Experiment overview
| Setting | Value |
|---|
| Model for non-random steps | BOTORCH_MODULAR |
| Max. nr. evaluations | 1000 |
| Number random steps | 20 |
| Nr. of workers (parameter) | 20 |
| Main process memory (GB) | 20 |
| Worker memory (GB) | 40 |
Job Summary per Generation Node
| Generation Node | Total | COMPLETED | FAILED | RUNNING |
| SOBOL | 20 | 20 | 0 | 0 |
| BOTORCH_MODULAR | 440 | 410 | 1 | 29 |
Experiment parameters
| Name | Type | Lower bound | Upper bound | Values | Type | Log Scale? |
|---|
| epochs | range | 50 | 200 | | int | No |
| lr | range | 0.0001 | 0.005 | | float | No |
| batch_size | range | 8 | 256 | | int | No |
| hidden_size | range | 500 | 6000 | | int | No |
| dropout | range | 0 | 0.6 | | float | No |
| num_dense_layers | fixed | | | 1 | | |
| filter | range | 20 | 180 | | int | No |
| num_conv_layers | range | 3 | 6 | | int | No |
Number of evaluations
| Failed |
Succeeded |
Running |
Total |
| 1 |
430 |
29 |
460 |
Result names and types
Last progressbar status
2025-11-04 12:20:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 4 = ∑4/20, new result: VAL_ACC: 67.860000
Git-Version
Commit: ad3c4a024259e2dddd453b72bdb2d22633c3eada (9034-6-gad3c4a024)
trial_index,submit_time,queue_time,worker_generator_uuid,start_time,end_time,run_time,program_string,exit_code,signal,hostname,OO_Info_SLURM_JOB_ID,arm_name,trial_status,generation_node,VAL_ACC,epochs,lr,batch_size,hidden_size,dropout,filter,num_conv_layers,num_dense_layers
0,1762169188,86,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169274,1762170597,1323,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 102 --learning_rate 0.00057183658778667452 --batch_size 149 --hidden_size 4957 --dropout 0.0858517348766326821 --filter 74 --num_conv_layers 4 --num_dense_layers 1,0,,c110,1210425,0_0,COMPLETED,SOBOL,62.630000000000002557953848736361,102,0.00057183658778667452188965159,149,4957,0.085851734876632682103014815311,74,4,1
1,1762169187,40,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169227,1762172034,2807,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 177 --learning_rate 0.00482275819145143014 --batch_size 56 --hidden_size 2427 --dropout 0.42347591612488028057 --filter 103 --num_conv_layers 6 --num_dense_layers 1,0,,c117,1210414,1_0,COMPLETED,SOBOL,62.92000000000000170530256582424,177,0.00482275819145143013616516825,56,2427,0.42347591612488028056660027687,103,6,1
2,1762169187,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169242,1762171196,1954,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 130 --learning_rate 0.00226710727652534817 --batch_size 246 --hidden_size 3880 --dropout 0.57091767825186245933 --filter 171 --num_conv_layers 3 --num_dense_layers 1,0,,c116,1210417,2_0,COMPLETED,SOBOL,66.07999999999999829469743417576,130,0.002267107276525348168866313969,246,3880,0.570917678251862459326559928741,171,3,1
3,1762169187,51,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169238,1762169951,713,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 55 --learning_rate 0.00314603232881054259 --batch_size 91 --hidden_size 748 --dropout 0.23343197219073771875 --filter 42 --num_conv_layers 5 --num_dense_layers 1,0,,c116,1210416,3_0,COMPLETED,SOBOL,60.53999999999999914734871708788,55,0.003146032328810542590818988273,91,748,0.233431972190737718753084095624,42,5,1
4,1762169187,40,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169227,1762171026,1799,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 74 --learning_rate 0.00188903597733005874 --batch_size 21 --hidden_size 1378 --dropout 0.1649060586467385181 --filter 83 --num_conv_layers 3 --num_dense_layers 1,0,,c117,1210413,4_0,COMPLETED,SOBOL,42.60999999999999943156581139192,74,0.001889035977330058742318374954,21,1378,0.164906058646738518103092019373,83,3,1
5,1762169187,40,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169227,1762171263,2036,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 149 --learning_rate 0.00353425280889496174 --batch_size 178 --hidden_size 4587 --dropout 0.50232881773263216019 --filter 134 --num_conv_layers 5 --num_dense_layers 1,0,,c117,1210412,5_0,COMPLETED,SOBOL,67.96999999999999886313162278384,149,0.003534252808894961742774976088,178,4587,0.502328817732632160186767578125,134,5,1
6,1762169188,84,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169272,1762172131,2859,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 196 --learning_rate 0.00111273373328149312 --batch_size 111 --hidden_size 3137 --dropout 0.34081421904265879474 --filter 142 --num_conv_layers 4 --num_dense_layers 1,0,,c115,1210422,6_0,COMPLETED,SOBOL,69.230000000000003979039320256561,196,0.001112733733281493116173965774,111,3137,0.340814219042658794744937722498,142,4,1
7,1762169187,79,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169266,1762170636,1370,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 121 --learning_rate 0.0042908139195293191 --batch_size 205 --hidden_size 5573 --dropout 0.00327358581125736237 --filter 30 --num_conv_layers 6 --num_dense_layers 1,0,,c115,1210420,7_0,COMPLETED,SOBOL,54.92999999999999971578290569596,121,0.004290813919529319099555042527,205,5573,0.00327358581125736236572265625,30,6,1
8,1762169187,40,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169227,1762170746,1519,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 111 --learning_rate 0.00224240457639098131 --batch_size 127 --hidden_size 4167 --dropout 0.40340667329728602253 --filter 59 --num_conv_layers 3 --num_dense_layers 1,0,,c117,1210411,8_0,COMPLETED,SOBOL,62.700000000000002842170943040401,111,0.002242404576390981309902405982,127,4167,0.403406673297286022528140847498,59,3,1
9,1762169187,56,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169243,1762171721,2478,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 186 --learning_rate 0.00258752301856875373 --batch_size 220 --hidden_size 1798 --dropout 0.14078366048634052832 --filter 169 --num_conv_layers 5 --num_dense_layers 1,0,,c149,1210415,9_0,COMPLETED,SOBOL,69.819999999999993178789736703038,186,0.002587523018568753732648879406,220,1798,0.140783660486340528317228404376,169,5,1
10,1762169187,75,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169262,1762172418,3156,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 157 --learning_rate 0.00022327835364267231 --batch_size 37 --hidden_size 5840 --dropout 0.2886557573452591674 --filter 116 --num_conv_layers 4 --num_dense_layers 1,0,,c116,1210419,10_0,COMPLETED,SOBOL,67.450000000000002842170943040401,157,0.000223278353642672314823686142,37,5840,0.288655757345259167401252398122,116,4,1
11,1762169189,83,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169272,1762170265,993,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 82 --learning_rate 0.00454863158566877219 --batch_size 193 --hidden_size 2871 --dropout 0.55114258546382188797 --filter 67 --num_conv_layers 6 --num_dense_layers 1,0,,c108,1210426,11_0,COMPLETED,SOBOL,61.75,82,0.004548631585668772188413289115,193,2871,0.551142585463821887969970703125,67,6,1
12,1762169187,79,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169266,1762169973,707,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 64 --learning_rate 0.00090864611370489005 --batch_size 231 --hidden_size 2157 --dropout 0.48489687032997608185 --filter 28 --num_conv_layers 4 --num_dense_layers 1,0,,c115,1210421,12_0,COMPLETED,SOBOL,54.740000000000001989519660128281,64,0.000908646113704890054374452291,231,2157,0.48489687032997608184814453125,28,4,1
13,1762169187,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169242,1762171375,2133,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 138 --learning_rate 0.00385430976552888702 --batch_size 75 --hidden_size 5227 --dropout 0.22247526906430720173 --filter 160 --num_conv_layers 6 --num_dense_layers 1,0,,c116,1210418,13_0,COMPLETED,SOBOL,68.21999999999999886313162278384,138,0.003854309765528887016250436659,75,5227,0.222475269064307201727359597498,160,6,1
14,1762169187,80,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169267,1762171652,2385,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.0013945094399154187 --batch_size 133 --hidden_size 1166 --dropout 0.06054871995002031326 --filter 127 --num_conv_layers 3 --num_dense_layers 1,0,,c111,1210424,14_0,COMPLETED,SOBOL,63.549999999999997157829056959599,167,0.001394509439915418702593541411,133,1166,0.060548719950020313262939453125,127,3,1
15,1762169187,80,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169267,1762170993,1726,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 92 --learning_rate 0.00342526780590414991 --batch_size 40 --hidden_size 3462 --dropout 0.32309048417955638088 --filter 95 --num_conv_layers 5 --num_dense_layers 1,0,,c114,1210423,15_0,COMPLETED,SOBOL,64.930000000000006821210263296962,92,0.00342526780590414990645964366,40,3462,0.323090484179556380883724386877,95,5,1
16,1762169201,81,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169282,1762170527,1245,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 94 --learning_rate 0.00161755531867966047 --batch_size 214 --hidden_size 2948 --dropout 0.25559290777891874313 --filter 155 --num_conv_layers 6 --num_dense_layers 1,0,,c108,1210429,16_0,COMPLETED,SOBOL,69.540000000000006252776074688882,94,0.001617555318679660472658277115,214,2948,0.255592907778918743133544921875,155,6,1
17,1762169206,87,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169293,1762171283,1990,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 169 --learning_rate 0.00318785016676411022 --batch_size 120 --hidden_size 5467 --dropout 0.59298820104449989632 --filter 23 --num_conv_layers 4 --num_dense_layers 1,0,,c108,1210431,17_0,COMPLETED,SOBOL,55.479999999999996873611962655559,169,0.003187850166764110218520222872,120,5467,0.592988201044499896319450726878,23,4,1
18,1762169211,81,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169292,1762171059,1767,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 141 --learning_rate 0.00084335125349462036 --batch_size 179 --hidden_size 1269 --dropout 0.43648382574319838367 --filter 91 --num_conv_layers 5 --num_dense_layers 1,0,,c108,1210432,18_0,COMPLETED,SOBOL,66.299999999999997157829056959599,141,0.000843351253494620364987988115,179,1269,0.436483825743198383673160378748,91,5,1
19,1762169216,101,2d5d5235-cc30-40a5-8187-969342ac2b39,1762169317,1762171719,2402,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 66 --learning_rate 0.00394350938759744155 --batch_size 23 --hidden_size 4390 --dropout 0.09891572669148444852 --filter 122 --num_conv_layers 3 --num_dense_layers 1,0,,c107,1210433,19_0,COMPLETED,SOBOL,32.869999999999997442046151263639,66,0.003943509387597441545603160762,23,4390,0.098915726691484448518387750937,122,3,1
20,1762172493,83,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172576,1762174723,2147,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00150525694537176021 --batch_size 160 --hidden_size 4919 --dropout 0.27775365601822432637 --filter 159 --num_conv_layers 5 --num_dense_layers 1,0,,c120,1211047,20_0,COMPLETED,BOTORCH_MODULAR,70.810000000000002273736754432321,148,0.001505256945371760213606138201,160,4919,0.277753656018224326373911026167,159,5,1
21,,,,,,,,,,,,21_0,RUNNING,BOTORCH_MODULAR,,148,0.001535135888814798208606982044,163,4855,0.278352644577532393199703619757,161,5,1
22,1762172491,50,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172541,1762174673,2132,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00153594197961312768 --batch_size 163 --hidden_size 4785 --dropout 0.27789924486363370981 --filter 160 --num_conv_layers 5 --num_dense_layers 1,0,,c124,1211037,22_0,COMPLETED,BOTORCH_MODULAR,70.71999999999999886313162278384,148,0.001535941979613127681206230513,163,4785,0.277899244863633709812233973935,160,5,1
23,1762172491,25,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172516,1762174707,2191,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00151970361925578019 --batch_size 163 --hidden_size 5316 --dropout 0.27879378243089730782 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c124,1211035,23_0,COMPLETED,BOTORCH_MODULAR,70.709999999999993747223925311118,148,0.001519703619255780187302651285,163,5316,0.278793782430897307822448283332,161,5,1
24,1762172492,84,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172576,1762174730,2154,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 147 --learning_rate 0.0015206032597268541 --batch_size 162 --hidden_size 5626 --dropout 0.28045931491122144674 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c122,1211043,24_0,COMPLETED,BOTORCH_MODULAR,70.849999999999994315658113919199,147,0.001520603259726854101716031487,162,5626,0.280459314911221446742217722203,161,5,1
25,1762172491,26,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172517,1762174673,2156,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00153599667830000598 --batch_size 163 --hidden_size 4503 --dropout 0.2777449825372183545 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c124,1211036,25_0,COMPLETED,BOTORCH_MODULAR,70.409999999999996589394868351519,148,0.001535996678300005982564790941,163,4503,0.27774498253721835450136268264,161,5,1
26,1762172492,84,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172576,1762174736,2160,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00152544143977395292 --batch_size 163 --hidden_size 4884 --dropout 0.27812281964523899447 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c122,1211045,26_0,COMPLETED,BOTORCH_MODULAR,70.950000000000002842170943040401,148,0.00152544143977395292403886895,163,4884,0.278122819645238994468172677443,161,5,1
27,1762172491,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172546,1762174647,2101,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00152985192034672595 --batch_size 162 --hidden_size 4620 --dropout 0.27764715400182471416 --filter 160 --num_conv_layers 5 --num_dense_layers 1,0,,c123,1211039,27_0,COMPLETED,BOTORCH_MODULAR,70.760000000000005115907697472721,148,0.001529851920346725954041877671,162,4620,0.277647154001824714164570195862,160,5,1
28,1762172491,56,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172547,1762174713,2166,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00153219447295009138 --batch_size 162 --hidden_size 4982 --dropout 0.27866749993721745549 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c122,1211042,28_0,COMPLETED,BOTORCH_MODULAR,70.700000000000002842170943040401,148,0.001532194472950091377119741232,162,4982,0.278667499937217455485694017625,161,5,1
29,1762172491,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172546,1762174700,2154,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00153536178210130305 --batch_size 163 --hidden_size 4860 --dropout 0.27836261903137493601 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c123,1211040,29_0,COMPLETED,BOTORCH_MODULAR,70.769999999999996020960679743439,148,0.001535361782101303052341934041,163,4860,0.278362619031374936007239284663,161,5,1
30,1762172492,79,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172571,1762174713,2142,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00153281810163617693 --batch_size 163 --hidden_size 4858 --dropout 0.27822626828880725469 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c122,1211044,30_0,COMPLETED,BOTORCH_MODULAR,70.39000000000000056843418860808,148,0.001532818101636176932878186108,163,4858,0.278226268288807254691619164078,161,5,1
31,1762172491,85,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172576,1762174718,2142,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00153139036199548728 --batch_size 163 --hidden_size 4412 --dropout 0.27743982589368149094 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c120,1211046,31_0,COMPLETED,BOTORCH_MODULAR,71,148,0.001531390361995487283189310013,163,4412,0.277439825893681490942555001311,161,5,1
32,1762172492,114,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172606,1762174788,2182,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00152302662400621196 --batch_size 162 --hidden_size 4958 --dropout 0.27837919790731358027 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c119,1211049,32_0,COMPLETED,BOTORCH_MODULAR,70.569999999999993178789736703038,148,0.001523026624006211960510315251,162,4958,0.278379197907313580273580555513,161,5,1
33,1762172492,90,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172582,1762174706,2124,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00151435786424991168 --batch_size 163 --hidden_size 4714 --dropout 0.2765894298957023989 --filter 158 --num_conv_layers 5 --num_dense_layers 1,0,,c120,1211048,33_0,COMPLETED,BOTORCH_MODULAR,70.840000000000003410605131648481,148,0.001514357864249911683057758793,163,4714,0.276589429895702398898293949969,158,5,1
34,1762172491,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172546,1762174686,2140,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00153770129369252434 --batch_size 163 --hidden_size 4098 --dropout 0.27712253878849330002 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c123,1211041,34_0,COMPLETED,BOTORCH_MODULAR,70.620000000000004547473508864641,148,0.001537701293692524335057769669,163,4098,0.277122538788493300021542609102,161,5,1
35,1762172491,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172546,1762174707,2161,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00153940275987176863 --batch_size 163 --hidden_size 3948 --dropout 0.2769016576392379636 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c123,1211038,35_0,COMPLETED,BOTORCH_MODULAR,70.400000000000005684341886080801,148,0.001539402759871768633717636909,163,3948,0.276901657639237963604017522812,161,5,1
36,1762172505,101,2d5d5235-cc30-40a5-8187-969342ac2b39,1762172606,1762174783,2177,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00153762313436153633 --batch_size 163 --hidden_size 4881 --dropout 0.27845451182607461327 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c119,1211053,36_0,COMPLETED,BOTORCH_MODULAR,70.82999999999999829469743417576,148,0.001537623134361536334641096246,163,4881,0.278454511826074613267678614648,161,5,1
37,,,,,,,,,,,,37_0,RUNNING,BOTORCH_MODULAR,,148,0.001526046261175451794825375096,162,5045,0.278609544501204120514614714921,161,5,1
38,,,,,,,,,,,,38_0,RUNNING,BOTORCH_MODULAR,,148,0.001502875085363519509079610614,161,4946,0.277226547255191857477285566347,158,5,1
39,,,,,,,,,,,,39_0,RUNNING,BOTORCH_MODULAR,,148,0.001523239687186971622404052518,163,5252,0.278692234241360359270345270488,161,5,1
40,1762174856,28,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174884,1762176959,2075,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.0001 --batch_size 230 --hidden_size 6000 --dropout 0.24306956026938561499 --filter 126 --num_conv_layers 4 --num_dense_layers 1,0,,c123,1211292,40_0,COMPLETED,BOTORCH_MODULAR,60.17999999999999971578290569596,167,0.000100000000000000004792173602,230,6000,0.243069560269385614992287969471,126,4,1
41,1762174855,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174859,1762176965,2106,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 168 --learning_rate 0.0001 --batch_size 231 --hidden_size 6000 --dropout 0.24218492985032827325 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c124,1211287,41_0,COMPLETED,BOTORCH_MODULAR,60.659999999999996589394868351519,168,0.000100000000000000004792173602,231,6000,0.242184929850328273248649679772,125,4,1
42,1762174855,15,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174870,1762176990,2120,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.0001 --batch_size 230 --hidden_size 5973 --dropout 0.2441994175254809385 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c137,1211286,42_0,COMPLETED,BOTORCH_MODULAR,61.049999999999997157829056959599,167,0.000100000000000000004792173602,230,5973,0.244199417525480938495618943307,125,4,1
43,1762174856,29,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174885,1762177095,2210,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 169 --learning_rate 0.0001 --batch_size 227 --hidden_size 5208 --dropout 0.25296288445090292507 --filter 131 --num_conv_layers 4 --num_dense_layers 1,0,,c122,1211294,43_0,COMPLETED,BOTORCH_MODULAR,60.770000000000003126388037344441,169,0.000100000000000000004792173602,227,5208,0.252962884450902925070892024451,131,4,1
44,1762174856,28,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174884,1762177016,2132,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.00013065578872060378 --batch_size 232 --hidden_size 5992 --dropout 0.24295563560460700647 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c123,1211290,44_0,COMPLETED,BOTORCH_MODULAR,61.340000000000003410605131648481,167,0.000130655788720603776870837764,232,5992,0.242955635604607006472477337411,125,4,1
45,1762174856,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174879,1762176974,2095,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.00016831951219211028 --batch_size 232 --hidden_size 6000 --dropout 0.24505613943372533958 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c124,1211289,45_0,COMPLETED,BOTORCH_MODULAR,62.71000000000000085265128291212,167,0.000168319512192110283966411943,232,6000,0.245056139433725339582537117167,125,4,1
46,1762174856,33,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174889,1762177002,2113,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.00023947007123470732 --batch_size 228 --hidden_size 6000 --dropout 0.24172819816263518833 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c122,1211295,46_0,COMPLETED,BOTORCH_MODULAR,63.310000000000002273736754432321,167,0.000239470071234707324167242937,228,6000,0.241728198162635188328550839287,125,4,1
47,1762174856,28,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174884,1762176972,2088,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.0001 --batch_size 232 --hidden_size 5819 --dropout 0.24623936580822322617 --filter 127 --num_conv_layers 4 --num_dense_layers 1,0,,c123,1211291,47_0,COMPLETED,BOTORCH_MODULAR,60.340000000000003410605131648481,167,0.000100000000000000004792173602,232,5819,0.246239365808223226173012676554,127,4,1
48,1762174860,63,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174923,1762177034,2111,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.0001686006937859184 --batch_size 235 --hidden_size 6000 --dropout 0.24348444908242816709 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c106,1211303,48_0,COMPLETED,BOTORCH_MODULAR,62.520000000000003126388037344441,167,0.000168600693785918396162132327,235,6000,0.24348444908242816708821010252,125,4,1
49,1762174856,8,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174864,1762176956,2092,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.00021548657833884484 --batch_size 234 --hidden_size 5859 --dropout 0.24501447184509927979 --filter 126 --num_conv_layers 4 --num_dense_layers 1,0,,c124,1211288,49_0,COMPLETED,BOTORCH_MODULAR,62.92999999999999971578290569596,167,0.000215486578338844835239090925,234,5859,0.245014471845099279789792490192,126,4,1
50,1762174861,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174923,1762177035,2112,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.00027035862755808845 --batch_size 243 --hidden_size 5620 --dropout 0.23987438250243861559 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c106,1211304,50_0,COMPLETED,BOTORCH_MODULAR,63.939999999999997726263245567679,167,0.000270358627558088451120488216,243,5620,0.239874382502438615594186899216,125,4,1
51,1762174856,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174899,1762176985,2086,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.00013716719770496635 --batch_size 229 --hidden_size 6000 --dropout 0.24322441524987256645 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c120,1211298,51_0,COMPLETED,BOTORCH_MODULAR,61.759999999999998010480339871719,167,0.000137167197704966353994163186,229,6000,0.243224415249872566446853738853,125,4,1
52,1762174856,28,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174884,1762176990,2106,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.0003136845006479272 --batch_size 233 --hidden_size 6000 --dropout 0.24406095938195843109 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c123,1211293,52_0,COMPLETED,BOTORCH_MODULAR,64.230000000000003979039320256561,167,0.000313684500647927195626091246,233,6000,0.244060959381958431091419470249,125,4,1
53,1762174856,39,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174895,1762176969,2074,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.00025387131829723798 --batch_size 234 --hidden_size 5434 --dropout 0.24140476830065846214 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c122,1211296,53_0,COMPLETED,BOTORCH_MODULAR,63.64000000000000056843418860808,167,0.00025387131829723798195214135,234,5434,0.241404768300658462143459814797,125,4,1
54,1762174856,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174899,1762176976,2077,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.00016706853066766452 --batch_size 233 --hidden_size 5580 --dropout 0.24337958868841977345 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c122,1211297,54_0,COMPLETED,BOTORCH_MODULAR,62.53000000000000113686837721616,167,0.000167068530667664522006837791,233,5580,0.243379588688419773445659188837,125,4,1
55,1762174856,44,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174900,1762176998,2098,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 168 --learning_rate 0.0001 --batch_size 237 --hidden_size 5444 --dropout 0.23909576222002873469 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c120,1211299,55_0,COMPLETED,BOTORCH_MODULAR,60.409999999999996589394868351519,168,0.000100000000000000004792173602,237,5444,0.239095762220028734690302485433,125,4,1
56,1762174857,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174919,1762177022,2103,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 168 --learning_rate 0.0001 --batch_size 228 --hidden_size 5998 --dropout 0.23975473668896435386 --filter 124 --num_conv_layers 4 --num_dense_layers 1,0,,c119,1211301,56_0,COMPLETED,BOTORCH_MODULAR,60.3500000000000014210854715202,168,0.000100000000000000004792173602,228,5998,0.239754736688964353863440237546,124,4,1
57,1762174857,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174919,1762176990,2071,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 168 --learning_rate 0.00012633795680240946 --batch_size 229 --hidden_size 5760 --dropout 0.23882588622664138733 --filter 124 --num_conv_layers 4 --num_dense_layers 1,0,,c120,1211300,57_0,COMPLETED,BOTORCH_MODULAR,60.96000000000000085265128291212,168,0.000126337956802409457843228147,229,5760,0.238825886226641387333202715126,124,4,1
58,1762174857,67,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174924,1762177003,2079,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 168 --learning_rate 0.0001 --batch_size 234 --hidden_size 5474 --dropout 0.24007012821055856433 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c119,1211302,58_0,COMPLETED,BOTORCH_MODULAR,60.869999999999997442046151263639,168,0.000100000000000000004792173602,234,5474,0.240070128210558564330057151892,125,4,1
59,1762174862,61,2d5d5235-cc30-40a5-8187-969342ac2b39,1762174923,1762177046,2123,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.0001 --batch_size 233 --hidden_size 5849 --dropout 0.2416155371773696936 --filter 125 --num_conv_layers 4 --num_dense_layers 1,0,,c106,1211305,59_0,COMPLETED,BOTORCH_MODULAR,60.53999999999999914734871708788,167,0.000100000000000000004792173602,233,5849,0.241615537177369693599970901232,125,4,1
60,1762177169,11,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177180,1762179196,2016,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 150 --learning_rate 0.00028991909008250116 --batch_size 109 --hidden_size 3723 --dropout 0.35754375256044723663 --filter 93 --num_conv_layers 4 --num_dense_layers 1,0,,c124,1211461,60_0,COMPLETED,BOTORCH_MODULAR,63.78000000000000113686837721616,150,0.000289919090082501164709616326,109,3723,0.357543752560447236632512613141,93,4,1
61,1762177169,5,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177174,1762179131,1957,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 173 --learning_rate 0.00028195841586518014 --batch_size 256 --hidden_size 702 --dropout 0.34311018287108285829 --filter 94 --num_conv_layers 4 --num_dense_layers 1,0,,c137,1211459,61_0,COMPLETED,BOTORCH_MODULAR,57.1499999999999985789145284798,173,0.000281958415865180141938323155,256,702,0.343110182871082858291345019097,94,4,1
62,1762177169,11,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177180,1762179620,2440,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 195 --learning_rate 0.00028669464179587024 --batch_size 143 --hidden_size 1835 --dropout 0.34977937631974104216 --filter 93 --num_conv_layers 4 --num_dense_layers 1,0,,c124,1211460,62_0,COMPLETED,BOTORCH_MODULAR,61.6000000000000014210854715202,195,0.000286694641795870236097854011,143,1835,0.349779376319741042156152843745,93,4,1
63,1762177169,37,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177206,1762179531,2325,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 190 --learning_rate 0.00028803891353629458 --batch_size 183 --hidden_size 3869 --dropout 0.35351072991482712649 --filter 95 --num_conv_layers 4 --num_dense_layers 1,0,,c123,1211466,63_0,COMPLETED,BOTORCH_MODULAR,62.67999999999999971578290569596,190,0.000288038913536294580511332164,183,3869,0.353510729914827126485477037932,95,4,1
64,1762177170,36,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177206,1762179296,2090,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 176 --learning_rate 0.00028468467264647064 --batch_size 207 --hidden_size 2315 --dropout 0.34727527422740284146 --filter 93 --num_conv_layers 4 --num_dense_layers 1,0,,c123,1211464,64_0,COMPLETED,BOTORCH_MODULAR,61.8999999999999985789145284798,176,0.000284684672646470641500793253,207,2315,0.347275274227402841464851235287,93,4,1
65,1762177169,58,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177227,1762178917,1690,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 141 --learning_rate 0.00028636366321614892 --batch_size 221 --hidden_size 3442 --dropout 0.35072724225899909456 --filter 95 --num_conv_layers 4 --num_dense_layers 1,0,,c120,1211473,65_0,COMPLETED,BOTORCH_MODULAR,62.229999999999996873611962655559,141,0.000286363663216148919572062725,221,3442,0.350727242258999094559612785815,95,4,1
66,1762177169,36,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177205,1762179165,1960,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 173 --learning_rate 0.00028173327707514451 --batch_size 256 --hidden_size 500 --dropout 0.34293581166619724332 --filter 94 --num_conv_layers 4 --num_dense_layers 1,0,,c122,1211469,66_0,COMPLETED,BOTORCH_MODULAR,54.5,173,0.000281733277075144506341325412,256,500,0.342935811666197243319231802161,94,4,1
67,1762177169,67,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177236,1762178807,1571,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 138 --learning_rate 0.00028369373510483238 --batch_size 252 --hidden_size 531 --dropout 0.34569414504184375891 --filter 97 --num_conv_layers 4 --num_dense_layers 1,0,,c119,1211477,67_0,COMPLETED,BOTORCH_MODULAR,55.159999999999996589394868351519,138,0.000283693735104832375250316634,252,531,0.345694145041843758914268391891,97,4,1
68,1762177169,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177224,1762179490,2266,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 178 --learning_rate 0.00028561315946698995 --batch_size 112 --hidden_size 1980 --dropout 0.34679098053105805732 --filter 88 --num_conv_layers 4 --num_dense_layers 1,0,,c120,1211475,68_0,COMPLETED,BOTORCH_MODULAR,62.3500000000000014210854715202,178,0.00028561315946698995118374631,112,1980,0.346790980531058057323434695718,88,4,1
69,1762177169,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177224,1762179384,2160,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 170 --learning_rate 0.00028691079966599247 --batch_size 133 --hidden_size 2852 --dropout 0.35080184490505028627 --filter 91 --num_conv_layers 4 --num_dense_layers 1,0,,c120,1211474,69_0,COMPLETED,BOTORCH_MODULAR,62.28000000000000113686837721616,170,0.000286910799665992470152547922,133,2852,0.350801844905050286271830373153,91,4,1
70,1762177169,65,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177234,1762178402,1168,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 99 --learning_rate 0.00028523363465337453 --batch_size 191 --hidden_size 819 --dropout 0.34637762657706938629 --filter 95 --num_conv_layers 4 --num_dense_layers 1,0,,c119,1211476,70_0,COMPLETED,BOTORCH_MODULAR,57.92000000000000170530256582424,99,0.000285233634653374529613345523,191,819,0.346377626577069386293317165837,95,4,1
71,1762177169,38,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177207,1762179080,1873,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 140 --learning_rate 0.00029589266940106894 --batch_size 95 --hidden_size 1426 --dropout 0.36643922788901905907 --filter 102 --num_conv_layers 4 --num_dense_layers 1,0,,c123,1211465,71_0,COMPLETED,BOTORCH_MODULAR,62.53000000000000113686837721616,140,0.000295892669401068937259924319,95,1426,0.366439227889019059070108141896,102,4,1
72,1762177169,13,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177182,1762179191,2009,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 173 --learning_rate 0.00028179199242892505 --batch_size 256 --hidden_size 500 --dropout 0.34298577115380124436 --filter 94 --num_conv_layers 4 --num_dense_layers 1,0,,c124,1211463,72_0,COMPLETED,BOTORCH_MODULAR,54.42999999999999971578290569596,173,0.000281791992428925049812837855,256,500,0.342985771153801244359726752009,94,4,1
73,1762177170,54,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177224,1762178619,1395,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 121 --learning_rate 0.00028301475330069748 --batch_size 230 --hidden_size 1666 --dropout 0.34364371874759219727 --filter 92 --num_conv_layers 4 --num_dense_layers 1,0,,c120,1211472,73_0,COMPLETED,BOTORCH_MODULAR,61.1499999999999985789145284798,121,0.000283014753300697479918013322,230,1666,0.343643718747592197271245595402,92,4,1
74,1762177169,11,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177180,1762178967,1787,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 151 --learning_rate 0.00028421414369754738 --batch_size 219 --hidden_size 2296 --dropout 0.34634563867410361748 --filter 93 --num_conv_layers 4 --num_dense_layers 1,0,,c124,1211462,74_0,COMPLETED,BOTORCH_MODULAR,60.64000000000000056843418860808,151,0.000284214143697547377744733188,219,2296,0.346345638674103617482558092888,93,4,1
75,1762177170,35,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177205,1762179102,1897,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 142 --learning_rate 0.00137218617274703246 --batch_size 256 --hidden_size 6000 --dropout 0.35947826784009762058 --filter 142 --num_conv_layers 5 --num_dense_layers 1,0,,c122,1211470,75_0,COMPLETED,BOTORCH_MODULAR,69.909999999999996589394868351519,142,0.001372186172747032455870863643,256,6000,0.359478267840097620577921588847,142,5,1
76,1762177170,36,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177206,1762179275,2069,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 168 --learning_rate 0.00028575608874539246 --batch_size 172 --hidden_size 2223 --dropout 0.34923758615954891837 --filter 93 --num_conv_layers 4 --num_dense_layers 1,0,,c123,1211467,76_0,COMPLETED,BOTORCH_MODULAR,61.75,168,0.000285756088745392456632737899,172,2223,0.349237586159548918374184722779,93,4,1
77,1762177170,35,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177205,1762179560,2355,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 195 --learning_rate 0.00028959215151685974 --batch_size 170 --hidden_size 1418 --dropout 0.35517277947666586746 --filter 100 --num_conv_layers 4 --num_dense_layers 1,0,,c122,1211468,77_0,COMPLETED,BOTORCH_MODULAR,60.75,195,0.000289592151516859742845649839,170,1418,0.355172779476665867459672654149,100,4,1
78,1762177170,50,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177220,1762179202,1982,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 156 --learning_rate 0.00028508016861064872 --batch_size 143 --hidden_size 4026 --dropout 0.34668467332838648343 --filter 86 --num_conv_layers 4 --num_dense_layers 1,0,,c122,1211471,78_0,COMPLETED,BOTORCH_MODULAR,62.96000000000000085265128291212,156,0.000285080168610648719204614387,143,4026,0.346684673328386483426299946586,86,4,1
79,1762177175,65,2d5d5235-cc30-40a5-8187-969342ac2b39,1762177240,1762178864,1624,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 138 --learning_rate 0.000280734456798471 --batch_size 177 --hidden_size 1807 --dropout 0.33718731871207990869 --filter 83 --num_conv_layers 4 --num_dense_layers 1,0,,c118,1211480,79_0,COMPLETED,BOTORCH_MODULAR,60.520000000000003126388037344441,138,0.000280734456798470996628097618,177,1807,0.337187318712079908689105423036,83,4,1
80,1762179704,51,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179755,1762181644,1889,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 144 --learning_rate 0.00120490041451727344 --batch_size 193 --hidden_size 2640 --dropout 0.24205693775371478482 --filter 152 --num_conv_layers 5 --num_dense_layers 1,0,,c124,1211613,80_0,COMPLETED,BOTORCH_MODULAR,69.930000000000006821210263296962,144,0.001204900414517273438824718212,193,2640,0.242056937753714784822278716092,152,5,1
81,1762179704,18,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179722,1762180786,1064,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 76 --learning_rate 0.00120410632556207267 --batch_size 200 --hidden_size 2284 --dropout 0.24811327607434749409 --filter 148 --num_conv_layers 5 --num_dense_layers 1,0,,c141,1211608,81_0,COMPLETED,BOTORCH_MODULAR,69.049999999999997157829056959599,76,0.001204106325562072669563273841,200,2284,0.24811327607434749409343055504,148,5,1
82,1762179704,13,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179717,1762181739,2022,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 149 --learning_rate 0.00120345003843072844 --batch_size 168 --hidden_size 2629 --dropout 0.2779916914674980255 --filter 151 --num_conv_layers 5 --num_dense_layers 1,0,,c137,1211609,82_0,COMPLETED,BOTORCH_MODULAR,69.71999999999999886313162278384,149,0.001203450038430728440477790464,168,2629,0.277991691467498025502891323413,151,5,1
83,1762179705,24,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179729,1762180540,811,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 53 --learning_rate 0.00120752154500275454 --batch_size 127 --hidden_size 2937 --dropout 0.29321665180130396244 --filter 158 --num_conv_layers 5 --num_dense_layers 1,0,,c133,1211611,83_0,COMPLETED,BOTORCH_MODULAR,69.78000000000000113686837721616,53,0.00120752154500275454308833023,127,2937,0.293216651801303962443512318714,158,5,1
84,1762179704,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179759,1762181628,1869,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 149 --learning_rate 0.00121837262219557426 --batch_size 247 --hidden_size 2436 --dropout 0.22766548252644749906 --filter 136 --num_conv_layers 5 --num_dense_layers 1,0,,c124,1211614,84_0,COMPLETED,BOTORCH_MODULAR,68.689999999999997726263245567679,149,0.001218372622195574260517414444,247,2436,0.227665482526447499056487799862,136,5,1
85,,,,,,,,,,,,85_0,RUNNING,BOTORCH_MODULAR,,84,0.001186318096173722639458114614,39,2239,0.254480454757493979034421727192,151,5,1
86,1762179704,25,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179729,1762181798,2069,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 154 --learning_rate 0.00121649630893459326 --batch_size 197 --hidden_size 2721 --dropout 0.26477656636723267969 --filter 150 --num_conv_layers 5 --num_dense_layers 1,0,,c134,1211610,86_0,COMPLETED,BOTORCH_MODULAR,69.560000000000002273736754432321,154,0.001216496308934593255368650233,197,2721,0.264776566367232679688470398105,150,5,1
87,1762179704,80,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179784,1762181771,1987,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 155 --learning_rate 0.00121620116625137322 --batch_size 240 --hidden_size 2273 --dropout 0.23954155510163330223 --filter 142 --num_conv_layers 5 --num_dense_layers 1,0,,c122,1211621,87_0,COMPLETED,BOTORCH_MODULAR,68.950000000000002842170943040401,155,0.001216201166251373215823616825,240,2273,0.239541555101633302227170929655,142,5,1
88,1762179705,109,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179814,1762181689,1875,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 141 --learning_rate 0.00120536724354841011 --batch_size 191 --hidden_size 2702 --dropout 0.26360869375187678809 --filter 152 --num_conv_layers 5 --num_dense_layers 1,0,,c122,1211623,88_0,COMPLETED,BOTORCH_MODULAR,70.340000000000003410605131648481,141,0.001205367243548410112127799998,191,2702,0.263608693751876788091692560556,152,5,1
89,1762179704,39,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179743,1762181170,1427,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 94 --learning_rate 0.0011727095835934846 --batch_size 106 --hidden_size 2028 --dropout 0.26308747785146185949 --filter 162 --num_conv_layers 5 --num_dense_layers 1,0,,c124,1211612,89_0,COMPLETED,BOTORCH_MODULAR,70.689999999999997726263245567679,94,0.001172709583593484596389378005,106,2028,0.263087477851461859490456163257,162,5,1
90,1762179704,78,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179782,1762181750,1968,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 143 --learning_rate 0.00118849892697522408 --batch_size 157 --hidden_size 2542 --dropout 0.24619160435057746428 --filter 151 --num_conv_layers 5 --num_dense_layers 1,0,,c123,1211617,90_0,COMPLETED,BOTORCH_MODULAR,70.159999999999996589394868351519,143,0.001188498926975224082719373442,157,2542,0.246191604350577464277449735164,151,5,1
91,1762179704,57,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179761,1762181083,1322,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 74 --learning_rate 0.00117924931460124029 --batch_size 52 --hidden_size 2444 --dropout 0.25829640858551117244 --filter 159 --num_conv_layers 5 --num_dense_layers 1,0,,c123,1211616,91_0,COMPLETED,BOTORCH_MODULAR,70.769999999999996020960679743439,74,0.001179249314601240293531869696,52,2444,0.25829640858551117243990802308,159,5,1
92,,,,,,,,,,,,92_0,RUNNING,BOTORCH_MODULAR,,133,0.001211886146850357087734195716,168,2590,0.25755512968616739444271956927,150,5,1
93,1762179705,50,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179755,1762181641,1886,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 142 --learning_rate 0.001200746300617142 --batch_size 198 --hidden_size 2721 --dropout 0.24834212250975351566 --filter 151 --num_conv_layers 5 --num_dense_layers 1,0,,c124,1211615,93_0,COMPLETED,BOTORCH_MODULAR,69.629999999999995452526491135359,142,0.001200746300617142004948934009,198,2721,0.248342122509753515657848765841,151,5,1
94,1762179704,79,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179783,1762181657,1874,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 146 --learning_rate 0.00122286508462354131 --batch_size 256 --hidden_size 2777 --dropout 0.29515699077330781464 --filter 152 --num_conv_layers 5 --num_dense_layers 1,0,,c122,1211620,94_0,COMPLETED,BOTORCH_MODULAR,69.629999999999995452526491135359,146,0.001222865084623541310354655209,256,2777,0.295156990773307814635018075933,152,5,1
95,1762179704,93,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179797,1762183735,3938,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 98 --learning_rate 0.00117608447422921252 --batch_size 11 --hidden_size 2026 --dropout 0.2869129921805330663 --filter 153 --num_conv_layers 5 --num_dense_layers 1,0,,c122,1211622,95_0,COMPLETED,BOTORCH_MODULAR,64.680000000000006821210263296962,98,0.001176084474229212523468945939,11,2026,0.28691299218053306629983012499,153,5,1
96,1762179705,72,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179777,1762181661,1884,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 132 --learning_rate 0.00117798761061991024 --batch_size 125 --hidden_size 2135 --dropout 0.26386413094453931016 --filter 159 --num_conv_layers 5 --num_dense_layers 1,0,,c123,1211618,96_0,COMPLETED,BOTORCH_MODULAR,70.900000000000005684341886080801,132,0.001177987610619910235215668237,125,2135,0.263864130944539310164032031025,159,5,1
97,1762179705,77,2d5d5235-cc30-40a5-8187-969342ac2b39,1762179782,1762180765,983,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 66 --learning_rate 0.00120885232253092607 --batch_size 117 --hidden_size 2759 --dropout 0.25247949597301100333 --filter 146 --num_conv_layers 5 --num_dense_layers 1,0,,c123,1211619,97_0,COMPLETED,BOTORCH_MODULAR,70.21999999999999886313162278384,66,0.001208852322530926072172152708,117,2759,0.252479495973011003329133927764,146,5,1
98,,,,,,,,,,,,98_0,RUNNING,BOTORCH_MODULAR,,137,0.001205857960308764215140442388,169,2570,0.252154731228448114599416385317,150,5,1
99,,,,,,,,,,,,99_0,RUNNING,BOTORCH_MODULAR,,172,0.001211527966644343132229799664,184,2918,0.230660657645465894116654226309,156,5,1
100,1762183860,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183903,1762186237,2334,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 144 --learning_rate 0.00104438372167436878 --batch_size 76 --hidden_size 2676 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c108,1211854,100_0,COMPLETED,BOTORCH_MODULAR,69.510000000000005115907697472721,144,0.001044383721674368775342300886,76,2676,0,180,5,1
101,1762183860,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183903,1762186558,2655,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00147874219459922618 --batch_size 251 --hidden_size 3883 --dropout 0.16478180648431875466 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c108,1211852,101_0,COMPLETED,BOTORCH_MODULAR,70.120000000000004547473508864641,200,0.00147874219459922617674052514,251,3883,0.164781806484318754657536487684,180,5,1
102,1762183860,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183903,1762186604,2701,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00146680743519989379 --batch_size 247 --hidden_size 3735 --dropout 0.1126067173974047847 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c108,1211855,102_0,COMPLETED,BOTORCH_MODULAR,70.069999999999993178789736703038,200,0.001466807435199893793961734012,247,3735,0.112606717397404784697378943292,180,5,1
103,1762183859,15,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183874,1762187121,3247,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00105538454483871183 --batch_size 75 --hidden_size 2754 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c122,1211848,103_0,COMPLETED,BOTORCH_MODULAR,69.35999999999999943156581139192,200,0.001055384544838711829983779467,75,2754,0,180,5,1
104,1762183859,26,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183885,1762186647,2762,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00146548221549741456 --batch_size 247 --hidden_size 3852 --dropout 0.12959769113836275278 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c116,1211849,104_0,COMPLETED,BOTORCH_MODULAR,69.89000000000000056843418860808,200,0.001465482215497414556978905686,247,3852,0.129597691138362752782953180031,180,5,1
105,1762183859,26,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183885,1762185976,2091,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 120 --learning_rate 0.00105997611118195819 --batch_size 58 --hidden_size 3528 --dropout 0 --filter 147 --num_conv_layers 5 --num_dense_layers 1,0,,c135,1211847,105_0,COMPLETED,BOTORCH_MODULAR,68.71999999999999886313162278384,120,0.001059976111181958188453555714,58,3528,0,147,5,1
106,1762183860,28,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183888,1762187125,3237,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0010572504496726841 --batch_size 75 --hidden_size 2757 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c113,1211851,106_0,COMPLETED,BOTORCH_MODULAR,69.299999999999997157829056959599,200,0.001057250449672684101259934053,75,2757,0,180,5,1
107,1762183861,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183904,1762187151,3247,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00104987572712160189 --batch_size 75 --hidden_size 2739 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c107,1211858,107_0,COMPLETED,BOTORCH_MODULAR,69.260000000000005115907697472721,200,0.001049875727121601888189306173,75,2739,0,180,5,1
108,1762183860,44,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183904,1762186862,2958,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 166 --learning_rate 0.00113508020736773616 --batch_size 65 --hidden_size 3681 --dropout 0 --filter 171 --num_conv_layers 5 --num_dense_layers 1,0,,c107,1211856,108_0,COMPLETED,BOTORCH_MODULAR,69.900000000000005684341886080801,166,0.001135080207367736163451277243,65,3681,0,171,5,1
109,1762183861,57,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183918,1762187195,3277,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0010577316646851148 --batch_size 75 --hidden_size 2750 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c107,1211859,109_0,COMPLETED,BOTORCH_MODULAR,69.03000000000000113686837721616,200,0.001057731664685114796736753462,75,2750,0,180,5,1
110,1762183860,28,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183888,1762187187,3299,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00105313880132704065 --batch_size 75 --hidden_size 2735 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c113,1211850,110_0,COMPLETED,BOTORCH_MODULAR,68.930000000000006821210263296962,200,0.001053138801327040650901434304,75,2735,0,180,5,1
111,1762183860,44,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183904,1762187150,3246,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00104937643861808248 --batch_size 75 --hidden_size 2734 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c108,1211853,111_0,COMPLETED,BOTORCH_MODULAR,69.540000000000006252776074688882,200,0.001049376438618082477485793369,75,2734,0,180,5,1
112,1762183861,57,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183918,1762184873,955,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 64 --learning_rate 0.00097008632598321167 --batch_size 118 --hidden_size 2205 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c106,1211861,112_0,COMPLETED,BOTORCH_MODULAR,69.060000000000002273736754432321,64,0.000970086325983211665048566719,118,2205,0,180,5,1
113,1762183861,57,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183918,1762187202,3284,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00105141942782633929 --batch_size 75 --hidden_size 2749 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c106,1211860,113_0,COMPLETED,BOTORCH_MODULAR,69.730000000000003979039320256561,200,0.00105141942782633929405478046,75,2749,0,180,5,1
114,1762183861,57,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183918,1762187177,3259,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00105143844643180149 --batch_size 75 --hidden_size 2737 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c106,1211862,114_0,COMPLETED,BOTORCH_MODULAR,69.67000000000000170530256582424,200,0.00105143844643180149091288289,75,2737,0,180,5,1
115,1762183862,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183904,1762187162,3258,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00105776227706117811 --batch_size 75 --hidden_size 2740 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c107,1211857,115_0,COMPLETED,BOTORCH_MODULAR,69.39000000000000056843418860808,200,0.001057762277061178105008742989,75,2740,0,180,5,1
116,1762183866,72,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183938,1762185134,1196,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 68 --learning_rate 0.0010683866649580417 --batch_size 60 --hidden_size 3178 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c105,1211863,116_0,COMPLETED,BOTORCH_MODULAR,69.810000000000002273736754432321,68,0.001068386664958041699577395711,60,3178,0,180,5,1
117,1762183866,73,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183939,1762186246,2307,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 141 --learning_rate 0.00102919784802527102 --batch_size 78 --hidden_size 2588 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c105,1211864,117_0,COMPLETED,BOTORCH_MODULAR,69.540000000000006252776074688882,141,0.001029197848025271023325588615,78,2588,0,180,5,1
118,1762183870,68,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183938,1762185577,1639,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 93 --learning_rate 0.00100322589552462554 --batch_size 82 --hidden_size 2418 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c105,1211865,118_0,COMPLETED,BOTORCH_MODULAR,69.519999999999996020960679743439,93,0.001003225895524625542118424271,82,2418,0,180,5,1
119,1762183876,69,2d5d5235-cc30-40a5-8187-969342ac2b39,1762183945,1762186576,2631,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 151 --learning_rate 0.00106379204153004767 --batch_size 70 --hidden_size 2869 --dropout 0 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c104,1211866,119_0,COMPLETED,BOTORCH_MODULAR,69.64000000000000056843418860808,151,0.001063792041530047666197944523,70,2869,0,180,5,1
120,1762187350,30,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187380,1762189606,2226,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 128 --learning_rate 0.00137304202348581105 --batch_size 62 --hidden_size 3301 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c135,1212050,120_0,COMPLETED,BOTORCH_MODULAR,70.159999999999996589394868351519,128,0.001373042023485811051475291578,62,3301,0.599999999999999977795539507497,180,5,1
121,1762187349,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187391,1762190199,2808,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 152 --learning_rate 0.00139621309960832884 --batch_size 58 --hidden_size 3578 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c129,1212052,121_0,COMPLETED,BOTORCH_MODULAR,69.459999999999993747223925311118,152,0.001396213099608328844780658073,58,3578,0.599999999999999977795539507497,180,5,1
122,1762187348,13,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187361,1762188571,1210,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 64 --learning_rate 0.00137760576414883889 --batch_size 53 --hidden_size 3542 --dropout 0.59999995374419801131 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c155,1212043,122_0,COMPLETED,BOTORCH_MODULAR,68.450000000000002842170943040401,64,0.00137760576414883888565765524,53,3542,0.599999953744198011307275919535,180,5,1
123,1762187349,77,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187426,1762188622,1196,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 63 --learning_rate 0.00138518434621316168 --batch_size 53 --hidden_size 3549 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c131,1212059,123_0,COMPLETED,BOTORCH_MODULAR,69.939999999999997726263245567679,63,0.001385184346213161679650660574,53,3549,0.599999999999999977795539507497,180,5,1
124,1762187349,51,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187400,1762189064,1664,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 100 --learning_rate 0.00137394141073637313 --batch_size 69 --hidden_size 3190 --dropout 0.5999999999999999778 --filter 151 --num_conv_layers 5 --num_dense_layers 1,0,,c122,1212055,124_0,COMPLETED,BOTORCH_MODULAR,70.269999999999996020960679743439,100,0.001373941410736373132731036328,69,3190,0.599999999999999977795539507497,151,5,1
125,1762187349,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187391,1762190398,3007,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 169 --learning_rate 0.00140016279962551938 --batch_size 62 --hidden_size 3616 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c129,1212051,125_0,COMPLETED,BOTORCH_MODULAR,70.629999999999995452526491135359,169,0.001400162799625519378932114734,62,3616,0.599999999999999977795539507497,180,5,1
126,1762187350,45,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187395,1762190515,3120,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 165 --learning_rate 0.00143325747598257503 --batch_size 54 --hidden_size 4012 --dropout 0.5999999999999999778 --filter 174 --num_conv_layers 5 --num_dense_layers 1,0,,c128,1212054,126_0,COMPLETED,BOTORCH_MODULAR,70.46999999999999886313162278384,165,0.001433257475982575033027210942,54,4012,0.599999999999999977795539507497,174,5,1
127,1762187349,31,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187380,1762190769,3389,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 158 --learning_rate 0.00145747203761583343 --batch_size 48 --hidden_size 4578 --dropout 0.5999999999999999778 --filter 173 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212048,127_0,COMPLETED,BOTORCH_MODULAR,70.64000000000000056843418860808,158,0.001457472037615833429166634083,48,4578,0.599999999999999977795539507497,173,5,1
128,1762187349,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187372,1762189900,2528,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 126 --learning_rate 0.00142801799933159443 --batch_size 48 --hidden_size 4119 --dropout 0.5999999999999999778 --filter 174 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212046,128_0,COMPLETED,BOTORCH_MODULAR,69.450000000000002842170943040401,126,0.001428017999331594430414971164,48,4119,0.599999999999999977795539507497,174,5,1
129,1762187349,70,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187419,1762188662,1243,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 66 --learning_rate 0.00137705771566545366 --batch_size 54 --hidden_size 3533 --dropout 0.59999780927926749108 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c113,1212058,129_0,COMPLETED,BOTORCH_MODULAR,68.769999999999996020960679743439,66,0.00137705771566545365561240466,54,3533,0.599997809279267491078257990011,180,5,1
130,1762187349,51,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187400,1762190219,2819,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 168 --learning_rate 0.00133621615864900245 --batch_size 81 --hidden_size 2766 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c116,1212056,130_0,COMPLETED,BOTORCH_MODULAR,71.150000000000005684341886080801,168,0.001336216158649002451810905434,81,2766,0.599999999999999977795539507497,180,5,1
131,1762187349,17,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187366,1762189465,2099,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 143 --learning_rate 0.00351453817339262729 --batch_size 118 --hidden_size 4168 --dropout 0.41031337479379692557 --filter 169 --num_conv_layers 6 --num_dense_layers 1,0,,c153,1212044,131_0,COMPLETED,BOTORCH_MODULAR,69.78000000000000113686837721616,143,0.003514538173392627289776113386,118,4168,0.410313374793796925565914079925,169,6,1
132,1762187349,46,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187395,1762189842,2447,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 136 --learning_rate 0.00138841795678421726 --batch_size 65 --hidden_size 3470 --dropout 0.5999999999999999778 --filter 178 --num_conv_layers 5 --num_dense_layers 1,0,,c128,1212053,132_0,COMPLETED,BOTORCH_MODULAR,70.900000000000005684341886080801,136,0.001388417956784217255350455389,65,3470,0.599999999999999977795539507497,178,5,1
133,1762187349,17,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187366,1762188660,1294,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 68 --learning_rate 0.00137549085962057854 --batch_size 53 --hidden_size 3553 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c145,1212045,133_0,COMPLETED,BOTORCH_MODULAR,69.129999999999995452526491135359,68,0.001375490859620578541419599894,53,3553,0.599999999999999977795539507497,180,5,1
134,1762187349,21,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187370,1762189479,2109,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 79 --learning_rate 0.00145689323979599763 --batch_size 26 --hidden_size 4854 --dropout 0.5999999999999999778 --filter 164 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212047,134_0,COMPLETED,BOTORCH_MODULAR,66.680000000000006821210263296962,79,0.001456893239795997632007873435,26,4854,0.599999999999999977795539507497,164,5,1
135,1762187350,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187392,1762188741,1349,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 69 --learning_rate 0.00137651610295067006 --batch_size 56 --hidden_size 3435 --dropout 0.59999927084963333712 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c138,1212049,135_0,COMPLETED,BOTORCH_MODULAR,69.730000000000003979039320256561,69,0.001376516102950670061844107295,56,3435,0.599999270849633337121531440062,180,5,1
136,1762187352,88,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187440,1762191477,4037,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 178 --learning_rate 0.00144925894420047229 --batch_size 37 --hidden_size 4330 --dropout 0.5999999999999999778 --filter 177 --num_conv_layers 5 --num_dense_layers 1,0,,c113,1212061,136_0,COMPLETED,BOTORCH_MODULAR,68.71999999999999886313162278384,178,0.00144925894420047229188552862,37,4330,0.599999999999999977795539507497,177,5,1
137,1762187352,49,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187401,1762189011,1610,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 77 --learning_rate 0.00134996085798087589 --batch_size 63 --hidden_size 3103 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c115,1212057,137_0,COMPLETED,BOTORCH_MODULAR,69.96999999999999886313162278384,77,0.001349960857980875891110050802,63,3103,0.599999999999999977795539507497,180,5,1
138,1762187352,69,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187421,1762189135,1714,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 92 --learning_rate 0.00139294239414062084 --batch_size 53 --hidden_size 3713 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c113,1212060,138_0,COMPLETED,BOTORCH_MODULAR,70.290000000000006252776074688882,92,0.001392942394140620843492883729,53,3713,0.599999999999999977795539507497,180,5,1
139,1762187355,98,2d5d5235-cc30-40a5-8187-969342ac2b39,1762187453,1762191439,3986,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 182 --learning_rate 0.00142634677982088473 --batch_size 57 --hidden_size 3729 --dropout 0.5999999999999999778 --filter 146 --num_conv_layers 5 --num_dense_layers 1,0,,c112,1212062,139_0,COMPLETED,BOTORCH_MODULAR,70.569999999999993178789736703038,182,0.001426346779820884726891483396,57,3729,0.599999999999999977795539507497,146,5,1
140,1762191640,35,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191675,1762194342,2667,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 176 --learning_rate 0.00155520530113375643 --batch_size 126 --hidden_size 5884 --dropout 0.5999999999999999778 --filter 132 --num_conv_layers 5 --num_dense_layers 1,0,,c138,1212132,140_0,COMPLETED,BOTORCH_MODULAR,70.340000000000003410605131648481,176,0.001555205301133756427833798597,126,5884,0.599999999999999977795539507497,132,5,1
141,1762191641,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191703,1762194517,2814,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 172 --learning_rate 0.0015358287879979188 --batch_size 95 --hidden_size 5473 --dropout 0.44908587386799542207 --filter 167 --num_conv_layers 5 --num_dense_layers 1,0,,c131,1212137,141_0,COMPLETED,BOTORCH_MODULAR,72.14000000000000056843418860808,172,0.001535828787997918802241126279,95,5473,0.449085873867995422070720223928,167,5,1
142,1762191639,9,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191648,1762194927,3279,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00151841743054501846 --batch_size 94 --hidden_size 5094 --dropout 0.43077415076532499238 --filter 169 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212128,142_0,COMPLETED,BOTORCH_MODULAR,71.549999999999997157829056959599,200,0.001518417430545018461177098068,94,5094,0.430774150765324992384819324798,169,5,1
143,1762191639,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191643,1762194482,2839,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 184 --learning_rate 0.00152117317141576506 --batch_size 104 --hidden_size 4954 --dropout 0.45846954644517867727 --filter 149 --num_conv_layers 5 --num_dense_layers 1,0,,c155,1212126,143_0,COMPLETED,BOTORCH_MODULAR,71.129999999999995452526491135359,184,0.001521173171415765058844815627,104,4954,0.458469546445178677274157053034,149,5,1
144,1762191640,28,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191668,1762194028,2360,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 159 --learning_rate 0.0015550244386275734 --batch_size 100 --hidden_size 5804 --dropout 0.50334308835878005528 --filter 117 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212129,144_0,COMPLETED,BOTORCH_MODULAR,69.700000000000002842170943040401,159,0.001555024438627573401400239206,100,5804,0.503343088358780055280305987253,117,5,1
145,1762191641,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191703,1762194825,3122,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0012380139475984995 --batch_size 241 --hidden_size 3739 --dropout 0.52596645401296460154 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c134,1212136,145_0,COMPLETED,BOTORCH_MODULAR,70.930000000000006821210263296962,200,0.001238013947598499498239932315,241,3739,0.525966454012964601538726583385,180,6,1
146,1762191640,35,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191675,1762194281,2606,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00122559175411854414 --batch_size 239 --hidden_size 3442 --dropout 0.53569578589096567001 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c137,1212133,146_0,COMPLETED,BOTORCH_MODULAR,70.959999999999993747223925311118,200,0.001225591754118544136550883472,239,3442,0.535695785890965670006380605628,180,6,1
147,1762191640,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191663,1762195078,3415,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00149913492668958515 --batch_size 94 --hidden_size 4681 --dropout 0.40027432648559163608 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212131,147_0,COMPLETED,BOTORCH_MODULAR,72.430000000000006821210263296962,200,0.001499134926689585150735850583,94,4681,0.400274326485591636082261857155,180,5,1
148,1762191639,9,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191648,1762194386,2738,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 181 --learning_rate 0.00154313707258451108 --batch_size 92 --hidden_size 5478 --dropout 0.44537779428250018343 --filter 119 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212127,148_0,COMPLETED,BOTORCH_MODULAR,70.39000000000000056843418860808,181,0.001543137072584511082160019235,92,5478,0.445377794282500183431494633624,119,5,1
149,1762191641,72,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191713,1762194989,3276,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00152499589622203833 --batch_size 94 --hidden_size 5241 --dropout 0.43465551896671905663 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c130,1212139,149_0,COMPLETED,BOTORCH_MODULAR,71.239999999999994884092302527279,200,0.001524995896222038332251669246,94,5241,0.434655518966719056628278394783,180,5,1
150,1762191640,28,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191668,1762194531,2863,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 180 --learning_rate 0.00154858105441243142 --batch_size 95 --hidden_size 5840 --dropout 0.48674415562679579361 --filter 145 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212130,150_0,COMPLETED,BOTORCH_MODULAR,70.799999999999997157829056959599,180,0.001548581054412431420863605069,95,5840,0.486744155626795793612160423436,145,5,1
151,1762191640,73,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191713,1762194280,2567,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 175 --learning_rate 0.00153506643485378695 --batch_size 82 --hidden_size 5002 --dropout 0.33936664662581733642 --filter 79 --num_conv_layers 5 --num_dense_layers 1,0,,c130,1212140,151_0,COMPLETED,BOTORCH_MODULAR,68.590000000000003410605131648481,175,0.001535066434853786954822796318,82,5002,0.339366646625817336424546510898,79,5,1
152,1762191641,72,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191713,1762194936,3223,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00153153295772436439 --batch_size 95 --hidden_size 5419 --dropout 0.45826003931182057727 --filter 158 --num_conv_layers 5 --num_dense_layers 1,0,,c130,1212138,152_0,COMPLETED,BOTORCH_MODULAR,71.35999999999999943156581139192,200,0.001531532957724364386528637105,95,5419,0.458260039311820577268008491956,158,5,1
153,1762191641,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191683,1762194925,3242,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00152629094306323885 --batch_size 94 --hidden_size 5289 --dropout 0.44692384393751788396 --filter 168 --num_conv_layers 5 --num_dense_layers 1,0,,c135,1212135,153_0,COMPLETED,BOTORCH_MODULAR,71.730000000000003979039320256561,200,0.001526290943063238854035534864,94,5289,0.446923843937517883961874076704,168,5,1
154,1762191641,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191683,1762194781,3098,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 193 --learning_rate 0.00151444155464646618 --batch_size 97 --hidden_size 4957 --dropout 0.42841918339662676818 --filter 165 --num_conv_layers 5 --num_dense_layers 1,0,,c135,1212134,154_0,COMPLETED,BOTORCH_MODULAR,71.03000000000000113686837721616,193,0.001514441554646466176273222892,97,4957,0.428419183396626768178805377829,165,5,1
155,1762191641,72,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191713,1762194945,3232,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00152253984950366994 --batch_size 94 --hidden_size 5242 --dropout 0.44707974100341840717 --filter 168 --num_conv_layers 5 --num_dense_layers 1,0,,c130,1212141,155_0,COMPLETED,BOTORCH_MODULAR,71.35999999999999943156581139192,200,0.001522539849503669936309213639,94,5242,0.447079741003418407174763160583,168,5,1
156,1762191643,80,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191723,1762194292,2569,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00124040527644911423 --batch_size 241 --hidden_size 3727 --dropout 0.52866565161692047337 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c129,1212143,156_0,COMPLETED,BOTORCH_MODULAR,70.590000000000003410605131648481,200,0.001240405276449114231260284491,241,3727,0.528665651616920473365723864845,180,6,1
157,1762191643,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191705,1762194100,2395,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 162 --learning_rate 0.00151117134586632729 --batch_size 87 --hidden_size 4400 --dropout 0.27693892466903186067 --filter 106 --num_conv_layers 5 --num_dense_layers 1,0,,c129,1212142,157_0,COMPLETED,BOTORCH_MODULAR,69.680000000000006821210263296962,162,0.001511171345866327286877606184,87,4400,0.276938924669031860670287414905,106,5,1
158,1762191643,92,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191735,1762194429,2694,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 163 --learning_rate 0.00153409083822656639 --batch_size 89 --hidden_size 5427 --dropout 0.41292043357623381405 --filter 161 --num_conv_layers 5 --num_dense_layers 1,0,,c128,1212144,158_0,COMPLETED,BOTORCH_MODULAR,70.930000000000006821210263296962,163,0.001534090838226566388957650133,89,5427,0.412920433576233814054745607791,161,5,1
159,1762191651,84,2d5d5235-cc30-40a5-8187-969342ac2b39,1762191735,1762194368,2633,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 164 --learning_rate 0.00153847251518973195 --batch_size 96 --hidden_size 5544 --dropout 0.46460249428684330386 --filter 155 --num_conv_layers 5 --num_dense_layers 1,0,,c128,1212145,159_0,COMPLETED,BOTORCH_MODULAR,71.349999999999994315658113919199,164,0.001538472515189731951168461421,96,5544,0.464602494286843303861189724557,155,5,1
160,1762195261,16,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195277,1762198490,3213,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00138074637857847561 --batch_size 95 --hidden_size 5310 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c148,1212243,160_0,COMPLETED,BOTORCH_MODULAR,70.650000000000005684341886080801,200,0.001380746378578475612800002814,95,5310,0.599999999999999977795539507497,180,4,1
161,1762195261,29,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195290,1762198010,2720,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0007846973957606197 --batch_size 253 --hidden_size 4213 --dropout 0.46692676832339008453 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212247,161_0,COMPLETED,BOTORCH_MODULAR,70.230000000000003979039320256561,200,0.00078469739576061969549974906,253,4213,0.466926768323390084525215115718,180,5,1
162,1762195261,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195265,1762197376,2111,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 151 --learning_rate 0.0028432452117809902 --batch_size 186 --hidden_size 3820 --dropout 0.34139816799938532688 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c155,1212242,162_0,COMPLETED,BOTORCH_MODULAR,69.439999999999997726263245567679,151,0.002843245211780990201050345334,186,3820,0.34139816799938532687619385797,180,5,1
163,1762195262,24,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195286,1762197931,2645,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 192 --learning_rate 0.00078144238543034479 --batch_size 256 --hidden_size 4186 --dropout 0.4457671621898452452 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c138,1212250,163_0,COMPLETED,BOTORCH_MODULAR,69.849999999999994315658113919199,192,0.000781442385430344789096213098,256,4186,0.445767162189845245201524903678,180,5,1
164,1762195262,25,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195287,1762197616,2329,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.00291091084478057498 --batch_size 186 --hidden_size 3470 --dropout 0.3886995433174373904 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212248,164_0,COMPLETED,BOTORCH_MODULAR,69.89000000000000056843418860808,167,0.002910910844780574980444898259,186,3470,0.38869954331743739039950469305,180,5,1
165,1762195262,29,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195291,1762196280,989,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 71 --learning_rate 0.00254444907511675814 --batch_size 213 --hidden_size 4334 --dropout 0.4047365342742323957 --filter 166 --num_conv_layers 5 --num_dense_layers 1,0,,c131,1212255,165_0,COMPLETED,BOTORCH_MODULAR,70.430000000000006821210263296962,71,0.002544449075116758142434125745,213,4334,0.404736534274232395702597386844,166,5,1
166,1762195262,38,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195300,1762196901,1601,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 117 --learning_rate 0.00081607004567642229 --batch_size 251 --hidden_size 4972 --dropout 0.46696764532691292793 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c130,1212257,166_0,COMPLETED,BOTORCH_MODULAR,70.090000000000003410605131648481,117,0.000816070045676422291432150491,251,4972,0.46696764532691292792776494025,180,5,1
167,1762195261,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195265,1762196750,1485,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 106 --learning_rate 0.0028645699263172837 --batch_size 187 --hidden_size 3755 --dropout 0.3512557215560481727 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212244,167_0,COMPLETED,BOTORCH_MODULAR,70.42000000000000170530256582424,106,0.002864569926317283698330440345,187,3755,0.351255721556048172704578291814,180,5,1
168,1762195261,25,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195286,1762197502,2216,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 159 --learning_rate 0.00290219580048482273 --batch_size 188 --hidden_size 3576 --dropout 0.37187241233522444483 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212246,168_0,COMPLETED,BOTORCH_MODULAR,70.989999999999994884092302527279,159,0.002902195800484822733183998267,188,3576,0.371872412335224444834835821894,180,5,1
169,1762195262,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195285,1762197950,2665,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00078994216108862168 --batch_size 252 --hidden_size 4263 --dropout 0.46508069095594994913 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212245,169_0,COMPLETED,BOTORCH_MODULAR,70.519999999999996020960679743439,200,0.000789942161088621683240340587,252,4263,0.465080690955949949128012121946,180,5,1
170,1762195262,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195285,1762196074,789,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 53 --learning_rate 0.00281399355627570636 --batch_size 192 --hidden_size 3924 --dropout 0.36055527716392798965 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212249,170_0,COMPLETED,BOTORCH_MODULAR,69.620000000000004547473508864641,53,0.002813993556275706364039335128,192,3924,0.360555277163927989647618232993,180,5,1
171,1762195262,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195285,1762198287,3002,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00154704365445312657 --batch_size 140 --hidden_size 6000 --dropout 0.57809748764525215048 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c135,1212252,171_0,COMPLETED,BOTORCH_MODULAR,70.709999999999993747223925311118,200,0.001547043654453126573442012237,140,6000,0.578097487645252150478825114988,180,4,1
172,1762195263,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195285,1762198467,3182,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00078072233491689117 --batch_size 256 --hidden_size 4253 --dropout 0.43490672164972393743 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c134,1212254,172_0,COMPLETED,BOTORCH_MODULAR,70.340000000000003410605131648481,200,0.000780722334916891173677011562,256,4253,0.434906721649723937428433373498,180,5,1
173,1762195263,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195285,1762197445,2160,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 156 --learning_rate 0.00284166608234782654 --batch_size 186 --hidden_size 3889 --dropout 0.33525711230158622422 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c137,1212251,173_0,COMPLETED,BOTORCH_MODULAR,69.620000000000004547473508864641,156,0.002841666082347826544768354395,186,3889,0.335257112301586224223370891195,180,5,1
174,1762195263,37,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195300,1762198328,3028,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 196 --learning_rate 0.00145997119051181532 --batch_size 111 --hidden_size 5295 --dropout 0.57665869439855155232 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c130,1212256,174_0,COMPLETED,BOTORCH_MODULAR,70.439999999999997726263245567679,196,0.001459971190511815319554300707,111,5295,0.576658694398551552318110680062,180,4,1
175,1762195263,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195285,1762197951,2666,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0007874461485717722 --batch_size 251 --hidden_size 4291 --dropout 0.46425585004186720184 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c135,1212253,175_0,COMPLETED,BOTORCH_MODULAR,69.909999999999996589394868351519,200,0.000787446148571772203648977406,251,4291,0.464255850041867201838385881274,180,5,1
176,1762195265,35,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195300,1762197972,2672,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0008071800002312368 --batch_size 250 --hidden_size 4268 --dropout 0.46278733800524807229 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c130,1212259,176_0,COMPLETED,BOTORCH_MODULAR,70.82999999999999829469743417576,200,0.000807180000231236803066858787,250,4268,0.462787338005248072292374672543,180,5,1
177,1762195265,35,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195300,1762197385,2085,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 150 --learning_rate 0.00285249550582530225 --batch_size 185 --hidden_size 3845 --dropout 0.35062887463154573942 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c130,1212258,177_0,COMPLETED,BOTORCH_MODULAR,69.799999999999997157829056959599,150,0.002852495505825302247321362259,185,3845,0.350628874631545739415372509029,180,5,1
178,1762195265,40,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195305,1762197966,2661,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.000785204854793717 --batch_size 255 --hidden_size 4302 --dropout 0.4229892297314555849 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c129,1212260,178_0,COMPLETED,BOTORCH_MODULAR,70.769999999999996020960679743439,200,0.00078520485479371699560902087,255,4302,0.422989229731455584904153965908,180,5,1
179,1762195269,41,2d5d5235-cc30-40a5-8187-969342ac2b39,1762195310,1762197663,2353,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 170 --learning_rate 0.00256850049806696878 --batch_size 188 --hidden_size 4523 --dropout 0.39336987454461319613 --filter 154 --num_conv_layers 5 --num_dense_layers 1,0,,c129,1212261,179_0,COMPLETED,BOTORCH_MODULAR,70.32999999999999829469743417576,170,0.002568500498066968781157859425,188,4523,0.393369874544613196132303301056,154,5,1
180,1762198643,16,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198659,1762201042,2383,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 180 --learning_rate 0.00118635202194683704 --batch_size 231 --hidden_size 5087 --dropout 0.29425982848517545643 --filter 168 --num_conv_layers 4 --num_dense_layers 1,0,,c152,1212325,180_0,COMPLETED,BOTORCH_MODULAR,68.489999999999994884092302527279,180,0.001186352021946837035498711899,231,5087,0.294259828485175456425082529677,168,4,1
181,1762198643,9,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198652,1762201444,2792,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00115581776060862075 --batch_size 216 --hidden_size 6000 --dropout 0.33681097339025722892 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c143,1212328,181_0,COMPLETED,BOTORCH_MODULAR,69.069999999999993178789736703038,200,0.001155817760608620747148078678,216,6000,0.336810973390257228921029764024,180,4,1
182,1762198643,11,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198654,1762200176,1522,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 119 --learning_rate 0.00284984345001818452 --batch_size 217 --hidden_size 2899 --dropout 0.5999999999999999778 --filter 132 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212327,182_0,COMPLETED,BOTORCH_MODULAR,68.21999999999999886313162278384,119,0.002849843450018184516647767879,217,2899,0.599999999999999977795539507497,132,5,1
183,1762198643,39,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198682,1762201469,2787,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00118622952041532652 --batch_size 215 --hidden_size 5150 --dropout 0.32022608518811823686 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c131,1212338,183_0,COMPLETED,BOTORCH_MODULAR,69.10999999999999943156581139192,200,0.001186229520415326517054910305,215,5150,0.320226085188118236857235388015,180,4,1
184,1762198643,39,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198682,1762200924,2242,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 173 --learning_rate 0.00282149345656446202 --batch_size 218 --hidden_size 2843 --dropout 0.5999999999999999778 --filter 135 --num_conv_layers 5 --num_dense_layers 1,0,,c135,1212336,184_0,COMPLETED,BOTORCH_MODULAR,69.599999999999994315658113919199,173,0.002821493456564462022628791971,218,2843,0.599999999999999977795539507497,135,5,1
185,1762198643,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198647,1762201211,2564,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 185 --learning_rate 0.00116291057182100577 --batch_size 219 --hidden_size 5794 --dropout 0.32776981873244026566 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c155,1212324,185_0,COMPLETED,BOTORCH_MODULAR,68.989999999999994884092302527279,185,0.001162910571821005765655310249,219,5794,0.327769818732440265662830825022,180,4,1
186,1762198644,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198667,1762200899,2232,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 173 --learning_rate 0.00281777382905106259 --batch_size 218 --hidden_size 2827 --dropout 0.5999999999999999778 --filter 134 --num_conv_layers 5 --num_dense_layers 1,0,,c135,1212335,186_0,COMPLETED,BOTORCH_MODULAR,68.340000000000003410605131648481,173,0.002817773829051062588896270356,218,2827,0.599999999999999977795539507497,134,5,1
187,1762198643,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198647,1762201509,2862,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00115752140267063415 --batch_size 216 --hidden_size 6000 --dropout 0.33862526152407118607 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c148,1212326,187_0,COMPLETED,BOTORCH_MODULAR,69.700000000000002842170943040401,200,0.0011575214026706341467753969,216,6000,0.338625261524071186070017347447,180,4,1
188,1762198643,24,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198667,1762200724,2057,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 149 --learning_rate 0.00120725504999095708 --batch_size 212 --hidden_size 5032 --dropout 0.30312258209933695685 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c137,1212334,188_0,COMPLETED,BOTORCH_MODULAR,68.760000000000005115907697472721,149,0.001207255049990957080502385068,212,5032,0.303122582099336956851232116605,180,4,1
189,1762198644,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198667,1762199691,1024,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 70 --learning_rate 0.0011981607897936081 --batch_size 222 --hidden_size 5553 --dropout 0.29594036495874742609 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c139,1212332,189_0,COMPLETED,BOTORCH_MODULAR,68.519999999999996020960679743439,70,0.001198160789793608098016686192,222,5553,0.295940364958747426094021193421,180,4,1
190,1762198644,11,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198655,1762201470,2815,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00115396167757790069 --batch_size 216 --hidden_size 6000 --dropout 0.33675802158650158802 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c143,1212329,190_0,COMPLETED,BOTORCH_MODULAR,69.049999999999997157829056959599,200,0.001153961677577900694219303901,216,6000,0.336758021586501588018336406094,180,4,1
191,1762198644,25,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198669,1762201430,2761,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00117711481343996788 --batch_size 220 --hidden_size 5275 --dropout 0.31897856600957807949 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c139,1212331,191_0,COMPLETED,BOTORCH_MODULAR,68.959999999999993747223925311118,200,0.001177114813439967882721659542,220,5275,0.31897856600957807948759636929,180,4,1
192,1762198644,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198667,1762200669,2002,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00120698814349155369 --batch_size 218 --hidden_size 5725 --dropout 0.3185092852388794471 --filter 160 --num_conv_layers 4 --num_dense_layers 1,0,,c139,1212330,192_0,COMPLETED,BOTORCH_MODULAR,68.57999999999999829469743417576,148,0.001206988143491553693020801319,218,5725,0.318509285238879447099691333278,160,4,1
193,1762198644,38,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198682,1762201191,2509,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 178 --learning_rate 0.00117404269396202644 --batch_size 215 --hidden_size 5887 --dropout 0.33421786721306612211 --filter 172 --num_conv_layers 4 --num_dense_layers 1,0,,c134,1212337,193_0,COMPLETED,BOTORCH_MODULAR,69.090000000000003410605131648481,178,0.001174042693962026439463697258,215,5887,0.334217867213066122111797540128,172,4,1
194,1762198644,47,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198691,1762201104,2413,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 176 --learning_rate 0.00118106532326905716 --batch_size 220 --hidden_size 5609 --dropout 0.32253214062141905005 --filter 168 --num_conv_layers 4 --num_dense_layers 1,0,,c130,1212339,194_0,COMPLETED,BOTORCH_MODULAR,68.71999999999999886313162278384,176,0.001181065323269057162208772738,220,5609,0.322532140621419050052764987413,168,4,1
195,1762198645,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198667,1762201349,2682,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0028070742236094696 --batch_size 219 --hidden_size 2834 --dropout 0.5999999999999999778 --filter 135 --num_conv_layers 5 --num_dense_layers 1,0,,c138,1212333,195_0,COMPLETED,BOTORCH_MODULAR,70.120000000000004547473508864641,200,0.002807074223609469596635301869,219,2834,0.599999999999999977795539507497,135,5,1
196,1762198647,44,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198691,1762201519,2828,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00115879546602374217 --batch_size 216 --hidden_size 6000 --dropout 0.33855928054693185114 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c130,1212341,196_0,COMPLETED,BOTORCH_MODULAR,69.10999999999999943156581139192,200,0.001158795466023742172859134492,216,6000,0.33855928054693185114132347735,180,4,1
197,1762198647,44,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198691,1762201471,2780,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00115597685200223978 --batch_size 216 --hidden_size 6000 --dropout 0.33907499439826532805 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c130,1212340,197_0,COMPLETED,BOTORCH_MODULAR,69.07999999999999829469743417576,200,0.001155976852002239775238368047,216,6000,0.339074994398265328054975498162,180,4,1
198,1762198647,44,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198691,1762200744,2053,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 149 --learning_rate 0.00116002516076413038 --batch_size 239 --hidden_size 5176 --dropout 0.29128767829507312692 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c130,1212342,198_0,COMPLETED,BOTORCH_MODULAR,68.629999999999995452526491135359,149,0.001160025160764130381860215202,239,5176,0.291287678295073126921721495819,180,4,1
199,1762198651,36,2d5d5235-cc30-40a5-8187-969342ac2b39,1762198687,1762201464,2777,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00117969246785351437 --batch_size 216 --hidden_size 5339 --dropout 0.32556759689267800173 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c129,1212343,199_0,COMPLETED,BOTORCH_MODULAR,69.480000000000003979039320256561,200,0.001179692467853514373579693064,216,5339,0.325567596892678001729848347168,180,4,1
200,1762201698,25,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201723,1762204477,2754,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00197922274898038346 --batch_size 217 --hidden_size 4448 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212426,200_0,COMPLETED,BOTORCH_MODULAR,71.200000000000002842170943040401,200,0.001979222748980383455447151775,217,4448,0.599999999999999977795539507497,180,5,1
201,1762201698,51,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201749,1762204507,2758,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00199183532493830279 --batch_size 219 --hidden_size 4346 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212430,201_0,COMPLETED,BOTORCH_MODULAR,71.180000000000006821210263296962,200,0.001991835324938302786978994163,219,4346,0.599999999999999977795539507497,180,5,1
202,1762201698,5,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201703,1762204452,2749,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00198000196480328013 --batch_size 218 --hidden_size 4439 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c153,1212420,202_0,COMPLETED,BOTORCH_MODULAR,71.019999999999996020960679743439,200,0.001980001964803280133098351001,218,4439,0.599999999999999977795539507497,180,5,1
203,1762201697,5,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201702,1762204540,2838,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00189997285505086148 --batch_size 208 --hidden_size 5410 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c155,1212419,203_0,COMPLETED,BOTORCH_MODULAR,71.46999999999999886313162278384,200,0.001899972855050861483827695508,208,5410,0.599999999999999977795539507497,180,5,1
204,1762201699,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201742,1762204555,2813,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00198061970791789822 --batch_size 218 --hidden_size 4428 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c138,1212432,204_0,COMPLETED,BOTORCH_MODULAR,70.82999999999999829469743417576,200,0.001980619707917898215943086626,218,4428,0.599999999999999977795539507497,180,5,1
205,1762201699,19,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201718,1762204480,2762,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00197790201953763033 --batch_size 218 --hidden_size 4425 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c148,1212424,205_0,COMPLETED,BOTORCH_MODULAR,70.239999999999994884092302527279,200,0.001977902019537630326495580846,218,4425,0.599999999999999977795539507497,180,5,1
206,1762201698,16,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201714,1762204465,2751,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00198130186924141234 --batch_size 218 --hidden_size 4463 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c149,1212422,206_0,COMPLETED,BOTORCH_MODULAR,70.75,200,0.001981301869241412338257246617,218,4463,0.599999999999999977795539507497,180,5,1
207,1762201699,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201722,1762204522,2800,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00198190850351366099 --batch_size 218 --hidden_size 4438 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212427,207_0,COMPLETED,BOTORCH_MODULAR,71.269999999999996020960679743439,200,0.001981908503513660994160838769,218,4438,0.599999999999999977795539507497,180,5,1
208,1762201699,50,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201749,1762204508,2759,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00198016114358299904 --batch_size 217 --hidden_size 4428 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212429,208_0,COMPLETED,BOTORCH_MODULAR,71.290000000000006252776074688882,200,0.001980161143582999036527603209,217,4428,0.599999999999999977795539507497,180,5,1
209,1762201698,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201702,1762204425,2723,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00204083736874092342 --batch_size 221 --hidden_size 3896 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c152,1212421,209_0,COMPLETED,BOTORCH_MODULAR,71.14000000000000056843418860808,200,0.002040837368740923418730659478,221,3896,0.599999999999999977795539507497,180,5,1
210,1762201699,13,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201712,1762203240,1528,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 112 --learning_rate 0.00197172865542201339 --batch_size 223 --hidden_size 4269 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212425,210_0,COMPLETED,BOTORCH_MODULAR,70.769999999999996020960679743439,112,0.001971728655422013386233626164,223,4269,0.599999999999999977795539507497,180,5,1
211,1762201699,14,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201713,1762204462,2749,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00198867169993591306 --batch_size 218 --hidden_size 4413 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c148,1212423,211_0,COMPLETED,BOTORCH_MODULAR,70.599999999999994315658113919199,200,0.001988671699935913063372883158,218,4413,0.599999999999999977795539507497,180,5,1
212,1762201699,50,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201749,1762204551,2802,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00197831569409677357 --batch_size 217 --hidden_size 4477 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212428,212_0,COMPLETED,BOTORCH_MODULAR,70.760000000000005115907697472721,200,0.001978315694096773567911551339,217,4477,0.599999999999999977795539507497,180,5,1
213,1762201700,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201742,1762204478,2736,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0019623822377190024 --batch_size 216 --hidden_size 4563 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c137,1212433,213_0,COMPLETED,BOTORCH_MODULAR,70.769999999999996020960679743439,200,0.001962382237719002397308143415,216,4563,0.599999999999999977795539507497,180,5,1
214,1762201700,47,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201747,1762204519,2772,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00197374330256914511 --batch_size 217 --hidden_size 4517 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c137,1212434,214_0,COMPLETED,BOTORCH_MODULAR,70.930000000000006821210263296962,200,0.001973743302569145111058368514,217,4517,0.599999999999999977795539507497,180,5,1
215,1762201700,49,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201749,1762204508,2759,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00198415829068815082 --batch_size 218 --hidden_size 4435 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212431,215_0,COMPLETED,BOTORCH_MODULAR,70.75,200,0.001984158290688150822617119573,218,4435,0.599999999999999977795539507497,180,5,1
216,1762201702,40,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201742,1762204512,2770,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.001983879176514517 --batch_size 218 --hidden_size 4431 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c135,1212436,216_0,COMPLETED,BOTORCH_MODULAR,71.17000000000000170530256582424,200,0.00198387917651451700304376935,218,4431,0.599999999999999977795539507497,180,5,1
217,1762201702,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201764,1762204609,2845,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00190033222900468524 --batch_size 207 --hidden_size 5418 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c134,1212437,217_0,COMPLETED,BOTORCH_MODULAR,71.189999999999997726263245567679,200,0.001900332229004685243023420327,207,5418,0.599999999999999977795539507497,180,5,1
218,1762201702,40,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201742,1762204384,2642,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00091720029142591602 --batch_size 226 --hidden_size 2245 --dropout 0.22941020821362270721 --filter 167 --num_conv_layers 6 --num_dense_layers 1,0,,c135,1212435,218_0,COMPLETED,BOTORCH_MODULAR,69.629999999999995452526491135359,200,0.000917200291425916019484587682,226,2245,0.229410208213622707207335338353,167,6,1
219,1762201705,57,2d5d5235-cc30-40a5-8187-969342ac2b39,1762201762,1762204535,2773,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.001952482900345166 --batch_size 215 --hidden_size 4697 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c134,1212438,219_0,COMPLETED,BOTORCH_MODULAR,71.5,200,0.001952482900345166002067931466,215,4697,0.599999999999999977795539507497,180,5,1
220,1762204752,21,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204773,1762206115,1342,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 84 --learning_rate 0.00376426214072831137 --batch_size 74 --hidden_size 2854 --dropout 0.5999999999999999778 --filter 166 --num_conv_layers 6 --num_dense_layers 1,0,,c149,1212490,220_0,COMPLETED,BOTORCH_MODULAR,65.209999999999993747223925311118,84,0.003764262140728311372556147418,74,2854,0.599999999999999977795539507497,166,6,1
221,1762204751,6,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204757,1762207241,2484,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 187 --learning_rate 0.00241688692660091886 --batch_size 219 --hidden_size 3750 --dropout 0.25193185401049517091 --filter 166 --num_conv_layers 4 --num_dense_layers 1,0,,c153,1212486,221_0,COMPLETED,BOTORCH_MODULAR,68.75,187,0.002416886926600918857749311641,219,3750,0.251931854010495170914651907879,166,4,1
222,1762204751,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204755,1762207489,2734,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00226603347129419267 --batch_size 199 --hidden_size 4211 --dropout 0.32523552905093788823 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c155,1212485,222_0,COMPLETED,BOTORCH_MODULAR,68.879999999999995452526491135359,200,0.002266033471294192670753009367,199,4211,0.325235529050937888229100281023,180,4,1
223,1762204751,53,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204804,1762207638,2834,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 177 --learning_rate 0.00370747015988173506 --batch_size 66 --hidden_size 3176 --dropout 0.5999999999999999778 --filter 156 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212499,223_0,COMPLETED,BOTORCH_MODULAR,66.14000000000000056843418860808,177,0.003707470159881735057710860914,66,3176,0.599999999999999977795539507497,156,6,1
224,1762204751,28,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204779,1762208099,3320,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00117202796961544215 --batch_size 86 --hidden_size 4884 --dropout 0.55234712836714972006 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c151,1212489,224_0,COMPLETED,BOTORCH_MODULAR,71.819999999999993178789736703038,200,0.001172027969615442154899254135,86,4884,0.552347128367149720062911910645,180,5,1
225,1762204753,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204775,1762206356,1581,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 109 --learning_rate 0.00378422552623578759 --batch_size 87 --hidden_size 2690 --dropout 0.5999999999999999778 --filter 114 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212493,225_0,COMPLETED,BOTORCH_MODULAR,65.760000000000005115907697472721,109,0.003784225526235787586543102279,87,2690,0.599999999999999977795539507497,114,6,1
226,1762204752,21,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204773,1762207546,2773,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00221358005999136055 --batch_size 194 --hidden_size 4519 --dropout 0.31899563204365860569 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c152,1212488,226_0,COMPLETED,BOTORCH_MODULAR,69.680000000000006821210263296962,200,0.002213580059991360551863159856,194,4519,0.31899563204365860569211577058,180,4,1
227,1762204752,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204775,1762208264,3489,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00104868925340983153 --batch_size 82 --hidden_size 6000 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212494,227_0,COMPLETED,BOTORCH_MODULAR,71.769999999999996020960679743439,200,0.001048689253409831531604901045,82,6000,0.599999999999999977795539507497,180,5,1
228,1762204752,52,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204804,1762207622,2818,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00219963826115117389 --batch_size 193 --hidden_size 4519 --dropout 0.30326654627161231392 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c139,1212496,228_0,COMPLETED,BOTORCH_MODULAR,69.17000000000000170530256582424,200,0.002199638261151173890262100485,193,4519,0.303266546271612313923071724275,180,4,1
229,1762204752,54,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204806,1762207579,2773,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00230819833315837374 --batch_size 203 --hidden_size 3871 --dropout 0.32278149695255348162 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c139,1212498,229_0,COMPLETED,BOTORCH_MODULAR,69.260000000000005115907697472721,200,0.00230819833315837373913237407,203,3871,0.322781496952553481616376984675,180,4,1
230,1762204752,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204795,1762205824,1029,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 71 --learning_rate 0.0022248024122481511 --batch_size 202 --hidden_size 5296 --dropout 0.29619637568032319841 --filter 175 --num_conv_layers 4 --num_dense_layers 1,0,,c138,1212500,230_0,COMPLETED,BOTORCH_MODULAR,68.629999999999995452526491135359,71,0.002224802412248151096962889284,202,5296,0.296196375680323198409382712271,175,4,1
231,1762204752,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204775,1762207797,3022,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00221181113007234845 --batch_size 193 --hidden_size 4580 --dropout 0.32528805467003407692 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c141,1212495,231_0,COMPLETED,BOTORCH_MODULAR,69.060000000000002273736754432321,200,0.0022118111300723484503871763,193,4580,0.325288054670034076920615007111,180,4,1
232,1762204753,51,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204804,1762207511,2707,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00230764527845692081 --batch_size 197 --hidden_size 2774 --dropout 0.31800135429691539501 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c139,1212497,232_0,COMPLETED,BOTORCH_MODULAR,69.069999999999993178789736703038,200,0.002307645278456920811399610827,197,2774,0.318001354296915395014622163217,180,4,1
233,1762204752,3,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204755,1762207056,2301,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.00216914498072415859 --batch_size 188 --hidden_size 5379 --dropout 0.32734664508244337711 --filter 159 --num_conv_layers 4 --num_dense_layers 1,0,,c152,1212487,233_0,COMPLETED,BOTORCH_MODULAR,69.299999999999997157829056959599,167,0.002169144980724158587592764746,188,5379,0.327346645082443377106073967298,159,4,1
234,1762204752,21,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204773,1762207527,2754,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0022483069338155165 --batch_size 197 --hidden_size 4347 --dropout 0.33041342819826435839 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c148,1212491,234_0,COMPLETED,BOTORCH_MODULAR,69.379999999999995452526491135359,200,0.00224830693381551649512317681,197,4347,0.330413428198264358393032580352,180,4,1
235,1762204752,21,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204773,1762207122,2349,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 162 --learning_rate 0.00212240204147817009 --batch_size 177 --hidden_size 5218 --dropout 0.33697856159177691504 --filter 179 --num_conv_layers 4 --num_dense_layers 1,0,,c143,1212492,235_0,COMPLETED,BOTORCH_MODULAR,69.930000000000006821210263296962,162,0.002122402041478170086480359302,177,5218,0.336978561591776915040696849246,179,4,1
236,1762204755,40,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204795,1762207579,2784,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00220921308688251574 --batch_size 195 --hidden_size 4759 --dropout 0.30279143760608967506 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c137,1212502,236_0,COMPLETED,BOTORCH_MODULAR,69.189999999999997726263245567679,200,0.002209213086882515740538845961,195,4759,0.302791437606089675060871968526,180,4,1
237,1762204755,48,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204803,1762207490,2687,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00228310584015024029 --batch_size 201 --hidden_size 4056 --dropout 0.30673975168241329747 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c135,1212503,237_0,COMPLETED,BOTORCH_MODULAR,69.019999999999996020960679743439,200,0.002283105840150240293390249136,201,4056,0.306739751682413297473317470576,180,4,1
238,1762204755,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204797,1762208091,3294,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00114187118183480744 --batch_size 86 --hidden_size 4896 --dropout 0.56712279635750362239 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c137,1212501,238_0,COMPLETED,BOTORCH_MODULAR,71.650000000000005684341886080801,200,0.001141871181834807442642687469,86,4896,0.567122796357503622388662734011,180,5,1
239,1762204759,49,2d5d5235-cc30-40a5-8187-969342ac2b39,1762204808,1762207547,2739,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00226183723991111316 --batch_size 200 --hidden_size 4241 --dropout 0.30724884456507406405 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c135,1212504,239_0,COMPLETED,BOTORCH_MODULAR,69.209999999999993747223925311118,200,0.002261837239911113160012456902,200,4241,0.307248844565074064050236302137,180,4,1
240,1762208439,18,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208457,1762211088,2631,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00292523010680905034 --batch_size 215 --hidden_size 3880 --dropout 0.48851059721203404784 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c152,1212544,240_0,COMPLETED,BOTORCH_MODULAR,70.689999999999997726263245567679,200,0.002925230106809050337202116054,215,3880,0.488510597212034047842621475866,180,6,1
241,1762208439,44,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208483,1762211124,2641,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00294157540613533422 --batch_size 215 --hidden_size 3843 --dropout 0.48862658232120753654 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c149,1212547,241_0,COMPLETED,BOTORCH_MODULAR,70.82999999999999829469743417576,200,0.00294157540613533422316216992,215,3843,0.488626582321207536541152194332,180,6,1
242,1762208440,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208502,1762211121,2619,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00293621172935443469 --batch_size 216 --hidden_size 3812 --dropout 0.4824926069416382024 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212554,242_0,COMPLETED,BOTORCH_MODULAR,70.180000000000006821210263296962,200,0.002936211729354434689376329715,216,3812,0.482492606941638202400213231158,180,6,1
243,1762208440,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208482,1762210679,2197,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 165 --learning_rate 0.00295391930086285693 --batch_size 209 --hidden_size 4103 --dropout 0.51838154288085203092 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c148,1212549,243_0,COMPLETED,BOTORCH_MODULAR,70.560000000000002273736754432321,165,0.002953919300862856926054300644,209,4103,0.518381542880852030918958917027,180,6,1
244,1762208439,19,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208458,1762210761,2303,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 156 --learning_rate 0.00306936556401579946 --batch_size 72 --hidden_size 5240 --dropout 0.17818226453701405121 --filter 128 --num_conv_layers 6 --num_dense_layers 1,0,,c153,1212543,244_0,COMPLETED,BOTORCH_MODULAR,68.819999999999993178789736703038,156,0.003069365564015799456576427673,72,5240,0.178182264537014051208885234701,128,6,1
245,1762208439,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208482,1762211014,2532,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 165 --learning_rate 0.00306420316141380088 --batch_size 66 --hidden_size 5175 --dropout 0.15681601552419233148 --filter 127 --num_conv_layers 6 --num_dense_layers 1,0,,c151,1212546,245_0,COMPLETED,BOTORCH_MODULAR,68.819999999999993178789736703038,165,0.003064203161413800880624735967,66,5175,0.156816015524192331476172057592,127,6,1
246,1762208440,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208482,1762209749,1267,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 84 --learning_rate 0.00309630574048878979 --batch_size 62 --hidden_size 4560 --dropout 0.07968541791888991699 --filter 108 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212552,246_0,COMPLETED,BOTORCH_MODULAR,66.519999999999996020960679743439,84,0.00309630574048878979415144741,62,4560,0.07968541791888991698833422106,108,6,1
247,1762208439,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208494,1762211144,2650,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00292759240061415396 --batch_size 217 --hidden_size 3821 --dropout 0.47728800364911505572 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c147,1212550,247_0,COMPLETED,BOTORCH_MODULAR,71.040000000000006252776074688882,200,0.002927592400614153957810747997,217,3821,0.477288003649115055715412836435,180,6,1
248,1762208440,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208462,1762210994,2532,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 192 --learning_rate 0.00290431043818254386 --batch_size 217 --hidden_size 4069 --dropout 0.50822466594231752168 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c152,1212545,248_0,COMPLETED,BOTORCH_MODULAR,70.310000000000002273736754432321,192,0.002904310438182543859658713004,217,4069,0.508224665942317521682980441255,180,6,1
249,1762208440,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208483,1762211278,2795,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 169 --learning_rate 0.00077958839779774147 --batch_size 85 --hidden_size 5715 --dropout 0.58370412643240288109 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c149,1212548,249_0,COMPLETED,BOTORCH_MODULAR,71.349999999999994315658113919199,169,0.000779588397797741474229415992,85,5715,0.583704126432402881086147772294,180,4,1
250,1762208439,3,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208442,1762211094,2652,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00290209542235578787 --batch_size 218 --hidden_size 3566 --dropout 0.47262400155656736356 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c155,1212542,250_0,COMPLETED,BOTORCH_MODULAR,70.840000000000003410605131648481,200,0.002902095422355787865398291103,218,3566,0.472624001556567363557803673757,180,6,1
251,1762208441,76,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208517,1762209732,1215,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 78 --learning_rate 0.00306765007406709913 --batch_size 60 --hidden_size 4288 --dropout 0.05209946131676532893 --filter 107 --num_conv_layers 6 --num_dense_layers 1,0,,c137,1212557,251_0,COMPLETED,BOTORCH_MODULAR,67.459999999999993747223925311118,78,0.003067650074067099132818503548,60,4288,0.052099461316765328933175993598,107,6,1
252,1762208440,77,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208517,1762209483,966,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 62 --learning_rate 0.00304989872611243157 --batch_size 92 --hidden_size 5718 --dropout 0.3627604049611733994 --filter 163 --num_conv_layers 6 --num_dense_layers 1,0,,c135,1212559,252_0,COMPLETED,BOTORCH_MODULAR,69.269999999999996020960679743439,62,0.003049898726112431571882988024,92,5718,0.362760404961173399396301419984,163,6,1
253,1762208440,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208483,1762209263,780,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 52 --learning_rate 0.00309707077192077247 --batch_size 83 --hidden_size 5851 --dropout 0.34704403154934337916 --filter 126 --num_conv_layers 6 --num_dense_layers 1,0,,c145,1212551,253_0,COMPLETED,BOTORCH_MODULAR,67.019999999999996020960679743439,52,0.00309707077192077247229651249,83,5851,0.347044031549343379161598477367,126,6,1
254,1762208440,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208502,1762210629,2127,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 131 --learning_rate 0.00309477370522539706 --batch_size 72 --hidden_size 4746 --dropout 0.09615298936130729779 --filter 126 --num_conv_layers 6 --num_dense_layers 1,0,,c141,1212555,254_0,COMPLETED,BOTORCH_MODULAR,67.680000000000006821210263296962,131,0.003094773705225397058410363726,72,4746,0.096152989361307297788705739094,126,6,1
255,1762208440,77,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208517,1762211216,2699,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 168 --learning_rate 0.00306643996572973079 --batch_size 71 --hidden_size 5098 --dropout 0.1504602669002946258 --filter 127 --num_conv_layers 6 --num_dense_layers 1,0,,c138,1212556,255_0,COMPLETED,BOTORCH_MODULAR,68.879999999999995452526491135359,168,0.003066439965729730789817386594,71,5098,0.150460266900294625802558812211,127,6,1
256,1762208441,46,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208487,1762210981,2494,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 166 --learning_rate 0.00308501613465643823 --batch_size 69 --hidden_size 5018 --dropout 0.13495880138424276584 --filter 124 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212553,256_0,COMPLETED,BOTORCH_MODULAR,68.10999999999999943156581139192,166,0.003085016134656438230310371296,69,5018,0.134958801384242765841747768718,124,6,1
257,1762208451,67,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208518,1762211531,3013,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 195 --learning_rate 0.00304345942240783103 --batch_size 70 --hidden_size 4793 --dropout 0.10846897088121293384 --filter 136 --num_conv_layers 6 --num_dense_layers 1,0,,c137,1212558,257_0,COMPLETED,BOTORCH_MODULAR,68.07999999999999829469743417576,195,0.003043459422407831030388258853,70,4793,0.108468970881212933843329437877,136,6,1
258,1762208452,90,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208542,1762211989,3447,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00076404415419289214 --batch_size 78 --hidden_size 6000 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c135,1212560,258_0,COMPLETED,BOTORCH_MODULAR,70.950000000000002842170943040401,200,0.000764044154192892142896109675,78,6000,0.599999999999999977795539507497,180,4,1
259,1762208456,86,2d5d5235-cc30-40a5-8187-969342ac2b39,1762208542,1762211941,3399,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0007713235157456391 --batch_size 79 --hidden_size 5902 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c134,1212561,259_0,COMPLETED,BOTORCH_MODULAR,71.549999999999997157829056959599,200,0.00077132351574563909508974735,79,5902,0.599999999999999977795539507497,180,4,1
260,1762212176,58,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212234,1762214876,2642,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00359089456896901022 --batch_size 203 --hidden_size 3153 --dropout 0.5919561630360440363 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c133,1212623,260_0,COMPLETED,BOTORCH_MODULAR,69.909999999999996589394868351519,200,0.003590894568969010217790449602,203,3153,0.591956163036044036296345893788,180,6,1
261,1762212175,15,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212190,1762214845,2655,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00198001139269845302 --batch_size 197 --hidden_size 5565 --dropout 0.52341979246485148547 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212610,261_0,COMPLETED,BOTORCH_MODULAR,71.620000000000004547473508864641,200,0.001980011392698453019656223972,197,5565,0.523419792464851485469523595384,180,6,1
262,1762212175,13,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212188,1762214861,2673,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00198691101545200996 --batch_size 194 --hidden_size 5654 --dropout 0.51329529015946684378 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c152,1212609,262_0,COMPLETED,BOTORCH_MODULAR,71.32999999999999829469743417576,200,0.001986911015452009956344658903,194,5654,0.513295290159466843782354317227,180,6,1
263,1762212175,13,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212188,1762215331,3143,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00206509036864085125 --batch_size 86 --hidden_size 4596 --dropout 0.48261840713727161001 --filter 177 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212611,263_0,COMPLETED,BOTORCH_MODULAR,71.209999999999993747223925311118,200,0.002065090368640851246212486458,86,4596,0.482618407137271610007900335404,177,6,1
264,1762212179,58,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212237,1762214957,2720,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00194490351425336081 --batch_size 213 --hidden_size 5575 --dropout 0.49313473750282493802 --filter 173 --num_conv_layers 6 --num_dense_layers 1,0,,c133,1212624,264_0,COMPLETED,BOTORCH_MODULAR,70.46999999999999886313162278384,200,0.001944903514253360811425697108,213,5575,0.493134737502824938015777433975,173,6,1
265,1762212175,34,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212209,1762214910,2701,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00197975644978770106 --batch_size 196 --hidden_size 5516 --dropout 0.51950755965355899235 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c137,1212616,265_0,COMPLETED,BOTORCH_MODULAR,71.21999999999999886313162278384,200,0.001979756449787701058640188023,196,5516,0.519507559653558992351918277564,180,6,1
266,1762212175,53,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212228,1762214954,2726,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00197568323059799794 --batch_size 198 --hidden_size 5569 --dropout 0.51076206244422883707 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c135,1212618,266_0,COMPLETED,BOTORCH_MODULAR,71.450000000000002842170943040401,200,0.001975683230597997941391241739,198,5569,0.510762062444228837065907100623,180,6,1
267,1762212176,52,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212228,1762214903,2675,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00194095020151360581 --batch_size 208 --hidden_size 5819 --dropout 0.4760003582323316107 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c134,1212620,267_0,COMPLETED,BOTORCH_MODULAR,71.35999999999999943156581139192,200,0.00194095020151360581235622238,208,5819,0.47600035823233161069722996217,180,6,1
268,1762212176,31,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212207,1762215165,2958,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0020186797867651012 --batch_size 189 --hidden_size 5515 --dropout 0.53231299398344122942 --filter 179 --num_conv_layers 6 --num_dense_layers 1,0,,c141,1212613,268_0,COMPLETED,BOTORCH_MODULAR,71.659999999999996589394868351519,200,0.00201867978676510120492060274,189,5515,0.53231299398344122941750811151,179,6,1
269,1762212176,59,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212235,1762214628,2393,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 178 --learning_rate 0.00201577292348115904 --batch_size 193 --hidden_size 5404 --dropout 0.53801193285168513736 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c133,1212621,269_0,COMPLETED,BOTORCH_MODULAR,70.739999999999994884092302527279,178,0.002015772923481159040887122913,193,5404,0.538011932851685137357833355054,180,6,1
270,1762212176,32,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212208,1762214946,2738,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 171 --learning_rate 0.00183920126981121021 --batch_size 70 --hidden_size 3476 --dropout 0.33970317943719618992 --filter 155 --num_conv_layers 6 --num_dense_layers 1,0,,c135,1212617,270_0,COMPLETED,BOTORCH_MODULAR,70.590000000000003410605131648481,171,0.001839201269811210209814689165,70,3476,0.33970317943719618991593733881,155,6,1
271,1762212176,14,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212190,1762214878,2688,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00357554892306392912 --batch_size 208 --hidden_size 2703 --dropout 0.52656857213437813225 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212612,271_0,COMPLETED,BOTORCH_MODULAR,68.519999999999996020960679743439,200,0.003575548923063929119409154467,208,2703,0.526568572134378132254539650603,180,6,1
272,1762212176,31,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212207,1762214281,2074,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 155 --learning_rate 0.00195827359234506055 --batch_size 202 --hidden_size 5671 --dropout 0.49517581489513345927 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c137,1212615,272_0,COMPLETED,BOTORCH_MODULAR,70.92000000000000170530256582424,155,0.001958273592345060546554558201,202,5671,0.495175814895133459270226694571,180,6,1
273,1762212176,32,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212208,1762214924,2716,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00215006888874007826 --batch_size 199 --hidden_size 4400 --dropout 0.58282924120515855471 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c138,1212614,273_0,COMPLETED,BOTORCH_MODULAR,71.10999999999999943156581139192,200,0.002150068888740078263538402226,199,4400,0.582829241205158554706144968804,180,6,1
274,1762212176,59,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212235,1762214637,2402,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 170 --learning_rate 0.00217379835738926554 --batch_size 140 --hidden_size 5291 --dropout 0.56158514784452007174 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c133,1212622,274_0,COMPLETED,BOTORCH_MODULAR,70.46999999999999886313162278384,170,0.002173798357389265540479117433,140,5291,0.561585147844520071735985311534,180,6,1
275,1762212177,51,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212228,1762214887,2659,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00360268258772466089 --batch_size 203 --hidden_size 3132 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c134,1212619,275_0,COMPLETED,BOTORCH_MODULAR,69.230000000000003979039320256561,200,0.003602682587724660885630800777,203,3132,0.599999999999999977795539507497,180,6,1
276,1762212180,68,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212248,1762214940,2692,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00196160084495092561 --batch_size 198 --hidden_size 5858 --dropout 0.50310817664712104147 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c132,1212625,276_0,COMPLETED,BOTORCH_MODULAR,71.010000000000005115907697472721,200,0.00196160084495092560882834043,198,5858,0.503108176647121041469290503301,180,6,1
277,1762212180,68,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212248,1762215347,3099,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 197 --learning_rate 0.00178682494250547428 --batch_size 80 --hidden_size 3205 --dropout 0.36794374452372041739 --filter 165 --num_conv_layers 6 --num_dense_layers 1,0,,c131,1212626,277_0,COMPLETED,BOTORCH_MODULAR,71.349999999999994315658113919199,197,0.001786824942505474281620458932,80,3205,0.367943744523720417394230253194,165,6,1
278,1762212180,81,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212261,1762214928,2667,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00206523405541061663 --batch_size 200 --hidden_size 4934 --dropout 0.56675609304902152541 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c130,1212627,278_0,COMPLETED,BOTORCH_MODULAR,71.040000000000006252776074688882,200,0.002065234055410616626630160297,200,4934,0.566756093049021525409614241653,180,6,1
279,1762212182,85,2d5d5235-cc30-40a5-8187-969342ac2b39,1762212267,1762214929,2662,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00197624978421806268 --batch_size 195 --hidden_size 5706 --dropout 0.50000182652701785635 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c130,1212628,279_0,COMPLETED,BOTORCH_MODULAR,71.10999999999999943156581139192,200,0.001976249784218062684887362579,195,5706,0.500001826527017856349743851752,180,6,1
280,1762215550,9,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215559,1762218510,2951,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00121243969572822356 --batch_size 97 --hidden_size 1842 --dropout 0.55872984159049188246 --filter 151 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212742,280_0,COMPLETED,BOTORCH_MODULAR,70.46999999999999886313162278384,200,0.001212439695728223564355485742,97,1842,0.558729841590491882463709316653,151,6,1
281,1762215552,47,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215599,1762218271,2672,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00133507811802101263 --batch_size 196 --hidden_size 5326 --dropout 0.50882977734429157834 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212750,281_0,COMPLETED,BOTORCH_MODULAR,70.60999999999999943156581139192,200,0.001335078118021012626853716299,196,5326,0.50882977734429157834483703482,180,6,1
282,1762215551,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215594,1762218492,2898,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00122805331684921223 --batch_size 99 --hidden_size 1624 --dropout 0.55291700702852131233 --filter 146 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212749,282_0,COMPLETED,BOTORCH_MODULAR,70.659999999999996589394868351519,200,0.001228053316849212232494958918,99,1624,0.552917007028521312328450676432,146,6,1
283,1762215551,37,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215588,1762218291,2703,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00131641958910261965 --batch_size 197 --hidden_size 5782 --dropout 0.50969228486549944535 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212748,283_0,COMPLETED,BOTORCH_MODULAR,71.400000000000005684341886080801,200,0.001316419589102619646520109242,197,5782,0.50969228486549944534544920316,180,6,1
284,1762215550,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215572,1762218725,3153,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0012379763974694868 --batch_size 100 --hidden_size 1409 --dropout 0.54145428629746994442 --filter 147 --num_conv_layers 6 --num_dense_layers 1,0,,c140,1212746,284_0,COMPLETED,BOTORCH_MODULAR,70.60999999999999943156581139192,200,0.001237976397469486801103388807,100,1409,0.541454286297469944422289245267,147,6,1
285,1762215550,9,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215559,1762218304,2745,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 198 --learning_rate 0.00133587408002799456 --batch_size 166 --hidden_size 5540 --dropout 0.55478071124153238713 --filter 172 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212744,285_0,COMPLETED,BOTORCH_MODULAR,71.159999999999996589394868351519,198,0.001335874080027994563468762834,166,5540,0.554780711241532387134611781221,172,6,1
286,1762215551,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215594,1762218355,2761,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00130449071198091102 --batch_size 196 --hidden_size 6000 --dropout 0.53502629657737088564 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c138,1212751,286_0,COMPLETED,BOTORCH_MODULAR,71.120000000000004547473508864641,200,0.001304490711980911023248896896,196,6000,0.535026296577370885643176734447,180,6,1
287,1762215551,16,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215567,1762218449,2882,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00130564312076171768 --batch_size 196 --hidden_size 6000 --dropout 0.5222105698790286965 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c141,1212745,287_0,COMPLETED,BOTORCH_MODULAR,71.450000000000002842170943040401,200,0.001305643120761717677555391326,196,6000,0.522210569879028696504974504933,180,6,1
288,1762215551,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215594,1762218602,3008,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00141269665900129273 --batch_size 90 --hidden_size 4019 --dropout 0.47863940995221987418 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c137,1212753,288_0,COMPLETED,BOTORCH_MODULAR,71.629999999999995452526491135359,200,0.001412696659001292731963617122,90,4019,0.478639409952219874178069858317,180,6,1
289,1762215550,77,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215627,1762218263,2636,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 180 --learning_rate 0.00122798694302674255 --batch_size 95 --hidden_size 1778 --dropout 0.54194946748877548259 --filter 147 --num_conv_layers 6 --num_dense_layers 1,0,,c134,1212757,289_0,COMPLETED,BOTORCH_MODULAR,70.650000000000005684341886080801,180,0.001227986943026742553547459025,95,1778,0.541949467488775482593155174982,147,6,1
290,1762215552,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215614,1762218307,2693,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00130754670748401552 --batch_size 198 --hidden_size 5645 --dropout 0.49741431828399762516 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c135,1212755,290_0,COMPLETED,BOTORCH_MODULAR,71.64000000000000056843418860808,200,0.001307546707484015524602938285,198,5645,0.497414318283997625158576738613,180,6,1
291,1762215552,44,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215596,1762218250,2654,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00132212353051711648 --batch_size 197 --hidden_size 5750 --dropout 0.51077491686141551774 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c137,1212752,291_0,COMPLETED,BOTORCH_MODULAR,71.629999999999995452526491135359,200,0.001322123530517116483246065073,197,5750,0.510774916861415517743694181263,180,6,1
292,1762215551,63,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215614,1762218589,2975,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00140320166624493051 --batch_size 93 --hidden_size 3855 --dropout 0.50355538619298845227 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c134,1212756,292_0,COMPLETED,BOTORCH_MODULAR,71.5,200,0.001403201666244930506666221959,93,3855,0.503555386192988452265240084671,180,6,1
293,1762215551,3,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215554,1762218534,2980,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00137346818966126269 --batch_size 93 --hidden_size 3581 --dropout 0.50002060147732496631 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212743,293_0,COMPLETED,BOTORCH_MODULAR,71.82999999999999829469743417576,200,0.001373468189661262691195209307,93,3581,0.500020601477324966310789022828,180,6,1
294,1762215552,45,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215597,1762218630,3033,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00134273077450623875 --batch_size 92 --hidden_size 3382 --dropout 0.51239329346960416078 --filter 173 --num_conv_layers 6 --num_dense_layers 1,0,,c135,1212754,294_0,COMPLETED,BOTORCH_MODULAR,71.930000000000006821210263296962,200,0.001342730774506238752494247102,92,3382,0.512393293469604160783603674645,173,6,1
295,1762215552,35,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215587,1762218259,2672,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00129350443586969733 --batch_size 197 --hidden_size 6000 --dropout 0.51665291390042400455 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212747,295_0,COMPLETED,BOTORCH_MODULAR,71.209999999999993747223925311118,200,0.001293504435869697330799277246,197,6000,0.516652913900424004545186562609,180,6,1
296,1762215555,78,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215633,1762218183,2550,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 192 --learning_rate 0.00130053073008692933 --batch_size 200 --hidden_size 4932 --dropout 0.49385199462972162454 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c133,1212758,296_0,COMPLETED,BOTORCH_MODULAR,70.82999999999999829469743417576,192,0.001300530730086929325980960037,200,4932,0.493851994629721624541218716331,180,6,1
297,1762215555,78,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215633,1762218559,2926,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 199 --learning_rate 0.00137676575733712103 --batch_size 103 --hidden_size 4249 --dropout 0.55196565964079957745 --filter 159 --num_conv_layers 6 --num_dense_layers 1,0,,c133,1212760,297_0,COMPLETED,BOTORCH_MODULAR,71.379999999999995452526491135359,199,0.001376765757337121030487447904,103,4249,0.551965659640799577445591239666,159,6,1
298,1762215555,78,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215633,1762218640,3007,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0014723684346235168 --batch_size 97 --hidden_size 4860 --dropout 0.48277816450339916532 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c133,1212759,298_0,COMPLETED,BOTORCH_MODULAR,71.980000000000003979039320256561,200,0.001472368434623516804393705826,97,4860,0.482778164503399165319308394828,180,6,1
299,1762215563,71,2d5d5235-cc30-40a5-8187-969342ac2b39,1762215634,1762218151,2517,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 169 --learning_rate 0.00116340785345702487 --batch_size 94 --hidden_size 1555 --dropout 0.55750492023669551145 --filter 138 --num_conv_layers 6 --num_dense_layers 1,0,,c133,1212761,299_0,COMPLETED,BOTORCH_MODULAR,70.35999999999999943156581139192,169,0.001163407853457024869817115764,94,1555,0.557504920236695511448488105088,138,6,1
300,1762218979,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219041,1762221628,2587,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00206700886524108706 --batch_size 232 --hidden_size 1339 --dropout 0.59199339211022483642 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c135,1212782,300_0,COMPLETED,BOTORCH_MODULAR,70.5,200,0.002067008865241087064296143794,232,1339,0.591993392110224836422105454403,180,6,1
301,1762219009,38,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219047,1762222019,2972,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00171105917409807126 --batch_size 97 --hidden_size 5332 --dropout 0.21638848730649321017 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c133,1212787,301_0,COMPLETED,BOTORCH_MODULAR,70.82999999999999829469743417576,200,0.001711059174098071263350751003,97,5332,0.216388487306493210171609575809,180,6,1
302,1762218979,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219002,1762221703,2701,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00210545135588171119 --batch_size 247 --hidden_size 1182 --dropout 0.58828846382848554164 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c141,1212773,302_0,COMPLETED,BOTORCH_MODULAR,69.78000000000000113686837721616,200,0.002105451355881711190259908406,247,1182,0.588288463828485541640134215413,180,6,1
303,1762218978,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219001,1762221582,2581,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00214248771617520919 --batch_size 256 --hidden_size 1492 --dropout 0.5722355287057769857 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212772,303_0,COMPLETED,BOTORCH_MODULAR,71.209999999999993747223925311118,200,0.002142487716175209191277195586,256,1492,0.572235528705776985702868842054,180,6,1
304,1762218978,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762218982,1762221855,2873,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00355684358946313115 --batch_size 149 --hidden_size 5446 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c148,1212769,304_0,COMPLETED,BOTORCH_MODULAR,70.5,200,0.003556843589463131154876363027,149,5446,0.599999999999999977795539507497,180,6,1
305,1762218978,49,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219027,1762221763,2736,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 195 --learning_rate 0.00356607111475269181 --batch_size 147 --hidden_size 5586 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212778,305_0,COMPLETED,BOTORCH_MODULAR,69.489999999999994884092302527279,195,0.003566071114752691808419404751,147,5586,0.599999999999999977795539507497,180,6,1
306,1762218978,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219001,1762221538,2537,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00207037085226789534 --batch_size 256 --hidden_size 500 --dropout 0.59716227986368186631 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212771,306_0,COMPLETED,BOTORCH_MODULAR,68.939999999999997726263245567679,200,0.002070370852267895342424530725,256,500,0.597162279863681866309832457773,180,6,1
307,1762218978,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762218982,1762221909,2927,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00133613766961115433 --batch_size 188 --hidden_size 6000 --dropout 0.5317664347952483217 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c148,1212768,307_0,COMPLETED,BOTORCH_MODULAR,71.03000000000000113686837721616,200,0.001336137669611154330309710225,188,6000,0.531766434795248321698579729855,180,5,1
308,1762218978,63,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219041,1762222286,3245,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00158004172282490813 --batch_size 87 --hidden_size 4547 --dropout 0.24371913673249859245 --filter 174 --num_conv_layers 6 --num_dense_layers 1,0,,c138,1212779,308_0,COMPLETED,BOTORCH_MODULAR,70.459999999999993747223925311118,200,0.001580041722824908128827714471,87,4547,0.243719136732498592445850249533,174,6,1
309,1762218978,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762218982,1762221645,2663,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 191 --learning_rate 0.00096359911899572776 --batch_size 234 --hidden_size 5996 --dropout 0.1049519647382677473 --filter 165 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212770,309_0,COMPLETED,BOTORCH_MODULAR,68.900000000000005684341886080801,191,0.000963599118995727755600244624,234,5996,0.104951964738267747301314614106,165,5,1
310,1762218978,49,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219027,1762221600,2573,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00206493014693078219 --batch_size 244 --hidden_size 927 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212776,310_0,COMPLETED,BOTORCH_MODULAR,70.200000000000002842170943040401,200,0.002064930146930782188519071241,244,927,0.599999999999999977795539507497,180,6,1
311,1762218979,64,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219043,1762221539,2496,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 180 --learning_rate 0.00359021135378743625 --batch_size 150 --hidden_size 5924 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c137,1212780,311_0,COMPLETED,BOTORCH_MODULAR,69.099999999999994315658113919199,180,0.003590211353787436249218600892,150,5924,0.599999999999999977795539507497,180,6,1
312,1762218979,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219001,1762221986,2985,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00354515879105217306 --batch_size 151 --hidden_size 5244 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c140,1212774,312_0,COMPLETED,BOTORCH_MODULAR,69.629999999999995452526491135359,200,0.003545158791052173061220109673,151,5244,0.599999999999999977795539507497,180,6,1
313,1762218978,49,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219027,1762220688,1661,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 127 --learning_rate 0.00212512633400727515 --batch_size 256 --hidden_size 1338 --dropout 0.59136872958599795425 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212777,313_0,COMPLETED,BOTORCH_MODULAR,69.209999999999993747223925311118,127,0.002125126334007275148013649257,256,1338,0.591368729585997954245613072999,180,6,1
314,1762218979,48,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219027,1762221611,2584,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00208866409046540519 --batch_size 234 --hidden_size 1507 --dropout 0.5968510904939631212 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212775,314_0,COMPLETED,BOTORCH_MODULAR,71.099999999999994315658113919199,200,0.00208866409046540519103829503,234,1507,0.596851090493963121197396048956,180,6,1
315,1762218980,61,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219041,1762221855,2814,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00355938198956635629 --batch_size 145 --hidden_size 5966 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c137,1212781,315_0,COMPLETED,BOTORCH_MODULAR,69.879999999999995452526491135359,200,0.003559381989566356291332382966,145,5966,0.599999999999999977795539507497,180,6,1
316,1762218982,59,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219041,1762222068,3027,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0016240561449248484 --batch_size 91 --hidden_size 4834 --dropout 0.25072435593446446012 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c135,1212783,316_0,COMPLETED,BOTORCH_MODULAR,70.85999999999999943156581139192,200,0.001624056144924848404595407736,91,4834,0.250724355934464460116117834332,180,6,1
317,1762218982,64,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219046,1762221935,2889,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00136175305052321284 --batch_size 187 --hidden_size 6000 --dropout 0.51913081459136212192 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c134,1212784,317_0,COMPLETED,BOTORCH_MODULAR,71.400000000000005684341886080801,200,0.00136175305052321283551253206,187,6000,0.519130814591362121923623362818,180,5,1
318,1762218982,65,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219047,1762221817,2770,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00354100505614098537 --batch_size 153 --hidden_size 5026 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c133,1212786,318_0,COMPLETED,BOTORCH_MODULAR,69.92000000000000170530256582424,200,0.003541005056140985370743967664,153,5026,0.599999999999999977795539507497,180,6,1
319,1762218990,51,2d5d5235-cc30-40a5-8187-969342ac2b39,1762219041,1762221937,2896,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00134634210445424554 --batch_size 187 --hidden_size 6000 --dropout 0.51313429083370665218 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c134,1212785,319_0,COMPLETED,BOTORCH_MODULAR,71.260000000000005115907697472721,200,0.001346342104454245538341927713,187,6000,0.51313429083370665217955775006,180,5,1
320,1762222529,52,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222581,1762225545,2964,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00189955481167558712 --batch_size 174 --hidden_size 6000 --dropout 0.39642104935514288488 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212805,320_0,COMPLETED,BOTORCH_MODULAR,70.89000000000000056843418860808,200,0.001899554811675587115069041566,174,6000,0.396421049355142884884628529107,180,5,1
321,1762222530,77,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222607,1762225652,3045,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00159605738018132339 --batch_size 98 --hidden_size 5007 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212811,321_0,COMPLETED,BOTORCH_MODULAR,70.89000000000000056843418860808,200,0.00159605738018132338983112728,98,5007,0.599999999999999977795539507497,180,6,1
322,1762222528,79,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222607,1762225711,3104,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 198 --learning_rate 0.00151989858370339074 --batch_size 91 --hidden_size 2806 --dropout 0.35555475575888728645 --filter 169 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212809,322_0,COMPLETED,BOTORCH_MODULAR,70.870000000000004547473508864641,198,0.001519898583703390738952609951,91,2806,0.355554755758887286454239529121,169,5,1
323,1762222529,33,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222562,1762225198,2636,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00261451080202541701 --batch_size 256 --hidden_size 2898 --dropout 0.46906152660453581671 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c147,1212802,323_0,COMPLETED,BOTORCH_MODULAR,70.900000000000005684341886080801,200,0.002614510802025417010585606192,256,2898,0.469061526604535816709073969832,180,5,1
324,1762222529,79,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222608,1762225652,3044,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00161039767942499994 --batch_size 92 --hidden_size 4467 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212810,324_0,COMPLETED,BOTORCH_MODULAR,71.85999999999999943156581139192,200,0.001610397679424999941785734414,92,4467,0.599999999999999977795539507497,180,6,1
325,1762222529,32,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222561,1762226469,3908,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00114252396839243167 --batch_size 128 --hidden_size 5810 --dropout 0.38969554869673933561 --filter 180 --num_conv_layers 3 --num_dense_layers 1,0,,c148,1212800,325_0,COMPLETED,BOTORCH_MODULAR,66.799999999999997157829056959599,200,0.00114252396839243167137034618,128,5810,0.38969554869673933561458056829,180,3,1
326,1762222528,54,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222582,1762224611,2029,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 104 --learning_rate 0.00125413726521440643 --batch_size 132 --hidden_size 5449 --dropout 0.35063410157654945065 --filter 180 --num_conv_layers 3 --num_dense_layers 1,0,,c143,1212806,326_0,COMPLETED,BOTORCH_MODULAR,67.069999999999993178789736703038,104,0.001254137265214406429456039938,132,5449,0.350634101576549450651754114006,180,3,1
327,1762222529,32,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222561,1762225128,2567,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00218807049210133046 --batch_size 256 --hidden_size 2890 --dropout 0.33735390307348700478 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c148,1212799,327_0,COMPLETED,BOTORCH_MODULAR,70.650000000000005684341886080801,200,0.002188070492101330463685648908,256,2890,0.337353903073487004782293752214,180,6,1
328,1762222528,8,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222536,1762226426,3890,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0011958549104025397 --batch_size 133 --hidden_size 5526 --dropout 0.36276228959836043231 --filter 180 --num_conv_layers 3 --num_dense_layers 1,0,,c152,1212796,328_0,COMPLETED,BOTORCH_MODULAR,67.17000000000000170530256582424,200,0.001195854910402539697869550572,133,5526,0.362762289598360432307799783302,180,3,1
329,1762222529,12,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222541,1762226003,3462,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00097150867581585287 --batch_size 77 --hidden_size 6000 --dropout 0.30210652970144424856 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c151,1212797,329_0,COMPLETED,BOTORCH_MODULAR,70.439999999999997726263245567679,200,0.0009715086758158528743370419,77,6000,0.302106529701444248559027982992,180,4,1
330,1762222528,33,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222561,1762225548,2987,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00167433248784334097 --batch_size 120 --hidden_size 1076 --dropout 0.31184802566749075803 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c149,1212798,330_0,COMPLETED,BOTORCH_MODULAR,70.430000000000006821210263296962,200,0.001674332487843340974698058687,120,1076,0.311848025667490758028321806705,180,5,1
331,1762222530,32,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222562,1762225142,2580,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00218650098075977338 --batch_size 256 --hidden_size 2896 --dropout 0.34085507715787422001 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c147,1212801,331_0,COMPLETED,BOTORCH_MODULAR,70.28000000000000113686837721616,200,0.002186500980759773383327315699,256,2896,0.340855077157874220006306131836,180,6,1
332,1762222529,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222571,1762225080,2509,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 126 --learning_rate 0.00119546945353336473 --batch_size 130 --hidden_size 5590 --dropout 0.3646095761351346165 --filter 180 --num_conv_layers 3 --num_dense_layers 1,0,,c143,1212804,332_0,COMPLETED,BOTORCH_MODULAR,67.900000000000005684341886080801,126,0.001195469453533364728725629789,130,5590,0.364609576135134616503563620427,180,3,1
333,1762222529,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222572,1762225485,2913,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 169 --learning_rate 0.0009570063429474397 --batch_size 77 --hidden_size 5854 --dropout 0.28026887782508391744 --filter 180 --num_conv_layers 4 --num_dense_layers 1,0,,c143,1212803,333_0,COMPLETED,BOTORCH_MODULAR,70.689999999999997726263245567679,169,0.000957006342947439698175260414,77,5854,0.280268877825083917443294012628,180,4,1
334,1762222529,67,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222596,1762225897,3301,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00156882979029357959 --batch_size 89 --hidden_size 5047 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c140,1212808,334_0,COMPLETED,BOTORCH_MODULAR,71.680000000000006821210263296962,200,0.001568829790293579592996842109,89,5047,0.599999999999999977795539507497,180,6,1
335,1762222530,51,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222581,1762225337,2756,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 193 --learning_rate 0.00294503019795762464 --batch_size 256 --hidden_size 4336 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c141,1212807,335_0,COMPLETED,BOTORCH_MODULAR,70.049999999999997157829056959599,193,0.002945030197957624641669216459,256,4336,0.599999999999999977795539507497,180,5,1
336,1762222531,90,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222621,1762225224,2603,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00216090313567984327 --batch_size 231 --hidden_size 3284 --dropout 0.34150154959747730521 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212812,336_0,COMPLETED,BOTORCH_MODULAR,70.810000000000002273736754432321,200,0.002160903135679843271171884922,231,3284,0.341501549597477305209025644217,180,6,1
337,1762222535,86,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222621,1762225345,2724,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.0026210742059087958 --batch_size 256 --hidden_size 2896 --dropout 0.46720695916695070826 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c138,1212813,337_0,COMPLETED,BOTORCH_MODULAR,70.060000000000002273736754432321,200,0.002621074205908795803215971532,256,2896,0.467206959166950708262078251209,180,5,1
338,1762222540,81,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222621,1762225839,3218,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 160 --learning_rate 0.00123782124395590632 --batch_size 130 --hidden_size 5845 --dropout 0.33455856303623765502 --filter 180 --num_conv_layers 3 --num_dense_layers 1,0,,c137,1212814,338_0,COMPLETED,BOTORCH_MODULAR,67.340000000000003410605131648481,160,0.001237821243955906317518733673,130,5845,0.334558563036237655019533576706,180,3,1
339,1762222545,76,2d5d5235-cc30-40a5-8187-969342ac2b39,1762222621,1762225745,3124,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.001277158708001993 --batch_size 90 --hidden_size 3389 --dropout 0.41585368456716859109 --filter 172 --num_conv_layers 5 --num_dense_layers 1,0,,c137,1212815,339_0,COMPLETED,BOTORCH_MODULAR,71.370000000000004547473508864641,200,0.00127715870800199299620047988,90,3389,0.415853684567168591090791096576,172,5,1
340,1762226787,39,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226826,1762229303,2477,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 131 --learning_rate 0.00064287149807379677 --batch_size 57 --hidden_size 4532 --dropout 0.5999999999999999778 --filter 165 --num_conv_layers 5 --num_dense_layers 1,0,,c147,1212821,340_0,COMPLETED,BOTORCH_MODULAR,72.239999999999994884092302527279,131,0.000642871498073796770328369732,57,4532,0.599999999999999977795539507497,165,5,1
341,1762226787,39,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226826,1762229822,2996,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00164089541699408018 --batch_size 93 --hidden_size 3196 --dropout 0.59904284981667677012 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c147,1212822,341_0,COMPLETED,BOTORCH_MODULAR,71.430000000000006821210263296962,200,0.00164089541699408017830230655,93,3196,0.599042849816676770124956874497,180,6,1
342,1762226786,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226790,1762230339,3549,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00088017950367556982 --batch_size 70 --hidden_size 4596 --dropout 0.5999999999999999778 --filter 160 --num_conv_layers 5 --num_dense_layers 1,0,,c149,1212818,342_0,COMPLETED,BOTORCH_MODULAR,71.569999999999993178789736703038,200,0.000880179503675569815598911383,70,4596,0.599999999999999977795539507497,160,5,1
343,1762226785,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226789,1762229798,3009,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00162936031598256807 --batch_size 92 --hidden_size 3776 --dropout 0.59826154370159456697 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c151,1212817,343_0,COMPLETED,BOTORCH_MODULAR,71.39000000000000056843418860808,200,0.001629360315982568072068481513,92,3776,0.598261543701594566968537947105,180,6,1
344,1762226787,49,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226836,1762229798,2962,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 161 --learning_rate 0.00057719061779362387 --batch_size 56 --hidden_size 3436 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c146,1212823,344_0,COMPLETED,BOTORCH_MODULAR,72.25,161,0.000577190617793623870178387758,56,3436,0.599999999999999977795539507497,180,5,1
345,1762226786,11,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226797,1762229451,2654,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 142 --learning_rate 0.00066959437241720919 --batch_size 62 --hidden_size 5231 --dropout 0.57282907506664260122 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c148,1212819,345_0,COMPLETED,BOTORCH_MODULAR,72.459999999999993747223925311118,142,0.000669594372417209185779918279,62,5231,0.572829075066642601221644781617,180,5,1
346,1762226789,60,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226849,1762230402,3553,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 184 --learning_rate 0.00078838717501579969 --batch_size 70 --hidden_size 4622 --dropout 0.5999999999999999778 --filter 165 --num_conv_layers 5 --num_dense_layers 1,0,,c140,1212831,346_0,COMPLETED,BOTORCH_MODULAR,72,184,0.000788387175015799689624385049,70,4622,0.599999999999999977795539507497,165,5,1
347,1762226785,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226789,1762230750,3961,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00065437850239736975 --batch_size 58 --hidden_size 5420 --dropout 0.5999999999999999778 --filter 179 --num_conv_layers 5 --num_dense_layers 1,0,,c152,1212816,347_0,COMPLETED,BOTORCH_MODULAR,72.129999999999995452526491135359,200,0.000654378502397369747264899154,58,5420,0.599999999999999977795539507497,179,5,1
348,1762226788,65,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226853,1762229297,2444,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 129 --learning_rate 0.00060256696357989146 --batch_size 66 --hidden_size 5273 --dropout 0.5999999999999999778 --filter 178 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212826,348_0,COMPLETED,BOTORCH_MODULAR,72.340000000000003410605131648481,129,0.000602566963579891459214243898,66,5273,0.599999999999999977795539507497,178,5,1
349,1762226788,61,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226849,1762230085,3236,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00164188731352353165 --batch_size 92 --hidden_size 3602 --dropout 0.59628252922071056652 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c141,1212830,349_0,COMPLETED,BOTORCH_MODULAR,71.57999999999999829469743417576,200,0.001641887313523531649606113092,92,3602,0.596282529220710566519869644253,180,6,1
350,1762226786,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226809,1762230041,3232,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00093904059197799552 --batch_size 84 --hidden_size 6000 --dropout 0.5999999999999999778 --filter 135 --num_conv_layers 4 --num_dense_layers 1,0,,c148,1212820,350_0,COMPLETED,BOTORCH_MODULAR,70.409999999999996589394868351519,200,0.000939040591977995521381916699,84,6000,0.599999999999999977795539507497,135,4,1
351,1762226788,69,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226857,1762228116,1259,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 86 --learning_rate 0.00159564486918856705 --batch_size 101 --hidden_size 813 --dropout 0.33317347070911013107 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212827,351_0,COMPLETED,BOTORCH_MODULAR,71.32999999999999829469743417576,86,0.001595644869188567053011618135,101,813,0.333173470709110131071639671063,180,6,1
352,1762226787,63,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226850,1762230444,3594,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 191 --learning_rate 0.00061203985782600336 --batch_size 67 --hidden_size 5854 --dropout 0.59058349467472670558 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c145,1212825,352_0,COMPLETED,BOTORCH_MODULAR,72.32999999999999829469743417576,191,0.000612039857826003359103639312,67,5854,0.590583494674726705575551477523,180,5,1
353,1762226788,69,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226857,1762229277,2420,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 118 --learning_rate 0.00053023754970821853 --batch_size 51 --hidden_size 5308 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212828,353_0,COMPLETED,BOTORCH_MODULAR,72.549999999999997157829056959599,118,0.000530237549708218532280856738,51,5308,0.599999999999999977795539507497,180,5,1
354,1762226788,48,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226836,1762228670,1834,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 91 --learning_rate 0.00046106374396620467 --batch_size 52 --hidden_size 4924 --dropout 0.5999999999999999778 --filter 176 --num_conv_layers 5 --num_dense_layers 1,0,,c146,1212824,354_0,COMPLETED,BOTORCH_MODULAR,72.120000000000004547473508864641,91,0.000461063743966204668198183292,52,4924,0.599999999999999977795539507497,176,5,1
355,1762226788,65,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226853,1762229507,2654,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 143 --learning_rate 0.00062018711579947918 --batch_size 66 --hidden_size 5555 --dropout 0.57951424255996208945 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212829,355_0,COMPLETED,BOTORCH_MODULAR,72.120000000000004547473508864641,143,0.000620187115799479180520970001,66,5555,0.579514242559962089451630617987,180,5,1
356,1762226791,60,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226851,1762230099,3248,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00166599005640882575 --batch_size 106 --hidden_size 3721 --dropout 0.55139117207157550826 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c140,1212832,356_0,COMPLETED,BOTORCH_MODULAR,71.64000000000000056843418860808,200,0.001665990056408825749703628283,106,3721,0.551391172071575508262242237834,180,6,1
357,1762226793,93,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226886,1762230309,3423,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00090085743438601698 --batch_size 69 --hidden_size 4457 --dropout 0.5999999999999999778 --filter 150 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212835,357_0,COMPLETED,BOTORCH_MODULAR,71.090000000000003410605131648481,200,0.000900857434386016981721356789,69,4457,0.599999999999999977795539507497,150,5,1
358,1762226791,77,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226868,1762230556,3688,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00059602756797324011 --batch_size 62 --hidden_size 5888 --dropout 0.5999999999999999778 --filter 158 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212833,358_0,COMPLETED,BOTORCH_MODULAR,72.090000000000003410605131648481,200,0.000596027567973240112939037338,62,5888,0.599999999999999977795539507497,158,5,1
359,1762226793,76,2d5d5235-cc30-40a5-8187-969342ac2b39,1762226869,1762229861,2992,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 160 --learning_rate 0.00059055406160852077 --batch_size 65 --hidden_size 5402 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212834,359_0,COMPLETED,BOTORCH_MODULAR,71.939999999999997726263245567679,160,0.000590554061608520772762298545,65,5402,0.599999999999999977795539507497,180,5,1
360,1762231060,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231083,1762235671,4588,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00024607755540107662 --batch_size 39 --hidden_size 5678 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c152,1212837,360_0,COMPLETED,BOTORCH_MODULAR,71.730000000000003979039320256561,200,0.000246077555401076619734368478,39,5678,0.599999999999999977795539507497,180,5,1
361,1762231060,24,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231084,1762235720,4636,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 197 --learning_rate 0.00023002482073209785 --batch_size 39 --hidden_size 5009 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c149,1212840,361_0,COMPLETED,BOTORCH_MODULAR,71.620000000000004547473508864641,197,0.000230024820732097848990926892,39,5009,0.599999999999999977795539507497,180,5,1
362,1762231061,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231083,1762234578,3495,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 173 --learning_rate 0.00026827166541970349 --batch_size 46 --hidden_size 4520 --dropout 0.55317668183307910912 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c148,1212841,362_0,COMPLETED,BOTORCH_MODULAR,71.540000000000006252776074688882,173,0.000268271665419703489712660582,46,4520,0.553176681833079109118500582554,180,5,1
363,1762231060,26,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231086,1762235741,4655,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 197 --learning_rate 0.00018496261775019352 --batch_size 36 --hidden_size 5306 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c149,1212839,363_0,COMPLETED,BOTORCH_MODULAR,71.129999999999995452526491135359,197,0.000184962617750193523578558508,36,5306,0.599999999999999977795539507497,180,5,1
364,1762231060,3,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231063,1762235494,4431,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 198 --learning_rate 0.00022081644951839531 --batch_size 38 --hidden_size 5065 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c155,1212836,364_0,COMPLETED,BOTORCH_MODULAR,71.57999999999999829469743417576,198,0.000220816449518395306866186401,38,5065,0.599999999999999977795539507497,180,5,1
365,1762231061,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231083,1762233970,2887,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 143 --learning_rate 0.00029167383503324171 --batch_size 45 --hidden_size 4428 --dropout 0.47454510770591895596 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c151,1212838,365_0,COMPLETED,BOTORCH_MODULAR,71.799999999999997157829056959599,143,0.000291673835033241714721069515,45,4428,0.474545107705918955964818906068,180,5,1
366,1762231061,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231103,1762234889,3786,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 180 --learning_rate 0.00037330904670591436 --batch_size 46 --hidden_size 5277 --dropout 0.47634653943043825386 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c148,1212842,366_0,COMPLETED,BOTORCH_MODULAR,71.760000000000005115907697472721,180,0.000373309046705914363700751224,46,5277,0.476346539430438253859279029712,180,5,1
367,1762231061,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231123,1762234789,3666,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 180 --learning_rate 0.00033716977616847569 --batch_size 47 --hidden_size 4928 --dropout 0.49038603792292861927 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c145,1212847,367_0,COMPLETED,BOTORCH_MODULAR,72.010000000000005115907697472721,180,0.000337169776168475693062936971,47,4928,0.490386037922928619270379613226,180,5,1
368,1762231062,41,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231103,1762235669,4566,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 198 --learning_rate 0.00024435581448841381 --batch_size 38 --hidden_size 5314 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c147,1212844,368_0,COMPLETED,BOTORCH_MODULAR,72.230000000000003979039320256561,198,0.00024435581448841380784037236,38,5314,0.599999999999999977795539507497,180,5,1
369,1762231060,56,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231116,1762234262,3146,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 147 --learning_rate 0.00038413114199194838 --batch_size 45 --hidden_size 4754 --dropout 0.43960692116518118588 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c146,1212846,369_0,COMPLETED,BOTORCH_MODULAR,72.290000000000006252776074688882,147,0.000384131141991948376473997584,45,4754,0.439606921165181185884307524248,180,5,1
370,1762231061,82,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231143,1762235412,4269,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 193 --learning_rate 0.00024298622825586622 --batch_size 39 --hidden_size 5010 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212850,370_0,COMPLETED,BOTORCH_MODULAR,71.769999999999996020960679743439,193,0.000242986228255866215002337083,39,5010,0.599999999999999977795539507497,180,5,1
371,1762231062,68,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231130,1762234980,3850,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 167 --learning_rate 0.00016692091157680697 --batch_size 36 --hidden_size 5085 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212848,371_0,COMPLETED,BOTORCH_MODULAR,70.879999999999995452526491135359,167,0.000166920911576806966711283842,36,5085,0.599999999999999977795539507497,180,5,1
372,1762231061,60,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231121,1762234894,3773,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 176 --learning_rate 0.00034977710529484837 --batch_size 45 --hidden_size 5249 --dropout 0.48775138107149690336 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c146,1212845,372_0,COMPLETED,BOTORCH_MODULAR,71.96999999999999886313162278384,176,0.000349777105294848370160842865,45,5249,0.487751381071496903363282626742,180,5,1
373,1762231062,81,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231143,1762234766,3623,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 171 --learning_rate 0.00038516765992332682 --batch_size 46 --hidden_size 5285 --dropout 0.46511075479029800883 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212851,373_0,COMPLETED,BOTORCH_MODULAR,72.310000000000002273736754432321,171,0.00038516765992332682071522254,46,5285,0.465110754790298008831683773678,180,5,1
374,1762231061,87,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231148,1762233867,2719,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 123 --learning_rate 0.00029573476671622943 --batch_size 42 --hidden_size 5313 --dropout 0.41504031253776435539 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212849,374_0,COMPLETED,BOTORCH_MODULAR,72.209999999999993747223925311118,123,0.000295734766716229430412454793,42,5313,0.415040312537764355393932191873,180,5,1
375,1762231061,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231103,1762235706,4603,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 173 --learning_rate 0.0001172604288035698 --batch_size 27 --hidden_size 4491 --dropout 0.53927325664362990576 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c147,1212843,375_0,COMPLETED,BOTORCH_MODULAR,70.269999999999996020960679743439,173,0.00011726042880356979912492843,27,4491,0.539273256643629905759951270738,180,5,1
376,1762231063,80,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231143,1762235027,3884,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 165 --learning_rate 0.00037317655819082003 --batch_size 44 --hidden_size 5193 --dropout 0.4591199179507313155 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c141,1212852,376_0,COMPLETED,BOTORCH_MODULAR,72.319999999999993178789736703038,165,0.000373176558190820028843709411,44,5193,0.459119917950731315503531959621,180,5,1
377,1762231075,68,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231143,1762232166,1023,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 50 --learning_rate 0.00034494741110830193 --batch_size 49 --hidden_size 3933 --dropout 0.49125677698715886077 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c140,1212853,377_0,COMPLETED,BOTORCH_MODULAR,71.319999999999993178789736703038,50,0.000344947411108301931013248032,49,3933,0.49125677698715886076996639531,180,6,1
378,1762231075,70,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231145,1762234634,3489,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 131 --learning_rate 0.00029890648346391624 --batch_size 37 --hidden_size 5053 --dropout 0.42177013735253215954 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c140,1212854,378_0,COMPLETED,BOTORCH_MODULAR,72.46999999999999886313162278384,131,0.000298906483463916240652519241,37,5053,0.421770137352532159535911659987,180,5,1
379,1762231075,101,2d5d5235-cc30-40a5-8187-969342ac2b39,1762231176,1762233377,2201,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 110 --learning_rate 0.00026839647753339484 --batch_size 47 --hidden_size 4243 --dropout 0.44371828636017912606 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c139,1212855,379_0,COMPLETED,BOTORCH_MODULAR,71.239999999999994884092302527279,110,0.000268396477533394835733593364,47,4243,0.443718286360179126059932741555,180,5,1
380,1762236082,14,2d5d5235-cc30-40a5-8187-969342ac2b39,1762236096,1762239180,3084,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 137 --learning_rate 0.00055708891935708933 --batch_size 41 --hidden_size 5930 --dropout 0.4545858502762944453 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c155,1212858,380_0,COMPLETED,BOTORCH_MODULAR,72.700000000000002842170943040401,137,0.00055708891935708933478704763,41,5930,0.454585850276294445304614555425,180,5,1
381,1762236083,33,2d5d5235-cc30-40a5-8187-969342ac2b39,1762236116,1762239443,3327,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 151 --learning_rate 0.00057238579116926131 --batch_size 42 --hidden_size 5472 --dropout 0.46979092155628854321 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c153,1212859,381_0,COMPLETED,BOTORCH_MODULAR,72.439999999999997726263245567679,151,0.000572385791169261306035598302,42,5472,0.469790921556288543214918718149,180,5,1
382,1762236084,73,2d5d5235-cc30-40a5-8187-969342ac2b39,1762236157,1762238487,2330,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 137 --learning_rate 0.00066509498932333796 --batch_size 59 --hidden_size 5188 --dropout 0.48100652959723366742 --filter 172 --num_conv_layers 6 --num_dense_layers 1,0,,c149,1212863,382_0,COMPLETED,BOTORCH_MODULAR,72.14000000000000056843418860808,137,0.000665094989323337958987691909,59,5188,0.481006529597233667416844582476,172,6,1
383,,,,,,,,,,,,383_0,RUNNING,BOTORCH_MODULAR,,70,0.000595756403661904486435130224,33,4995,0.420808800860591136761001962441,180,6,1
384,1762236083,33,2d5d5235-cc30-40a5-8187-969342ac2b39,1762236116,1762239886,3770,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 196 --learning_rate 0.00060749715710072243 --batch_size 41 --hidden_size 5350 --dropout 0.51179644752829067667 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c152,1212860,384_0,COMPLETED,BOTORCH_MODULAR,71.879999999999995452526491135359,196,0.000607497157100722433298312097,41,5350,0.511796447528290676665108094312,180,6,1
385,1762236084,53,2d5d5235-cc30-40a5-8187-969342ac2b39,1762236137,1762239045,2908,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 139 --learning_rate 0.00058990683886576576 --batch_size 45 --hidden_size 5122 --dropout 0.47577213395652473427 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c149,1212862,385_0,COMPLETED,BOTORCH_MODULAR,72.730000000000003979039320256561,139,0.00058990683886576576397398064,45,5122,0.475772133956524734266224641033,180,5,1
386,1762236084,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762236127,1762238636,2509,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 139 --learning_rate 0.00079307419700488393 --batch_size 46 --hidden_size 3635 --dropout 0.49328571357499584327 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c151,1212861,386_0,COMPLETED,BOTORCH_MODULAR,71.540000000000006252776074688882,139,0.000793074197004883926429008589,46,3635,0.493285713574995843266890460654,180,6,1
387,1762236085,71,2d5d5235-cc30-40a5-8187-969342ac2b39,1762236156,1762238066,1910,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 98 --learning_rate 0.00055630655827465438 --batch_size 41 --hidden_size 5691 --dropout 0.44995007302039408126 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c147,1212864,387_0,COMPLETED,BOTORCH_MODULAR,72.32999999999999829469743417576,98,0.00055630655827465437957696226,41,5691,0.449950073020394081257933294182,180,6,1
388,,,,,,,,,,,,388_0,RUNNING,BOTORCH_MODULAR,,200,0.000626943848337259738122406727,45,5251,0.528209139662448645680115077994,180,6,1
389,,,,,,,,,,,,389_0,RUNNING,BOTORCH_MODULAR,,200,0.000622152767842134549365618046,43,5271,0.532792346445761566542387299705,180,6,1
390,1762236084,92,2d5d5235-cc30-40a5-8187-969342ac2b39,1762236176,1762239467,3291,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 183 --learning_rate 0.00078025943004361568 --batch_size 53 --hidden_size 3548 --dropout 0.53434998038216297012 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c146,1212867,390_0,COMPLETED,BOTORCH_MODULAR,72.450000000000002842170943040401,183,0.000780259430043615679131741025,53,3548,0.534349980382162970116155520373,180,6,1
391,,,,,,,,,,,,391_0,RUNNING,BOTORCH_MODULAR,,188,0.000457517354917693925414612366,11,5977,0.428665283401637231541769779142,170,6,1
392,1762236084,93,2d5d5235-cc30-40a5-8187-969342ac2b39,1762236177,1762238945,2768,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 139 --learning_rate 0.00054735080316311462 --batch_size 39 --hidden_size 6000 --dropout 0.4528149207445655855 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c145,1212868,392_0,COMPLETED,BOTORCH_MODULAR,72,139,0.000547350803163114624574903111,39,6000,0.452814920744565585497554138783,180,6,1
393,1762236084,72,2d5d5235-cc30-40a5-8187-969342ac2b39,1762236156,1762238680,2524,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 72 --learning_rate 0.00045418861643899063 --batch_size 14 --hidden_size 5443 --dropout 0.39058687389592372519 --filter 174 --num_conv_layers 6 --num_dense_layers 1,0,,c146,1212866,393_0,COMPLETED,BOTORCH_MODULAR,71.989999999999994884092302527279,72,0.000454188616438990628004085393,14,5443,0.39058687389592372518620777555,174,6,1
394,,,,,,,,,,,,394_0,RUNNING,BOTORCH_MODULAR,,140,0.000571725233655113410785597594,43,5502,0.467444523148353996422343925587,180,5,1
395,1762236084,72,2d5d5235-cc30-40a5-8187-969342ac2b39,1762236156,1762238980,2824,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 129 --learning_rate 0.00057354417577288306 --batch_size 43 --hidden_size 5370 --dropout 0.46544543913195113305 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c147,1212865,395_0,COMPLETED,BOTORCH_MODULAR,72.510000000000005115907697472721,129,0.000573544175772883061195650534,43,5370,0.465445439131951133049369673245,180,5,1
396,,,,,,,,,,,,396_0,RUNNING,BOTORCH_MODULAR,,134,0.00056933357120643381544394801,41,5608,0.459679599880662093092098530178,180,6,1
397,,,,,,,,,,,,397_0,RUNNING,BOTORCH_MODULAR,,137,0.00058329860871957214200206332,44,5164,0.472814865988672561325500964813,180,5,1
398,,,,,,,,,,,,398_0,RUNNING,BOTORCH_MODULAR,,50,0.000917438998578599929599464158,79,2297,0.413744677057990395407927053384,180,6,1
399,,,,,,,,,,,,399_0,RUNNING,BOTORCH_MODULAR,,194,0.00059467139531106194636628226,35,5239,0.505109451636588491219015395473,171,6,1
400,1762240239,24,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240263,1762242801,2538,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 127 --learning_rate 0.00054862407585630024 --batch_size 53 --hidden_size 5601 --dropout 0.41476842203048591706 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c153,1212882,400_0,COMPLETED,BOTORCH_MODULAR,73.290000000000006252776074688882,127,0.000548624075856300242627627828,53,5601,0.41476842203048591706249226263,180,5,1
401,1762240239,25,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240264,1762243863,3599,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00266861860840627652 --batch_size 71 --hidden_size 5518 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c149,1212885,401_0,COMPLETED,BOTORCH_MODULAR,60.82000000000000028421709430404,200,0.00266861860840627651905720974,71,5518,0.599999999999999977795539507497,180,5,1
402,1762240240,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240283,1762242566,2283,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 109 --learning_rate 0.00039680889451176014 --batch_size 28 --hidden_size 4970 --dropout 0.52351365475301292474 --filter 88 --num_conv_layers 6 --num_dense_layers 1,0,,c146,1212892,402_0,COMPLETED,BOTORCH_MODULAR,68.60999999999999943156581139192,109,0.000396808894511760140884348846,28,4970,0.523513654753012924736310651497,88,6,1
403,1762240238,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240242,1762242250,2008,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 87 --learning_rate 0.00039211299182923188 --batch_size 25 --hidden_size 5335 --dropout 0.5999999999999999778 --filter 136 --num_conv_layers 6 --num_dense_layers 1,0,,c153,1212881,403_0,COMPLETED,BOTORCH_MODULAR,70.930000000000006821210263296962,87,0.000392112991829231879049172393,25,5335,0.599999999999999977795539507497,136,6,1
404,1762240238,6,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240244,1762242527,2283,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 122 --learning_rate 0.00057564213869958341 --batch_size 43 --hidden_size 4298 --dropout 0.24266666432397893116 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c153,1212880,404_0,COMPLETED,BOTORCH_MODULAR,71.840000000000003410605131648481,122,0.000575642138699583409688909086,43,4298,0.242666664323978931161462924138,180,6,1
405,1762240240,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240262,1762241222,960,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 50 --learning_rate 0.0005684849443556094 --batch_size 41 --hidden_size 4770 --dropout 0.18836523548693456798 --filter 164 --num_conv_layers 6 --num_dense_layers 1,0,,c147,1212890,405_0,COMPLETED,BOTORCH_MODULAR,70.17000000000000170530256582424,50,0.000568484944355609404624540826,41,4770,0.1883652354869345679766468038,164,6,1
406,1762240239,24,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240263,1762242469,2206,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 101 --learning_rate 0.00027245451787350367 --batch_size 28 --hidden_size 5938 --dropout 0.50520519994529211605 --filter 98 --num_conv_layers 6 --num_dense_layers 1,0,,c152,1212883,406_0,COMPLETED,BOTORCH_MODULAR,67.599999999999994315658113919199,101,0.000272454517873503673699303596,28,5938,0.505205199945292116048278785456,98,6,1
407,1762240238,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240242,1762241759,1517,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 65 --learning_rate 0.00046448332808162054 --batch_size 38 --hidden_size 5537 --dropout 0.44411514747885244558 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c155,1212879,407_0,COMPLETED,BOTORCH_MODULAR,72.650000000000005684341886080801,65,0.000464483328081620537152590655,38,5537,0.444115147478852445583896724202,180,5,1
408,1762240239,44,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240283,1762243621,3338,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 93 --learning_rate 0.00027356281025275121 --batch_size 12 --hidden_size 5165 --dropout 0.52850621390701091329 --filter 97 --num_conv_layers 6 --num_dense_layers 1,0,,c145,1212894,408_0,COMPLETED,BOTORCH_MODULAR,68.82999999999999829469743417576,93,0.000273562810252751212759109167,12,5165,0.528506213907010913288786468911,97,6,1
409,1762240239,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240262,1762241473,1211,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 50 --learning_rate 0.000425400948845815 --batch_size 36 --hidden_size 6000 --dropout 0.41444147541534742674 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c151,1212884,409_0,COMPLETED,BOTORCH_MODULAR,71.769999999999996020960679743439,50,0.000425400948845815001474190975,36,6000,0.414441475415347426736190072916,180,5,1
410,1762240239,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240262,1762243034,2772,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00235306818680855023 --batch_size 134 --hidden_size 821 --dropout 0.49221452686221639494 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c147,1212889,410_0,COMPLETED,BOTORCH_MODULAR,66.590000000000003410605131648481,200,0.002353068186808550225908032161,134,821,0.492214526862216394942350916608,180,6,1
411,1762240240,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240262,1762243587,3325,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 142 --learning_rate 0.00031117947638708741 --batch_size 23 --hidden_size 5678 --dropout 0.34254980026518011549 --filter 124 --num_conv_layers 6 --num_dense_layers 1,0,,c146,1212891,411_0,COMPLETED,BOTORCH_MODULAR,69.10999999999999943156581139192,142,0.000311179476387087408130460719,23,5678,0.342549800265180115488306000771,124,6,1
412,1762240239,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240262,1762241707,1445,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 60 --learning_rate 0.00044189541847111278 --batch_size 36 --hidden_size 5926 --dropout 0.4100391228844935676 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c148,1212888,412_0,COMPLETED,BOTORCH_MODULAR,72.349999999999994315658113919199,60,0.000441895418471112779758291911,36,5926,0.410039122884493567600117103211,180,5,1
413,1762240240,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240262,1762243801,3539,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00265220129611243045 --batch_size 72 --hidden_size 5143 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c149,1212886,413_0,COMPLETED,BOTORCH_MODULAR,65.39000000000000056843418860808,200,0.00265220129611243044670532143,72,5143,0.599999999999999977795539507497,180,5,1
414,1762240239,28,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240267,1762241984,1717,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 72 --learning_rate 0.00028331759444845823 --batch_size 27 --hidden_size 5886 --dropout 0.09615344967120265096 --filter 158 --num_conv_layers 6 --num_dense_layers 1,0,,c149,1212887,414_0,COMPLETED,BOTORCH_MODULAR,68.5,72,0.000283317594448458229174775402,27,5886,0.096153449671202650961276958697,158,6,1
415,1762240241,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240283,1762242006,1723,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 71 --learning_rate 0.00044252655017849824 --batch_size 36 --hidden_size 5914 --dropout 0.41854820638353806839 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c145,1212893,415_0,COMPLETED,BOTORCH_MODULAR,72.700000000000002842170943040401,71,0.000442526550178498243818397961,36,5914,0.418548206383538068386940267374,180,5,1
416,1762240244,44,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240288,1762243574,3286,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 50 --learning_rate 0.00033182053698045731 --batch_size 8 --hidden_size 6000 --dropout 0.27279913685324524986 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212895,416_0,COMPLETED,BOTORCH_MODULAR,71.519999999999996020960679743439,50,0.000331820536980457310091696677,8,6000,0.272799136853245249856314558201,180,5,1
417,1762240244,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240287,1762241516,1229,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 50 --learning_rate 0.00042825285342498347 --batch_size 35 --hidden_size 6000 --dropout 0.42034556456559152293 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212896,417_0,COMPLETED,BOTORCH_MODULAR,71.879999999999995452526491135359,50,0.000428252853424983465687597706,35,6000,0.420345564565591522931953250009,180,5,1
418,1762240244,45,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240289,1762241494,1205,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 58 --learning_rate 0.00032056755304156828 --batch_size 33 --hidden_size 5670 --dropout 0.33332110801150865997 --filter 152 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212897,418_0,COMPLETED,BOTORCH_MODULAR,69.85999999999999943156581139192,58,0.000320567553041568279077744297,33,5670,0.333321108011508659973998192072,152,6,1
419,1762240246,41,2d5d5235-cc30-40a5-8187-969342ac2b39,1762240287,1762241749,1462,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 60 --learning_rate 0.00043603128714731089 --batch_size 36 --hidden_size 5966 --dropout 0.42150584870713436736 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c143,1212898,419_0,COMPLETED,BOTORCH_MODULAR,71.980000000000003979039320256561,60,0.000436031287147310893121537889,36,5966,0.421505848707134367359117277374,180,5,1
420,1762244260,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244283,1762248938,4655,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 187 --learning_rate 0.0004941232793758346 --batch_size 23 --hidden_size 4550 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c152,1212975,420_0,COMPLETED,BOTORCH_MODULAR,72.67000000000000170530256582424,187,0.000494123279375834599004557735,23,4550,0.599999999999999977795539507497,180,6,1
421,1762244261,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244316,1762246683,2367,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 176 --learning_rate 0.00131308560871157254 --batch_size 202 --hidden_size 1133 --dropout 0.5999999999999999778 --filter 177 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212982,421_0,COMPLETED,BOTORCH_MODULAR,69.85999999999999943156581139192,176,0.001313085608711572543558232518,202,1133,0.599999999999999977795539507497,177,6,1
422,1762244261,22,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244283,1762246919,2636,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00139236381370384582 --batch_size 201 --hidden_size 1434 --dropout 0.51976653668305050626 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c146,1212979,422_0,COMPLETED,BOTORCH_MODULAR,71.200000000000002842170943040401,200,0.001392363813703845817210114078,201,1434,0.519766536683050506262304679694,180,6,1
423,1762244262,54,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244316,1762247173,2857,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00141317166227387242 --batch_size 191 --hidden_size 1174 --dropout 0.41900673110803082766 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c141,1212984,423_0,COMPLETED,BOTORCH_MODULAR,71.010000000000005115907697472721,200,0.00141317166227387241983493027,191,1174,0.419006731108030827659405304075,180,6,1
424,,,,,,,,,,,,424_0,FAILED,BOTORCH_MODULAR,,160,0.000451939204788089749463553257,8,5199,0.599999999999999977795539507497,180,6,1
425,1762244261,43,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244304,1762247959,3655,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 147 --learning_rate 0.00054350733297628504 --batch_size 33 --hidden_size 5334 --dropout 0.50399571910683793607 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c145,1212980,425_0,COMPLETED,BOTORCH_MODULAR,72.519999999999996020960679743439,147,0.000543507332976285039045916125,33,5334,0.503995719106837936074327899405,180,5,1
426,1762244261,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244316,1762247952,3636,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 148 --learning_rate 0.00050041421653903673 --batch_size 24 --hidden_size 4777 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212983,426_0,COMPLETED,BOTORCH_MODULAR,72.450000000000002842170943040401,148,0.000500414216539036725214795176,24,4777,0.599999999999999977795539507497,180,6,1
427,1762244261,73,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244334,1762247062,2728,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 99 --learning_rate 0.00049431959140361879 --batch_size 20 --hidden_size 4764 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212987,427_0,COMPLETED,BOTORCH_MODULAR,72.760000000000005115907697472721,99,0.000494319591403618793790109009,20,4764,0.599999999999999977795539507497,180,6,1
428,1762244259,4,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244263,1762248644,4381,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 177 --learning_rate 0.00057233157382374409 --batch_size 33 --hidden_size 5536 --dropout 0.45208206255941152385 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c153,1212974,428_0,COMPLETED,BOTORCH_MODULAR,73.03000000000000113686837721616,177,0.00057233157382374408826686274,33,5536,0.45208206255941152384991710278,180,5,1
429,1762244261,55,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244316,1762247331,3015,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 143 --learning_rate 0.0005581603597816058 --batch_size 36 --hidden_size 4605 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c140,1212985,429_0,COMPLETED,BOTORCH_MODULAR,72.28000000000000113686837721616,143,0.00055816035978160580266482782,36,4605,0.599999999999999977795539507497,180,6,1
430,1762244260,26,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244286,1762247182,2896,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 141 --learning_rate 0.00053912709602230862 --batch_size 36 --hidden_size 4516 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c149,1212978,430_0,COMPLETED,BOTORCH_MODULAR,72.03000000000000113686837721616,141,0.000539127096022308624663488263,36,4516,0.599999999999999977795539507497,180,6,1
431,1762244262,82,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244344,1762246996,2652,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 126 --learning_rate 0.00054993113090068952 --batch_size 34 --hidden_size 4109 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212988,431_0,COMPLETED,BOTORCH_MODULAR,72.57999999999999829469743417576,126,0.000549931130900689515809964814,34,4109,0.599999999999999977795539507497,180,6,1
432,1762244260,23,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244283,1762246888,2605,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00142298202604075608 --batch_size 190 --hidden_size 955 --dropout 0.39147046419379161186 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c151,1212976,432_0,COMPLETED,BOTORCH_MODULAR,70.35999999999999943156581139192,200,0.001422982026040756076135096464,190,955,0.391470464193791611862138779543,180,6,1
433,1762244261,42,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244303,1762246641,2338,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 180 --learning_rate 0.00159012073197918754 --batch_size 225 --hidden_size 821 --dropout 0 --filter 167 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212981,433_0,COMPLETED,BOTORCH_MODULAR,68.89000000000000056843418860808,180,0.001590120731979187537405429076,225,821,0,167,6,1
434,1762244262,81,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244343,1762247049,2706,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00132401844596862178 --batch_size 196 --hidden_size 1260 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1212989,434_0,COMPLETED,BOTORCH_MODULAR,70.700000000000002842170943040401,200,0.00132401844596862178042584457,196,1260,0.599999999999999977795539507497,180,6,1
435,1762244261,63,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244324,1762247345,3021,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00142267620816049047 --batch_size 186 --hidden_size 791 --dropout 0.33931509352623823172 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c140,1212986,435_0,COMPLETED,BOTORCH_MODULAR,70.590000000000003410605131648481,200,0.001422676208160490469306624917,186,791,0.339315093526238231724789784494,180,6,1
436,1762244263,80,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244343,1762247144,2801,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00135935770206443963 --batch_size 193 --hidden_size 1200 --dropout 0.5323960203279523018 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c138,1212990,436_0,COMPLETED,BOTORCH_MODULAR,70.57999999999999829469743417576,200,0.00135935770206443962658526825,193,1200,0.532396020327952301798291045998,180,6,1
437,1762244276,87,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244363,1762247060,2697,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.001423261513612543 --batch_size 184 --hidden_size 840 --dropout 0.35708174469208886492 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c143,1212993,437_0,COMPLETED,BOTORCH_MODULAR,70.5,200,0.001423261513612543004841937133,184,840,0.357081744692088864923107394134,180,6,1
438,1762244275,70,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244345,1762248240,3895,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 158 --learning_rate 0.00049408776464493801 --batch_size 24 --hidden_size 4782 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c137,1212992,438_0,COMPLETED,BOTORCH_MODULAR,72.57999999999999829469743417576,158,0.000494087764644938012316421894,24,4782,0.599999999999999977795539507497,180,6,1
439,1762244275,68,2d5d5235-cc30-40a5-8187-969342ac2b39,1762244343,1762246465,2122,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 158 --learning_rate 0.00134968109994598631 --batch_size 168 --hidden_size 733 --dropout 0.37063109264252391828 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c137,1212991,439_0,COMPLETED,BOTORCH_MODULAR,70.049999999999997157829056959599,158,0.001349681099945986310559287169,168,733,0.370631092642523918279096051265,180,6,1
440,,,,,,,,,,,,440_0,RUNNING,BOTORCH_MODULAR,,178,0.000522263134232640760350185882,28,5868,0.524087818596877474952577813383,180,5,1
441,,,,,,,,,,,,441_0,RUNNING,BOTORCH_MODULAR,,98,0.00033720426502756940855334844,8,2825,0.59877883705020629179216484772,180,6,1
442,1762252192,63,2d5d5235-cc30-40a5-8187-969342ac2b39,1762252255,1762254936,2681,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00184723513908748808 --batch_size 221 --hidden_size 1897 --dropout 0.36803026050694143123 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c125,1214236,442_0,COMPLETED,BOTORCH_MODULAR,70.760000000000005115907697472721,200,0.001847235139087488077491716609,221,1897,0.368030260506941431231098249555,180,5,1
443,1762252194,90,2d5d5235-cc30-40a5-8187-969342ac2b39,1762252284,1762254856,2572,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 171 --learning_rate 0.00037229394833678128 --batch_size 96 --hidden_size 1331 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 6 --num_dense_layers 1,0,,c139,1214240,443_0,COMPLETED,BOTORCH_MODULAR,68.260000000000005115907697472721,171,0.000372293948336781276887974546,96,1331,0.599999999999999977795539507497,180,6,1
444,1762252192,50,2d5d5235-cc30-40a5-8187-969342ac2b39,1762252242,1762255122,2880,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00354879477024374994 --batch_size 256 --hidden_size 3699 --dropout 0.1815310400592015927 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c140,1214234,444_0,COMPLETED,BOTORCH_MODULAR,69.980000000000003979039320256561,200,0.003548794770243749938098964947,256,3699,0.181531040059201592695714566617,180,5,1
445,1762252192,62,2d5d5235-cc30-40a5-8187-969342ac2b39,1762252254,1762254938,2684,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00184795287752508117 --batch_size 222 --hidden_size 1397 --dropout 0.35630930747928230007 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c130,1214235,445_0,COMPLETED,BOTORCH_MODULAR,69.760000000000005115907697472721,200,0.001847952877525081173681886781,222,1397,0.356309307479282300068490485501,180,5,1
446,,,,,,,,,,,,446_0,RUNNING,BOTORCH_MODULAR,,200,0.003744009531075488672602347151,256,2371,0.599999999999999977795539507497,180,5,1
447,1762252192,61,2d5d5235-cc30-40a5-8187-969342ac2b39,1762252253,1762253197,944,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 60 --learning_rate 0.00205430591823865761 --batch_size 129 --hidden_size 3437 --dropout 0.3577265868974318086 --filter 179 --num_conv_layers 5 --num_dense_layers 1,0,,c73,1214237,447_0,COMPLETED,BOTORCH_MODULAR,69.569999999999993178789736703038,60,0.00205430591823865761266776353,129,3437,0.357726586897431808598213365258,179,5,1
448,,,,,,,,,,,,448_0,RUNNING,BOTORCH_MODULAR,,90,0.000406513745124587305007635152,19,835,0.512104885709837809315558843082,180,6,1
449,,,,,,,,,,,,449_0,RUNNING,BOTORCH_MODULAR,,200,0.002074336923883019975778374544,109,3000,0.599999999999999977795539507497,150,5,1
450,1762252194,79,2d5d5235-cc30-40a5-8187-969342ac2b39,1762252273,1762255251,2978,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 172 --learning_rate 0.00028935308603676816 --batch_size 52 --hidden_size 625 --dropout 0.41765221752455639059 --filter 170 --num_conv_layers 6 --num_dense_layers 1,0,,c131,1214241,450_0,COMPLETED,BOTORCH_MODULAR,67.85999999999999943156581139192,172,0.000289353086036768156457527068,52,625,0.417652217524556390593204469042,170,6,1
451,1762252193,90,2d5d5235-cc30-40a5-8187-969342ac2b39,1762252283,1762254907,2624,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 200 --learning_rate 0.00374754726282463656 --batch_size 256 --hidden_size 3229 --dropout 0.5999999999999999778 --filter 180 --num_conv_layers 5 --num_dense_layers 1,0,,c113,1214242,451_0,COMPLETED,BOTORCH_MODULAR,69.92000000000000170530256582424,200,0.003747547262824636564448876896,256,3229,0.599999999999999977795539507497,180,5,1
452,1762252194,121,2d5d5235-cc30-40a5-8187-969342ac2b39,1762252315,1762255024,2709,python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 198 --learning_rate 0.00182214060056064817 --batch_size 203 --hidden_size 1718 --dropout 0.33180238883031687447 --filter 179 --num_conv_layers 5 --num_dense_layers 1,0,,c126,1214243,452_0,COMPLETED,BOTORCH_MODULAR,70.989999999999994884092302527279,198,0.001822140600560648174624511775,203,1718,0.331802388830316874468451260327,179,5,1
453,,,,,,,,,,,,453_0,RUNNING,BOTORCH_MODULAR,,104,0.00042430654074679510561959872,8,3609,0.523658258599277059985865889757,180,6,1
454,,,,,,,,,,,,454_0,RUNNING,BOTORCH_MODULAR,,200,0.003551580983600290987445280422,256,3169,0.23752296378155937639498063163,180,5,1
455,,,,,,,,,,,,455_0,RUNNING,BOTORCH_MODULAR,,159,0.000608790830009740412294416689,11,4998,0.505136806452318731786021999142,178,6,1
456,,,,,,,,,,,,456_0,RUNNING,BOTORCH_MODULAR,,182,0.000523267068795735495849441588,27,5912,0.556285658062287025060754785954,180,5,1
457,,,,,,,,,,,,457_0,RUNNING,BOTORCH_MODULAR,,200,0.000603499611371866506379091355,8,5162,0.478712543155968672792255347304,180,6,1
458,,,,,,,,,,,,458_0,RUNNING,BOTORCH_MODULAR,,68,0.000100000000000000004792173602,8,1382,0.599999999999999977795539507497,103,6,1
459,,,,,,,,,,,,459_0,RUNNING,BOTORCH_MODULAR,,200,0.00057087613954143450606393273,31,5514,0.345715249685663694734216733195,180,5,1
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ Job 1212977 (task: 0) with path /data/horse/ws/pwinkler-mnist_mono/omniopt/runs/mnist_mono/0/single_runs/1212977/1212977_0_result.pkl
has not produced any output (state: TIMEOUT)
No error stream produced. Look at stdout: /data/horse/ws/pwinkler-mnist_mono/omniopt/runs/mnist_mono/0/single_runs/1212977/1212977_0_log.out
----------------------------------------
submitit INFO (2025-11-04 09:18:01,732) - Starting with JobEnvironment(job_id=1212977, hostname=c149, local_rank=0(1), node=0(1), global_rank=0(1))
submitit INFO (2025-11-04 09:18:01,735) - Loading pickle: /data/horse/ws/pwinkler-mnist_mono/omniopt/runs/mnist_mono/0/single_runs/1212977/1212977_submitted.pkl
Trial-Index: 424
slurmstepd: error: *** JOB 1212977 ON c149 CANCELLED AT 2025-11-04T11:18:11 DUE TO TIME LIMIT ***
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
To cancel, press CTRL c, then run 'scancel 1210398'
⠋ Importing logging...
⠋ Importing warnings...
⠋ Importing argparse...
⠋ Importing datetime...
⠋ Importing dataclass...
⠋ Importing socket...
⠋ Importing stat...
⠋ Importing pwd...
⠋ Importing base64...
⠋ Importing json...
⠋ Importing yaml...
⠋ Importing toml...
⠋ Importing csv...
⠋ Importing ast...
⠋ Importing rich.table...
⠋ Importing rich print...
⠋ Importing rich.pretty...
⠋ Importing pformat...
⠋ Importing rich.prompt...
⠋ Importing types.FunctionType...
⠋ Importing typing...
⠋ Importing ThreadPoolExecutor...
⠋ Importing submitit.LocalExecutor...
⠋ Importing submitit.Job...
⠋ Importing importlib.util...
⠋ Importing platform...
⠋ Importing inspect frame info...
⠋ Importing pathlib.Path...
⠋ Importing uuid...
⠋ Importing cowsay...
⠋ Importing shutil...
⠋ Importing itertools.combinations...
⠋ Importing os.listdir...
⠋ Importing os.path...
⠋ Importing PIL.Image...
⠋ Importing sixel...
⠋ Importing subprocess...
⠋ Importing tqdm...
⠋ Importing beartype...
⠋ Importing statistics...
⠋ Trying to import pyfiglet...
⠸ Importing helpers...
⠋ Importing pareto...
⠋ Parsing arguments...
⠴ Importing torch...
⠋ Importing numpy...
[WARNING 11-03 12:26:09] ax.service.utils.with_db_settings_base: Ax currently requires a sqlalchemy version below 2.0. This will be addressed in a future release. Disabling SQL storage in Ax for now, if you would like to use SQL storage please install Ax with mysql extras via `pip install ax-platform[mysql]`.
⠧ Importing ax...
⠋ Importing ax.core.generator_run...
⠋ Importing Cont_X_trans and Y_trans from ax.adapter.registry...
⠋ Importing ax.core.arm...
⠋ Importing ax.core.objective...
⠋ Importing ax.core.Metric...
⠋ Importing ax.exceptions.core...
⠋ Importing ax.exceptions.generation_strategy...
⠋ Importing CORE_DECODER_REGISTRY...
⠋ Trying ax.generation_strategy.generation_node...
⠋ Importing GenerationStep, GenerationStrategy from generation_strategy...
⠋ Importing GenerationNode from generation_node...
⠋ Importing ExternalGenerationNode...
⠋ Importing MaxTrials...
⠋ Importing GeneratorSpec...
⠋ Importing Models from ax.generation_strategy.registry...
⠋ Importing get_pending_observation_features...
⠋ Importing load_experiment...
⠋ Importing save_experiment...
⠋ Importing save_experiment_to_db...
⠋ Importing TrialStatus...
⠋ Importing Data...
⠋ Importing Experiment...
⠋ Importing parameter types...
⠋ Importing TParameterization...
⠋ Importing pandas...
⠋ Importing AxClient and ObjectiveProperties...
⠋ Importing RandomForestRegressor...
⠋ Importing botorch...
⠋ Importing submitit...
⠋ Importing ax logger...
⠋ Importing SQL-Storage-Stuff...
Run-UUID: d06699d7-36fe-4f48-8f1e-bc11c8db02e0
____ _ ____ _ ___
/ __ \ (_)/ __ \ | | |__ \
| | | |_ __ ___ _ __ _| | | |_ __ | |_ ) |
| | | | '_ ` _ \| '_ \| | | | | '_ \| __| / /
| |__| | | | | | | | | | | |__| | |_) | |_ / /_
\____/|_| |_| |_|_| |_|_|\____/| .__/ \__|____|
| |
|_|
⠋ Writing worker creation log...
omniopt --partition=alpha --experiment_name=mnist_mono --mem_gb=40 --time=1440 --worker_timeout=120 --max_eval=1000 --num_parallel_jobs=20 --gpus=1 --num_random_steps=20 --follow --live_share --send_anonymized_usage_stats --result_names VAL_ACC=max --run_program=cHl0aG9uMyAvZGF0YS9ob3JzZS93cy9wd2lua2xlci1tbmlzdF9tb25vL29tbmlvcHQvLnRlc3RzL21uaXN0L3RyYWluIC0tZXBvY2hzICVlcG9jaHMgLS1sZWFybmluZ19yYXRlICVsciAtLWJhdGNoX3NpemUgJWJhdGNoX3NpemUgLS1oaWRkZW5fc2l6ZSAlaGlkZGVuX3NpemUgLS1kcm9wb3V0ICVkcm9wb3V0IC0tZmlsdGVyICUoZmlsdGVyKSAtLW51bV9jb252X2xheWVycyAlKG51bV9jb252X2xheWVycykgLS1udW1fZGVuc2VfbGF5ZXJzICVudW1fZGVuc2VfbGF5ZXJzCg== --run_program_once=Y0hsMGFHOXVNeUF2WkdGMFlTOW9iM0p6WlM5M2N5OXpNemd4TVRFME1TMXZiVzVwYjNCMFgyMXVhWE4wWDNSbGMzUmZZMkZzYkM5dmJXNXBiM0IwTHk1MFpYTjBjeTl0Ym1semRDOTBjbUZwYmlBdExXbHVjM1JoYkd3PQo= --cpus_per_task=1 --nodes_per_job=1 --revert_to_random_when_seemingly_exhausted --model=BOTORCH_MODULAR --n_estimators_randomforest=100 --run_mode=local --occ_type=euclid --main_process_gb=20 --max_nr_of_zero_results=50 --slurm_signal_delay_s=0 --max_failed_jobs=0 --max_attempts_for_generation=20 --num_restarts=20 --raw_samples=1024 --max_abandoned_retrial=20 --max_num_of_parallel_sruns=16 --number_of_generators=1 --generate_all_jobs_at_once --parameter epochs range 50 200 int false --parameter lr range 0.0001 0.005 float false --parameter batch_size range 8 256 int false --parameter hidden_size range 500 6000 int false --parameter dropout range 0 0.6 float false --parameter num_dense_layers fixed 1 --parameter filter range 20 180 int false --parameter num_conv_layers range 3 6 int false
⠋ Disabling logging...
⠋ Setting run folder...
⠋ Creating folder /data/horse/ws/pwinkler-mnist_mono/omniopt/runs/mnist_mono/0...
⠋ Writing revert_to_random_when_seemingly_exhausted file ...
⠋ Writing username state file...
⠋ Writing result names file...
⠋ Writing result min/max file...
Executing command:
cHl0aG9uMyAvZGF0YS9ob3JzZS93cy9zMzgxMTE0MS1vbW5pb3B0X21uaXN0X3Rlc3RfY2FsbC9vbW5p
b3B0Ly50ZXN0cy9tbmlzdC90cmFpbiAtLWluc3RhbGw=
Setup script completed successfully ✅
⠋ Saving state files...
Run-folder: /data/horse/ws/pwinkler-mnist_mono/omniopt/runs/mnist_mono/0
⠋ Writing live_share file if it is present...
⠋ Writing job_start_time file...
⠸ Writing git information
⠋ Checking max_eval...
⠋ Calculating number of steps...
⠋ Adding excluded nodes...
⠋ Initializing ax_client...
⠋ Setting orchestrator...
See https://imageseg.scads.de/omniax/share?user_id=pwinkler&experiment_name=mnist_mono&run_nr=0 for live-results.
You have 1 CPUs available for the main process. Using CUDA device NVIDIA H100.
Generation strategy: SOBOL for 20 steps and then BOTORCH_MODULAR for 980 steps.
Run-Program: python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs %epochs --learning_rate %lr --batch_size %batch_size --hidden_size %hidden_size --dropout %dropout --filter %(filter) --num_conv_layers %(num_conv_layers) --num_dense_layers %num_dense_layers
Experiment parameters
┏━━━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┓
┃ Name ┃ Type ┃ Lower bound ┃ Upper bound ┃ Values ┃ Type ┃ Log Scale? ┃
┡━━━━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━┩
│ epochs │ range │ 50 │ 200 │ │ int │ No │
│ lr │ range │ 0.0001 │ 0.005 │ │ float │ No │
│ batch_size │ range │ 8 │ 256 │ │ int │ No │
│ hidden_size │ range │ 500 │ 6000 │ │ int │ No │
│ dropout │ range │ 0 │ 0.6 │ │ float │ No │
│ num_dense_layers │ fixed │ │ │ 1 │ │ │
│ filter │ range │ 20 │ 180 │ │ int │ No │
│ num_conv_layers │ range │ 3 │ 6 │ │ int │ No │
└──────────────────┴───────┴─────────────┴─────────────┴────────┴───────┴────────────┘
Result-Names
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━┓
┃ Result-Name ┃ Min or max? ┃
┡━━━━━━━━━━━━━╇━━━━━━━━━━━━━┩
│ VAL_ACC │ max │
└─────────────┴─────────────┘
⠋ Write files and show overview
BOTORCH_MODULAR, best VAL_ACC: 69.82, running/unknown 14/1 = ∑15/20, started new job : 2%|░░░░░░░░░░| 20/1000 [56:42<45:50:33, 168.40s/it]sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
BOTORCH_MODULAR, best VAL_ACC: 69.82, running/pending/unknown 14/1/1 = ∑16/20, started new job: 2%|░░░░░░░░░░| 20/1000 [56:57<45:50:33, 168.40s/it]sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 15/1 = ∑16/20, started new job : 8%|▒░░░░░░░░░| 76/1000 [2:56:58<13:35:59, 52.99s/it]sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending 10/1 = ∑11/20, started new job : 37%|███▒░░░░░░| 372/1000 [18:36:37<12:12:21, 69.97s/it]sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
BOTORCH_MODULAR, best VAL_ACC: 73.29, timeout 1 = ∑1/20, waiting for 1 job : 42%|████░░░░░░| 422/1000 [22:56:26<42:33:35, 265.08s/it]
⚠ Job 1212977 (task: 0) with path /data/horse/ws/pwinkler-mnist_mono/omniopt/runs/mnist_mono/0/single_runs/1212977/1212977_0_result.pkl
has not produced any output (state: TIMEOUT)
No error stream produced. Look at stdout: /data/horse/ws/pwinkler-mnist_mono/omniopt/runs/mnist_mono/0/single_runs/1212977/1212977_0_log.out
----------------------------------------
submitit INFO (2025-11-04 09:18:01,732) - Starting with JobEnvironment(job_id=1212977, hostname=c149, local_rank=0(1), node=0(1), global_rank=0(1))
submitit INFO (2025-11-04 09:18:01,735) - Loading pickle: /data/horse/ws/pwinkler-mnist_mono/omniopt/runs/mnist_mono/0/single_runs/1212977/1212977_submitted.pkl
Trial-Index: 424
slurmstepd: error: *** JOB 1212977 ON c149 CANCELLED AT 2025-11-04T11:18:11 DUE TO TIME LIMIT ***
BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 10/1 = ∑11/20, started new job: 42%|████░░░░░░| 422/1000 [23:04:59<42:33:35, 265.08s/it]sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
sbatch: error: Batch job submission failed: Unexpected message received
⚠ FAILED: sbatch: error: Batch job submission failed: Unexpected message received
handle_failed_job: job is None
BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 4 = ∑4/20, new result: VAL_ACC: 67.860000 : 43%|████░░░░░░| 430/1000 [23:54:36<46:09:17, 291.50s/it]
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, Started OmniOpt2 run...
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #1/20
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #2/20
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #3/20
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #4/20
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #5/20
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #6/20
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #7/20
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #8/20
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #9/20
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #10/20
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #11/20
2025-11-03 12:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #12/20
2025-11-03 12:26:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #13/20
2025-11-03 12:26:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #14/20
2025-11-03 12:26:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #15/20
2025-11-03 12:26:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #16/20
2025-11-03 12:26:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #17/20
2025-11-03 12:26:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #18/20
2025-11-03 12:26:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #19/20
2025-11-03 12:26:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, getting new HP set #20/20
2025-11-03 12:26:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, requested 20 jobs, got 20, 0.11 s/job
2025-11-03 12:26:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #1/20 start
2025-11-03 12:26:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #2/20 start
2025-11-03 12:26:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #3/20 start
2025-11-03 12:26:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #4/20 start
2025-11-03 12:26:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #5/20 start
2025-11-03 12:26:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #6/20 start
2025-11-03 12:26:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #7/20 start
2025-11-03 12:26:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #8/20 start
2025-11-03 12:26:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #9/20 start
2025-11-03 12:26:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #10/20 start
2025-11-03 12:26:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #11/20 start
2025-11-03 12:26:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #12/20 start
2025-11-03 12:26:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #13/20 start
2025-11-03 12:26:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #14/20 start
2025-11-03 12:26:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #15/20 start
2025-11-03 12:26:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #16/20 start
2025-11-03 12:26:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #17/20 start
2025-11-03 12:26:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #18/20 start
2025-11-03 12:26:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #19/20 start
2025-11-03 12:26:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, eval #20/20 start
2025-11-03 12:26:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, starting new job
2025-11-03 12:26:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, unknown 1 = ∑1/20, started new job
2025-11-03 12:26:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, unknown 1 = ∑1/20, starting new job
2025-11-03 12:26:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, pending/unknown 1/1 = ∑2/20, started new job
2025-11-03 12:26:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, pending/unknown 1/1 = ∑2/20, starting new job
2025-11-03 12:26:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, pending/unknown 2/1 = ∑3/20, started new job
2025-11-03 12:26:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, pending/unknown 2/1 = ∑3/20, starting new job
2025-11-03 12:26:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, pending/unknown 3/1 = ∑4/20, started new job
2025-11-03 12:26:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, pending/unknown 3/1 = ∑4/20, starting new job
2025-11-03 12:27:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/unknown 4/1 = ∑5/20, started new job
2025-11-03 12:27:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/pending/unknown 4/1/1 = ∑6/20, started new job
2025-11-03 12:27:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/unknown 6/1 = ∑7/20, started new job
2025-11-03 12:27:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/pending 6/2 = ∑8/20, started new job
2025-11-03 12:27:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/unknown 8/1 = ∑9/20, started new job
2025-11-03 12:27:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/pending/unknown 8/1/1 = ∑10/20, started new job
2025-11-03 12:27:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/pending/unknown 8/2/2 = ∑12/20, started new job
2025-11-03 12:27:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/pending/unknown 8/2/3 = ∑13/20, started new job
2025-11-03 12:27:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/pending/unknown 8/5/1 = ∑14/20, started new job
2025-11-03 12:27:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/pending/unknown 8/5/2 = ∑15/20, started new job
2025-11-03 12:27:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/pending/unknown 8/5/3 = ∑16/20, started new job
2025-11-03 12:27:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/unknown 16/1 = ∑17/20, started new job
2025-11-03 12:28:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/unknown 17/1 = ∑18/20, started new job
2025-11-03 12:28:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/pending/unknown 17/1/1 = ∑19/20, started new job
2025-11-03 12:28:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/unknown 19/1 = ∑20/20, started new job
2025-11-03 12:28:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/unknown 19/1 = ∑20/20, waiting for 20 jobs
2025-11-03 12:28:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running/pending 19/1 = ∑20/20, waiting for 20 jobs
2025-11-03 12:28:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running 20 = ∑20/20, waiting for 20 jobs
2025-11-03 12:39:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, running 20 = ∑20/20, new result: VAL_ACC: 60.540000
2025-11-03 12:39:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 60.54, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-03 12:39:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 60.54, running 19 = ∑19/20, waiting for 19 jobs
2025-11-03 12:39:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 60.54, running 19 = ∑19/20, new result: VAL_ACC: 54.740000
2025-11-03 12:39:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 60.54, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-03 12:39:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 60.54, running 18 = ∑18/20, waiting for 18 jobs
2025-11-03 12:44:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 60.54, running 18 = ∑18/20, new result: VAL_ACC: 61.750000
2025-11-03 12:44:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 61.75, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-03 12:44:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 61.75, running 17 = ∑17/20, waiting for 17 jobs
2025-11-03 12:48:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 61.75, running 17 = ∑17/20, new result: VAL_ACC: 69.540000
2025-11-03 12:48:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-03 12:48:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 16 = ∑16/20, waiting for 16 jobs
2025-11-03 12:49:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 16 = ∑16/20, new result: VAL_ACC: 62.630000
2025-11-03 12:49:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-03 12:49:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 15 = ∑15/20, waiting for 15 jobs
2025-11-03 12:50:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 15 = ∑15/20, new result: VAL_ACC: 54.930000
2025-11-03 12:50:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-03 12:50:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 14 = ∑14/20, waiting for 14 jobs
2025-11-03 12:52:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 14 = ∑14/20, new result: VAL_ACC: 62.700000
2025-11-03 12:53:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-03 12:53:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 13 = ∑13/20, waiting for 13 jobs
2025-11-03 12:56:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 13 = ∑13/20, new result: VAL_ACC: 64.930000
2025-11-03 12:56:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-03 12:56:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 12 = ∑12/20, waiting for 12 jobs
2025-11-03 12:57:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 12 = ∑12/20, new result: VAL_ACC: 42.610000
2025-11-03 12:57:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-03 12:57:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 11 = ∑11/20, waiting for 11 jobs
2025-11-03 12:57:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 11 = ∑11/20, new result: VAL_ACC: 66.300000
2025-11-03 12:57:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-03 12:57:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 10 = ∑10/20, waiting for 10 jobs
2025-11-03 12:59:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 10 = ∑10/20, new result: VAL_ACC: 66.080000
2025-11-03 12:59:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-03 12:59:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 9 = ∑9/20, waiting for 9 jobs
2025-11-03 13:01:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 9 = ∑9/20, new result: VAL_ACC: 67.970000
2025-11-03 13:01:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-03 13:01:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 8 = ∑8/20, waiting for 8 jobs
2025-11-03 13:01:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 8 = ∑8/20, new result: VAL_ACC: 55.480000
2025-11-03 13:01:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-03 13:01:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 7 = ∑7/20, waiting for 7 jobs
2025-11-03 13:02:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 7 = ∑7/20, new result: VAL_ACC: 68.220000
2025-11-03 13:02:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-03 13:02:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 6 = ∑6/20, waiting for 6 jobs
2025-11-03 13:07:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 6 = ∑6/20, new result: VAL_ACC: 63.550000
2025-11-03 13:07:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-03 13:07:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 5 = ∑5/20, waiting for 5 jobs
2025-11-03 13:08:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 5 = ∑5/20, new result: VAL_ACC: 32.870000
2025-11-03 13:08:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-03 13:08:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 4 = ∑4/20, waiting for 4 jobs
2025-11-03 13:08:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.54, running 4 = ∑4/20, new result: VAL_ACC: 69.820000
2025-11-03 13:08:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.82, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-03 13:08:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.82, running 3 = ∑3/20, waiting for 3 jobs
2025-11-03 13:13:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.82, running 3 = ∑3/20, new result: VAL_ACC: 62.920000
2025-11-03 13:13:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.82, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-03 13:13:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.82, running 2 = ∑2/20, waiting for 2 jobs
2025-11-03 13:15:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.82, running 2 = ∑2/20, new result: VAL_ACC: 69.230000
2025-11-03 13:15:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.82, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-03 13:15:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.82, running 1 = ∑1/20, waiting for 1 job
2025-11-03 13:20:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.82, running 1 = ∑1/20, new result: VAL_ACC: 67.450000
2025-11-03 13:20:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): SOBOL, best VAL_ACC: 69.82, waiting for 1 job, finished 1 job
2025-11-03 13:20:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #1/20
2025-11-03 13:20:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #2/20
2025-11-03 13:20:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #3/20
2025-11-03 13:20:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #4/20
2025-11-03 13:20:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #5/20
2025-11-03 13:20:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #6/20
2025-11-03 13:20:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #7/20
2025-11-03 13:20:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #8/20
2025-11-03 13:20:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #9/20
2025-11-03 13:20:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #10/20
2025-11-03 13:20:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #11/20
2025-11-03 13:20:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #12/20
2025-11-03 13:20:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #13/20
2025-11-03 13:20:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #14/20
2025-11-03 13:20:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #15/20
2025-11-03 13:20:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #16/20
2025-11-03 13:20:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #17/20
2025-11-03 13:20:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #18/20
2025-11-03 13:20:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #19/20
2025-11-03 13:21:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, getting new HP set #20/20
2025-11-03 13:21:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, requested 20 jobs, got 20, 1.89 s/job
2025-11-03 13:21:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #1/20 start
2025-11-03 13:21:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #2/20 start
2025-11-03 13:21:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #3/20 start
2025-11-03 13:21:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #4/20 start
2025-11-03 13:21:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #5/20 start
2025-11-03 13:21:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #6/20 start
2025-11-03 13:21:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #7/20 start
2025-11-03 13:21:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #8/20 start
2025-11-03 13:21:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #9/20 start
2025-11-03 13:21:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #10/20 start
2025-11-03 13:21:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #11/20 start
2025-11-03 13:21:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #12/20 start
2025-11-03 13:21:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #13/20 start
2025-11-03 13:21:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #14/20 start
2025-11-03 13:21:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #15/20 start
2025-11-03 13:21:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #16/20 start
2025-11-03 13:21:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #17/20 start
2025-11-03 13:21:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #18/20 start
2025-11-03 13:21:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #19/20 start
2025-11-03 13:21:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, eval #20/20 start
2025-11-03 13:21:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, starting new job
2025-11-03 13:21:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, unknown 2 = ∑2/20, started new job
2025-11-03 13:21:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, unknown 2 = ∑2/20, starting new job
2025-11-03 13:22:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, running/unknown 2/3 = ∑5/20, started new job
2025-11-03 13:22:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, running/unknown 2/3 = ∑5/20, starting new job
2025-11-03 13:22:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, running/unknown 2/4 = ∑6/20, started new job
2025-11-03 13:22:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, running/pending/unknown 2/4/2 = ∑8/20, started new job
2025-11-03 13:22:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, running/unknown 8/3 = ∑11/20, started new job
2025-11-03 13:22:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, running/unknown 8/4 = ∑12/20, started new job
2025-11-03 13:22:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, running/pending/unknown 8/4/1 = ∑13/20, started new job
2025-11-03 13:22:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, running/unknown 13/1 = ∑14/20, started new job
2025-11-03 13:22:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, running/unknown 14/1 = ∑15/20, started new job
2025-11-03 13:23:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, running/pending/unknown 14/1/1 = ∑16/20, started new job
2025-11-03 13:23:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, running 16 = ∑16/20, waiting for 16 jobs
2025-11-03 13:57:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 69.82, running 16 = ∑16/20, new result: VAL_ACC: 70.760000
2025-11-03 13:57:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.76, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-03 13:57:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.76, running 15 = ∑15/20, waiting for 15 jobs
2025-11-03 13:57:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.76, running 15 = ∑15/20, new result: VAL_ACC: 70.410000
2025-11-03 13:57:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.76, running 15 = ∑15/20, new result: VAL_ACC: 70.720000
2025-11-03 13:57:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.76, running 13 = ∑13/20, waiting for 15 jobs, finished 2 jobs
2025-11-03 13:57:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.76, running 13 = ∑13/20, waiting for 13 jobs
2025-11-03 13:58:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.76, running 13 = ∑13/20, new result: VAL_ACC: 70.620000
2025-11-03 13:58:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.76, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-03 13:58:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.76, running 12 = ∑12/20, waiting for 12 jobs
2025-11-03 13:58:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.76, running 12 = ∑12/20, new result: VAL_ACC: 70.770000
2025-11-03 13:58:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.77, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-03 13:58:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.77, running 11 = ∑11/20, waiting for 11 jobs
2025-11-03 13:58:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.77, running 11 = ∑11/20, new result: VAL_ACC: 70.840000
2025-11-03 13:58:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.84, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-03 13:58:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.84, running 10 = ∑10/20, waiting for 10 jobs
2025-11-03 13:58:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.84, running 10 = ∑10/20, new result: VAL_ACC: 70.400000
2025-11-03 13:58:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.84, running 10 = ∑10/20, new result: VAL_ACC: 70.710000
2025-11-03 13:58:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.84, running 8 = ∑8/20, waiting for 10 jobs, finished 2 jobs
2025-11-03 13:58:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.84, running 8 = ∑8/20, waiting for 8 jobs
2025-11-03 13:58:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.84, running 8 = ∑8/20, new result: VAL_ACC: 70.700000
2025-11-03 13:58:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.84, running 8 = ∑8/20, new result: VAL_ACC: 70.390000
2025-11-03 13:58:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.84, running 6 = ∑6/20, waiting for 8 jobs, finished 2 jobs
2025-11-03 13:58:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.84, running 6 = ∑6/20, waiting for 6 jobs
2025-11-03 13:58:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 70.84, running 6 = ∑6/20, new result: VAL_ACC: 71.000000
2025-11-03 13:58:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-03 13:58:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, waiting for 5 jobs
2025-11-03 13:58:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, new result: VAL_ACC: 70.810000
2025-11-03 13:58:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-03 13:58:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, waiting for 4 jobs
2025-11-03 13:58:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, new result: VAL_ACC: 70.850000
2025-11-03 13:58:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-03 13:58:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, waiting for 3 jobs
2025-11-03 13:58:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, new result: VAL_ACC: 70.950000
2025-11-03 13:59:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-03 13:59:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, waiting for 2 jobs
2025-11-03 13:59:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, new result: VAL_ACC: 70.830000
2025-11-03 13:59:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-03 13:59:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, waiting for 1 job
2025-11-03 13:59:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, new result: VAL_ACC: 70.570000
2025-11-03 13:59:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, waiting for 1 job, finished 1 job
2025-11-03 14:00:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #1/20
2025-11-03 14:00:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #2/20
2025-11-03 14:00:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #3/20
2025-11-03 14:00:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #4/20
2025-11-03 14:00:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #5/20
2025-11-03 14:00:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #6/20
2025-11-03 14:00:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #7/20
2025-11-03 14:00:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #8/20
2025-11-03 14:00:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #9/20
2025-11-03 14:00:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #10/20
2025-11-03 14:00:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #11/20
2025-11-03 14:00:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #12/20
2025-11-03 14:00:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #13/20
2025-11-03 14:00:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #14/20
2025-11-03 14:00:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #15/20
2025-11-03 14:00:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #16/20
2025-11-03 14:00:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #17/20
2025-11-03 14:00:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #18/20
2025-11-03 14:00:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #19/20
2025-11-03 14:00:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #20/20
2025-11-03 14:00:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, requested 20 jobs, got 20, 2.21 s/job
2025-11-03 14:00:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #1/20 start
2025-11-03 14:00:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #2/20 start
2025-11-03 14:00:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #3/20 start
2025-11-03 14:00:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #4/20 start
2025-11-03 14:00:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #5/20 start
2025-11-03 14:00:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #6/20 start
2025-11-03 14:00:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #7/20 start
2025-11-03 14:00:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #8/20 start
2025-11-03 14:00:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #9/20 start
2025-11-03 14:00:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #10/20 start
2025-11-03 14:00:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #11/20 start
2025-11-03 14:00:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #12/20 start
2025-11-03 14:00:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #13/20 start
2025-11-03 14:00:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #14/20 start
2025-11-03 14:00:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #15/20 start
2025-11-03 14:00:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #16/20 start
2025-11-03 14:00:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #17/20 start
2025-11-03 14:00:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #18/20 start
2025-11-03 14:00:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #19/20 start
2025-11-03 14:00:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #20/20 start
2025-11-03 14:00:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, starting new job
2025-11-03 14:00:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, unknown 3 = ∑3/20, started new job
2025-11-03 14:00:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, unknown 3 = ∑3/20, starting new job
2025-11-03 14:01:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, starting new job
2025-11-03 14:01:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 3/1 = ∑4/20, started new job
2025-11-03 14:01:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 3/1 = ∑4/20, starting new job
2025-11-03 14:01:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 3/1/2 = ∑6/20, started new job
2025-11-03 14:01:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 3/3/1 = ∑7/20, started new job
2025-11-03 14:01:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 4/3/2 = ∑9/20, started new job
2025-11-03 14:01:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 9/1 = ∑10/20, started new job
2025-11-03 14:01:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 9/1/1 = ∑11/20, started new job
2025-11-03 14:01:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 11/1 = ∑12/20, started new job
2025-11-03 14:01:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 12/2 = ∑14/20, started new job
2025-11-03 14:01:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 14/1 = ∑15/20, started new job
2025-11-03 14:01:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 14/1/2 = ∑17/20, started new job
2025-11-03 14:01:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 14/3/1 = ∑18/20, started new job
2025-11-03 14:01:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending 18/2 = ∑20/20, started new job
2025-11-03 14:01:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending 18/2 = ∑20/20, waiting for 20 jobs
2025-11-03 14:01:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 20 = ∑20/20, waiting for 20 jobs
2025-11-03 14:35:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 20 = ∑20/20, new result: VAL_ACC: 62.930000
2025-11-03 14:36:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-03 14:36:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 19 = ∑19/20, waiting for 19 jobs
2025-11-03 14:36:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 19 = ∑19/20, new result: VAL_ACC: 60.180000
2025-11-03 14:36:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-03 14:36:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 18 = ∑18/20, waiting for 18 jobs
2025-11-03 14:36:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 18 = ∑18/20, new result: VAL_ACC: 60.660000
2025-11-03 14:36:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-03 14:36:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, waiting for 17 jobs
2025-11-03 14:36:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, new result: VAL_ACC: 62.710000
2025-11-03 14:36:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, new result: VAL_ACC: 60.340000
2025-11-03 14:36:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, new result: VAL_ACC: 62.530000
2025-11-03 14:36:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, new result: VAL_ACC: 63.640000
2025-11-03 14:36:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, waiting for 17 jobs, finished 4 jobs
2025-11-03 14:36:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, waiting for 13 jobs
2025-11-03 14:36:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, new result: VAL_ACC: 60.960000
2025-11-03 14:36:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, new result: VAL_ACC: 61.760000
2025-11-03 14:36:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, waiting for 13 jobs, finished 2 jobs
2025-11-03 14:36:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, waiting for 11 jobs
2025-11-03 14:36:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, new result: VAL_ACC: 64.230000
2025-11-03 14:36:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, new result: VAL_ACC: 61.050000
2025-11-03 14:36:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, new result: VAL_ACC: 60.410000
2025-11-03 14:36:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, waiting for 11 jobs, finished 3 jobs
2025-11-03 14:36:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, waiting for 8 jobs
2025-11-03 14:36:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, new result: VAL_ACC: 63.310000
2025-11-03 14:36:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, new result: VAL_ACC: 60.870000
2025-11-03 14:36:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, waiting for 8 jobs, finished 2 jobs
2025-11-03 14:36:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, waiting for 6 jobs
2025-11-03 14:36:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, new result: VAL_ACC: 61.340000
2025-11-03 14:37:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-03 14:37:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, waiting for 5 jobs
2025-11-03 14:37:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, new result: VAL_ACC: 60.350000
2025-11-03 14:37:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-03 14:37:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, waiting for 4 jobs
2025-11-03 14:37:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, new result: VAL_ACC: 62.520000
2025-11-03 14:37:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-03 14:37:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, waiting for 3 jobs
2025-11-03 14:37:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, new result: VAL_ACC: 63.940000
2025-11-03 14:37:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-03 14:37:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, waiting for 2 jobs
2025-11-03 14:37:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, new result: VAL_ACC: 60.540000
2025-11-03 14:37:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-03 14:37:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, waiting for 1 job
2025-11-03 14:38:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, new result: VAL_ACC: 60.770000
2025-11-03 14:38:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, waiting for 1 job, finished 1 job
2025-11-03 14:38:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #1/20
2025-11-03 14:38:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #2/20
2025-11-03 14:38:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #3/20
2025-11-03 14:38:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #4/20
2025-11-03 14:39:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #5/20
2025-11-03 14:39:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #6/20
2025-11-03 14:39:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #7/20
2025-11-03 14:39:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #8/20
2025-11-03 14:39:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #9/20
2025-11-03 14:39:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #10/20
2025-11-03 14:39:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #11/20
2025-11-03 14:39:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #12/20
2025-11-03 14:39:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #13/20
2025-11-03 14:39:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #14/20
2025-11-03 14:39:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #15/20
2025-11-03 14:39:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #16/20
2025-11-03 14:39:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #17/20
2025-11-03 14:39:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #18/20
2025-11-03 14:39:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #19/20
2025-11-03 14:39:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #20/20
2025-11-03 14:39:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, requested 20 jobs, got 20, 2.25 s/job
2025-11-03 14:39:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #1/20 start
2025-11-03 14:39:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #2/20 start
2025-11-03 14:39:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #3/20 start
2025-11-03 14:39:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #4/20 start
2025-11-03 14:39:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #5/20 start
2025-11-03 14:39:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #6/20 start
2025-11-03 14:39:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #7/20 start
2025-11-03 14:39:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #8/20 start
2025-11-03 14:39:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #9/20 start
2025-11-03 14:39:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #10/20 start
2025-11-03 14:39:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #11/20 start
2025-11-03 14:39:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #12/20 start
2025-11-03 14:39:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #13/20 start
2025-11-03 14:39:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #14/20 start
2025-11-03 14:39:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #15/20 start
2025-11-03 14:39:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #16/20 start
2025-11-03 14:39:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #17/20 start
2025-11-03 14:39:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #18/20 start
2025-11-03 14:39:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #19/20 start
2025-11-03 14:39:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #20/20 start
2025-11-03 14:39:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, starting new job
2025-11-03 14:39:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, unknown 3 = ∑3/20, started new job
2025-11-03 14:39:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, unknown 3 = ∑3/20, starting new job
2025-11-03 14:39:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 3/2 = ∑5/20, started new job
2025-11-03 14:39:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 3/2 = ∑5/20, starting new job
2025-11-03 14:39:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 5/1 = ∑6/20, started new job
2025-11-03 14:39:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 5/1/2 = ∑8/20, started new job
2025-11-03 14:39:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 5/3/2 = ∑10/20, started new job
2025-11-03 14:39:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 5/5/1 = ∑11/20, started new job
2025-11-03 14:40:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 11/1 = ∑12/20, started new job
2025-11-03 14:40:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 12/2 = ∑14/20, started new job
2025-11-03 14:40:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 12/2/1 = ∑15/20, started new job
2025-11-03 14:40:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 12/3/2 = ∑17/20, started new job
2025-11-03 14:40:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 17/1 = ∑18/20, started new job
2025-11-03 14:40:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 17/1/1 = ∑19/20, started new job
2025-11-03 14:40:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 19/1 = ∑20/20, started new job
2025-11-03 14:40:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 19/1 = ∑20/20, waiting for 20 jobs
2025-11-03 14:40:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending 19/1 = ∑20/20, waiting for 20 jobs
2025-11-03 14:40:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 20 = ∑20/20, waiting for 20 jobs
2025-11-03 15:00:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 20 = ∑20/20, new result: VAL_ACC: 57.920000
2025-11-03 15:00:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-03 15:00:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 19 = ∑19/20, waiting for 19 jobs
2025-11-03 15:03:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 19 = ∑19/20, new result: VAL_ACC: 61.150000
2025-11-03 15:03:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-03 15:03:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 18 = ∑18/20, waiting for 18 jobs
2025-11-03 15:06:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 18 = ∑18/20, new result: VAL_ACC: 55.160000
2025-11-03 15:06:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-03 15:06:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, waiting for 17 jobs
2025-11-03 15:07:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, new result: VAL_ACC: 60.520000
2025-11-03 15:07:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-03 15:07:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 16 = ∑16/20, waiting for 16 jobs
2025-11-03 15:08:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 16 = ∑16/20, new result: VAL_ACC: 62.230000
2025-11-03 15:08:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-03 15:08:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 15 = ∑15/20, waiting for 15 jobs
2025-11-03 15:09:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 15 = ∑15/20, new result: VAL_ACC: 60.640000
2025-11-03 15:09:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-03 15:09:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 14 = ∑14/20, waiting for 14 jobs
2025-11-03 15:11:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 14 = ∑14/20, new result: VAL_ACC: 62.530000
2025-11-03 15:11:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-03 15:11:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, waiting for 13 jobs
2025-11-03 15:11:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, new result: VAL_ACC: 69.910000
2025-11-03 15:11:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-03 15:11:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 12 = ∑12/20, waiting for 12 jobs
2025-11-03 15:12:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 12 = ∑12/20, new result: VAL_ACC: 57.150000
2025-11-03 15:12:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-03 15:12:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, waiting for 11 jobs
2025-11-03 15:12:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, new result: VAL_ACC: 54.500000
2025-11-03 15:12:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-03 15:12:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 10 = ∑10/20, waiting for 10 jobs
2025-11-03 15:13:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 10 = ∑10/20, new result: VAL_ACC: 54.430000
2025-11-03 15:13:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-03 15:13:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 9 = ∑9/20, waiting for 9 jobs
2025-11-03 15:13:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 9 = ∑9/20, new result: VAL_ACC: 63.780000
2025-11-03 15:13:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-03 15:13:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, waiting for 8 jobs
2025-11-03 15:13:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, new result: VAL_ACC: 62.960000
2025-11-03 15:13:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-03 15:13:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 7 = ∑7/20, waiting for 7 jobs
2025-11-03 15:14:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 7 = ∑7/20, new result: VAL_ACC: 61.750000
2025-11-03 15:14:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-03 15:14:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, waiting for 6 jobs
2025-11-03 15:14:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, new result: VAL_ACC: 61.900000
2025-11-03 15:15:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-03 15:15:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, waiting for 5 jobs
2025-11-03 15:16:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, new result: VAL_ACC: 62.280000
2025-11-03 15:16:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-03 15:16:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, waiting for 4 jobs
2025-11-03 15:18:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, new result: VAL_ACC: 62.350000
2025-11-03 15:18:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-03 15:18:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, waiting for 3 jobs
2025-11-03 15:18:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, new result: VAL_ACC: 62.680000
2025-11-03 15:18:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-03 15:18:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, waiting for 2 jobs
2025-11-03 15:19:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, new result: VAL_ACC: 60.750000
2025-11-03 15:19:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-03 15:19:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, waiting for 1 job
2025-11-03 15:20:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, new result: VAL_ACC: 61.600000
2025-11-03 15:20:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, waiting for 1 job, finished 1 job
2025-11-03 15:21:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #1/20
2025-11-03 15:21:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #2/20
2025-11-03 15:21:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #3/20
2025-11-03 15:21:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #4/20
2025-11-03 15:21:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #5/20
2025-11-03 15:21:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #6/20
2025-11-03 15:21:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #7/20
2025-11-03 15:21:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #8/20
2025-11-03 15:21:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #9/20
2025-11-03 15:21:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #10/20
2025-11-03 15:21:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #11/20
2025-11-03 15:21:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #12/20
2025-11-03 15:21:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #13/20
2025-11-03 15:21:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #14/20
2025-11-03 15:21:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #15/20
2025-11-03 15:21:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #16/20
2025-11-03 15:21:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #17/20
2025-11-03 15:21:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #18/20
2025-11-03 15:21:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #19/20
2025-11-03 15:21:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #20/20
2025-11-03 15:21:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, requested 20 jobs, got 20, 3.06 s/job
2025-11-03 15:21:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #1/20 start
2025-11-03 15:21:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #2/20 start
2025-11-03 15:21:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #3/20 start
2025-11-03 15:21:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #4/20 start
2025-11-03 15:21:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #5/20 start
2025-11-03 15:21:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #6/20 start
2025-11-03 15:21:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #7/20 start
2025-11-03 15:21:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #8/20 start
2025-11-03 15:21:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #9/20 start
2025-11-03 15:21:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #10/20 start
2025-11-03 15:21:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #11/20 start
2025-11-03 15:21:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #12/20 start
2025-11-03 15:21:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #13/20 start
2025-11-03 15:21:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #14/20 start
2025-11-03 15:21:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #15/20 start
2025-11-03 15:21:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #16/20 start
2025-11-03 15:21:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #17/20 start
2025-11-03 15:21:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #18/20 start
2025-11-03 15:21:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #19/20 start
2025-11-03 15:21:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #20/20 start
2025-11-03 15:21:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, starting new job
2025-11-03 15:21:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, unknown 2 = ∑2/20, started new job
2025-11-03 15:21:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, unknown 2 = ∑2/20, starting new job
2025-11-03 15:21:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, pending/unknown 2/1 = ∑3/20, started new job
2025-11-03 15:21:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, pending/unknown 2/1 = ∑3/20, starting new job
2025-11-03 15:21:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 3/1 = ∑4/20, started new job
2025-11-03 15:21:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 3/1 = ∑4/20, starting new job
2025-11-03 15:22:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 4/1 = ∑5/20, started new job
2025-11-03 15:22:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 5/1 = ∑6/20, started new job
2025-11-03 15:22:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 5/1/1 = ∑7/20, started new job
2025-11-03 15:22:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 5/2/1 = ∑8/20, started new job
2025-11-03 15:22:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 5/3/1 = ∑9/20, started new job
2025-11-03 15:22:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 9/1 = ∑10/20, started new job
2025-11-03 15:22:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 9/1/1 = ∑11/20, started new job
2025-11-03 15:22:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 9/2/1 = ∑12/20, started new job
2025-11-03 15:22:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 9/3/1 = ∑13/20, started new job
2025-11-03 15:23:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 13/1 = ∑14/20, started new job
2025-11-03 15:23:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 14/1 = ∑15/20, started new job
2025-11-03 15:23:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 15/1 = ∑16/20, started new job
2025-11-03 15:23:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending 15/1 = ∑16/20, waiting for 16 jobs
2025-11-03 15:23:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 16 = ∑16/20, waiting for 16 jobs
2025-11-03 15:35:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 16 = ∑16/20, new result: VAL_ACC: 69.780000
2025-11-03 15:35:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-03 15:35:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 15 = ∑15/20, waiting for 15 jobs
2025-11-03 15:39:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 15 = ∑15/20, new result: VAL_ACC: 70.220000
2025-11-03 15:39:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-03 15:39:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 14 = ∑14/20, waiting for 14 jobs
2025-11-03 15:39:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 14 = ∑14/20, new result: VAL_ACC: 69.050000
2025-11-03 15:39:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-03 15:39:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, waiting for 13 jobs
2025-11-03 15:44:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, new result: VAL_ACC: 70.770000
2025-11-03 15:44:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-03 15:44:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 12 = ∑12/20, waiting for 12 jobs
2025-11-03 15:46:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 12 = ∑12/20, new result: VAL_ACC: 70.690000
2025-11-03 15:46:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-03 15:46:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, waiting for 11 jobs
2025-11-03 15:53:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, new result: VAL_ACC: 68.690000
2025-11-03 15:53:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-03 15:53:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 10 = ∑10/20, waiting for 10 jobs
2025-11-03 15:54:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 10 = ∑10/20, new result: VAL_ACC: 69.630000
2025-11-03 15:54:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-03 15:54:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 9 = ∑9/20, waiting for 9 jobs
2025-11-03 15:54:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 9 = ∑9/20, new result: VAL_ACC: 69.930000
2025-11-03 15:54:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-03 15:54:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, waiting for 8 jobs
2025-11-03 15:54:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, new result: VAL_ACC: 69.630000
2025-11-03 15:54:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-03 15:54:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 7 = ∑7/20, waiting for 7 jobs
2025-11-03 15:54:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 7 = ∑7/20, new result: VAL_ACC: 70.900000
2025-11-03 15:54:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-03 15:54:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, waiting for 6 jobs
2025-11-03 15:54:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, new result: VAL_ACC: 70.340000
2025-11-03 15:54:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-03 15:54:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, waiting for 5 jobs
2025-11-03 15:55:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, new result: VAL_ACC: 69.720000
2025-11-03 15:55:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-03 15:55:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, waiting for 4 jobs
2025-11-03 15:55:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, new result: VAL_ACC: 70.160000
2025-11-03 15:55:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-03 15:55:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, waiting for 3 jobs
2025-11-03 15:56:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, new result: VAL_ACC: 68.950000
2025-11-03 15:56:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-03 15:56:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, waiting for 2 jobs
2025-11-03 15:56:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, new result: VAL_ACC: 69.560000
2025-11-03 15:56:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-03 15:56:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, waiting for 1 job
2025-11-03 16:28:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, new result: VAL_ACC: 64.680000
2025-11-03 16:29:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, waiting for 1 job, finished 1 job
2025-11-03 16:30:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #1/20
2025-11-03 16:30:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #2/20
2025-11-03 16:30:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #3/20
2025-11-03 16:30:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #4/20
2025-11-03 16:30:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #5/20
2025-11-03 16:30:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #6/20
2025-11-03 16:30:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #7/20
2025-11-03 16:30:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #8/20
2025-11-03 16:30:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #9/20
2025-11-03 16:30:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #10/20
2025-11-03 16:30:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #11/20
2025-11-03 16:30:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #12/20
2025-11-03 16:30:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #13/20
2025-11-03 16:30:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #14/20
2025-11-03 16:30:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #15/20
2025-11-03 16:30:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #16/20
2025-11-03 16:30:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #17/20
2025-11-03 16:30:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #18/20
2025-11-03 16:30:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #19/20
2025-11-03 16:30:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #20/20
2025-11-03 16:30:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, requested 20 jobs, got 20, 4.15 s/job
2025-11-03 16:30:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #1/20 start
2025-11-03 16:30:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #2/20 start
2025-11-03 16:30:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #3/20 start
2025-11-03 16:30:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #4/20 start
2025-11-03 16:30:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #5/20 start
2025-11-03 16:30:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #6/20 start
2025-11-03 16:30:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #7/20 start
2025-11-03 16:30:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #8/20 start
2025-11-03 16:30:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #9/20 start
2025-11-03 16:30:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #10/20 start
2025-11-03 16:30:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #11/20 start
2025-11-03 16:30:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #12/20 start
2025-11-03 16:30:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #13/20 start
2025-11-03 16:30:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #14/20 start
2025-11-03 16:30:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #15/20 start
2025-11-03 16:30:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #16/20 start
2025-11-03 16:30:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #17/20 start
2025-11-03 16:30:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #18/20 start
2025-11-03 16:30:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #19/20 start
2025-11-03 16:30:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #20/20 start
2025-11-03 16:30:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, starting new job
2025-11-03 16:31:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, unknown 2 = ∑2/20, started new job
2025-11-03 16:31:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, unknown 2 = ∑2/20, starting new job
2025-11-03 16:31:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, pending/unknown 2/1 = ∑3/20, started new job
2025-11-03 16:31:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, pending/unknown 2/1 = ∑3/20, starting new job
2025-11-03 16:31:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 3/2 = ∑5/20, started new job
2025-11-03 16:31:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 3/2 = ∑5/20, starting new job
2025-11-03 16:31:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 5/2 = ∑7/20, started new job
2025-11-03 16:31:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 5/2/2 = ∑9/20, started new job
2025-11-03 16:31:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 5/4/1 = ∑10/20, started new job
2025-11-03 16:31:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 5/5/1 = ∑11/20, started new job
2025-11-03 16:31:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 11/1 = ∑12/20, started new job
2025-11-03 16:31:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 12/1 = ∑13/20, started new job
2025-11-03 16:31:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 12/1/1 = ∑14/20, started new job
2025-11-03 16:31:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 12/2/2 = ∑16/20, started new job
2025-11-03 16:32:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 16/1 = ∑17/20, started new job
2025-11-03 16:32:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 16/1/1 = ∑18/20, started new job
2025-11-03 16:32:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 16/2/2 = ∑20/20, started new job
2025-11-03 16:32:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 16/2/2 = ∑20/20, waiting for 20 jobs
2025-11-03 16:32:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending 18/2 = ∑20/20, waiting for 20 jobs
2025-11-03 16:32:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 20 = ∑20/20, waiting for 20 jobs
2025-11-03 16:47:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 20 = ∑20/20, new result: VAL_ACC: 69.060000
2025-11-03 16:48:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-03 16:48:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 19 = ∑19/20, waiting for 19 jobs
2025-11-03 16:52:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 19 = ∑19/20, new result: VAL_ACC: 69.810000
2025-11-03 16:52:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-03 16:52:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 18 = ∑18/20, waiting for 18 jobs
2025-11-03 16:59:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 18 = ∑18/20, new result: VAL_ACC: 69.520000
2025-11-03 16:59:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-03 16:59:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, waiting for 17 jobs
2025-11-03 17:06:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, new result: VAL_ACC: 68.720000
2025-11-03 17:06:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-03 17:06:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 16 = ∑16/20, waiting for 16 jobs
2025-11-03 17:10:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 16 = ∑16/20, new result: VAL_ACC: 69.510000
2025-11-03 17:10:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-03 17:10:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 15 = ∑15/20, waiting for 15 jobs
2025-11-03 17:10:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 15 = ∑15/20, new result: VAL_ACC: 69.540000
2025-11-03 17:10:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-03 17:10:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 14 = ∑14/20, waiting for 14 jobs
2025-11-03 17:16:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 14 = ∑14/20, new result: VAL_ACC: 70.120000
2025-11-03 17:16:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-03 17:16:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, waiting for 13 jobs
2025-11-03 17:16:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, new result: VAL_ACC: 69.640000
2025-11-03 17:16:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-03 17:16:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 12 = ∑12/20, waiting for 12 jobs
2025-11-03 17:16:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 12 = ∑12/20, new result: VAL_ACC: 70.070000
2025-11-03 17:16:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-03 17:16:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, waiting for 11 jobs
2025-11-03 17:17:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, new result: VAL_ACC: 69.890000
2025-11-03 17:17:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-03 17:17:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 10 = ∑10/20, waiting for 10 jobs
2025-11-03 17:21:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 10 = ∑10/20, new result: VAL_ACC: 69.900000
2025-11-03 17:21:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-03 17:21:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 9 = ∑9/20, waiting for 9 jobs
2025-11-03 17:25:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 9 = ∑9/20, new result: VAL_ACC: 69.360000
2025-11-03 17:25:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-03 17:25:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, waiting for 8 jobs
2025-11-03 17:25:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, new result: VAL_ACC: 69.300000
2025-11-03 17:25:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-03 17:25:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 7 = ∑7/20, waiting for 7 jobs
2025-11-03 17:25:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 7 = ∑7/20, new result: VAL_ACC: 69.540000
2025-11-03 17:25:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-03 17:25:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, waiting for 6 jobs
2025-11-03 17:25:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, new result: VAL_ACC: 69.260000
2025-11-03 17:26:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-03 17:26:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, waiting for 5 jobs
2025-11-03 17:26:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 5 = ∑5/20, new result: VAL_ACC: 69.390000
2025-11-03 17:26:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-03 17:26:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, waiting for 4 jobs
2025-11-03 17:26:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 4 = ∑4/20, new result: VAL_ACC: 69.670000
2025-11-03 17:26:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-03 17:26:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, waiting for 3 jobs
2025-11-03 17:26:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 3 = ∑3/20, new result: VAL_ACC: 68.930000
2025-11-03 17:26:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-03 17:26:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, waiting for 2 jobs
2025-11-03 17:26:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 2 = ∑2/20, new result: VAL_ACC: 69.030000
2025-11-03 17:26:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-03 17:26:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, waiting for 1 job
2025-11-03 17:26:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 1 = ∑1/20, new result: VAL_ACC: 69.730000
2025-11-03 17:26:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, waiting for 1 job, finished 1 job
2025-11-03 17:28:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #1/20
2025-11-03 17:28:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #2/20
2025-11-03 17:28:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #3/20
2025-11-03 17:28:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #4/20
2025-11-03 17:28:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #5/20
2025-11-03 17:28:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #6/20
2025-11-03 17:28:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #7/20
2025-11-03 17:28:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #8/20
2025-11-03 17:28:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #9/20
2025-11-03 17:28:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #10/20
2025-11-03 17:28:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #11/20
2025-11-03 17:28:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #12/20
2025-11-03 17:28:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #13/20
2025-11-03 17:28:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #14/20
2025-11-03 17:28:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #15/20
2025-11-03 17:28:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #16/20
2025-11-03 17:28:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #17/20
2025-11-03 17:28:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #18/20
2025-11-03 17:28:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #19/20
2025-11-03 17:28:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, getting new HP set #20/20
2025-11-03 17:28:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, requested 20 jobs, got 20, 5.10 s/job
2025-11-03 17:28:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #1/20 start
2025-11-03 17:28:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #2/20 start
2025-11-03 17:28:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #3/20 start
2025-11-03 17:28:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #4/20 start
2025-11-03 17:28:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #5/20 start
2025-11-03 17:28:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #6/20 start
2025-11-03 17:28:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #7/20 start
2025-11-03 17:28:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #8/20 start
2025-11-03 17:28:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #9/20 start
2025-11-03 17:28:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #10/20 start
2025-11-03 17:28:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #11/20 start
2025-11-03 17:28:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #12/20 start
2025-11-03 17:28:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #13/20 start
2025-11-03 17:28:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #14/20 start
2025-11-03 17:28:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #15/20 start
2025-11-03 17:28:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #16/20 start
2025-11-03 17:28:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #17/20 start
2025-11-03 17:29:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #18/20 start
2025-11-03 17:29:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #19/20 start
2025-11-03 17:29:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, eval #20/20 start
2025-11-03 17:29:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, starting new job
2025-11-03 17:29:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, unknown 3 = ∑3/20, started new job
2025-11-03 17:29:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, unknown 3 = ∑3/20, starting new job
2025-11-03 17:29:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 3/1 = ∑4/20, started new job
2025-11-03 17:29:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 3/1 = ∑4/20, starting new job
2025-11-03 17:29:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 3/2 = ∑5/20, started new job
2025-11-03 17:29:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 5/1 = ∑6/20, started new job
2025-11-03 17:29:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 5/1/1 = ∑7/20, started new job
2025-11-03 17:29:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 5/2/3 = ∑10/20, started new job
2025-11-03 17:29:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 10/2 = ∑12/20, started new job
2025-11-03 17:29:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 12/1 = ∑13/20, started new job
2025-11-03 17:29:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 12/1/1 = ∑14/20, started new job
2025-11-03 17:29:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 12/1/2 = ∑15/20, started new job
2025-11-03 17:29:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 12/3/1 = ∑16/20, started new job
2025-11-03 17:30:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 16/1 = ∑17/20, started new job
2025-11-03 17:30:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending/unknown 16/1/1 = ∑18/20, started new job
2025-11-03 17:30:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 18/2 = ∑20/20, started new job
2025-11-03 17:30:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/unknown 18/2 = ∑20/20, waiting for 20 jobs
2025-11-03 17:30:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running/pending 18/2 = ∑20/20, waiting for 20 jobs
2025-11-03 17:30:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 20 = ∑20/20, waiting for 20 jobs
2025-11-03 17:49:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 20 = ∑20/20, new result: VAL_ACC: 68.450000
2025-11-03 17:49:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-03 17:49:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 19 = ∑19/20, waiting for 19 jobs
2025-11-03 17:50:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 19 = ∑19/20, new result: VAL_ACC: 69.940000
2025-11-03 17:50:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-03 17:50:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 18 = ∑18/20, waiting for 18 jobs
2025-11-03 17:51:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 18 = ∑18/20, new result: VAL_ACC: 69.130000
2025-11-03 17:51:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-03 17:51:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, waiting for 17 jobs
2025-11-03 17:51:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 17 = ∑17/20, new result: VAL_ACC: 68.770000
2025-11-03 17:51:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-03 17:51:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 16 = ∑16/20, waiting for 16 jobs
2025-11-03 17:52:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 16 = ∑16/20, new result: VAL_ACC: 69.730000
2025-11-03 17:52:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-03 17:52:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 15 = ∑15/20, waiting for 15 jobs
2025-11-03 17:56:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 15 = ∑15/20, new result: VAL_ACC: 69.970000
2025-11-03 17:57:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-03 17:57:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 14 = ∑14/20, waiting for 14 jobs
2025-11-03 17:57:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 14 = ∑14/20, new result: VAL_ACC: 70.270000
2025-11-03 17:57:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-03 17:57:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, waiting for 13 jobs
2025-11-03 17:58:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 13 = ∑13/20, new result: VAL_ACC: 70.290000
2025-11-03 17:59:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-03 17:59:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 12 = ∑12/20, waiting for 12 jobs
2025-11-03 18:04:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 12 = ∑12/20, new result: VAL_ACC: 69.780000
2025-11-03 18:04:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-03 18:04:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, waiting for 11 jobs
2025-11-03 18:04:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 11 = ∑11/20, new result: VAL_ACC: 66.680000
2025-11-03 18:04:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-03 18:04:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 10 = ∑10/20, waiting for 10 jobs
2025-11-03 18:06:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 10 = ∑10/20, new result: VAL_ACC: 70.160000
2025-11-03 18:06:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-03 18:06:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 9 = ∑9/20, waiting for 9 jobs
2025-11-03 18:10:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 9 = ∑9/20, new result: VAL_ACC: 70.900000
2025-11-03 18:10:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-03 18:10:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, waiting for 8 jobs
2025-11-03 18:11:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 8 = ∑8/20, new result: VAL_ACC: 69.450000
2025-11-03 18:11:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-03 18:11:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 7 = ∑7/20, waiting for 7 jobs
2025-11-03 18:16:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 7 = ∑7/20, new result: VAL_ACC: 69.460000
2025-11-03 18:16:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-03 18:16:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, waiting for 6 jobs
2025-11-03 18:17:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71, running 6 = ∑6/20, new result: VAL_ACC: 71.150000
2025-11-03 18:17:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-03 18:17:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 5 = ∑5/20, waiting for 5 jobs
2025-11-03 18:19:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 5 = ∑5/20, new result: VAL_ACC: 70.630000
2025-11-03 18:20:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-03 18:20:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 4 = ∑4/20, waiting for 4 jobs
2025-11-03 18:21:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 4 = ∑4/20, new result: VAL_ACC: 70.470000
2025-11-03 18:22:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-03 18:22:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 3 = ∑3/20, waiting for 3 jobs
2025-11-03 18:26:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 3 = ∑3/20, new result: VAL_ACC: 70.640000
2025-11-03 18:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-03 18:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 2 = ∑2/20, waiting for 2 jobs
2025-11-03 18:37:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 2 = ∑2/20, new result: VAL_ACC: 70.570000
2025-11-03 18:37:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-03 18:37:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 1 = ∑1/20, waiting for 1 job
2025-11-03 18:37:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 1 = ∑1/20, new result: VAL_ACC: 68.720000
2025-11-03 18:38:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, waiting for 1 job, finished 1 job
2025-11-03 18:40:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #1/20
2025-11-03 18:40:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #2/20
2025-11-03 18:40:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #3/20
2025-11-03 18:40:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #4/20
2025-11-03 18:40:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #5/20
2025-11-03 18:40:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #6/20
2025-11-03 18:40:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #7/20
2025-11-03 18:40:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #8/20
2025-11-03 18:40:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #9/20
2025-11-03 18:40:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #10/20
2025-11-03 18:40:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #11/20
2025-11-03 18:40:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #12/20
2025-11-03 18:40:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #13/20
2025-11-03 18:40:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #14/20
2025-11-03 18:40:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #15/20
2025-11-03 18:40:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #16/20
2025-11-03 18:40:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #17/20
2025-11-03 18:40:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #18/20
2025-11-03 18:40:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #19/20
2025-11-03 18:40:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, getting new HP set #20/20
2025-11-03 18:40:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, requested 20 jobs, got 20, 6.32 s/job
2025-11-03 18:40:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #1/20 start
2025-11-03 18:40:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #2/20 start
2025-11-03 18:40:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #3/20 start
2025-11-03 18:40:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #4/20 start
2025-11-03 18:40:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #5/20 start
2025-11-03 18:40:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #6/20 start
2025-11-03 18:40:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #7/20 start
2025-11-03 18:40:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #8/20 start
2025-11-03 18:40:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #9/20 start
2025-11-03 18:40:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #10/20 start
2025-11-03 18:40:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #11/20 start
2025-11-03 18:40:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #12/20 start
2025-11-03 18:40:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #13/20 start
2025-11-03 18:40:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #14/20 start
2025-11-03 18:40:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #15/20 start
2025-11-03 18:40:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #16/20 start
2025-11-03 18:40:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #17/20 start
2025-11-03 18:40:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #18/20 start
2025-11-03 18:40:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #19/20 start
2025-11-03 18:40:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, eval #20/20 start
2025-11-03 18:40:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, starting new job
2025-11-03 18:40:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, pending 3 = ∑3/20, started new job
2025-11-03 18:40:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, pending 3 = ∑3/20, starting new job
2025-11-03 18:40:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/unknown 3/1 = ∑4/20, started new job
2025-11-03 18:40:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/unknown 3/1 = ∑4/20, starting new job
2025-11-03 18:40:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/pending/unknown 3/1/2 = ∑6/20, started new job
2025-11-03 18:41:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/unknown 6/1 = ∑7/20, started new job
2025-11-03 18:41:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/pending/unknown 6/1/1 = ∑8/20, started new job
2025-11-03 18:41:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/unknown 8/2 = ∑10/20, started new job
2025-11-03 18:41:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/unknown 10/1 = ∑11/20, started new job
2025-11-03 18:41:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/pending/unknown 10/1/2 = ∑13/20, started new job
2025-11-03 18:41:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/pending/unknown 10/3/3 = ∑16/20, started new job
2025-11-03 18:41:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/unknown 16/1 = ∑17/20, started new job
2025-11-03 18:41:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/unknown 17/1 = ∑18/20, started new job
2025-11-03 18:42:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/unknown 18/1 = ∑19/20, started new job
2025-11-03 18:42:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/pending/unknown 18/1/1 = ∑20/20, started new job
2025-11-03 18:42:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running/pending/unknown 18/1/1 = ∑20/20, waiting for 20 jobs
2025-11-03 18:42:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 20 = ∑20/20, waiting for 20 jobs
2025-11-03 19:20:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 20 = ∑20/20, new result: VAL_ACC: 69.700000
2025-11-03 19:20:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-03 19:20:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 19 = ∑19/20, waiting for 19 jobs
2025-11-03 19:21:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 19 = ∑19/20, new result: VAL_ACC: 69.680000
2025-11-03 19:21:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-03 19:21:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 18 = ∑18/20, waiting for 18 jobs
2025-11-03 19:24:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 18 = ∑18/20, new result: VAL_ACC: 68.590000
2025-11-03 19:24:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-03 19:24:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 17 = ∑17/20, waiting for 17 jobs
2025-11-03 19:24:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 17 = ∑17/20, new result: VAL_ACC: 70.960000
2025-11-03 19:25:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-03 19:25:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 16 = ∑16/20, waiting for 16 jobs
2025-11-03 19:25:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 16 = ∑16/20, new result: VAL_ACC: 70.590000
2025-11-03 19:25:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-03 19:25:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 15 = ∑15/20, waiting for 15 jobs
2025-11-03 19:25:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 15 = ∑15/20, new result: VAL_ACC: 70.340000
2025-11-03 19:25:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-03 19:25:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 14 = ∑14/20, waiting for 14 jobs
2025-11-03 19:26:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.15, running 14 = ∑14/20, new result: VAL_ACC: 71.350000
2025-11-03 19:26:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.35, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-03 19:26:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.35, running 13 = ∑13/20, waiting for 13 jobs
2025-11-03 19:26:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.35, running 13 = ∑13/20, new result: VAL_ACC: 70.390000
2025-11-03 19:26:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.35, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-03 19:26:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.35, running 12 = ∑12/20, waiting for 12 jobs
2025-11-03 19:27:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.35, running 12 = ∑12/20, new result: VAL_ACC: 70.930000
2025-11-03 19:27:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.35, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-03 19:27:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.35, running 11 = ∑11/20, waiting for 11 jobs
2025-11-03 19:28:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.35, running 11 = ∑11/20, new result: VAL_ACC: 71.130000
2025-11-03 19:28:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.35, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-03 19:28:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.35, running 10 = ∑10/20, waiting for 10 jobs
2025-11-03 19:28:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 71.35, running 10 = ∑10/20, new result: VAL_ACC: 72.140000
2025-11-03 19:28:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-03 19:28:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 9 = ∑9/20, waiting for 9 jobs
2025-11-03 19:28:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 9 = ∑9/20, new result: VAL_ACC: 70.800000
2025-11-03 19:29:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-03 19:29:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 8 = ∑8/20, waiting for 8 jobs
2025-11-03 19:33:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 8 = ∑8/20, new result: VAL_ACC: 71.030000
2025-11-03 19:33:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-03 19:33:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 7 = ∑7/20, waiting for 7 jobs
2025-11-03 19:33:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 7 = ∑7/20, new result: VAL_ACC: 70.930000
2025-11-03 19:33:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-03 19:33:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 6 = ∑6/20, waiting for 6 jobs
2025-11-03 19:35:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 6 = ∑6/20, new result: VAL_ACC: 71.730000
2025-11-03 19:35:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-03 19:35:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 5 = ∑5/20, waiting for 5 jobs
2025-11-03 19:35:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 5 = ∑5/20, new result: VAL_ACC: 71.550000
2025-11-03 19:35:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-03 19:35:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 4 = ∑4/20, waiting for 4 jobs
2025-11-03 19:35:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 4 = ∑4/20, new result: VAL_ACC: 71.360000
2025-11-03 19:36:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 2 = ∑2/20, waiting for 4 jobs, finished 2 jobs
2025-11-03 19:36:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 2 = ∑2/20, waiting for 2 jobs
2025-11-03 19:36:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 2 = ∑2/20, new result: VAL_ACC: 71.240000
2025-11-03 19:36:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-03 19:36:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 1 = ∑1/20, waiting for 1 job
2025-11-03 19:37:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.14, running 1 = ∑1/20, new result: VAL_ACC: 72.430000
2025-11-03 19:38:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, waiting for 1 job, finished 1 job
2025-11-03 19:40:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #1/20
2025-11-03 19:40:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #2/20
2025-11-03 19:40:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #3/20
2025-11-03 19:40:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #4/20
2025-11-03 19:40:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #5/20
2025-11-03 19:40:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #6/20
2025-11-03 19:40:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #7/20
2025-11-03 19:40:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #8/20
2025-11-03 19:40:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #9/20
2025-11-03 19:40:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #10/20
2025-11-03 19:40:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #11/20
2025-11-03 19:40:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #12/20
2025-11-03 19:40:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #13/20
2025-11-03 19:40:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #14/20
2025-11-03 19:40:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #15/20
2025-11-03 19:40:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #16/20
2025-11-03 19:40:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #17/20
2025-11-03 19:40:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #18/20
2025-11-03 19:40:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #19/20
2025-11-03 19:40:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #20/20
2025-11-03 19:40:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, requested 20 jobs, got 20, 7.22 s/job
2025-11-03 19:40:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #1/20 start
2025-11-03 19:40:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #2/20 start
2025-11-03 19:40:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #3/20 start
2025-11-03 19:40:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #4/20 start
2025-11-03 19:40:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #5/20 start
2025-11-03 19:40:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #6/20 start
2025-11-03 19:40:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #7/20 start
2025-11-03 19:40:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #8/20 start
2025-11-03 19:40:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #9/20 start
2025-11-03 19:40:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #10/20 start
2025-11-03 19:40:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #11/20 start
2025-11-03 19:40:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #12/20 start
2025-11-03 19:40:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #13/20 start
2025-11-03 19:40:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #14/20 start
2025-11-03 19:40:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #15/20 start
2025-11-03 19:40:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #16/20 start
2025-11-03 19:40:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #17/20 start
2025-11-03 19:40:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #18/20 start
2025-11-03 19:40:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #19/20 start
2025-11-03 19:40:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #20/20 start
2025-11-03 19:41:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, starting new job
2025-11-03 19:41:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 3 = ∑3/20, started new job
2025-11-03 19:41:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 3 = ∑3/20, starting new job
2025-11-03 19:41:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/2 = ∑5/20, started new job
2025-11-03 19:41:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/2 = ∑5/20, starting new job
2025-11-03 19:41:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/3 = ∑6/20, started new job
2025-11-03 19:41:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 3/3/3 = ∑9/20, started new job
2025-11-03 19:41:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 3/6/3 = ∑12/20, started new job
2025-11-03 19:41:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown/pending 12/2/1 = ∑15/20, started new job
2025-11-03 19:41:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 13/2/3 = ∑18/20, started new job
2025-11-03 19:41:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 18/2 = ∑20/20, started new job
2025-11-03 19:41:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 18/2 = ∑20/20, waiting for 20 jobs
2025-11-03 19:41:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 18/2 = ∑20/20, waiting for 20 jobs
2025-11-03 19:41:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, waiting for 20 jobs
2025-11-03 19:54:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, new result: VAL_ACC: 69.620000
2025-11-03 19:54:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-03 19:54:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 19 jobs
2025-11-03 19:58:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, new result: VAL_ACC: 70.430000
2025-11-03 19:58:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-03 19:58:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 18 jobs
2025-11-03 20:05:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, new result: VAL_ACC: 70.420000
2025-11-03 20:06:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-03 20:06:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 17 jobs
2025-11-03 20:08:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, new result: VAL_ACC: 70.090000
2025-11-03 20:08:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-03 20:08:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 16 jobs
2025-11-03 20:16:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, new result: VAL_ACC: 69.440000
2025-11-03 20:16:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-03 20:16:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 15 jobs
2025-11-03 20:16:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 69.800000
2025-11-03 20:16:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-03 20:16:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, waiting for 14 jobs
2025-11-03 20:17:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, new result: VAL_ACC: 69.620000
2025-11-03 20:17:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-03 20:17:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 13 jobs
2025-11-03 20:18:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, new result: VAL_ACC: 70.990000
2025-11-03 20:18:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-03 20:18:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 12 jobs
2025-11-03 20:20:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, new result: VAL_ACC: 69.890000
2025-11-03 20:20:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-03 20:20:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 11 jobs
2025-11-03 20:21:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, new result: VAL_ACC: 70.330000
2025-11-03 20:21:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-03 20:21:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 10 jobs
2025-11-03 20:25:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, new result: VAL_ACC: 69.850000
2025-11-03 20:25:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-03 20:25:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 9 jobs
2025-11-03 20:25:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 70.520000
2025-11-03 20:26:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-03 20:26:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, waiting for 8 jobs
2025-11-03 20:26:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, new result: VAL_ACC: 69.910000
2025-11-03 20:26:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-03 20:26:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 7 jobs
2025-11-03 20:26:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, new result: VAL_ACC: 70.830000
2025-11-03 20:26:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, new result: VAL_ACC: 70.770000
2025-11-03 20:26:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 7 jobs, finished 2 jobs
2025-11-03 20:26:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 5 jobs
2025-11-03 20:26:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, new result: VAL_ACC: 70.230000
2025-11-03 20:27:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-03 20:27:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, waiting for 4 jobs
2025-11-03 20:31:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, new result: VAL_ACC: 70.710000
2025-11-03 20:31:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-03 20:31:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 3 jobs
2025-11-03 20:32:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, new result: VAL_ACC: 70.440000
2025-11-03 20:32:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-03 20:32:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 2 jobs
2025-11-03 20:34:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, new result: VAL_ACC: 70.340000
2025-11-03 20:34:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-03 20:34:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 1 job
2025-11-03 20:34:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, new result: VAL_ACC: 70.650000
2025-11-03 20:35:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, waiting for 1 job, finished 1 job
2025-11-03 20:36:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #1/20
2025-11-03 20:36:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #2/20
2025-11-03 20:36:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #3/20
2025-11-03 20:36:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #4/20
2025-11-03 20:36:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #5/20
2025-11-03 20:36:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #6/20
2025-11-03 20:36:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #7/20
2025-11-03 20:36:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #8/20
2025-11-03 20:36:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #9/20
2025-11-03 20:36:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #10/20
2025-11-03 20:36:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #11/20
2025-11-03 20:36:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #12/20
2025-11-03 20:36:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #13/20
2025-11-03 20:36:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #14/20
2025-11-03 20:36:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #15/20
2025-11-03 20:36:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #16/20
2025-11-03 20:36:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #17/20
2025-11-03 20:36:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #18/20
2025-11-03 20:36:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #19/20
2025-11-03 20:36:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #20/20
2025-11-03 20:36:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, requested 20 jobs, got 20, 5.83 s/job
2025-11-03 20:37:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #1/20 start
2025-11-03 20:37:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #2/20 start
2025-11-03 20:37:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #3/20 start
2025-11-03 20:37:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #4/20 start
2025-11-03 20:37:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #5/20 start
2025-11-03 20:37:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #6/20 start
2025-11-03 20:37:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #7/20 start
2025-11-03 20:37:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #8/20 start
2025-11-03 20:37:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #9/20 start
2025-11-03 20:37:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #10/20 start
2025-11-03 20:37:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #11/20 start
2025-11-03 20:37:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #12/20 start
2025-11-03 20:37:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #13/20 start
2025-11-03 20:37:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #14/20 start
2025-11-03 20:37:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #15/20 start
2025-11-03 20:37:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #16/20 start
2025-11-03 20:37:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #17/20 start
2025-11-03 20:37:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #18/20 start
2025-11-03 20:37:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #19/20 start
2025-11-03 20:37:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #20/20 start
2025-11-03 20:37:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, starting new job
2025-11-03 20:37:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 3 = ∑3/20, started new job
2025-11-03 20:37:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 3 = ∑3/20, starting new job
2025-11-03 20:37:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 3/3 = ∑6/20, started new job
2025-11-03 20:37:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 3/3 = ∑6/20, starting new job
2025-11-03 20:37:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 6/2 = ∑8/20, started new job
2025-11-03 20:37:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 6/2/2 = ∑10/20, started new job
2025-11-03 20:37:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 6/2/3 = ∑11/20, started new job
2025-11-03 20:37:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 11/1 = ∑12/20, started new job
2025-11-03 20:37:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 12/1 = ∑13/20, started new job
2025-11-03 20:37:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 12/1/1 = ∑14/20, started new job
2025-11-03 20:37:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 12/1/2 = ∑15/20, started new job
2025-11-03 20:38:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 15/3 = ∑18/20, started new job
2025-11-03 20:38:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 18/2 = ∑20/20, started new job
2025-11-03 20:38:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 18/2 = ∑20/20, waiting for 20 jobs
2025-11-03 20:38:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, waiting for 20 jobs
2025-11-03 20:54:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, new result: VAL_ACC: 68.520000
2025-11-03 20:55:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-03 20:55:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 19 jobs
2025-11-03 21:02:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, new result: VAL_ACC: 68.220000
2025-11-03 21:03:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-03 21:03:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 18 jobs
2025-11-03 21:11:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, new result: VAL_ACC: 68.580000
2025-11-03 21:11:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-03 21:11:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 17 jobs
2025-11-03 21:12:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/completed 16/1 = ∑17/20, new result: VAL_ACC: 68.760000
2025-11-03 21:12:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-03 21:12:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 16 jobs
2025-11-03 21:12:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, new result: VAL_ACC: 68.630000
2025-11-03 21:12:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-03 21:12:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 15 jobs
2025-11-03 21:14:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 68.340000
2025-11-03 21:15:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-03 21:15:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, waiting for 14 jobs
2025-11-03 21:15:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, new result: VAL_ACC: 69.600000
2025-11-03 21:15:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-03 21:15:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 13 jobs
2025-11-03 21:17:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, new result: VAL_ACC: 68.490000
2025-11-03 21:17:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-03 21:17:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 12 jobs
2025-11-03 21:18:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, new result: VAL_ACC: 68.720000
2025-11-03 21:18:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-03 21:18:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 11 jobs
2025-11-03 21:19:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, new result: VAL_ACC: 69.090000
2025-11-03 21:20:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-03 21:20:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 10 jobs
2025-11-03 21:20:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, new result: VAL_ACC: 68.990000
2025-11-03 21:20:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-03 21:20:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 9 jobs
2025-11-03 21:22:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 70.120000
2025-11-03 21:22:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-03 21:22:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, waiting for 8 jobs
2025-11-03 21:23:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, new result: VAL_ACC: 68.960000
2025-11-03 21:24:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-03 21:24:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 7 jobs
2025-11-03 21:24:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, new result: VAL_ACC: 69.070000
2025-11-03 21:24:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-03 21:24:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, waiting for 6 jobs
2025-11-03 21:24:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, new result: VAL_ACC: 69.480000
2025-11-03 21:24:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-03 21:24:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 5 jobs
2025-11-03 21:24:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, new result: VAL_ACC: 69.050000
2025-11-03 21:24:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, new result: VAL_ACC: 69.110000
2025-11-03 21:24:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, new result: VAL_ACC: 69.080000
2025-11-03 21:25:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 5 jobs, finished 3 jobs
2025-11-03 21:25:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 2 jobs
2025-11-03 21:25:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, new result: VAL_ACC: 69.700000
2025-11-03 21:25:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-03 21:25:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 1 job
2025-11-03 21:25:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, new result: VAL_ACC: 69.110000
2025-11-03 21:25:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, waiting for 1 job, finished 1 job
2025-11-03 21:27:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #1/20
2025-11-03 21:27:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #2/20
2025-11-03 21:27:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #3/20
2025-11-03 21:27:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #4/20
2025-11-03 21:27:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #5/20
2025-11-03 21:27:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #6/20
2025-11-03 21:27:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #7/20
2025-11-03 21:27:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #8/20
2025-11-03 21:27:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #9/20
2025-11-03 21:27:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #10/20
2025-11-03 21:27:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #11/20
2025-11-03 21:27:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #12/20
2025-11-03 21:27:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #13/20
2025-11-03 21:27:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #14/20
2025-11-03 21:27:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #15/20
2025-11-03 21:27:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #16/20
2025-11-03 21:27:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #17/20
2025-11-03 21:27:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #18/20
2025-11-03 21:27:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #19/20
2025-11-03 21:27:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #20/20
2025-11-03 21:27:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, requested 20 jobs, got 20, 6.90 s/job
2025-11-03 21:27:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #1/20 start
2025-11-03 21:27:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #2/20 start
2025-11-03 21:27:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #3/20 start
2025-11-03 21:27:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #4/20 start
2025-11-03 21:27:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #5/20 start
2025-11-03 21:27:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #6/20 start
2025-11-03 21:28:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #7/20 start
2025-11-03 21:28:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #8/20 start
2025-11-03 21:28:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #9/20 start
2025-11-03 21:28:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #10/20 start
2025-11-03 21:28:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #11/20 start
2025-11-03 21:28:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #12/20 start
2025-11-03 21:28:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #13/20 start
2025-11-03 21:28:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #14/20 start
2025-11-03 21:28:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #15/20 start
2025-11-03 21:28:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #16/20 start
2025-11-03 21:28:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #17/20 start
2025-11-03 21:28:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #18/20 start
2025-11-03 21:28:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #19/20 start
2025-11-03 21:28:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #20/20 start
2025-11-03 21:28:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, starting new job
2025-11-03 21:28:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, started new job
2025-11-03 21:28:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, starting new job
2025-11-03 21:28:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/1 = ∑4/20, started new job
2025-11-03 21:28:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/1 = ∑4/20, starting new job
2025-11-03 21:28:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 4/3 = ∑7/20, started new job
2025-11-03 21:28:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 7/2 = ∑9/20, started new job
2025-11-03 21:28:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 7/2/1 = ∑10/20, started new job
2025-11-03 21:28:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 10/1 = ∑11/20, started new job
2025-11-03 21:28:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 10/1/2 = ∑13/20, started new job
2025-11-03 21:28:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 10/3/3 = ∑16/20, started new job
2025-11-03 21:29:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 16/2 = ∑18/20, started new job
2025-11-03 21:29:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 18/2 = ∑20/20, started new job
2025-11-03 21:29:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 18/2 = ∑20/20, waiting for 20 jobs
2025-11-03 21:29:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 18/2 = ∑20/20, waiting for 20 jobs
2025-11-03 21:29:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, waiting for 20 jobs
2025-11-03 21:54:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, new result: VAL_ACC: 70.770000
2025-11-03 21:54:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-03 21:54:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 19 jobs
2025-11-03 22:13:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, new result: VAL_ACC: 69.630000
2025-11-03 22:13:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-03 22:13:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 18 jobs
2025-11-03 22:13:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, new result: VAL_ACC: 71.140000
2025-11-03 22:13:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-03 22:14:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 17 jobs
2025-11-03 22:14:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, new result: VAL_ACC: 71.020000
2025-11-03 22:14:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-03 22:14:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 16 jobs
2025-11-03 22:14:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, new result: VAL_ACC: 70.600000
2025-11-03 22:14:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-03 22:14:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 15 jobs
2025-11-03 22:14:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 70.750000
2025-11-03 22:14:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 71.200000
2025-11-03 22:14:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 15 jobs, finished 2 jobs
2025-11-03 22:14:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 13 jobs
2025-11-03 22:14:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, new result: VAL_ACC: 70.240000
2025-11-03 22:14:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, new result: VAL_ACC: 70.770000
2025-11-03 22:15:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 13 jobs, finished 2 jobs
2025-11-03 22:15:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 11 jobs
2025-11-03 22:15:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, new result: VAL_ACC: 71.180000
2025-11-03 22:15:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, new result: VAL_ACC: 70.750000
2025-11-03 22:15:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, new result: VAL_ACC: 71.290000
2025-11-03 22:15:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, new result: VAL_ACC: 71.170000
2025-11-03 22:15:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 11 jobs, finished 4 jobs
2025-11-03 22:15:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 7 jobs
2025-11-03 22:15:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, new result: VAL_ACC: 71.470000
2025-11-03 22:15:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, new result: VAL_ACC: 71.270000
2025-11-03 22:15:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, new result: VAL_ACC: 71.500000
2025-11-03 22:15:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, new result: VAL_ACC: 70.930000
2025-11-03 22:16:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 7 jobs, finished 4 jobs
2025-11-03 22:16:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 3 jobs
2025-11-03 22:16:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, new result: VAL_ACC: 70.830000
2025-11-03 22:16:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, new result: VAL_ACC: 70.760000
2025-11-03 22:16:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 3 jobs, finished 2 jobs
2025-11-03 22:16:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 1 job
2025-11-03 22:16:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, new result: VAL_ACC: 71.190000
2025-11-03 22:17:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, waiting for 1 job, finished 1 job
2025-11-03 22:18:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #1/20
2025-11-03 22:18:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #2/20
2025-11-03 22:18:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #3/20
2025-11-03 22:18:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #4/20
2025-11-03 22:18:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #5/20
2025-11-03 22:18:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #6/20
2025-11-03 22:18:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #7/20
2025-11-03 22:18:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #8/20
2025-11-03 22:18:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #9/20
2025-11-03 22:18:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #10/20
2025-11-03 22:18:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #11/20
2025-11-03 22:18:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #12/20
2025-11-03 22:18:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #13/20
2025-11-03 22:18:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #14/20
2025-11-03 22:18:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #15/20
2025-11-03 22:18:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #16/20
2025-11-03 22:18:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #17/20
2025-11-03 22:18:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #18/20
2025-11-03 22:18:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #19/20
2025-11-03 22:18:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #20/20
2025-11-03 22:18:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, requested 20 jobs, got 20, 5.24 s/job
2025-11-03 22:18:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #1/20 start
2025-11-03 22:18:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #2/20 start
2025-11-03 22:18:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #3/20 start
2025-11-03 22:18:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #4/20 start
2025-11-03 22:18:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #5/20 start
2025-11-03 22:18:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #6/20 start
2025-11-03 22:18:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #7/20 start
2025-11-03 22:18:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #8/20 start
2025-11-03 22:18:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #9/20 start
2025-11-03 22:18:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #10/20 start
2025-11-03 22:18:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #11/20 start
2025-11-03 22:18:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #12/20 start
2025-11-03 22:18:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #13/20 start
2025-11-03 22:19:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #14/20 start
2025-11-03 22:19:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #15/20 start
2025-11-03 22:19:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #16/20 start
2025-11-03 22:19:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #17/20 start
2025-11-03 22:19:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #18/20 start
2025-11-03 22:19:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #19/20 start
2025-11-03 22:19:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #20/20 start
2025-11-03 22:19:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, starting new job
2025-11-03 22:19:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 3 = ∑3/20, started new job
2025-11-03 22:19:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 3 = ∑3/20, starting new job
2025-11-03 22:19:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/2 = ∑5/20, started new job
2025-11-03 22:19:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/2 = ∑5/20, starting new job
2025-11-03 22:19:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 3/2/3 = ∑8/20, started new job
2025-11-03 22:19:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 3/5/2 = ∑10/20, started new job
2025-11-03 22:19:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 10/1 = ∑11/20, started new job
2025-11-03 22:19:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 11/2 = ∑13/20, started new job
2025-11-03 22:19:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 11/2/1 = ∑14/20, started new job
2025-11-03 22:19:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 11/3/2 = ∑16/20, started new job
2025-11-03 22:19:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 16/2 = ∑18/20, started new job
2025-11-03 22:19:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 18/2 = ∑20/20, started new job
2025-11-03 22:20:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 18/2 = ∑20/20, waiting for 20 jobs
2025-11-03 22:20:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 19/1 = ∑20/20, waiting for 20 jobs
2025-11-03 22:20:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, waiting for 20 jobs
2025-11-03 22:37:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, new result: VAL_ACC: 68.630000
2025-11-03 22:37:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-03 22:37:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 19 jobs
2025-11-03 22:41:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, new result: VAL_ACC: 65.210000
2025-11-03 22:42:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-03 22:42:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 18 jobs
2025-11-03 22:45:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, new result: VAL_ACC: 65.760000
2025-11-03 22:46:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-03 22:46:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 17 jobs
2025-11-03 22:57:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, new result: VAL_ACC: 69.300000
2025-11-03 22:57:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-03 22:57:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 16 jobs
2025-11-03 22:58:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, new result: VAL_ACC: 69.930000
2025-11-03 22:58:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-03 22:58:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 15 jobs
2025-11-03 23:00:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 68.750000
2025-11-03 23:00:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-03 23:00:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, waiting for 14 jobs
2025-11-03 23:04:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, new result: VAL_ACC: 68.880000
2025-11-03 23:05:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-03 23:05:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 13 jobs
2025-11-03 23:05:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, new result: VAL_ACC: 69.020000
2025-11-03 23:05:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-03 23:05:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 12 jobs
2025-11-03 23:05:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, new result: VAL_ACC: 69.070000
2025-11-03 23:05:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-03 23:05:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 11 jobs
2025-11-03 23:05:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, new result: VAL_ACC: 69.380000
2025-11-03 23:05:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-03 23:05:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 10 jobs
2025-11-03 23:05:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, new result: VAL_ACC: 69.680000
2025-11-03 23:05:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-03 23:06:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 9 jobs
2025-11-03 23:06:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 69.210000
2025-11-03 23:06:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-03 23:06:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, waiting for 8 jobs
2025-11-03 23:06:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, new result: VAL_ACC: 69.260000
2025-11-03 23:06:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, new result: VAL_ACC: 69.190000
2025-11-03 23:06:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, waiting for 8 jobs, finished 2 jobs
2025-11-03 23:06:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, waiting for 6 jobs
2025-11-03 23:07:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, new result: VAL_ACC: 69.170000
2025-11-03 23:07:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-03 23:07:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 5 jobs
2025-11-03 23:07:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, new result: VAL_ACC: 66.140000
2025-11-03 23:07:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-03 23:07:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, waiting for 4 jobs
2025-11-03 23:09:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, new result: VAL_ACC: 69.060000
2025-11-03 23:10:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-03 23:10:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 3 jobs
2025-11-03 23:14:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, new result: VAL_ACC: 71.650000
2025-11-03 23:15:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-03 23:15:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 2 jobs
2025-11-03 23:15:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, new result: VAL_ACC: 71.820000
2025-11-03 23:15:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-03 23:15:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 1 job
2025-11-03 23:17:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, new result: VAL_ACC: 71.770000
2025-11-03 23:17:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, waiting for 1 job, finished 1 job
2025-11-03 23:19:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #1/20
2025-11-03 23:20:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #2/20
2025-11-03 23:20:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #3/20
2025-11-03 23:20:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #4/20
2025-11-03 23:20:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #5/20
2025-11-03 23:20:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #6/20
2025-11-03 23:20:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #7/20
2025-11-03 23:20:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #8/20
2025-11-03 23:20:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #9/20
2025-11-03 23:20:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #10/20
2025-11-03 23:20:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #11/20
2025-11-03 23:20:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #12/20
2025-11-03 23:20:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #13/20
2025-11-03 23:20:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #14/20
2025-11-03 23:20:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #15/20
2025-11-03 23:20:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #16/20
2025-11-03 23:20:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #17/20
2025-11-03 23:20:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #18/20
2025-11-03 23:20:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #19/20
2025-11-03 23:20:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #20/20
2025-11-03 23:20:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, requested 20 jobs, got 20, 6.50 s/job
2025-11-03 23:20:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #1/20 start
2025-11-03 23:20:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #2/20 start
2025-11-03 23:20:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #3/20 start
2025-11-03 23:20:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #4/20 start
2025-11-03 23:20:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #5/20 start
2025-11-03 23:20:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #6/20 start
2025-11-03 23:20:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #7/20 start
2025-11-03 23:20:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #8/20 start
2025-11-03 23:20:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #9/20 start
2025-11-03 23:20:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #10/20 start
2025-11-03 23:20:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #11/20 start
2025-11-03 23:20:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #12/20 start
2025-11-03 23:20:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #13/20 start
2025-11-03 23:20:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #14/20 start
2025-11-03 23:20:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #15/20 start
2025-11-03 23:20:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #16/20 start
2025-11-03 23:20:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #17/20 start
2025-11-03 23:20:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #18/20 start
2025-11-03 23:20:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #19/20 start
2025-11-03 23:20:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #20/20 start
2025-11-03 23:20:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, starting new job
2025-11-03 23:20:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 1 = ∑1/20, starting new job
2025-11-03 23:20:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 1 = ∑1/20, started new job
2025-11-03 23:20:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 1 = ∑1/20, starting new job
2025-11-03 23:20:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 1/1 = ∑2/20, started new job
2025-11-03 23:20:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 1/1 = ∑2/20, starting new job
2025-11-03 23:20:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 1/2 = ∑3/20, started new job
2025-11-03 23:20:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 1/2 = ∑3/20, starting new job
2025-11-03 23:20:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/1 = ∑4/20, started new job
2025-11-03 23:20:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/1 = ∑4/20, starting new job
2025-11-03 23:21:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 4/1 = ∑5/20, started new job
2025-11-03 23:21:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 4/1/1 = ∑6/20, started new job
2025-11-03 23:21:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 4/2/3 = ∑9/20, started new job
2025-11-03 23:21:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 4/5/3 = ∑12/20, started new job
2025-11-03 23:21:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 12/1 = ∑13/20, started new job
2025-11-03 23:21:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 12/1/1 = ∑14/20, started new job
2025-11-03 23:21:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 14/1 = ∑15/20, started new job
2025-11-03 23:21:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 14/1/3 = ∑18/20, started new job
2025-11-03 23:22:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 18/1 = ∑19/20, started new job
2025-11-03 23:22:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 18/1/1 = ∑20/20, started new job
2025-11-03 23:22:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 18/1/1 = ∑20/20, waiting for 20 jobs
2025-11-03 23:22:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 18/2 = ∑20/20, waiting for 20 jobs
2025-11-03 23:22:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, waiting for 20 jobs
2025-11-03 23:34:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, new result: VAL_ACC: 67.020000
2025-11-03 23:34:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-03 23:34:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 19 jobs
2025-11-03 23:38:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, new result: VAL_ACC: 69.270000
2025-11-03 23:38:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-03 23:38:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 18 jobs
2025-11-03 23:42:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, new result: VAL_ACC: 67.460000
2025-11-03 23:42:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-03 23:42:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 17 jobs
2025-11-03 23:42:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, new result: VAL_ACC: 66.520000
2025-11-03 23:42:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-03 23:42:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 16 jobs
2025-11-03 23:57:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, new result: VAL_ACC: 67.680000
2025-11-03 23:57:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-03 23:57:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 15 jobs
2025-11-03 23:58:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 70.560000
2025-11-03 23:58:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-03 23:58:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, waiting for 14 jobs
2025-11-03 23:59:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, new result: VAL_ACC: 68.820000
2025-11-03 23:59:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-03 23:59:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 13 jobs
2025-11-04 00:03:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, new result: VAL_ACC: 68.110000
2025-11-04 00:03:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-04 00:03:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 12 jobs
2025-11-04 00:03:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, new result: VAL_ACC: 70.310000
2025-11-04 00:03:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-04 00:03:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 11 jobs
2025-11-04 00:03:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, new result: VAL_ACC: 68.820000
2025-11-04 00:03:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-04 00:03:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 10 jobs
2025-11-04 00:04:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, new result: VAL_ACC: 70.690000
2025-11-04 00:05:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, completed/running 1/8 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-04 00:05:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, completed/running 1/8 = ∑9/20, waiting for 9 jobs
2025-11-04 00:05:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, completed/running 1/8 = ∑9/20, new result: VAL_ACC: 70.840000
2025-11-04 00:05:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-04 00:05:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, waiting for 8 jobs
2025-11-04 00:05:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, new result: VAL_ACC: 70.180000
2025-11-04 00:05:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-04 00:05:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 7 jobs
2025-11-04 00:05:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, new result: VAL_ACC: 70.830000
2025-11-04 00:05:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-04 00:05:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, waiting for 6 jobs
2025-11-04 00:05:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, new result: VAL_ACC: 71.040000
2025-11-04 00:06:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-04 00:06:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 5 jobs
2025-11-04 00:06:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, new result: VAL_ACC: 68.880000
2025-11-04 00:07:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-04 00:07:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, waiting for 4 jobs
2025-11-04 00:07:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, new result: VAL_ACC: 71.350000
2025-11-04 00:08:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-04 00:08:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 3 jobs
2025-11-04 00:12:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, new result: VAL_ACC: 68.080000
2025-11-04 00:12:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-04 00:12:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 2 jobs
2025-11-04 00:19:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, new result: VAL_ACC: 71.550000
2025-11-04 00:19:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-04 00:19:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 1 job
2025-11-04 00:19:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, new result: VAL_ACC: 70.950000
2025-11-04 00:20:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, waiting for 1 job, finished 1 job
2025-11-04 00:22:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #1/20
2025-11-04 00:22:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #2/20
2025-11-04 00:22:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #3/20
2025-11-04 00:22:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #4/20
2025-11-04 00:22:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #5/20
2025-11-04 00:22:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #6/20
2025-11-04 00:22:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #7/20
2025-11-04 00:22:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #8/20
2025-11-04 00:22:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #9/20
2025-11-04 00:22:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #10/20
2025-11-04 00:22:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #11/20
2025-11-04 00:22:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #12/20
2025-11-04 00:22:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #13/20
2025-11-04 00:22:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #14/20
2025-11-04 00:22:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #15/20
2025-11-04 00:22:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #16/20
2025-11-04 00:22:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #17/20
2025-11-04 00:22:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #18/20
2025-11-04 00:22:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #19/20
2025-11-04 00:22:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #20/20
2025-11-04 00:22:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, requested 20 jobs, got 20, 6.69 s/job
2025-11-04 00:22:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #1/20 start
2025-11-04 00:22:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #2/20 start
2025-11-04 00:22:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #3/20 start
2025-11-04 00:22:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #4/20 start
2025-11-04 00:22:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #5/20 start
2025-11-04 00:22:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #6/20 start
2025-11-04 00:22:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #7/20 start
2025-11-04 00:22:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #8/20 start
2025-11-04 00:22:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #9/20 start
2025-11-04 00:22:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #10/20 start
2025-11-04 00:22:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #11/20 start
2025-11-04 00:22:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #12/20 start
2025-11-04 00:22:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #13/20 start
2025-11-04 00:22:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #14/20 start
2025-11-04 00:22:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #15/20 start
2025-11-04 00:22:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #16/20 start
2025-11-04 00:22:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #17/20 start
2025-11-04 00:22:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #18/20 start
2025-11-04 00:22:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #19/20 start
2025-11-04 00:22:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #20/20 start
2025-11-04 00:22:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, starting new job
2025-11-04 00:22:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, unknown 3 = ∑3/20, started new job
2025-11-04 00:22:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, unknown 3 = ∑3/20, starting new job
2025-11-04 00:23:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 3 = ∑3/20, starting new job
2025-11-04 00:23:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending/unknown 3/1 = ∑4/20, started new job
2025-11-04 00:23:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending/unknown 3/1 = ∑4/20, starting new job
2025-11-04 00:23:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 4/1 = ∑5/20, started new job
2025-11-04 00:23:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 4/1/1 = ∑6/20, started new job
2025-11-04 00:23:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 4/2/1 = ∑7/20, started new job
2025-11-04 00:23:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 4/3/2 = ∑9/20, started new job
2025-11-04 00:23:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 9/2 = ∑11/20, started new job
2025-11-04 00:23:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 9/2/1 = ∑12/20, started new job
2025-11-04 00:23:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 9/3/2 = ∑14/20, started new job
2025-11-04 00:23:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 9/5/1 = ∑15/20, started new job
2025-11-04 00:23:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 15/1 = ∑16/20, started new job
2025-11-04 00:23:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 15/1/1 = ∑17/20, started new job
2025-11-04 00:23:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 17/1 = ∑18/20, started new job
2025-11-04 00:24:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 17/1/1 = ∑19/20, started new job
2025-11-04 00:24:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 19/1 = ∑20/20, started new job
2025-11-04 00:24:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 19/1 = ∑20/20, waiting for 20 jobs
2025-11-04 00:24:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 19/1 = ∑20/20, waiting for 20 jobs
2025-11-04 00:24:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, waiting for 20 jobs
2025-11-04 00:58:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, new result: VAL_ACC: 70.920000
2025-11-04 00:58:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-04 00:58:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 19 jobs
2025-11-04 01:03:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, new result: VAL_ACC: 70.740000
2025-11-04 01:04:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-04 01:04:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 18 jobs
2025-11-04 01:04:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, new result: VAL_ACC: 70.470000
2025-11-04 01:04:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-04 01:04:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 17 jobs
2025-11-04 01:07:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, new result: VAL_ACC: 71.620000
2025-11-04 01:07:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-04 01:07:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 16 jobs
2025-11-04 01:07:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, new result: VAL_ACC: 71.330000
2025-11-04 01:08:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-04 01:08:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 15 jobs
2025-11-04 01:08:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 68.520000
2025-11-04 01:08:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 69.230000
2025-11-04 01:08:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 69.910000
2025-11-04 01:08:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 15 jobs, finished 3 jobs
2025-11-04 01:08:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 12 jobs
2025-11-04 01:08:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, new result: VAL_ACC: 71.110000
2025-11-04 01:08:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, new result: VAL_ACC: 71.220000
2025-11-04 01:08:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, new result: VAL_ACC: 71.360000
2025-11-04 01:09:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 12 jobs, finished 3 jobs
2025-11-04 01:09:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 9 jobs
2025-11-04 01:09:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 70.590000
2025-11-04 01:09:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 70.470000
2025-11-04 01:09:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 71.010000
2025-11-04 01:09:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 71.040000
2025-11-04 01:09:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 71.450000
2025-11-04 01:09:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 71.110000
2025-11-04 01:10:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 9 jobs, finished 6 jobs
2025-11-04 01:10:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 3 jobs
2025-11-04 01:12:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, new result: VAL_ACC: 71.660000
2025-11-04 01:13:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-04 01:13:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 2 jobs
2025-11-04 01:15:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, new result: VAL_ACC: 71.210000
2025-11-04 01:15:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-04 01:15:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 1 job
2025-11-04 01:15:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, new result: VAL_ACC: 71.350000
2025-11-04 01:16:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, waiting for 1 job, finished 1 job
2025-11-04 01:18:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #1/20
2025-11-04 01:18:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #2/20
2025-11-04 01:18:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #3/20
2025-11-04 01:18:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #4/20
2025-11-04 01:18:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #5/20
2025-11-04 01:18:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #6/20
2025-11-04 01:18:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #7/20
2025-11-04 01:18:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #8/20
2025-11-04 01:18:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #9/20
2025-11-04 01:18:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #10/20
2025-11-04 01:18:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #11/20
2025-11-04 01:18:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #12/20
2025-11-04 01:18:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #13/20
2025-11-04 01:18:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #14/20
2025-11-04 01:18:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #15/20
2025-11-04 01:18:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #16/20
2025-11-04 01:18:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #17/20
2025-11-04 01:18:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #18/20
2025-11-04 01:18:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #19/20
2025-11-04 01:18:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #20/20
2025-11-04 01:18:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, requested 20 jobs, got 20, 7.71 s/job
2025-11-04 01:18:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #1/20 start
2025-11-04 01:18:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #2/20 start
2025-11-04 01:18:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #3/20 start
2025-11-04 01:18:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #4/20 start
2025-11-04 01:18:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #5/20 start
2025-11-04 01:18:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #6/20 start
2025-11-04 01:18:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #7/20 start
2025-11-04 01:18:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #8/20 start
2025-11-04 01:18:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #9/20 start
2025-11-04 01:18:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #10/20 start
2025-11-04 01:18:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #11/20 start
2025-11-04 01:18:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #12/20 start
2025-11-04 01:18:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #13/20 start
2025-11-04 01:18:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #14/20 start
2025-11-04 01:18:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #15/20 start
2025-11-04 01:18:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #16/20 start
2025-11-04 01:18:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #17/20 start
2025-11-04 01:19:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #18/20 start
2025-11-04 01:19:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #19/20 start
2025-11-04 01:19:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #20/20 start
2025-11-04 01:19:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, starting new job
2025-11-04 01:19:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 3 = ∑3/20, started new job
2025-11-04 01:19:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 3 = ∑3/20, starting new job
2025-11-04 01:19:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 3/1/1 = ∑5/20, started new job
2025-11-04 01:19:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 3/1/1 = ∑5/20, starting new job
2025-11-04 01:19:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 5/2 = ∑7/20, started new job
2025-11-04 01:19:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 7/1 = ∑8/20, started new job
2025-11-04 01:19:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 7/1/1 = ∑9/20, started new job
2025-11-04 01:19:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 7/2/3 = ∑12/20, started new job
2025-11-04 01:19:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 12/1 = ∑13/20, started new job
2025-11-04 01:20:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 13/1 = ∑14/20, started new job
2025-11-04 01:20:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 13/1/1 = ∑15/20, started new job
2025-11-04 01:20:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 15/1 = ∑16/20, started new job
2025-11-04 01:20:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 15/1/3 = ∑19/20, started new job
2025-11-04 01:20:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 19/1 = ∑20/20, started new job
2025-11-04 01:20:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 19/1 = ∑20/20, waiting for 20 jobs
2025-11-04 01:20:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, waiting for 20 jobs
2025-11-04 02:02:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, new result: VAL_ACC: 70.360000
2025-11-04 02:02:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-04 02:02:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 19 jobs
2025-11-04 02:03:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, new result: VAL_ACC: 70.830000
2025-11-04 02:03:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-04 02:03:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 18 jobs
2025-11-04 02:04:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, new result: VAL_ACC: 71.630000
2025-11-04 02:04:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-04 02:04:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 17 jobs
2025-11-04 02:04:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, new result: VAL_ACC: 71.210000
2025-11-04 02:04:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, new result: VAL_ACC: 70.650000
2025-11-04 02:04:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 17 jobs, finished 2 jobs
2025-11-04 02:04:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 15 jobs
2025-11-04 02:04:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 71.400000
2025-11-04 02:04:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 70.610000
2025-11-04 02:05:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 15 jobs, finished 2 jobs
2025-11-04 02:05:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 13 jobs
2025-11-04 02:05:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, new result: VAL_ACC: 71.640000
2025-11-04 02:05:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, new result: VAL_ACC: 71.160000
2025-11-04 02:05:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 13 jobs, finished 2 jobs
2025-11-04 02:05:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 11 jobs
2025-11-04 02:05:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, new result: VAL_ACC: 71.120000
2025-11-04 02:06:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-04 02:06:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 10 jobs
2025-11-04 02:07:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, new result: VAL_ACC: 71.450000
2025-11-04 02:07:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-04 02:07:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 9 jobs
2025-11-04 02:08:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 70.660000
2025-11-04 02:08:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-04 02:08:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, waiting for 8 jobs
2025-11-04 02:08:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, new result: VAL_ACC: 70.470000
2025-11-04 02:08:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-04 02:08:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 7 jobs
2025-11-04 02:08:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, new result: VAL_ACC: 71.830000
2025-11-04 02:09:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-04 02:09:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, waiting for 6 jobs
2025-11-04 02:09:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, new result: VAL_ACC: 71.380000
2025-11-04 02:09:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-04 02:09:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 5 jobs
2025-11-04 02:09:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, new result: VAL_ACC: 71.500000
2025-11-04 02:10:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-04 02:10:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, waiting for 4 jobs
2025-11-04 02:10:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, new result: VAL_ACC: 71.630000
2025-11-04 02:10:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-04 02:10:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 3 jobs
2025-11-04 02:10:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, new result: VAL_ACC: 71.930000
2025-11-04 02:10:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-04 02:10:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 2 jobs
2025-11-04 02:10:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, new result: VAL_ACC: 71.980000
2025-11-04 02:11:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-04 02:11:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 1 job
2025-11-04 02:12:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, new result: VAL_ACC: 70.610000
2025-11-04 02:12:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, waiting for 1 job, finished 1 job
2025-11-04 02:15:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #1/20
2025-11-04 02:15:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #2/20
2025-11-04 02:15:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #3/20
2025-11-04 02:15:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #4/20
2025-11-04 02:15:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #5/20
2025-11-04 02:15:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #6/20
2025-11-04 02:15:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #7/20
2025-11-04 02:15:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #8/20
2025-11-04 02:15:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #9/20
2025-11-04 02:15:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #10/20
2025-11-04 02:15:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #11/20
2025-11-04 02:15:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #12/20
2025-11-04 02:15:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #13/20
2025-11-04 02:15:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #14/20
2025-11-04 02:15:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #15/20
2025-11-04 02:15:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #16/20
2025-11-04 02:15:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #17/20
2025-11-04 02:15:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #18/20
2025-11-04 02:15:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #19/20
2025-11-04 02:15:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #20/20
2025-11-04 02:15:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, requested 20 jobs, got 20, 8.48 s/job
2025-11-04 02:15:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #1/20 start
2025-11-04 02:15:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #2/20 start
2025-11-04 02:15:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #3/20 start
2025-11-04 02:15:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #4/20 start
2025-11-04 02:15:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #5/20 start
2025-11-04 02:15:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #6/20 start
2025-11-04 02:15:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #7/20 start
2025-11-04 02:15:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #8/20 start
2025-11-04 02:15:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #9/20 start
2025-11-04 02:15:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #10/20 start
2025-11-04 02:15:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #11/20 start
2025-11-04 02:15:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #12/20 start
2025-11-04 02:16:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #13/20 start
2025-11-04 02:16:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #14/20 start
2025-11-04 02:16:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #15/20 start
2025-11-04 02:16:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #16/20 start
2025-11-04 02:16:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #17/20 start
2025-11-04 02:16:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #18/20 start
2025-11-04 02:16:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #19/20 start
2025-11-04 02:16:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #20/20 start
2025-11-04 02:16:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, starting new job
2025-11-04 02:16:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 3 = ∑3/20, started new job
2025-11-04 02:16:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, starting new job
2025-11-04 02:16:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/1 = ∑4/20, started new job
2025-11-04 02:16:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/1 = ∑4/20, starting new job
2025-11-04 02:16:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 3/1/3 = ∑7/20, started new job
2025-11-04 02:16:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 7/1 = ∑8/20, started new job
2025-11-04 02:16:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 7/1 = ∑8/20, starting new job
2025-11-04 02:16:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 7/1/2 = ∑10/20, started new job
2025-11-04 02:16:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 7/1/3 = ∑11/20, started new job
2025-11-04 02:17:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 11/3 = ∑14/20, started new job
2025-11-04 02:17:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 11/3/2 = ∑16/20, started new job
2025-11-04 02:17:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 11/5/3 = ∑19/20, started new job
2025-11-04 02:17:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 11/8/1 = ∑20/20, started new job
2025-11-04 02:17:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 11/8/1 = ∑20/20, waiting for 20 jobs
2025-11-04 02:17:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 11/9 = ∑20/20, waiting for 20 jobs
2025-11-04 02:17:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, waiting for 20 jobs
2025-11-04 02:44:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, new result: VAL_ACC: 69.210000
2025-11-04 02:45:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-04 02:45:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 19 jobs
2025-11-04 02:58:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, new result: VAL_ACC: 68.940000
2025-11-04 02:59:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-04 02:59:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 18 jobs
2025-11-04 02:59:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, new result: VAL_ACC: 69.100000
2025-11-04 02:59:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-04 02:59:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 17 jobs
2025-11-04 02:59:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, new result: VAL_ACC: 71.210000
2025-11-04 03:00:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-04 03:00:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 16 jobs
2025-11-04 03:00:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, new result: VAL_ACC: 70.200000
2025-11-04 03:00:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-04 03:00:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 15 jobs
2025-11-04 03:00:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 71.100000
2025-11-04 03:00:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-04 03:00:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, waiting for 14 jobs
2025-11-04 03:00:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, new result: VAL_ACC: 70.500000
2025-11-04 03:01:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-04 03:01:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 13 jobs
2025-11-04 03:01:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, new result: VAL_ACC: 68.900000
2025-11-04 03:01:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-04 03:01:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 12 jobs
2025-11-04 03:01:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, new result: VAL_ACC: 69.780000
2025-11-04 03:02:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-04 03:02:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 11 jobs
2025-11-04 03:02:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, new result: VAL_ACC: 69.490000
2025-11-04 03:03:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-04 03:03:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 10 jobs
2025-11-04 03:03:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, new result: VAL_ACC: 69.920000
2025-11-04 03:03:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-04 03:03:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 9 jobs
2025-11-04 03:04:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 70.500000
2025-11-04 03:04:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-04 03:04:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, waiting for 8 jobs
2025-11-04 03:04:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 8 = ∑8/20, new result: VAL_ACC: 69.880000
2025-11-04 03:04:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-04 03:04:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 7 jobs
2025-11-04 03:05:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, new result: VAL_ACC: 71.030000
2025-11-04 03:05:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-04 03:05:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, waiting for 6 jobs
2025-11-04 03:05:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, new result: VAL_ACC: 71.400000
2025-11-04 03:05:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-04 03:05:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 5 jobs
2025-11-04 03:05:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, new result: VAL_ACC: 71.260000
2025-11-04 03:06:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-04 03:06:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, waiting for 4 jobs
2025-11-04 03:06:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, new result: VAL_ACC: 69.630000
2025-11-04 03:06:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-04 03:06:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 3 jobs
2025-11-04 03:07:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, new result: VAL_ACC: 70.830000
2025-11-04 03:07:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-04 03:07:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 2 jobs
2025-11-04 03:07:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, new result: VAL_ACC: 70.860000
2025-11-04 03:08:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-04 03:08:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 1 job
2025-11-04 03:11:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, new result: VAL_ACC: 70.460000
2025-11-04 03:11:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, waiting for 1 job, finished 1 job
2025-11-04 03:14:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #1/20
2025-11-04 03:14:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #2/20
2025-11-04 03:14:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #3/20
2025-11-04 03:14:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #4/20
2025-11-04 03:14:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #5/20
2025-11-04 03:14:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #6/20
2025-11-04 03:14:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #7/20
2025-11-04 03:14:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #8/20
2025-11-04 03:14:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #9/20
2025-11-04 03:14:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #10/20
2025-11-04 03:14:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #11/20
2025-11-04 03:14:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #12/20
2025-11-04 03:14:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #13/20
2025-11-04 03:14:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #14/20
2025-11-04 03:14:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #15/20
2025-11-04 03:14:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #16/20
2025-11-04 03:14:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #17/20
2025-11-04 03:14:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #18/20
2025-11-04 03:14:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #19/20
2025-11-04 03:14:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #20/20
2025-11-04 03:14:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, requested 20 jobs, got 20, 9.42 s/job
2025-11-04 03:14:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #1/20 start
2025-11-04 03:14:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #2/20 start
2025-11-04 03:14:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #3/20 start
2025-11-04 03:14:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #4/20 start
2025-11-04 03:15:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #5/20 start
2025-11-04 03:15:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #6/20 start
2025-11-04 03:15:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #7/20 start
2025-11-04 03:15:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #8/20 start
2025-11-04 03:15:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #9/20 start
2025-11-04 03:15:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #10/20 start
2025-11-04 03:15:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #11/20 start
2025-11-04 03:15:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #12/20 start
2025-11-04 03:15:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #13/20 start
2025-11-04 03:15:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #14/20 start
2025-11-04 03:15:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #15/20 start
2025-11-04 03:15:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #16/20 start
2025-11-04 03:15:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #17/20 start
2025-11-04 03:15:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #18/20 start
2025-11-04 03:15:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #19/20 start
2025-11-04 03:15:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #20/20 start
2025-11-04 03:15:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, starting new job
2025-11-04 03:15:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, unknown 1 = ∑1/20, started new job
2025-11-04 03:15:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, unknown 1 = ∑1/20, starting new job
2025-11-04 03:15:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 1/1 = ∑2/20, started new job
2025-11-04 03:15:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 1/1 = ∑2/20, starting new job
2025-11-04 03:15:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 2/1 = ∑3/20, started new job
2025-11-04 03:15:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 2/1 = ∑3/20, starting new job
2025-11-04 03:15:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 2/1/1 = ∑4/20, started new job
2025-11-04 03:15:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 2/1/1 = ∑4/20, starting new job
2025-11-04 03:15:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 2/2/1 = ∑5/20, started new job
2025-11-04 03:15:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 2/3/3 = ∑8/20, started new job
2025-11-04 03:16:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 8/1 = ∑9/20, started new job
2025-11-04 03:16:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 9/1 = ∑10/20, started new job
2025-11-04 03:16:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 9/1/1 = ∑11/20, started new job
2025-11-04 03:16:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 9/2/1 = ∑12/20, started new job
2025-11-04 03:16:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 12/1 = ∑13/20, started new job
2025-11-04 03:16:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 12/1/1 = ∑14/20, started new job
2025-11-04 03:16:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 12/2/1 = ∑15/20, started new job
2025-11-04 03:16:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 15/1 = ∑16/20, started new job
2025-11-04 03:16:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 16/1 = ∑17/20, started new job
2025-11-04 03:16:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 16/1/1 = ∑18/20, started new job
2025-11-04 03:16:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 16/2/1 = ∑19/20, started new job
2025-11-04 03:16:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 16/3/1 = ∑20/20, started new job
2025-11-04 03:16:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 16/3/1 = ∑20/20, waiting for 20 jobs
2025-11-04 03:17:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, waiting for 20 jobs
2025-11-04 03:50:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, new result: VAL_ACC: 67.070000
2025-11-04 03:50:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-04 03:50:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 19 jobs
2025-11-04 03:58:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, new result: VAL_ACC: 67.900000
2025-11-04 03:58:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-04 03:58:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 18 jobs
2025-11-04 03:58:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, new result: VAL_ACC: 70.650000
2025-11-04 03:59:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-04 03:59:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, waiting for 17 jobs
2025-11-04 03:59:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 17 = ∑17/20, new result: VAL_ACC: 70.280000
2025-11-04 03:59:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-04 03:59:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, waiting for 16 jobs
2025-11-04 03:59:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 16 = ∑16/20, new result: VAL_ACC: 70.900000
2025-11-04 04:00:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-04 04:00:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, waiting for 15 jobs
2025-11-04 04:00:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 15 = ∑15/20, new result: VAL_ACC: 70.810000
2025-11-04 04:00:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-04 04:00:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, waiting for 14 jobs
2025-11-04 04:02:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 14 = ∑14/20, new result: VAL_ACC: 70.050000
2025-11-04 04:02:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-04 04:02:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, waiting for 13 jobs
2025-11-04 04:02:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 13 = ∑13/20, new result: VAL_ACC: 70.060000
2025-11-04 04:02:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-04 04:02:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, waiting for 12 jobs
2025-11-04 04:04:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 12 = ∑12/20, new result: VAL_ACC: 70.690000
2025-11-04 04:05:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-04 04:05:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, waiting for 11 jobs
2025-11-04 04:05:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 11 = ∑11/20, new result: VAL_ACC: 70.890000
2025-11-04 04:06:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-04 04:06:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, waiting for 10 jobs
2025-11-04 04:06:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 10 = ∑10/20, new result: VAL_ACC: 70.430000
2025-11-04 04:06:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-04 04:06:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, waiting for 9 jobs
2025-11-04 04:07:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 70.890000
2025-11-04 04:07:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 9 = ∑9/20, new result: VAL_ACC: 71.860000
2025-11-04 04:08:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 9 jobs, finished 2 jobs
2025-11-04 04:08:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, waiting for 7 jobs
2025-11-04 04:08:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 7 = ∑7/20, new result: VAL_ACC: 70.870000
2025-11-04 04:08:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-04 04:08:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, waiting for 6 jobs
2025-11-04 04:09:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 6 = ∑6/20, new result: VAL_ACC: 71.370000
2025-11-04 04:09:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-04 04:09:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, waiting for 5 jobs
2025-11-04 04:10:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 5 = ∑5/20, new result: VAL_ACC: 67.340000
2025-11-04 04:10:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-04 04:11:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, waiting for 4 jobs
2025-11-04 04:11:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 4 = ∑4/20, new result: VAL_ACC: 71.680000
2025-11-04 04:11:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-04 04:11:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, waiting for 3 jobs
2025-11-04 04:13:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, new result: VAL_ACC: 70.440000
2025-11-04 04:13:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-04 04:13:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, waiting for 2 jobs
2025-11-04 04:20:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 2 = ∑2/20, new result: VAL_ACC: 67.170000
2025-11-04 04:20:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-04 04:20:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, waiting for 1 job
2025-11-04 04:21:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 1 = ∑1/20, new result: VAL_ACC: 66.800000
2025-11-04 04:21:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, waiting for 1 job, finished 1 job
2025-11-04 04:25:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #1/20
2025-11-04 04:25:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #2/20
2025-11-04 04:25:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #3/20
2025-11-04 04:25:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #4/20
2025-11-04 04:25:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #5/20
2025-11-04 04:25:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #6/20
2025-11-04 04:25:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #7/20
2025-11-04 04:25:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #8/20
2025-11-04 04:25:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #9/20
2025-11-04 04:25:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #10/20
2025-11-04 04:25:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #11/20
2025-11-04 04:25:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #12/20
2025-11-04 04:25:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #13/20
2025-11-04 04:25:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #14/20
2025-11-04 04:25:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #15/20
2025-11-04 04:25:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #16/20
2025-11-04 04:25:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #17/20
2025-11-04 04:25:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #18/20
2025-11-04 04:25:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #19/20
2025-11-04 04:25:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, getting new HP set #20/20
2025-11-04 04:25:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, requested 20 jobs, got 20, 11.28 s/job
2025-11-04 04:25:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #1/20 start
2025-11-04 04:25:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #2/20 start
2025-11-04 04:25:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #3/20 start
2025-11-04 04:25:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #4/20 start
2025-11-04 04:25:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #5/20 start
2025-11-04 04:25:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #6/20 start
2025-11-04 04:25:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #7/20 start
2025-11-04 04:25:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #8/20 start
2025-11-04 04:25:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #9/20 start
2025-11-04 04:26:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #10/20 start
2025-11-04 04:26:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #11/20 start
2025-11-04 04:26:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #12/20 start
2025-11-04 04:26:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #13/20 start
2025-11-04 04:26:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #14/20 start
2025-11-04 04:26:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #15/20 start
2025-11-04 04:26:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #16/20 start
2025-11-04 04:26:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #17/20 start
2025-11-04 04:26:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #18/20 start
2025-11-04 04:26:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #19/20 start
2025-11-04 04:26:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, eval #20/20 start
2025-11-04 04:26:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, starting new job
2025-11-04 04:26:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 3 = ∑3/20, starting new job
2025-11-04 04:26:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, pending 3 = ∑3/20, started new job
2025-11-04 04:26:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, starting new job
2025-11-04 04:26:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/1 = ∑4/20, started new job
2025-11-04 04:26:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 3 = ∑3/20, starting new job
2025-11-04 04:26:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 3/1 = ∑4/20, starting new job
2025-11-04 04:26:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 4/1 = ∑5/20, started new job
2025-11-04 04:26:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 5/1 = ∑6/20, started new job
2025-11-04 04:26:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 5/1/2 = ∑8/20, started new job
2025-11-04 04:27:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 5/3/1 = ∑9/20, started new job
2025-11-04 04:27:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 9/1 = ∑10/20, started new job
2025-11-04 04:27:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 9/2 = ∑11/20, started new job
2025-11-04 04:27:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 9/2/2 = ∑13/20, started new job
2025-11-04 04:27:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 9/4/2 = ∑15/20, started new job
2025-11-04 04:27:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending/unknown 9/6/2 = ∑17/20, started new job
2025-11-04 04:27:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 17/1 = ∑18/20, started new job
2025-11-04 04:27:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 18/1 = ∑19/20, started new job
2025-11-04 04:27:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 19/1 = ∑20/20, started new job
2025-11-04 04:27:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/unknown 19/1 = ∑20/20, waiting for 20 jobs
2025-11-04 04:27:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running/pending 19/1 = ∑20/20, waiting for 20 jobs
2025-11-04 04:28:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, waiting for 20 jobs
2025-11-04 04:48:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 20 = ∑20/20, new result: VAL_ACC: 71.330000
2025-11-04 04:49:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-04 04:49:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, waiting for 19 jobs
2025-11-04 04:57:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 19 = ∑19/20, new result: VAL_ACC: 72.120000
2025-11-04 04:58:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-04 04:58:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, waiting for 18 jobs
2025-11-04 05:07:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.43, running 18 = ∑18/20, new result: VAL_ACC: 72.550000
2025-11-04 05:08:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-04 05:08:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 17 = ∑17/20, waiting for 17 jobs
2025-11-04 05:08:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 17 = ∑17/20, new result: VAL_ACC: 72.340000
2025-11-04 05:08:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-04 05:08:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 16 = ∑16/20, waiting for 16 jobs
2025-11-04 05:08:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 16 = ∑16/20, new result: VAL_ACC: 72.240000
2025-11-04 05:09:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-04 05:09:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 15 = ∑15/20, waiting for 15 jobs
2025-11-04 05:10:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 15 = ∑15/20, new result: VAL_ACC: 72.460000
2025-11-04 05:11:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-04 05:11:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 14 = ∑14/20, waiting for 14 jobs
2025-11-04 05:11:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 14 = ∑14/20, new result: VAL_ACC: 72.120000
2025-11-04 05:12:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-04 05:12:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 13 = ∑13/20, waiting for 13 jobs
2025-11-04 05:16:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 13 = ∑13/20, new result: VAL_ACC: 72.250000
2025-11-04 05:16:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 13 = ∑13/20, new result: VAL_ACC: 71.390000
2025-11-04 05:17:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 11 = ∑11/20, waiting for 13 jobs, finished 2 jobs
2025-11-04 05:17:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 11 = ∑11/20, waiting for 11 jobs
2025-11-04 05:17:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 11 = ∑11/20, new result: VAL_ACC: 71.430000
2025-11-04 05:17:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-04 05:17:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 10 = ∑10/20, waiting for 10 jobs
2025-11-04 05:17:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 10 = ∑10/20, new result: VAL_ACC: 71.940000
2025-11-04 05:18:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-04 05:18:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 9 = ∑9/20, waiting for 9 jobs
2025-11-04 05:20:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 9 = ∑9/20, new result: VAL_ACC: 70.410000
2025-11-04 05:21:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-04 05:21:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 8 = ∑8/20, waiting for 8 jobs
2025-11-04 05:21:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 8 = ∑8/20, new result: VAL_ACC: 71.580000
2025-11-04 05:21:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-04 05:21:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 7 = ∑7/20, waiting for 7 jobs
2025-11-04 05:21:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 7 = ∑7/20, new result: VAL_ACC: 71.640000
2025-11-04 05:22:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-04 05:22:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 6 = ∑6/20, waiting for 6 jobs
2025-11-04 05:25:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 6 = ∑6/20, new result: VAL_ACC: 71.090000
2025-11-04 05:25:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-04 05:25:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 5 = ∑5/20, waiting for 5 jobs
2025-11-04 05:25:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 5 = ∑5/20, new result: VAL_ACC: 71.570000
2025-11-04 05:26:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-04 05:26:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 4 = ∑4/20, waiting for 4 jobs
2025-11-04 05:26:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 4 = ∑4/20, new result: VAL_ACC: 72.000000
2025-11-04 05:27:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-04 05:27:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 3 = ∑3/20, waiting for 3 jobs
2025-11-04 05:27:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 3 = ∑3/20, new result: VAL_ACC: 72.330000
2025-11-04 05:27:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-04 05:27:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 2 = ∑2/20, waiting for 2 jobs
2025-11-04 05:29:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 2 = ∑2/20, new result: VAL_ACC: 72.090000
2025-11-04 05:29:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-04 05:29:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 1 = ∑1/20, waiting for 1 job
2025-11-04 05:32:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 1 = ∑1/20, new result: VAL_ACC: 72.130000
2025-11-04 05:32:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, waiting for 1 job, finished 1 job
2025-11-04 05:36:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #1/20
2025-11-04 05:36:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #2/20
2025-11-04 05:36:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #3/20
2025-11-04 05:36:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #4/20
2025-11-04 05:36:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #5/20
2025-11-04 05:36:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #6/20
2025-11-04 05:36:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #7/20
2025-11-04 05:36:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #8/20
2025-11-04 05:36:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #9/20
2025-11-04 05:36:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #10/20
2025-11-04 05:36:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #11/20
2025-11-04 05:36:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #12/20
2025-11-04 05:36:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #13/20
2025-11-04 05:36:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #14/20
2025-11-04 05:36:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #15/20
2025-11-04 05:36:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #16/20
2025-11-04 05:36:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #17/20
2025-11-04 05:36:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #18/20
2025-11-04 05:36:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #19/20
2025-11-04 05:36:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #20/20
2025-11-04 05:36:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, requested 20 jobs, got 20, 11.93 s/job
2025-11-04 05:37:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #1/20 start
2025-11-04 05:37:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #2/20 start
2025-11-04 05:37:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #3/20 start
2025-11-04 05:37:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #4/20 start
2025-11-04 05:37:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #5/20 start
2025-11-04 05:37:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #6/20 start
2025-11-04 05:37:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #7/20 start
2025-11-04 05:37:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #8/20 start
2025-11-04 05:37:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #9/20 start
2025-11-04 05:37:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #10/20 start
2025-11-04 05:37:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #11/20 start
2025-11-04 05:37:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #12/20 start
2025-11-04 05:37:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #13/20 start
2025-11-04 05:37:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #14/20 start
2025-11-04 05:37:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #15/20 start
2025-11-04 05:37:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #16/20 start
2025-11-04 05:37:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #17/20 start
2025-11-04 05:37:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #18/20 start
2025-11-04 05:37:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #19/20 start
2025-11-04 05:37:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #20/20 start
2025-11-04 05:37:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, starting new job
2025-11-04 05:37:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, pending 1 = ∑1/20, started new job
2025-11-04 05:37:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, pending 1 = ∑1/20, starting new job
2025-11-04 05:37:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 1/3 = ∑4/20, started new job
2025-11-04 05:37:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 1/3 = ∑4/20, starting new job
2025-11-04 05:37:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending/unknown 1/3/2 = ∑6/20, started new job
2025-11-04 05:38:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 6/1 = ∑7/20, started new job
2025-11-04 05:38:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending/unknown 6/1/2 = ∑9/20, started new job
2025-11-04 05:38:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 9/1 = ∑10/20, started new job
2025-11-04 05:38:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending/unknown 9/1/1 = ∑11/20, started new job
2025-11-04 05:38:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 11/1 = ∑12/20, started new job
2025-11-04 05:38:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 11/2 = ∑13/20, started new job
2025-11-04 05:38:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 13/1 = ∑14/20, started new job
2025-11-04 05:38:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending/unknown 13/1/1 = ∑15/20, started new job
2025-11-04 05:38:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending/unknown 13/1/2 = ∑16/20, started new job
2025-11-04 05:38:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending/unknown 13/3/2 = ∑18/20, started new job
2025-11-04 05:38:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending/unknown 13/3/3 = ∑19/20, started new job
2025-11-04 05:39:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 19/1 = ∑20/20, started new job
2025-11-04 05:39:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 19/1 = ∑20/20, waiting for 20 jobs
2025-11-04 05:39:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending 19/1 = ∑20/20, waiting for 20 jobs
2025-11-04 05:39:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 20 = ∑20/20, waiting for 20 jobs
2025-11-04 05:56:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 20 = ∑20/20, new result: VAL_ACC: 71.320000
2025-11-04 05:56:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-04 05:56:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 19 = ∑19/20, waiting for 19 jobs
2025-11-04 06:16:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 19 = ∑19/20, new result: VAL_ACC: 71.240000
2025-11-04 06:16:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-04 06:16:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 18 = ∑18/20, waiting for 18 jobs
2025-11-04 06:24:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 18 = ∑18/20, new result: VAL_ACC: 72.210000
2025-11-04 06:24:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-04 06:24:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 17 = ∑17/20, waiting for 17 jobs
2025-11-04 06:26:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 17 = ∑17/20, new result: VAL_ACC: 71.800000
2025-11-04 06:26:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-04 06:26:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 16 = ∑16/20, waiting for 16 jobs
2025-11-04 06:31:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 16 = ∑16/20, new result: VAL_ACC: 72.290000
2025-11-04 06:31:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-04 06:31:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 15 = ∑15/20, waiting for 15 jobs
2025-11-04 06:36:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 15 = ∑15/20, new result: VAL_ACC: 71.540000
2025-11-04 06:36:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-04 06:36:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 14 = ∑14/20, waiting for 14 jobs
2025-11-04 06:37:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 14 = ∑14/20, new result: VAL_ACC: 72.470000
2025-11-04 06:37:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-04 06:37:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 13 = ∑13/20, waiting for 13 jobs
2025-11-04 06:39:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 13 = ∑13/20, new result: VAL_ACC: 72.310000
2025-11-04 06:39:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-04 06:39:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 12 = ∑12/20, waiting for 12 jobs
2025-11-04 06:39:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 12 = ∑12/20, new result: VAL_ACC: 72.010000
2025-11-04 06:40:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-04 06:40:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 11 = ∑11/20, waiting for 11 jobs
2025-11-04 06:41:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 11 = ∑11/20, new result: VAL_ACC: 71.760000
2025-11-04 06:41:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-04 06:41:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 10 = ∑10/20, waiting for 10 jobs
2025-11-04 06:41:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 10 = ∑10/20, new result: VAL_ACC: 71.970000
2025-11-04 06:42:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-04 06:42:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 9 = ∑9/20, waiting for 9 jobs
2025-11-04 06:43:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 9 = ∑9/20, new result: VAL_ACC: 70.880000
2025-11-04 06:43:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-04 06:43:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 8 = ∑8/20, waiting for 8 jobs
2025-11-04 06:43:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 8 = ∑8/20, new result: VAL_ACC: 72.320000
2025-11-04 06:44:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-04 06:44:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 7 = ∑7/20, waiting for 7 jobs
2025-11-04 06:50:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 7 = ∑7/20, new result: VAL_ACC: 71.770000
2025-11-04 06:50:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-04 06:50:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 6 = ∑6/20, waiting for 6 jobs
2025-11-04 06:51:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 6 = ∑6/20, new result: VAL_ACC: 71.580000
2025-11-04 06:51:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-04 06:51:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 5 = ∑5/20, waiting for 5 jobs
2025-11-04 06:54:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 5 = ∑5/20, new result: VAL_ACC: 72.230000
2025-11-04 06:54:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-04 06:54:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 4 = ∑4/20, waiting for 4 jobs
2025-11-04 06:54:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 4 = ∑4/20, new result: VAL_ACC: 71.730000
2025-11-04 06:55:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-04 06:55:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 3 = ∑3/20, waiting for 3 jobs
2025-11-04 06:55:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 3 = ∑3/20, new result: VAL_ACC: 70.270000
2025-11-04 06:55:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-04 06:55:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 2 = ∑2/20, waiting for 2 jobs
2025-11-04 06:55:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 2 = ∑2/20, new result: VAL_ACC: 71.130000
2025-11-04 06:55:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 2 = ∑2/20, new result: VAL_ACC: 71.620000
2025-11-04 06:56:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, waiting for 2 jobs, finished 2 jobs
2025-11-04 07:00:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #1/20
2025-11-04 07:00:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #2/20
2025-11-04 07:00:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #3/20
2025-11-04 07:00:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #4/20
2025-11-04 07:00:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #5/20
2025-11-04 07:00:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #6/20
2025-11-04 07:00:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #7/20
2025-11-04 07:00:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #8/20
2025-11-04 07:00:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #9/20
2025-11-04 07:00:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #10/20
2025-11-04 07:00:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #11/20
2025-11-04 07:00:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #12/20
2025-11-04 07:00:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #13/20
2025-11-04 07:00:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #14/20
2025-11-04 07:00:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #15/20
2025-11-04 07:00:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #16/20
2025-11-04 07:00:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #17/20
2025-11-04 07:00:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #18/20
2025-11-04 07:00:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #19/20
2025-11-04 07:00:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, getting new HP set #20/20
2025-11-04 07:00:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, requested 20 jobs, got 20, 12.93 s/job
2025-11-04 07:00:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #1/20 start
2025-11-04 07:00:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #2/20 start
2025-11-04 07:00:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #3/20 start
2025-11-04 07:00:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #4/20 start
2025-11-04 07:00:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #5/20 start
2025-11-04 07:00:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #6/20 start
2025-11-04 07:00:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #7/20 start
2025-11-04 07:00:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #8/20 start
2025-11-04 07:00:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #9/20 start
2025-11-04 07:00:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #10/20 start
2025-11-04 07:01:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #11/20 start
2025-11-04 07:01:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #12/20 start
2025-11-04 07:01:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #13/20 start
2025-11-04 07:01:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #14/20 start
2025-11-04 07:01:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #15/20 start
2025-11-04 07:01:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #16/20 start
2025-11-04 07:01:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #17/20 start
2025-11-04 07:01:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #18/20 start
2025-11-04 07:01:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #19/20 start
2025-11-04 07:01:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, eval #20/20 start
2025-11-04 07:01:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, starting new job
2025-11-04 07:01:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, pending 1 = ∑1/20, started new job
2025-11-04 07:01:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, pending 1 = ∑1/20, starting new job
2025-11-04 07:01:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 1/1 = ∑2/20, started new job
2025-11-04 07:01:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 1/1 = ∑2/20, starting new job
2025-11-04 07:01:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending 2/1 = ∑3/20, started new job
2025-11-04 07:01:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending 2/1 = ∑3/20, starting new job
2025-11-04 07:02:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending 3/1 = ∑4/20, started new job
2025-11-04 07:02:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending 3/1 = ∑4/20, starting new job
2025-11-04 07:02:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending 4/1 = ∑5/20, started new job
2025-11-04 07:02:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 5/1 = ∑6/20, started new job
2025-11-04 07:02:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending/unknown 5/1/1 = ∑7/20, started new job
2025-11-04 07:02:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending 7/2 = ∑9/20, started new job
2025-11-04 07:02:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/unknown 9/1 = ∑10/20, started new job
2025-11-04 07:02:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running/pending 10/1 = ∑11/20, started new job
2025-11-04 07:03:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 11 = ∑11/20, waiting for 11 jobs
2025-11-04 07:34:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 11 = ∑11/20, new result: VAL_ACC: 72.330000
2025-11-04 07:34:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-04 07:34:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 10 = ∑10/20, waiting for 10 jobs
2025-11-04 07:41:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 10 = ∑10/20, new result: VAL_ACC: 72.140000
2025-11-04 07:41:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-04 07:41:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 9 = ∑9/20, waiting for 9 jobs
2025-11-04 07:43:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 9 = ∑9/20, new result: VAL_ACC: 71.540000
2025-11-04 07:44:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-04 07:44:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 8 = ∑8/20, waiting for 8 jobs
2025-11-04 07:44:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 8 = ∑8/20, new result: VAL_ACC: 71.990000
2025-11-04 07:45:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-04 07:45:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 7 = ∑7/20, waiting for 7 jobs
2025-11-04 07:49:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 7 = ∑7/20, new result: VAL_ACC: 72.000000
2025-11-04 07:49:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-04 07:49:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 6 = ∑6/20, waiting for 6 jobs
2025-11-04 07:49:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 6 = ∑6/20, new result: VAL_ACC: 72.510000
2025-11-04 07:50:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-04 07:50:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 5 = ∑5/20, waiting for 5 jobs
2025-11-04 07:50:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.55, running 5 = ∑5/20, new result: VAL_ACC: 72.730000
2025-11-04 07:51:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-04 07:51:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 4 = ∑4/20, waiting for 4 jobs
2025-11-04 07:53:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 4 = ∑4/20, new result: VAL_ACC: 72.700000
2025-11-04 07:53:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-04 07:53:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 3 = ∑3/20, waiting for 3 jobs
2025-11-04 07:57:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 3 = ∑3/20, new result: VAL_ACC: 72.440000
2025-11-04 07:57:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-04 07:57:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 2 = ∑2/20, waiting for 2 jobs
2025-11-04 07:57:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 2 = ∑2/20, new result: VAL_ACC: 72.450000
2025-11-04 07:58:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-04 07:58:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 1 = ∑1/20, waiting for 1 job
2025-11-04 08:04:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 1 = ∑1/20, new result: VAL_ACC: 71.880000
2025-11-04 08:05:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, waiting for 1 job, finished 1 job
2025-11-04 08:09:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #1/20
2025-11-04 08:09:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #2/20
2025-11-04 08:09:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #3/20
2025-11-04 08:09:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #4/20
2025-11-04 08:09:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #5/20
2025-11-04 08:09:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #6/20
2025-11-04 08:09:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #7/20
2025-11-04 08:09:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #8/20
2025-11-04 08:09:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #9/20
2025-11-04 08:09:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #10/20
2025-11-04 08:09:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #11/20
2025-11-04 08:09:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #12/20
2025-11-04 08:09:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #13/20
2025-11-04 08:09:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #14/20
2025-11-04 08:09:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #15/20
2025-11-04 08:09:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #16/20
2025-11-04 08:09:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #17/20
2025-11-04 08:09:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #18/20
2025-11-04 08:09:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #19/20
2025-11-04 08:09:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, getting new HP set #20/20
2025-11-04 08:09:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, requested 20 jobs, got 20, 14.03 s/job
2025-11-04 08:09:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #1/20 start
2025-11-04 08:09:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #2/20 start
2025-11-04 08:10:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #3/20 start
2025-11-04 08:10:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #4/20 start
2025-11-04 08:10:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #5/20 start
2025-11-04 08:10:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #6/20 start
2025-11-04 08:10:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #7/20 start
2025-11-04 08:10:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #8/20 start
2025-11-04 08:10:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #9/20 start
2025-11-04 08:10:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #10/20 start
2025-11-04 08:10:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #11/20 start
2025-11-04 08:10:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #12/20 start
2025-11-04 08:10:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #13/20 start
2025-11-04 08:10:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #14/20 start
2025-11-04 08:10:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #15/20 start
2025-11-04 08:10:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #16/20 start
2025-11-04 08:10:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #17/20 start
2025-11-04 08:10:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #18/20 start
2025-11-04 08:10:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #19/20 start
2025-11-04 08:10:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, eval #20/20 start
2025-11-04 08:10:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, starting new job
2025-11-04 08:10:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, pending 3 = ∑3/20, started new job
2025-11-04 08:10:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 3 = ∑3/20, starting new job
2025-11-04 08:10:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running/unknown 3/1 = ∑4/20, started new job
2025-11-04 08:10:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running/unknown 3/1 = ∑4/20, starting new job
2025-11-04 08:10:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running/pending/unknown 3/1/3 = ∑7/20, started new job
2025-11-04 08:10:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running/pending/unknown 3/4/3 = ∑10/20, started new job
2025-11-04 08:11:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running/pending 10/2 = ∑12/20, started new job
2025-11-04 08:11:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running/pending 10/3 = ∑13/20, started new job
2025-11-04 08:11:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running/unknown 13/3 = ∑16/20, started new job
2025-11-04 08:11:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running/pending/unknown 13/3/3 = ∑19/20, started new job
2025-11-04 08:11:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running/pending/unknown 13/6/1 = ∑20/20, started new job
2025-11-04 08:11:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running/pending/unknown 13/6/1 = ∑20/20, waiting for 20 jobs
2025-11-04 08:11:20 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running/pending 13/7 = ∑20/20, waiting for 20 jobs
2025-11-04 08:11:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 20 = ∑20/20, waiting for 20 jobs
2025-11-04 08:27:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 20 = ∑20/20, new result: VAL_ACC: 70.170000
2025-11-04 08:27:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-04 08:27:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 19 = ∑19/20, waiting for 19 jobs
2025-11-04 08:31:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 19 = ∑19/20, new result: VAL_ACC: 71.770000
2025-11-04 08:31:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-04 08:31:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 18 = ∑18/20, waiting for 18 jobs
2025-11-04 08:31:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 18 = ∑18/20, new result: VAL_ACC: 69.860000
2025-11-04 08:32:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-04 08:32:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 17 = ∑17/20, waiting for 17 jobs
2025-11-04 08:32:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 17 = ∑17/20, new result: VAL_ACC: 71.880000
2025-11-04 08:32:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-04 08:32:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 16 = ∑16/20, waiting for 16 jobs
2025-11-04 08:35:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 16 = ∑16/20, new result: VAL_ACC: 72.350000
2025-11-04 08:35:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-04 08:35:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 15 = ∑15/20, waiting for 15 jobs
2025-11-04 08:35:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 15 = ∑15/20, new result: VAL_ACC: 71.980000
2025-11-04 08:36:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-04 08:36:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 14 = ∑14/20, waiting for 14 jobs
2025-11-04 08:36:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 14 = ∑14/20, new result: VAL_ACC: 72.650000
2025-11-04 08:36:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-04 08:36:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 13 = ∑13/20, waiting for 13 jobs
2025-11-04 08:39:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 13 = ∑13/20, new result: VAL_ACC: 68.500000
2025-11-04 08:40:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 12 = ∑12/20, waiting for 13 jobs, finished 1 job
2025-11-04 08:40:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 12 = ∑12/20, waiting for 12 jobs
2025-11-04 08:40:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 12 = ∑12/20, new result: VAL_ACC: 72.700000
2025-11-04 08:40:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 11 = ∑11/20, waiting for 12 jobs, finished 1 job
2025-11-04 08:40:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 11 = ∑11/20, waiting for 11 jobs
2025-11-04 08:44:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 11 = ∑11/20, new result: VAL_ACC: 70.930000
2025-11-04 08:44:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-04 08:44:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 10 = ∑10/20, waiting for 10 jobs
2025-11-04 08:47:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 10 = ∑10/20, new result: VAL_ACC: 67.600000
2025-11-04 08:48:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-04 08:48:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 9 = ∑9/20, waiting for 9 jobs
2025-11-04 08:48:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 9 = ∑9/20, new result: VAL_ACC: 71.840000
2025-11-04 08:49:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-04 08:49:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 8 = ∑8/20, waiting for 8 jobs
2025-11-04 08:49:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 8 = ∑8/20, new result: VAL_ACC: 68.610000
2025-11-04 08:49:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-04 08:49:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 7 = ∑7/20, waiting for 7 jobs
2025-11-04 08:53:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 72.73, running 7 = ∑7/20, new result: VAL_ACC: 73.290000
2025-11-04 08:53:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-04 08:53:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 6 = ∑6/20, waiting for 6 jobs
2025-11-04 08:57:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 6 = ∑6/20, new result: VAL_ACC: 66.590000
2025-11-04 08:57:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-04 08:57:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 5 = ∑5/20, waiting for 5 jobs
2025-11-04 09:06:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 5 = ∑5/20, new result: VAL_ACC: 71.520000
2025-11-04 09:06:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-04 09:06:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 4 = ∑4/20, waiting for 4 jobs
2025-11-04 09:06:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 4 = ∑4/20, new result: VAL_ACC: 69.110000
2025-11-04 09:07:12 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-04 09:07:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 3 = ∑3/20, waiting for 3 jobs
2025-11-04 09:07:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 3 = ∑3/20, new result: VAL_ACC: 68.830000
2025-11-04 09:07:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-04 09:07:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 2 = ∑2/20, waiting for 2 jobs
2025-11-04 09:10:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 2 = ∑2/20, new result: VAL_ACC: 65.390000
2025-11-04 09:10:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-04 09:10:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 1 = ∑1/20, waiting for 1 job
2025-11-04 09:11:04 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 1 = ∑1/20, new result: VAL_ACC: 60.820000
2025-11-04 09:11:30 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, waiting for 1 job, finished 1 job
2025-11-04 09:16:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #1/20
2025-11-04 09:16:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #2/20
2025-11-04 09:16:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #3/20
2025-11-04 09:16:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #4/20
2025-11-04 09:16:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #5/20
2025-11-04 09:16:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #6/20
2025-11-04 09:16:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #7/20
2025-11-04 09:16:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #8/20
2025-11-04 09:16:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #9/20
2025-11-04 09:16:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #10/20
2025-11-04 09:16:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #11/20
2025-11-04 09:16:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #12/20
2025-11-04 09:16:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #13/20
2025-11-04 09:16:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #14/20
2025-11-04 09:16:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #15/20
2025-11-04 09:16:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #16/20
2025-11-04 09:16:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #17/20
2025-11-04 09:16:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #18/20
2025-11-04 09:16:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #19/20
2025-11-04 09:16:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, getting new HP set #20/20
2025-11-04 09:16:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, requested 20 jobs, got 20, 15.64 s/job
2025-11-04 09:16:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #1/20 start
2025-11-04 09:16:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #2/20 start
2025-11-04 09:16:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #3/20 start
2025-11-04 09:16:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #4/20 start
2025-11-04 09:16:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #5/20 start
2025-11-04 09:16:59 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #6/20 start
2025-11-04 09:17:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #7/20 start
2025-11-04 09:17:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #8/20 start
2025-11-04 09:17:05 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #9/20 start
2025-11-04 09:17:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #10/20 start
2025-11-04 09:17:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #11/20 start
2025-11-04 09:17:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #12/20 start
2025-11-04 09:17:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #13/20 start
2025-11-04 09:17:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #14/20 start
2025-11-04 09:17:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #15/20 start
2025-11-04 09:17:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #16/20 start
2025-11-04 09:17:23 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #17/20 start
2025-11-04 09:17:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #18/20 start
2025-11-04 09:17:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #19/20 start
2025-11-04 09:17:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, eval #20/20 start
2025-11-04 09:17:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, starting new job
2025-11-04 09:17:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, pending 1 = ∑1/20, started new job
2025-11-04 09:17:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, pending 1 = ∑1/20, starting new job
2025-11-04 09:17:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/unknown 1/3 = ∑4/20, started new job
2025-11-04 09:17:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/pending 1/3 = ∑4/20, starting new job
2025-11-04 09:17:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/pending/unknown 1/3/2 = ∑6/20, started new job
2025-11-04 09:18:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/unknown 6/1 = ∑7/20, started new job
2025-11-04 09:18:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/pending/unknown 6/1/1 = ∑8/20, started new job
2025-11-04 09:18:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/unknown 8/1 = ∑9/20, started new job
2025-11-04 09:18:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/pending/unknown 8/1/3 = ∑12/20, started new job
2025-11-04 09:18:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/unknown 12/2 = ∑14/20, started new job
2025-11-04 09:18:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/unknown 14/1 = ∑15/20, started new job
2025-11-04 09:18:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/pending/unknown 14/1/1 = ∑16/20, started new job
2025-11-04 09:18:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/pending/unknown 14/2/3 = ∑19/20, started new job
2025-11-04 09:19:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/unknown 19/1 = ∑20/20, started new job
2025-11-04 09:19:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/unknown 19/1 = ∑20/20, waiting for 20 jobs
2025-11-04 09:19:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running/pending 19/1 = ∑20/20, waiting for 20 jobs
2025-11-04 09:19:31 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 20 = ∑20/20, waiting for 20 jobs
2025-11-04 09:54:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 20 = ∑20/20, new result: VAL_ACC: 70.050000
2025-11-04 09:54:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 19 = ∑19/20, waiting for 20 jobs, finished 1 job
2025-11-04 09:54:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 19 = ∑19/20, waiting for 19 jobs
2025-11-04 09:57:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 19 = ∑19/20, new result: VAL_ACC: 68.890000
2025-11-04 09:59:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 18 = ∑18/20, waiting for 19 jobs, finished 1 job
2025-11-04 09:59:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 18 = ∑18/20, waiting for 18 jobs
2025-11-04 09:59:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 18 = ∑18/20, new result: VAL_ACC: 69.860000
2025-11-04 10:00:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 17 = ∑17/20, waiting for 18 jobs, finished 1 job
2025-11-04 10:00:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 17 = ∑17/20, waiting for 17 jobs
2025-11-04 10:01:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 17 = ∑17/20, new result: VAL_ACC: 70.360000
2025-11-04 10:01:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 16 = ∑16/20, waiting for 17 jobs, finished 1 job
2025-11-04 10:01:56 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 16 = ∑16/20, waiting for 16 jobs
2025-11-04 10:02:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 16 = ∑16/20, new result: VAL_ACC: 71.200000
2025-11-04 10:02:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 15 = ∑15/20, waiting for 16 jobs, finished 1 job
2025-11-04 10:02:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 15 = ∑15/20, waiting for 15 jobs
2025-11-04 10:03:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 15 = ∑15/20, new result: VAL_ACC: 72.580000
2025-11-04 10:03:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 14 = ∑14/20, waiting for 15 jobs, finished 1 job
2025-11-04 10:03:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 14 = ∑14/20, waiting for 14 jobs
2025-11-04 10:04:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 14 = ∑14/20, new result: VAL_ACC: 70.700000
2025-11-04 10:04:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 13 = ∑13/20, waiting for 14 jobs, finished 1 job
2025-11-04 10:04:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 13 = ∑13/20, waiting for 13 jobs
2025-11-04 10:04:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 13 = ∑13/20, new result: VAL_ACC: 70.500000
2025-11-04 10:04:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 13 = ∑13/20, new result: VAL_ACC: 72.760000
2025-11-04 10:05:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 11 = ∑11/20, waiting for 13 jobs, finished 2 jobs
2025-11-04 10:05:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 11 = ∑11/20, waiting for 11 jobs
2025-11-04 10:05:45 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 11 = ∑11/20, new result: VAL_ACC: 70.580000
2025-11-04 10:06:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-04 10:06:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 10 = ∑10/20, waiting for 10 jobs
2025-11-04 10:06:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 10 = ∑10/20, new result: VAL_ACC: 71.010000
2025-11-04 10:06:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-04 10:06:42 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 9 = ∑9/20, waiting for 9 jobs
2025-11-04 10:06:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 9 = ∑9/20, new result: VAL_ACC: 72.030000
2025-11-04 10:07:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-04 10:07:11 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 8 = ∑8/20, waiting for 8 jobs
2025-11-04 10:08:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 8 = ∑8/20, new result: VAL_ACC: 72.280000
2025-11-04 10:09:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 7 = ∑7/20, waiting for 8 jobs, finished 1 job
2025-11-04 10:09:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 7 = ∑7/20, waiting for 7 jobs
2025-11-04 10:09:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 7 = ∑7/20, new result: VAL_ACC: 70.590000
2025-11-04 10:09:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 6 = ∑6/20, waiting for 7 jobs, finished 1 job
2025-11-04 10:09:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 6 = ∑6/20, waiting for 6 jobs
2025-11-04 10:19:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 6 = ∑6/20, new result: VAL_ACC: 72.450000
2025-11-04 10:19:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-04 10:19:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 5 = ∑5/20, waiting for 5 jobs
2025-11-04 10:19:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 5 = ∑5/20, new result: VAL_ACC: 72.520000
2025-11-04 10:20:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-04 10:20:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 4 = ∑4/20, waiting for 4 jobs
2025-11-04 10:24:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 4 = ∑4/20, new result: VAL_ACC: 72.580000
2025-11-04 10:24:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 3 = ∑3/20, waiting for 4 jobs, finished 1 job
2025-11-04 10:24:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 3 = ∑3/20, waiting for 3 jobs
2025-11-04 10:30:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 3 = ∑3/20, new result: VAL_ACC: 73.030000
2025-11-04 10:31:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 2 = ∑2/20, waiting for 3 jobs, finished 1 job
2025-11-04 10:31:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 2 = ∑2/20, waiting for 2 jobs
2025-11-04 10:35:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 2 = ∑2/20, new result: VAL_ACC: 72.670000
2025-11-04 10:36:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 1 = ∑1/20, waiting for 2 jobs, finished 1 job
2025-11-04 10:36:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, running 1 = ∑1/20, waiting for 1 job
2025-11-04 11:22:43 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, timeout 1 = ∑1/20, waiting for 1 job
2025-11-04 11:23:00 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, best VAL_ACC: 73.29, timeout 1 = ∑1/20, job_failed
2025-11-04 11:23:02 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, waiting for 1 job, finished 1 job
2025-11-04 11:28:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #1/20
2025-11-04 11:28:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #2/20
2025-11-04 11:28:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #3/20
2025-11-04 11:28:46 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #4/20
2025-11-04 11:28:47 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #5/20
2025-11-04 11:28:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #6/20
2025-11-04 11:28:48 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #7/20
2025-11-04 11:28:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #8/20
2025-11-04 11:28:49 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #9/20
2025-11-04 11:28:50 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #10/20
2025-11-04 11:28:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #11/20
2025-11-04 11:28:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #12/20
2025-11-04 11:28:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #13/20
2025-11-04 11:28:53 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #14/20
2025-11-04 11:28:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #15/20
2025-11-04 11:28:54 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #16/20
2025-11-04 11:28:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #17/20
2025-11-04 11:28:55 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #18/20
2025-11-04 11:28:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #19/20
2025-11-04 11:28:57 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, getting new HP set #20/20
2025-11-04 11:28:58 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, requested 20 jobs, got 20, 17.68 s/job
2025-11-04 11:29:01 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #1/20 start
2025-11-04 11:29:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #2/20 start
2025-11-04 11:29:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #3/20 start
2025-11-04 11:29:09 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #4/20 start
2025-11-04 11:29:10 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #5/20 start
2025-11-04 11:29:13 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #6/20 start
2025-11-04 11:29:14 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #7/20 start
2025-11-04 11:29:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #8/20 start
2025-11-04 11:29:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #9/20 start
2025-11-04 11:29:19 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #10/20 start
2025-11-04 11:29:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #11/20 start
2025-11-04 11:29:22 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #12/20 start
2025-11-04 11:29:24 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #13/20 start
2025-11-04 11:29:25 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #14/20 start
2025-11-04 11:29:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #15/20 start
2025-11-04 11:29:28 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #16/20 start
2025-11-04 11:29:32 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #17/20 start
2025-11-04 11:29:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #18/20 start
2025-11-04 11:29:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #19/20 start
2025-11-04 11:29:40 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, eval #20/20 start
2025-11-04 11:29:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, starting new job
2025-11-04 11:30:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, pending 1 = ∑1/20, started new job
2025-11-04 11:30:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, pending 1 = ∑1/20, starting new job
2025-11-04 11:30:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 1/1 = ∑2/20, started new job
2025-11-04 11:30:17 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 1/1 = ∑2/20, starting new job
2025-11-04 11:30:26 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 1/2 = ∑3/20, started new job
2025-11-04 11:30:27 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 1/2 = ∑3/20, starting new job
2025-11-04 11:30:33 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 1/3 = ∑4/20, started new job
2025-11-04 11:30:34 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 1/3 = ∑4/20, starting new job
2025-11-04 11:30:37 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 1/4 = ∑5/20, started new job
2025-11-04 11:30:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 5/1 = ∑6/20, started new job
2025-11-04 11:31:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 5/3 = ∑8/20, started new job
2025-11-04 11:31:03 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 5/4 = ∑9/20, started new job
2025-11-04 11:31:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 5/5 = ∑10/20, started new job
2025-11-04 11:31:16 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running/pending 10/1 = ∑11/20, started new job
2025-11-04 11:32:07 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 11 = ∑11/20, waiting for 11 jobs
2025-11-04 11:46:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 11 = ∑11/20, new result: VAL_ACC: 69.570000
2025-11-04 11:47:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 10 = ∑10/20, waiting for 11 jobs, finished 1 job
2025-11-04 11:47:21 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 10 = ∑10/20, waiting for 10 jobs
2025-11-04 12:14:18 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 10 = ∑10/20, new result: VAL_ACC: 68.260000
2025-11-04 12:14:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 9 = ∑9/20, waiting for 10 jobs, finished 1 job
2025-11-04 12:14:51 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 9 = ∑9/20, waiting for 9 jobs
2025-11-04 12:15:08 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 9 = ∑9/20, new result: VAL_ACC: 69.920000
2025-11-04 12:15:38 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 8 = ∑8/20, waiting for 9 jobs, finished 1 job
2025-11-04 12:15:39 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 8 = ∑8/20, waiting for 8 jobs
2025-11-04 12:15:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 8 = ∑8/20, new result: VAL_ACC: 70.760000
2025-11-04 12:15:41 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 8 = ∑8/20, new result: VAL_ACC: 69.760000
2025-11-04 12:16:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 6 = ∑6/20, waiting for 8 jobs, finished 2 jobs
2025-11-04 12:16:29 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 6 = ∑6/20, waiting for 6 jobs
2025-11-04 12:17:06 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 6 = ∑6/20, new result: VAL_ACC: 70.990000
2025-11-04 12:17:35 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 5 = ∑5/20, waiting for 6 jobs, finished 1 job
2025-11-04 12:17:36 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 5 = ∑5/20, waiting for 5 jobs
2025-11-04 12:18:44 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 5 = ∑5/20, new result: VAL_ACC: 69.980000
2025-11-04 12:19:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 4 = ∑4/20, waiting for 5 jobs, finished 1 job
2025-11-04 12:19:15 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 4 = ∑4/20, waiting for 4 jobs
2025-11-04 12:20:52 (2d5d5235-cc30-40a5-8187-969342ac2b39): BOTORCH_MODULAR, failed: 1, best VAL_ACC: 73.29, running 4 = ∑4/20, new result: VAL_ACC: 67.860000
Arguments Overview
| Key | Value |
|---|
| config_yaml | None |
| config_toml | None |
| config_json | None |
| num_random_steps | 20 |
| max_eval | 1000 |
| run_program | [['cHl0aG9uMyAvZGF0YS9ob3JzZS93cy9wd2lua2xlci1tbmlzdF9tb25vL29tbmlvcHQvLnRlc3RzL21uaXN0L3RyYWluIC0tZXBvY2hzICVlcG9jaHMgLS1sZWFybmluZ19yYXRlICVsciAtLWJh… |
| experiment_name | mnist_mono |
| mem_gb | 40 |
| parameter | [['epochs', 'range', '50', '200', 'int', 'false'], ['lr', 'range', '0.0001', '0.005', 'float', 'false'], ['batch_size', 'range', '8', '256', 'int', |
| 'false'], ['hidden_size', 'range', '500', '6000', 'int', 'false'], ['dropout', 'range', '0', '0.6', 'float', 'false'], ['num_dense_layers', 'fixed', |
| '1'], ['filter', 'range', '20', '180', 'int', 'false'], ['num_conv_layers', 'range', '3', '6', 'int', 'false']] |
| continue_previous_job | None |
| experiment_constraints | None |
| run_dir | runs |
| seed | None |
| verbose_tqdm | False |
| model | BOTORCH_MODULAR |
| gridsearch | False |
| occ | False |
| show_sixel_scatter | False |
| show_sixel_general | False |
| show_sixel_trial_index_result | False |
| follow | True |
| send_anonymized_usage_stats | True |
| ui_url | None |
| root_venv_dir | /home/pwinkler |
| exclude | None |
| main_process_gb | 20 |
| max_nr_of_zero_results | 50 |
| abbreviate_job_names | False |
| orchestrator_file | None |
| checkout_to_latest_tested_version | False |
| live_share | True |
| disable_tqdm | False |
| disable_previous_job_constraint | False |
| workdir | |
| occ_type | euclid |
| result_names | ['VAL_ACC=max'] |
| minkowski_p | 2 |
| signed_weighted_euclidean_weights | |
| generation_strategy | None |
| generate_all_jobs_at_once | True |
| revert_to_random_when_seemingly_exhausted | True |
| load_data_from_existing_jobs | [] |
| n_estimators_randomforest | 100 |
| max_attempts_for_generation | 20 |
| external_generator | None |
| username | None |
| max_failed_jobs | 0 |
| num_cpus_main_job | None |
| calculate_pareto_front_of_job | [] |
| show_generate_time_table | False |
| force_choice_for_ranges | False |
| max_abandoned_retrial | 20 |
| share_password | None |
| dryrun | False |
| db_url | None |
| run_program_once | Y0hsMGFHOXVNeUF2WkdGMFlTOW9iM0p6WlM5M2N5OXpNemd4TVRFME1TMXZiVzVwYjNCMFgyMXVhWE4wWDNSbGMzUmZZMkZzYkM5dmJXNXBiM0IwTHk1MFpYTjBjeTl0Ym1semRDOTBjbUZwYmlBdEx… |
| worker_generator_path | None |
| save_to_database | False |
| range_max_difference | 1000000 |
| skip_search | False |
| dont_warm_start_refitting | False |
| refit_on_cv | False |
| fit_out_of_design | False |
| fit_abandoned | False |
| dont_jit_compile | False |
| num_restarts | 20 |
| raw_samples | 1024 |
| max_num_of_parallel_sruns | 16 |
| no_transform_inputs | False |
| no_normalize_y | False |
| transforms | [] |
| number_of_generators | 1 |
| num_parallel_jobs | 20 |
| worker_timeout | 120 |
| slurm_use_srun | False |
| time | 1440 |
| partition | alpha |
| reservation | None |
| force_local_execution | False |
| slurm_signal_delay_s | 0 |
| nodes_per_job | 1 |
| cpus_per_task | 1 |
| account | None |
| gpus | 1 |
| dependency | None |
| run_mode | local |
| verbose | False |
| verbose_break_run_search_table | False |
| debug | False |
| flame_graph | False |
| memray | False |
| no_sleep | False |
| tests | False |
| show_worker_percentage_table_at_end | False |
| auto_exclude_defective_hosts | False |
| run_tests_that_fail_on_taurus | False |
| raise_in_eval | False |
| show_ram_every_n_seconds | 0 |
| show_generation_and_submission_sixel | False |
| just_return_defaults | False |
| prettyprint | False |
| runtime_debug | False |
| debug_stack_regex | |
| debug_stack_trace_regex | None |
| show_func_name | False |
| beartype | False |
1762169171.5258,20,0,0
1762169188.2348,20,0,0
1762169200.9458,20,1,5
1762169201.1092,20,1,5
1762169205.9403,20,2,10
1762169206.0527,20,2,10
1762169210.943,20,3,15
1762169211.0555,20,3,15
1762169215.9557,20,4,20
1762169216.0267,20,4,20
1762169220.9548,20,5,25
1762169221.017,20,5,25
1762169225.9588,20,6,30
1762169226.017,20,6,30
1762169230.9631,20,7,35
1762169231.0249,20,7,35
1762169237.0447,20,8,40
1762169238.1678,20,8,40
1762169240.9805,20,9,45
1762169241.0409,20,9,45
1762169245.9843,20,10,50
1762169246.0553,20,10,50
1762169250.9863,20,13,65
1762169251.0784,20,13,65
1762169255.9923,20,16,80
1762169257.1115,20,16,80
1762169270.9989,20,17,85
1762169271.0632,20,17,85
1762169281.0064,20,18,90
1762169281.0672,20,18,90
1762169286.0101,20,19,95
1762169286.0747,20,19,95
1762169291.0376,20,20,100
1762169957.6687,20,20,100
1762169958.2182,20,19,95
1762169977.9089,20,19,95
1762169978.4576,20,18,90
1762170265.7706,20,18,90
1762170268.7484,20,17,85
1762170527.8406,20,17,85
1762170530.7712,20,16,80
1762170599.8702,20,16,80
1762170600.4565,20,15,75
1762170639.951,20,15,75
1762170641.5818,20,14,70
1762170746.5989,20,14,70
1762170800.323,20,13,65
1762170994.0524,20,13,65
1762171013.3738,20,12,60
1762171026.9735,20,12,60
1762171034.6723,20,11,55
1762171063.8379,20,11,55
1762171064.3918,20,10,50
1762171197.3043,20,10,50
1762171199.5283,20,9,45
1762171268.9663,20,9,45
1762171269.5208,20,8,40
1762171283.5756,20,8,40
1762171285.6355,20,7,35
1762171379.7701,20,7,35
1762171380.324,20,6,30
1762171659.647,20,6,30
1762171660.2111,20,5,25
1762171724.9914,20,5,25
1762171725.5508,20,3,15
1762172034.7656,20,3,15
1762172036.9785,20,2,10
1762172135.5599,20,2,10
1762172136.121,20,1,5
1762172419.2769,20,1,5
1762172421.5061,20,0,0
1762172495.7016,20,0,0
1762172504.769,20,2,10
1762172505.0105,20,2,10
1762172524.0666,20,5,25
1762172524.8381,20,5,25
1762172529.7797,20,8,40
1762172529.9095,20,8,40
1762172559.095,20,11,55
1762172559.8652,20,11,55
1762172564.8162,20,13,65
1762172564.9065,20,13,65
1762172569.8159,20,14,70
1762172570.9114,20,14,70
1762172579.845,20,15,75
1762172579.9332,20,15,75
1762172594.8443,20,17,85
1762172594.9306,20,17,85
1762172614.7292,20,18,90
1762172618.607,20,18,90
1762172619.1778,20,20,100
1762172663.481,20,20,100
1762172664.0492,20,19,95
1762172683.7219,20,19,95
1762172684.3004,20,17,85
1762172688.6438,20,17,85
1762172689.2163,20,16,80
1762174648.7625,20,16,80
1762174652.7165,20,15,75
1762174674.5666,20,15,75
1762174678.6295,20,13,65
1762174687.4561,20,13,65
1762174690.0157,20,12,60
1762174703.7529,20,12,60
1762174704.3299,20,11,55
1762174706.8432,20,11,55
1762174709.4792,20,9,45
1762174710.7337,20,9,45
1762174714.9256,20,8,40
1762174716.3505,20,8,40
1762174720.429,20,6,30
1762174724.9766,20,6,30
1762174727.4956,20,5,25
1762174729.8893,20,5,25
1762174730.5168,20,4,20
1762174734.6587,20,4,20
1762174735.2388,20,3,15
1762174739.954,20,3,15
1762174741.1033,20,2,10
1762174784.2519,20,2,10
1762174786.94,20,1,5
1762174790.9805,20,1,5
1762174791.2045,20,0,0
1762174856.2987,20,0,0
1762174856.5727,20,1,5
1762174856.6298,20,2,10
1762174857.2218,20,2,10
1762174860.2719,20,3,15
1762174862.092,20,3,15
1762174866.9065,20,6,30
1762174867.0717,20,6,30
1762174871.9353,20,7,35
1762174872.0332,20,7,35
1762174876.9269,20,9,45
1762174877.0815,20,9,45
1762174881.9382,20,10,50
1762174882.0408,20,10,50
1762174886.9287,20,11,55
1762174887.0325,20,11,55
1762174891.9338,20,12,60
1762174892.0321,20,12,60
1762174896.9382,20,14,70
1762174897.1127,20,14,70
1762174901.9388,20,15,75
1762174902.0389,20,15,75
1762174906.9444,20,17,85
1762174907.108,20,17,85
1762174911.9979,20,18,90
1762174912.1059,20,18,90
1762174916.9569,20,20,100
1762176957.3386,20,20,100
1762176961.8826,20,19,95
1762176963.0545,20,19,95
1762176968.1806,20,17,85
1762176969.3562,20,17,85
1762176975.7077,20,15,75
1762176977.9764,20,15,75
1762176989.4056,20,12,60
1762176990.9238,20,12,60
1762176999.6906,20,9,45
1762177001.8071,20,9,45
1762177010.2327,20,6,30
1762177017.9257,20,6,30
1762177021.2401,20,5,25
1762177023.5633,20,5,25
1762177026.8397,20,4,20
1762177034.886,20,4,20
1762177038.2026,20,2,10
1762177047.7771,20,2,10
1762177051.3887,20,1,5
1762177099.4781,20,1,5
1762177138.6922,20,0,0
1762177169.4845,20,0,0
1762177169.5845,20,1,5
1762177170.6545,20,1,5
1762177175.0839,20,5,25
1762177175.4275,20,5,25
1762177180.0785,20,6,30
1762177180.1903,20,6,30
1762177185.0866,20,8,40
1762177185.2774,20,8,40
1762177190.0914,20,10,50
1762177190.2882,20,10,50
1762177195.1078,20,11,55
1762177195.2277,20,11,55
1762177200.1088,20,12,60
1762177200.2255,20,12,60
1762177205.1047,20,14,70
1762177205.298,20,14,70
1762177210.1119,20,15,75
1762177210.227,20,15,75
1762177215.1239,20,17,85
1762177215.3175,20,17,85
1762177221.1918,20,18,90
1762177221.3129,20,18,90
1762177226.1582,20,19,95
1762177226.2798,20,19,95
1762177235.141,20,20,100
1762178402.884,20,20,100
1762178407.7219,20,19,95
1762178620.6686,20,19,95
1762178624.2915,20,18,90
1762178807.5837,20,18,90
1762178811.4445,20,17,85
1762178865.4901,20,17,85
1762178869.0288,20,16,80
1762178917.9961,20,16,80
1762178922.7263,20,15,75
1762178971.8689,20,15,75
1762178973.5562,20,14,70
1762179081.1317,20,14,70
1762179084.9762,20,13,65
1762179103.5019,20,13,65
1762179107.2231,20,12,60
1762179136.6546,20,12,60
1762179137.267,20,11,55
1762179165.9515,20,11,55
1762179169.8599,20,10,50
1762179192.2148,20,10,50
1762179195.8571,20,9,45
1762179197.2033,20,9,45
1762179200.8613,20,8,40
1762179202.7988,20,8,40
1762179206.4234,20,7,35
1762179280.5193,20,7,35
1762179281.1251,20,6,30
1762179297.4486,20,6,30
1762179301.0813,20,5,25
1762179385.3142,20,5,25
1762179389.0677,20,4,20
1762179491.3901,20,4,20
1762179495.1031,20,3,15
1762179532.4493,20,3,15
1762179536.1421,20,2,10
1762179565.5688,20,2,10
1762179566.1746,20,1,5
1762179625.3602,20,1,5
1762179681.7169,20,0,0
1762179704.3069,20,0,0
1762179704.7439,20,1,5
1762179704.8593,20,1,5
1762179705.2942,20,2,10
1762179705.6482,20,2,10
1762179710.1014,20,3,15
1762179710.4201,20,3,15
1762179715.134,20,4,20
1762179715.4144,20,4,20
1762179725.1212,20,5,25
1762179725.2474,20,5,25
1762179735.1389,20,6,30
1762179735.274,20,6,30
1762179740.1326,20,7,35
1762179740.2586,20,7,35
1762179745.154,20,8,40
1762179745.2806,20,8,40
1762179750.1437,20,9,45
1762179750.2717,20,9,45
1762179755.1486,20,10,50
1762179755.2785,20,10,50
1762179760.1532,20,11,55
1762179760.2814,20,11,55
1762179766.2098,20,12,60
1762179766.338,20,12,60
1762179770.1653,20,13,65
1762179770.306,20,13,65
1762179780.1837,20,14,70
1762179780.3181,20,14,70
1762179785.18,20,15,75
1762179785.311,20,15,75
1762179795.2031,20,16,80
1762179795.5433,20,16,80
1762179805.7036,20,17,85
1762179809.8761,20,17,85
1762179810.4859,20,20,100
1762179879.9241,20,20,100
1762179880.5436,20,16,80
1762180541.5408,20,16,80
1762180552.0279,20,15,75
1762180766.8459,20,15,75
1762180771.109,20,14,70
1762180787.6724,20,14,70
1762180792.9423,20,13,65
1762181083.6694,20,13,65
1762181087.885,20,12,60
1762181170.979,20,12,60
1762181175.3599,20,11,55
1762181629.881,20,11,55
1762181634.1436,20,10,50
1762181642.2649,20,10,50
1762181646.5064,20,8,40
1762181658.3835,20,8,40
1762181662.7093,20,7,35
1762181664.2153,20,7,35
1762181668.3576,20,6,30
1762181690.3079,20,6,30
1762181694.717,20,5,25
1762181740.1354,20,5,25
1762181744.5147,20,4,20
1762181751.4408,20,4,20
1762181756.9741,20,3,15
1762181772.4436,20,3,15
1762181776.7469,20,2,10
1762181799.3568,20,2,10
1762181803.544,20,1,5
1762183736.333,20,1,5
1762183741.546,20,0,0
1762183860.296,20,0,0
1762183865.3105,20,2,10
1762183865.976,20,2,10
1762183870.3137,20,3,15
1762183870.7985,20,3,15
1762183875.316,20,5,25
1762183875.9557,20,5,25
1762183880.3268,20,7,35
1762183880.653,20,7,35
1762183885.3253,20,9,45
1762183885.6674,20,9,45
1762183890.3366,20,10,50
1762183890.5066,20,10,50
1762183895.3389,20,11,55
1762183895.5216,20,11,55
1762183900.3439,20,12,60
1762183900.5112,20,12,60
1762183905.3558,20,13,65
1762183906.5869,20,13,65
1762183910.3807,20,14,70
1762183910.5512,20,14,70
1762183915.3835,20,16,80
1762183915.6945,20,16,80
1762183920.3873,20,17,85
1762183920.5657,20,17,85
1762183925.3622,20,18,90
1762183925.5354,20,18,90
1762183930.3639,20,20,100
1762184874.8032,20,20,100
1762184880.2276,20,19,95
1762185135.5368,20,19,95
1762185141.3177,20,18,90
1762185578.7712,20,18,90
1762185584.4645,20,17,85
1762185977.578,20,17,85
1762185983.6353,20,16,80
1762186238.6412,20,16,80
1762186244.488,20,15,75
1762186247.8079,20,15,75
1762186253.5713,20,14,70
1762186560.6976,20,14,70
1762186566.0602,20,13,65
1762186577.3089,20,13,65
1762186583.0678,20,12,60
1762186605.3036,20,12,60
1762186611.0924,20,11,55
1762186649.0817,20,11,55
1762186654.9563,20,10,50
1762186862.9449,20,10,50
1762186868.5636,20,9,45
1762187124.2048,20,9,45
1762187131.235,20,7,35
1762187151.1741,20,7,35
1762187156.9298,20,5,25
1762187166.6845,20,5,25
1762187172.5419,20,4,20
1762187179.216,20,4,20
1762187185.0299,20,3,15
1762187188.6301,20,3,15
1762187194.147,20,2,10
1762187196.8789,20,2,10
1762187202.7387,20,1,5
1762187204.8257,20,1,5
1762187210.9335,20,0,0
1762187348.9852,20,0,0
1762187349.7916,20,1,5
1762187349.9459,20,2,10
1762187351.6853,20,2,10
1762187355.1805,20,5,25
1762187356.333,20,5,25
1762187365.1658,20,6,30
1762187365.3438,20,6,30
1762187370.1691,20,7,35
1762187370.3629,20,7,35
1762187375.1799,20,10,50
1762187375.7221,20,10,50
1762187380.1771,20,12,60
1762187380.5613,20,12,60
1762187385.1829,20,13,65
1762187385.3736,20,13,65
1762187390.2064,20,15,75
1762187391.3885,20,15,75
1762187395.1837,20,16,80
1762187395.3729,20,16,80
1762187400.1871,20,17,85
1762187400.3761,20,17,85
1762187410.1968,20,18,90
1762187410.3903,20,18,90
1762187420.2139,20,20,100
1762188573.0785,20,20,100
1762188580.3102,20,19,95
1762188624.2638,20,19,95
1762188632.0375,20,18,90
1762188661.7001,20,18,90
1762188669.1671,20,16,80
1762188742.709,20,16,80
1762188748.8978,20,15,75
1762189012.994,20,15,75
1762189019.7674,20,14,70
1762189065.9149,20,14,70
1762189072.4252,20,13,65
1762189137.5398,20,13,65
1762189145.3626,20,12,60
1762189467.314,20,12,60
1762189473.6243,20,11,55
1762189481.2186,20,11,55
1762189487.9303,20,10,50
1762189607.9341,20,10,50
1762189614.7869,20,9,45
1762189843.218,20,9,45
1762189849.9981,20,8,40
1762189902.6973,20,8,40
1762189910.8273,20,7,35
1762190200.8962,20,7,35
1762190207.9737,20,6,30
1762190221.2547,20,6,30
1762190228.5902,20,5,25
1762190399.5389,20,5,25
1762190406.5057,20,4,20
1762190517.562,20,4,20
1762190524.2956,20,3,15
1762190770.5481,20,3,15
1762190776.8652,20,2,10
1762191441.7371,20,2,10
1762191448.7072,20,1,5
1762191479.7268,20,1,5
1762191487.828,20,0,0
1762191640.1919,20,0,0
1762191640.6015,20,1,5
1762191643.2477,20,1,5
1762191651.1832,20,4,20
1762191651.6801,20,4,20
1762191656.1885,20,6,30
1762191656.6194,20,6,30
1762191661.218,20,7,35
1762191661.4438,20,7,35
1762191671.1986,20,8,40
1762191671.4101,20,8,40
1762191676.2017,20,10,50
1762191676.6023,20,10,50
1762191681.2084,20,11,55
1762191681.4241,20,11,55
1762191691.2198,20,13,65
1762191691.6524,20,13,65
1762191696.2673,20,16,80
1762191696.8727,20,16,80
1762191701.2284,20,17,85
1762191701.4335,20,17,85
1762191711.2389,20,18,90
1762191711.4577,20,18,90
1762191721.2628,20,19,95
1762191721.4802,20,19,95
1762191731.257,20,20,100
1762194029.9633,20,20,100
1762194038.1266,20,19,95
1762194101.92,20,19,95
1762194109.4526,20,18,90
1762194282.1755,20,18,90
1762194290.3296,20,16,80
1762194292.8509,20,16,80
1762194300.1438,20,15,75
1762194343.7765,20,15,75
1762194351.3651,20,14,70
1762194370.6127,20,14,70
1762194378.0953,20,13,65
1762194388.2348,20,13,65
1762194396.0872,20,12,60
1762194432.3762,20,12,60
1762194440.0813,20,11,55
1762194483.9229,20,11,55
1762194491.3962,20,10,50
1762194518.9435,20,10,50
1762194526.5533,20,9,45
1762194533.409,20,9,45
1762194541.2794,20,8,40
1762194782.9887,20,8,40
1762194790.732,20,7,35
1762194827.3521,20,7,35
1762194834.6939,20,6,30
1762194926.4894,20,6,30
1762194934.2965,20,4,20
1762194936.851,20,4,20
1762194944.5758,20,3,15
1762194948.5847,20,3,15
1762194961.7836,20,2,10
1762194990.7693,20,2,10
1762194998.6885,20,1,5
1762195079.6884,20,1,5
1762195087.7231,20,0,0
1762195262.0838,20,0,0
1762195262.5246,20,1,5
1762195265.2058,20,1,5
1762195267.9419,20,6,30
1762195271.6406,20,6,30
1762195272.9727,20,9,45
1762195273.5863,20,9,45
1762195277.9541,20,12,60
1762195278.5828,20,12,60
1762195282.9552,20,15,75
1762195283.5872,20,15,75
1762195287.9601,20,18,90
1762195288.5896,20,18,90
1762195292.9819,20,20,100
1762196075.6003,20,20,100
1762196084.3706,20,19,95
1762196282.1147,20,19,95
1762196290.8832,20,18,90
1762196751.7056,20,18,90
1762196760.305,20,17,85
1762196902.978,20,17,85
1762196911.5911,20,16,80
1762197378.1767,20,16,80
1762197387.7569,20,15,75
1762197390.4939,20,15,75
1762197398.8998,20,14,70
1762197447.2623,20,14,70
1762197457.1235,20,13,65
1762197504.3997,20,13,65
1762197513.826,20,12,60
1762197618.3083,20,12,60
1762197626.7902,20,11,55
1762197665.2746,20,11,55
1762197673.8414,20,10,50
1762197932.6408,20,10,50
1762197941.9976,20,9,45
1762197952.214,20,9,45
1762197960.4873,20,7,35
1762197963.2405,20,7,35
1762197971.7788,20,6,30
1762197975.8754,20,6,30
1762197989.809,20,5,25
1762198012.8424,20,5,25
1762198021.2497,20,4,20
1762198288.8916,20,4,20
1762198298.0984,20,3,15
1762198330.704,20,3,15
1762198339.5363,20,2,10
1762198469.0721,20,2,10
1762198477.9438,20,1,5
1762198492.5344,20,1,5
1762198501.3154,20,0,0
1762198642.9479,20,0,0
1762198644.332,20,1,5
1762198646.9227,20,1,5
1762198649.8641,20,6,30
1762198651.4153,20,6,30
1762198654.8488,20,8,40
1762198655.3654,20,8,40
1762198659.8749,20,11,55
1762198661.0966,20,11,55
1762198664.8702,20,12,60
1762198665.1225,20,12,60
1762198669.863,20,13,65
1762198670.1256,20,13,65
1762198674.9036,20,15,75
1762198676.1227,20,15,75
1762198679.9519,20,18,90
1762198680.7385,20,18,90
1762198684.8779,20,20,100
1762199693.4739,20,20,100
1762199704.1834,20,19,95
1762200178.1872,20,19,95
1762200188.0756,20,18,90
1762200670.572,20,18,90
1762200680.63,20,17,85
1762200726.6297,20,17,85
1762200735.9178,20,16,80
1762200746.3166,20,16,80
1762200756.1326,20,15,75
1762200900.9872,20,15,75
1762200910.3539,20,14,70
1762200924.9193,20,14,70
1762200930.0641,20,13,65
1762201044.5126,20,13,65
1762201053.9933,20,12,60
1762201106.7649,20,12,60
1762201116.2098,20,11,55
1762201193.5098,20,11,55
1762201203.2571,20,10,50
1762201213.6808,20,10,50
1762201223.3064,20,9,45
1762201351.658,20,9,45
1762201361.2554,20,8,40
1762201433.0742,20,8,40
1762201442.5123,20,7,35
1762201445.4403,20,7,35
1762201454.8481,20,6,30
1762201466.7114,20,6,30
1762201477.422,20,2,10
1762201511.8761,20,2,10
1762201521.5611,20,1,5
1762201524.5498,20,1,5
1762201534.4481,20,0,0
1762201697.9932,20,0,0
1762201699.2286,20,1,5
1762201702.1382,20,1,5
1762201704.6435,20,4,20
1762201705.3452,20,4,20
1762201709.6667,20,7,35
1762201710.3881,20,7,35
1762201714.6462,20,9,45
1762201715.191,20,9,45
1762201719.6624,20,10,50
1762201719.9333,20,10,50
1762201724.6425,20,11,55
1762201724.9172,20,11,55
1762201729.6761,20,13,65
1762201730.2245,20,13,65
1762201734.6741,20,16,80
1762201735.4095,20,16,80
1762201739.6561,20,18,90
1762201740.2082,20,18,90
1762201744.6645,20,20,100
1762203242.0791,20,20,100
1762203251.0977,20,19,95
1762204386.5143,20,19,95
1762204395.9035,20,18,90
1762204427.3057,20,18,90
1762204439.0056,20,17,85
1762204454.1073,20,17,85
1762204463.8637,20,16,80
1762204466.6783,20,16,80
1762204475.7172,20,14,70
1762204479.9215,20,14,70
1762204494.7309,20,11,55
1762204499.3487,20,11,55
1762204513.4539,20,8,40
1762204517.8855,20,8,40
1762204519.4075,20,7,35
1762204520.8714,20,7,35
1762204548.5414,20,5,25
1762204555.8609,20,5,25
1762204584.2714,20,1,5
1762204611.7313,20,1,5
1762204621.1359,20,0,0
1762204750.9069,20,0,0
1762204752.3795,20,1,5
1762204752.4016,20,1,5
1762204752.7505,20,2,10
1762204754.8675,20,2,10
1762204757.8167,20,5,25
1762204758.882,20,5,25
1762204762.8424,20,8,40
1762204763.5215,20,8,40
1762204767.8291,20,10,50
1762204768.3335,20,10,50
1762204772.8341,20,11,55
1762204773.0923,20,11,55
1762204777.8394,20,13,65
1762204778.3485,20,13,65
1762204782.8448,20,14,70
1762204783.1104,20,14,70
1762204787.8502,20,16,80
1762204788.3574,20,16,80
1762204792.8571,20,18,90
1762204793.3704,20,18,90
1762204797.8617,20,20,100
1762205826.1958,20,20,100
1762205836.4485,20,19,95
1762206117.3124,20,19,95
1762206127.852,20,18,90
1762206359.0087,20,18,90
1762206369.6313,20,17,85
1762207058.0635,20,17,85
1762207068.317,20,16,80
1762207123.8358,20,16,80
1762207134.1232,20,15,75
1762207243.753,20,15,75
1762207254.2686,20,14,70
1762207491.4208,20,14,70
1762207502.3366,20,12,60
1762207505.416,20,12,60
1762207515.316,20,11,55
1762207531.3275,20,11,55
1762207541.638,20,10,50
1762207548.3833,20,10,50
1762207559.154,20,8,40
1762207582.5436,20,8,40
1762207598.5764,20,6,30
1762207624.5091,20,6,30
1762207635.2049,20,5,25
1762207640.382,20,5,25
1762207650.858,20,4,20
1762207799.4859,20,4,20
1762207809.7295,20,3,15
1762208093.5164,20,3,15
1762208104.0559,20,1,5
1762208266.253,20,1,5
1762208276.8604,20,0,0
1762208437.9517,20,0,0
1762208440.0816,20,1,5
1762208441.4129,20,1,5
1762208450.2484,20,3,15
1762208451.9545,20,3,15
1762208455.2117,20,4,20
1762208455.9333,20,4,20
1762208460.2421,20,5,25
1762208460.5201,20,5,25
1762208465.2231,20,6,30
1762208465.504,20,6,30
1762208470.2343,20,9,45
1762208470.9677,20,9,45
1762208475.2654,20,12,60
1762208476.0185,20,12,60
1762208485.2435,20,13,65
1762208485.5236,20,13,65
1762208495.2548,20,14,70
1762208495.5541,20,14,70
1762208505.2564,20,15,75
1762208505.536,20,15,75
1762208510.2784,20,18,90
1762208511.0422,20,18,90
1762208520.2736,20,19,95
1762208520.5663,20,19,95
1762208530.2846,20,20,100
1762209265.8287,20,20,100
1762209276.6008,20,19,95
1762209485.6844,20,19,95
1762209497.8261,20,18,90
1762209734.6441,20,18,90
1762209745.3712,20,17,85
1762209750.7662,20,17,85
1762209761.7311,20,16,80
1762210631.9448,20,16,80
1762210643.6296,20,15,75
1762210681.7893,20,15,75
1762210692.7679,20,14,70
1762210763.4113,20,14,70
1762210774.6027,20,13,65
1762210983.0611,20,13,65
1762210994.2187,20,12,60
1762210997.8259,20,12,60
1762211009.1411,20,11,55
1762211017.1901,20,11,55
1762211028.0214,20,10,50
1762211091.4998,20,10,50
1762211103.7714,20,8,40
1762211123.8866,20,8,40
1762211124.1348,20,7,35
1762211136.7423,20,6,30
1762211140.2756,20,6,30
1762211151.9581,20,5,25
1762211218.7106,20,5,25
1762211230.4378,20,4,20
1762211280.5743,20,4,20
1762211292.3703,20,3,15
1762211533.1952,20,3,15
1762211544.7314,20,2,10
1762211943.2839,20,2,10
1762211954.7808,20,1,5
1762211991.5851,20,1,5
1762212003.1029,20,0,0
1762212174.3937,20,0,0
1762212176.1546,20,2,10
1762212177.5758,20,2,10
1762212177.8532,20,3,15
1762212182.5286,20,3,15
1762212186.7716,20,5,25
1762212187.0672,20,5,25
1762212191.7583,20,6,30
1762212192.0529,20,6,30
1762212196.7646,20,7,35
1762212197.0615,20,7,35
1762212201.768,20,9,45
1762212202.3427,20,9,45
1762212206.773,20,11,55
1762212207.3437,20,11,55
1762212211.782,20,12,60
1762212212.0778,20,12,60
1762212216.8091,20,14,70
1762212217.383,20,14,70
1762212221.8169,20,15,75
1762212222.1138,20,15,75
1762212226.7957,20,16,80
1762212227.0964,20,16,80
1762212231.8023,20,17,85
1762212232.0951,20,17,85
1762212236.8065,20,18,90
1762212237.101,20,18,90
1762212241.815,20,19,95
1762212242.1135,20,19,95
1762212246.827,20,20,100
1762214284.6453,20,20,100
1762214297.8247,20,19,95
1762214630.5037,20,19,95
1762214643.6296,20,17,85
1762214847.8811,20,17,85
1762214872.1475,20,15,75
1762214875.6435,20,15,75
1762214888.3238,20,13,65
1762214892.1887,20,13,65
1762214894.1699,20,12,60
1762214894.9291,20,12,60
1762214925.2937,20,10,50
1762214928.7094,20,10,50
1762214929.1273,20,9,45
1762214932.1296,20,9,45
1762214960.3638,20,3,15
1762215167.8276,20,3,15
1762215183.9589,20,2,10
1762215333.522,20,2,10
1762215346.044,20,1,5
1762215349.5956,20,1,5
1762215362.0342,20,0,0
1762215549.7219,20,0,0
1762215551.4791,20,1,5
1762215554.7982,20,1,5
1762215562.0473,20,5,25
1762215563.3772,20,5,25
1762215567.0697,20,7,35
1762215567.6676,20,7,35
1762215572.0767,20,8,40
1762215572.3866,20,8,40
1762215577.5356,20,9,45
1762215577.8417,20,9,45
1762215587.0803,20,12,60
1762215587.9095,20,12,60
1762215592.0788,20,13,65
1762215592.3902,20,13,65
1762215602.0857,20,14,70
1762215602.3955,20,14,70
1762215607.1071,20,15,75
1762215607.414,20,15,75
1762215617.1032,20,16,80
1762215617.4104,20,16,80
1762215622.1115,20,19,95
1762215622.9528,20,19,95
1762215627.1131,20,20,100
1762218153.6539,20,20,100
1762218168.037,20,19,95
1762218185.1255,20,19,95
1762218198.4289,20,18,90
1762218252.7381,20,18,90
1762218266.4293,20,15,75
1762218271.6672,20,15,75
1762218291.5334,20,14,70
1762218294.8303,20,14,70
1762218296.2895,20,13,65
1762218296.7784,20,13,65
1762218317.4917,20,11,55
1762218359.4395,20,11,55
1762218373.0779,20,10,50
1762218451.564,20,10,50
1762218465.1147,20,9,45
1762218494.6824,20,9,45
1762218508.0171,20,8,40
1762218512.3412,20,8,40
1762218526.5542,20,7,35
1762218536.5256,20,7,35
1762218550.1365,20,6,30
1762218561.4892,20,6,30
1762218574.1026,20,5,25
1762218591.24,20,5,25
1762218605.1721,20,4,20
1762218608.7323,20,4,20
1762218622.3127,20,3,15
1762218632.2608,20,3,15
1762218645.9579,20,1,5
1762218727.8215,20,1,5
1762218728.1329,20,0,0
1762218977.2285,20,0,0
1762218978.758,20,1,5
1762218978.8387,20,1,5
1762218979.0191,20,2,10
1762218982.2275,20,2,10
1762218989.2539,20,4,20
1762218990.142,20,4,20
1762218994.2824,20,7,35
1762218995.1628,20,7,35
1762219004.263,20,8,40
1762219004.5858,20,8,40
1762219014.3012,20,11,55
1762219015.6855,20,11,55
1762219019.2851,20,14,70
1762219020.1455,20,14,70
1762219024.286,20,16,80
1762219024.9045,20,16,80
1762219029.317,20,19,95
1762219030.2058,20,19,95
1762219034.302,20,20,100
1762220691.535,20,20,100
1762220707.6693,20,19,95
1762221539.9805,20,19,95
1762221555.3539,20,17,85
1762221585.0999,20,17,85
1762221600.3604,20,16,80
1762221604.103,20,16,80
1762221619.9692,20,14,70
1762221623.8227,20,14,70
1762221639.7983,20,13,65
1762221643.63,20,13,65
1762221659.1006,20,12,60
1762221706.0496,20,12,60
1762221720.4483,20,11,55
1762221766.3886,20,11,55
1762221781.6497,20,10,50
1762221819.6231,20,10,50
1762221835.3111,20,9,45
1762221857.7469,20,9,45
1762221872.8299,20,7,35
1762221911.7261,20,7,35
1762221926.2026,20,6,30
1762221938.1525,20,6,30
1762221952.9776,20,4,20
1762221988.5762,20,4,20
1762222003.4794,20,3,15
1762222021.8897,20,3,15
1762222036.7154,20,2,10
1762222070.8927,20,2,10
1762222071.1864,20,1,5
1762222288.3077,20,1,5
1762222303.5033,20,0,0
1762222528.6785,20,0,0
1762222529.5137,20,1,5
1762222534.6343,20,1,5
1762222535.0592,20,2,10
1762222539.9781,20,2,10
1762222540.3399,20,3,15
1762222544.9855,20,3,15
1762222545.3064,20,4,20
1762222549.9873,20,4,20
1762222554.673,20,5,25
1762222554.7095,20,5,25
1762222555.5687,20,8,40
1762222559.9941,20,8,40
1762222564.6742,20,9,45
1762222565.0597,20,10,50
1762222569.6686,20,10,50
1762222570.025,20,11,55
1762222574.67,20,11,55
1762222575.0301,20,12,60
1762222579.6763,20,12,60
1762222580.0482,20,13,65
1762222584.6815,20,13,65
1762222585.0432,20,14,70
1762222589.6859,20,14,70
1762222590.0491,20,15,75
1762222594.6919,20,15,75
1762222595.0574,20,16,80
1762222599.6959,20,16,80
1762222600.0545,20,17,85
1762222604.7099,20,17,85
1762222605.0715,20,18,90
1762222609.7047,20,18,90
1762222610.0685,20,19,95
1762222614.7147,20,19,95
1762222615.0737,20,20,100
1762224613.9309,20,20,100
1762224629.6033,20,19,95
1762225083.5633,20,19,95
1762225100.6724,20,18,90
1762225130.8563,20,18,90
1762225149.7551,20,16,80
1762225200.8556,20,16,80
1762225201.1622,20,15,75
1762225227.3558,20,15,75
1762225244.2726,20,14,70
1762225339.7923,20,14,70
1762225356.5414,20,12,60
1762225487.8161,20,12,60
1762225503.6094,20,11,55
1762225547.8893,20,11,55
1762225564.1486,20,9,45
1762225657.0793,20,9,45
1762225680.6717,20,7,35
1762225713.3592,20,7,35
1762225729.4676,20,6,30
1762225747.69,20,6,30
1762225764.4138,20,5,25
1762225842.4734,20,5,25
1762225858.6628,20,4,20
1762225901.2781,20,4,20
1762225917.475,20,3,15
1762226006.0686,20,3,15
1762226022.1877,20,2,10
1762226429.1039,20,2,10
1762226447.2809,20,1,5
1762226471.9773,20,1,5
1762226488.9465,20,0,0
1762226785.6958,20,0,0
1762226786.5046,20,1,5
1762226786.5307,20,1,5
1762226786.9889,20,3,15
1762226791.0615,20,3,15
1762226792.2593,20,4,20
1762226793.2569,20,4,20
1762226802.2719,20,5,25
1762226802.6247,20,5,25
1762226812.2701,20,6,30
1762226812.6279,20,6,30
1762226817.2648,20,8,40
1762226817.9476,20,8,40
1762226822.2716,20,9,45
1762226822.6266,20,9,45
1762226827.3132,20,11,55
1762226828.6088,20,11,55
1762226832.2801,20,13,65
1762226833.1388,20,13,65
1762226837.3221,20,15,75
1762226837.9494,20,15,75
1762226842.3038,20,17,85
1762226842.9964,20,17,85
1762226852.305,20,18,90
1762226852.6692,20,18,90
1762226862.3105,20,19,95
1762226862.6772,20,19,95
1762226872.3292,20,20,100
1762228119.5015,20,20,100
1762228138.936,20,19,95
1762228673.8022,20,19,95
1762228692.0048,20,18,90
1762229280.1058,20,18,90
1762229298.1718,20,17,85
1762229302.3451,20,17,85
1762229320.3032,20,15,75
1762229453.5742,20,15,75
1762229470.6523,20,14,70
1762229509.7142,20,14,70
1762229527.5501,20,13,65
1762229801.1543,20,13,65
1762229803.0576,20,11,55
1762229803.6468,20,11,55
1762229830.1275,20,10,50
1762229862.6467,20,10,50
1762229863.4531,20,9,45
1762230043.9738,20,9,45
1762230062.9178,20,8,40
1762230088.0624,20,8,40
1762230106.6725,20,6,30
1762230312.0677,20,6,30
1762230330.1658,20,5,25
1762230342.6935,20,5,25
1762230362.1048,20,4,20
1762230405.0225,20,4,20
1762230423.9218,20,3,15
1762230446.1083,20,3,15
1762230447.5391,20,2,10
1762230558.7868,20,2,10
1762230577.1439,20,1,5
1762230753.0348,20,1,5
1762230771.9233,20,0,0
1762231059.0209,20,0,0
1762231061.2268,20,1,5
1762231063.2896,20,1,5
1762231071.2112,20,4,20
1762231074.3815,20,4,20
1762231076.2065,20,6,30
1762231076.9276,20,6,30
1762231086.2286,20,7,35
1762231086.5962,20,7,35
1762231096.2293,20,9,45
1762231096.9504,20,9,45
1762231101.2343,20,10,50
1762231101.6128,20,10,50
1762231111.2523,20,11,55
1762231111.6272,20,11,55
1762231116.2478,20,13,65
1762231117.9769,20,13,65
1762231126.2974,20,14,70
1762231126.6711,20,14,70
1762231131.2702,20,16,80
1762231132.9528,20,16,80
1762231136.28,20,19,95
1762231137.9141,20,19,95
1762231146.2722,20,20,100
1762232168.8364,20,20,100
1762232188.0491,20,19,95
1762233380.1571,20,19,95
1762233401.8649,20,18,90
1762233870.7901,20,18,90
1762233889.8329,20,17,85
1762233973.9763,20,17,85
1762233993.6556,20,16,80
1762234265.2506,20,16,80
1762234284.4414,20,15,75
1762234581.7563,20,15,75
1762234603.5834,20,14,70
1762234637.2199,20,14,70
1762234657.8187,20,13,65
1762234768.9179,20,13,65
1762234789.5635,20,12,60
1762234793.7509,20,12,60
1762234794.1047,20,11,55
1762234892.7747,20,11,55
1762234913.0703,20,9,45
1762234983.179,20,9,45
1762235003.007,20,8,40
1762235030.7754,20,8,40
1762235050.9332,20,7,35
1762235414.4617,20,7,35
1762235415.3293,20,6,30
1762235496.953,20,6,30
1762235516.2792,20,5,25
1762235672.1275,20,5,25
1762235692.9183,20,3,15
1762235697.4471,20,3,15
1762235717.6851,20,2,10
1762235722.026,20,2,10
1762235742.6258,20,1,5
1762235746.8876,20,1,5
1762235748.0919,20,0,0
1762236082.5494,20,0,0
1762236093.7976,20,1,5
1762236094.8762,20,1,5
1762236103.7937,20,2,10
1762236104.9164,20,2,10
1762236113.829,20,3,15
1762236114.8986,20,3,15
1762236123.8131,20,4,20
1762236124.8883,20,4,20
1762236133.8454,20,5,25
1762236134.2379,20,5,25
1762236143.8308,20,6,30
1762236144.2262,20,6,30
1762236148.8348,20,7,35
1762236149.223,20,7,35
1762236153.8917,20,9,45
1762236154.6435,20,9,45
1762236163.8602,20,10,50
1762236164.2495,20,10,50
1762236173.8534,20,11,55
1762236174.2526,20,11,55
1762236215.3915,20,15,75
1762236224.4344,20,15,75
1762236225.3214,20,16,80
1762236234.9737,20,16,80
1762236235.8555,20,17,85
1762236244.4677,20,17,85
1762236245.3704,20,18,90
1762236249.6624,20,18,90
1762236250.5398,20,17,85
1762236254.8318,20,17,85
1762236255.7061,20,19,95
1762236259.9986,20,19,95
1762236261.0764,20,18,90
1762236279.5823,20,18,90
1762236280.4605,20,17,85
1762236284.7621,20,17,85
1762236285.648,20,16,80
1762236299.7256,20,16,80
1762236300.6451,20,14,70
1762236319.7808,20,14,70
1762236320.6546,20,11,55
1762238068.8404,20,11,55
1762238092.1174,20,10,50
1762238490.633,20,10,50
1762238511.0982,20,9,45
1762238639.1439,20,9,45
1762238660.1027,20,8,40
1762238683.1313,20,8,40
1762238704.8773,20,7,35
1762238948.4442,20,7,35
1762238969.7508,20,6,30
1762238983.1565,20,6,30
1762239005.2149,20,5,25
1762239047.778,20,5,25
1762239068.8827,20,4,20
1762239183.4214,20,4,20
1762239204.8517,20,3,15
1762239446.5274,20,3,15
1762239467.5753,20,2,10
1762239471.8582,20,2,10
1762239472.22,20,1,5
1762239888.9549,20,1,5
1762239889.3395,20,0,0
1762240237.6538,20,0,0
1762240239.4103,20,1,5
1762240243.5828,20,1,5
1762240244.7122,20,3,15
1762240245.8704,20,3,15
1762240249.7444,20,7,35
1762240250.8585,20,7,35
1762240254.7514,20,10,50
1762240255.8413,20,10,50
1762240259.7537,20,13,65
1762240261.5573,20,13,65
1762240264.7609,20,16,80
1762240265.8513,20,16,80
1762240269.7663,20,19,95
1762240270.8565,20,19,95
1762240274.7633,20,20,100
1762241225.7663,20,20,100
1762241248.9094,20,19,95
1762241476.6563,20,19,95
1762241499.3763,20,17,85
1762241505.1973,20,17,85
1762241525.9328,20,16,80
1762241710.9405,20,16,80
1762241735.8968,20,15,75
1762241752.2057,20,15,75
1762241773.7557,20,13,65
1762241987.8239,20,13,65
1762242008.6838,20,12,60
1762242012.2042,20,12,60
1762242013.1355,20,11,55
1762242252.8519,20,11,55
1762242273.9689,20,10,50
1762242472.7043,20,10,50
1762242473.075,20,9,45
1762242529.9459,20,9,45
1762242552.6214,20,8,40
1762242569.7419,20,8,40
1762242593.986,20,7,35
1762242805.8406,20,7,35
1762242828.1259,20,6,30
1762243037.8962,20,6,30
1762243060.975,20,5,25
1762243577.4288,20,5,25
1762243602.0334,20,3,15
1762243606.6719,20,3,15
1762243631.2189,20,2,10
1762243805.1478,20,2,10
1762243830.5453,20,1,5
1762243864.3948,20,1,5
1762243865.5212,20,0,0
1762244259.3067,20,0,0
1762244260.9239,20,1,5
1762244263.3081,20,1,5
1762244271.1207,20,4,20
1762244274.6954,20,4,20
1762244276.1221,20,6,30
1762244276.8665,20,6,30
1762244286.1316,20,7,35
1762244286.7759,20,7,35
1762244296.1352,20,8,40
1762244296.5521,20,8,40
1762244302.1882,20,9,45
1762244302.6116,20,9,45
1762244311.1553,20,12,60
1762244312.3361,20,12,60
1762244316.1558,20,14,70
1762244316.9685,20,14,70
1762244326.1759,20,15,75
1762244326.6028,20,15,75
1762244331.175,20,16,80
1762244331.6019,20,16,80
1762244336.2153,20,19,95
1762244337.3608,20,19,95
1762244346.1888,20,20,100
1762246468.3945,20,20,100
1762246493.9331,20,19,95
1762246643.8702,20,19,95
1762246780.3732,20,17,85
1762246890.7678,20,17,85
1762246891.1559,20,16,80
1762246921.9775,20,16,80
1762246945.2766,20,15,75
1762246999.3521,20,15,75
1762247021.7913,20,14,70
1762247053.2005,20,14,70
1762247077.4465,20,11,55
1762247147.5386,20,11,55
1762247172.0302,20,10,50
1762247176.8382,20,10,50
1762247200.5787,20,8,40
1762247333.6666,20,8,40
1762247334.0844,20,7,35
1762247359.6117,20,6,30
1762247956.1967,20,6,30
1762247979.9927,20,4,20
1762248241.718,20,4,20
1762248247.7414,20,3,15
1762248647.8383,20,3,15
1762248673.5696,20,2,10
1762248941.4834,20,2,10
1762248966.4969,20,1,5
1762251497.9732,20,1,5
1762251499.034,20,0,0
1762252191.8268,20,0,0
1762252205.9503,20,1,5
1762252207.2569,20,1,5
1762252215.9638,20,2,10
1762252217.2,20,2,10
1762252225.9756,20,3,15
1762252227.2222,20,3,15
1762252231.5099,20,4,20
1762252235.9229,20,4,20
1762252236.4488,20,5,25
1762252250.9963,20,6,30
1762252251.4487,20,6,30
1762252261.0256,20,9,45
1762252263.066,20,9,45
1762252266.0127,20,10,50
1762252266.4995,20,10,50
1762252276.0192,20,11,55
1762252276.4733,20,11,55
1762252325.9016,20,16,80
1762252333.5606,20,16,80
1762252334.5497,20,17,85
1762252343.8132,20,17,85
1762252345.6964,20,18,90
1762252354.1018,20,18,90
1762252355.0769,20,19,95
1762252358.7535,20,19,95
1762252360.8283,20,20,100
1762252364.5631,20,20,100
1762252365.5545,20,17,85
1762252395.2187,20,17,85
1762252396.2873,20,15,75
1762252425.9982,20,15,75
1762252426.9971,20,11,55
1762253201.3315,20,11,55
1762253239.5338,20,10,50
1762254860.1796,20,10,50
1762254889.5421,20,9,45
1762254910.1342,20,9,45
1762254937.4005,20,8,40
1762254941.4451,20,8,40
1762254942.2927,20,6,30
1762255026.5901,20,6,30
1762255027.8506,20,5,25
1762255126.6774,20,5,25
1762255153.6913,20,4,20
1762255254.7168,20,4,20
This logs the CPU and RAM usage of the main worker process.
timestamp,ram_usage_mb,cpu_usage_percent
1762169171,792.84765625,11.3
1762169271,840.4375,10.6
1762169337,834.25,10.6
1762169398,834.2421875,10.7
1762169459,834.33984375,10.5
1762169519,841.671875,10.6
1762169579,841.6640625,10.5
1762169639,841.64453125,10.7
1762169699,841.6875,10.6
1762169759,841.65625,10.5
1762169819,841.703125,10.7
1762169879,841.7265625,10.6
1762169939,841.6875,10.6
1762169999,844.16015625,10.5
1762170059,844.1640625,10.4
1762170119,844.171875,10.4
1762170179,844.17578125,10.5
1762170239,844.17578125,10.5
1762170299,844.671875,10.4
1762170359,844.7109375,10.4
1762170419,844.73046875,10.5
1762170479,844.703125,10.3
1762170539,845.26953125,8.9
1762170599,845.28125,8.8
1762170659,845.27734375,8.2
1762170719,845.78125,7
1762170800,853.38671875,7.1
1762170861,880.375,7.1
1762170921,883.8984375,6.9
1762170981,885.4375,7.2
1762171043,886.70703125,7.1
1762171103,886.73046875,7
1762171163,886.75390625,7
1762171223,886.859375,7.1
1762171313,886.96875,7.1
1762171373,886.96875,7.1
1762171433,887.0546875,7
1762171493,887.0546875,7.1
1762171553,887.0546875,7.1
1762171613,887.0546875,7.1
1762171673,887.06640625,7
1762171733,888.06640625,7.2
1762171793,888.06640625,7.1
1762171853,888.06640625,7.1
1762171913,888.06640625,7.1
1762171973,888.06640625,7
1762172033,888.06640625,7.1
1762172093,888.06640625,7.1
1762172153,888.06640625,7.1
1762172217,888.06640625,7.1
1762172277,888.06640625,7
1762172337,888.06640625,7.1
1762172401,888.06640625,7.1
1762172489,906.51171875,7.1
1762172594,917.53515625,50
1762172654,907.609375,9.6
1762172714,907.609375,10.9
1762172780,907.640625,10.7
1762172841,907.65625,10.6
1762172901,907.6953125,10.8
1762172961,907.734375,10.6
1762173021,907.78125,10.9
1762173081,907.796875,11
1762173141,907.82421875,11
1762173201,907.875,9.8
1762173269,907.91015625,9.6
1762173329,907.953125,9.6
1762173389,907.9609375,9.7
1762173449,908.0234375,9.7
1762173509,908.05078125,9.6
1762173569,908.07421875,9.6
1762173629,908.140625,8.9
1762173689,908.171875,9.9
1762173749,908.2109375,11.3
1762173809,908.2578125,11.1
1762173869,908.26171875,11.3
1762173929,908.296875,11.3
1762173989,908.3359375,11
1762174049,907.26171875,11.2
1762174109,907.29296875,11.3
1762174169,907.33984375,11.2
1762174229,907.3984375,10.6
1762174289,907.3984375,10.9
1762174349,907.46875,11.9
1762174409,907.5078125,12.2
1762174469,907.53515625,9.7
1762174529,907.58984375,9.8
1762174589,907.6328125,9.6
1762174652,908.171875,9.8
1762174714,909.05078125,10.2
1762174774,911.89453125,9.6
1762174922,932.3125,9.8
1762174982,932.31640625,10.4
1762175042,932.3125,10.4
1762175102,932.3359375,10.5
1762175162,932.36328125,10.3
1762175222,932.3984375,9.9
1762175282,932.44140625,8.7
1762175342,932.4609375,8.7
1762175413,932.5234375,8.4
1762175473,932.5546875,8.4
1762175533,932.6015625,8.8
1762175593,932.62109375,8.5
1762175653,932.66015625,8.8
1762175714,932.73828125,8.7
1762175774,932.73828125,8.7
1762175834,932.79296875,8.9
1762175894,932.81640625,9.3
1762175954,932.85546875,12.2
1762176014,932.90234375,9.9
1762176074,932.9375,9
1762176134,932.9609375,9.3
1762176194,933.0078125,9
1762176254,933.0546875,8.8
1762176314,933.0625,8.7
1762176374,933.109375,8.7
1762176434,933.140625,8.8
1762176494,933.1640625,8.8
1762176554,933.2265625,8.9
1762176614,933.25,9
1762176674,933.31640625,8.8
1762176734,933.328125,10.2
1762176794,933.3828125,10.7
1762176854,933.37890625,7.3
1762176914,933.421875,7.4
1762176975,934.90625,7.6
1762177042,940.29296875,8
1762177138,945.74609375,8.2
1762177235,965.19140625,9
1762177295,961.1015625,11.5
1762177355,961.1328125,9.8
1762177415,961.12890625,9.1
1762177476,966.52734375,9.2
1762177536,969.015625,9.3
1762177596,971.5078125,9.3
1762177656,982.01953125,9.1
1762177716,983.0390625,9.2
1762177776,983.0390625,11.3
1762177836,983.046875,9.4
1762177896,983.01171875,12.1
1762177956,983.01171875,9.5
1762178016,983.0625,13
1762178076,983.0390625,10.1
1762178136,983.01171875,9.5
1762178196,983.03515625,9.2
1762178256,983.0390625,9.2
1762178316,983.01171875,9.5
1762178376,983.01171875,9.8
1762178437,983.03515625,9.3
1762178497,983.0390625,9.1
1762178557,983.01171875,9.2
1762178617,983.03125,9.3
1762178677,985.62890625,9.2
1762178737,985.625,9.2
1762178797,985.60546875,9.3
1762178857,987.60546875,9.1
1762178917,987.6015625,7.6
1762178977,987.61328125,7.8
1762179037,987.59765625,7.6
1762179097,987.625,7.9
1762179157,987.6015625,7.7
1762179217,987.61328125,8
1762179279,987.60546875,7.8
1762179339,987.60546875,7.6
1762179399,989.6328125,7.8
1762179459,989.6328125,7.5
1762179519,989.6328125,7.8
1762179579,989.6328125,7.7
1762179681,993.1328125,8.7
1762179780,1010.2109375,9
1762179840,1005.890625,7.7
1762179900,1005.8984375,7.6
1762179960,1005.890625,7.5
1762180020,1005.890625,7.1
1762180080,1005.8828125,7
1762180140,1005.875,7
1762180200,1005.89453125,7.2
1762180260,1005.91796875,7
1762180320,1005.89453125,7
1762180380,1005.9140625,6.9
1762180440,1005.90234375,7
1762180500,1005.90234375,7
1762180560,1007.07421875,7.1
1762180620,1007.08203125,7.1
1762180680,1007.10546875,7
1762180740,1007.08984375,7
1762180801,1009.3515625,7.2
1762180861,1009.3515625,7
1762180931,1009.359375,7
1762180991,1009.359375,6.9
1762181051,1009.359375,7
1762181111,1009.35546875,7.2
1762181201,1009.359375,7.1
1762181282,1009.33984375,6.8
1762181342,1009.33984375,7
1762181402,1009.3359375,7
1762181462,1009.359375,7.1
1762181522,1009.33984375,7
1762181583,1009.33984375,7.1
1762181646,1009.3828125,7.2
1762181706,1009.34375,7.1
1762181766,1009.34375,7.3
1762181826,1009.34375,7.2
1762181886,1009.34375,7
1762181946,1009.34375,7.9
1762182006,1009.34375,8.9
1762182066,1014.67578125,9.5
1762182126,1014.67578125,9.7
1762182186,1014.67578125,10.3
1762182246,1014.67578125,11.3
1762182306,1014.67578125,16.1
1762182366,1014.67578125,14.3
1762182426,1014.67578125,14.4
1762182486,1014.67578125,14.6
1762182546,1014.67578125,14.3
1762182606,1014.67578125,14.6
1762182666,1014.67578125,14.4
1762182726,1014.67578125,14.3
1762182786,1014.67578125,14.4
1762182846,1014.67578125,15
1762182906,1014.67578125,14.3
1762182966,1014.67578125,14.3
1762183026,1014.67578125,14.4
1762183086,1014.67578125,14.7
1762183146,1014.67578125,14.2
1762183206,1014.67578125,14.4
1762183266,1014.67578125,14.3
1762183326,1014.67578125,14.4
1762183386,1014.67578125,14.3
1762183446,1014.67578125,14.3
1762183506,1014.67578125,14.5
1762183566,1014.67578125,14.3
1762183626,1014.67578125,14.3
1762183686,1014.67578125,14.6
1762183819,1023.31640625,15.4
1762183885,1027.375,10.2
1762183946,1023.44921875,14.3
1762184006,1023.44921875,14.5
1762184066,1023.41015625,14.2
1762184126,1023.4609375,14.1
1762184186,1023.44921875,14
1762184246,1023.4296875,14.6
1762184307,1023.4609375,14.2
1762184367,1023.4296875,14.3
1762184427,1023.43359375,14.3
1762184487,1023.4296875,14.2
1762184547,1023.43359375,14.3
1762184607,1023.421875,14.6
1762184667,1023.45703125,14.1
1762184727,1023.4609375,14.4
1762184787,1023.4453125,14.4
1762184847,1023.4296875,14.5
1762184910,1024.89453125,14.2
1762184970,1024.890625,14.2
1762185030,1024.8671875,14.5
1762185090,1024.8671875,14.3
1762185150,1025.03515625,14.3
1762185210,1025.03515625,14.2
1762185270,1025.03515625,14
1762185330,1025.03515625,14
1762185390,1025.078125,14
1762185450,1025.06640625,13.9
1762185510,1025.04296875,14.1
1762185570,1025.06640625,14
1762185630,1027.02734375,14
1762185690,1027.0625,14.1
1762185750,1027.03515625,14
1762185810,1027.03515625,14.2
1762185870,1027.03515625,13.8
1762185930,1027.0859375,14.1
1762185990,1030.890625,14.3
1762186050,1030.8671875,13.9
1762186110,1030.87890625,14.4
1762186170,1030.90234375,14.2
1762186230,1030.8828125,14
1762186290,1030.8828125,14.1
1762186350,1030.87109375,14.3
1762186410,1030.89453125,13.9
1762186470,1030.88671875,14
1762186530,1030.89453125,14.3
1762186590,1035.60546875,14.3
1762186655,1035.80859375,14.1
1762186715,1035.90625,14.3
1762186775,1035.90234375,13.9
1762186835,1035.90234375,14.2
1762186898,1036.1328125,14
1762186958,1036.125,13.9
1762187018,1036.13671875,14
1762187078,1036.13671875,14
1762187139,1036.4453125,14.8
1762187202,1037.08984375,14.6
1762187309,1040.453125,15.1
1762187375,1046.71484375,14.3
1762187440,1040.80078125,14.2
1762187500,1040.8359375,14.4
1762187560,1040.828125,14
1762187620,1040.80078125,14
1762187680,1040.828125,14
1762187740,1040.8359375,13.9
1762187800,1040.82421875,13.8
1762187860,1040.80078125,13.9
1762187920,1040.8359375,14.1
1762187980,1044.24609375,14
1762188040,1044.25,13.9
1762188101,1044.2265625,13.7
1762188161,1044.22265625,14
1762188221,1044.25,14.1
1762188281,1044.2578125,14.1
1762188341,1044.265625,14.6
1762188401,1044.2265625,14.5
1762188461,1044.2265625,14.8
1762188521,1044.25,14.8
1762188581,1044.7734375,15
1762188641,1047.77734375,14.8
1762188701,1047.7734375,15
1762188761,1047.76953125,14.8
1762188821,1047.78515625,15
1762188881,1047.7578125,14.8
1762188941,1047.76953125,14.6
1762189001,1047.7890625,14.5
1762189061,1047.79296875,14.9
1762189121,1047.7890625,14.7
1762189181,1047.7890625,14.8
1762189241,1047.79296875,14.7
1762189301,1047.76953125,14.6
1762189361,1047.76953125,14.8
1762189421,1047.7890625,14.7
1762189511,1047.765625,14.9
1762189571,1047.765625,14.7
1762189631,1047.828125,14.7
1762189691,1047.828125,15.2
1762189751,1047.828125,14.8
1762189811,1047.828125,14.5
1762189871,1048.15625,14.8
1762189931,1048.31640625,14.7
1762189991,1048.3203125,14.6
1762190051,1048.30859375,14.9
1762190111,1048.30859375,14.8
1762190171,1048.30859375,14.5
1762190231,1050.57421875,15
1762190291,1050.57421875,14.6
1762190351,1050.57421875,14.9
1762190411,1050.57421875,14.9
1762190476,1050.57421875,14.6
1762190536,1051.07421875,15.1
1762190596,1051.07421875,14.6
1762190656,1051.07421875,14.6
1762190716,1051.07421875,14.8
1762190777,1051.07421875,15
1762190837,1051.07421875,14.5
1762190897,1051.07421875,14.5
1762190957,1051.07421875,14.6
1762191017,1051.07421875,14.6
1762191077,1051.07421875,14.5
1762191137,1051.07421875,14.5
1762191197,1051.07421875,14.5
1762191257,1051.07421875,14.5
1762191317,1051.07421875,14.4
1762191377,1051.07421875,14.5
1762191437,1051.07421875,14.2
1762191607,1049.3125,15.3
1762191701,1056.6015625,13.9
1762191761,1050.421875,14
1762191821,1050.45703125,13.9
1762191881,1050.41015625,13.9
1762191941,1050.421875,13.7
1762192001,1050.421875,14
1762192061,1050.45703125,13.8
1762192126,1050.45703125,13.6
1762192186,1050.44921875,14
1762192246,1050.41796875,13.7
1762192306,1050.45703125,14
1762192366,1050.43359375,13.7
1762192426,1050.42578125,13.8
1762192486,1050.4609375,13.4
1762192549,1050.42578125,13.4
1762192609,1050.45703125,13.4
1762192669,1050.45703125,13.4
1762192729,1050.4609375,13.7
1762192789,1050.4296875,13.6
1762192849,1050.42578125,13.4
1762192909,1050.421875,13.4
1762192969,1050.42578125,13.4
1762193029,1050.42578125,13.8
1762193089,1050.42578125,13.3
1762193149,1050.42578125,13.3
1762193209,1050.44140625,13.5
1762193275,1050.42578125,13.2
1762193345,1050.42578125,13.3
1762193405,1050.4375,13.6
1762193465,1050.44921875,13.4
1762193525,1050.421875,13.3
1762193585,1050.4296875,13.4
1762193646,1050.43359375,13.4
1762193709,1050.46484375,13.1
1762193776,1050.42578125,13.2
1762193836,1050.42578125,13.1
1762193896,1050.43359375,13.1
1762193956,1050.44921875,13.4
1762194016,1050.44921875,13.6
1762194076,1051.375,13.2
1762194139,1051.5234375,13
1762194200,1051.51953125,13.1
1762194260,1051.51953125,12.8
1762194320,1051.73046875,13.5
1762194381,1052.99609375,13.5
1762194441,1053.90625,13.1
1762194501,1054.1796875,13.2
1762194561,1054.84765625,13.1
1762194621,1054.84765625,12.8
1762194681,1054.84765625,12.9
1762194741,1054.84765625,12.8
1762194801,1055.12890625,13.2
1762194865,1055.2578125,12.8
1762194925,1055.2578125,14.1
1762194998,1056.203125,12.8
1762195058,1056.203125,13.1
1762195222,1060.26953125,13.9
1762195283,1071.48046875,13.4
1762195343,1067.62109375,12.8
1762195403,1067.60546875,12.7
1762195463,1067.609375,12.9
1762195523,1067.6015625,12.9
1762195583,1067.62109375,12.8
1762195643,1074.6171875,12.9
1762195703,1074.60546875,12.8
1762195763,1074.60546875,13
1762195823,1074.60546875,12.7
1762195883,1074.6484375,12.7
1762195943,1074.60546875,13.2
1762196003,1074.6171875,12.7
1762196063,1074.62109375,12.9
1762196123,1074.60546875,12.7
1762196183,1074.60546875,12.7
1762196243,1074.640625,12.9
1762196303,1075.58203125,13
1762196363,1075.58203125,12.9
1762196423,1075.58203125,12.7
1762196483,1075.59765625,13
1762196543,1075.59765625,13.1
1762196603,1075.58203125,12.7
1762196663,1075.61328125,12.9
1762196723,1075.609375,13
1762196790,1076.04296875,13.2
1762196850,1076.0078125,13
1762196911,1076.0078125,13.2
1762196971,1076.17578125,12.9
1762197031,1076.17578125,13
1762197091,1076.1484375,13.8
1762197151,1076.1484375,13.4
1762197211,1076.16796875,13.5
1762197271,1076.15234375,13.6
1762197331,1076.1484375,13.3
1762197399,1076.23828125,13.8
1762197459,1076.1875,13.5
1762197519,1076.19140625,13.8
1762197579,1076.1875,13.3
1762197639,1076.19140625,14.1
1762197704,1076.26953125,13.7
1762197764,1076.26953125,14.2
1762197824,1076.26953125,13.7
1762197884,1076.26953125,14.1
1762197945,1076.51953125,14.1
1762198005,1077.2421875,14.3
1762198065,1077.2421875,14
1762198125,1077.2421875,13.8
1762198185,1077.2421875,14
1762198245,1077.2421875,13.8
1762198305,1077.2421875,14.3
1762198369,1077.7421875,14
1762198429,1077.7421875,13.9
1762198489,1077.7421875,14.7
1762198611,1069.19921875,15.3
1762198705,1074.3046875,14.6
1762198765,1074.33984375,14.6
1762198825,1074.34375,14.2
1762198885,1074.3125,14.3
1762198945,1074.34375,14.3
1762199005,1074.3515625,14.1
1762199065,1074.35546875,14.5
1762199125,1074.3203125,14.3
1762199185,1074.3359375,14.7
1762199245,1074.3359375,14
1762199305,1074.328125,14.3
1762199365,1074.36328125,14.4
1762199425,1074.33203125,14.2
1762199485,1074.3359375,14.2
1762199545,1074.34765625,14.2
1762199606,1074.3828125,14.5
1762199666,1074.35546875,14.3
1762199734,1074.75390625,14.5
1762199794,1074.74609375,14.1
1762199854,1074.7578125,14.4
1762199914,1074.72265625,14.7
1762199992,1074.72265625,14.2
1762200052,1074.75390625,14.4
1762200112,1074.72265625,14.5
1762200172,1074.72265625,14.9
1762200232,1074.75390625,14.4
1762200292,1074.7265625,14.5
1762200352,1074.75390625,14.5
1762200412,1074.7578125,14.3
1762200472,1074.75390625,14.4
1762200532,1074.75390625,14.6
1762200592,1074.7265625,14.1
1762200652,1074.7265625,14.8
1762200712,1074.7578125,15.3
1762200772,1074.765625,15
1762200832,1074.765625,14.9
1762200892,1074.765625,15
1762200952,1074.76953125,14.9
1762201012,1074.76953125,15.1
1762201072,1074.7890625,15.1
1762201132,1074.79296875,15
1762201192,1074.7734375,13.3
1762201253,1074.78125,15
1762201313,1074.78125,15
1762201373,1074.7890625,15.3
1762201433,1074.7890625,13.9
1762201508,1078.015625,15.3
1762201667,1081.40625,15.9
1762201760,1086.89453125,14.9
1762201820,1086.89453125,15.1
1762201880,1087.03515625,14.1
1762201940,1086.8828125,14.8
1762202000,1086.92578125,12.3
1762202060,1086.9296875,12.1
1762202120,1086.93359375,12.3
1762202180,1086.90625,12.6
1762202240,1086.90625,12.5
1762202300,1086.89453125,12.1
1762202360,1086.92578125,12.3
1762202420,1086.8984375,12.1
1762202480,1086.89453125,10.2
1762202540,1086.89453125,10.2
1762202600,1086.8828125,9.7
1762202660,1086.8828125,9.9
1762202720,1086.89453125,8.7
1762202780,1086.89453125,7.4
1762202840,1086.89453125,7.3
1762202900,1086.9296875,7.4
1762202960,1086.9296875,7.3
1762203020,1086.89453125,7.3
1762203080,1086.8984375,7.2
1762203140,1086.8984375,7.2
1762203200,1086.89453125,7.2
1762203260,1086.9375,7.4
1762203320,1086.890625,7.5
1762203380,1089.58984375,7.4
1762203440,1089.54296875,7.4
1762203500,1089.55859375,7.3
1762203560,1089.58984375,7.3
1762203620,1089.57421875,7.2
1762203680,1089.59375,7.2
1762203740,1089.5625,7.2
1762203800,1089.54296875,7.1
1762203860,1089.59375,7.1
1762203920,1089.5625,7.2
1762203980,1089.59375,7.5
1762204040,1089.5546875,7.4
1762204100,1089.55859375,7.1
1762204160,1089.55859375,6.9
1762204220,1089.57421875,6.8
1762204280,1089.546875,7
1762204340,1089.55859375,6.8
1762204400,1091.78125,7.1
1762204475,1091.87109375,7.2
1762204548,1092.21875,7.7
1762204621,1093.5078125,7.3
1762204722,1092.953125,8
1762204783,1105.01953125,11.8
1762204843,1098.8203125,6.8
1762204915,1098.8125,6.7
1762204975,1098.82421875,6.5
1762205035,1098.80859375,6.4
1762205095,1098.796875,6.5
1762205155,1098.81640625,6.4
1762205215,1098.80859375,6.1
1762205275,1098.8203125,6
1762205335,1098.84375,6
1762205395,1098.8125,6.2
1762205455,1098.84375,6
1762205516,1098.80859375,6.1
1762205576,1098.83984375,6.1
1762205636,1098.82421875,6.1
1762205696,1098.84375,6.1
1762205756,1098.8046875,6.1
1762205816,1098.83203125,6.1
1762205876,1098.8125,6.1
1762205936,1098.85546875,6.1
1762205996,1098.828125,6
1762206056,1098.8515625,6.1
1762206146,1098.8125,6.2
1762206206,1098.82421875,6.1
1762206266,1098.83203125,6.1
1762206326,1098.82421875,6.1
1762206386,1098.8359375,6.2
1762206446,1098.86328125,6.1
1762206506,1098.8203125,6.1
1762206566,1098.859375,6.1
1762206626,1098.8515625,6.1
1762206686,1098.83984375,6.1
1762206746,1098.82421875,6.2
1762206806,1098.8515625,6.1
1762206866,1098.8515625,6.1
1762206926,1098.8203125,6
1762206986,1098.8515625,6.1
1762207046,1098.82421875,6.1
1762207106,1102.88671875,6.1
1762207166,1117.8515625,6.1
1762207226,1127.38671875,6.1
1762207286,1145.921875,6.1
1762207346,1145.890625,6.2
1762207406,1145.890625,6.1
1762207466,1145.87890625,6.1
1762207541,1145.94921875,6.6
1762207605,1145.8984375,6.6
1762207665,1145.890625,6.4
1762207726,1145.890625,6.3
1762207786,1145.890625,6.3
1762207846,1145.890625,6.3
1762207906,1145.890625,6.3
1762207966,1145.890625,6.3
1762208026,1145.890625,6.2
1762208086,1145.890625,6.3
1762208148,1146.390625,6.4
1762208208,1146.390625,6.4
1762208277,1146.390625,6.6
1762208399,1170.9140625,7.6
1762208460,1175.53515625,6.3
1762208530,1175.53515625,6.3
1762208590,1171.4765625,6.7
1762208650,1171.49609375,6.7
1762208710,1157.6875,6.7
1762208770,1157.73828125,6.6
1762208830,1157.68359375,6.7
1762208890,1157.71875,6.7
1762208950,1157.7109375,7
1762209010,1157.71484375,7
1762209070,1157.69921875,7
1762209130,1157.703125,7
1762209190,1157.734375,6.9
1762209250,1157.70703125,7.1
1762209310,1157.71484375,7
1762209370,1157.74609375,6.9
1762209430,1157.7265625,7
1762209498,1157.7421875,7.4
1762209558,1157.7265625,7.3
1762209618,1157.73828125,7.2
1762209678,1157.7109375,7.5
1762209745,1157.765625,7.5
1762209805,1157.74609375,7.4
1762209865,1157.75390625,7.5
1762209925,1157.75,7.4
1762209985,1157.74609375,7.3
1762210045,1157.6953125,7.6
1762210105,1157.72265625,7.4
1762210165,1157.7421875,7.3
1762210225,1157.69921875,7.4
1762210285,1157.7421875,7.4
1762210345,1157.71484375,7.4
1762210405,1157.71484375,7.5
1762210465,1157.71484375,7.5
1762210525,1157.75390625,7.3
1762210585,1157.75390625,7.6
1762210645,1157.73828125,7.7
1762210705,1157.73046875,7.6
1762210774,1157.71484375,7.6
1762210834,1157.71484375,7.4
1762210894,1157.7109375,7.4
1762210954,1157.71484375,7.3
1762211028,1159.765625,8
1762211088,1159.71875,7.6
1762211152,1159.77734375,8.3
1762211212,1159.77734375,7.9
1762211272,1161.77734375,7.8
1762211332,1161.77734375,7.8
1762211392,1161.77734375,7.9
1762211452,1161.77734375,7.7
1762211512,1161.77734375,8
1762211574,1162.27734375,7.8
1762211634,1162.27734375,7.8
1762211694,1162.27734375,7.8
1762211754,1162.27734375,7.9
1762211814,1162.27734375,7.8
1762211874,1162.27734375,7.9
1762211934,1162.27734375,7.9
1762212003,1162.77734375,7.9
1762212137,1152.8046875,8.8
1762212227,1155.9296875,7.1
1762212287,1153.82421875,7.9
1762212347,1153.82421875,7.6
1762212407,1153.859375,7.7
1762212467,1153.85546875,8
1762212528,1153.84765625,7.7
1762212588,1153.80859375,7.8
1762212648,1153.85546875,7.7
1762212708,1153.8125,7.7
1762212768,1153.85546875,7.8
1762212828,1153.8359375,7.7
1762212888,1153.89453125,7.8
1762212948,1153.859375,7.8
1762213008,1153.89453125,7.7
1762213068,1153.8203125,7.8
1762213128,1153.828125,7.6
1762213188,1153.85546875,8
1762213248,1153.85546875,7.6
1762213308,1153.8515625,7.8
1762213368,1153.86328125,7.9
1762213428,1153.81640625,7.8
1762213488,1153.8515625,7.8
1762213548,1153.82421875,7.7
1762213608,1153.81640625,7.6
1762213668,1153.85546875,7.9
1762213728,1153.85546875,7.7
1762213788,1153.8515625,7.6
1762213848,1153.85546875,7.7
1762213908,1153.859375,7.6
1762213968,1153.8203125,7.5
1762214028,1154.87890625,7.4
1762214088,1154.8984375,7.6
1762214148,1159.8828125,7.5
1762214208,1159.90625,7.5
1762214268,1159.8828125,7.4
1762214328,1159.90625,7.6
1762214388,1159.921875,7.4
1762214448,1159.890625,7.5
1762214508,1159.92578125,7.5
1762214568,1159.921875,7.6
1762214628,1159.921875,7.4
1762214689,1159.94921875,7.3
1762214749,1159.96875,7.3
1762214809,1159.9375,7.2
1762214872,1160.00390625,7.2
1762214960,1168.2421875,7.6
1762215029,1174.87890625,7.6
1762215090,1174.87890625,6.7
1762215150,1174.87890625,6.8
1762215214,1174.87890625,6.7
1762215274,1174.87890625,6.7
1762215346,1174.87890625,6.8
1762215508,1173.9609375,7.7
1762215602,1180.0625,8.8
1762215662,1174.01953125,6.7
1762215722,1174.03515625,6.7
1762215782,1174.01953125,6.7
1762215842,1174.02734375,6.8
1762215902,1173.98046875,6.8
1762215962,1173.99609375,6.5
1762216022,1174.02734375,6.6
1762216082,1173.9921875,6.6
1762216143,1173.9921875,6.6
1762216203,1174.02734375,6.5
1762216263,1173.9921875,6.6
1762216323,1174.03125,6.5
1762216383,1174.01953125,6.4
1762216443,1174.0234375,6.5
1762216503,1174.0390625,6.3
1762216563,1174.03125,6.3
1762216623,1174.0234375,6.5
1762216683,1174.03515625,6.4
1762216743,1174.02734375,6.4
1762216803,1174.02734375,6.4
1762216863,1174.015625,6.3
1762216923,1174.046875,6.2
1762216983,1173.9921875,6.2
1762217043,1174.01953125,6.3
1762217103,1173.984375,6.2
1762217163,1174.0078125,6.3
1762217223,1173.99609375,6
1762217283,1174.04296875,6
1762217343,1174.046875,5.9
1762217403,1173.9921875,6
1762217463,1174.01171875,6
1762217523,1173.98828125,6.1
1762217583,1173.99609375,6.1
1762217643,1174.03125,6
1762217703,1173.99609375,6.1
1762217763,1174.015625,6
1762217823,1174.01953125,6
1762217883,1174.0078125,6
1762217943,1174.01953125,6
1762218003,1173.9921875,6
1762218063,1173.99609375,6
1762218123,1174.02734375,6
1762218183,1178.63671875,9.8
1762218243,1176.671875,5.9
1762218321,1173.1875,6.3
1762218381,1175.42578125,6.1
1762218441,1175.4375,6
1762218508,1169.45703125,6.1
1762218580,1168.296875,6.2
1762218663,1166.3046875,6.3
1762218723,1166.3046875,6
1762218906,1167.1640625,6.9
1762218980,1150.21484375,7.1
1762219045,1106.9609375,6.1
1762219105,1106.96875,6.1
1762219165,1109.03125,6
1762219225,1108.98828125,6
1762219285,1109.10546875,6.2
1762219345,1097.37890625,6.1
1762219405,1097.41796875,6
1762219465,1097.41796875,6
1762219525,1097.40234375,6.2
1762219585,1097.375,6.4
1762219645,1097.390625,6.3
1762219705,1097.390625,6.6
1762219766,1097.39453125,6.6
1762219826,1097.4375,6.7
1762219886,1097.42578125,6.6
1762219946,1097.37890625,6.7
1762220006,1097.4375,6.8
1762220066,1097.390625,6.8
1762220126,1097.40625,6.8
1762220186,1097.3984375,6.8
1762220246,1097.43359375,6.7
1762220306,1097.42578125,6.6
1762220366,1097.390625,6.8
1762220426,1097.41796875,6.8
1762220486,1097.3984375,6.8
1762220546,1097.38671875,7
1762220606,1097.38671875,7
1762220666,1097.42578125,7.1
1762220737,1096.671875,7.1
1762220797,1096.69921875,7.1
1762220857,1103.16796875,7.3
1762220917,1108.71875,7.3
1762220977,1112.19140625,7.3
1762221037,1115.73046875,7.4
1762221097,1122.73046875,7.4
1762221157,1122.7265625,7.3
1762221217,1122.703125,7.5
1762221277,1122.72265625,7.5
1762221337,1122.6953125,7.6
1762221397,1122.73046875,7.5
1762221457,1122.703125,7.5
1762221517,1122.73046875,7.6
1762221585,1134.80078125,7.1
1762221659,1132.8046875,7.7
1762221720,1132.80078125,7.5
1762221781,1142.21484375,7.6
1762221841,1142.18359375,7.5
1762221903,1142.19140625,7.6
1762221972,1142.2265625,7.7
1762222036,1142.2265625,7.7
1762222096,1142.2265625,7.6
1762222156,1142.2265625,7.5
1762222216,1142.2265625,7.5
1762222276,1142.2265625,7.5
1762222487,1138.01953125,8.5
1762222639,1102.88671875,7.7
1762222699,1102.921875,7.7
1762222759,1102.89453125,8
1762222819,1102.8984375,7.9
1762222879,1102.93359375,7.9
1762222939,1102.875,8
1762222999,1102.9140625,7.9
1762223059,1102.9140625,7.9
1762223119,1102.87890625,7.8
1762223179,1102.89453125,8
1762223239,1102.89453125,8
1762223299,1102.88671875,7.9
1762223359,1102.90234375,7.9
1762223419,1102.9296875,8.1
1762223479,1102.9296875,7.8
1762223539,1102.91015625,7.9
1762223599,1102.90625,8
1762223659,1102.94921875,8
1762223719,1102.91015625,7.9
1762223779,1102.93359375,8
1762223839,1102.89453125,7.9
1762223899,1102.921875,8
1762223959,1102.89453125,7.9
1762224019,1102.92578125,8
1762224079,1102.8828125,7.9
1762224139,1102.91015625,8
1762224199,1102.92578125,8
1762224259,1102.89453125,7.9
1762224319,1106.89453125,8
1762224379,1106.921875,7.9
1762224439,1106.9296875,7.9
1762224499,1106.89453125,7.9
1762224559,1106.92578125,7.7
1762224629,1106.98046875,8.1
1762224689,1106.94140625,8
1762224749,1106.91015625,7.9
1762224810,1106.91015625,7.9
1762224870,1106.9140625,7.9
1762224930,1106.90625,8.1
1762224990,1106.91015625,7.9
1762225050,1106.92578125,7.9
1762225110,1106.9375,8.3
1762225180,1116.18359375,7.9
1762225248,1122.8515625,7.9
1762225308,1122.8515625,7.8
1762225377,1120.87890625,7.9
1762225437,1120.84375,7.6
1762225503,1120.875,7.8
1762225564,1120.8828125,7.8
1762225624,1120.81640625,7.6
1762225684,1125.37109375,7.9
1762225764,1113.5546875,7.7
1762225824,1113.5546875,7.6
1762225888,1113.5546875,7.8
1762225948,1119.32421875,7.6
1762226022,1119.69921875,7.7
1762226083,1119.69921875,7.6
1762226144,1119.69921875,7.7
1762226204,1119.69921875,7.7
1762226264,1119.69921875,7.7
1762226324,1119.69921875,7.3
1762226384,1119.69921875,7.3
1762226447,1119.71484375,7.5
1762226703,1131.93359375,8
1762226780,1150.08984375,7.8
1762226842,1093.58203125,10.1
1762226902,1087.00390625,7
1762226962,1087.015625,7.2
1762227022,1086.984375,6.9
1762227082,1087.01171875,6.8
1762227142,1087.0234375,6.8
1762227202,1086.9765625,6.8
1762227262,1086.98046875,6.8
1762227322,1087.01953125,6.9
1762227382,1086.99609375,6.8
1762227442,1087.00390625,6.8
1762227502,1086.96484375,6.8
1762227562,1086.98046875,6.9
1762227622,1086.95703125,6.8
1762227682,1086.99609375,6.9
1762227742,1086.9765625,6.9
1762227802,1087.0078125,6.8
1762227862,1092.515625,6.9
1762227922,1106.54296875,6.9
1762227982,1111.5390625,6.6
1762228042,1116.53515625,6.6
1762228102,1121.53125,6.5
1762228169,1121.5390625,6.7
1762228229,1121.5390625,6.6
1762228289,1121.53125,6.6
1762228349,1121.5390625,6.7
1762228409,1121.50390625,6.5
1762228469,1121.5234375,6.6
1762228529,1121.50390625,6.6
1762228589,1121.50390625,6.6
1762228649,1121.53515625,6.6
1762228722,1127.53125,6.6
1762228782,1127.55078125,6.5
1762228842,1127.5078125,6.3
1762228902,1127.50390625,6.3
1762228962,1127.5078125,6.3
1762229022,1127.5390625,6.3
1762229082,1127.50390625,6.2
1762229142,1127.5078125,6.2
1762229202,1127.53515625,6.3
1762229262,1127.5078125,6.2
1762229341,1143.5703125,6.4
1762229401,1143.5390625,6.2
1762229470,1143.5703125,6.4
1762229530,1143.546875,6.4
1762229590,1143.55859375,6.2
1762229650,1143.55078125,6.3
1762229710,1143.5625,6.2
1762229770,1143.55078125,6.2
1762229830,1147.81640625,6.4
1762229890,1147.7578125,6.4
1762229950,1147.76953125,6.2
1762230010,1147.74609375,6.3
1762230070,1145.890625,6.3
1762230136,1145.8984375,6.4
1762230196,1145.890625,6.3
1762230256,1145.890625,6.3
1762230330,1145.92578125,6.3
1762230392,1145.921875,6.3
1762230467,1145.55078125,6.3
1762230527,1145.55078125,6.2
1762230587,1145.91015625,6.2
1762230647,1145.91015625,6.2
1762230707,1145.91015625,6.2
1762230772,1145.90625,6.5
1762231002,1137.17578125,7.4
1762231062,1123.33984375,7.1
1762231126,1120.97265625,7.2
1762231186,1087.3359375,6.8
1762231246,1087.34765625,6.8
1762231306,1087.33984375,6.7
1762231366,1087.3515625,6.8
1762231426,1087.33984375,6.9
1762231486,1087.33984375,6.8
1762231546,1087.328125,6.9
1762231606,1087.33984375,6.8
1762231666,1087.3359375,6.9
1762231726,1087.3359375,6.9
1762231786,1087.3359375,6.9
1762231846,1087.32421875,6.9
1762231906,1087.33984375,7.2
1762231966,1087.3359375,7.2
1762232026,1087.3359375,7.4
1762232086,1087.35546875,7.4
1762232146,1087.34375,7.4
1762232218,1096.171875,7.3
1762232278,1096.16015625,7.3
1762232338,1096.171875,7.4
1762232398,1096.1875,7.3
1762232459,1096.171875,7.3
1762232519,1096.18359375,7.4
1762232579,1096.16796875,7.4
1762232639,1096.17578125,7.4
1762232699,1096.171875,7.3
1762232759,1096.1796875,7.4
1762232819,1096.16796875,7.4
1762232879,1096.171875,7.4
1762232939,1096.15625,7.4
1762233000,1096.18359375,7.4
1762233060,1096.15234375,7.4
1762233120,1096.1796875,7.5
1762233180,1096.18359375,7.5
1762233240,1096.18359375,7.6
1762233300,1096.16796875,7.6
1762233360,1096.16796875,7.6
1762233432,1103.3359375,7.6
1762233492,1103.34765625,7.5
1762233552,1103.3515625,7.6
1762233612,1103.46484375,7.6
1762233672,1103.4765625,7.5
1762233732,1103.47265625,7.7
1762233792,1103.4609375,7.7
1762233852,1103.47265625,7.9
1762233920,1103.609375,7.9
1762233993,1109.91015625,7.8
1762234053,1109.90625,7.9
1762234113,1109.88671875,7.8
1762234173,1109.9140625,7.7
1762234233,1109.8984375,7.7
1762234293,1117.6796875,7.9
1762234353,1117.65234375,7.9
1762234413,1117.6640625,7.8
1762234473,1117.65234375,8.1
1762234533,1117.65234375,8
1762234603,1117.67578125,8
1762234663,1125.48046875,8.1
1762234723,1125.44140625,7.9
1762234789,1125.46484375,8
1762234849,1135.10546875,7.9
1762234913,1137.12890625,8.1
1762234973,1149.8984375,7.8
1762235051,1166.35546875,8.1
1762235111,1170.34765625,8
1762235171,1170.34765625,8
1762235231,1170.3359375,8
1762235291,1170.3359375,7.9
1762235351,1170.33203125,7.9
1762235411,1170.34765625,7.9
1762235471,1170.34765625,8
1762235546,1170.3359375,7.9
1762235606,1170.3359375,8.2
1762235666,1170.3359375,8
1762235742,1169.94140625,8.1
1762236030,1188.55078125,8.9
1762236094,1141.10546875,7.4
1762236215,1127.5859375,7.6
1762236275,1127.55859375,8
1762236335,1127.5546875,7.9
1762236395,1127.55859375,8.1
1762236455,1127.53515625,8
1762236515,1127.52734375,7.9
1762236575,1127.5390625,8.1
1762236635,1127.53515625,8
1762236695,1127.5390625,7.9
1762236755,1127.5390625,8.1
1762236815,1127.5390625,7.5
1762236876,1127.55859375,7.6
1762236936,1127.55078125,7.6
1762236996,1127.52734375,7.5
1762237056,1127.5546875,7.4
1762237116,1127.52734375,7.4
1762237176,1127.55859375,7.4
1762237236,1127.55859375,7.4
1762237296,1127.5546875,7.4
1762237356,1127.5625,7.3
1762237416,1127.53515625,7.4
1762237476,1127.52734375,7.3
1762237536,1127.5390625,7.2
1762237596,1127.5390625,7.2
1762237656,1127.53515625,7
1762237716,1127.5546875,7.1
1762237776,1127.55078125,7.1
1762237836,1127.5234375,7.2
1762237896,1127.5234375,7.1
1762237956,1127.5390625,7.1
1762238016,1127.5390625,6.9
1762238092,1134.71875,6.8
1762238152,1125.51171875,6.8
1762238212,1125.4921875,6.9
1762238272,1125.4921875,6.8
1762238332,1125.50390625,6.9
1762238392,1125.4921875,6.7
1762238452,1125.4921875,6.8
1762238512,1137.78125,6.9
1762238572,1137.7421875,6.9
1762238632,1137.7421875,6.9
1762238705,1144.80078125,6.9
1762238765,1144.765625,6.9
1762238825,1144.765625,6.9
1762238885,1144.765625,6.8
1762238945,1144.765625,6.8
1762239005,1144.79296875,6.9
1762239069,1149.1796875,6.8
1762239129,1149.1796875,6.7
1762239205,1155.1875,6.9
1762239265,1155.1875,6.9
1762239325,1155.1875,6.8
1762239385,1155.1875,6.8
1762239445,1149.171875,7.2
1762239524,1155.23046875,6.9
1762239584,1155.23046875,6.8
1762239644,1155.23046875,6.7
1762239704,1155.23046875,6.6
1762239764,1155.23046875,6.7
1762239824,1155.23046875,6.6
1762239884,1155.23046875,6.7
1762240183,1151.04296875,7.4
1762240243,1136.671875,7.4
1762240305,1111.66015625,6.9
1762240365,1111.79296875,6.6
1762240425,1111.7890625,6.6
1762240485,1111.76171875,6.6
1762240545,1111.9375,6.7
1762240605,1111.92578125,6.6
1762240665,1111.95703125,6.7
1762240725,1111.95703125,6.7
1762240785,1111.9609375,6.6
1762240846,1111.94921875,6.7
1762240906,1111.95703125,6.6
1762240966,1111.91015625,6.6
1762241026,1111.96875,6.6
1762241086,1111.95703125,6.7
1762241146,1112.0859375,6.6
1762241206,1112.109375,6.6
1762241279,1121.84765625,6.7
1762241339,1121.8828125,6.6
1762241399,1121.8828125,6.6
1762241459,1121.8515625,6.6
1762241529,1133.2890625,7
1762241589,1133.31640625,6.3
1762241649,1133.31640625,6.3
1762241709,1135.296875,6.7
1762241774,1141.08984375,6.4
1762241834,1148.06640625,6.3
1762241894,1153.58203125,6.3
1762241954,1156.5703125,6.3
1762242036,1165.28125,6.4
1762242096,1174.25390625,6.4
1762242156,1175.2578125,6.3
1762242216,1175.73828125,6.5
1762242276,1179.78125,6.7
1762242336,1179.73828125,6.5
1762242396,1179.73828125,6.5
1762242456,1179.73828125,6.5
1762242526,1179.73828125,6.5
1762242594,1179.76953125,6.5
1762242654,1179.73828125,6.5
1762242714,1179.73828125,6.5
1762242774,1179.73828125,6.5
1762242834,1179.74609375,6.5
1762242894,1179.73828125,6.3
1762242954,1179.73828125,6.4
1762243014,1179.73828125,6.6
1762243091,1179.78515625,6.5
1762243151,1179.78515625,6.5
1762243211,1179.78515625,6.5
1762243271,1179.78515625,6.6
1762243331,1179.73828125,6.7
1762243391,1179.73828125,6.7
1762243451,1179.73828125,6.9
1762243516,1179.73828125,6.9
1762243576,1175.734375,6.9
1762243636,1179.7421875,7.3
1762243696,1179.7421875,7.2
1762243756,1179.7421875,7.2
1762243830,1184.0546875,7.2
1762243890,1184.37109375,7.3
1762244194,1185.94140625,8.1
1762244254,1199.625,7.1
1762244316,1135.42578125,7.2
1762244376,1117.71484375,7.3
1762244436,1117.703125,7.4
1762244496,1117.84765625,7.4
1762244557,1117.87109375,7.3
1762244617,1117.8984375,7.4
1762244678,1117.87109375,7.4
1762244738,1117.86328125,7.4
1762244798,1117.84765625,7.4
1762244858,1117.84765625,7.4
1762244918,1117.875,7.5
1762244978,1117.875,7.5
1762245038,1117.87890625,7.4
1762245098,1117.87890625,7.4
1762245158,1117.89453125,7.4
1762245218,1117.8828125,7.5
1762245278,1117.87890625,7.4
1762245338,1117.87890625,7.5
1762245398,1117.8515625,7.3
1762245458,1117.8828125,7.3
1762245518,1105.7109375,7.4
1762245578,1107.8984375,7.4
1762245638,1107.84375,7.5
1762245698,1107.87109375,7.3
1762245758,1107.87890625,7.4
1762245819,1107.87890625,7.2
1762245879,1107.85546875,7.5
1762245939,1107.89453125,7.3
1762245999,1107.859375,7.6
1762246059,1107.87890625,7.6
1762246119,1107.8828125,7.5
1762246179,1107.87890625,7.8
1762246239,1107.8828125,7.5
1762246299,1107.8515625,7.6
1762246359,1111.8984375,7.8
1762246419,1111.88671875,7.6
1762246494,1111.91796875,7.8
1762246554,1111.88671875,7.6
1762246614,1111.83984375,7.9
1762246780,1115.66796875,7.3
1762246840,1123.8984375,7.9
1762246914,1133.046875,8.1
1762246975,1137.73046875,7.9
1762247052,1135,7.2
1762247120,1139.921875,8.1
1762247202,1147.9140625,8
1762247262,1153.875,8
1762247322,1153.875,8
1762247389,1153.82421875,8.1
1762247449,1153.875,8.1
1762247509,1153.875,8
1762247569,1153.875,8
1762247631,1153.875,8.1
1762247691,1153.875,8
1762247751,1153.875,8.2
1762247811,1153.875,8.1
1762247871,1153.875,8.1
1762247931,1153.875,8.2
1762248010,1153.88671875,8.3
1762248070,1153.88671875,8
1762248130,1153.88671875,8.1
1762248190,1153.88671875,8.1
1762248273,1153.890625,8
1762248334,1153.890625,8.1
1762248394,1153.890625,8.2
1762248454,1153.890625,7.9
1762248514,1153.890625,8.1
1762248574,1153.890625,8.1
1762248634,1153.890625,8.1
1762248703,1153.890625,8.1
1762248763,1153.890625,8
1762248823,1153.890625,8.1
1762248883,1157.890625,8.1
1762248966,1161.38671875,8.2
1762249026,1171.88671875,8
1762249086,1172.27734375,8.1
1762249146,1181.27734375,7.8
1762249206,1186.27734375,7.8
1762249266,1188.27734375,7.8
1762249326,1188.27734375,7.8
1762249386,1188.27734375,7.7
1762249447,1188.27734375,7.8
1762249507,1188.27734375,7.8
1762249567,1188.27734375,7.8
1762249627,1188.27734375,7.8
1762249687,1188.27734375,7.8
1762249747,1188.27734375,7.8
1762249807,1188.27734375,7.9
1762249867,1188.27734375,7.6
1762249927,1188.27734375,7.9
1762249987,1188.27734375,7.7
1762250068,1188.27734375,15.4
1762250128,1188.27734375,17
1762250188,1188.27734375,17
1762250248,1188.27734375,17
1762250308,1188.27734375,16.9
1762250368,1188.27734375,17
1762250428,1188.27734375,17.1
1762250493,1188.27734375,16.9
1762250553,1188.27734375,17
1762250613,1188.27734375,16.9
1762250673,1188.27734375,17
1762250733,1188.27734375,17
1762250793,1188.27734375,17
1762250853,1188.27734375,17.1
1762250914,1188.27734375,17
1762250974,1188.27734375,16.9
1762251034,1188.27734375,16.8
1762251094,1188.27734375,16.7
1762251154,1188.27734375,16.7
1762251214,1188.27734375,16.8
1762251274,1188.27734375,16.7
1762251334,1188.27734375,16.6
1762251394,1188.27734375,16.7
1762251454,1188.27734375,16.1
1762251514,1188.27734375,16.1
1762251575,1188.27734375,16
1762251636,1188.27734375,15.8
1762251696,1188.27734375,15.6
1762251756,1188.27734375,15.8
1762252124,1208.9453125,15.1
1762252216,1176.33984375,9.9
1762252326,1158.03515625,12.6
1762252386,1157.97265625,11.9
1762252446,1157.97265625,15.2
1762252506,1157.9765625,16.5
1762252567,1157.96484375,15
1762252627,1157.96484375,16.8
1762252687,1157.953125,16
1762252747,1157.96484375,16
1762252807,1157.96484375,16.2
1762252867,1157.98046875,16.1
1762252927,1157.9765625,16
1762252988,1157.96484375,16.3
1762253048,1157.984375,16.4
1762253108,1157.96484375,16.5
1762253168,1157.96484375,16.4
1762253239,1163.00390625,16.3
1762253299,1162.95703125,16.1
1762253359,1162.95703125,16.2
1762253419,1162.95703125,16
1762253479,1162.9453125,16.4
1762253539,1162.95703125,16.3
1762253599,1162.9453125,16.4
1762253659,1162.95703125,16.5
1762253720,1162.95703125,16.1
1762253780,1162.953125,15.6
1762253840,1162.95703125,16.7
1762253900,1162.95703125,16.6
1762253960,1162.97265625,16.8
1762254020,1162.95703125,17
1762254080,1162.95703125,17
1762254142,1162.9765625,17.1
1762254202,1162.95703125,16.9
1762254262,1162.95703125,17.1
1762254322,1162.95703125,17.1
1762254382,1162.95703125,17.2
1762254442,1162.96875,17.1
1762254502,1162.95703125,17.1
1762254562,1162.9765625,15.5
1762254622,1162.95703125,17.1
1762254682,1162.96875,17.1
1762254742,1162.95703125,17.1
1762254802,1162.95703125,16.9
1762254889,1168.78515625,17.1
1762254988,1177.4140625,17.3
1762255054,1184.54296875,17.1
1762255115,1184.54296875,17
1762255184,1184.546875,17.1
1762255244,1184.546875,17.1
VAL_ACC (goal: maximize)
Best value: 73.29
Achieved at:
- run_time = 2538
- epochs = 127
- lr = 0.0005486240758563
- batch_size = 53
- hidden_size = 5601
- dropout = 0.41476842203049
- filter = 180
- num_conv_layers = 5
- num_dense_layers = 1
Parameter statistics
| Parameter | Min | Max | Mean | Std Dev | Count |
|---|
| run_time | 707 | 4655 | 2546.5767 | 716.7392 | 430 |
| VAL_ACC | 32.87 | 73.29 | 69.104 | 4.0539 | 430 |
| epochs | 50 | 200 | 162.6196 | 43.0496 | 460 |
| lr | 0.0001 | 0.0048 | 0.0014 | 0.0009 | 460 |
| batch_size | 8 | 256 | 136.9391 | 76.9631 | 460 |
| hidden_size | 500 | 6000 | 4199.5043 | 1470.7305 | 460 |
| dropout | 0 | 0.6 | 0.4141 | 0.1636 | 460 |
| filter | 23 | 180 | 162.4913 | 29.1067 | 460 |
| num_conv_layers | 3 | 6 | 5.0978 | 0.7613 | 460 |
| num_dense_layers | 1 | 1 | 1 | 0 | 460 |
Show SLURM-Job-ID (if it exists)
submitit INFO (2025-11-03 12:27:01,260) - Starting with JobEnvironment(job_id=1210411, hostname=c117, local_rank=0(1), node=0(1), global_rank=0(1))
submitit INFO (2025-11-03 12:27:01,262) - Loading pickle: /data/horse/ws/pwinkler-mnist_mono/omniopt/runs/mnist_mono/0/single_runs/1210411/1210411_submitted.pkl
Trial-Index: 8
[notice] A new release of pip is available: 25.2 -> 25.3
[notice] To update, run: /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/.torch_venv_1bdd5e1e8b/bin/python -m pip install --upgrade pip
/data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/.torch_venv_1bdd5e1e8b/lib64/python3.9/site-packages/torch/utils/data/dataloader.py:627: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 1, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.
warnings.warn(
Parameters: {"epochs": 111, "lr": 0.0022424045763909813, "batch_size": 127, "hidden_size": 4167, "dropout": 0.403406673297286, "filter": 59, "num_conv_layers": 3, "num_dense_layers": 1}
Debug-Infos:
========
DEBUG INFOS START:
Program-Code: python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 111 --learning_rate 0.00224240457639098131 --batch_size 127 --hidden_size 4167 --dropout 0.40340667329728602253 --filter 59 --num_conv_layers 3 --num_dense_layers 1
pwd: /data/horse/ws/pwinkler-mnist_mono/omniopt
File: /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train
UID: 2054851
GID: 200270
SLURM_JOB_ID: 1210411
Status-Change-Time: 1762168918.0
Size: 19255 Bytes
Permissions: -rwxr-xr-x
Owner: pwinkler
Last access: 1762169236.0
Last modification: 1762168918.0
Hostname: c117
========
DEBUG INFOS END
python3 /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/train --epochs 111 --learning_rate 0.00224240457639098131 --batch_size 127 --hidden_size 4167 --dropout 0.40340667329728602253 --filter 59 --num_conv_layers 3 --num_dense_layers 1
stdout:
Hyperparameters
╭──────────────────┬───────────────────────╮
│ Parameter │ Value │
├──────────────────┼───────────────────────┤
│ Epochs │ 111 │
│ Num Dense Layers │ 1 │
│ Batch size │ 127 │
│ Learning rate │ 0.0022424045763909813 │
│ Hidden size │ 4167 │
│ Dropout │ 0.403406673297286 │
│ Optimizer │ adam │
│ Momentum │ 0.9 │
│ Weight Decay │ 0.0001 │
│ Activation │ relu │
│ Init Method │ kaiming │
│ Seed │ None │
│ Conv Filters │ 59 │
│ Num Conv Layers │ 3 │
│ Conv Kernel │ 3 │
│ Conv Stride │ 1 │
│ Conv Padding │ 1 │
╰──────────────────┴───────────────────────╯
Model Summary
╭─────────────────┬─────────────────┬──────────╮
│ Layer │ Output Shape │ Param # │
├─────────────────┼─────────────────┼──────────┤
│ conv::conv0 │ [1, 59, 32, 32] │ 1652 │
│ conv::bn0 │ [1, 59, 32, 32] │ 118 │
│ conv::act_conv0 │ [1, 59, 32, 32] │ 0 │
│ conv::conv1 │ [1, 59, 32, 32] │ 31388 │
│ conv::bn1 │ [1, 59, 32, 32] │ 118 │
│ conv::act_conv1 │ [1, 59, 32, 32] │ 0 │
│ conv::pool1 │ [1, 59, 16, 16] │ 0 │
│ conv::conv2 │ [1, 59, 16, 16] │ 31388 │
│ conv::bn2 │ [1, 59, 16, 16] │ 118 │
│ conv::act_conv2 │ [1, 59, 16, 16] │ 0 │
│ dense::fc0 │ [1, 4167] │ 62942535 │
│ dense::act0 │ [1, 4167] │ 0 │
│ dense::dropout0 │ [1, 4167] │ 0 │
│ dense::output │ [1, 100] │ 416800 │
│ Total │ - │ 63424117 │
╰─────────────────┴─────────────────┴──────────╯
──────────────────────────── Epoch 1/111 - Training ────────────────────────────
Epoch-Loss: 2416.8703
─────────────────────────── Epoch 1/111 - Validation ───────────────────────────
╔══ Epoch 1/111 Summary ══╗
║ Validation Loss: 4.2200 ║
║ Accuracy: 5.16% ║
╚═════════════════════════╝
──────────────────────────── Epoch 2/111 - Training ────────────────────────────
Epoch-Loss: 1678.1113
─────────────────────────── Epoch 2/111 - Validation ───────────────────────────
╔══ Epoch 2/111 Summary ══╗
║ Validation Loss: 3.9066 ║
║ Accuracy: 9.20% ║
╚═════════════════════════╝
──────────────────────────── Epoch 3/111 - Training ────────────────────────────
Epoch-Loss: 1622.1335
─────────────────────────── Epoch 3/111 - Validation ───────────────────────────
╔══ Epoch 3/111 Summary ══╗
║ Validation Loss: 3.8465 ║
║ Accuracy: 8.84% ║
╚═════════════════════════╝
──────────────────────────── Epoch 4/111 - Training ────────────────────────────
Epoch-Loss: 1571.5950
─────────────────────────── Epoch 4/111 - Validation ───────────────────────────
╔══ Epoch 4/111 Summary ══╗
║ Validation Loss: 3.6246 ║
║ Accuracy: 13.97% ║
╚═════════════════════════╝
──────────────────────────── Epoch 5/111 - Training ────────────────────────────
Epoch-Loss: 1518.4607
─────────────────────────── Epoch 5/111 - Validation ───────────────────────────
╔══ Epoch 5/111 Summary ══╗
║ Validation Loss: 3.4096 ║
║ Accuracy: 16.03% ║
╚═════════════════════════╝
──────────────────────────── Epoch 6/111 - Training ────────────────────────────
Epoch-Loss: 1470.5896
─────────────────────────── Epoch 6/111 - Validation ───────────────────────────
╔══ Epoch 6/111 Summary ══╗
║ Validation Loss: 3.3169 ║
║ Accuracy: 18.26% ║
╚═════════════════════════╝
──────────────────────────── Epoch 7/111 - Training ────────────────────────────
Epoch-Loss: 1422.4493
─────────────────────────── Epoch 7/111 - Validation ───────────────────────────
╔══ Epoch 7/111 Summary ══╗
║ Validation Loss: 3.0911 ║
║ Accuracy: 23.23% ║
╚═════════════════════════╝
──────────────────────────── Epoch 8/111 - Training ────────────────────────────
Epoch-Loss: 1372.2859
─────────────────────────── Epoch 8/111 - Validation ───────────────────────────
╔══ Epoch 8/111 Summary ══╗
║ Validation Loss: 3.0226 ║
║ Accuracy: 22.63% ║
╚═════════════════════════╝
──────────────────────────── Epoch 9/111 - Training ────────────────────────────
Epoch-Loss: 1290.6166
─────────────────────────── Epoch 9/111 - Validation ───────────────────────────
╔══ Epoch 9/111 Summary ══╗
║ Validation Loss: 2.7656 ║
║ Accuracy: 29.23% ║
╚═════════════════════════╝
─────────────────────────── Epoch 10/111 - Training ────────────────────────────
Epoch-Loss: 1195.7600
────────────────────────── Epoch 10/111 - Validation ───────────────────────────
╔═ Epoch 10/111 Summary ══╗
║ Validation Loss: 2.5252 ║
║ Accuracy: 34.53% ║
╚═════════════════════════╝
─────────────────────────── Epoch 11/111 - Training ────────────────────────────
Epoch-Loss: 1120.8768
────────────────────────── Epoch 11/111 - Validation ───────────────────────────
╔═ Epoch 11/111 Summary ══╗
║ Validation Loss: 2.4476 ║
║ Accuracy: 36.76% ║
╚═════════════════════════╝
─────────────────────────── Epoch 12/111 - Training ────────────────────────────
Epoch-Loss: 1064.7416
────────────────────────── Epoch 12/111 - Validation ───────────────────────────
╔═ Epoch 12/111 Summary ══╗
║ Validation Loss: 2.3757 ║
║ Accuracy: 37.32% ║
╚═════════════════════════╝
─────────────────────────── Epoch 13/111 - Training ────────────────────────────
Epoch-Loss: 1016.3459
────────────────────────── Epoch 13/111 - Validation ───────────────────────────
╔═ Epoch 13/111 Summary ══╗
║ Validation Loss: 2.2314 ║
║ Accuracy: 41.22% ║
╚═════════════════════════╝
─────────────────────────── Epoch 14/111 - Training ────────────────────────────
Epoch-Loss: 978.7135
────────────────────────── Epoch 14/111 - Validation ───────────────────────────
╔═ Epoch 14/111 Summary ══╗
║ Validation Loss: 2.0651 ║
║ Accuracy: 44.61% ║
╚═════════════════════════╝
─────────────────────────── Epoch 15/111 - Training ────────────────────────────
Epoch-Loss: 947.6493
────────────────────────── Epoch 15/111 - Validation ───────────────────────────
╔═ Epoch 15/111 Summary ══╗
║ Validation Loss: 2.1348 ║
║ Accuracy: 42.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 16/111 - Training ────────────────────────────
Epoch-Loss: 922.8524
────────────────────────── Epoch 16/111 - Validation ───────────────────────────
╔═ Epoch 16/111 Summary ══╗
║ Validation Loss: 2.0007 ║
║ Accuracy: 46.16% ║
╚═════════════════════════╝
─────────────────────────── Epoch 17/111 - Training ────────────────────────────
Epoch-Loss: 905.9634
────────────────────────── Epoch 17/111 - Validation ───────────────────────────
╔═ Epoch 17/111 Summary ══╗
║ Validation Loss: 2.0285 ║
║ Accuracy: 45.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 18/111 - Training ────────────────────────────
Epoch-Loss: 889.8936
────────────────────────── Epoch 18/111 - Validation ───────────────────────────
╔═ Epoch 18/111 Summary ══╗
║ Validation Loss: 2.0780 ║
║ Accuracy: 44.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 19/111 - Training ────────────────────────────
Epoch-Loss: 873.0240
────────────────────────── Epoch 19/111 - Validation ───────────────────────────
╔═ Epoch 19/111 Summary ══╗
║ Validation Loss: 1.9362 ║
║ Accuracy: 47.76% ║
╚═════════════════════════╝
─────────────────────────── Epoch 20/111 - Training ────────────────────────────
Epoch-Loss: 862.9385
────────────────────────── Epoch 20/111 - Validation ───────────────────────────
╔═ Epoch 20/111 Summary ══╗
║ Validation Loss: 1.9376 ║
║ Accuracy: 47.79% ║
╚═════════════════════════╝
─────────────────────────── Epoch 21/111 - Training ────────────────────────────
Epoch-Loss: 850.0218
────────────────────────── Epoch 21/111 - Validation ───────────────────────────
╔═ Epoch 21/111 Summary ══╗
║ Validation Loss: 1.9245 ║
║ Accuracy: 48.18% ║
╚═════════════════════════╝
─────────────────────────── Epoch 22/111 - Training ────────────────────────────
Epoch-Loss: 838.0742
────────────────────────── Epoch 22/111 - Validation ───────────────────────────
╔═ Epoch 22/111 Summary ══╗
║ Validation Loss: 1.8723 ║
║ Accuracy: 49.19% ║
╚═════════════════════════╝
─────────────────────────── Epoch 23/111 - Training ────────────────────────────
Epoch-Loss: 822.7864
────────────────────────── Epoch 23/111 - Validation ───────────────────────────
╔═ Epoch 23/111 Summary ══╗
║ Validation Loss: 1.8653 ║
║ Accuracy: 49.95% ║
╚═════════════════════════╝
─────────────────────────── Epoch 24/111 - Training ────────────────────────────
Epoch-Loss: 821.1535
────────────────────────── Epoch 24/111 - Validation ───────────────────────────
╔═ Epoch 24/111 Summary ══╗
║ Validation Loss: 1.8925 ║
║ Accuracy: 49.33% ║
╚═════════════════════════╝
─────────────────────────── Epoch 25/111 - Training ────────────────────────────
Epoch-Loss: 813.5628
────────────────────────── Epoch 25/111 - Validation ───────────────────────────
╔═ Epoch 25/111 Summary ══╗
║ Validation Loss: 1.8756 ║
║ Accuracy: 49.57% ║
╚═════════════════════════╝
─────────────────────────── Epoch 26/111 - Training ────────────────────────────
Epoch-Loss: 810.5100
────────────────────────── Epoch 26/111 - Validation ───────────────────────────
╔═ Epoch 26/111 Summary ══╗
║ Validation Loss: 1.9387 ║
║ Accuracy: 48.15% ║
╚═════════════════════════╝
─────────────────────────── Epoch 27/111 - Training ────────────────────────────
Epoch-Loss: 798.2246
────────────────────────── Epoch 27/111 - Validation ───────────────────────────
╔═ Epoch 27/111 Summary ══╗
║ Validation Loss: 1.8393 ║
║ Accuracy: 50.07% ║
╚═════════════════════════╝
─────────────────────────── Epoch 28/111 - Training ────────────────────────────
Epoch-Loss: 797.0451
────────────────────────── Epoch 28/111 - Validation ───────────────────────────
╔═ Epoch 28/111 Summary ══╗
║ Validation Loss: 1.8190 ║
║ Accuracy: 50.68% ║
╚═════════════════════════╝
─────────────────────────── Epoch 29/111 - Training ────────────────────────────
Epoch-Loss: 787.6530
────────────────────────── Epoch 29/111 - Validation ───────────────────────────
╔═ Epoch 29/111 Summary ══╗
║ Validation Loss: 1.8190 ║
║ Accuracy: 50.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 30/111 - Training ────────────────────────────
Epoch-Loss: 783.2827
────────────────────────── Epoch 30/111 - Validation ───────────────────────────
╔═ Epoch 30/111 Summary ══╗
║ Validation Loss: 2.0898 ║
║ Accuracy: 46.03% ║
╚═════════════════════════╝
─────────────────────────── Epoch 31/111 - Training ────────────────────────────
Epoch-Loss: 707.3304
────────────────────────── Epoch 31/111 - Validation ───────────────────────────
╔═ Epoch 31/111 Summary ══╗
║ Validation Loss: 1.6136 ║
║ Accuracy: 56.29% ║
╚═════════════════════════╝
─────────────────────────── Epoch 32/111 - Training ────────────────────────────
Epoch-Loss: 683.1296
────────────────────────── Epoch 32/111 - Validation ───────────────────────────
╔═ Epoch 32/111 Summary ══╗
║ Validation Loss: 1.5972 ║
║ Accuracy: 56.59% ║
╚═════════════════════════╝
─────────────────────────── Epoch 33/111 - Training ────────────────────────────
Epoch-Loss: 668.6565
────────────────────────── Epoch 33/111 - Validation ───────────────────────────
╔═ Epoch 33/111 Summary ══╗
║ Validation Loss: 1.5744 ║
║ Accuracy: 56.86% ║
╚═════════════════════════╝
─────────────────────────── Epoch 34/111 - Training ────────────────────────────
Epoch-Loss: 658.6145
────────────────────────── Epoch 34/111 - Validation ───────────────────────────
╔═ Epoch 34/111 Summary ══╗
║ Validation Loss: 1.5572 ║
║ Accuracy: 57.48% ║
╚═════════════════════════╝
─────────────────────────── Epoch 35/111 - Training ────────────────────────────
Epoch-Loss: 646.3837
────────────────────────── Epoch 35/111 - Validation ───────────────────────────
╔═ Epoch 35/111 Summary ══╗
║ Validation Loss: 1.5530 ║
║ Accuracy: 57.66% ║
╚═════════════════════════╝
─────────────────────────── Epoch 36/111 - Training ────────────────────────────
Epoch-Loss: 638.0852
────────────────────────── Epoch 36/111 - Validation ───────────────────────────
╔═ Epoch 36/111 Summary ══╗
║ Validation Loss: 1.5341 ║
║ Accuracy: 57.86% ║
╚═════════════════════════╝
─────────────────────────── Epoch 37/111 - Training ────────────────────────────
Epoch-Loss: 634.6759
────────────────────────── Epoch 37/111 - Validation ───────────────────────────
╔═ Epoch 37/111 Summary ══╗
║ Validation Loss: 1.5308 ║
║ Accuracy: 58.15% ║
╚═════════════════════════╝
─────────────────────────── Epoch 38/111 - Training ────────────────────────────
Epoch-Loss: 622.8587
────────────────────────── Epoch 38/111 - Validation ───────────────────────────
╔═ Epoch 38/111 Summary ══╗
║ Validation Loss: 1.5180 ║
║ Accuracy: 58.30% ║
╚═════════════════════════╝
─────────────────────────── Epoch 39/111 - Training ────────────────────────────
Epoch-Loss: 616.6190
────────────────────────── Epoch 39/111 - Validation ───────────────────────────
╔═ Epoch 39/111 Summary ══╗
║ Validation Loss: 1.5123 ║
║ Accuracy: 58.64% ║
╚═════════════════════════╝
─────────────────────────── Epoch 40/111 - Training ────────────────────────────
Epoch-Loss: 612.1470
────────────────────────── Epoch 40/111 - Validation ───────────────────────────
╔═ Epoch 40/111 Summary ══╗
║ Validation Loss: 1.5019 ║
║ Accuracy: 59.12% ║
╚═════════════════════════╝
─────────────────────────── Epoch 41/111 - Training ────────────────────────────
Epoch-Loss: 603.0165
────────────────────────── Epoch 41/111 - Validation ───────────────────────────
╔═ Epoch 41/111 Summary ══╗
║ Validation Loss: 1.4974 ║
║ Accuracy: 59.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 42/111 - Training ────────────────────────────
Epoch-Loss: 597.2954
────────────────────────── Epoch 42/111 - Validation ───────────────────────────
╔═ Epoch 42/111 Summary ══╗
║ Validation Loss: 1.4960 ║
║ Accuracy: 59.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 43/111 - Training ────────────────────────────
Epoch-Loss: 589.4339
────────────────────────── Epoch 43/111 - Validation ───────────────────────────
╔═ Epoch 43/111 Summary ══╗
║ Validation Loss: 1.4889 ║
║ Accuracy: 59.57% ║
╚═════════════════════════╝
─────────────────────────── Epoch 44/111 - Training ────────────────────────────
Epoch-Loss: 584.7788
────────────────────────── Epoch 44/111 - Validation ───────────────────────────
╔═ Epoch 44/111 Summary ══╗
║ Validation Loss: 1.4793 ║
║ Accuracy: 59.31% ║
╚═════════════════════════╝
─────────────────────────── Epoch 45/111 - Training ────────────────────────────
Epoch-Loss: 580.0335
────────────────────────── Epoch 45/111 - Validation ───────────────────────────
╔═ Epoch 45/111 Summary ══╗
║ Validation Loss: 1.4668 ║
║ Accuracy: 60.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 46/111 - Training ────────────────────────────
Epoch-Loss: 576.0576
────────────────────────── Epoch 46/111 - Validation ───────────────────────────
╔═ Epoch 46/111 Summary ══╗
║ Validation Loss: 1.4720 ║
║ Accuracy: 59.78% ║
╚═════════════════════════╝
─────────────────────────── Epoch 47/111 - Training ────────────────────────────
Epoch-Loss: 566.6286
────────────────────────── Epoch 47/111 - Validation ───────────────────────────
╔═ Epoch 47/111 Summary ══╗
║ Validation Loss: 1.4611 ║
║ Accuracy: 59.97% ║
╚═════════════════════════╝
─────────────────────────── Epoch 48/111 - Training ────────────────────────────
Epoch-Loss: 564.0390
────────────────────────── Epoch 48/111 - Validation ───────────────────────────
╔═ Epoch 48/111 Summary ══╗
║ Validation Loss: 1.4569 ║
║ Accuracy: 60.41% ║
╚═════════════════════════╝
─────────────────────────── Epoch 49/111 - Training ────────────────────────────
Epoch-Loss: 556.8729
────────────────────────── Epoch 49/111 - Validation ───────────────────────────
╔═ Epoch 49/111 Summary ══╗
║ Validation Loss: 1.4621 ║
║ Accuracy: 60.08% ║
╚═════════════════════════╝
─────────────────────────── Epoch 50/111 - Training ────────────────────────────
Epoch-Loss: 549.0312
────────────────────────── Epoch 50/111 - Validation ───────────────────────────
╔═ Epoch 50/111 Summary ══╗
║ Validation Loss: 1.4499 ║
║ Accuracy: 60.53% ║
╚═════════════════════════╝
─────────────────────────── Epoch 51/111 - Training ────────────────────────────
Epoch-Loss: 546.4023
────────────────────────── Epoch 51/111 - Validation ───────────────────────────
╔═ Epoch 51/111 Summary ══╗
║ Validation Loss: 1.4513 ║
║ Accuracy: 60.62% ║
╚═════════════════════════╝
─────────────────────────── Epoch 52/111 - Training ────────────────────────────
Epoch-Loss: 543.4676
────────────────────────── Epoch 52/111 - Validation ───────────────────────────
╔═ Epoch 52/111 Summary ══╗
║ Validation Loss: 1.4361 ║
║ Accuracy: 60.51% ║
╚═════════════════════════╝
─────────────────────────── Epoch 53/111 - Training ────────────────────────────
Epoch-Loss: 535.0242
────────────────────────── Epoch 53/111 - Validation ───────────────────────────
╔═ Epoch 53/111 Summary ══╗
║ Validation Loss: 1.4365 ║
║ Accuracy: 60.62% ║
╚═════════════════════════╝
─────────────────────────── Epoch 54/111 - Training ────────────────────────────
Epoch-Loss: 529.9216
────────────────────────── Epoch 54/111 - Validation ───────────────────────────
╔═ Epoch 54/111 Summary ══╗
║ Validation Loss: 1.4321 ║
║ Accuracy: 60.97% ║
╚═════════════════════════╝
─────────────────────────── Epoch 55/111 - Training ────────────────────────────
Epoch-Loss: 525.9203
────────────────────────── Epoch 55/111 - Validation ───────────────────────────
╔═ Epoch 55/111 Summary ══╗
║ Validation Loss: 1.4318 ║
║ Accuracy: 61.07% ║
╚═════════════════════════╝
─────────────────────────── Epoch 56/111 - Training ────────────────────────────
Epoch-Loss: 520.8980
────────────────────────── Epoch 56/111 - Validation ───────────────────────────
╔═ Epoch 56/111 Summary ══╗
║ Validation Loss: 1.4233 ║
║ Accuracy: 60.92% ║
╚═════════════════════════╝
─────────────────────────── Epoch 57/111 - Training ────────────────────────────
Epoch-Loss: 519.4088
────────────────────────── Epoch 57/111 - Validation ───────────────────────────
╔═ Epoch 57/111 Summary ══╗
║ Validation Loss: 1.4227 ║
║ Accuracy: 61.03% ║
╚═════════════════════════╝
─────────────────────────── Epoch 58/111 - Training ────────────────────────────
Epoch-Loss: 512.1358
────────────────────────── Epoch 58/111 - Validation ───────────────────────────
╔═ Epoch 58/111 Summary ══╗
║ Validation Loss: 1.4279 ║
║ Accuracy: 61.11% ║
╚═════════════════════════╝
─────────────────────────── Epoch 59/111 - Training ────────────────────────────
Epoch-Loss: 505.4023
────────────────────────── Epoch 59/111 - Validation ───────────────────────────
╔═ Epoch 59/111 Summary ══╗
║ Validation Loss: 1.4259 ║
║ Accuracy: 61.13% ║
╚═════════════════════════╝
─────────────────────────── Epoch 60/111 - Training ────────────────────────────
Epoch-Loss: 502.0213
────────────────────────── Epoch 60/111 - Validation ───────────────────────────
╔═ Epoch 60/111 Summary ══╗
║ Validation Loss: 1.4193 ║
║ Accuracy: 61.52% ║
╚═════════════════════════╝
─────────────────────────── Epoch 61/111 - Training ────────────────────────────
Epoch-Loss: 481.9895
────────────────────────── Epoch 61/111 - Validation ───────────────────────────
╔═ Epoch 61/111 Summary ══╗
║ Validation Loss: 1.4049 ║
║ Accuracy: 61.87% ║
╚═════════════════════════╝
─────────────────────────── Epoch 62/111 - Training ────────────────────────────
Epoch-Loss: 478.6195
────────────────────────── Epoch 62/111 - Validation ───────────────────────────
╔═ Epoch 62/111 Summary ══╗
║ Validation Loss: 1.4021 ║
║ Accuracy: 61.84% ║
╚═════════════════════════╝
─────────────────────────── Epoch 63/111 - Training ────────────────────────────
Epoch-Loss: 472.4670
────────────────────────── Epoch 63/111 - Validation ───────────────────────────
╔═ Epoch 63/111 Summary ══╗
║ Validation Loss: 1.4000 ║
║ Accuracy: 61.99% ║
╚═════════════════════════╝
─────────────────────────── Epoch 64/111 - Training ────────────────────────────
Epoch-Loss: 469.3491
────────────────────────── Epoch 64/111 - Validation ───────────────────────────
╔═ Epoch 64/111 Summary ══╗
║ Validation Loss: 1.4043 ║
║ Accuracy: 62.01% ║
╚═════════════════════════╝
─────────────────────────── Epoch 65/111 - Training ────────────────────────────
Epoch-Loss: 468.6678
────────────────────────── Epoch 65/111 - Validation ───────────────────────────
╔═ Epoch 65/111 Summary ══╗
║ Validation Loss: 1.3997 ║
║ Accuracy: 62.30% ║
╚═════════════════════════╝
─────────────────────────── Epoch 66/111 - Training ────────────────────────────
Epoch-Loss: 471.9828
────────────────────────── Epoch 66/111 - Validation ───────────────────────────
╔═ Epoch 66/111 Summary ══╗
║ Validation Loss: 1.3996 ║
║ Accuracy: 61.96% ║
╚═════════════════════════╝
─────────────────────────── Epoch 67/111 - Training ────────────────────────────
Epoch-Loss: 466.4634
────────────────────────── Epoch 67/111 - Validation ───────────────────────────
╔═ Epoch 67/111 Summary ══╗
║ Validation Loss: 1.3999 ║
║ Accuracy: 62.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 68/111 - Training ────────────────────────────
Epoch-Loss: 463.8253
────────────────────────── Epoch 68/111 - Validation ───────────────────────────
╔═ Epoch 68/111 Summary ══╗
║ Validation Loss: 1.4024 ║
║ Accuracy: 62.04% ║
╚═════════════════════════╝
─────────────────────────── Epoch 69/111 - Training ────────────────────────────
Epoch-Loss: 464.6648
────────────────────────── Epoch 69/111 - Validation ───────────────────────────
╔═ Epoch 69/111 Summary ══╗
║ Validation Loss: 1.3981 ║
║ Accuracy: 62.01% ║
╚═════════════════════════╝
─────────────────────────── Epoch 70/111 - Training ────────────────────────────
Epoch-Loss: 463.7171
────────────────────────── Epoch 70/111 - Validation ───────────────────────────
╔═ Epoch 70/111 Summary ══╗
║ Validation Loss: 1.3947 ║
║ Accuracy: 62.24% ║
╚═════════════════════════╝
─────────────────────────── Epoch 71/111 - Training ────────────────────────────
Epoch-Loss: 461.4125
────────────────────────── Epoch 71/111 - Validation ───────────────────────────
╔═ Epoch 71/111 Summary ══╗
║ Validation Loss: 1.3992 ║
║ Accuracy: 62.23% ║
╚═════════════════════════╝
─────────────────────────── Epoch 72/111 - Training ────────────────────────────
Epoch-Loss: 459.9840
────────────────────────── Epoch 72/111 - Validation ───────────────────────────
╔═ Epoch 72/111 Summary ══╗
║ Validation Loss: 1.3947 ║
║ Accuracy: 62.33% ║
╚═════════════════════════╝
─────────────────────────── Epoch 73/111 - Training ────────────────────────────
Epoch-Loss: 457.3373
────────────────────────── Epoch 73/111 - Validation ───────────────────────────
╔═ Epoch 73/111 Summary ══╗
║ Validation Loss: 1.4006 ║
║ Accuracy: 62.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 74/111 - Training ────────────────────────────
Epoch-Loss: 457.1033
────────────────────────── Epoch 74/111 - Validation ───────────────────────────
╔═ Epoch 74/111 Summary ══╗
║ Validation Loss: 1.3915 ║
║ Accuracy: 62.23% ║
╚═════════════════════════╝
─────────────────────────── Epoch 75/111 - Training ────────────────────────────
Epoch-Loss: 457.1169
────────────────────────── Epoch 75/111 - Validation ───────────────────────────
╔═ Epoch 75/111 Summary ══╗
║ Validation Loss: 1.3925 ║
║ Accuracy: 62.26% ║
╚═════════════════════════╝
─────────────────────────── Epoch 76/111 - Training ────────────────────────────
Epoch-Loss: 456.5903
────────────────────────── Epoch 76/111 - Validation ───────────────────────────
╔═ Epoch 76/111 Summary ══╗
║ Validation Loss: 1.3939 ║
║ Accuracy: 62.36% ║
╚═════════════════════════╝
─────────────────────────── Epoch 77/111 - Training ────────────────────────────
Epoch-Loss: 454.2492
────────────────────────── Epoch 77/111 - Validation ───────────────────────────
╔═ Epoch 77/111 Summary ══╗
║ Validation Loss: 1.3950 ║
║ Accuracy: 62.14% ║
╚═════════════════════════╝
─────────────────────────── Epoch 78/111 - Training ────────────────────────────
Epoch-Loss: 451.9502
────────────────────────── Epoch 78/111 - Validation ───────────────────────────
╔═ Epoch 78/111 Summary ══╗
║ Validation Loss: 1.3908 ║
║ Accuracy: 62.38% ║
╚═════════════════════════╝
─────────────────────────── Epoch 79/111 - Training ────────────────────────────
Epoch-Loss: 451.2128
────────────────────────── Epoch 79/111 - Validation ───────────────────────────
╔═ Epoch 79/111 Summary ══╗
║ Validation Loss: 1.3878 ║
║ Accuracy: 62.30% ║
╚═════════════════════════╝
─────────────────────────── Epoch 80/111 - Training ────────────────────────────
Epoch-Loss: 451.3810
────────────────────────── Epoch 80/111 - Validation ───────────────────────────
╔═ Epoch 80/111 Summary ══╗
║ Validation Loss: 1.3916 ║
║ Accuracy: 62.27% ║
╚═════════════════════════╝
─────────────────────────── Epoch 81/111 - Training ────────────────────────────
Epoch-Loss: 449.3561
────────────────────────── Epoch 81/111 - Validation ───────────────────────────
╔═ Epoch 81/111 Summary ══╗
║ Validation Loss: 1.3893 ║
║ Accuracy: 62.37% ║
╚═════════════════════════╝
─────────────────────────── Epoch 82/111 - Training ────────────────────────────
Epoch-Loss: 445.3060
────────────────────────── Epoch 82/111 - Validation ───────────────────────────
╔═ Epoch 82/111 Summary ══╗
║ Validation Loss: 1.3879 ║
║ Accuracy: 62.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 83/111 - Training ────────────────────────────
Epoch-Loss: 445.6986
────────────────────────── Epoch 83/111 - Validation ───────────────────────────
╔═ Epoch 83/111 Summary ══╗
║ Validation Loss: 1.3894 ║
║ Accuracy: 62.33% ║
╚═════════════════════════╝
─────────────────────────── Epoch 84/111 - Training ────────────────────────────
Epoch-Loss: 444.6230
────────────────────────── Epoch 84/111 - Validation ───────────────────────────
╔═ Epoch 84/111 Summary ══╗
║ Validation Loss: 1.3860 ║
║ Accuracy: 62.50% ║
╚═════════════════════════╝
─────────────────────────── Epoch 85/111 - Training ────────────────────────────
Epoch-Loss: 441.5595
────────────────────────── Epoch 85/111 - Validation ───────────────────────────
╔═ Epoch 85/111 Summary ══╗
║ Validation Loss: 1.3874 ║
║ Accuracy: 62.62% ║
╚═════════════════════════╝
─────────────────────────── Epoch 86/111 - Training ────────────────────────────
Epoch-Loss: 440.4408
────────────────────────── Epoch 86/111 - Validation ───────────────────────────
╔═ Epoch 86/111 Summary ══╗
║ Validation Loss: 1.3896 ║
║ Accuracy: 62.41% ║
╚═════════════════════════╝
─────────────────────────── Epoch 87/111 - Training ────────────────────────────
Epoch-Loss: 440.3585
────────────────────────── Epoch 87/111 - Validation ───────────────────────────
╔═ Epoch 87/111 Summary ══╗
║ Validation Loss: 1.3905 ║
║ Accuracy: 62.41% ║
╚═════════════════════════╝
─────────────────────────── Epoch 88/111 - Training ────────────────────────────
Epoch-Loss: 441.7323
────────────────────────── Epoch 88/111 - Validation ───────────────────────────
╔═ Epoch 88/111 Summary ══╗
║ Validation Loss: 1.3859 ║
║ Accuracy: 62.52% ║
╚═════════════════════════╝
─────────────────────────── Epoch 89/111 - Training ────────────────────────────
Epoch-Loss: 437.8367
────────────────────────── Epoch 89/111 - Validation ───────────────────────────
╔═ Epoch 89/111 Summary ══╗
║ Validation Loss: 1.3875 ║
║ Accuracy: 62.54% ║
╚═════════════════════════╝
─────────────────────────── Epoch 90/111 - Training ────────────────────────────
Epoch-Loss: 438.0777
────────────────────────── Epoch 90/111 - Validation ───────────────────────────
╔═ Epoch 90/111 Summary ══╗
║ Validation Loss: 1.3849 ║
║ Accuracy: 62.73% ║
╚═════════════════════════╝
─────────────────────────── Epoch 91/111 - Training ────────────────────────────
Epoch-Loss: 434.6593
────────────────────────── Epoch 91/111 - Validation ───────────────────────────
╔═ Epoch 91/111 Summary ══╗
║ Validation Loss: 1.3834 ║
║ Accuracy: 62.76% ║
╚═════════════════════════╝
─────────────────────────── Epoch 92/111 - Training ────────────────────────────
Epoch-Loss: 432.3829
────────────────────────── Epoch 92/111 - Validation ───────────────────────────
╔═ Epoch 92/111 Summary ══╗
║ Validation Loss: 1.3861 ║
║ Accuracy: 62.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 93/111 - Training ────────────────────────────
Epoch-Loss: 434.7945
────────────────────────── Epoch 93/111 - Validation ───────────────────────────
╔═ Epoch 93/111 Summary ══╗
║ Validation Loss: 1.3834 ║
║ Accuracy: 62.83% ║
╚═════════════════════════╝
─────────────────────────── Epoch 94/111 - Training ────────────────────────────
Epoch-Loss: 433.2922
────────────────────────── Epoch 94/111 - Validation ───────────────────────────
╔═ Epoch 94/111 Summary ══╗
║ Validation Loss: 1.3828 ║
║ Accuracy: 62.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 95/111 - Training ────────────────────────────
Epoch-Loss: 432.3670
────────────────────────── Epoch 95/111 - Validation ───────────────────────────
╔═ Epoch 95/111 Summary ══╗
║ Validation Loss: 1.3858 ║
║ Accuracy: 62.59% ║
╚═════════════════════════╝
─────────────────────────── Epoch 96/111 - Training ────────────────────────────
Epoch-Loss: 433.9139
────────────────────────── Epoch 96/111 - Validation ───────────────────────────
╔═ Epoch 96/111 Summary ══╗
║ Validation Loss: 1.3850 ║
║ Accuracy: 62.62% ║
╚═════════════════════════╝
─────────────────────────── Epoch 97/111 - Training ────────────────────────────
Epoch-Loss: 432.7405
────────────────────────── Epoch 97/111 - Validation ───────────────────────────
╔═ Epoch 97/111 Summary ══╗
║ Validation Loss: 1.3840 ║
║ Accuracy: 62.70% ║
╚═════════════════════════╝
─────────────────────────── Epoch 98/111 - Training ────────────────────────────
Epoch-Loss: 433.1501
────────────────────────── Epoch 98/111 - Validation ───────────────────────────
╔═ Epoch 98/111 Summary ══╗
║ Validation Loss: 1.3812 ║
║ Accuracy: 62.66% ║
╚═════════════════════════╝
─────────────────────────── Epoch 99/111 - Training ────────────────────────────
Epoch-Loss: 431.8451
────────────────────────── Epoch 99/111 - Validation ───────────────────────────
╔═ Epoch 99/111 Summary ══╗
║ Validation Loss: 1.3847 ║
║ Accuracy: 62.70% ║
╚═════════════════════════╝
─────────────────────────── Epoch 100/111 - Training ───────────────────────────
Epoch-Loss: 431.1196
────────────────────────── Epoch 100/111 - Validation ──────────────────────────
╔═ Epoch 100/111 Summary ═╗
║ Validation Loss: 1.3831 ║
║ Accuracy: 62.50% ║
╚═════════════════════════╝
─────────────────────────── Epoch 101/111 - Training ───────────────────────────
Epoch-Loss: 431.9554
────────────────────────── Epoch 101/111 - Validation ──────────────────────────
╔═ Epoch 101/111 Summary ═╗
║ Validation Loss: 1.3835 ║
║ Accuracy: 62.69% ║
╚═════════════════════════╝
─────────────────────────── Epoch 102/111 - Training ───────────────────────────
Epoch-Loss: 431.0680
────────────────────────── Epoch 102/111 - Validation ──────────────────────────
╔═ Epoch 102/111 Summary ═╗
║ Validation Loss: 1.3845 ║
║ Accuracy: 62.72% ║
╚═════════════════════════╝
─────────────────────────── Epoch 103/111 - Training ───────────────────────────
Epoch-Loss: 434.7889
────────────────────────── Epoch 103/111 - Validation ──────────────────────────
╔═ Epoch 103/111 Summary ═╗
║ Validation Loss: 1.3836 ║
║ Accuracy: 62.57% ║
╚═════════════════════════╝
─────────────────────────── Epoch 104/111 - Training ───────────────────────────
Epoch-Loss: 430.9787
────────────────────────── Epoch 104/111 - Validation ──────────────────────────
╔═ Epoch 104/111 Summary ═╗
║ Validation Loss: 1.3818 ║
║ Accuracy: 62.66% ║
╚═════════════════════════╝
─────────────────────────── Epoch 105/111 - Training ───────────────────────────
Epoch-Loss: 430.5905
────────────────────────── Epoch 105/111 - Validation ──────────────────────────
╔═ Epoch 105/111 Summary ═╗
║ Validation Loss: 1.3846 ║
║ Accuracy: 62.64% ║
╚═════════════════════════╝
─────────────────────────── Epoch 106/111 - Training ───────────────────────────
Epoch-Loss: 431.0644
────────────────────────── Epoch 106/111 - Validation ──────────────────────────
╔═ Epoch 106/111 Summary ═╗
║ Validation Loss: 1.3819 ║
║ Accuracy: 62.57% ║
╚═════════════════════════╝
─────────────────────────── Epoch 107/111 - Training ───────────────────────────
Epoch-Loss: 432.7843
────────────────────────── Epoch 107/111 - Validation ──────────────────────────
╔═ Epoch 107/111 Summary ═╗
║ Validation Loss: 1.3799 ║
║ Accuracy: 62.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 108/111 - Training ───────────────────────────
Epoch-Loss: 429.4316
────────────────────────── Epoch 108/111 - Validation ──────────────────────────
╔═ Epoch 108/111 Summary ═╗
║ Validation Loss: 1.3834 ║
║ Accuracy: 62.52% ║
╚═════════════════════════╝
─────────────────────────── Epoch 109/111 - Training ───────────────────────────
Epoch-Loss: 430.7393
────────────────────────── Epoch 109/111 - Validation ──────────────────────────
╔═ Epoch 109/111 Summary ═╗
║ Validation Loss: 1.3797 ║
║ Accuracy: 62.60% ║
╚═════════════════════════╝
─────────────────────────── Epoch 110/111 - Training ───────────────────────────
Epoch-Loss: 431.7572
────────────────────────── Epoch 110/111 - Validation ──────────────────────────
╔═ Epoch 110/111 Summary ═╗
║ Validation Loss: 1.3833 ║
║ Accuracy: 62.64% ║
╚═════════════════════════╝
─────────────────────────── Epoch 111/111 - Training ───────────────────────────
Epoch-Loss: 431.3186
────────────────────────── Epoch 111/111 - Validation ──────────────────────────
╔═ Epoch 111/111 Summary ═╗
║ Validation Loss: 1.3823 ║
║ Accuracy: 62.70% ║
╚═════════════════════════╝
VAL_LOSS: 1.3823356183269355
VAL_ACC: 62.7
RUNTIME: 1508.377
NORMALIZED_RUNTIME: 20.95
stderr:
[notice] A new release of pip is available: 25.2 -> 25.3
[notice] To update, run: /data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/.torch_venv_1bdd5e1e8b/bin/python -m pip install --upgrade pip
/data/horse/ws/pwinkler-mnist_mono/omniopt/.tests/mnist/.torch_venv_1bdd5e1e8b/lib64/python3.9/site-packages/torch/utils/data/dataloader.py:627: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 1, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.
warnings.warn(
Result: {'VAL_ACC': 62.7}
Final-results: {'VAL_ACC': 62.7}
EXIT_CODE: 0
submitit INFO (2025-11-03 12:52:26,119) - Job completed successfully
submitit INFO (2025-11-03 12:52:26,121) - Exiting after successful completion