642150.8921235,50,2,4
1746642164.6664867,50,2,4
1746642195.387503,50,1,2
1746642222.4105945,50,0,0
1746642234.4719024,50,0,0
1746642260.9513946,50,0,0
1746642278.4942555,50,0,0
1746642293.1163225,50,1,2
1746642321.833162,50,1,2
1746642345.3567567,50,1,2
1746642358.2796054,50,1,2
1746642371.8893387,50,2,4
1746642384.7955399,50,2,4
1746642413.2137654,50,1,2
1746642425.6531017,50,1,2
1746642449.637084,50,1,2
1746642462.4033742,50,1,2
1746642476.8966622,50,2,4
1746642507.7988167,50,2,4
1746642532.208064,50,2,4
1746642544.9513242,50,2,4
1746642559.631669,50,3,6
1746642593.6477408,50,3,6
1746642617.395843,50,3,6
1746642630.4623418,50,3,6
1746642645.2899709,50,4,8
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_worker_usage")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_worker_usage", "worker_usage.csv")'> Download »worker_usage.csv« as file</button>
<h1> CPU/RAM-Usage (main)</h1>
<div class='invert_in_dark_mode' id='mainWorkerCPURAM'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<pre id="pre_tab_main_worker_cpu_ram">timestamp,ram_usage_mb,cpu_usage_percent
1746613817,622.0859375,14.0
1746613821,622.34375,14.0
1746613824,622.34375,14.0
1746613824,622.34375,16.7
1746613824,622.34375,13.3
1746613824,622.34375,13.6
1746613824,622.34375,16.7
1746615675,647.9921875,14.1
1746615675,647.9921875,14.1
1746615675,647.9921875,14.6
1746615675,647.9921875,13.0
1746619675,708.21875,12.8
1746619675,708.21875,7.2
1746619675,708.21875,7.5
1746619675,708.21875,3.8
1746628462,726.45703125,7.7
1746628462,726.45703125,9.1
1746628462,726.45703125,8.7
1746628462,726.45703125,13.3
1746633243,752.13671875,11.6
1746633243,752.13671875,17.4
1746633243,752.13671875,21.1
1746633243,752.13671875,21.7
1746637730,765.0546875,20.4
1746637730,765.0546875,21.2
1746637730,765.0546875,23.5
1746637730,765.0546875,23.3
1746642681,786.328125,18.1
1746642681,786.328125,15.4
1746642681,786.328125,16.7
1746642681,786.328125,17.4
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<h1> Parallel Plot</h1>
<div class="invert_in_dark_mode" id="parallel-plot"></div>
<h1> Scatter-2D</h1>
<div class='invert_in_dark_mode' id='plotScatter2d'></div>
<h1> Scatter-3D</h1>
<div class='invert_in_dark_mode' id='plotScatter3d'></div>
<h1> Results by Generation Method</h1>
<div class="invert_in_dark_mode" id="plotResultsDistributionByGenerationMethod"></div>
<h1> Job Status Distribution</h1>
<div class="invert_in_dark_mode" id="plotJobStatusDistribution"></div>
<h1> Boxplots</h1>
<div class="invert_in_dark_mode" id="plotBoxplot"></div>
<h1> Violin</h1>
<div class="invert_in_dark_mode" id="plotViolin"></div>
<h1> Histogram</h1>
<div class="invert_in_dark_mode" id="plotHistogram"></div>
<h1> Heatmap</h1>
<div class="invert_in_dark_mode" id="plotHeatmap"></div><br>
<h1>Correlation Heatmap Explanation</h1>
<p>
This is a heatmap that visualizes the correlation between numerical columns in a dataset. The values represented in the heatmap show the strength and direction of relationships between different variables.
</p>
<h2>How It Works</h2>
<p>
The heatmap uses a matrix to represent correlations between each pair of numerical columns. The calculation behind this is based on the concept of "correlation," which measures how strongly two variables are related. A correlation can be positive, negative, or zero:
</p>
<ul>
<li><strong>Positive correlation</strong>: Both variables increase or decrease together (e.g., if the temperature rises, ice cream sales increase).</li>
<li><strong>Negative correlation</strong>: As one variable increases, the other decreases (e.g., as the price of a product rises, the demand for it decreases).</li>
<li><strong>Zero correlation</strong>: There is no relationship between the two variables (e.g., height and shoe size might show zero correlation in some contexts).</li>
</ul>
<h2>Color Scale: Yellow to Purple (Viridis)</h2>
<p>
The heatmap uses a color scale called "Viridis," which ranges from yellow to purple. Here's what the colors represent:
</p>
<ul>
<li><strong>Yellow (brightest)</strong>: A strong positive correlation (close to +1). This indicates that as one variable increases, the other increases in a very predictable manner.</li>
<li><strong>Green</strong>: A moderate positive correlation. Variables are still positively related, but the relationship is not as strong.</li>
<li><strong>Blue</strong>: A weak or near-zero correlation. There is a small or no discernible relationship between the variables.</li>
<li><strong>Purple (darkest)</strong>: A strong negative correlation (close to -1). This indicates that as one variable increases, the other decreases in a very predictable manner.</li>
</ul>
<h2>What the Heatmap Shows</h2>
<p>
In the heatmap, each cell represents the correlation between two numerical columns. The color of the cell is determined by the correlation coefficient: from yellow for strong positive correlations, through green and blue for weaker correlations, to purple for strong negative correlations.
</p>
<h1> Evolution</h1>
<div class="invert_in_dark_mode" id="plotResultEvolution"></div>
</body>
</html>
Copy raw data to clipboard
Download »export.html« as file