Skipped tabs:
Main-Log
Debug-Logs
Single Logs
<!DOCTYPE html>
<html lang='en'>
<head>
<meta charset='UTF-8'>
<meta name='viewport' content='width=device-width, initial-scale=1.0'>
<title>Exported »s3811141/mnist_gpu_noall/1« from OmniOpt2-Share</title>
<script src='https://code.jquery.com/jquery-3.7.1.js'></script>
<script src='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/gridjs.production.min.js'></script>
<script src='https://cdn.jsdelivr.net/npm/plotly.js-dist@3.0.1/plotly.min.js'></script>
<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/theme/mermaid.css'>
<style>
#share_path {
color: black;
}
.debug_log_pre {
min-width: 300px;
}
body.dark-mode {
background-color: #1e1e1e; color: #fff;
}
.plot-container {
margin-bottom: 2rem;
}
.spinner {
border: 4px solid #f3f3f3;
border-top: 4px solid #3498db;
border-radius: 50%;
width: 40px;
height: 40px;
animation: spin 2s linear infinite;
margin: auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.tabs {
margin-bottom: 20px;
}
.tab-content {
display: none;
}
.tab-content.active {
display: block;
}
pre {
color: #00CC00 !important;
background-color: black !important;
font-family: monospace !important;
line-break: anywhere;
}
menu[role="tablist"] {
display: flex;
flex-wrap: wrap;
gap: 4px;
max-width: 100%;
max-height: 100px;
overflow: scroll;
}
menu[role="tablist"] button {
white-space: nowrap;
min-width: 100px;
}
.container {
max-width: 100% !important;
}
.gridjs-sort {
min-width: 1px !important;
}
td.gridjs-td {
overflow: clip;
}
.title-bar-text {
font-size: 22px;
display: block ruby;
}
.title-bar {
height: fit-content;
}
.window {
width: fit-content;
min-width: 100%;
}
.top_link {
display: inline-block;
padding: 5px 5px;
background-color: #007bff; /* Blau, kannst du anpassen */
color: white;
text-decoration: none;
font-size: 16px;
font-weight: bold;
border-radius: 6px;
border: 2px solid #0056b3;
text-align: center;
transition: all 0.3s ease-in-out;
}
.top_link:hover {
background-color: #0056b3;
border-color: #004494;
}
.top_link:active {
background-color: #003366;
border-color: #002244;
}
button {
color: black;
}
.share_folder_buttons {
width: fit-content;
}
button {
background: #fcfcfe;
border-color: #919b9c;
border-top-color: rgb(145, 155, 156);
border-bottom-color: rgb(145, 155, 156);
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c;
}
button {
padding-bottom: 2px;
margin-top: -2px;
background-color: #ece9d8;
position: relative;
z-index: 8;
margin-left: -3px;
margin-bottom: 1px;
}
.window {
min-width: 1100px;
}
[role="tab"] {
padding: 10px !important;
}
[role="tabpanel"] {
min-width: fit-content;
}
select {
border: 1px solid #7f9db9;
background-image: url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 -0.5 15 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e6eefc' d='M0 0h1'/%3E%3Cpath stroke='%23d1e0fd' d='M1 0h1M0 1h1m3 0h2M2 3h1M2 4h1'/%3E%3Cpath stroke='%23cad8f9' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23c4d3f7' d='M3 0h1M0 3h1M0 4h1'/%3E%3Cpath stroke='%23bfd0f8' d='M4 0h2M0 5h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 0h1M0 6h1'/%3E%3Cpath stroke='%23baccf4' d='M7 0h1m6 2h1m-1 5h1m-1 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M8 0h1M0 7h1M0 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M9 0h2M0 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 0h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 0h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 0h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 0h1'/%3E%3Cpath stroke='%23e1eafe' d='M1 1h1'/%3E%3Cpath stroke='%23dae6fe' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23d4e1fc' d='M3 1h1M1 3h1M1 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 1h1M1 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 1h1M4 2h2'/%3E%3Cpath stroke='%23cad9fd' d='M8 1h1M6 2h1M3 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M9 1h2'/%3E%3Cpath stroke='%23c5d6fc' d='M11 1h1M2 11h4'/%3E%3Cpath stroke='%23c2d3fc' d='M12 1h1m-2 1h1M1 11h1m0 1h2m-2 1h2'/%3E%3Cpath stroke='%23bccefa' d='M13 1h1m-1 1h1m-1 1h1m-1 1h1M3 15h4'/%3E%3Cpath stroke='%23b9c9f3' d='M14 1h1M3 16h4'/%3E%3Cpath stroke='%23d8e3fc' d='M2 2h1'/%3E%3Cpath stroke='%23d1defd' d='M3 2h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 2h1M4 3h3M4 4h3M3 6h1m1 0h2M1 7h1M1 8h1'/%3E%3Cpath stroke='%23c5d5fc' d='M8 2h1m-8 8h5'/%3E%3Cpath stroke='%23c5d3fc' d='M9 2h2'/%3E%3Cpath stroke='%23bed0fc' d='M12 2h1M8 3h1M8 4h1m-8 8h1m-1 1h1m0 1h1m1 0h3'/%3E%3Cpath stroke='%23cddbfc' d='M3 3h1M3 4h1M1 6h2'/%3E%3Cpath stroke='%23c8d5fb' d='M7 3h1M7 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M9 3h4M9 4h4M8 5h1M7 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 3h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23ceddfd' d='M2 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M4 5h4M1 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M9 5h2m1 0h2M1 14h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M8 6h2m2 0h2m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%234d6185' d='M4 6h1m5 0h1M3 7h3m3 0h3M4 8h3m1 0h3M5 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1m-1 1h1'/%3E%3Cpath stroke='%23cad8fd' d='M2 7h1M2 8h2'/%3E%3Cpath stroke='%23c1d3fb' d='M6 7h2M7 8h1M4 9h1'/%3E%3Cpath stroke='%23b6cefb' d='M8 7h1m2 1h1m-2 1h3m-2 1h2'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-6 6h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b4c8f6' d='M0 10h1'/%3E%3Cpath stroke='%23bdd3fb' d='M9 10h2m-4 4h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 10h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 10h1'/%3E%3Cpath stroke='%23b1c7f6' d='M0 11h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M8 11h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M9 11h4m-2 3h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 11h1m-3 4h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 11h1m-7 5h3'/%3E%3Cpath stroke='%23adc3f6' d='M0 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c2d5fc' d='M4 12h4m-4 1h4'/%3E%3Cpath stroke='%23b7d3fc' d='M9 12h2m-2 1h2m-3 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 12h1m-1 1h1'/%3E%3Cpath stroke='%23afcdfb' d='M12 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afcbfa' d='M13 12h1m-1 1h1'/%3E%3Cpath stroke='%23b2c8f4' d='M14 12h1m-1 1h1m-4 3h1'/%3E%3Cpath stroke='%23c1d2fb' d='M3 14h1'/%3E%3Cpath stroke='%23b6d1fb' d='M9 14h2'/%3E%3Cpath stroke='%23adc9f9' d='M13 14h1m-2 1h1'/%3E%3Cpath stroke='%23b1c6f3' d='M14 14h1m-3 2h1'/%3E%3Cpath stroke='%23abc1f4' d='M0 15h1'/%3E%3Cpath stroke='%23b7cbf9' d='M1 15h1'/%3E%3Cpath stroke='%23b9cefb' d='M2 15h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 15h1'/%3E%3Cpath stroke='%23b2cdfb' d='M9 15h2'/%3E%3Cpath stroke='%23aec8f7' d='M13 15h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 15h1m-2 1h1'/%3E%3Cpath stroke='%23dbe3f8' d='M0 16h1'/%3E%3Cpath stroke='%23b7c6f1' d='M1 16h1'/%3E%3Cpath stroke='%23b8c9f2' d='M2 16h1m4 0h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 16h1'/%3E%3C/svg%3E");
background-size: 15px;
font-size: 11px;
border: none;
background-color: #fff;
box-sizing: border-box;
height: 21px;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
position: relative;
padding: 5px 32px 32px 5px;
background-position: top 50% right 2px;
background-repeat: no-repeat;
border-radius: 0;
border: 1px solid black;
}
body {
font-variant: oldstyle-nums;
font-family: sans-serif;
background-color: #fafafa;
text-shadow: 0 0.05em 0.1em rgba(0,0,0,0.2);
scroll-behavior: smooth;
text-wrap: balance;
text-rendering: optimizeLegibility;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
font-feature-settings: "ss02", "liga", "onum";
}
.marked_text {
background-color: yellow;
}
.time_picker_container {
font-variant: small-caps;
width: 100%;
}
.time_picker_container > input {
width: 50px;
}
#loader {
display: grid;
justify-content: center;
align-items: center;
height: 100%;
}
.no_linebreak {
line-break: auto;
}
.dark_code_bg {
background-color: #363636;
color: white;
}
.code_bg {
background-color: #C0C0C0;
}
#commands {
line-break: anywhere;
}
.color_red {
color: red;
}
.color_orange {
color: orange;
}
table > tbody > tr:nth-child(odd) {
background-color: #fafafa;
}
table > tbody > tr:nth-child(even) {
background-color: #ddd;
}
table {
border-collapse: collapse;
margin: 0 0;
min-width: 200px;
}
th {
background-color: #4eae46;
color: #ffffff;
text-align: left;
border: 0px;
}
.error_element {
background-color: #e57373;
border-radius: 10px;
padding: 4px;
display: none;
}
button {
background-color: #4eae46;
border: 1px solid #2A8387;
border-radius: 4px;
box-shadow: rgba(0, 0, 0, 0.12) 0 1px 1px;
cursor: pointer;
display: block;
line-height: 100%;
outline: 0;
padding: 11px 15px 12px;
text-align: center;
transition: box-shadow .05s ease-in-out, opacity .05s ease-in-out;
user-select: none;
-webkit-user-select: none;
touch-action: manipulation;
font-family: sans-serif;
}
button:hover {
box-shadow: rgba(255, 255, 255, 0.3) 0 0 2px inset, rgba(0, 0, 0, 0.4) 0 1px 2px;
text-decoration: none;
transition-duration: .15s, .15s;
}
button:active {
box-shadow: rgba(0, 0, 0, 0.15) 0 2px 4px inset, rgba(0, 0, 0, 0.4) 0 1px 1px;
}
button:disabled {
cursor: not-allowed;
opacity: .6;
}
button:disabled:active {
pointer-events: none;
}
button:disabled:hover {
box-shadow: none;
}
.half_width_td {
vertical-align: baseline;
width: 50%;
}
#scads_bar {
width: 100%;
margin: 0;
padding: 0;
user-select: none;
user-drag: none;
-webkit-user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-select: none;
-ms-user-select: none;
display: -webkit-box;
}
.tab {
display: inline-block;
padding: 0px;
margin: 0px;
font-size: 16px;
font-weight: bold;
text-align: center;
border-radius: 25px;
text-decoration: none !important;
transition: background-color 0.3s, color 0.3s;
color: unset !important;
}
.tooltipster-base {
border: 1px solid black;
position: absolute;
border-radius: 8px;
padding: 2px;
color: white;
background-color: #61686f;
width: 70%;
min-width: 200px;
pointer-events: none;
}
td {
padding-top: 3px;
padding-bottom: 3px;
}
.left_side {
text-align: right;
}
.right_side {
text-align: left;
}
.spinner {
border: 8px solid rgba(0, 0, 0, 0.1);
border-left: 8px solid #3498db;
border-radius: 50%;
width: 50px;
height: 50px;
animation: spin 1s linear infinite;
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
#spinner-overlay {
-webkit-text-stroke: 1px black;
white !important;
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
display: flex;
justify-content: center;
align-items: center;
z-index: 9999;
}
#spinner-container {
text-align: center;
color: #fff;
display: contents;
}
#spinner-text {
font-size: 3vw;
margin-left: 10px;
}
a, a:visited, a:active, a:hover, a:link {
color: #007bff;
text-decoration: none;
}
.copy-container {
display: inline-block;
position: relative;
cursor: pointer;
margin-left: 10px;
color: blue;
}
.copy-container:hover {
text-decoration: underline;
}
.clipboard-icon {
position: absolute;
top: 5px;
right: 5px;
font-size: 1.5em;
}
#main_tab {
overflow: scroll;
width: max-content;
}
.ui-tabs .ui-tabs-nav li {
user-select: none;
}
.stacktrace_table {
background-color: black !important;
color: white !important;
}
#breadcrumb {
user-select: none;
}
#statusBar {
user-select: none;
}
.error_line {
background-color: red !important;
color: white !important;
}
.header_table {
border: 0px !important;
padding: 0px !important;
width: revert !important;
min-width: revert !important;
}
.img_auto_width {
max-width: revert !important;
}
#main_dir_or_plot_view {
display: inline-grid;
}
#refresh_button {
width: 300px;
}
._share_link {
color: black !important;
}
#footer_element {
height: 30px;
background-color: #f8f9fa;
padding: 0px;
text-align: center;
border-top: 1px solid #dee2e6;
width: 100%;
box-sizing: border-box;
position: fixed;
bottom: 0;
z-index: 2;
margin-left: -9px;
z-index: 99;
}
.switch {
position: relative;
display: inline-block;
width: 50px;
height: 26px;
}
.switch input {
opacity: 0;
width: 0;
height: 0;
}
.slider {
position: absolute;
cursor: pointer;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #ccc;
transition: .4s;
border-radius: 26px;
}
.slider:before {
position: absolute;
content: "";
height: 20px;
width: 20px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #444;
}
input:checked + .slider:before {
transform: translateX(24px);
}
.mode-text {
position: absolute;
top: 5px;
left: 65px;
font-size: 14px;
color: black;
transition: .4s;
width: 65px;
display: block;
font-size: 0.7rem;
text-align: center;
}
input:checked + .slider .mode-text {
content: "Dark Mode";
color: white;
}
#mainContent {
height: fit-content;
min-height: 100%;
}
li {
text-align: left;
}
#share_path {
margin-bottom: 20px;
margin-top: 20px;
}
#sortForm {
margin-bottom: 20px;
}
.share_folder_buttons {
margin-top: 10px;
margin-bottom: 10px;
}
.nav_tab_button {
margin: 10px;
}
.header_table {
margin: 10px;
}
.no_border {
border: unset !important;
}
.gui_table {
padding: 5px !important;
}
.gui_parameter_row {
}
.gui_parameter_row_cell {
border: unset !important;
}
.gui_param_table {
width: 95%;
margin: unset !important;
}
table td, table tr,
.parameterRow table {
padding: 2px !important;
}
.parameterRow table {
margin: 0px;
border: unset;
}
.parameterRow > td {
border: 0px !important;
}
.parameter_config_table td, .parameter_config_table tr, #config_table th, #config_table td, #hidden_config_table th, #hidden_config_table td {
border: 0px !important;
}
.green_text {
color: green;
}
.remove_parameter {
white-space: pre;
}
select {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
background-color: #fff;
color: #222;
padding: 5px 30px 5px 5px;
border: 1px solid #555;
border-radius: 5px;
cursor: pointer;
outline: none;
transition: all 0.3s ease;
background:
url("data:image/svg+xml;charset=UTF-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 10 6'%3E%3Cpath fill='%23888' d='M0 0l5 6 5-6z'/%3E%3C/svg%3E")
no-repeat right 10px center,
linear-gradient(180deg, #fff, #ecebe5 86%, #d8d0c4);
background-size: 12px, auto;
}
select:hover {
border-color: #888;
}
select:focus {
border-color: #4caf50;
box-shadow: 0 0 5px rgba(76, 175, 80, 0.5);
}
select::-ms-expand {
display: none;
}
input, textarea {
border-radius: 5px;
border: solid 1px;
}
#search {
width: 200px;
max-width: 70%;
background-image: url(images/search.svg);
background-repeat: no-repeat;
background-size: auto 40px;
height: 40px;
line-height: 40px;
padding-left: 40px;
box-sizing: border-box;
}
input[type="checkbox"] {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
width: 25px;
height: 25px;
border: 2px solid #3498db;
border-radius: 5px;
background-color: #fff;
position: relative;
cursor: pointer;
transition: all 0.3s ease;
width: 25px !important;
}
input[type="checkbox"]:checked {
background-color: #3498db;
border-color: #2980b9;
}
input[type="checkbox"]:checked::before {
content: '✔';
position: absolute;
left: 4px;
top: 2px;
color: #fff;
}
input[type="checkbox"]:hover {
border-color: #2980b9;
background-color: #3caffc;
}
.toc {
margin-bottom: 20px;
}
.toc li {
margin-bottom: 5px;
}
.toc a {
text-decoration: none;
color: #007bff;
}
.toc a:hover {
text-decoration: underline;
}
.table-container {
width: 100%;
overflow-x: auto;
}
.section-header {
background-color: #1d6f9a !important;
color: white;
}
.warning {
color: red;
}
.li_list a {
text-decoration: none;
}
.gridjs-td {
white-space: nowrap;
}
th, td {
border: 1px solid gray !important;
}
.no_border {
border: 0px !important;
}
.no_break {
}
img {
user-select: none;
pointer-events: none;
}
#config_table, #hidden_config_table {
user-select: none;
}
.copy_clipboard_button {
margin-bottom: 10px;
}
.badge_table {
background-color: unset !important;
}
.make_markable {
user-select: text;
}
.header-container {
display: flex;
flex-wrap: wrap;
align-items: center;
justify-content: space-between;
gap: 1rem;
padding: 10px;
background: var(--header-bg, #fff);
border-bottom: 1px solid #ccc;
}
.header-logo-group {
display: flex;
gap: 1rem;
align-items: center;
flex: 1 1 auto;
min-width: 200px;
}
.logo-img {
max-height: 45px;
height: auto;
width: auto;
object-fit: contain;
pointer-events: unset;
}
.header-badges {
flex-direction: column;
gap: 5px;
align-items: flex-start;
flex: 0 1 auto;
margin-top: auto;
margin-bottom: auto;
}
.badge-img {
height: auto;
max-width: 130px;
margin-top: 3px;
}
.header-tabs {
margin-top: 10px;
display: flex;
flex-wrap: wrap;
gap: 10px;
flex: 2 1 100%;
justify-content: center;
}
.nav-tab {
display: inline-block;
text-decoration: none;
padding: 8px 16px;
border-radius: 20px;
background: linear-gradient(to right, #4a90e2, #357ABD);
color: white;
font-weight: bold;
white-space: nowrap;
transition: background 0.2s ease-in-out, transform 0.2s;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
}
.nav-tab:hover {
background: linear-gradient(to right, #5aa0f2, #4a90e2);
transform: translateY(-2px);
}
.current-tag {
padding-left: 10px;
font-size: 0.9rem;
color: #666;
}
.header-theme-toggle {
flex: 1 1 auto;
align-items: center;
margin-top: 20px;
min-width: 120px;
}
.switch {
position: relative;
display: inline-block;
width: 60px;
height: 30px;
}
.switch input {
display: none;
}
.slider {
position: absolute;
top: 0; left: 0; right: 0; bottom: 0;
background-color: #ccc;
border-radius: 34px;
cursor: pointer;
}
.slider::before {
content: "";
position: absolute;
height: 24px;
width: 24px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #2196F3;
}
input:checked + .slider::before {
transform: translateX(30px);
}
@media (max-width: 768px) {
.header-logo-group,
.header-badges,
.header-theme-toggle {
justify-content: center;
flex: 1 1 100%;
text-align: center;
width: inherit;
}
.logo-img {
max-height: 50px;
pointer-events: unset;
}
.badge-img {
max-width: 100px;
}
.hide_on_mobile {
display: none;
}
.nav-tab {
font-size: 0.9rem;
padding: 6px 12px;
}
.header_button {
white-space: pre;
font-size: 2em;
}
}
.header_button {
white-space: pre;
margin-top: 20px;
margin: 5px;
}
.line_break_anywhere {
line-break: anywhere;
}
.responsive-container {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
gap: 20px;
}
.responsive-container .half {
flex: 1 1 48%;
box-sizing: border-box;
min-width: 500px;
}
.config-section table {
width: 100%;
border-collapse: collapse;
}
@media (max-width: 768px) {
.responsive-container .half {
flex: 1 1 100%;
}
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
.rotate {
animation: spin 2s linear infinite;
display: inline-block;
}
input::placeholder {
font-family: sans-serif;
}
.gridjs-th-content {
overflow: visible !important;
}
.error_text {
color: red;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1em;
font-weight: bold;
color: #333;
border-left: 5px solid #ccc;
padding-left: 0.5em;
}
.no_cursive {
font-style: normal;
}
.caveat {
background-color: #fff8b3;
border: 1px solid #f2d600;
padding: 1em 1em 1em 70px;
position: relative;
font-family: sans-serif;
color: #665500;
margin: 1em 0;
border-radius: 4px;
}
.caveat h1, .caveat h2, .caveat h3, .caveat h4 {
margin-top: 0;
margin-bottom: 0.5em;
font-weight: bold;
}
.caveat::before {
content: "⚠️";
font-size: 50px;
line-height: 1;
position: absolute;
left: 10px;
top: 50%;
transform: translateY(-50%);
pointer-events: none;
user-select: none;
}
.caveat.warning::before { content: "⚠️"; }
.caveat.stop::before { content: "🛑"; }
.caveat.exclamation::before { content: "❗"; }
.caveat.alarm::before { content: "🚨"; }
.caveat.tip::before { content: "💡"; }
.tutorial_icon {
display: inline-block;
font-size: 1.3em;
line-height: 1;
vertical-align: middle;
transform: translateY(-10%);
padding: 0.2em 0;
}
.highlight {
background-color: yellow;
font-weight: bold;
}
#searchResults li {
opacity: 0;
transform: translateY(8px);
animation: fadeInUp 0.3s ease-out forwards;
animation-delay: 0.05s;
list-style: none;
margin-bottom: 5px;
}
@keyframes fadeInUp {
to {
opacity: 1;
transform: translateY(0);
}
}
.search_headline {
font-weight: bold;
margin-top: 1em;
margin-bottom: 0.3em;
color: #444;
}
.search_share_path {
color: black;
display: block ruby;
margin-top: 20px;
}
@media print {
#scads_bar {
display: none !important;
}
}
/*! XP.css v0.2.6 - https: //botoxparty.github.io/XP.css/ */
body{
color: #222
}
.surface{
background: #ece9d8
}
u{
text-decoration: none;
border-bottom: .5px solid #222
}
a{
color: #00f
}
a: focus{
outline: 1px dotted #00f
}
code,code *{
font-family: monospace
}
pre{
display: block;
padding: 12px 8px;
background-color: #000;
color: silver;
font-size: 1rem;
margin: 0;
overflow: scroll;
}
summary: focus{
outline: 1px dotted #000
}
: :-webkit-scrollbar{
width: 16px
}
: :-webkit-scrollbar: horizontal{
height: 17px
}
: :-webkit-scrollbar-track{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='2' height='2' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 0H0v1h1v1h1V1H1V0z' fill='silver'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 0H1v1H0v1h1V1h1V0z' fill='%23fff'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-color: #dfdfdf;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
: :-webkit-scrollbar-button: horizontal: end: increment,: :-webkit-scrollbar-button: horizontal: start: decrement,: :-webkit-scrollbar-button: vertical: end: increment,: :-webkit-scrollbar-button: vertical: start: decrement{
display: block
}
: :-webkit-scrollbar-button: vertical: start{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 6H7v1H6v1H5v1H4v1h7V9h-1V8H9V7H8V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 6H4v1h1v1h1v1h1v1h1V9h1V8h1V7h1V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 4H8v1H7v1H6v1H5v1h1v1h1v1h1v1h1V4z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M7 4H6v7h1v-1h1V9h1V8h1V7H9V6H8V5H7V4z' fill='%23000'/%3E%3C/svg%3E")
}
button{
border: none;
background: #ece9d8;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf;
border-radius: 0;
min-width: 75px;
min-height: 23px;
padding: 0 12px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: inset -1px -1px #fff,inset 1px 1px #0a0a0a,inset -2px -2px #dfdfdf,inset 2px 2px grey
}
button.focused,button: focus{
outline: 1px dotted #000;
outline-offset: -4px
}
label{
display: inline-flex;
align-items: center
}
textarea{
padding: 3px 4px;
border: none;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0
}
textarea: focus{
outline: none
}
select: focus option{
color: #000;
background-color: #fff
}
.vertical-bar{
width: 4px;
height: 20px;
background: silver;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
&: disabled,&: disabled+label{
color: grey;
text-shadow: 1px 1px 0 #fff
}
input[type=radio]+label{
line-height: 13px;
position: relative;
margin-left: 19px
}
input[type=radio]+label: before{
content: "";
position: absolute;
top: 0;
left: -19px;
display: inline-block;
width: 13px;
height: 13px;
margin-right: 6px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='%23fff'/%3E%3C/svg%3E")
}
input[type=radio]: active+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio]: checked+label: after{
content: "";
display: block;
width: 5px;
height: 5px;
top: 5px;
left: -14px;
position: absolute;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=radio][disabled]+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='gray'/%3E%3C/svg%3E")
}
input[type=email],input[type=password]{
padding: 3px 4px;
border: 1px solid #7f9db9;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0;
height: 21px;
line-height: 2
}
input[type=email]: focus,input[type=password]: focus{
outline: none
}
input[type=range]{
-webkit-appearance: none;
width: 100%;
background: transparent
}
input[type=range]: focus{
outline: none
}
input[type=range]: :-webkit-slider-thumb{
-webkit-appearance: none;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-webkit-slider-runnable-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range]: :-moz-range-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
.is-vertical{
display: inline-block;
width: 4px;
height: 150px;
transform: translateY(50%)
}
.is-vertical>input[type=range]{
width: 150px;
height: 4px;
margin: 0 16px 0 10px;
transform-origin: left;
transform: rotate(270deg) translateX(calc(-50% + 8px))
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-webkit-slider-thumb{
transform: translateY(-8px) scaleX(-1)
}
.is-vertical>input[type=range]: :-moz-range-thumb{
transform: translateY(2px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-webkit-slider-thumb{
transform: translateY(-10px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-moz-range-thumb{
transform: translateY(0) scaleX(-1)
}
.window{
font-size: 11px;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #dfdfdf,inset -2px -2px grey,inset 2px 2px #fff;
background: #ece9d8;
padding: 3px
}
.window fieldset{
margin-bottom: 9px
}
.title-bar{
background: #000;
padding: 3px 2px 3px 3px;
display: flex;
justify-content: space-between;
align-items: center
}
.title-bar-text{
font-weight: 700;
color: #fff;
letter-spacing: 0;
margin-right: 24px
}
.title-bar-controls button{
padding: 0;
display: block;
min-width: 16px;
min-height: 14px
}
.title-bar-controls button: focus{
outline: none
}
.window-body{
margin: 8px
}
.window-body pre{
margin: -8px
}
.status-bar{
margin: 0 1px;
display: flex;
gap: 1px
}
.status-bar-field{
box-shadow: inset -1px -1px #dfdfdf,inset 1px 1px grey;
flex-grow: 1;
padding: 2px 3px;
margin: 0
}
ul.tree-view{
display: block;
background: #fff;
padding: 6px;
margin: 0
}
ul.tree-view li{
list-style-type: none;
margin-top: 3px
}
ul.tree-view a{
text-decoration: none;
color: #000
}
ul.tree-view a: focus{
background-color: #2267cb;
color: #fff
}
ul.tree-view ul{
margin-top: 3px;
margin-left: 16px;
padding-left: 16px;
border-left: 1px dotted grey
}
ul.tree-view ul>li{
position: relative
}
ul.tree-view ul>li: before{
content: "";
display: block;
position: absolute;
left: -16px;
top: 6px;
width: 12px;
border-bottom: 1px dotted grey
}
ul.tree-view ul>li: last-child: after{
content: "";
display: block;
position: absolute;
left: -20px;
top: 7px;
bottom: 0;
width: 8px;
background: #fff
}
ul.tree-view ul details>summary: before{
margin-left: -22px;
position: relative;
z-index: 1
}
ul.tree-view details{
margin-top: 0
}
ul.tree-view details>summary: before{
text-align: center;
display: block;
float: left;
content: "+";
border: 1px solid grey;
width: 8px;
height: 9px;
line-height: 9px;
margin-right: 5px;
padding-left: 1px;
background-color: #fff
}
ul.tree-view details[open] summary{
margin-bottom: 0
}
ul.tree-view details[open]>summary: before{
content: "-"
}
fieldset{
border-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='5' height='5' fill='gray' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h5v5H0V2h2v1h1V2H0' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h4v4H0V1h1v2h2V1H0'/%3E%3C/svg%3E") 2;
padding: 10px;
padding-block-start: 8px;
margin: 0
}
legend{
background: #ece9d8
}
menu[role=tablist]{
position: relative;
margin: 0 0 -2px;
text-indent: 0;
list-style-type: none;
display: flex;
padding-left: 3px
}
menu[role=tablist] button{
z-index: 1;
display: block;
color: #222;
text-decoration: none;
min-width: unset
}
menu[role=tablist] button[aria-selected=true]{
padding-bottom: 2px;margin-top: -2px;background-color: #ece9d8;position: relative;z-index: 8;margin-left: -3px;margin-bottom: 1px
}
menu[role=tablist] button: focus{
outline: 1px dotted #222;outline-offset: -4px
}
menu[role=tablist].justified button{
flex-grow: 1;text-align: center
}
[role=tabpanel]{
padding: 14px;clear: both;background: linear-gradient(180deg,#fcfcfe,#f4f3ee);border: 1px solid #919b9c;position: relative;z-index: 2;margin-bottom: 9px
}
: :-webkit-scrollbar{
width: 17px
}
: :-webkit-scrollbar-corner{
background: #dfdfdf
}
: :-webkit-scrollbar-track: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 1' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1'/%3E%3Cpath stroke='%23f3f1ec' d='M1 0h1'/%3E%3Cpath stroke='%23f4f1ec' d='M2 0h1'/%3E%3Cpath stroke='%23f4f3ee' d='M3 0h1'/%3E%3Cpath stroke='%23f5f4ef' d='M4 0h1'/%3E%3Cpath stroke='%23f6f5f0' d='M5 0h1'/%3E%3Cpath stroke='%23f7f7f3' d='M6 0h1'/%3E%3Cpath stroke='%23f9f8f4' d='M7 0h1'/%3E%3Cpath stroke='%23f9f9f7' d='M8 0h1'/%3E%3Cpath stroke='%23fbfbf8' d='M9 0h1'/%3E%3Cpath stroke='%23fbfbf9' d='M10 0h2'/%3E%3Cpath stroke='%23fdfdfa' d='M12 0h1'/%3E%3Cpath stroke='%23fefefb' d='M13 0h3'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-track: horizontal{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 1 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1M0 16h1'/%3E%3Cpath stroke='%23f3f1ec' d='M0 1h1'/%3E%3Cpath stroke='%23f4f1ec' d='M0 2h1'/%3E%3Cpath stroke='%23f4f3ee' d='M0 3h1'/%3E%3Cpath stroke='%23f5f4ef' d='M0 4h1'/%3E%3Cpath stroke='%23f6f5f0' d='M0 5h1'/%3E%3Cpath stroke='%23f7f7f3' d='M0 6h1'/%3E%3Cpath stroke='%23f9f8f4' d='M0 7h1'/%3E%3Cpath stroke='%23f9f9f7' d='M0 8h1'/%3E%3Cpath stroke='%23fbfbf8' d='M0 9h1'/%3E%3Cpath stroke='%23fbfbf9' d='M0 10h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 12h1'/%3E%3Cpath stroke='%23fefefb' d='M0 13h1m-1 1h1m-1 1h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-position: 50%;
background-repeat: no-repeat;
background-color: #c8d6fb;
background-size: 7px;
border: 1px solid #fff;
border-radius: 2px;
box-shadow: inset -3px 0 #bad1fc,inset 1px 1px #b7caf5
}
: :-webkit-scrollbar-thumb: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 7 8' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h6M0 2h6M0 4h6M0 6h6'/%3E%3Cpath stroke='%23bad1fc' d='M6 0h1M6 2h1M6 4h1'/%3E%3Cpath stroke='%23c8d6fb' d='M0 1h1M0 3h1M0 5h1M0 7h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h6M1 3h6M1 5h6M1 7h6'/%3E%3Cpath stroke='%23bad3fc' d='M6 6h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb: horizontal{
background-size: 8px;background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 8 7' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h1m1 0h1m1 0h1m1 0h1M0 1h1m1 0h1m1 0h1m1 0h1M0 2h1m1 0h1m1 0h1m1 0h1M0 3h1m1 0h1m1 0h1m1 0h1M0 4h1m1 0h1m1 0h1m1 0h1M0 5h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23c8d6fb' d='M1 0h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h1m1 0h1m1 0h1m1 0h1M1 2h1m1 0h1m1 0h1m1 0h1M1 3h1m1 0h1m1 0h1m1 0h1M1 4h1m1 0h1m1 0h1m1 0h1M1 5h1m1 0h1m1 0h1m1 0h1M1 6h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23bad1fc' d='M0 6h1m1 0h1'/%3E%3Cpath stroke='%23bad3fc' d='M4 6h1m1 0h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: start{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h1m1 0h1'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M5 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h1m3 0h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h2M3 8h2'/%3E%3Cpath stroke='%234d6185' d='M8 5h1M7 6h3M6 7h5M5 8h3m1 0h3M4 9h3m3 0h3m-8 1h1m5 0h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1m-2 1h1m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23cad8fd' d='M4 7h2'/%3E%3Cpath stroke='%23b6cefb' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23c1d3fb' d='M8 8h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M8 9h1m-1 1h1m-3 1h2'/%3E%3Cpath stroke='%23bdd3fb' d='M9 9h1m-2 3h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M7 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h1m1 0h1m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c1d5fb' d='M8 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M6 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h3'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1M8 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h3M3 8h2'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M9 6h2m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%234d6185' d='M5 6h1m5 0h1M4 7h3m3 0h3M5 8h3m1 0h3M6 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 7h2M8 8h1'/%3E%3Cpath stroke='%23b6cefb' d='M9 7h1m2 1h1m-2 1h2'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M6 11h2'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23bdd3fb' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1M1 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 4h1M5 5h2M4 7h1M2 8h1'/%3E%3Cpath stroke='%234d6185' d='M8 4h1M7 5h3M6 6h3M5 7h3M4 8h3M5 9h3m-2 1h3m-2 1h3m-2 1h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M2 11h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M9 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23c8d6fb' d='M5 6h1M2 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1M8 7h3m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 8h2'/%3E%3Cpath stroke='%23b6cefb' d='M9 8h3M9 9h4'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 1h1m-1 4h1'/%3E%3Cpath stroke='%23bdd3fb' d='M8 9h1m-2 3h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-5 4h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%239fb5d2' d='M16 10h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M5 11h2'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%234d6185' d='M7 4h1M6 5h3M7 6h3M8 7h3M9 8h3M8 9h3m-4 1h3m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23c8d6fb' d='M8 4h1M5 6h2'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1M2 9h5'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M9 5h1m-8 6h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23c9d8fc' d='M5 5h1M4 7h3M2 8h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M7 7h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1m0 1h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h3'/%3E%3Cpath stroke='%23c1d3fb' d='M6 8h3'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 5h1'/%3E%3Cpath stroke='%23b4c8f6' d='M1 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M7 9h1m-3 2h1'/%3E%3Cpath stroke='%23b6cefb' d='M11 9h2'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23bbd3fd' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b6cdfb' d='M9 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
.window{
box-shadow: inset -1px -1px #00138c,inset 1px 1px #0831d9,inset -2px -2px #001ea0,inset 2px 2px #166aee,inset -3px -3px #003bda,inset 3px 3px #0855dd;
border-top-left-radius: 8px;
border-top-right-radius: 8px;
padding: 0 0 3px;
-webkit-font-smoothing: antialiased
}
.title-bar{
background: linear-gradient(180deg,#0997ff,#0053ee 8%,#0050ee 40%,#06f 88%,#06f 93%,#005bff 95%,#003dd7 96%,#003dd7);
padding: 3px 5px 3px 3px;
border-top: 1px solid #0831d9;
border-left: 1px solid #0831d9;
border-right: 1px solid #001ea0;
border-top-left-radius: 8px;
border-top-right-radius: 7px;
font-size: 13px;
text-shadow: 1px 1px #0f1089;
height: 21px
}
.title-bar-text{
padding-left: 3px
}
.title-bar-controls{
display: flex
}
.title-bar-controls button{
min-width: 21px;
min-height: 21px;
margin-left: 2px;
background-repeat: no-repeat;
background-position: 50%;
box-shadow: none;
background-color: #0050ee;
transition: background .1s;
border: none
}
.title-bar-controls button: active,.title-bar-controls button: focus,.title-bar-controls button: hover{
box-shadow: none!important
}
.title-bar-controls button[aria-label=Minimize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%235985f7' d='M7 5h1'/%3E%3Cpath stroke='%235381f6' d='M8 5h1M6 9h1'/%3E%3Cpath stroke='%234d7bf6' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%234677f5' d='M10 5h1'/%3E%3Cpath stroke='%234173f5' d='M11 5h1'/%3E%3Cpath stroke='%233a6ff4' d='M12 5h1'/%3E%3Cpath stroke='%23386ef4' d='M13 5h1'/%3E%3Cpath stroke='%23346cf4' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%235480f7' d='M7 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%233a6ff5' d='M11 6h1'/%3E%3Cpath stroke='%23346df4' d='M12 6h1'/%3E%3Cpath stroke='%23306bf4' d='M13 6h1'/%3E%3Cpath stroke='%232d69f4' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23507ef6' d='M7 7h1'/%3E%3Cpath stroke='%234a79f6' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236694eb' d='M19 0h1'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1m-6 6h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23427ff6' d='M9 13h1'/%3E%3Cpath stroke='%233c7ff6' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23366ef4' d='M2 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%236699f3' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23afc2ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h1'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1m-5 6h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M6 13h1'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23539fff' d='M9 13h1'/%3E%3Cpath stroke='%234fa4ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-7 7h1m-3 1h1'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m-7 7h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-1 1h1m-1 1h1M7 12h1m-2 1h1m-3 1h1m1 0h1m-3 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 5h11M5 6h11M5 7h11M5 8h1m9 0h1M5 9h1m9 0h1M5 10h1m9 0h1M5 11h1m9 0h1M5 12h1m9 0h1M5 13h1m9 0h1M5 14h1m9 0h1M5 15h11'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%23004fb4' d='M16 7h2m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1'/%3E%3Cpath stroke='%230049ae' d='M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M10 8h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 2h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h1m-6 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230051b6' d='M18 9h1m0 2h1m-1 1h1M8 14h1m10 3h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 1h1m-1 3h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h1m-4 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230049ac' d='M4 11h1m-2 1h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h1m-3 1h1m4 0h1m-7 2h1m0 3h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-1 2h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 3h1'/%3E%3Cpath stroke='%23005ec3' d='M13 13h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230060c5' d='M14 14h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23b2c3ee' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 5h1M8 5h1M6 9h1M9 5h1M8 6h1M10 5h1M11 5h1M12 5h1M13 5h1M14 5h1M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%23FFF' d='M7 6h1M8 6h1M9 6h1M10 6h1M11 6h1M12 6h1M13 6h1M14 6h1M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23FFF' d='M7 7h1'/%3E%3Cpath stroke='%234375f5' d='M8 7h1M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%23FFF' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 8h1'/%3E%3Cpath stroke='%234174f5' d='M8 8h1M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%23FFF' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%23FFF' d='M5 9h1M6 9h1M7 9h1M8 9h1M9 9h1M10 9h1M11 9h1M12 9h1M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%23FFF' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1M4 10h1'/%3E%3Cpath stroke='%23FFF' d='M5 10h1M6 10h1M7 10h1M8 10h1M9 10h1M10 10h1M11 10h1M12 10h1M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%23FFF' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%23FFF' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232673f7' d='M12 11h1'/%3E%3Cpath stroke='%23FFF' d='M13 11h1M14 11h1M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%23FFF' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232677f7' d='M12 12h1'/%3E%3Cpath stroke='%23FFF' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1M6 13h1M7 13h1'/%3E%3Cpath stroke='%23437ff6' d='M8 13h1'/%3E%3Cpath stroke='%232d7df7' d='M9 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M10 13h1M11 13h1'/%3E%3Cpath stroke='%232679f8' d='M12 13h1'/%3E%3Cpath stroke='%23FFF' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1M6 14h1'/%3E%3Cpath stroke='%232d7df7' d='M7 14h1M8 14h1M9 14h1M10 14h1M11 14h1'/%3E%3Cpath stroke='%23257af8' d='M12 14h1'/%3E%3Cpath stroke='%23FFF' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23FFF' d='M11 15h1M12 15h1M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%23FFF' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23548DFF' d='M5 13h1'/%3E%3Cpath stroke='%235991FF' d='M6 13h1'/%3E%3Cpath stroke='%235792FF' d='M7 13h1'/%3E%3Cpath stroke='%235496FF' d='M8 13h1'/%3E%3Cpath stroke='%23539CFF' d='M9 13h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 13h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23548DFF' d='M5 14h1'/%3E%3Cpath stroke='%235991FF' d='M6 14h1'/%3E%3Cpath stroke='%235792FF' d='M7 14h1'/%3E%3Cpath stroke='%235496FF' d='M8 14h1'/%3E%3Cpath stroke='%23539CFF' d='M9 14h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 14h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M12 12h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7M5 13h1'/%3E%3Cpath stroke='%23004BB0' d='M6 13h1'/%3E%3Cpath stroke='%23004DB1' d='M7 13h1'/%3E%3Cpath stroke='%23004FB4' d='M8 13h1'/%3E%3Cpath stroke='%230052B7' d='M9 13h1'/%3E%3Cpath stroke='%230055B9' d='M10 13h1'/%3E%3Cpath stroke='%230157BC' d='M11 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m1 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23004BB0' d='M6 14h1'/%3E%3Cpath stroke='%23004DB1' d='M7 14h1'/%3E%3Cpath stroke='%23004FB4' d='M8 14h1'/%3E%3Cpath stroke='%230052B7' d='M9 14h1'/%3E%3Cpath stroke='%230055B9' d='M10 14h1'/%3E%3Cpath stroke='%230157BC' d='M11 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 14h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M12 15h1M13 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1M5 14h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%2392aff9' d='M7 4h1'/%3E%3Cpath stroke='%23e1e9fd' d='M8 4h1'/%3E%3Cpath stroke='%23e0e8fd' d='M12 4h1'/%3E%3Cpath stroke='%2381a4f8' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%238eacf9' d='M6 5h1'/%3E%3Cpath stroke='%23f3f6fe' d='M7 5h1'/%3E%3Cpath stroke='%23d8e2fd' d='M9 5h1'/%3E%3Cpath stroke='%23cfdcfc' d='M10 5h1'/%3E%3Cpath stroke='%23ecf1fe' d='M11 5h1'/%3E%3Cpath stroke='%23eff4fe' d='M13 5h1'/%3E%3Cpath stroke='%23749af7' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%23d3dffd' d='M6 6h1'/%3E%3Cpath stroke='%23b2c6fb' d='M8 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%234a7bf6' d='M11 6h1'/%3E%3Cpath stroke='%23c8d7fc' d='M12 6h1'/%3E%3Cpath stroke='%23c6d6fc' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%23e6edfe' d='M6 7h1'/%3E%3Cpath stroke='%23e5ecfe' d='M7 7h1'/%3E%3Cpath stroke='%235a85f7' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%236c97f8' d='M12 7h1'/%3E%3Cpath stroke='%23cfddfd' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%2385a9f9' d='M12 8h1'/%3E%3Cpath stroke='%23cbdbfd' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235986f7' d='M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%2396b6fa' d='M11 9h1'/%3E%3Cpath stroke='%23f2f6fe' d='M12 9h1'/%3E%3Cpath stroke='%2393b6fb' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234e82f7' d='M9 10h1'/%3E%3Cpath stroke='%23cadafc' d='M10 10h1'/%3E%3Cpath stroke='%23a0c0fb' d='M13 10h1'/%3E%3Cpath stroke='%232a72f6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23bcd1fc' d='M9 11h1'/%3E%3Cpath stroke='%23dde8fd' d='M11 11h1'/%3E%3Cpath stroke='%235f97f8' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23dfe9fd' d='M9 12h1'/%3E%3Cpath stroke='%234687f7' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%235081f6' d='M5 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23d2e0fd' d='M9 13h1'/%3E%3Cpath stroke='%23edf3fe' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23467af5' d='M5 15h1'/%3E%3Cpath stroke='%23457af6' d='M6 15h1'/%3E%3Cpath stroke='%23437bf6' d='M7 15h1'/%3E%3Cpath stroke='%23417cf6' d='M8 15h1'/%3E%3Cpath stroke='%23cbdcfd' d='M9 15h1'/%3E%3Cpath stroke='%23327df7' d='M11 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%23f5f8fe' d='M9 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ee' d='M1 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b1ed' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m2 5h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2393b0ed' d='M20 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1m7 1h1'/%3E%3Cpath stroke='%239bbdff' d='M7 4h1'/%3E%3Cpath stroke='%23e3edff' d='M8 4h1'/%3E%3Cpath stroke='%23e1ebff' d='M12 4h1'/%3E%3Cpath stroke='%2387afff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1m-6 9h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%239bf' d='M6 5h1'/%3E%3Cpath stroke='%23f4f7ff' d='M7 5h1'/%3E%3Cpath stroke='%23dbe7ff' d='M9 5h1'/%3E%3Cpath stroke='%23d2e1ff' d='M10 5h1'/%3E%3Cpath stroke='%23edf3ff' d='M11 5h1'/%3E%3Cpath stroke='%23f0f5ff' d='M13 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%23548dff' d='M1 6h1m2 7h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%23d8e5ff' d='M6 6h1'/%3E%3Cpath stroke='%23b9d0ff' d='M8 6h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%23538dff' d='M11 6h1'/%3E%3Cpath stroke='%23cbdcff' d='M12 6h1'/%3E%3Cpath stroke='%23c9dbff' d='M14 6h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23e8f0ff' d='M6 7h1'/%3E%3Cpath stroke='%23e7efff' d='M7 7h1'/%3E%3Cpath stroke='%23679aff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%2374a5ff' d='M12 7h1'/%3E%3Cpath stroke='%23d1e1ff' d='M14 7h1'/%3E%3Cpath stroke='%23317aff' d='M15 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%238cb7ff' d='M12 8h1'/%3E%3Cpath stroke='%23cde0ff' d='M14 8h1'/%3E%3Cpath stroke='%232f7fff' d='M15 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%239dc5ff' d='M11 9h1'/%3E%3Cpath stroke='%23f3f8ff' d='M12 9h1'/%3E%3Cpath stroke='%239ac5ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%236297ff' d='M5 10h1'/%3E%3Cpath stroke='%235f95ff' d='M6 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235c9aff' d='M9 10h1'/%3E%3Cpath stroke='%23cee2ff' d='M10 10h1'/%3E%3Cpath stroke='%23a7d0ff' d='M13 10h1'/%3E%3Cpath stroke='%233897ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%23c2dbff' d='M9 11h1'/%3E%3Cpath stroke='%23e0efff' d='M11 11h1'/%3E%3Cpath stroke='%236eb6ff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23e2eeff' d='M9 12h1'/%3E%3Cpath stroke='%2359adff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M5 13h2'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23d6e8ff' d='M9 13h1'/%3E%3Cpath stroke='%23eef6ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528cff' d='M5 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%234d89ff' d='M6 15h1'/%3E%3Cpath stroke='%234c8cff' d='M7 15h1'/%3E%3Cpath stroke='%234d94ff' d='M8 15h1'/%3E%3Cpath stroke='%23cfe4ff' d='M9 15h1'/%3E%3Cpath stroke='%2347aaff' d='M11 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%23f6faff' d='M9 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%2393b2f1' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bdef' d='M1 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h1m5 0h9'/%3E%3Cpath stroke='%23a7bdee' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23a7bcee' d='M20 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230a4aa5' d='M7 4h1'/%3E%3Cpath stroke='%234e7ec0' d='M8 4h1'/%3E%3Cpath stroke='%23789ed1' d='M9 4h1'/%3E%3Cpath stroke='%23789ed3' d='M10 4h1'/%3E%3Cpath stroke='%23789fd4' d='M11 4h1m0 1h1'/%3E%3Cpath stroke='%235184c7' d='M12 4h1'/%3E%3Cpath stroke='%230b54b3' d='M13 4h1m0 1h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-2 1h2M7 12h1m-2 1h1m-3 1h3m-3 1h2m-2 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230949a4' d='M6 5h1'/%3E%3Cpath stroke='%23668ec8' d='M7 5h1'/%3E%3Cpath stroke='%23789dd1' d='M8 5h1M7 6h1'/%3E%3Cpath stroke='%23497cc1' d='M9 5h1'/%3E%3Cpath stroke='%234178c0' d='M10 5h1'/%3E%3Cpath stroke='%23608dcb' d='M11 5h1'/%3E%3Cpath stroke='%236693cf' d='M13 5h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230042a1' d='M5 6h1'/%3E%3Cpath stroke='%234073bb' d='M6 6h1'/%3E%3Cpath stroke='%232661b6' d='M8 6h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1'/%3E%3Cpath stroke='%230049ad' d='M10 6h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M11 6h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%234077c4' d='M12 6h1'/%3E%3Cpath stroke='%2378a1d6' d='M13 6h1'/%3E%3Cpath stroke='%234079c4' d='M14 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%235684c6' d='M6 7h1'/%3E%3Cpath stroke='%235686c8' d='M7 7h1'/%3E%3Cpath stroke='%230049ac' d='M8 7h1m-4 3h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230a53b5' d='M12 7h1'/%3E%3Cpath stroke='%2378a1d7' d='M13 7h1'/%3E%3Cpath stroke='%234881c8' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m0 1h1m0 1h1M8 12h1m-2 3h1m0 3h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230046a8' d='M5 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%23145db9' d='M12 8h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 8h1'/%3E%3Cpath stroke='%23457fc8' d='M14 8h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1M8 14h1m-1 1h1m10 2h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%230050b5' d='M16 8h2m1 2h1M8 13h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230047a8' d='M4 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1m-2 1h1'/%3E%3Cpath stroke='%231b62bd' d='M11 9h1'/%3E%3Cpath stroke='%236899d4' d='M12 9h1'/%3E%3Cpath stroke='%2378a4d9' d='M13 9h1'/%3E%3Cpath stroke='%231f68c1' d='M14 9h1'/%3E%3Cpath stroke='%230054b9' d='M15 9h1m-7 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230053b8' d='M16 9h2m0 1h1m0 4h1m-1 2h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230048ab' d='M4 10h1'/%3E%3Cpath stroke='%23407cc7' d='M10 10h1'/%3E%3Cpath stroke='%2378a3d9' d='M11 10h1m-2 1h1'/%3E%3Cpath stroke='%2378a5da' d='M12 10h1m-3 2h1'/%3E%3Cpath stroke='%23256ec4' d='M13 10h1'/%3E%3Cpath stroke='%230057bb' d='M14 10h1'/%3E%3Cpath stroke='%230057bc' d='M15 10h1m-5 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%230056bb' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%230055ba' d='M17 10h1m0 1h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%23004cb0' d='M7 11h1m-4 2h1'/%3E%3Cpath stroke='%233272c4' d='M9 11h1'/%3E%3Cpath stroke='%23538cd0' d='M11 11h1'/%3E%3Cpath stroke='%23065cbf' d='M12 11h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%230058bd' d='M17 11h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%23538ace' d='M9 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 2h1m-1 1h1'/%3E%3Cpath stroke='%234581cb' d='M9 13h1'/%3E%3Cpath stroke='%236297d5' d='M10 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230052b7' d='M19 13h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23407fca' d='M9 15h1'/%3E%3Cpath stroke='%2378a6dc' d='M10 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%236c9bd5' d='M9 16h1'/%3E%3Cpath stroke='%2378a6db' d='M10 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M4 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M5 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M6 20h1'/%3E%3Cpath stroke='%23a7bdf0' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23fae1dc' d='M1 1h1'/%3E%3Cpath stroke='%23eb8b73' d='M2 1h1'/%3E%3Cpath stroke='%23e97b60' d='M3 1h1'/%3E%3Cpath stroke='%23e77155' d='M4 1h1'/%3E%3Cpath stroke='%23e66a4d' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23e56648' d='M6 1h1'/%3E%3Cpath stroke='%23e46142' d='M7 1h1'/%3E%3Cpath stroke='%23e46344' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%23e45f3e' d='M9 1h2'/%3E%3Cpath stroke='%23e35c3b' d='M11 1h2'/%3E%3Cpath stroke='%23e25633' d='M13 1h2'/%3E%3Cpath stroke='%23e25330' d='M15 1h1'/%3E%3Cpath stroke='%23e04d28' d='M16 1h1'/%3E%3Cpath stroke='%23dc451f' d='M17 1h1'/%3E%3Cpath stroke='%23d05334' d='M18 1h1'/%3E%3Cpath stroke='%23efd8d2' d='M19 1h1'/%3E%3Cpath stroke='%23ec8d76' d='M1 2h1'/%3E%3Cpath stroke='%23efa390' d='M2 2h1'/%3E%3Cpath stroke='%23f0a694' d='M3 2h1'/%3E%3Cpath stroke='%23ee9a85' d='M4 2h1'/%3E%3Cpath stroke='%23eb8d75' d='M5 2h1'/%3E%3Cpath stroke='%23ea876e' d='M6 2h1'/%3E%3Cpath stroke='%23ea8168' d='M7 2h1'/%3E%3Cpath stroke='%23e97f66' d='M8 2h1'/%3E%3Cpath stroke='%23e97c62' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%23e8795f' d='M10 2h1'/%3E%3Cpath stroke='%23e8795e' d='M11 2h1'/%3E%3Cpath stroke='%23e87559' d='M12 2h1'/%3E%3Cpath stroke='%23e77256' d='M13 2h1'/%3E%3Cpath stroke='%23e66e50' d='M14 2h1'/%3E%3Cpath stroke='%23e56849' d='M15 2h1'/%3E%3Cpath stroke='%23e4603f' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23e05532' d='M17 2h1'/%3E%3Cpath stroke='%23d04623' d='M18 2h1'/%3E%3Cpath stroke='%23b64b30' d='M19 2h1'/%3E%3Cpath stroke='%23e97f65' d='M1 3h1'/%3E%3Cpath stroke='%23f0a997' d='M2 3h1'/%3E%3Cpath stroke='%23f1ac9a' d='M3 3h1'/%3E%3Cpath stroke='%23ee9d89' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%23ec917a' d='M5 3h1'/%3E%3Cpath stroke='%23eb8b72' d='M6 3h1'/%3E%3Cpath stroke='%23ea856d' d='M7 3h1'/%3E%3Cpath stroke='%23e98168' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23e87e65' d='M9 3h1'/%3E%3Cpath stroke='%23e97b61' d='M11 3h1'/%3E%3Cpath stroke='%23e8775d' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%23e87459' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%23e66f52' d='M14 3h1'/%3E%3Cpath stroke='%23e56a4c' d='M15 3h1'/%3E%3Cpath stroke='%23e46343' d='M16 3h1'/%3E%3Cpath stroke='%23e15937' d='M17 3h1'/%3E%3Cpath stroke='%23d24a28' d='M18 3h1'/%3E%3Cpath stroke='%23aa3315' d='M19 3h1'/%3E%3Cpath stroke='%23e87458' d='M1 4h1'/%3E%3Cpath stroke='%23efa18d' d='M3 4h1'/%3E%3Cpath stroke='%23ed957f' d='M4 4h1'/%3E%3Cpath stroke='%23eb8a71' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%23ea836a' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23e97d64' d='M7 4h1'/%3E%3Cpath stroke='%23e8785e' d='M8 4h1'/%3E%3Cpath stroke='%23e77359' d='M9 4h1'/%3E%3Cpath stroke='%23e76f54' d='M10 4h1'/%3E%3Cpath stroke='%23e66d51' d='M11 4h1'/%3E%3Cpath stroke='%23e5684b' d='M12 4h1'/%3E%3Cpath stroke='%23e5684a' d='M13 4h1'/%3E%3Cpath stroke='%23e35c3a' d='M16 4h1m-7 4h1m-8 7h1'/%3E%3Cpath stroke='%23e05634' d='M17 4h1'/%3E%3Cpath stroke='%23d24c2a' d='M18 4h1'/%3E%3Cpath stroke='%23ac3618' d='M19 4h1'/%3E%3Cpath stroke='%23e76f52' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23ec9179' d='M2 5h1'/%3E%3Cpath stroke='%23ec937c' d='M3 5h1'/%3E%3Cpath stroke='%23f7ccc2' d='M5 5h1'/%3E%3Cpath stroke='%23e77259' d='M7 5h1M5 9h1'/%3E%3Cpath stroke='%23e76d53' d='M8 5h1'/%3E%3Cpath stroke='%23e5684d' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%23e46446' d='M10 5h1'/%3E%3Cpath stroke='%23e45f41' d='M11 5h1'/%3E%3Cpath stroke='%23e35b3a' d='M12 5h1m-2 1h1'/%3E%3Cpath stroke='%23e35938' d='M13 5h1'/%3E%3Cpath stroke='%23f3bbad' d='M15 5h1'/%3E%3Cpath stroke='%23e25531' d='M16 5h1'/%3E%3Cpath stroke='%23df5330' d='M17 5h1'/%3E%3Cpath stroke='%23d34e2c' d='M18 5h1'/%3E%3Cpath stroke='%23ad3a1d' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%23eb876e' d='M2 6h1'/%3E%3Cpath stroke='%23eb8a70' d='M3 6h1'/%3E%3Cpath stroke='%23e46447' d='M9 6h1'/%3E%3Cpath stroke='%23e45f40' d='M10 6h1'/%3E%3Cpath stroke='%23e25634' d='M12 6h1'/%3E%3Cpath stroke='%23e2522d' d='M16 6h1'/%3E%3Cpath stroke='%23df522e' d='M17 6h1'/%3E%3Cpath stroke='%23d34d2c' d='M18 6h1'/%3E%3Cpath stroke='%23e56546' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23e97e65' d='M4 7h1'/%3E%3Cpath stroke='%23e8775e' d='M5 7h1'/%3E%3Cpath stroke='%23e46143' d='M9 7h1'/%3E%3Cpath stroke='%23e45d3d' d='M10 7h1'/%3E%3Cpath stroke='%23e35836' d='M11 7h1'/%3E%3Cpath stroke='%23e24e27' d='M15 7h1'/%3E%3Cpath stroke='%23e2502a' d='M16 7h1'/%3E%3Cpath stroke='%23e0512c' d='M17 7h1'/%3E%3Cpath stroke='%23d34d2a' d='M18 7h1'/%3E%3Cpath stroke='%23ad391c' d='M19 7h1'/%3E%3Cpath stroke='%23e87a60' d='M2 8h1m1 0h1'/%3E%3Cpath stroke='%23e87c62' d='M3 8h1'/%3E%3Cpath stroke='%23e8745b' d='M5 8h1'/%3E%3Cpath stroke='%23e76e54' d='M6 8h1'/%3E%3Cpath stroke='%23e24d24' d='M14 8h1'/%3E%3Cpath stroke='%23e24b22' d='M15 8h1'/%3E%3Cpath stroke='%23e24d25' d='M16 8h1'/%3E%3Cpath stroke='%23e05029' d='M17 8h1'/%3E%3Cpath stroke='%23d44c29' d='M18 8h1'/%3E%3Cpath stroke='%23ae391b' d='M19 8h1'/%3E%3Cpath stroke='%23e35d3c' d='M1 9h1'/%3E%3Cpath stroke='%23e8765d' d='M4 9h1'/%3E%3Cpath stroke='%23e66f53' d='M6 9h1'/%3E%3Cpath stroke='%23e56b4e' d='M7 9h1'/%3E%3Cpath stroke='%23e45127' d='M13 9h1'/%3E%3Cpath stroke='%23e44f23' d='M14 9h1'/%3E%3Cpath stroke='%23e34c20' d='M15 9h1'/%3E%3Cpath stroke='%23e34d22' d='M16 9h1'/%3E%3Cpath stroke='%23e14f25' d='M17 9h1'/%3E%3Cpath stroke='%23d54a25' d='M18 9h1'/%3E%3Cpath stroke='%23af3719' d='M19 9h1'/%3E%3Cpath stroke='%23e35937' d='M1 10h1'/%3E%3Cpath stroke='%23e76d51' d='M2 10h1'/%3E%3Cpath stroke='%23e87257' d='M3 10h1'/%3E%3Cpath stroke='%23e87359' d='M4 10h1'/%3E%3Cpath stroke='%23e77157' d='M5 10h1'/%3E%3Cpath stroke='%23e66e52' d='M6 10h1'/%3E%3Cpath stroke='%23e56747' d='M8 10h1'/%3E%3Cpath stroke='%23e5572c' d='M12 10h1'/%3E%3Cpath stroke='%23e55326' d='M13 10h1'/%3E%3Cpath stroke='%23e55022' d='M14 10h1'/%3E%3Cpath stroke='%23e54d1e' d='M15 10h1'/%3E%3Cpath stroke='%23e54d1f' d='M16 10h1'/%3E%3Cpath stroke='%23e24e21' d='M17 10h1'/%3E%3Cpath stroke='%23d64921' d='M18 10h1'/%3E%3Cpath stroke='%23af3516' d='M19 10h1'/%3E%3Cpath stroke='%23e25432' d='M1 11h1'/%3E%3Cpath stroke='%23e5694b' d='M2 11h1'/%3E%3Cpath stroke='%23e77054' d='M3 11h1'/%3E%3Cpath stroke='%23e77156' d='M4 11h1'/%3E%3Cpath stroke='%23e87055' d='M5 11h1'/%3E%3Cpath stroke='%23e66c4d' d='M7 11h1'/%3E%3Cpath stroke='%23e75526' d='M13 11h1'/%3E%3Cpath stroke='%23e75221' d='M14 11h1'/%3E%3Cpath stroke='%23e64e1c' d='M15 11h1'/%3E%3Cpath stroke='%23e64d1c' d='M16 11h1'/%3E%3Cpath stroke='%23e34c1c' d='M17 11h1'/%3E%3Cpath stroke='%23d6461c' d='M18 11h1'/%3E%3Cpath stroke='%23b03312' d='M19 11h1'/%3E%3Cpath stroke='%23e14f2b' d='M1 12h1'/%3E%3Cpath stroke='%23e66b4e' d='M3 12h1'/%3E%3Cpath stroke='%23e76f53' d='M5 12h1'/%3E%3Cpath stroke='%23e66e51' d='M6 12h1'/%3E%3Cpath stroke='%23e7653d' d='M10 12h1'/%3E%3Cpath stroke='%23fef5f1' d='M13 12h1'/%3E%3Cpath stroke='%23e85421' d='M14 12h1'/%3E%3Cpath stroke='%23e8501b' d='M15 12h1'/%3E%3Cpath stroke='%23e74d18' d='M16 12h1'/%3E%3Cpath stroke='%23e44a18' d='M17 12h1'/%3E%3Cpath stroke='%23d74216' d='M18 12h1'/%3E%3Cpath stroke='%23b2310f' d='M19 12h1'/%3E%3Cpath stroke='%23e04b25' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23e35e3d' d='M2 13h1'/%3E%3Cpath stroke='%23e56748' d='M3 13h1'/%3E%3Cpath stroke='%23e66c4e' d='M4 13h1'/%3E%3Cpath stroke='%23e66d50' d='M5 13h1'/%3E%3Cpath stroke='%23e76842' d='M9 13h1'/%3E%3Cpath stroke='%23e7653c' d='M10 13h1'/%3E%3Cpath stroke='%23e86236' d='M11 13h1'/%3E%3Cpath stroke='%23e95019' d='M15 13h1m-2 3h1'/%3E%3Cpath stroke='%23e84c16' d='M16 13h1'/%3E%3Cpath stroke='%23e44713' d='M17 13h1'/%3E%3Cpath stroke='%23d83f10' d='M18 13h1'/%3E%3Cpath stroke='%23b12d0a' d='M19 13h1'/%3E%3Cpath stroke='%23df451e' d='M1 14h1'/%3E%3Cpath stroke='%23e25836' d='M2 14h1'/%3E%3Cpath stroke='%23e46242' d='M3 14h1m0 1h1'/%3E%3Cpath stroke='%23e56749' d='M4 14h1'/%3E%3Cpath stroke='%23e66845' d='M8 14h1'/%3E%3Cpath stroke='%23e76741' d='M9 14h1'/%3E%3Cpath stroke='%23e7643b' d='M10 14h1'/%3E%3Cpath stroke='%23e86235' d='M11 14h1'/%3E%3Cpath stroke='%23ea5e2d' d='M12 14h1'/%3E%3Cpath stroke='%23e94a11' d='M16 14h1m-2 2h1'/%3E%3Cpath stroke='%23e6440d' d='M17 14h1'/%3E%3Cpath stroke='%23d73b0b' d='M18 14h1'/%3E%3Cpath stroke='%23b12b06' d='M19 14h1'/%3E%3Cpath stroke='%23de4018' d='M1 15h1'/%3E%3Cpath stroke='%23e1512e' d='M2 15h1'/%3E%3Cpath stroke='%23f5c1b5' d='M5 15h1'/%3E%3Cpath stroke='%23e66543' d='M7 15h1'/%3E%3Cpath stroke='%23e66541' d='M8 15h1'/%3E%3Cpath stroke='%23e6643d' d='M9 15h1'/%3E%3Cpath stroke='%23e76238' d='M10 15h1'/%3E%3Cpath stroke='%23e86032' d='M11 15h1'/%3E%3Cpath stroke='%23e95c2a' d='M12 15h1'/%3E%3Cpath stroke='%23ea5924' d='M13 15h1'/%3E%3Cpath stroke='%23f7b8a1' d='M15 15h1'/%3E%3Cpath stroke='%23e9480e' d='M16 15h1'/%3E%3Cpath stroke='%23e54009' d='M17 15h1'/%3E%3Cpath stroke='%23d73605' d='M18 15h1'/%3E%3Cpath stroke='%23b02702' d='M19 15h1'/%3E%3Cpath stroke='%23dd3c14' d='M1 16h1'/%3E%3Cpath stroke='%23e15431' d='M3 16h1'/%3E%3Cpath stroke='%23e35b39' d='M4 16h1'/%3E%3Cpath stroke='%23e45e3d' d='M5 16h1'/%3E%3Cpath stroke='%23e45f3d' d='M6 16h1'/%3E%3Cpath stroke='%23e45e3b' d='M7 16h1'/%3E%3Cpath stroke='%23e55e39' d='M8 16h1'/%3E%3Cpath stroke='%23e55e37' d='M9 16h1'/%3E%3Cpath stroke='%23e65d32' d='M10 16h1'/%3E%3Cpath stroke='%23e75b2c' d='M11 16h1'/%3E%3Cpath stroke='%23e85725' d='M12 16h1'/%3E%3Cpath stroke='%23e9541f' d='M13 16h1'/%3E%3Cpath stroke='%23e8440b' d='M16 16h1'/%3E%3Cpath stroke='%23e43d05' d='M17 16h1'/%3E%3Cpath stroke='%23d63302' d='M18 16h1'/%3E%3Cpath stroke='%23af2601' d='M19 16h1'/%3E%3Cpath stroke='%23d8370e' d='M1 17h1'/%3E%3Cpath stroke='%23db431c' d='M2 17h1'/%3E%3Cpath stroke='%23dd4c28' d='M3 17h1'/%3E%3Cpath stroke='%23de522f' d='M4 17h1'/%3E%3Cpath stroke='%23df5533' d='M5 17h1'/%3E%3Cpath stroke='%23e05734' d='M6 17h1'/%3E%3Cpath stroke='%23e05531' d='M7 17h1'/%3E%3Cpath stroke='%23e05631' d='M8 17h1'/%3E%3Cpath stroke='%23e1562e' d='M9 17h1'/%3E%3Cpath stroke='%23e2552a' d='M10 17h1'/%3E%3Cpath stroke='%23e45325' d='M11 17h1'/%3E%3Cpath stroke='%23e4501f' d='M12 17h1'/%3E%3Cpath stroke='%23e54c19' d='M13 17h1'/%3E%3Cpath stroke='%23e54813' d='M14 17h1'/%3E%3Cpath stroke='%23e5430d' d='M15 17h1'/%3E%3Cpath stroke='%23e43e07' d='M16 17h1'/%3E%3Cpath stroke='%23e03802' d='M17 17h1'/%3E%3Cpath stroke='%23d12f00' d='M18 17h1'/%3E%3Cpath stroke='%23aa2300' d='M19 17h1'/%3E%3Cpath stroke='%23cd4928' d='M1 18h1'/%3E%3Cpath stroke='%23cc3813' d='M2 18h1'/%3E%3Cpath stroke='%23cc3e1b' d='M3 18h1'/%3E%3Cpath stroke='%23cf4421' d='M4 18h1'/%3E%3Cpath stroke='%23cf4725' d='M5 18h1'/%3E%3Cpath stroke='%23cf4726' d='M6 18h1'/%3E%3Cpath stroke='%23cf4624' d='M7 18h1'/%3E%3Cpath stroke='%23d04723' d='M8 18h1'/%3E%3Cpath stroke='%23d14621' d='M9 18h1'/%3E%3Cpath stroke='%23d2451e' d='M10 18h1'/%3E%3Cpath stroke='%23d5451b' d='M11 18h1'/%3E%3Cpath stroke='%23d54216' d='M12 18h1'/%3E%3Cpath stroke='%23d64013' d='M13 18h1'/%3E%3Cpath stroke='%23d53d0e' d='M14 18h1'/%3E%3Cpath stroke='%23d63909' d='M15 18h1'/%3E%3Cpath stroke='%23d53504' d='M16 18h1'/%3E%3Cpath stroke='%23d13001' d='M17 18h1'/%3E%3Cpath stroke='%23c22a00' d='M18 18h1'/%3E%3Cpath stroke='%23ab3c1f' d='M19 18h1'/%3E%3Cpath stroke='%23eed6d0' d='M1 19h1'/%3E%3Cpath stroke='%23b54428' d='M2 19h1'/%3E%3Cpath stroke='%23a62b0d' d='M3 19h1'/%3E%3Cpath stroke='%23ac3011' d='M4 19h1'/%3E%3Cpath stroke='%23ab3112' d='M5 19h1'/%3E%3Cpath stroke='%23a93214' d='M6 19h1'/%3E%3Cpath stroke='%23a93012' d='M7 19h1'/%3E%3Cpath stroke='%23ac3213' d='M8 19h1'/%3E%3Cpath stroke='%23ad3213' d='M9 19h1'/%3E%3Cpath stroke='%23ae3110' d='M10 19h1'/%3E%3Cpath stroke='%23b1300d' d='M11 19h1'/%3E%3Cpath stroke='%23b22e0a' d='M12 19h1'/%3E%3Cpath stroke='%23b42d08' d='M13 19h1'/%3E%3Cpath stroke='%23b12a06' d='M14 19h1'/%3E%3Cpath stroke='%23b12803' d='M15 19h1'/%3E%3Cpath stroke='%23b42701' d='M16 19h1'/%3E%3Cpath stroke='%23ae2400' d='M17 19h1'/%3E%3Cpath stroke='%23ac3c1f' d='M18 19h1'/%3E%3Cpath stroke='%23ead4cf' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h3m5 0h7'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23ffe4e1' d='M1 1h1'/%3E%3Cpath stroke='%23ff9285' d='M2 1h1m4 3h1M2 7h1'/%3E%3Cpath stroke='%23ff8c7f' d='M3 1h1'/%3E%3Cpath stroke='%23ff8375' d='M4 1h1m5 3h1'/%3E%3Cpath stroke='%23ff7b6c' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23ff7868' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%23ff7362' d='M7 1h1'/%3E%3Cpath stroke='%23ff7363' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%23ff705f' d='M9 1h1M6 16h1'/%3E%3Cpath stroke='%23ff6f5f' d='M10 1h1'/%3E%3Cpath stroke='%23ff6e5d' d='M11 1h1m4 1h1m-5 3h1M2 13h1'/%3E%3Cpath stroke='%23ff6b5a' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%23f65' d='M13 1h2'/%3E%3Cpath stroke='%23ff6250' d='M15 1h1M2 15h1'/%3E%3Cpath stroke='%23ff5d4a' d='M16 1h1'/%3E%3Cpath stroke='%23fa5643' d='M17 1h1'/%3E%3Cpath stroke='%23eb6151' d='M18 1h1'/%3E%3Cpath stroke='%23f5dad7' d='M19 1h1'/%3E%3Cpath stroke='%23ff9386' d='M1 2h1'/%3E%3Cpath stroke='%23ffaea5' d='M2 2h1'/%3E%3Cpath stroke='%23ffb2a9' d='M3 2h1'/%3E%3Cpath stroke='%23ffa99f' d='M4 2h1'/%3E%3Cpath stroke='%23ff9e93' d='M5 2h1m0 1h1M5 4h1'/%3E%3Cpath stroke='%23ff998d' d='M6 2h1M4 6h1'/%3E%3Cpath stroke='%23ff9488' d='M7 2h1m0 1h1'/%3E%3Cpath stroke='%23ff9083' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%23ff8e80' d='M9 2h1'/%3E%3Cpath stroke='%23ff8b7d' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%23ff887a' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%23ff8475' d='M12 2h1M8 5h1'/%3E%3Cpath stroke='%23ff8172' d='M13 2h1M7 9h1m-3 3h1'/%3E%3Cpath stroke='%23ff7c6d' d='M14 2h1'/%3E%3Cpath stroke='%23ff7666' d='M15 2h1M1 7h1m1 6h1m0 1h1'/%3E%3Cpath stroke='%23fc6352' d='M17 2h1'/%3E%3Cpath stroke='%23e54' d='M18 2h1'/%3E%3Cpath stroke='%23d3594b' d='M19 2h1'/%3E%3Cpath stroke='%23ff8d80' d='M1 3h1'/%3E%3Cpath stroke='%23ffb3ab' d='M2 3h1'/%3E%3Cpath stroke='%23ffb8b0' d='M3 3h1'/%3E%3Cpath stroke='%23ffb0a6' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23ffa49a' d='M5 3h1'/%3E%3Cpath stroke='%23ff988d' d='M7 3h1M6 4h1'/%3E%3Cpath stroke='%23ff9184' d='M9 3h1'/%3E%3Cpath stroke='%23ff8e81' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23ff8c7e' d='M11 3h1M2 8h1'/%3E%3Cpath stroke='%23ff8576' d='M13 3h1M6 9h1m-4 1h1'/%3E%3Cpath stroke='%23ff7f70' d='M14 3h1M1 5h1m0 5h1m1 2h1'/%3E%3Cpath stroke='%23ff796a' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%23ff7161' d='M16 3h1M3 14h1'/%3E%3Cpath stroke='%23fc6857' d='M17 3h1'/%3E%3Cpath stroke='%23ed5948' d='M18 3h1M6 18h1'/%3E%3Cpath stroke='%23cb4233' d='M19 3h1'/%3E%3Cpath stroke='%23ff8577' d='M1 4h1m0 5h1'/%3E%3Cpath stroke='%23ffaaa0' d='M2 4h1'/%3E%3Cpath stroke='%23ffa89e' d='M4 4h1'/%3E%3Cpath stroke='%23ff8d7f' d='M8 4h1'/%3E%3Cpath stroke='%23ff8879' d='M9 4h1'/%3E%3Cpath stroke='%23ff8071' d='M11 4h1M8 6h1'/%3E%3Cpath stroke='%23ff7a6b' d='M12 4h1M1 6h1m7 0h1m-6 7h1'/%3E%3Cpath stroke='%23ff7969' d='M13 4h1'/%3E%3Cpath stroke='%23ff7464' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%23ff7060' d='M15 4h1'/%3E%3Cpath stroke='%23ff6c5b' d='M16 4h1m-4 1h1'/%3E%3Cpath stroke='%23fc6655' d='M17 4h1'/%3E%3Cpath stroke='%23ef5c4b' d='M18 4h1'/%3E%3Cpath stroke='%23cc4636' d='M19 4h1'/%3E%3Cpath stroke='%23ffa095' d='M2 5h1'/%3E%3Cpath stroke='%23ffa59b' d='M3 5h1'/%3E%3Cpath stroke='%23ff9f94' d='M4 5h1'/%3E%3Cpath stroke='%23ffd5d1' d='M5 5h1'/%3E%3Cpath stroke='%23ff8a7c' d='M7 5h1'/%3E%3Cpath stroke='%23ff7e6f' d='M9 5h1'/%3E%3Cpath stroke='%23ffc2bb' d='M15 5h1'/%3E%3Cpath stroke='%23ff6554' d='M16 5h1'/%3E%3Cpath stroke='%23fc6453' d='M17 5h1'/%3E%3Cpath stroke='%23ee5d4d' d='M18 5h1'/%3E%3Cpath stroke='%23cd4939' d='M19 5h1'/%3E%3Cpath stroke='%23ff998e' d='M2 6h1'/%3E%3Cpath stroke='%23ff9d92' d='M3 6h1'/%3E%3Cpath stroke='%23ff6f5e' d='M11 6h1'/%3E%3Cpath stroke='%23ff6a58' d='M12 6h1'/%3E%3Cpath stroke='%23ff6451' d='M16 6h1'/%3E%3Cpath stroke='%23fd6451' d='M17 6h1'/%3E%3Cpath stroke='%23ee5e4d' d='M18 6h1'/%3E%3Cpath stroke='%23ce4a3a' d='M19 6h1'/%3E%3Cpath stroke='%23ff968a' d='M3 7h1'/%3E%3Cpath stroke='%23ff9487' d='M4 7h1'/%3E%3Cpath stroke='%23ff8f82' d='M5 7h1'/%3E%3Cpath stroke='%23ff7968' d='M9 7h1m-3 8h1'/%3E%3Cpath stroke='%23ff7463' d='M10 7h1'/%3E%3Cpath stroke='%23ff6f5d' d='M11 7h1'/%3E%3Cpath stroke='%23ff6450' d='M15 7h1'/%3E%3Cpath stroke='%23ff6552' d='M16 7h1'/%3E%3Cpath stroke='%23fd6653' d='M17 7h1'/%3E%3Cpath stroke='%23f0604e' d='M18 7h1'/%3E%3Cpath stroke='%23ce4a3b' d='M19 7h1'/%3E%3Cpath stroke='%23ff7565' d='M1 8h1'/%3E%3Cpath stroke='%23ff8677' d='M6 8h1m-2 2h1'/%3E%3Cpath stroke='%23ff7664' d='M10 8h1'/%3E%3Cpath stroke='%23ff6a53' d='M14 8h1'/%3E%3Cpath stroke='%23ff6953' d='M15 8h1'/%3E%3Cpath stroke='%23ff6b55' d='M16 8h1'/%3E%3Cpath stroke='%23fd6b56' d='M17 8h1'/%3E%3Cpath stroke='%23f06350' d='M18 8h1'/%3E%3Cpath stroke='%23cf4c3b' d='M19 8h1'/%3E%3Cpath stroke='%23ff6d5d' d='M1 9h1'/%3E%3Cpath stroke='%23ff8b7c' d='M4 9h1'/%3E%3Cpath stroke='%23ff775d' d='M13 9h1'/%3E%3Cpath stroke='%23ff745a' d='M14 9h1'/%3E%3Cpath stroke='%23ff7359' d='M15 9h1'/%3E%3Cpath stroke='%23ff735a' d='M16 9h1'/%3E%3Cpath stroke='%23fd715a' d='M17 9h1'/%3E%3Cpath stroke='%23f16752' d='M18 9h1'/%3E%3Cpath stroke='%23d24e3c' d='M19 9h1'/%3E%3Cpath stroke='%23ff6a59' d='M1 10h1m2 6h1'/%3E%3Cpath stroke='%23ff8778' d='M4 10h1'/%3E%3Cpath stroke='%23ff8374' d='M6 10h1m-3 1h2'/%3E%3Cpath stroke='%23ff8171' d='M7 10h1m-5 1h1'/%3E%3Cpath stroke='%23ff8271' d='M8 10h1m-2 1h1'/%3E%3Cpath stroke='%23ff8369' d='M12 10h1'/%3E%3Cpath stroke='%23ff8165' d='M13 10h1'/%3E%3Cpath stroke='%23ff7e61' d='M14 10h1'/%3E%3Cpath stroke='%23ff7d5f' d='M15 10h1'/%3E%3Cpath stroke='%23ff7b5f' d='M16 10h1'/%3E%3Cpath stroke='%23fd775d' d='M17 10h1'/%3E%3Cpath stroke='%23f36a53' d='M18 10h1'/%3E%3Cpath stroke='%23d34e3c' d='M19 10h1'/%3E%3Cpath stroke='%23ff6553' d='M1 11h1'/%3E%3Cpath stroke='%23ff8273' d='M6 11h1'/%3E%3Cpath stroke='%23ff8c6c' d='M13 11h1'/%3E%3Cpath stroke='%23ff8969' d='M14 11h1'/%3E%3Cpath stroke='%23ff8665' d='M15 11h1'/%3E%3Cpath stroke='%23ff8262' d='M16 11h1'/%3E%3Cpath stroke='%23fd7c5e' d='M17 11h1'/%3E%3Cpath stroke='%23f46d54' d='M18 11h1'/%3E%3Cpath stroke='%23d64f3b' d='M19 11h1'/%3E%3Cpath stroke='%23ff5f4d' d='M1 12h1'/%3E%3Cpath stroke='%23ff8070' d='M6 12h1'/%3E%3Cpath stroke='%23ff9279' d='M10 12h1'/%3E%3Cpath stroke='%23fff8f6' d='M13 12h1'/%3E%3Cpath stroke='%23ff936f' d='M14 12h1'/%3E%3Cpath stroke='%23ff906c' d='M15 12h1'/%3E%3Cpath stroke='%23ff8967' d='M16 12h1'/%3E%3Cpath stroke='%23fe7f5f' d='M17 12h1'/%3E%3Cpath stroke='%23f56e52' d='M18 12h1'/%3E%3Cpath stroke='%23d84f39' d='M19 12h1'/%3E%3Cpath stroke='%23ff5c4a' d='M1 13h1'/%3E%3Cpath stroke='%23ff7d6e' d='M5 13h1'/%3E%3Cpath stroke='%23ff907a' d='M9 13h1'/%3E%3Cpath stroke='%23ff957c' d='M10 13h1'/%3E%3Cpath stroke='%23ff9a7e' d='M11 13h1'/%3E%3Cpath stroke='%23ff9670' d='M15 13h1'/%3E%3Cpath stroke='%23ff8e68' d='M16 13h1'/%3E%3Cpath stroke='%23fe815e' d='M17 13h1'/%3E%3Cpath stroke='%23f66c4f' d='M18 13h1'/%3E%3Cpath stroke='%23da4d36' d='M19 13h1'/%3E%3Cpath stroke='%23ff5744' d='M1 14h1'/%3E%3Cpath stroke='%23ff6857' d='M2 14h1'/%3E%3Cpath stroke='%23ff8672' d='M8 14h1'/%3E%3Cpath stroke='%23ff8f78' d='M9 14h1'/%3E%3Cpath stroke='%23ff967c' d='M10 14h1'/%3E%3Cpath stroke='%23ff9c7e' d='M11 14h1'/%3E%3Cpath stroke='%23ffa07e' d='M12 14h1'/%3E%3Cpath stroke='%23ff8e66' d='M16 14h1'/%3E%3Cpath stroke='%23fe7f5a' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%23f76a4b' d='M18 14h1'/%3E%3Cpath stroke='%23da4a33' d='M19 14h1'/%3E%3Cpath stroke='%23ff523f' d='M1 15h1'/%3E%3Cpath stroke='%23ff7160' d='M4 15h1'/%3E%3Cpath stroke='%23ffc7c1' d='M5 15h1'/%3E%3Cpath stroke='%23ff836f' d='M8 15h1'/%3E%3Cpath stroke='%23ff8b74' d='M9 15h1'/%3E%3Cpath stroke='%23ff9379' d='M10 15h1'/%3E%3Cpath stroke='%23ff9a7c' d='M11 15h1'/%3E%3Cpath stroke='%23ff9e7c' d='M12 15h1'/%3E%3Cpath stroke='%23ffa07a' d='M13 15h1'/%3E%3Cpath stroke='%23ffd5c5' d='M15 15h1'/%3E%3Cpath stroke='%23ff8b62' d='M16 15h1'/%3E%3Cpath stroke='%23fe7c56' d='M17 15h1'/%3E%3Cpath stroke='%23f76545' d='M18 15h1'/%3E%3Cpath stroke='%23db4931' d='M19 15h1'/%3E%3Cpath stroke='%23ff4f3a' d='M1 16h1'/%3E%3Cpath stroke='%23ff5c49' d='M2 16h1'/%3E%3Cpath stroke='%23ff6452' d='M3 16h1'/%3E%3Cpath stroke='%23ff6e5e' d='M5 16h1'/%3E%3Cpath stroke='%23ff7462' d='M7 16h1'/%3E%3Cpath stroke='%23ff7c68' d='M8 16h1'/%3E%3Cpath stroke='%23ff846d' d='M9 16h1'/%3E%3Cpath stroke='%23ff8b71' d='M10 16h1'/%3E%3Cpath stroke='%23ff9174' d='M11 16h1'/%3E%3Cpath stroke='%23ff9674' d='M12 16h1'/%3E%3Cpath stroke='%23ff9571' d='M13 16h1'/%3E%3Cpath stroke='%23ff946d' d='M14 16h1'/%3E%3Cpath stroke='%23ff8d66' d='M15 16h1'/%3E%3Cpath stroke='%23ff855c' d='M16 16h1'/%3E%3Cpath stroke='%23fe7650' d='M17 16h1'/%3E%3Cpath stroke='%23f66141' d='M18 16h1'/%3E%3Cpath stroke='%23da462f' d='M19 16h1'/%3E%3Cpath stroke='%23fa4935' d='M1 17h1'/%3E%3Cpath stroke='%23fb5441' d='M2 17h1'/%3E%3Cpath stroke='%23fc5c4a' d='M3 17h1'/%3E%3Cpath stroke='%23fb6150' d='M4 17h1'/%3E%3Cpath stroke='%23fc6554' d='M5 17h1'/%3E%3Cpath stroke='%23fc6756' d='M6 17h1'/%3E%3Cpath stroke='%23fc6a58' d='M7 17h1'/%3E%3Cpath stroke='%23fc715c' d='M8 17h1'/%3E%3Cpath stroke='%23fc7761' d='M9 17h1'/%3E%3Cpath stroke='%23fd7e64' d='M10 17h1'/%3E%3Cpath stroke='%23fd8367' d='M11 17h1'/%3E%3Cpath stroke='%23fe8566' d='M12 17h1'/%3E%3Cpath stroke='%23fe8664' d='M13 17h1'/%3E%3Cpath stroke='%23fe8460' d='M14 17h1'/%3E%3Cpath stroke='%23fe7651' d='M16 17h1'/%3E%3Cpath stroke='%23fc6b47' d='M17 17h1'/%3E%3Cpath stroke='%23f2573a' d='M18 17h1'/%3E%3Cpath stroke='%23d4402a' d='M19 17h1'/%3E%3Cpath stroke='%23e85848' d='M1 18h1'/%3E%3Cpath stroke='%23ed4a37' d='M2 18h1'/%3E%3Cpath stroke='%23ec4f3d' d='M3 18h1'/%3E%3Cpath stroke='%23ee5443' d='M4 18h1'/%3E%3Cpath stroke='%23ed5746' d='M5 18h1'/%3E%3Cpath stroke='%23ee5a48' d='M7 18h1'/%3E%3Cpath stroke='%23ef5e4b' d='M8 18h1'/%3E%3Cpath stroke='%23f0644e' d='M9 18h1'/%3E%3Cpath stroke='%23f16750' d='M10 18h1'/%3E%3Cpath stroke='%23f46c52' d='M11 18h1'/%3E%3Cpath stroke='%23f66d51' d='M12 18h1'/%3E%3Cpath stroke='%23f66e51' d='M13 18h1'/%3E%3Cpath stroke='%23f66c4e' d='M14 18h1'/%3E%3Cpath stroke='%23f86a4a' d='M15 18h1'/%3E%3Cpath stroke='%23f76343' d='M16 18h1'/%3E%3Cpath stroke='%23f3583a' d='M17 18h1'/%3E%3Cpath stroke='%23e54930' d='M18 18h1'/%3E%3Cpath stroke='%23cd5140' d='M19 18h1'/%3E%3Cpath stroke='%23f6d9d6' d='M1 19h1'/%3E%3Cpath stroke='%23d25344' d='M2 19h1'/%3E%3Cpath stroke='%23c93c2b' d='M3 19h1'/%3E%3Cpath stroke='%23ca3f2f' d='M4 19h1'/%3E%3Cpath stroke='%23ca4131' d='M5 19h1'/%3E%3Cpath stroke='%23ca4333' d='M6 19h1'/%3E%3Cpath stroke='%23cc4332' d='M7 19h1'/%3E%3Cpath stroke='%23cf4434' d='M8 19h1'/%3E%3Cpath stroke='%23d24936' d='M9 19h1'/%3E%3Cpath stroke='%23d34936' d='M10 19h1'/%3E%3Cpath stroke='%23d84b37' d='M11 19h1'/%3E%3Cpath stroke='%23da4c36' d='M12 19h1'/%3E%3Cpath stroke='%23dc4d36' d='M13 19h1'/%3E%3Cpath stroke='%23d94933' d='M14 19h1'/%3E%3Cpath stroke='%23de4a32' d='M15 19h1'/%3E%3Cpath stroke='%23dd482f' d='M16 19h1'/%3E%3Cpath stroke='%23d6402a' d='M17 19h1'/%3E%3Cpath stroke='%23cf5140' d='M18 19h1'/%3E%3Cpath stroke='%23f1d8d5' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M6 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M7 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M8 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bced' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7baec' d='M19 0h1m0 1h1'/%3E%3Cpath stroke='%23dad2d0' d='M1 1h1'/%3E%3Cpath stroke='%23643529' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%235a1d0d' d='M3 1h1'/%3E%3Cpath stroke='%235d1e0d' d='M4 1h1'/%3E%3Cpath stroke='%235f1e0e' d='M5 1h1'/%3E%3Cpath stroke='%2363200e' d='M6 1h1'/%3E%3Cpath stroke='%2368210f' d='M7 1h1'/%3E%3Cpath stroke='%236f2310' d='M8 1h1'/%3E%3Cpath stroke='%23732511' d='M9 1h1'/%3E%3Cpath stroke='%23752511' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%237c2712' d='M11 1h1'/%3E%3Cpath stroke='%23822912' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%23852a13' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%23892b13' d='M14 1h1'/%3E%3Cpath stroke='%238a2b14' d='M15 1h1M6 2h1'/%3E%3Cpath stroke='%238e2d14' d='M16 1h1M7 2h1'/%3E%3Cpath stroke='%238c2c14' d='M17 1h1M2 6h1'/%3E%3Cpath stroke='%239d4732' d='M18 1h1M1 18h1'/%3E%3Cpath stroke='%23ebd8d3' d='M19 1h1'/%3E%3Cpath stroke='%2369220f' d='M2 2h1'/%3E%3Cpath stroke='%23782611' d='M3 2h1'/%3E%3Cpath stroke='%237e2812' d='M4 2h1'/%3E%3Cpath stroke='%23932e15' d='M8 2h1'/%3E%3Cpath stroke='%239a3016' d='M9 2h1'/%3E%3Cpath stroke='%239c3116' d='M10 2h1'/%3E%3Cpath stroke='%23a03217' d='M11 2h1'/%3E%3Cpath stroke='%23a43418' d='M12 2h1'/%3E%3Cpath stroke='%23a73518' d='M13 2h1'/%3E%3Cpath stroke='%23aa3618' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%23ab3618' d='M15 2h1'/%3E%3Cpath stroke='%23ad3719' d='M16 2h1m1 0h1M2 16h1m-1 1h1'/%3E%3Cpath stroke='%23ac3618' d='M17 2h1'/%3E%3Cpath stroke='%23b24e35' d='M19 2h1'/%3E%3Cpath stroke='%23591c0d' d='M1 3h1M1 4h1'/%3E%3Cpath stroke='%23792711' d='M2 3h1'/%3E%3Cpath stroke='%238d2c14' d='M3 3h1'/%3E%3Cpath stroke='%23962e15' d='M4 3h1'/%3E%3Cpath stroke='%239a2f16' d='M5 3h1'/%3E%3Cpath stroke='%23a13117' d='M6 3h1'/%3E%3Cpath stroke='%23a63317' d='M7 3h1'/%3E%3Cpath stroke='%23aa3418' d='M8 3h1'/%3E%3Cpath stroke='%23af3619' d='M9 3h1'/%3E%3Cpath stroke='%23b23719' d='M10 3h1M8 4h1M4 8h1'/%3E%3Cpath stroke='%23b5391a' d='M11 3h1'/%3E%3Cpath stroke='%23b73a1b' d='M12 3h1'/%3E%3Cpath stroke='%23b93b1b' d='M13 3h1'/%3E%3Cpath stroke='%23ba3b1b' d='M14 3h2m3 0h1M3 13h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23bb3b1b' d='M16 3h3M3 15h1'/%3E%3Cpath stroke='%23802812' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23962f15' d='M3 4h1'/%3E%3Cpath stroke='%239e3016' d='M4 4h1'/%3E%3Cpath stroke='%23a43216' d='M5 4h1'/%3E%3Cpath stroke='%23aa3317' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%23ae3518' d='M7 4h1'/%3E%3Cpath stroke='%23b5381a' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%23b8391a' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%23ba3a1b' d='M11 4h1m-8 7h2'/%3E%3Cpath stroke='%23bc3b1c' d='M12 4h1m-9 8h1'/%3E%3Cpath stroke='%23bd3c1c' d='M13 4h1m-1 1h1m-2 1h1m-7 6h1m-3 1h2'/%3E%3Cpath stroke='%23be3d1c' d='M14 4h3m-1 1h1m-1 1h1M4 14h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23bf3d1c' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1M4 17h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%235b1d0d' d='M1 5h1'/%3E%3Cpath stroke='%239c3016' d='M3 5h1'/%3E%3Cpath stroke='%23a43217' d='M4 5h1'/%3E%3Cpath stroke='%23b8553e' d='M5 5h1'/%3E%3Cpath stroke='%23d59485' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%23b33619' d='M7 5h1'/%3E%3Cpath stroke='%23b53719' d='M8 5h1'/%3E%3Cpath stroke='%23b8381a' d='M9 5h1M6 8h1'/%3E%3Cpath stroke='%23b9391b' d='M10 5h1'/%3E%3Cpath stroke='%23ba391b' d='M11 5h1M6 9h1m-2 1h1'/%3E%3Cpath stroke='%23bc3b1b' d='M12 5h1m-2 1h1m-6 5h1m-2 1h1'/%3E%3Cpath stroke='%23dc9887' d='M14 5h1'/%3E%3Cpath stroke='%23c85d42' d='M15 5h1M5 15h1'/%3E%3Cpath stroke='%23611f0e' d='M1 6h1'/%3E%3Cpath stroke='%23a23217' d='M3 6h1'/%3E%3Cpath stroke='%23d79585' d='M6 6h1'/%3E%3Cpath stroke='%23d89585' d='M7 6h1'/%3E%3Cpath stroke='%23b8371a' d='M8 6h1'/%3E%3Cpath stroke='%23ba391a' d='M9 6h1'/%3E%3Cpath stroke='%23bb3a1b' d='M10 6h1m-5 4h1'/%3E%3Cpath stroke='%23dd9887' d='M13 6h3m-4 1h1m-2 1h1M9 9h1m-2 2h1m-2 1h1m-2 1h1m-2 1h2'/%3E%3Cpath stroke='%23c03e1d' d='M17 6h1m-2 1h3m0 1h1m-1 1h1M7 16h1m-2 1h2m0 1h1'/%3E%3Cpath stroke='%2365200e' d='M1 7h1'/%3E%3Cpath stroke='%23902d15' d='M2 7h1'/%3E%3Cpath stroke='%23a73418' d='M3 7h1'/%3E%3Cpath stroke='%23af3518' d='M4 7h1'/%3E%3Cpath stroke='%23b43619' d='M5 7h1'/%3E%3Cpath stroke='%23d99585' d='M6 7h1'/%3E%3Cpath stroke='%23da9686' d='M7 7h1'/%3E%3Cpath stroke='%23db9686' d='M8 7h1M7 8h1'/%3E%3Cpath stroke='%23bc3a1b' d='M9 7h1M7 9h1'/%3E%3Cpath stroke='%23bd3b1b' d='M10 7h1m-4 3h1'/%3E%3Cpath stroke='%23be3c1c' d='M11 7h1m-2 1h1m-3 2h1m-2 1h1'/%3E%3Cpath stroke='%23de9987' d='M13 7h2m-3 1h2m-4 1h2m-3 1h1m-2 2h1m-2 2h1'/%3E%3Cpath stroke='%23c03f1d' d='M15 7h1m-9 8h1'/%3E%3Cpath stroke='%236a220f' d='M1 8h1'/%3E%3Cpath stroke='%23952f15' d='M2 8h1'/%3E%3Cpath stroke='%23ac3518' d='M3 8h1'/%3E%3Cpath stroke='%23b63719' d='M5 8h1'/%3E%3Cpath stroke='%23dc9786' d='M8 8h2M8 9h1'/%3E%3Cpath stroke='%23c2401d' d='M14 8h1m2 0h1m1 3h1M8 14h1m-1 2h1m-1 1h1m0 1h1m1 1h1'/%3E%3Cpath stroke='%23c2401e' d='M15 8h2m1 1h1M8 15h1'/%3E%3Cpath stroke='%23c13f1d' d='M18 8h1m0 2h1M9 19h2'/%3E%3Cpath stroke='%23702410' d='M1 9h1'/%3E%3Cpath stroke='%239b3016' d='M2 9h1'/%3E%3Cpath stroke='%23b03619' d='M3 9h1'/%3E%3Cpath stroke='%23b9381a' d='M5 9h1'/%3E%3Cpath stroke='%23df9a88' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23c4421e' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1m-1 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h3'/%3E%3Cpath stroke='%23c5431e' d='M14 9h1'/%3E%3Cpath stroke='%23c5431f' d='M15 9h1m-4 1h1m5 1h1m-9 1h1m-2 2h1m-1 1h1m0 2h1m0 1h1m6 0h1'/%3E%3Cpath stroke='%239e3217' d='M2 10h1'/%3E%3Cpath stroke='%23b4381a' d='M3 10h1'/%3E%3Cpath stroke='%23df9a87' d='M10 10h1m-2 1h1m-2 2h1'/%3E%3Cpath stroke='%23c6441f' d='M13 10h1m3 0h1m-8 3h1m-1 3h1'/%3E%3Cpath stroke='%23c74520' d='M14 10h2m-6 4h1m-1 1h1m7 2h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23c7451f' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%237b2711' d='M1 11h1'/%3E%3Cpath stroke='%23a13217' d='M2 11h1'/%3E%3Cpath stroke='%23b7391a' d='M3 11h1'/%3E%3Cpath stroke='%23e09b88' d='M11 11h1'/%3E%3Cpath stroke='%23e29d89' d='M12 11h1'/%3E%3Cpath stroke='%23c94621' d='M13 11h1m-3 2h1'/%3E%3Cpath stroke='%23ca4721' d='M14 11h1m2 1h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%23ca4821' d='M15 11h1m1 6h1'/%3E%3Cpath stroke='%23c94620' d='M16 11h1m1 3h1m-8 2h1m6 0h1'/%3E%3Cpath stroke='%23c84620' d='M17 11h1m0 2h1'/%3E%3Cpath stroke='%23a53418' d='M2 12h1'/%3E%3Cpath stroke='%23b83a1b' d='M3 12h1'/%3E%3Cpath stroke='%23e19d89' d='M11 12h1'/%3E%3Cpath stroke='%23e39e89' d='M12 12h1'/%3E%3Cpath stroke='%23e0947c' d='M13 12h1'/%3E%3Cpath stroke='%23cc4a22' d='M14 12h1m-3 2h1m4 0h1m-6 1h1'/%3E%3Cpath stroke='%23cd4a22' d='M15 12h1m0 1h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23cb4922' d='M16 12h1m0 1h1m-5 4h1'/%3E%3Cpath stroke='%23c3411e' d='M19 12h1m-1 1h1m-1 4h1m-8 2h2m3 0h1'/%3E%3Cpath stroke='%23a93618' d='M2 13h1'/%3E%3Cpath stroke='%23dd9987' d='M7 13h1m-2 2h1'/%3E%3Cpath stroke='%23e39f8a' d='M12 13h1'/%3E%3Cpath stroke='%23e59f8b' d='M13 13h1'/%3E%3Cpath stroke='%23e5a08b' d='M14 13h1m-2 1h1'/%3E%3Cpath stroke='%23ce4c23' d='M15 13h1m0 3h1'/%3E%3Cpath stroke='%23882b13' d='M1 14h1'/%3E%3Cpath stroke='%23e6a08b' d='M14 14h1'/%3E%3Cpath stroke='%23e6a18b' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23ce4b23' d='M16 14h1m-4 1h1'/%3E%3Cpath stroke='%238b2c14' d='M1 15h1m-1 1h1'/%3E%3Cpath stroke='%23ac3619' d='M2 15h1'/%3E%3Cpath stroke='%23d76b48' d='M15 15h1'/%3E%3Cpath stroke='%23cf4c23' d='M16 15h1m-2 1h1'/%3E%3Cpath stroke='%23c94721' d='M18 15h1m-3 3h1'/%3E%3Cpath stroke='%23bb3c1b' d='M3 16h1'/%3E%3Cpath stroke='%23bf3e1d' d='M6 16h1'/%3E%3Cpath stroke='%23cb4821' d='M12 16h1'/%3E%3Cpath stroke='%23cd4b23' d='M14 16h1'/%3E%3Cpath stroke='%23cc4922' d='M17 16h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%238d2d14' d='M1 17h1'/%3E%3Cpath stroke='%23bc3c1b' d='M3 17h1m-1 1h1'/%3E%3Cpath stroke='%23c84520' d='M11 17h1m1 1h1'/%3E%3Cpath stroke='%23ae3719' d='M2 18h1'/%3E%3Cpath stroke='%23c94720' d='M14 18h1'/%3E%3Cpath stroke='%23c95839' d='M19 18h1'/%3E%3Cpath stroke='%23a7bdf0' d='M0 19h1m0 1h1'/%3E%3Cpath stroke='%23ead7d3' d='M1 19h1'/%3E%3Cpath stroke='%23b34e35' d='M2 19h1'/%3E%3Cpath stroke='%23c03e1c' d='M8 19h1'/%3E%3Cpath stroke='%23c9583a' d='M18 19h1'/%3E%3Cpath stroke='%23f3dbd4' d='M19 19h1'/%3E%3Cpath stroke='%23a7bcef' d='M20 19h1m-2 1h1'/%3E%3C/svg%3E")
}
.status-bar{
margin: 0 3px;
box-shadow: inset 0 1px 2px grey;
padding: 2px 1px;
gap: 0
}
.status-bar-field{
-webkit-font-smoothing: antialiased;
box-shadow: none;
padding: 1px 2px;
border-right: 1px solid rgba(208,206,191,.75);
border-left: 1px solid hsla(0,0%,100%,.75)
}
.status-bar-field: first-of-type{
border-left: none
}
.status-bar-field: last-of-type{
border-right: none
}
button{
-webkit-font-smoothing: antialiased;
box-sizing: border-box;
border: 1px solid #003c74;
background: linear-gradient(180deg,#fff,#ecebe5 86%,#d8d0c4);
box-shadow: none;
border-radius: 3px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: none;
background: linear-gradient(180deg,#cdcac3,#e3e3db 8%,#e5e5de 94%,#f2f2f1)
}
button: not(: disabled): hover{
box-shadow: inset -1px 1px #fff0cf,inset 1px 2px #fdd889,inset -2px 2px #fbc761,inset 2px -2px #e5a01a
}
button.focused,button: focus{
box-shadow: inset -1px 1px #cee7ff,inset 1px 2px #98b8ea,inset -2px 2px #bcd4f6,inset 1px -1px #89ade4,inset 2px -2px #89ade4
}
button: :-moz-focus-inner{
border: 0
}
input,label,option,select,textarea{
-webkit-font-smoothing: antialiased
}
input[type=radio]{
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
margin: 0;
background: 0;
position: fixed;
opacity: 0;
border: none
}
input[type=radio]+label{
line-height: 16px
}
input[type=radio]+label: before{
background: linear-gradient(135deg,#dcdcd7,#fff);
border-radius: 50%;
border: 1px solid #1d5281
}
input[type=radio]: not([disabled]): not(: active)+label: hover: before{
box-shadow: inset -2px -2px #f8b636,inset 2px 2px #fedf9c
}
input[type=radio]: active+label: before{
background: linear-gradient(135deg,#b0b0a7,#e3e1d2)
}
input[type=radio]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a9dca6' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%234dbf4a' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23a0d29e' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%2355d551' d='M1 1h1'/%3E%3Cpath stroke='%2343c33f' d='M2 1h1'/%3E%3Cpath stroke='%2329a826' d='M3 1h1'/%3E%3Cpath stroke='%239acc98' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%2342c33f' d='M1 2h1'/%3E%3Cpath stroke='%2338b935' d='M2 2h1'/%3E%3Cpath stroke='%2321a121' d='M3 2h1'/%3E%3Cpath stroke='%23269623' d='M4 2h1'/%3E%3Cpath stroke='%232aa827' d='M1 3h1'/%3E%3Cpath stroke='%2322a220' d='M2 3h1'/%3E%3Cpath stroke='%23139210' d='M3 3h1'/%3E%3Cpath stroke='%2398c897' d='M4 3h1'/%3E%3Cpath stroke='%23249624' d='M2 4h1'/%3E%3Cpath stroke='%2398c997' d='M3 4h1'/%3E%3C/svg%3E")
}
input[type=radio]: focus+label{
outline: 1px dotted #000
}
input[type=radio][disabled]+label: before{
border: 1px solid #cac8bb;
background: #fff
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e8e6da' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23d2ceb5' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23e5e3d4' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%23d7d3bd' d='M1 1h1'/%3E%3Cpath stroke='%23d0ccb2' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23c7c2a2' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%23e2dfd0' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%23cdc8ac' d='M2 2h1'/%3E%3Cpath stroke='%23c5bf9f' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%23c3bd9c' d='M4 2h1'/%3E%3Cpath stroke='%23bfb995' d='M3 3h1'/%3E%3Cpath stroke='%23e2dfcf' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23c4be9d' d='M2 4h1'/%3E%3C/svg%3E")
}
input[type=email],input[type=password],textarea: :selection{
background: #2267cb;
color: #fff
}
input[type=range]: :-webkit-slider-thumb{
height: 21px;
width: 11px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(-8px)
}
input[type=range]: :-moz-range-thumb{
height: 21px;
width: 11px;
border: 0;
border-radius: 0;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(2px)
}
input[type=range]: :-webkit-slider-runnable-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range]: :-moz-range-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(-10px)
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(0)
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
fieldset{
box-shadow: none;
background: #fff;
border: 1px solid #d0d0bf;
border-radius: 4px;
padding-top: 10px
}
legend{
background: transparent;
color: #0046d5
}
.field-row{
display: flex;
align-items: center
}
.field-row>*+*{
margin-left: 6px
}
[class^=field-row]+[class^=field-row]{
margin-top: 6px
}
.field-row-stacked{
display: flex;
flex-direction: column
}
.field-row-stacked *+*{
margin-top: 6px
}
menu[role=tablist] button{
background: linear-gradient(180deg,#fff,#fafaf9 26%,#f0f0ea 95%,#ecebe5);
margin-left: -1px;
margin-right: 2px;
border-radius: 0;
border-color: #91a7b4;
border-top-right-radius: 3px;
border-top-left-radius: 3px;
padding: 0 12px 3px
}
menu[role=tablist] button: hover{
box-shadow: unset;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]{
border-color: #919b9c;
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]: first-of-type: before{
content: "";
display: block;
position: absolute;
z-index: -1;
top: 100%;
left: -1px;
height: 2px;
width: 0;
border-left: 1px solid #919b9c
}
[role=tabpanel]{
box-shadow: inset 1px 1px #fcfcfe,inset -1px -1px #fcfcfe,1px 2px 2px 0 rgba(208,206,191,.75)
}
ul.tree-view{
-webkit-font-smoothing: auto;
border: 1px solid #7f9db9;
padding: 2px 5px
}
@keyframes sliding{
0%{
transform: translateX(-30px)
}
to{
transform: translateX(100%)
}
}
progress{
box-sizing: border-box;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
height: 14px;
border: 1px solid #686868;
border-radius: 4px;
padding: 1px 2px 1px 0;
overflow: hidden;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress,progress: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px
}
progress[value]: :-webkit-progress-bar{
background-color: transparent
}
progress[value]: :-webkit-progress-value{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress[value]: :-moz-progress-bar{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-webkit-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-webkit-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]){
position: relative
}
progress: not([value]): before{
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before,progress: not([value]): before: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): after{
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): after,progress: not([value]): after: not([value]){
animation: sliding 2s linear 0s infinite
}
progress: not([value]): after: not([value]){
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-moz-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-moz-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress:not([value])::-moz-progress-bar {
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite;
}
progress:not([value])::after {
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
}
progress:not([value])::before {
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868;
}
Element {
}
progress:not([value]) {
position: relative;
}
progress:not([value]) {
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px;
}
</style>
</head>
<body>
<script>
var log = console.log;
var theme = 'light';
var special_col_names = ["trial_index","arm_name","trial_status","generation_method","generation_node","hostname","run_time","start_time","exit_code","signal","end_time","program_string","submit_time","queue_time"]
var result_names = [
"VAL_ACC"
];
var result_min_max = [
"max"
];
var tab_results_headers_json = [
"trial_index",
"submit_time",
"queue_time",
"start_time",
"end_time",
"run_time",
"program_string",
"VAL_ACC",
"exit_code",
"signal",
"hostname",
"OO_Info_SLURM_JOB_ID",
"arm_name",
"trial_status",
"generation_node",
"epochs",
"lr",
"batch_size",
"hidden_size",
"dropout",
"num_dense_layers",
"weight_decay",
"activation",
"init"
];
var tab_results_csv_json = [
[
0,
1753975716,
22,
1753975738,
1753975744,
6,
"python3 .tests\/mnist\/train --epochs 174 --learning_rate 0.09150210371792316666 --batch_size 1146 --hidden_size 2032 --dropout 0.14986142516136169434 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.84562003612518310547",
"",
1,
"",
"c150",
531280,
"0_0",
"FAILED",
"SOBOL",
174,
0.09150210371792317,
1146,
2032,
0.1498614251613617,
3,
0.8456200361251831,
"leaky_relu",
"normal"
],
[
1,
1753975742,
16,
1753975758,
1753975764,
6,
"python3 .tests\/mnist\/train --epochs 66 --learning_rate 0.01291484379452653361 --batch_size 380 --hidden_size 231 --dropout 0.30245773214846849442 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.1786609254777431488",
"",
1,
"",
"c150",
531281,
"1_0",
"FAILED",
"SOBOL",
66,
0.012914843794526534,
380,
231,
0.3024577321484685,
2,
0.17866092547774315,
"leaky_relu",
"normal"
],
[
2,
1753975811,
7,
1753975818,
1753975824,
6,
"python3 .tests\/mnist\/train --epochs 33 --learning_rate 0.0700646978803444731 --batch_size 1579 --hidden_size 1195 --dropout 0.46076191216707229614 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.60484287049621343613",
"",
1,
"",
"c150",
531283,
"2_0",
"FAILED",
"SOBOL",
33,
0.07006469788034447,
1579,
1195,
0.4607619121670723,
1,
0.6048428704962134,
"leaky_relu",
"normal"
],
[
3,
1753975874,
34,
1753975908,
1753975914,
6,
"python3 .tests\/mnist\/train --epochs 111 --learning_rate 0.04705087210788392454 --batch_size 816 --hidden_size 941 --dropout 0.12019259203225374222 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.43385011237114667892",
"",
1,
"",
"c150",
531285,
"3_0",
"FAILED",
"SOBOL",
111,
0.047050872107883925,
816,
941,
0.12019259203225374,
4,
0.4338501123711467,
"leaky_relu",
"normal"
],
[
4,
1753975916,
24,
1753975940,
1753975946,
6,
"python3 .tests\/mnist\/train --epochs 129 --learning_rate 0.05690190976952203689 --batch_size 75 --hidden_size 567 --dropout 0.04996593249961733818 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.7462160186842083931",
"",
1,
"",
"c137",
531286,
"4_0",
"FAILED",
"SOBOL",
129,
0.05690190976952204,
75,
567,
0.04996593249961734,
3,
0.7462160186842084,
"leaky_relu",
"normal"
],
[
5,
1753975984,
13,
1753975997,
1753976003,
6,
"python3 .tests\/mnist\/train --epochs 51 --learning_rate 0.03540074926375411796 --batch_size 1347 --hidden_size 1345 --dropout 0.40616023773327469826 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.29220897797495126724",
"",
1,
"",
"c150",
531288,
"5_0",
"FAILED",
"SOBOL",
51,
0.03540074926375412,
1347,
1345,
0.4061602377332747,
2,
0.29220897797495127,
"leaky_relu",
"normal"
],
[
6,
1753976034,
26,
1753976060,
1753976066,
6,
"python3 .tests\/mnist\/train --epochs 84 --learning_rate 0.07844077873534523182 --batch_size 547 --hidden_size 384 --dropout 0.37261573178693652153 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.99079076386988162994",
"",
1,
"",
"c152",
531296,
"6_0",
"FAILED",
"SOBOL",
84,
0.07844077873534523,
547,
384,
0.3726157317869365,
1,
0.9907907638698816,
"leaky_relu",
"normal"
],
[
7,
1753976101,
38,
1753976139,
1753976145,
6,
"python3 .tests\/mnist\/train --epochs 192 --learning_rate 0.00156300044563598942 --batch_size 1824 --hidden_size 1656 --dropout 0.2043944397009909153 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.03274922631680965424",
"",
1,
"",
"c137",
531299,
"7_0",
"FAILED",
"SOBOL",
192,
0.0015630004456359894,
1824,
1656,
0.20439443970099092,
4,
0.032749226316809654,
"leaky_relu",
"normal"
],
[
8,
1753976167,
10,
1753976177,
1753976184,
7,
"python3 .tests\/mnist\/train --epochs 188 --learning_rate 0.06685127063997090002 --batch_size 753 --hidden_size 1525 --dropout 0.27962609380483627319 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.64871518034487962723",
"",
1,
"",
"c137",
531301,
"8_0",
"FAILED",
"SOBOL",
188,
0.0668512706399709,
753,
1525,
0.2796260938048363,
4,
0.6487151803448796,
"leaky_relu",
"normal"
],
[
9,
1753976237,
31,
1753976268,
1753976274,
6,
"python3 .tests\/mnist\/train --epochs 99 --learning_rate 0.03753838877676055757 --batch_size 2025 --hidden_size 770 --dropout 0.17439438868314027786 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.32745389733463525772",
"",
1,
"",
"c150",
531302,
"9_0",
"FAILED",
"SOBOL",
99,
0.03753838877676056,
2025,
770,
0.17439438868314028,
1,
0.32745389733463526,
"leaky_relu",
"normal"
],
[
10,
1753976287,
10,
1753976297,
1753976304,
7,
"python3 .tests\/mnist\/train --epochs 43 --learning_rate 0.09463646352564916708 --batch_size 188 --hidden_size 1724 --dropout 0.07905177772045135498 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.89352841861546039581",
"",
1,
"",
"c150",
531303,
"10_0",
"FAILED",
"SOBOL",
43,
0.09463646352564917,
188,
1724,
0.07905177772045135,
2,
0.8935284186154604,
"leaky_relu",
"normal"
],
[
11,
1753976351,
9,
1753976360,
1753976366,
6,
"python3 .tests\/mnist\/train --epochs 149 --learning_rate 0.02244571313351392816 --batch_size 1465 --hidden_size 443 --dropout 0.49627995211631059647 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.06824405305087566376",
"",
1,
"",
"c150",
531304,
"11_0",
"FAILED",
"SOBOL",
149,
0.022445713133513928,
1465,
443,
0.4962799521163106,
3,
0.06824405305087566,
"leaky_relu",
"normal"
],
[
12,
1753976406,
22,
1753976428,
1753976434,
6,
"python3 .tests\/mnist\/train --epochs 119 --learning_rate 0.08153158149650320541 --batch_size 1760 --hidden_size 52 --dropout 0.42581676645204424858 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.75538250058889389038",
"",
1,
"",
"c150",
531305,
"12_0",
"FAILED",
"SOBOL",
119,
0.0815315814965032,
1760,
52,
0.42581676645204425,
4,
0.7553825005888939,
"leaky_relu",
"normal"
],
[
13,
1753976467,
11,
1753976478,
1753976484,
6,
"python3 .tests\/mnist\/train --epochs 13 --learning_rate 0.01075604060247540607 --batch_size 993 --hidden_size 1829 --dropout 0.02421360695734620094 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.20566612854599952698",
"",
1,
"",
"c137",
531308,
"13_0",
"FAILED",
"SOBOL",
13,
0.010756040602475406,
993,
1829,
0.0242136069573462,
1,
0.20566612854599953,
"leaky_relu",
"normal"
],
[
14,
1753976532,
6,
1753976538,
1753976544,
6,
"python3 .tests\/mnist\/train --epochs 69 --learning_rate 0.05384174650572241122 --batch_size 1156 --hidden_size 873 --dropout 0.24480417324230074883 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.51484361942857503891",
"",
1,
"",
"c150",
531310,
"14_0",
"FAILED",
"SOBOL",
69,
0.05384174650572241,
1156,
873,
0.24480417324230075,
2,
0.514843619428575,
"leaky_relu",
"normal"
],
[
15,
1753976581,
19,
1753976600,
1753976606,
6,
"python3 .tests\/mnist\/train --epochs 158 --learning_rate 0.02614089283568784769 --batch_size 393 --hidden_size 1135 --dropout 0.33441086346283555031 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.46110516320914030075",
"",
1,
"",
"c150",
531311,
"15_0",
"FAILED",
"SOBOL",
158,
0.026140892835687848,
393,
1135,
0.33441086346283555,
3,
0.4611051632091403,
"leaky_relu",
"normal"
],
[
16,
1753976632,
27,
1753976659,
1753976665,
6,
"python3 .tests\/mnist\/train --epochs 162 --learning_rate 0.05111736474364996646 --batch_size 1939 --hidden_size 299 --dropout 0.09968544496223330498 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.1338229794055223465",
"",
1,
"",
"c150",
531312,
"16_0",
"FAILED",
"SOBOL",
162,
0.051117364743649966,
1939,
299,
0.0996854449622333,
1,
0.13382297940552235,
"leaky_relu",
"normal"
],
[
17,
1753976701,
17,
1753976718,
1753976724,
6,
"python3 .tests\/mnist\/train --epochs 78 --learning_rate 0.02888510903989896517 --batch_size 663 --hidden_size 1582 --dropout 0.44806593889370560646 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.84185883216559886932",
"",
1,
"",
"c150",
531314,
"17_0",
"FAILED",
"SOBOL",
78,
0.028885109039898965,
663,
1582,
0.4480659388937056,
4,
0.8418588321655989,
"leaky_relu",
"normal"
],
[
18,
1753976773,
5,
1753976778,
1753976784,
6,
"python3 .tests\/mnist\/train --epochs 21 --learning_rate 0.08583660231469199264 --batch_size 1487 --hidden_size 626 --dropout 0.28976175887510180473 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.37863617856055498123",
"",
1,
"",
"c137",
531318,
"18_0",
"FAILED",
"SOBOL",
21,
0.08583660231469199,
1487,
626,
0.2897617588751018,
3,
0.378636178560555,
"leaky_relu",
"normal"
],
[
19,
1753976861,
7,
1753976868,
1753976874,
6,
"python3 .tests\/mnist\/train --epochs 123 --learning_rate 0.00646780277378857134 --batch_size 214 --hidden_size 1382 --dropout 0.1293542780913412571 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.58264890406280755997",
"",
1,
"",
"c150",
531319,
"19_0",
"FAILED",
"SOBOL",
123,
0.006467802773788571,
214,
1382,
0.12935427809134126,
2,
0.5826489040628076,
"leaky_relu",
"normal"
],
[
20,
1753976937,
22,
1753976959,
1753976965,
6,
"python3 .tests\/mnist\/train --epochs 141 --learning_rate 0.09738676922542974235 --batch_size 940 --hidden_size 1278 --dropout 0.19951227307319641113 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.27027445193380117416",
"",
1,
"",
"c150",
531321,
"20_0",
"FAILED",
"SOBOL",
141,
0.09738676922542974,
940,
1278,
0.1995122730731964,
1,
0.2702744519338012,
"leaky_relu",
"normal"
],
[
21,
1753976993,
25,
1753977018,
1753977024,
6,
"python3 .tests\/mnist\/train --epochs 39 --learning_rate 0.0197274476864188926 --batch_size 1702 --hidden_size 1017 --dropout 0.34429476875811815262 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.69126145076006650925",
"",
1,
"",
"c150",
531322,
"21_0",
"FAILED",
"SOBOL",
39,
0.019727447686418893,
1702,
1017,
0.34429476875811815,
4,
0.6912614507600665,
"leaky_relu",
"normal"
],
[
22,
1753977057,
26,
1753977083,
1753977089,
6,
"python3 .tests\/mnist\/train --epochs 95 --learning_rate 0.06256912230685353349 --batch_size 511 --hidden_size 1972 --dropout 0.37783927470445632935 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.02973563224077224731",
"",
1,
"",
"c150",
531328,
"22_0",
"FAILED",
"SOBOL",
95,
0.06256912230685353,
511,
1972,
0.37783927470445633,
3,
0.029735632240772247,
"leaky_relu",
"normal"
],
[
23,
1753977139,
43,
1753977182,
1753977188,
6,
"python3 .tests\/mnist\/train --epochs 180 --learning_rate 0.04184952590992675053 --batch_size 1277 --hidden_size 196 --dropout 0.04508376587182283401 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.94670053198933601379",
"",
1,
"",
"c137",
531329,
"23_0",
"FAILED",
"SOBOL",
180,
0.04184952590992675,
1277,
196,
0.045083765871822834,
2,
0.946700531989336,
"leaky_relu",
"normal"
],
[
24,
1753977224,
4,
1753977228,
1753977234,
6,
"python3 .tests\/mnist\/train --epochs 200 --learning_rate 0.07647659011139534835 --batch_size 278 --hidden_size 830 --dropout 0.46991341514512896538 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.36002381052821874619",
"",
1,
"",
"c150",
531332,
"24_0",
"FAILED",
"SOBOL",
200,
0.07647659011139535,
278,
830,
0.46991341514512897,
2,
0.36002381052821875,
"leaky_relu",
"normal"
],
[
25,
1753977277,
13,
1753977290,
1753977296,
6,
"python3 .tests\/mnist\/train --epochs 87 --learning_rate 0.00350430317481048451 --batch_size 1040 --hidden_size 1082 --dropout 0.07612144434824585915 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.66376801114529371262",
"",
1,
"",
"c150",
531333,
"25_0",
"FAILED",
"SOBOL",
87,
0.0035043031748104845,
1040,
1082,
0.07612144434824586,
3,
0.6637680111452937,
"leaky_relu",
"normal"
],
[
26,
1753977365,
13,
1753977378,
1753977384,
6,
"python3 .tests\/mnist\/train --epochs 54 --learning_rate 0.06041012001794764108 --batch_size 854 --hidden_size 121 --dropout 0.17146405531093478203 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.11924652755260467529",
"",
1,
"",
"c156",
531336,
"26_0",
"FAILED",
"SOBOL",
54,
0.06041012001794764,
854,
121,
0.17146405531093478,
4,
0.11924652755260468,
"leaky_relu",
"normal"
],
[
27,
1753977444,
23,
1753977467,
1753977474,
7,
"python3 .tests\/mnist\/train --epochs 137 --learning_rate 0.03187880747846328494 --batch_size 1620 --hidden_size 1919 --dropout 0.25325955683365464211 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.91895715519785881042",
"",
1,
"",
"c156",
531337,
"27_0",
"FAILED",
"SOBOL",
137,
0.031878807478463285,
1620,
1919,
0.25325955683365464,
1,
0.9189571551978588,
"leaky_relu",
"normal"
],
[
28,
1753977530,
29,
1753977559,
1753977565,
6,
"python3 .tests\/mnist\/train --epochs 107 --learning_rate 0.07199988429454155792 --batch_size 1342 --hidden_size 1769 --dropout 0.32366933673620223999 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.23181205429136753082",
"",
1,
"",
"c150",
531341,
"28_0",
"FAILED",
"SOBOL",
107,
0.07199988429454156,
1342,
1769,
0.32366933673620224,
2,
0.23181205429136753,
"leaky_relu",
"normal"
],
[
29,
1753977614,
5,
1753977619,
1753977625,
6,
"python3 .tests\/mnist\/train --epochs 25 --learning_rate 0.04508059398836457288 --batch_size 65 --hidden_size 494 --dropout 0.22624882031232118607 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.80710211955010890961",
"",
1,
"",
"c150",
531342,
"29_0",
"FAILED",
"SOBOL",
25,
0.04508059398836457,
65,
494,
0.22624882031232119,
3,
0.8071021195501089,
"leaky_relu",
"normal"
],
[
30,
1753977719,
42,
1753977761,
1753977767,
6,
"python3 .tests\/mnist\/train --epochs 58 --learning_rate 0.08797404794572853681 --batch_size 1894 --hidden_size 1458 --dropout 0.00565825402736663818 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.47638684976845979691",
"",
1,
"",
"c137",
531348,
"30_0",
"FAILED",
"SOBOL",
58,
0.08797404794572854,
1894,
1458,
0.005658254027366638,
4,
0.4763868497684598,
"leaky_relu",
"normal"
],
[
31,
1753977788,
11,
1753977799,
1753977805,
6,
"python3 .tests\/mnist\/train --epochs 170 --learning_rate 0.01641696454738266961 --batch_size 620 --hidden_size 678 --dropout 0.41507523972541093826 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.54764243308454751968",
"",
1,
"",
"c137",
531350,
"31_0",
"FAILED",
"SOBOL",
170,
0.01641696454738267,
620,
678,
0.41507523972541094,
1,
0.5476424330845475,
"leaky_relu",
"normal"
],
[
32,
1753977881,
8,
1753977889,
1753977895,
6,
"python3 .tests\/mnist\/train --epochs 165 --learning_rate 0.07053280997264199659 --batch_size 158 --hidden_size 164 --dropout 0.21103275800123810768 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.39579505473375320435",
"",
1,
"",
"c137",
531353,
"32_0",
"FAILED",
"SOBOL",
165,
0.070532809972642,
158,
164,
0.2110327580012381,
1,
0.3957950547337532,
"leaky_relu",
"normal"
],
[
33,
1753977956,
39,
1753977995,
1753978001,
6,
"python3 .tests\/mnist\/train --epochs 63 --learning_rate 0.04989835476615466642 --batch_size 1431 --hidden_size 1939 --dropout 0.36411578161641955376 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.56477196887135505676",
"",
1,
"",
"c141",
531355,
"33_0",
"FAILED",
"SOBOL",
63,
0.049898354766154666,
1431,
1939,
0.36411578161641955,
4,
0.5647719688713551,
"leaky_relu",
"normal"
],
[
34,
1753978044,
32,
1753978076,
1753978082,
6,
"python3 .tests\/mnist\/train --epochs 24 --learning_rate 0.09293829185978509655 --batch_size 718 --hidden_size 986 --dropout 0.39720258349552750587 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.1562294280156493187",
"",
1,
"",
"c153",
531356,
"34_0",
"FAILED",
"SOBOL",
24,
0.0929382918597851,
718,
986,
0.3972025834955275,
3,
0.15622942801564932,
"leaky_relu",
"normal"
],
[
35,
1753978148,
11,
1753978159,
1753978165,
6,
"python3 .tests\/mnist\/train --epochs 108 --learning_rate 0.01519399302671663524 --batch_size 1995 --hidden_size 1246 --dropout 0.05712310923263430595 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.82117561530321836472",
"",
1,
"",
"c156",
531358,
"35_0",
"FAILED",
"SOBOL",
108,
0.015193993026716635,
1995,
1246,
0.057123109232634306,
2,
0.8211756153032184,
"leaky_relu",
"normal"
],
[
36,
1753978275,
35,
1753978310,
1753978316,
6,
"python3 .tests\/mnist\/train --epochs 138 --learning_rate 0.08089843831927516493 --batch_size 1190 --hidden_size 1350 --dropout 0.11160269845277070999 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.00830644089728593826",
"",
1,
"",
"c156",
531360,
"36_0",
"FAILED",
"SOBOL",
138,
0.08089843831927516,
1190,
1350,
0.11160269845277071,
1,
0.008306440897285938,
"leaky_relu",
"normal"
],
[
37,
1753978351,
17,
1753978368,
1753978374,
6,
"python3 .tests\/mnist\/train --epochs 54 --learning_rate 0.00163976373727433406 --batch_size 424 --hidden_size 594 --dropout 0.46730718761682510376 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.96835950110107660294",
"",
1,
"",
"c156",
531362,
"37_0",
"FAILED",
"SOBOL",
54,
0.001639763737274334,
424,
594,
0.4673071876168251,
4,
0.9683595011010766,
"leaky_relu",
"normal"
],
[
38,
1753978455,
3,
1753978458,
1753978465,
7,
"python3 .tests\/mnist\/train --epochs 93 --learning_rate 0.05878971020105295403 --batch_size 1789 --hidden_size 1549 --dropout 0.30946071166545152664 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.25213879533112049103",
"",
1,
"",
"c156",
531363,
"38_0",
"FAILED",
"SOBOL",
93,
0.058789710201052954,
1789,
1549,
0.3094607116654515,
3,
0.2521387953311205,
"leaky_relu",
"normal"
],
[
39,
1753978541,
7,
1753978549,
1753978555,
6,
"python3 .tests\/mnist\/train --epochs 195 --learning_rate 0.03644711200320162325 --batch_size 1028 --hidden_size 268 --dropout 0.14075267314910888672 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.70816215686500072479",
"",
1,
"",
"c156",
531364,
"39_0",
"FAILED",
"SOBOL",
195,
0.03644711200320162,
1028,
268,
0.1407526731491089,
2,
0.7081621568650007,
"leaky_relu",
"normal"
],
[
40,
1753978691,
8,
1753978699,
1753978705,
6,
"python3 .tests\/mnist\/train --epochs 179 --learning_rate 0.09592522566143424356 --batch_size 1549 --hidden_size 645 --dropout 0.34300212794914841652 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.10636038053780794144",
"",
1,
"",
"c156",
531366,
"40_0",
"FAILED",
"SOBOL",
179,
0.09592522566143424,
1549,
645,
0.3430021279491484,
2,
0.10636038053780794,
"leaky_relu",
"normal"
],
[
41,
1753978736,
23,
1753978759,
1753978765,
6,
"python3 .tests\/mnist\/train --epochs 96 --learning_rate 0.02447826722199097568 --batch_size 782 --hidden_size 1427 --dropout 0.238257646095007658 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.93353804294019937515",
"",
1,
"",
"c156",
531367,
"41_0",
"FAILED",
"SOBOL",
96,
0.024478267221990976,
782,
1427,
0.23825764609500766,
3,
0.9335380429401994,
"leaky_relu",
"normal"
],
[
42,
1753978819,
30,
1753978849,
1753978855,
6,
"python3 .tests\/mnist\/train --epochs 34 --learning_rate 0.067564071463067088 --batch_size 1112 --hidden_size 462 --dropout 0.01720925653353333473 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.34994667209684848785",
"",
1,
"",
"c156",
531373,
"42_0",
"FAILED",
"SOBOL",
34,
0.06756407146306709,
1112,
462,
0.017209256533533335,
4,
0.3499466720968485,
"leaky_relu",
"normal"
],
[
43,
1753978899,
10,
1753978909,
1753978915,
6,
"python3 .tests\/mnist\/train --epochs 146 --learning_rate 0.04053443866278976654 --batch_size 350 --hidden_size 1737 --dropout 0.4349267701618373394 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.67309836111962795258",
"",
1,
"",
"c156",
531374,
"43_0",
"FAILED",
"SOBOL",
146,
0.04053443866278977,
350,
1737,
0.43492677016183734,
1,
0.673098361119628,
"leaky_relu",
"normal"
],
[
44,
1753978988,
11,
1753978999,
1753979005,
6,
"python3 .tests\/mnist\/train --epochs 128 --learning_rate 0.05548447751985863957 --batch_size 581 --hidden_size 1888 --dropout 0.48964288551360368729 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.48548714816570281982",
"",
1,
"",
"c156",
531375,
"44_0",
"FAILED",
"SOBOL",
128,
0.05548447751985864,
581,
1888,
0.4896428855136037,
2,
0.4854871481657028,
"leaky_relu",
"normal"
],
[
45,
1753979068,
21,
1753979089,
1753979095,
6,
"python3 .tests\/mnist\/train --epochs 16 --learning_rate 0.02703830617081374316 --batch_size 1854 --hidden_size 89 --dropout 0.08755035698413848877 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.53733567520976066589",
"",
1,
"",
"c156",
531376,
"45_0",
"FAILED",
"SOBOL",
16,
0.027038306170813743,
1854,
89,
0.08755035698413849,
3,
0.5373356752097607,
"leaky_relu",
"normal"
],
[
46,
1753979194,
15,
1753979209,
1753979215,
6,
"python3 .tests\/mnist\/train --epochs 78 --learning_rate 0.08413628258187323683 --batch_size 104 --hidden_size 1050 --dropout 0.18335079122334718704 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.24567551817744970322",
"",
1,
"",
"c156",
531378,
"46_0",
"FAILED",
"SOBOL",
78,
0.08413628258187324,
104,
1050,
0.1833507912233472,
4,
0.2456755181774497,
"leaky_relu",
"normal"
],
[
47,
1753979316,
31,
1753979347,
1753979354,
7,
"python3 .tests\/mnist\/train --epochs 161 --learning_rate 0.0110790183512307714 --batch_size 1381 --hidden_size 798 --dropout 0.2724702879786491394 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.79349716287106275558",
"",
1,
"",
"c156",
531379,
"47_0",
"FAILED",
"SOBOL",
161,
0.011079018351230771,
1381,
798,
0.27247028797864914,
1,
0.7934971628710628,
"leaky_relu",
"normal"
],
[
48,
1753979427,
22,
1753979449,
1753979455,
6,
"python3 .tests\/mnist\/train --epochs 153 --learning_rate 0.0860993135013803923 --batch_size 888 --hidden_size 1624 --dropout 0.03856775630265474319 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.62271718122065067291",
"",
1,
"",
"c156",
531380,
"48_0",
"FAILED",
"SOBOL",
153,
0.08609931350138039,
888,
1624,
0.03856775630265474,
3,
0.6227171812206507,
"leaky_relu",
"normal"
],
[
49,
1753979503,
27,
1753979530,
1753979536,
6,
"python3 .tests\/mnist\/train --epochs 75 --learning_rate 0.00913582187386229733 --batch_size 1651 --hidden_size 352 --dropout 0.38646105676889419556 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.41669194959104061127",
"",
1,
"",
"c156",
531382,
"49_0",
"FAILED",
"SOBOL",
75,
0.009135821873862297,
1651,
352,
0.3864610567688942,
2,
0.4166919495910406,
"leaky_relu",
"normal"
],
[
50,
1753979617,
12,
1753979629,
1753979635,
6,
"python3 .tests\/mnist\/train --epochs 12 --learning_rate 0.05197739815646783279 --batch_size 308 --hidden_size 1313 --dropout 0.35337425488978624344 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.86630352307111024857",
"",
1,
"",
"c156",
531383,
"50_0",
"FAILED",
"SOBOL",
12,
0.05197739815646783,
308,
1313,
0.35337425488978624,
1,
0.8663035230711102,
"leaky_relu",
"normal"
],
[
51,
1753979730,
20,
1753979750,
1753979756,
6,
"python3 .tests\/mnist\/train --epochs 120 --learning_rate 0.03056216852370649897 --batch_size 1074 --hidden_size 535 --dropout 0.19247740507125854492 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.15625233296304941177",
"",
1,
"",
"c156",
531386,
"51_0",
"FAILED",
"SOBOL",
120,
0.0305621685237065,
1074,
535,
0.19247740507125854,
4,
0.1562523329630494,
"leaky_relu",
"normal"
],
[
52,
1753979852,
18,
1753979870,
1753979876,
6,
"python3 .tests\/mnist\/train --epochs 150 --learning_rate 0.06562696448126807691 --batch_size 1863 --hidden_size 909 --dropout 0.13782233977690339088 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.9691301276907324791",
"",
1,
"",
"c156",
531387,
"52_0",
"FAILED",
"SOBOL",
150,
0.06562696448126808,
1863,
909,
0.1378223397769034,
3,
0.9691301276907325,
"leaky_relu",
"normal"
],
[
53,
1753979944,
16,
1753979960,
1753979966,
6,
"python3 .tests\/mnist\/train --epochs 42 --learning_rate 0.04250358589727432079 --batch_size 587 --hidden_size 1164 --dropout 0.28309417469426989555 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.05418199580162763596",
"",
1,
"",
"c156",
531389,
"53_0",
"FAILED",
"SOBOL",
42,
0.04250358589727432,
587,
1164,
0.2830941746942699,
2,
0.054181995801627636,
"leaky_relu",
"normal"
],
[
54,
1753980089,
21,
1753980110,
1753980116,
6,
"python3 .tests\/mnist\/train --epochs 104 --learning_rate 0.09945517750989646411 --batch_size 1307 --hidden_size 199 --dropout 0.44094065064564347267 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.72931841015815734863",
"",
1,
"",
"c156",
531391,
"54_0",
"FAILED",
"SOBOL",
104,
0.09945517750989646,
1307,
199,
0.4409406506456435,
1,
0.7293184101581573,
"leaky_relu",
"normal"
],
[
55,
1753980168,
34,
1753980202,
1753980208,
6,
"python3 .tests\/mnist\/train --epochs 183 --learning_rate 0.02097730417357757809 --batch_size 35 --hidden_size 2000 --dropout 0.10867236508056521416 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.31034344062209129333",
"",
1,
"",
"c152",
531392,
"55_0",
"FAILED",
"SOBOL",
183,
0.020977304173577578,
35,
2000,
0.10867236508056521,
4,
0.3103434406220913,
"leaky_relu",
"normal"
],
[
56,
1753980285,
5,
1753980290,
1753980296,
6,
"python3 .tests\/mnist\/train --epochs 191 --learning_rate 0.06151217139552347946 --batch_size 1521 --hidden_size 1103 --dropout 0.40660580713301897049 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.87894967850297689438",
"",
1,
"",
"c156",
531393,
"56_0",
"FAILED",
"SOBOL",
191,
0.06151217139552348,
1521,
1103,
0.40660580713301897,
4,
0.8789496785029769,
"leaky_relu",
"normal"
],
[
57,
1753980404,
6,
1753980410,
1753980416,
6,
"python3 .tests\/mnist\/train --epochs 84 --learning_rate 0.03370176491395571183 --batch_size 244 --hidden_size 841 --dropout 0.01232708990573883057 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.08112996350973844528",
"",
1,
"",
"c156",
531394,
"57_0",
"FAILED",
"SOBOL",
84,
0.03370176491395571,
244,
841,
0.01232708990573883,
1,
0.08112996350973845,
"leaky_relu",
"normal"
],
[
58,
1753980489,
11,
1753980500,
1753980506,
6,
"python3 .tests\/mnist\/train --epochs 45 --learning_rate 0.07659531124928034562 --batch_size 1969 --hidden_size 1797 --dropout 0.23337547946721315384 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.63938411325216293335",
"",
1,
"",
"c156",
531396,
"58_0",
"FAILED",
"SOBOL",
45,
0.07659531124928035,
1969,
1797,
0.23337547946721315,
2,
0.6393841132521629,
"leaky_relu",
"normal"
],
[
59,
1753980574,
16,
1753980590,
1753980596,
6,
"python3 .tests\/mnist\/train --epochs 134 --learning_rate 0.00592915927040390655 --batch_size 697 --hidden_size 20 --dropout 0.31468116492033004761 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.33753365650773048401",
"",
1,
"",
"c156",
531398,
"59_0",
"FAILED",
"SOBOL",
134,
0.0059291592704039065,
697,
20,
0.31468116492033005,
3,
0.3375336565077305,
"leaky_relu",
"normal"
],
[
60,
1753980743,
27,
1753980770,
1753980777,
7,
"python3 .tests\/mnist\/train --epochs 116 --learning_rate 0.09018682845556177941 --batch_size 481 --hidden_size 411 --dropout 0.25977431470528244972 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.52515156753361225128",
"",
1,
"",
"c156",
531399,
"60_0",
"FAILED",
"SOBOL",
116,
0.09018682845556178,
481,
411,
0.25977431470528245,
4,
0.5251515675336123,
"leaky_relu",
"normal"
],
[
61,
1753980806,
38,
1753980844,
1753980850,
6,
"python3 .tests\/mnist\/train --epochs 28 --learning_rate 0.01791036472561769247 --batch_size 1244 --hidden_size 1692 --dropout 0.1628436441533267498 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.45200176350772380829",
"",
1,
"",
"c143",
531408,
"61_0",
"FAILED",
"SOBOL",
28,
0.017910364725617692,
1244,
1692,
0.16284364415332675,
1,
0.4520017635077238,
"leaky_relu",
"normal"
],
[
62,
1753980883,
9,
1753980892,
1753980899,
7,
"python3 .tests\/mnist\/train --epochs 66 --learning_rate 0.07481608919079416053 --batch_size 906 --hidden_size 738 --dropout 0.06704320991411805153 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.7689838828518986702",
"",
1,
"",
"c143",
531410,
"62_0",
"FAILED",
"SOBOL",
66,
0.07481608919079416,
906,
738,
0.06704320991411805,
2,
0.7689838828518987,
"leaky_relu",
"normal"
],
[
63,
1753980987,
25,
1753981012,
1753981019,
7,
"python3 .tests\/mnist\/train --epochs 173 --learning_rate 0.04558913820059039279 --batch_size 1672 --hidden_size 1493 --dropout 0.4769469122402369976 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.19180433545261621475",
"",
1,
"",
"c143",
531412,
"63_0",
"FAILED",
"SOBOL",
173,
0.04558913820059039,
1672,
1493,
0.476946912240237,
3,
0.19180433545261621,
"leaky_relu",
"normal"
],
[
64,
1753981080,
22,
1753981102,
1753981108,
6,
"python3 .tests\/mnist\/train --epochs 172 --learning_rate 0.05807734835951589708 --batch_size 974 --hidden_size 866 --dropout 0.3617018992081284523 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.01645461004227399826",
"",
1,
"",
"c143",
531413,
"64_0",
"FAILED",
"SOBOL",
172,
0.0580773483595159,
974,
866,
0.36170189920812845,
4,
0.016454610042273998,
"leaky_relu",
"normal"
],
[
65,
1753981168,
42,
1753981210,
1753981217,
7,
"python3 .tests\/mnist\/train --epochs 68 --learning_rate 0.03735784732048400697 --batch_size 1740 --hidden_size 1110 --dropout 0.21742163971066474915 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.9450746169313788414",
"",
1,
"",
"c143",
531415,
"65_0",
"FAILED",
"SOBOL",
68,
0.03735784732048401,
1740,
1110,
0.21742163971066475,
1,
0.9450746169313788,
"leaky_relu",
"normal"
],
[
66,
1753981273,
10,
1753981283,
1753981289,
6,
"python3 .tests\/mnist\/train --epochs 29 --learning_rate 0.08039624527809210996 --batch_size 413 --hidden_size 29 --dropout 0.0593462744727730751 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.27578994259238243103",
"",
1,
"",
"c143",
531417,
"66_0",
"FAILED",
"SOBOL",
29,
0.08039624527809211,
413,
29,
0.059346274472773075,
2,
0.27578994259238243,
"leaky_relu",
"normal"
],
[
67,
1753981355,
17,
1753981372,
1753981378,
6,
"python3 .tests\/mnist\/train --epochs 115 --learning_rate 0.00273701909697614655 --batch_size 1176 --hidden_size 1820 --dropout 0.39065351709723472595 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.70062428712844848633",
"",
1,
"",
"c143",
531418,
"67_0",
"FAILED",
"SOBOL",
115,
0.0027370190969761466,
1176,
1820,
0.3906535170972347,
3,
0.7006242871284485,
"leaky_relu",
"normal"
],
[
68,
1753981453,
9,
1753981462,
1753981468,
6,
"python3 .tests\/mnist\/train --epochs 133 --learning_rate 0.09345306394827553043 --batch_size 2045 --hidden_size 1670 --dropout 0.46117772767320275307 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.38776894472539424896",
"",
1,
"",
"c143",
531421,
"68_0",
"FAILED",
"SOBOL",
133,
0.09345306394827553,
2045,
1670,
0.46117772767320275,
4,
0.38776894472539425,
"leaky_relu",
"normal"
],
[
69,
1753981564,
19,
1753981583,
1753981589,
6,
"python3 .tests\/mnist\/train --epochs 47 --learning_rate 0.01408416904947720587 --batch_size 773 --hidden_size 402 --dropout 0.11424549994990229607 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.58793480135500431061",
"",
1,
"",
"c143",
531423,
"69_0",
"FAILED",
"SOBOL",
47,
0.014084169049477206,
773,
402,
0.1142454999499023,
1,
0.5879348013550043,
"leaky_relu",
"normal"
],
[
70,
1753981661,
12,
1753981673,
1753981679,
6,
"python3 .tests\/mnist\/train --epochs 86 --learning_rate 0.07123257637723348634 --batch_size 1445 --hidden_size 1486 --dropout 0.14707290986552834511 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.13245622161775827408",
"",
1,
"",
"c143",
531424,
"70_0",
"FAILED",
"SOBOL",
86,
0.07123257637723349,
1445,
1486,
0.14707290986552835,
2,
0.13245622161775827,
"leaky_relu",
"normal"
],
[
71,
1753981768,
27,
1753981795,
1753981801,
6,
"python3 .tests\/mnist\/train --epochs 189 --learning_rate 0.04900022531558760608 --batch_size 169 --hidden_size 713 --dropout 0.30697815446183085442 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.82883553672581911087",
"",
1,
"",
"c143",
531426,
"71_0",
"FAILED",
"SOBOL",
189,
0.049000225315587606,
169,
713,
0.30697815446183085,
3,
0.8288355367258191,
"leaky_relu",
"normal"
],
[
72,
1753981868,
17,
1753981885,
1753981891,
6,
"python3 .tests\/mnist\/train --epochs 184 --learning_rate 0.08348234533056617113 --batch_size 1367 --hidden_size 327 --dropout 0.23951315972954034805 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.47801033966243267059",
"",
1,
"",
"c143",
531427,
"72_0",
"FAILED",
"SOBOL",
184,
0.08348234533056617,
1367,
327,
0.23951315972954035,
3,
0.47801033966243267,
"leaky_relu",
"normal"
],
[
73,
1753981987,
40,
1753982027,
1753982033,
6,
"python3 .tests\/mnist\/train --epochs 103 --learning_rate 0.01192516657432541281 --batch_size 95 --hidden_size 1617 --dropout 0.33740539476275444031 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.56092576868832111359",
"",
1,
"",
"c143",
531428,
"73_0",
"FAILED",
"SOBOL",
103,
0.011925166574325413,
95,
1617,
0.33740539476275444,
2,
0.5609257686883211,
"leaky_relu",
"normal"
],
[
74,
1753982097,
31,
1753982128,
1753982135,
7,
"python3 .tests\/mnist\/train --epochs 40 --learning_rate 0.05500943167937920319 --batch_size 1804 --hidden_size 527 --dropout 0.43349573854357004166 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.22245164308696985245",
"",
1,
"",
"c143",
531429,
"74_0",
"FAILED",
"SOBOL",
40,
0.0550094316793792,
1804,
527,
0.43349573854357004,
1,
0.22245164308696985,
"leaky_relu",
"normal"
],
[
75,
1753982217,
27,
1753982244,
1753982250,
6,
"python3 .tests\/mnist\/train --epochs 151 --learning_rate 0.02809004601530730796 --batch_size 527 --hidden_size 1290 --dropout 0.02259996905922889709 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.80158431548625230789",
"",
1,
"",
"c143",
531430,
"75_0",
"FAILED",
"SOBOL",
151,
0.028090046015307308,
527,
1290,
0.022599969059228897,
4,
0.8015843154862523,
"leaky_relu",
"normal"
],
[
76,
1753982341,
23,
1753982364,
1753982370,
6,
"python3 .tests\/mnist\/train --epochs 122 --learning_rate 0.06802650994686409991 --batch_size 360 --hidden_size 1186 --dropout 0.09288768330588936806 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.11395927798002958298",
"",
1,
"",
"c143",
531435,
"76_0",
"FAILED",
"SOBOL",
122,
0.0680265099468641,
360,
1186,
0.09288768330588937,
3,
0.11395927798002958,
"leaky_relu",
"normal"
],
[
77,
1753982473,
13,
1753982486,
1753982492,
6,
"python3 .tests\/mnist\/train --epochs 10 --learning_rate 0.03949529276527465049 --batch_size 1126 --hidden_size 918 --dropout 0.48815843788906931877 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.90982586797326803207",
"",
1,
"",
"c143",
531436,
"77_0",
"FAILED",
"SOBOL",
10,
0.03949529276527465,
1126,
918,
0.4881584378890693,
2,
0.909825867973268,
"leaky_relu",
"normal"
],
[
78,
1753982634,
31,
1753982665,
1753982677,
12,
"python3 .tests\/mnist\/train --epochs 73 --learning_rate 0.09659173004031182397 --batch_size 836 --hidden_size 2007 --dropout 0.26730842003598809242 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.37304845824837684631",
"",
1,
"",
"c143",
531437,
"78_0",
"FAILED",
"SOBOL",
73,
0.09659173004031182,
836,
2007,
0.2673084200359881,
1,
0.37304845824837685,
"leaky_relu",
"normal"
],
[
79,
1753982791,
23,
1753982814,
1753982820,
6,
"python3 .tests\/mnist\/train --epochs 154 --learning_rate 0.02361953846162185428 --batch_size 1599 --hidden_size 224 --dropout 0.18504119990393519402 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.66513328999280929565",
"",
1,
"",
"c143",
531440,
"79_0",
"FAILED",
"SOBOL",
154,
0.023619538461621854,
1599,
224,
0.1850411999039352,
4,
0.6651332899928093,
"leaky_relu",
"normal"
],
[
80,
1753982963,
60,
1753983023,
1753983029,
6,
"python3 .tests\/mnist\/train --epochs 160 --learning_rate 0.09855591866426170744 --batch_size 53 --hidden_size 1433 --dropout 0.38772316882386803627 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.99241501186043024063",
"",
1,
"",
"c142",
531443,
"80_0",
"FAILED",
"SOBOL",
160,
0.09855591866426171,
53,
1433,
0.38772316882386804,
2,
0.9924150118604302,
"leaky_relu",
"normal"
],
[
81,
1753983070,
39,
1753983109,
1753983115,
6,
"python3 .tests\/mnist\/train --epochs 80 --learning_rate 0.0216782357324473568 --batch_size 1330 --hidden_size 671 --dropout 0.03297975240275263786 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.04603382665663957596",
"",
1,
"",
"c142",
531444,
"81_0",
"FAILED",
"SOBOL",
80,
0.021678235732447357,
1330,
671,
0.03297975240275264,
3,
0.046033826656639576,
"leaky_relu",
"normal"
],
[
82,
1753983234,
31,
1753983265,
1753983271,
6,
"python3 .tests\/mnist\/train --epochs 17 --learning_rate 0.06451829969843850265 --batch_size 632 --hidden_size 1760 --dropout 0.1910551176406443119 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.7368562798947095871",
"",
1,
"",
"c152",
531446,
"82_0",
"FAILED",
"SOBOL",
17,
0.0645182996984385,
632,
1760,
0.1910551176406443,
4,
0.7368562798947096,
"leaky_relu",
"normal"
],
[
83,
1753983349,
38,
1753983387,
1753983393,
6,
"python3 .tests\/mnist\/train --epochs 127 --learning_rate 0.04301723455056549045 --batch_size 1906 --hidden_size 471 --dropout 0.35877155093476176262 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.28669229336082935333",
"",
1,
"",
"c151",
531449,
"83_0",
"FAILED",
"SOBOL",
127,
0.04301723455056549,
1906,
471,
0.35877155093476176,
1,
0.28669229336082935,
"leaky_relu",
"normal"
],
[
84,
1753983511,
34,
1753983545,
1753983551,
6,
"python3 .tests\/mnist\/train --epochs 145 --learning_rate 0.05307424526518211838 --batch_size 1052 --hidden_size 80 --dropout 0.2884228164330124855 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.59955434873700141907",
"",
1,
"",
"c151",
531450,
"84_0",
"FAILED",
"SOBOL",
145,
0.05307424526518212,
1052,
80,
0.2884228164330125,
2,
0.5995543487370014,
"leaky_relu",
"normal"
],
[
85,
1753983659,
26,
1753983685,
1753983691,
6,
"python3 .tests\/mnist\/train --epochs 35 --learning_rate 0.0300603241348266631 --batch_size 290 --hidden_size 1864 --dropout 0.13633136823773384094 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.42471805959939956665",
"",
1,
"",
"c152",
531451,
"85_0",
"FAILED",
"SOBOL",
35,
0.030060324134826663,
290,
1864,
0.13633136823773384,
3,
0.42471805959939957,
"leaky_relu",
"normal"
],
[
86,
1753983780,
24,
1753983804,
1753983810,
6,
"python3 .tests\/mnist\/train --epochs 98 --learning_rate 0.08701040343083442374 --batch_size 1608 --hidden_size 774 --dropout 0.1035039583221077919 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.85864360164850950241",
"",
1,
"",
"c152",
531453,
"86_0",
"FAILED",
"SOBOL",
98,
0.08701040343083442,
1608,
774,
0.10350395832210779,
4,
0.8586436016485095,
"leaky_relu",
"normal"
],
[
87,
1753983901,
24,
1753983925,
1753983931,
6,
"python3 .tests\/mnist\/train --epochs 178 --learning_rate 0.00842304582146927681 --batch_size 842 --hidden_size 1043 --dropout 0.44262238964438438416 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.18002553936094045639",
"",
1,
"",
"c152",
531455,
"87_0",
"FAILED",
"SOBOL",
178,
0.008423045821469277,
842,
1043,
0.4426223896443844,
1,
0.18002553936094046,
"leaky_relu",
"normal"
],
[
88,
1753984004,
9,
1753984013,
1753984019,
6,
"python3 .tests\/mnist\/train --epochs 196 --learning_rate 0.0739569581393059311 --batch_size 1714 --hidden_size 1933 --dropout 0.00990401068702340126 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.50156147405505180359",
"",
1,
"",
"c142",
531458,
"88_0",
"FAILED",
"SOBOL",
196,
0.07395695813930593,
1714,
1933,
0.009904010687023401,
1,
0.5015614740550518,
"leaky_relu",
"normal"
],
[
89,
1753984130,
43,
1753984173,
1753984179,
6,
"python3 .tests\/mnist\/train --epochs 91 --learning_rate 0.04625600911137648513 --batch_size 952 --hidden_size 139 --dropout 0.41298857657238841057 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.45947857201099395752",
"",
1,
"",
"c151",
531460,
"89_0",
"FAILED",
"SOBOL",
91,
0.046256009111376485,
952,
139,
0.4129885765723884,
4,
0.45947857201099396,
"leaky_relu",
"normal"
],
[
90,
1753984245,
31,
1753984276,
1753984282,
6,
"python3 .tests\/mnist\/train --epochs 52 --learning_rate 0.08914804313008674319 --batch_size 1265 --hidden_size 1223 --dropout 0.31689823279157280922 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.76089673023670911789",
"",
1,
"",
"c151",
531461,
"90_0",
"FAILED",
"SOBOL",
52,
0.08914804313008674,
1265,
1223,
0.3168982327915728,
3,
0.7608967302367091,
"leaky_relu",
"normal"
],
[
91,
1753984370,
4,
1753984374,
1753984381,
7,
"python3 .tests\/mnist\/train --epochs 140 --learning_rate 0.01837240687816403886 --batch_size 500 --hidden_size 976 --dropout 0.22681720135733485222 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.21502821054309606552",
"",
1,
"",
"c151",
531462,
"91_0",
"FAILED",
"SOBOL",
140,
0.01837240687816404,
500,
976,
0.22681720135733485,
2,
0.21502821054309607,
"leaky_relu",
"normal"
],
[
92,
1753984486,
8,
1753984494,
1753984500,
6,
"python3 .tests\/mnist\/train --epochs 110 --learning_rate 0.07764593957831152082 --batch_size 651 --hidden_size 603 --dropout 0.15672022197395563126 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.90266185346990823746",
"",
1,
"",
"c142",
531465,
"92_0",
"FAILED",
"SOBOL",
110,
0.07764593957831152,
651,
603,
0.15672022197395563,
1,
0.9026618534699082,
"leaky_relu",
"normal"
],
[
93,
1753984559,
26,
1753984585,
1753984591,
6,
"python3 .tests\/mnist\/train --epochs 22 --learning_rate 0.00545528454407118255 --batch_size 1927 --hidden_size 1373 --dropout 0.2624262683093547821 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.07353106606751680374",
"",
1,
"",
"c152",
531468,
"93_0",
"FAILED",
"SOBOL",
22,
0.0054552845440711826,
1927,
1373,
0.2624262683093548,
4,
0.0735310660675168,
"leaky_relu",
"normal"
],
[
94,
1753984697,
8,
1753984705,
1753984711,
6,
"python3 .tests\/mnist\/train --epochs 61 --learning_rate 0.06235949669263326361 --batch_size 226 --hidden_size 292 --dropout 0.48327628616243600845 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.64734918437898159027",
"",
1,
"",
"c152",
531473,
"94_0",
"FAILED",
"SOBOL",
61,
0.062359496692633264,
226,
292,
0.483276286162436,
3,
0.6473491843789816,
"leaky_relu",
"normal"
],
[
95,
1753984788,
8,
1753984796,
1753984802,
6,
"python3 .tests\/mnist\/train --epochs 166 --learning_rate 0.03304671018731780707 --batch_size 1499 --hidden_size 1557 --dropout 0.0645667053759098053 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.31443187035620212555",
"",
1,
"",
"c152",
531474,
"95_0",
"FAILED",
"SOBOL",
166,
0.03304671018731781,
1499,
1557,
0.0645667053759098,
2,
0.3144318703562021,
"leaky_relu",
"normal"
],
[
96,
1753984921,
33,
1753984954,
1753984961,
7,
"python3 .tests\/mnist\/train --epochs 169 --learning_rate 0.07894938012505882396 --batch_size 1834 --hidden_size 1075 --dropout 0.29985149530693888664 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.72311420273035764694",
"",
1,
"",
"c152",
531475,
"96_0",
"FAILED",
"SOBOL",
169,
0.07894938012505882,
1834,
1075,
0.2998514953069389,
2,
0.7231142027303576,
"leaky_relu",
"normal"
],
[
97,
1753985015,
34,
1753985049,
1753985056,
7,
"python3 .tests\/mnist\/train --epochs 59 --learning_rate 0.0004716021466348321 --batch_size 561 --hidden_size 805 --dropout 0.15606108168140053749 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.30017407890409231186",
"",
1,
"",
"c152",
531476,
"97_0",
"FAILED",
"SOBOL",
59,
0.0004716021466348321,
561,
805,
0.15606108168140054,
3,
0.3001740789040923,
"leaky_relu",
"normal"
],
[
98,
1753985144,
11,
1753985155,
1753985161,
6,
"python3 .tests\/mnist\/train --epochs 26 --learning_rate 0.05761991709643044662 --batch_size 1401 --hidden_size 1896 --dropout 0.12271493254229426384 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.9831918962299823761",
"",
1,
"",
"c152",
531477,
"98_0",
"FAILED",
"SOBOL",
26,
0.05761991709643045,
1401,
1896,
0.12271493254229426,
4,
0.9831918962299824,
"leaky_relu",
"normal"
],
[
99,
1753985258,
17,
1753985275,
1753985281,
6,
"python3 .tests\/mnist\/train --epochs 106 --learning_rate 0.03449663387033157641 --batch_size 124 --hidden_size 112 --dropout 0.45450889179483056068 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.05646137148141860962",
"",
1,
"",
"c152",
531479,
"99_0",
"FAILED",
"SOBOL",
106,
0.034496633870331576,
124,
112,
0.45450889179483056,
1,
0.05646137148141861,
"leaky_relu",
"normal"
],
[
100,
1753985419,
6,
1753985425,
1753985431,
6,
"python3 .tests\/mnist\/train --epochs 136 --learning_rate 0.06935850822755135203 --batch_size 802 --hidden_size 503 --dropout 0.39973175153136253357 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.86884397082030773163",
"",
1,
"",
"c142",
531481,
"100_0",
"FAILED",
"SOBOL",
136,
0.06935850822755135,
802,
503,
0.39973175153136253,
2,
0.8688439708203077,
"leaky_relu",
"normal"
],
[
101,
1753985542,
49,
1753985591,
1753985597,
6,
"python3 .tests\/mnist\/train --epochs 56 --learning_rate 0.04794318323689513578 --batch_size 1569 --hidden_size 1792 --dropout 0.05231277737766504288 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.1705737430602312088",
"",
1,
"",
"c142",
531482,
"101_0",
"FAILED",
"SOBOL",
56,
0.047943183236895136,
1569,
1792,
0.05231277737766504,
3,
0.1705737430602312,
"leaky_relu",
"normal"
],
[
102,
1753985641,
35,
1753985676,
1753985682,
6,
"python3 .tests\/mnist\/train --epochs 89 --learning_rate 0.09098167357246392251 --batch_size 330 --hidden_size 702 --dropout 0.21090688183903694153 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.61231964919716119766",
"",
1,
"",
"c142",
531485,
"102_0",
"FAILED",
"SOBOL",
89,
0.09098167357246392,
330,
702,
0.21090688183903694,
4,
0.6123196491971612,
"leaky_relu",
"normal"
],
[
103,
1753985784,
31,
1753985815,
1753985821,
6,
"python3 .tests\/mnist\/train --epochs 198 --learning_rate 0.01401808658705093122 --batch_size 1092 --hidden_size 1465 --dropout 0.37032231036573648453 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.41026004869490861893",
"",
1,
"",
"c142",
531488,
"103_0",
"FAILED",
"SOBOL",
198,
0.014018086587050931,
1092,
1465,
0.3703223103657365,
1,
0.4102600486949086,
"leaky_relu",
"normal"
],
[
104,
1753985916,
19,
1753985935,
1753985942,
7,
"python3 .tests\/mnist\/train --epochs 181 --learning_rate 0.05431036313813180499 --batch_size 444 --hidden_size 1588 --dropout 0.1759617137722671032 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.7791556771844625473",
"",
1,
"",
"c142",
531490,
"104_0",
"FAILED",
"SOBOL",
181,
0.054310363138131805,
444,
1588,
0.1759617137722671,
1,
0.7791556771844625,
"leaky_relu",
"normal"
],
[
105,
1753986049,
6,
1753986055,
1753986061,
6,
"python3 .tests\/mnist\/train --epochs 94 --learning_rate 0.025083316790033134 --batch_size 1210 --hidden_size 324 --dropout 0.27434328803792595863 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.19800623692572116852",
"",
1,
"",
"c142",
531491,
"105_0",
"FAILED",
"SOBOL",
94,
0.025083316790033134,
1210,
324,
0.27434328803792596,
4,
0.19800623692572117,
"leaky_relu",
"normal"
],
[
106,
1753986195,
12,
1753986207,
1753986213,
6,
"python3 .tests\/mnist\/train --epochs 37 --learning_rate 0.08217985240289941984 --batch_size 1008 --hidden_size 1405 --dropout 0.49467444745823740959 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.52286975923925638199",
"",
1,
"",
"c142",
531495,
"106_0",
"FAILED",
"SOBOL",
37,
0.08217985240289942,
1008,
1405,
0.4946744474582374,
3,
0.5228697592392564,
"leaky_relu",
"normal"
],
[
107,
1753986277,
18,
1753986295,
1753986301,
6,
"python3 .tests\/mnist\/train --epochs 142 --learning_rate 0.00990329331506043659 --batch_size 1770 --hidden_size 635 --dropout 0.08426590124145150185 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.43794230092316865921",
"",
1,
"",
"c142",
531497,
"107_0",
"FAILED",
"SOBOL",
142,
0.009903293315060437,
1770,
635,
0.0842659012414515,
2,
0.43794230092316866,
"leaky_relu",
"normal"
],
[
108,
1753986402,
13,
1753986415,
1753986422,
7,
"python3 .tests\/mnist\/train --epochs 125 --learning_rate 0.09397634961569682754 --batch_size 1412 --hidden_size 1008 --dropout 0.02972525730729103088 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.62506406288594007492",
"",
1,
"",
"c142",
531498,
"108_0",
"FAILED",
"SOBOL",
125,
0.09397634961569683,
1412,
1008,
0.02972525730729103,
1,
0.6250640628859401,
"leaky_relu",
"normal"
],
[
109,
1753986527,
8,
1753986535,
1753986541,
6,
"python3 .tests\/mnist\/train --epochs 19 --learning_rate 0.02331029299471527524 --batch_size 138 --hidden_size 1255 --dropout 0.42450881842523813248 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.33499173726886510849",
"",
1,
"",
"c142",
531502,
"109_0",
"FAILED",
"SOBOL",
19,
0.023310292994715275,
138,
1255,
0.42450881842523813,
4,
0.3349917372688651,
"leaky_relu",
"normal"
],
[
110,
1753986643,
13,
1753986656,
1753986662,
6,
"python3 .tests\/mnist\/train --epochs 76 --learning_rate 0.06639445976193994459 --batch_size 2015 --hidden_size 171 --dropout 0.32893733307719230652 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.88538021966814994812",
"",
1,
"",
"c142",
531503,
"110_0",
"FAILED",
"SOBOL",
76,
0.06639445976193994,
2015,
171,
0.3289373330771923,
3,
0.88538021966815,
"leaky_relu",
"normal"
],
[
111,
1753986761,
34,
1753986795,
1753986801,
6,
"python3 .tests\/mnist\/train --epochs 164 --learning_rate 0.03858414863826707675 --batch_size 738 --hidden_size 1965 --dropout 0.24618074391037225723 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.09152896702289581299",
"",
1,
"",
"c142",
531504,
"111_0",
"FAILED",
"SOBOL",
164,
0.03858414863826708,
738,
1965,
0.24618074391037226,
2,
0.09152896702289581,
"leaky_relu",
"normal"
],
[
112,
1753986884,
12,
1753986896,
1753986902,
6,
"python3 .tests\/mnist\/train --epochs 157 --learning_rate 0.0636719985674694261 --batch_size 1232 --hidden_size 745 --dropout 0.44962674006819725037 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.26230935100466012955",
"",
1,
"",
"c142",
531505,
"112_0",
"FAILED",
"SOBOL",
157,
0.06367199856746943,
1232,
745,
0.44962674006819725,
4,
0.26230935100466013,
"leaky_relu",
"normal"
],
[
113,
1753987013,
43,
1753987056,
1753987063,
7,
"python3 .tests\/mnist\/train --epochs 71 --learning_rate 0.04132949572751299511 --batch_size 469 --hidden_size 1518 --dropout 0.09439395461231470108 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.7143632667139172554",
"",
1,
"",
"c142",
531507,
"113_0",
"FAILED",
"SOBOL",
71,
0.041329495727512995,
469,
1518,
0.0943939546123147,
1,
0.7143632667139173,
"leaky_relu",
"normal"
],
[
114,
1753987163,
34,
1753987197,
1753987203,
6,
"python3 .tests\/mnist\/train --epochs 14 --learning_rate 0.09827947668569163298 --batch_size 1684 --hidden_size 434 --dropout 0.12774010375142097473 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.00602348707616329193",
"",
1,
"",
"c142",
531508,
"114_0",
"FAILED",
"SOBOL",
14,
0.09827947668569163,
1684,
434,
0.12774010375142097,
2,
0.006023487076163292,
"leaky_relu",
"normal"
],
[
115,
1753987296,
21,
1753987317,
1753987323,
6,
"python3 .tests\/mnist\/train --epochs 118 --learning_rate 0.0190208974615857021 --batch_size 918 --hidden_size 1701 --dropout 0.29496934358030557632 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.95429939962923526764",
"",
1,
"",
"c142",
531510,
"115_0",
"FAILED",
"SOBOL",
118,
0.019020897461585702,
918,
1701,
0.2949693435803056,
3,
0.9542993996292353,
"leaky_relu",
"normal"
],
[
116,
1753987430,
6,
1753987436,
1753987442,
6,
"python3 .tests\/mnist\/train --epochs 148 --learning_rate 0.08493131580712273698 --batch_size 256 --hidden_size 1851 --dropout 0.34981514839455485344 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.1419101618230342865",
"",
1,
"",
"c142",
531512,
"116_0",
"FAILED",
"SOBOL",
148,
0.08493131580712274,
256,
1851,
0.34981514839455485,
4,
0.1419101618230343,
"leaky_relu",
"normal"
],
[
117,
1753987576,
11,
1753987587,
1753987593,
6,
"python3 .tests\/mnist\/train --epochs 44 --learning_rate 0.00718692161615937936 --batch_size 1533 --hidden_size 61 --dropout 0.19821092346683144569 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.81863492727279663086",
"",
1,
"",
"c142",
531513,
"117_0",
"FAILED",
"SOBOL",
44,
0.007186921616159379,
1533,
61,
0.19821092346683145,
1,
0.8186349272727966,
"leaky_relu",
"normal"
],
[
118,
1753987647,
29,
1753987676,
1753987682,
6,
"python3 .tests\/mnist\/train --epochs 101 --learning_rate 0.05002708391997964105 --batch_size 685 --hidden_size 1142 --dropout 0.03961681900545954704 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.40222624223679304123",
"",
1,
"",
"c142",
531514,
"118_0",
"FAILED",
"SOBOL",
101,
0.05002708391997964,
685,
1142,
0.03961681900545955,
2,
0.40222624223679304,
"leaky_relu",
"normal"
],
[
119,
1753987770,
26,
1753987796,
1753987802,
6,
"python3 .tests\/mnist\/train --epochs 187 --learning_rate 0.02939253335559740762 --batch_size 1957 --hidden_size 898 --dropout 0.37922458956018090248 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.57517212536185979843",
"",
1,
"",
"c142",
531515,
"119_0",
"FAILED",
"SOBOL",
187,
0.029392533355597408,
1957,
898,
0.3792245895601809,
3,
0.5751721253618598,
"leaky_relu",
"normal"
],
[
120,
1753987917,
30,
1753987947,
1753987953,
6,
"python3 .tests\/mnist\/train --epochs 193 --learning_rate 0.08901864265295676704 --batch_size 599 --hidden_size 256 --dropout 0.07352435961365699768 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.23947194591164588928",
"",
1,
"",
"c142",
531516,
"120_0",
"FAILED",
"SOBOL",
193,
0.08901864265295677,
599,
256,
0.073524359613657,
3,
0.2394719459116459,
"leaky_relu",
"normal"
],
[
121,
1753988006,
31,
1753988037,
1753988043,
6,
"python3 .tests\/mnist\/train --epochs 82 --learning_rate 0.01596128306441940356 --batch_size 1875 --hidden_size 2039 --dropout 0.47611910942941904068 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.78332894295454025269",
"",
1,
"",
"c142",
531517,
"121_0",
"FAILED",
"SOBOL",
82,
0.015961283064419404,
1875,
2039,
0.47611910942941904,
2,
0.7833289429545403,
"leaky_relu",
"normal"
],
[
122,
1753988126,
31,
1753988157,
1753988163,
6,
"python3 .tests\/mnist\/train --epochs 49 --learning_rate 0.07286558759094216575 --batch_size 23 --hidden_size 949 --dropout 0.25578795000910758972 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.49954971205443143845",
"",
1,
"",
"c142",
531519,
"122_0",
"FAILED",
"SOBOL",
49,
0.07286558759094217,
23,
949,
0.2557879500091076,
1,
0.49954971205443144,
"leaky_relu",
"normal"
],
[
123,
1753988245,
32,
1753988277,
1753988283,
6,
"python3 .tests\/mnist\/train --epochs 131 --learning_rate 0.04441932088400237649 --batch_size 1295 --hidden_size 1218 --dropout 0.16522017214447259903 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.53961629327386617661",
"",
1,
"",
"c142",
531521,
"123_0",
"FAILED",
"SOBOL",
131,
0.044419320884002376,
1295,
1218,
0.1652201721444726,
4,
0.5396162932738662,
"leaky_relu",
"normal"
],
[
124,
1753988368,
29,
1753988397,
1753988403,
6,
"python3 .tests\/mnist\/train --epochs 113 --learning_rate 0.05955702407822945077 --batch_size 1639 --hidden_size 1322 --dropout 0.21981422184035181999 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.35248597059398889542",
"",
1,
"",
"c142",
531522,
"124_0",
"FAILED",
"SOBOL",
113,
0.05955702407822945,
1639,
1322,
0.21981422184035182,
3,
0.3524859705939889,
"leaky_relu",
"normal"
],
[
125,
1753988497,
20,
1753988517,
1753988523,
6,
"python3 .tests\/mnist\/train --epochs 31 --learning_rate 0.03252748663584702216 --batch_size 876 --hidden_size 558 --dropout 0.32600698480382561684 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.68741912860423326492",
"",
1,
"",
"c142",
531523,
"125_0",
"FAILED",
"SOBOL",
31,
0.03252748663584702,
876,
558,
0.3260069848038256,
2,
0.6874191286042333,
"leaky_relu",
"normal"
],
[
126,
1753988611,
26,
1753988637,
1753988644,
7,
"python3 .tests\/mnist\/train --epochs 64 --learning_rate 0.07541942827659658954 --batch_size 1086 --hidden_size 1649 --dropout 0.42157847015187144279 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.09596161358058452606",
"",
1,
"",
"c142",
531525,
"126_0",
"FAILED",
"SOBOL",
64,
0.07541942827659659,
1086,
1649,
0.42157847015187144,
1,
0.09596161358058453,
"leaky_relu",
"normal"
],
[
127,
1753988737,
20,
1753988757,
1753988763,
6,
"python3 .tests\/mnist\/train --epochs 175 --learning_rate 0.00397256519504822752 --batch_size 320 --hidden_size 359 --dropout 0.00335873523727059364 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.92710535414516925812",
"",
1,
"",
"c142",
531526,
"127_0",
"FAILED",
"SOBOL",
175,
0.0039725651950482275,
320,
359,
0.0033587352372705936,
4,
0.9271053541451693,
"leaky_relu",
"normal"
],
[
128,
1753988858,
45,
1753988903,
1753988909,
6,
"python3 .tests\/mnist\/train --epochs 176 --learning_rate 0.06787535501873120936 --batch_size 1611 --hidden_size 1716 --dropout 0.39323020912706851959 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.49038906116038560867",
"",
1,
"",
"c152",
531527,
"128_0",
"FAILED",
"SOBOL",
176,
0.06787535501873121,
1611,
1716,
0.3932302091270685,
2,
0.4903890611603856,
"leaky_relu",
"normal"
],
[
129,
1753988981,
18,
1753988999,
1753989005,
6,
"python3 .tests\/mnist\/train --epochs 63 --learning_rate 0.04022322588056326254 --batch_size 848 --hidden_size 452 --dropout 0.06094664987176656723 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.53241093549877405167",
"",
1,
"",
"c152",
531528,
"129_0",
"FAILED",
"SOBOL",
63,
0.04022322588056326,
848,
452,
0.06094664987176657,
3,
0.532410935498774,
"leaky_relu",
"normal"
],
[
130,
1753989091,
27,
1753989118,
1753989124,
6,
"python3 .tests\/mnist\/train --epochs 31 --learning_rate 0.09556518963702023695 --batch_size 1051 --hidden_size 1533 --dropout 0.21489831991493701935 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.24667875654995441437",
"",
1,
"",
"c152",
531529,
"130_0",
"FAILED",
"SOBOL",
31,
0.09556518963702024,
1051,
1533,
0.21489831991493702,
4,
0.24667875654995441,
"leaky_relu",
"normal"
],
[
131,
1753989219,
19,
1753989238,
1753989244,
6,
"python3 .tests\/mnist\/train --epochs 114 --learning_rate 0.02483837401984259619 --batch_size 284 --hidden_size 763 --dropout 0.36015491094440221786 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.79248623363673686981",
"",
1,
"",
"c152",
531530,
"131_0",
"FAILED",
"SOBOL",
114,
0.024838374019842596,
284,
763,
0.3601549109444022,
1,
0.7924862336367369,
"leaky_relu",
"normal"
],
[
132,
1753989335,
24,
1753989359,
1753989366,
7,
"python3 .tests\/mnist\/train --epochs 131 --learning_rate 0.08372739947579802 --batch_size 643 --hidden_size 881 --dropout 0.30562571203336119652 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.10535710304975509644",
"",
1,
"",
"c152",
531531,
"132_0",
"FAILED",
"SOBOL",
131,
0.08372739947579802,
643,
881,
0.3056257120333612,
2,
0.1053571030497551,
"leaky_relu",
"normal"
],
[
133,
1753989498,
12,
1753989510,
1753989516,
6,
"python3 .tests\/mnist\/train --epochs 49 --learning_rate 0.01148792455179616957 --batch_size 1919 --hidden_size 1127 --dropout 0.14474413590505719185 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.93454888835549354553",
"",
1,
"",
"c152",
531532,
"133_0",
"FAILED",
"SOBOL",
49,
0.01148792455179617,
1919,
1127,
0.1447441359050572,
3,
0.9345488883554935,
"leaky_relu",
"normal"
],
[
134,
1753989612,
17,
1753989629,
1753989635,
6,
"python3 .tests\/mnist\/train --epochs 81 --learning_rate 0.05594220696261153342 --batch_size 43 --hidden_size 44 --dropout 0.11554451053962111473 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.34504479821771383286",
"",
1,
"",
"c152",
531533,
"134_0",
"FAILED",
"SOBOL",
81,
0.05594220696261153,
43,
44,
0.11554451053962111,
4,
0.34504479821771383,
"leaky_relu",
"normal"
],
[
135,
1753989725,
24,
1753989749,
1753989755,
6,
"python3 .tests\/mnist\/train --epochs 194 --learning_rate 0.02658059982255101331 --batch_size 1315 --hidden_size 1837 --dropout 0.46345305489376187325 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.6780231846496462822",
"",
1,
"",
"c143",
531535,
"135_0",
"FAILED",
"SOBOL",
194,
0.026580599822551013,
1315,
1837,
0.4634530548937619,
1,
0.6780231846496463,
"leaky_relu",
"normal"
],
[
136,
1753989852,
17,
1753989869,
1753989875,
6,
"python3 .tests\/mnist\/train --epochs 186 --learning_rate 0.09252940875370986584 --batch_size 220 --hidden_size 1203 --dropout 0.02103416807949542999 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.01517671346664428711",
"",
1,
"",
"c143",
531538,
"136_0",
"FAILED",
"SOBOL",
186,
0.09252940875370987,
220,
1203,
0.02103416807949543,
1,
0.015176713466644287,
"leaky_relu",
"normal"
],
[
137,
1753989967,
23,
1753989990,
1753989996,
6,
"python3 .tests\/mnist\/train --epochs 102 --learning_rate 0.01560289922728203341 --batch_size 1497 --hidden_size 933 --dropout 0.43095314409583806992 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.96149691566824913025",
"",
1,
"",
"c143",
531539,
"137_0",
"FAILED",
"SOBOL",
102,
0.015602899227282033,
1497,
933,
0.43095314409583807,
4,
0.9614969156682491,
"leaky_relu",
"normal"
],
[
138,
1753990095,
14,
1753990109,
1753990115,
6,
"python3 .tests\/mnist\/train --epochs 45 --learning_rate 0.07099053941539489043 --batch_size 657 --hidden_size 2024 --dropout 0.33903988637030124664 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.25511044170707464218",
"",
1,
"",
"c143",
531540,
"138_0",
"FAILED",
"SOBOL",
45,
0.07099053941539489,
657,
2024,
0.33903988637030125,
3,
0.25511044170707464,
"leaky_relu",
"normal"
],
[
139,
1753990210,
20,
1753990230,
1753990236,
6,
"python3 .tests\/mnist\/train --epochs 147 --learning_rate 0.04944064841789194004 --batch_size 1929 --hidden_size 240 --dropout 0.24212445970624685287 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.70521334093064069748",
"",
1,
"",
"c143",
531541,
"139_0",
"FAILED",
"SOBOL",
147,
0.04944064841789194,
1929,
240,
0.24212445970624685,
2,
0.7052133409306407,
"leaky_relu",
"normal"
],
[
140,
1753990364,
15,
1753990379,
1753990386,
7,
"python3 .tests\/mnist\/train --epochs 117 --learning_rate 0.05910099375671708233 --batch_size 1252 --hidden_size 376 --dropout 0.18734350567683577538 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.39282338786870241165",
"",
1,
"",
"c143",
531542,
"140_0",
"FAILED",
"SOBOL",
117,
0.05910099375671708,
1252,
376,
0.18734350567683578,
1,
0.3928233878687024,
"leaky_relu",
"normal"
],
[
141,
1753990442,
27,
1753990469,
1753990475,
6,
"python3 .tests\/mnist\/train --epochs 15 --learning_rate 0.03613589922097511925 --batch_size 489 --hidden_size 1665 --dropout 0.2686339174397289753 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.5677206898108124733",
"",
1,
"",
"c143",
531544,
"141_0",
"FAILED",
"SOBOL",
15,
0.03613589922097512,
489,
1665,
0.268633917439729,
4,
0.5677206898108125,
"leaky_relu",
"normal"
],
[
142,
1753990571,
19,
1753990590,
1753990596,
6,
"python3 .tests\/mnist\/train --epochs 72 --learning_rate 0.08053840229486115831 --batch_size 1728 --hidden_size 575 --dropout 0.48578750109300017357 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.14935917593538761139",
"",
1,
"",
"c143",
531545,
"142_0",
"FAILED",
"SOBOL",
72,
0.08053840229486116,
1728,
575,
0.4857875010930002,
3,
0.1493591759353876,
"leaky_relu",
"normal"
],
[
143,
1753990686,
24,
1753990710,
1753990716,
6,
"python3 .tests\/mnist\/train --epochs 156 --learning_rate 0.00199987053512595608 --batch_size 962 --hidden_size 1337 --dropout 0.09149353997781872749 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.82803829573094844818",
"",
1,
"",
"c143",
531546,
"143_0",
"FAILED",
"SOBOL",
156,
0.001999870535125956,
962,
1337,
0.09149353997781873,
2,
0.8280382957309484,
"leaky_relu",
"normal"
],
[
144,
1753990830,
30,
1753990860,
1753990866,
6,
"python3 .tests\/mnist\/train --epochs 164 --learning_rate 0.07701644709986635307 --batch_size 1456 --hidden_size 128 --dropout 0.35722455894574522972 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.53006867971271276474",
"",
1,
"",
"c143",
531547,
"144_0",
"FAILED",
"SOBOL",
164,
0.07701644709986635,
1456,
128,
0.35722455894574523,
4,
0.5300686797127128,
"leaky_relu",
"normal"
],
[
145,
1753990964,
17,
1753990981,
1753990987,
6,
"python3 .tests\/mnist\/train --epochs 76 --learning_rate 0.0055080941932555286 --batch_size 182 --hidden_size 1912 --dropout 0.18853179411962628365 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.44709222298115491867",
"",
1,
"",
"c143",
531548,
"145_0",
"FAILED",
"SOBOL",
76,
0.005508094193255529,
182,
1912,
0.18853179411962628,
1,
0.4470922229811549,
"leaky_relu",
"normal"
],
[
146,
1753991084,
18,
1753991102,
1753991108,
6,
"python3 .tests\/mnist\/train --epochs 19 --learning_rate 0.06104228307618760757 --batch_size 2035 --hidden_size 822 --dropout 0.03458012407645583153 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.77000243961811065674",
"",
1,
"",
"c152",
531549,
"146_0",
"FAILED",
"SOBOL",
19,
0.06104228307618761,
2035,
822,
0.03458012407645583,
2,
0.7700024396181107,
"leaky_relu",
"normal"
],
[
147,
1753991205,
16,
1753991221,
1753991227,
6,
"python3 .tests\/mnist\/train --epochs 125 --learning_rate 0.03417172400672920801 --batch_size 758 --hidden_size 1090 --dropout 0.39029985712841153145 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.19080872461199760437",
"",
1,
"",
"c152",
531551,
"147_0",
"FAILED",
"SOBOL",
125,
0.03417172400672921,
758,
1090,
0.39029985712841153,
3,
0.1908087246119976,
"leaky_relu",
"normal"
],
[
148,
1753991326,
14,
1753991340,
1753991346,
6,
"python3 .tests\/mnist\/train --epochs 143 --learning_rate 0.0744926467585470542 --batch_size 416 --hidden_size 1450 --dropout 0.4448977205902338028 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.87793120183050632477",
"",
1,
"",
"c142",
531553,
"148_0",
"FAILED",
"SOBOL",
143,
0.07449264675854705,
416,
1450,
0.4448977205902338,
4,
0.8779312018305063,
"leaky_relu",
"normal"
],
[
149,
1753991448,
13,
1753991461,
1753991467,
6,
"python3 .tests\/mnist\/train --epochs 36 --learning_rate 0.04591260372732766659 --batch_size 1182 --hidden_size 686 --dropout 0.10480297263711690903 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.08212560974061489105",
"",
1,
"",
"c143",
531556,
"149_0",
"FAILED",
"SOBOL",
36,
0.04591260372732767,
1182,
686,
0.10480297263711691,
1,
0.08212560974061489,
"leaky_relu",
"normal"
],
[
150,
1753991572,
8,
1753991580,
1753991586,
6,
"python3 .tests\/mnist\/train --epochs 93 --learning_rate 0.09055911722448654888 --batch_size 972 --hidden_size 1776 --dropout 0.13400259800255298615 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.63446692097932100296",
"",
1,
"",
"c143",
531558,
"150_0",
"FAILED",
"SOBOL",
93,
0.09055911722448655,
972,
1776,
0.134002598002553,
2,
0.634466920979321,
"leaky_relu",
"normal"
],
[
151,
1753991710,
20,
1753991730,
1753991736,
6,
"python3 .tests\/mnist\/train --epochs 182 --learning_rate 0.01753809905118309045 --batch_size 1734 --hidden_size 487 --dropout 0.28707037772983312607 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.34244316164404153824",
"",
1,
"",
"c143",
531559,
"151_0",
"FAILED",
"SOBOL",
182,
0.01753809905118309,
1734,
487,
0.2870703777298331,
3,
0.34244316164404154,
"leaky_relu",
"normal"
],
[
152,
1753991794,
47,
1753991841,
1753991847,
6,
"python3 .tests\/mnist\/train --epochs 198 --learning_rate 0.05165395572422073339 --batch_size 822 --hidden_size 617 --dropout 0.22942849760875105858 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.97598508186638355255",
"",
1,
"",
"c155",
531560,
"152_0",
"FAILED",
"SOBOL",
198,
0.05165395572422073,
822,
617,
0.22942849760875106,
3,
0.9759850818663836,
"leaky_relu",
"normal"
],
[
153,
1753991930,
11,
1753991941,
1753991948,
7,
"python3 .tests\/mnist\/train --epochs 89 --learning_rate 0.03088563405044376931 --batch_size 1588 --hidden_size 1391 --dropout 0.31853272067382931709 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.04730409197509288788",
"",
1,
"",
"c155",
531562,
"153_0",
"FAILED",
"SOBOL",
89,
0.03088563405044377,
1588,
1391,
0.3185327206738293,
2,
0.04730409197509289,
"leaky_relu",
"normal"
],
[
154,
1753992056,
36,
1753992092,
1753992098,
6,
"python3 .tests\/mnist\/train --epochs 57 --learning_rate 0.08647160227030516177 --batch_size 374 --hidden_size 307 --dropout 0.41044597839936614037 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.73227485734969377518",
"",
1,
"",
"c155",
531563,
"154_0",
"FAILED",
"SOBOL",
57,
0.08647160227030516,
374,
307,
0.41044597839936614,
1,
0.7322748573496938,
"leaky_relu",
"normal"
],
[
155,
1753992193,
15,
1753992208,
1753992215,
7,
"python3 .tests\/mnist\/train --epochs 135 --learning_rate 0.00876355619942769531 --batch_size 1136 --hidden_size 1574 --dropout 0.0083382059819996357 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.30737942550331354141",
"",
1,
"",
"c155",
531566,
"155_0",
"FAILED",
"SOBOL",
135,
0.008763556199427695,
1136,
1574,
0.008338205981999636,
4,
0.30737942550331354,
"leaky_relu",
"normal"
],
[
156,
1753992316,
16,
1753992332,
1753992338,
6,
"python3 .tests\/mnist\/train --epochs 105 --learning_rate 0.09987631336048245767 --batch_size 1798 --hidden_size 1979 --dropout 0.0631725657731294632 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.61976083274930715561",
"",
1,
"",
"c155",
531567,
"156_0",
"FAILED",
"SOBOL",
105,
0.09987631336048246,
1798,
1979,
0.06317256577312946,
3,
0.6197608327493072,
"leaky_relu",
"normal"
],
[
157,
1753992446,
36,
1753992482,
1753992488,
6,
"python3 .tests\/mnist\/train --epochs 27 --learning_rate 0.02055623909642920188 --batch_size 525 --hidden_size 188 --dropout 0.48090535309165716171 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.41965598892420530319",
"",
1,
"",
"c155",
531568,
"157_0",
"FAILED",
"SOBOL",
27,
0.020556239096429202,
525,
188,
0.48090535309165716,
2,
0.4196559889242053,
"leaky_relu",
"normal"
],
[
158,
1753992586,
17,
1753992603,
1753992609,
6,
"python3 .tests\/mnist\/train --epochs 60 --learning_rate 0.06515707616193219809 --batch_size 1373 --hidden_size 1270 --dropout 0.26375176943838596344 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.85944847017526626587",
"",
1,
"",
"c155",
531569,
"158_0",
"FAILED",
"SOBOL",
60,
0.0651570761619322,
1373,
1270,
0.26375176943838596,
1,
0.8594484701752663,
"leaky_relu",
"normal"
],
[
159,
1753992712,
10,
1753992722,
1753992729,
7,
"python3 .tests\/mnist\/train --epochs 168 --learning_rate 0.04297354499004781697 --batch_size 97 --hidden_size 1026 --dropout 0.15902253147214651108 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.16313021257519721985",
"",
1,
"",
"c155",
531570,
"159_0",
"FAILED",
"SOBOL",
168,
0.04297354499004782,
97,
1026,
0.1590225314721465,
4,
0.16313021257519722,
"leaky_relu",
"normal"
],
[
160,
1753992887,
18,
1753992905,
1753992911,
6,
"python3 .tests\/mnist\/train --epochs 167 --learning_rate 0.09509421755285933642 --batch_size 687 --hidden_size 454 --dropout 0.45681497501209378242 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.75247946847230195999",
"",
1,
"",
"c155",
531572,
"160_0",
"FAILED",
"SOBOL",
167,
0.09509421755285934,
687,
454,
0.4568149750120938,
4,
0.752479468472302,
"leaky_relu",
"normal"
],
[
161,
1753992973,
22,
1753992995,
1753993001,
6,
"python3 .tests\/mnist\/train --epochs 60 --learning_rate 0.02198803136970848074 --batch_size 1963 --hidden_size 1745 --dropout 0.12404422229155898094 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.20856147352606058121",
"",
1,
"",
"c155",
531573,
"161_0",
"FAILED",
"SOBOL",
60,
0.02198803136970848,
1963,
1745,
0.12404422229155898,
1,
0.20856147352606058,
"leaky_relu",
"normal"
],
[
162,
1753993107,
36,
1753993143,
1753993149,
6,
"python3 .tests\/mnist\/train --epochs 22 --learning_rate 0.06644241211835295868 --batch_size 254 --hidden_size 654 --dropout 0.15370155172422528267 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.5080268029123544693",
"",
1,
"",
"c155",
531575,
"162_0",
"FAILED",
"SOBOL",
22,
0.06644241211835296,
254,
654,
0.15370155172422528,
2,
0.5080268029123545,
"leaky_relu",
"normal"
],
[
163,
1753993253,
10,
1753993263,
1753993269,
6,
"python3 .tests\/mnist\/train --epochs 110 --learning_rate 0.03794731956178323123 --batch_size 1527 --hidden_size 1418 --dropout 0.29846877371892333031 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.46789914928376674652",
"",
1,
"",
"c143",
531580,
"163_0",
"FAILED",
"SOBOL",
110,
0.03794731956178323,
1527,
1418,
0.29846877371892333,
3,
0.46789914928376675,
"leaky_relu",
"normal"
],
[
164,
1753993404,
10,
1753993414,
1753993421,
7,
"python3 .tests\/mnist\/train --epochs 140 --learning_rate 0.05348168738681823714 --batch_size 1694 --hidden_size 1059 --dropout 0.36874504294246435165 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.65553207695484161377",
"",
1,
"",
"c143",
531582,
"164_0",
"FAILED",
"SOBOL",
140,
0.05348168738681824,
1694,
1059,
0.36874504294246435,
4,
0.6555320769548416,
"leaky_relu",
"normal"
],
[
165,
1753993507,
25,
1753993532,
1753993538,
6,
"python3 .tests\/mnist\/train --epochs 52 --learning_rate 0.02650097653904930073 --batch_size 932 --hidden_size 790 --dropout 0.20835280604660511017 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.32065994665026664734",
"",
1,
"",
"c155",
531583,
"165_0",
"FAILED",
"SOBOL",
52,
0.0265009765390493,
932,
790,
0.2083528060466051,
1,
0.32065994665026665,
"leaky_relu",
"normal"
],
[
166,
1753993651,
32,
1753993683,
1753993689,
6,
"python3 .tests\/mnist\/train --epochs 90 --learning_rate 0.0818428419576771593 --batch_size 1222 --hidden_size 1880 --dropout 0.05394343193620443344 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.89643137063831090927",
"",
1,
"",
"c143",
531586,
"166_0",
"FAILED",
"SOBOL",
90,
0.08184284195767716,
1222,
1880,
0.05394343193620443,
2,
0.8964313706383109,
"leaky_relu",
"normal"
],
[
167,
1753993794,
9,
1753993803,
1753993809,
6,
"python3 .tests\/mnist\/train --epochs 197 --learning_rate 0.01044480472575873113 --batch_size 456 --hidden_size 96 --dropout 0.40233919955790042877 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.06534867268055677414",
"",
1,
"",
"c143",
531589,
"167_0",
"FAILED",
"SOBOL",
197,
0.010444804725758731,
456,
96,
0.40233919955790043,
3,
0.06534867268055677,
"leaky_relu",
"normal"
],
[
168,
1753993934,
18,
1753993952,
1753993958,
6,
"python3 .tests\/mnist\/train --epochs 177 --learning_rate 0.06970463876144029902 --batch_size 1080 --hidden_size 994 --dropout 0.08290203707292675972 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.7452813759446144104",
"",
1,
"",
"c156",
531591,
"168_0",
"FAILED",
"SOBOL",
177,
0.0697046387614403,
1080,
994,
0.08290203707292676,
3,
0.7452813759446144,
"leaky_relu",
"normal"
],
[
169,
1753994023,
18,
1753994041,
1753994047,
6,
"python3 .tests\/mnist\/train --epochs 98 --learning_rate 0.04741095581124537411 --batch_size 318 --hidden_size 1237 --dropout 0.49233426665887236595 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.29316644743084907532",
"",
1,
"",
"c156",
531592,
"169_0",
"FAILED",
"SOBOL",
98,
0.047410955811245374,
318,
1237,
0.49233426665887237,
2,
0.2931664474308491,
"leaky_relu",
"normal"
],
[
170,
1753994156,
6,
1753994162,
1753994168,
6,
"python3 .tests\/mnist\/train --epochs 36 --learning_rate 0.09181336650717072945 --batch_size 1644 --hidden_size 157 --dropout 0.27563850628212094307 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.98594232555478811264",
"",
1,
"",
"c156",
531593,
"170_0",
"FAILED",
"SOBOL",
36,
0.09181336650717073,
1644,
157,
0.27563850628212094,
1,
0.9859423255547881,
"leaky_relu",
"normal"
],
[
171,
1753994308,
33,
1753994341,
1753994347,
6,
"python3 .tests\/mnist\/train --epochs 144 --learning_rate 0.01260360791780986041 --batch_size 878 --hidden_size 1947 --dropout 0.17823326354846358299 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.03760535549372434616",
"",
1,
"",
"c156",
531595,
"171_0",
"FAILED",
"SOBOL",
144,
0.01260360791780986,
878,
1947,
0.17823326354846358,
4,
0.037605355493724346,
"leaky_relu",
"normal"
],
[
172,
1753994411,
22,
1753994433,
1753994439,
6,
"python3 .tests\/mnist\/train --epochs 126 --learning_rate 0.07889853276255541503 --batch_size 9 --hidden_size 1542 --dropout 0.24876128789037466049 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.85046860296279191971",
"",
1,
"",
"c143",
531617,
"172_0",
"FAILED",
"SOBOL",
126,
0.07889853276255542,
9,
1542,
0.24876128789037466,
3,
0.8504686029627919,
"leaky_relu",
"normal"
],
[
173,
1753994542,
11,
1753994553,
1753994559,
6,
"python3 .tests\/mnist\/train --epochs 18 --learning_rate 0.00110531868183054048 --batch_size 1286 --hidden_size 275 --dropout 0.33054154552519321442 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.17380482051521539688",
"",
1,
"",
"c143",
531628,
"173_0",
"FAILED",
"SOBOL",
18,
0.0011053186818305405,
1286,
275,
0.3305415455251932,
2,
0.1738048205152154,
"leaky_relu",
"normal"
],
[
174,
1753994676,
27,
1753994703,
1753994709,
6,
"python3 .tests\/mnist\/train --epochs 80 --learning_rate 0.05649305124790408861 --batch_size 613 --hidden_size 1358 --dropout 0.4219969799742102623 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.60577741451561450958",
"",
1,
"",
"c143",
531631,
"174_0",
"FAILED",
"SOBOL",
80,
0.05649305124790409,
613,
1358,
0.42199697997421026,
1,
0.6057774145156145,
"leaky_relu",
"normal"
],
[
175,
1753994824,
28,
1753994852,
1753994858,
6,
"python3 .tests\/mnist\/train --epochs 159 --learning_rate 0.03580968004877679856 --batch_size 1886 --hidden_size 586 --dropout 0.02818973548710346222 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.43289261870086193085",
"",
1,
"",
"c156",
531634,
"175_0",
"FAILED",
"SOBOL",
159,
0.0358096800487768,
1886,
586,
0.028189735487103462,
4,
0.43289261870086193,
"leaky_relu",
"normal"
],
[
176,
1753994977,
25,
1753995002,
1753995008,
6,
"python3 .tests\/mnist\/train --epochs 155 --learning_rate 0.06078243337132968604 --batch_size 340 --hidden_size 1805 --dropout 0.29358662571758031845 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.22892434056848287582",
"",
1,
"",
"c156",
531635,
"176_0",
"FAILED",
"SOBOL",
155,
0.060782433371329686,
340,
1805,
0.2935866257175803,
2,
0.22892434056848288,
"leaky_relu",
"normal"
],
[
177,
1753995118,
4,
1753995122,
1753995128,
6,
"python3 .tests\/mnist\/train --epochs 72 --learning_rate 0.03150656638848595842 --batch_size 1106 --hidden_size 12 --dropout 0.12538057751953601837 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.81001278292387723923",
"",
1,
"",
"c156",
531637,
"177_0",
"FAILED",
"SOBOL",
72,
0.03150656638848596,
1106,
12,
0.12538057751953602,
3,
0.8100127829238772,
"leaky_relu",
"normal"
],
[
178,
1753995276,
26,
1753995302,
1753995308,
6,
"python3 .tests\/mnist\/train --epochs 10 --learning_rate 0.0761531722636055175 --batch_size 792 --hidden_size 1095 --dropout 0.09572324808686971664 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.4695852324366569519",
"",
1,
"",
"c156",
531638,
"178_0",
"FAILED",
"SOBOL",
10,
0.07615317226360552,
792,
1095,
0.09572324808686972,
4,
0.46958523243665695,
"leaky_relu",
"normal"
],
[
179,
1753995375,
17,
1753995392,
1753995398,
6,
"python3 .tests\/mnist\/train --epochs 122 --learning_rate 0.00382779328600503553 --batch_size 1555 --hidden_size 849 --dropout 0.45193282701075077057 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.55445161834359169006",
"",
1,
"",
"c156",
531641,
"179_0",
"FAILED",
"SOBOL",
122,
0.0038277932860050355,
1555,
849,
0.45193282701075077,
1,
0.5544516183435917,
"leaky_relu",
"normal"
],
[
180,
1753995568,
4,
1753995572,
1753995578,
6,
"python3 .tests\/mnist\/train --epochs 152 --learning_rate 0.08750413653190247665 --batch_size 1403 --hidden_size 731 --dropout 0.38183203386142849922 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.36682538874447345734",
"",
1,
"",
"c156",
531642,
"180_0",
"FAILED",
"SOBOL",
152,
0.08750413653190248,
1403,
731,
0.3818320338614285,
2,
0.36682538874447346,
"leaky_relu",
"normal"
],
[
181,
1753995722,
30,
1753995752,
1753995758,
6,
"python3 .tests\/mnist\/train --epochs 39 --learning_rate 0.01688690054566599485 --batch_size 131 --hidden_size 1501 --dropout 0.04124746983870863914 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.65695874206721782684",
"",
1,
"",
"c156",
531644,
"181_0",
"FAILED",
"SOBOL",
39,
0.016886900545665995,
131,
1501,
0.04124746983870864,
3,
0.6569587420672178,
"leaky_relu",
"normal"
],
[
182,
1753995837,
8,
1753995845,
1753995851,
6,
"python3 .tests\/mnist\/train --epochs 102 --learning_rate 0.07242099705063738402 --batch_size 1832 --hidden_size 420 --dropout 0.19565684394910931587 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.12213428039103746414",
"",
1,
"",
"c152",
531646,
"182_0",
"FAILED",
"SOBOL",
102,
0.07242099705063738,
1832,
420,
0.19565684394910932,
4,
0.12213428039103746,
"leaky_relu",
"normal"
],
[
183,
1753996004,
21,
1753996025,
1753996031,
6,
"python3 .tests\/mnist\/train --epochs 185 --learning_rate 0.04465950581672602226 --batch_size 555 --hidden_size 1684 --dropout 0.3482378772459924221 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.9160465756431221962",
"",
1,
"",
"c152",
531647,
"183_0",
"FAILED",
"SOBOL",
185,
0.04465950581672602,
555,
1684,
0.3482378772459924,
1,
0.9160465756431222,
"leaky_relu",
"normal"
],
[
184,
1753996100,
15,
1753996115,
1753996121,
6,
"python3 .tests\/mnist\/train --epochs 189 --learning_rate 0.08536669090086594636 --batch_size 2001 --hidden_size 1306 --dropout 0.16749172564595937729 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.26932461000978946686",
"",
1,
"",
"c152",
531648,
"184_0",
"FAILED",
"SOBOL",
189,
0.08536669090086595,
2001,
1306,
0.16749172564595938,
1,
0.26932461000978947,
"leaky_relu",
"normal"
],
[
185,
1753996243,
21,
1753996264,
1753996270,
6,
"python3 .tests\/mnist\/train --epochs 86 --learning_rate 0.00693773877207189832 --batch_size 729 --hidden_size 543 --dropout 0.25708317197859287262 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.69220372103154659271",
"",
1,
"",
"c143",
531651,
"185_0",
"FAILED",
"SOBOL",
86,
0.006937738772071898,
729,
543,
0.2570831719785929,
4,
0.6922037210315466,
"leaky_relu",
"normal"
],
[
186,
1753996386,
33,
1753996419,
1753996425,
6,
"python3 .tests\/mnist\/train --epochs 48 --learning_rate 0.05153847749974579256 --batch_size 1425 --hidden_size 1633 --dropout 0.4737789323553442955 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.02487187553197145462",
"",
1,
"",
"c139",
531653,
"186_0",
"FAILED",
"SOBOL",
48,
0.05153847749974579,
1425,
1633,
0.4737789323553443,
3,
0.024871875531971455,
"leaky_relu",
"normal"
],
[
187,
1753996548,
18,
1753996566,
1753996572,
6,
"python3 .tests\/mnist\/train --epochs 132 --learning_rate 0.02846402086826041455 --batch_size 149 --hidden_size 344 --dropout 0.07216049917042255402 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.95154134277254343033",
"",
1,
"",
"c151",
531662,
"187_0",
"FAILED",
"SOBOL",
132,
0.028464020868260415,
149,
344,
0.07216049917042255,
2,
0.9515413427725434,
"leaky_relu",
"normal"
],
[
188,
1753996690,
25,
1753996715,
1753996721,
6,
"python3 .tests\/mnist\/train --epochs 114 --learning_rate 0.06294143566023559233 --batch_size 1002 --hidden_size 207 --dropout 0.00182320969179272652 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.13868671562522649765",
"",
1,
"",
"c151",
531663,
"188_0",
"FAILED",
"SOBOL",
114,
0.06294143566023559,
1002,
207,
0.0018232096917927265,
1,
0.1386867156252265,
"leaky_relu",
"normal"
],
[
189,
1753996831,
34,
1753996865,
1753996871,
6,
"python3 .tests\/mnist\/train --epochs 30 --learning_rate 0.04147728481994942401 --batch_size 1768 --hidden_size 1992 --dropout 0.41906662797555327415 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.83701792638748884201",
"",
1,
"",
"c151",
531665,
"189_0",
"FAILED",
"SOBOL",
30,
0.041477284819949424,
1768,
1992,
0.4190666279755533,
4,
0.8370179263874888,
"leaky_relu",
"normal"
],
[
190,
1753996990,
22,
1753997012,
1753997019,
7,
"python3 .tests\/mnist\/train --epochs 69 --learning_rate 0.09706335137763992538 --batch_size 449 --hidden_size 901 --dropout 0.32761119352653622627 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.37958604097366333008",
"",
1,
"",
"c139",
531666,
"190_0",
"FAILED",
"SOBOL",
69,
0.09706335137763993,
449,
901,
0.3276111935265362,
3,
0.37958604097366333,
"leaky_relu",
"normal"
],
[
191,
1753997133,
31,
1753997164,
1753997170,
6,
"python3 .tests\/mnist\/train --epochs 171 --learning_rate 0.02005093779761344189 --batch_size 1212 --hidden_size 1171 --dropout 0.22239476209506392479 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.58170672878623008728",
"",
1,
"",
"c156",
531669,
"191_0",
"FAILED",
"SOBOL",
171,
0.020050937797613442,
1212,
1171,
0.22239476209506392,
2,
0.5817067287862301,
"leaky_relu",
"normal"
],
[
192,
1753997298,
15,
1753997313,
1753997320,
7,
"python3 .tests\/mnist\/train --epochs 172 --learning_rate 0.08255216501129791773 --batch_size 509 --hidden_size 518 --dropout 0.11889000516384840012 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.63194198720157146454",
"",
1,
"",
"c156",
531671,
"192_0",
"FAILED",
"SOBOL",
172,
0.08255216501129792,
509,
518,
0.1188900051638484,
1,
0.6319419872015715,
"leaky_relu",
"normal"
],
[
193,
1753997446,
18,
1753997464,
1753997470,
6,
"python3 .tests\/mnist\/train --epochs 67 --learning_rate 0.00953105148009955952 --batch_size 1272 --hidden_size 1299 --dropout 0.4584825318306684494 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.32813675887882709503",
"",
1,
"",
"c156",
531672,
"193_0",
"FAILED",
"SOBOL",
67,
0.00953105148009956,
1272,
1299,
0.45848253183066845,
4,
0.3281367588788271,
"leaky_relu",
"normal"
],
[
194,
1753997591,
23,
1753997614,
1753997620,
6,
"python3 .tests\/mnist\/train --epochs 28 --learning_rate 0.05398694454535842707 --batch_size 942 --hidden_size 335 --dropout 0.30381375085562467575 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.8883442142978310585",
"",
1,
"",
"c156",
531673,
"194_0",
"FAILED",
"SOBOL",
28,
0.05398694454535843,
942,
335,
0.3038137508556247,
3,
0.8883442142978311,
"leaky_relu",
"normal"
],
[
195,
1753997738,
26,
1753997764,
1753997770,
6,
"python3 .tests\/mnist\/train --epochs 116 --learning_rate 0.02540680615624412927 --batch_size 1708 --hidden_size 1610 --dropout 0.15219425223767757416 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.08857254404574632645",
"",
1,
"",
"c156",
531674,
"195_0",
"FAILED",
"SOBOL",
116,
0.02540680615624413,
1708,
1610,
0.15219425223767757,
2,
0.08857254404574633,
"leaky_relu",
"normal"
],
[
196,
1753997884,
21,
1753997905,
1753997911,
6,
"python3 .tests\/mnist\/train --epochs 133 --learning_rate 0.06592454760313033735 --batch_size 1477 --hidden_size 2015 --dropout 0.20691418321803212166 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.77619164716452360153",
"",
1,
"",
"c155",
531675,
"196_0",
"FAILED",
"SOBOL",
133,
0.06592454760313034,
1477,
2015,
0.20691418321803212,
1,
0.7761916471645236,
"leaky_relu",
"normal"
],
[
197,
1753998031,
3,
1753998034,
1753998040,
6,
"python3 .tests\/mnist\/train --epochs 46 --learning_rate 0.03905408389156685145 --batch_size 200 --hidden_size 217 --dropout 0.3741586669348180294 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.20096257980912923813",
"",
1,
"",
"c156",
531676,
"197_0",
"FAILED",
"SOBOL",
46,
0.03905408389156685,
200,
217,
0.37415866693481803,
4,
0.20096257980912924,
"leaky_relu",
"normal"
],
[
198,
1753998242,
32,
1753998274,
1753998280,
6,
"python3 .tests\/mnist\/train --epochs 85 --learning_rate 0.09439746162680909269 --batch_size 1949 --hidden_size 1178 --dropout 0.40358712198212742805 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.51599187031388282776",
"",
1,
"",
"c156",
531678,
"198_0",
"FAILED",
"SOBOL",
85,
0.09439746162680909,
1949,
1178,
0.40358712198212743,
3,
0.5159918703138828,
"leaky_relu",
"normal"
],
[
199,
1753998358,
6,
1753998364,
1753998370,
6,
"python3 .tests\/mnist\/train --epochs 190 --learning_rate 0.02288920407809317409 --batch_size 677 --hidden_size 926 --dropout 0.04836961021646857262 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.4447973594069480896",
"",
1,
"",
"c156",
531680,
"199_0",
"FAILED",
"SOBOL",
190,
0.022889204078093174,
677,
926,
0.04836961021646857,
2,
0.4447973594069481,
"leaky_relu",
"normal"
],
[
200,
1753998540,
4,
1753998544,
1753998551,
7,
"python3 .tests\/mnist\/train --epochs 183 --learning_rate 0.05715000493762083938 --batch_size 1899 --hidden_size 36 --dropout 0.49864683579653501511 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.87375349085777997971",
"",
1,
"",
"c156",
531684,
"200_0",
"FAILED",
"SOBOL",
183,
0.05715000493762084,
1899,
36,
0.498646835796535,
2,
0.87375349085778,
"leaky_relu",
"normal"
],
[
201,
1753998705,
20,
1753998725,
1753998731,
6,
"python3 .tests\/mnist\/train --epochs 104 --learning_rate 0.03496656912363135111 --batch_size 623 --hidden_size 1812 --dropout 0.08044234476983547211 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.16565665509551763535",
"",
1,
"",
"c156",
531688,
"201_0",
"FAILED",
"SOBOL",
104,
0.03496656912363135,
623,
1812,
0.08044234476983547,
3,
0.16565665509551764,
"leaky_relu",
"normal"
],
[
202,
1753998811,
4,
1753998815,
1753998821,
6,
"python3 .tests\/mnist\/train --epochs 41 --learning_rate 0.07937049213617108911 --batch_size 1335 --hidden_size 858 --dropout 0.17209613602608442307 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.61331528052687644958",
"",
1,
"",
"c156",
531694,
"202_0",
"FAILED",
"SOBOL",
41,
0.07937049213617109,
1335,
858,
0.17209613602608442,
4,
0.6133152805268764,
"leaky_relu",
"normal"
],
[
203,
1753998988,
7,
1753998995,
1753999001,
6,
"python3 .tests\/mnist\/train --epochs 151 --learning_rate 0.00005051323001272976 --batch_size 63 --hidden_size 1119 --dropout 0.27830417267978191376 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.40924146771430969238",
"",
1,
"",
"c156",
531695,
"203_0",
"FAILED",
"SOBOL",
151,
5.0513230012729765e-5,
63,
1119,
0.2783041726797819,
1,
0.4092414677143097,
"leaky_relu",
"normal"
],
[
204,
1753999155,
20,
1753999175,
1753999181,
6,
"python3 .tests\/mnist\/train --epochs 121 --learning_rate 0.0913539861808624204 --batch_size 868 --hidden_size 1478 --dropout 0.33277231873944401741 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.72211854718625545502",
"",
1,
"",
"c156",
531696,
"204_0",
"FAILED",
"SOBOL",
121,
0.09135398618086242,
868,
1478,
0.332772318739444,
2,
0.7221185471862555,
"leaky_relu",
"normal"
],
[
205,
1753999271,
24,
1753999295,
1753999302,
7,
"python3 .tests\/mnist\/train --epochs 11 --learning_rate 0.01364584475209005242 --batch_size 1631 --hidden_size 722 --dropout 0.24218929698690772057 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.30119256116449832916",
"",
1,
"",
"c156",
531697,
"205_0",
"FAILED",
"SOBOL",
11,
0.013645844752090052,
1631,
722,
0.24218929698690772,
3,
0.30119256116449833,
"leaky_relu",
"normal"
],
[
206,
1753999427,
19,
1753999446,
1753999453,
7,
"python3 .tests\/mnist\/train --epochs 74 --learning_rate 0.06903508963477797411 --batch_size 264 --hidden_size 1677 --dropout 0.02578346105292439461 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.97828240040689706802",
"",
1,
"",
"c156",
531698,
"206_0",
"FAILED",
"SOBOL",
74,
0.06903508963477797,
264,
1677,
0.025783461052924395,
4,
0.9782824004068971,
"leaky_relu",
"normal"
],
[
207,
1753999584,
12,
1753999596,
1753999602,
6,
"python3 .tests\/mnist\/train --epochs 154 --learning_rate 0.04826667260310613106 --batch_size 1031 --hidden_size 395 --dropout 0.42836293717846274376 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.06137855816632509232",
"",
1,
"",
"c156",
531699,
"207_0",
"FAILED",
"SOBOL",
154,
0.04826667260310613,
1031,
395,
0.42836293717846274,
1,
0.06137855816632509,
"leaky_relu",
"normal"
],
[
208,
1753999755,
21,
1753999776,
1753999782,
6,
"python3 .tests\/mnist\/train --epochs 160 --learning_rate 0.07332334087316878801 --batch_size 537 --hidden_size 1231 --dropout 0.13168710144236683846 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.35934857651591300964",
"",
1,
"",
"c156",
531700,
"208_0",
"FAILED",
"SOBOL",
160,
0.07332334087316879,
537,
1231,
0.13168710144236684,
3,
0.359348576515913,
"leaky_relu",
"normal"
],
[
209,
1753999862,
4,
1753999866,
1753999872,
6,
"python3 .tests\/mnist\/train --epochs 79 --learning_rate 0.04396163837521337853 --batch_size 1810 --hidden_size 969 --dropout 0.29111777385696768761 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.68054883182048797607",
"",
1,
"",
"c156",
531703,
"209_0",
"FAILED",
"SOBOL",
79,
0.04396163837521338,
1810,
969,
0.2911177738569677,
2,
0.680548831820488,
"leaky_relu",
"normal"
],
[
210,
1754000048,
28,
1754000076,
1754000082,
6,
"python3 .tests\/mnist\/train --epochs 16 --learning_rate 0.08860978338635526474 --batch_size 85 --hidden_size 1924 --dropout 0.44578655483201146126 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.09891040902584791183",
"",
1,
"",
"c156",
531707,
"210_0",
"FAILED",
"SOBOL",
16,
0.08860978338635526,
85,
1924,
0.44578655483201146,
1,
0.09891040902584791,
"leaky_relu",
"normal"
],
[
211,
1754000158,
8,
1754000166,
1754000172,
6,
"python3 .tests\/mnist\/train --epochs 127 --learning_rate 0.01637021310445852668 --batch_size 1361 --hidden_size 148 --dropout 0.09838285436853766441 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.92413373198360204697",
"",
1,
"",
"c156",
531708,
"211_0",
"FAILED",
"SOBOL",
127,
0.016370213104458527,
1361,
148,
0.09838285436853766,
4,
0.924133731983602,
"leaky_relu",
"normal"
],
[
212,
1754000340,
6,
1754000346,
1754000352,
6,
"python3 .tests\/mnist\/train --epochs 145 --learning_rate 0.07505936841270886839 --batch_size 1576 --hidden_size 284 --dropout 0.04348744731396436691 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.2365232342854142189",
"",
1,
"",
"c156",
531709,
"212_0",
"FAILED",
"SOBOL",
145,
0.07505936841270887,
1576,
284,
0.04348744731396437,
3,
0.23652323428541422,
"leaky_relu",
"normal"
],
[
213,
1754000508,
18,
1754000526,
1754000532,
6,
"python3 .tests\/mnist\/train --epochs 34 --learning_rate 0.00433264815342612568 --batch_size 810 --hidden_size 1565 --dropout 0.3752661626785993576 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.78630060423165559769",
"",
1,
"",
"c156",
531710,
"213_0",
"FAILED",
"SOBOL",
34,
0.004332648153426126,
810,
1565,
0.37526616267859936,
2,
0.7863006042316556,
"leaky_relu",
"normal"
],
[
214,
1754000615,
31,
1754000646,
1754000652,
6,
"python3 .tests\/mnist\/train --epochs 97 --learning_rate 0.05986828379441985065 --batch_size 1148 --hidden_size 611 --dropout 0.34583770763128995895 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.49268702231347560883",
"",
1,
"",
"c156",
531711,
"214_0",
"FAILED",
"SOBOL",
97,
0.05986828379441985,
1148,
611,
0.34583770763128996,
1,
0.4926870223134756,
"leaky_relu",
"normal"
],
[
215,
1754000773,
23,
1754000796,
1754000802,
6,
"python3 .tests\/mnist\/train --epochs 178 --learning_rate 0.03221625001414679668 --batch_size 386 --hidden_size 1366 --dropout 0.20203202031552791595 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.5464865509420633316",
"",
1,
"",
"c156",
531713,
"215_0",
"FAILED",
"SOBOL",
178,
0.0322162500141468,
386,
1366,
0.20203202031552792,
4,
0.5464865509420633,
"leaky_relu",
"normal"
],
[
216,
1754000935,
12,
1754000947,
1754000953,
6,
"python3 .tests\/mnist\/train --epochs 196 --learning_rate 0.09791941682180389794 --batch_size 1170 --hidden_size 1752 --dropout 0.25193763198330998421 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.14683488104492425919",
"",
1,
"",
"c156",
531716,
"216_0",
"FAILED",
"SOBOL",
196,
0.0979194168218039,
1170,
1752,
0.25193763198331,
4,
0.14683488104492426,
"leaky_relu",
"normal"
],
[
217,
1754001131,
26,
1754001157,
1754001163,
6,
"python3 .tests\/mnist\/train --epochs 92 --learning_rate 0.01938098041996360113 --batch_size 404 --hidden_size 480 --dropout 0.16916579892858862877 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.81373303849250078201",
"",
1,
"",
"c156",
531717,
"217_0",
"FAILED",
"SOBOL",
92,
0.0193809804199636,
404,
480,
0.16916579892858863,
1,
0.8137330384925008,
"leaky_relu",
"normal"
],
[
218,
1754001246,
39,
1754001285,
1754001291,
6,
"python3 .tests\/mnist\/train --epochs 53 --learning_rate 0.06398325828365981904 --batch_size 1746 --hidden_size 1441 --dropout 0.07751200767233967781 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.40323719196021556854",
"",
1,
"",
"c156",
531718,
"218_0",
"FAILED",
"SOBOL",
53,
0.06398325828365982,
1746,
1441,
0.07751200767233968,
2,
0.40323719196021557,
"leaky_relu",
"normal"
],
[
219,
1754001431,
26,
1754001457,
1754001463,
6,
"python3 .tests\/mnist\/train --epochs 139 --learning_rate 0.04101825910581276269 --batch_size 984 --hidden_size 663 --dropout 0.47228029510006308556 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.57416886277496814728",
"",
1,
"",
"c156",
531720,
"219_0",
"FAILED",
"SOBOL",
139,
0.04101825910581276,
984,
663,
0.4722802951000631,
3,
0.5741688627749681,
"leaky_relu",
"normal"
],
[
220,
1754001662,
5,
1754001667,
1754001673,
6,
"python3 .tests\/mnist\/train --epochs 109 --learning_rate 0.05048483720220626331 --batch_size 194 --hidden_size 781 --dropout 0.4176214141771197319 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.26129849627614021301",
"",
1,
"",
"c156",
531723,
"220_0",
"FAILED",
"SOBOL",
109,
0.05048483720220626,
194,
781,
0.41762141417711973,
4,
0.2612984962761402,
"leaky_relu",
"normal"
],
[
221,
1754001844,
33,
1754001877,
1754001883,
6,
"python3 .tests\/mnist\/train --epochs 23 --learning_rate 0.02893485084680840619 --batch_size 1467 --hidden_size 1036 --dropout 0.00722811184823513031 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.7153665497899055481",
"",
1,
"",
"c156",
531724,
"221_0",
"FAILED",
"SOBOL",
23,
0.028934850846808406,
1467,
1036,
0.00722811184823513,
1,
0.7153665497899055,
"leaky_relu",
"normal"
],
[
222,
1754001964,
34,
1754001998,
1754002004,
6,
"python3 .tests\/mnist\/train --epochs 62 --learning_rate 0.08452245654052123469 --batch_size 746 --hidden_size 72 --dropout 0.22363394778221845627 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.00109867285937070847",
"",
1,
"",
"c156",
531726,
"222_0",
"FAILED",
"SOBOL",
62,
0.08452245654052123,
746,
72,
0.22363394778221846,
2,
0.0010986728593707085,
"leaky_relu",
"normal"
],
[
223,
1754002150,
29,
1754002179,
1754002185,
6,
"python3 .tests\/mnist\/train --epochs 166 --learning_rate 0.0075958516561985016 --batch_size 2023 --hidden_size 1873 --dropout 0.32203079573810100555 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.95920126792043447495",
"",
1,
"",
"c151",
531736,
"223_0",
"FAILED",
"SOBOL",
166,
0.007595851656198502,
2023,
1873,
0.322030795738101,
3,
0.9592012679204345,
"leaky_relu",
"normal"
],
[
224,
1754002328,
29,
1754002357,
1754002364,
7,
"python3 .tests\/mnist\/train --epochs 169 --learning_rate 0.05543056827494875771 --batch_size 1306 --hidden_size 1397 --dropout 0.05549603095278143883 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.11301699839532375336",
"",
1,
"",
"c156",
531748,
"224_0",
"FAILED",
"SOBOL",
169,
0.05543056827494876,
1306,
1397,
0.05549603095278144,
3,
0.11301699839532375,
"leaky_relu",
"normal"
],
[
225,
1754002504,
5,
1754002509,
1754002516,
7,
"python3 .tests\/mnist\/train --epochs 58 --learning_rate 0.02766898168314248577 --batch_size 29 --hidden_size 643 --dropout 0.39459918858483433723 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.91077571548521518707",
"",
1,
"",
"c152",
531761,
"225_0",
"FAILED",
"SOBOL",
58,
0.027668981683142486,
29,
643,
0.39459918858483434,
2,
0.9107757154852152,
"leaky_relu",
"normal"
],
[
226,
1754002712,
8,
1754002720,
1754002726,
6,
"python3 .tests\/mnist\/train --epochs 25 --learning_rate 0.08301245775621385325 --batch_size 1866 --hidden_size 1597 --dropout 0.36568947276100516319 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.36820765677839517593",
"",
1,
"",
"c155",
531762,
"226_0",
"FAILED",
"SOBOL",
25,
0.08301245775621385,
1866,
1597,
0.36568947276100516,
1,
0.3682076567783952,
"leaky_relu",
"normal"
],
[
227,
1754002900,
35,
1754002935,
1754002941,
6,
"python3 .tests\/mnist\/train --epochs 107 --learning_rate 0.01239512641208246474 --batch_size 593 --hidden_size 316 --dropout 0.21358278067782521248 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.66999704111367464066",
"",
1,
"",
"c143",
531778,
"227_0",
"FAILED",
"SOBOL",
107,
0.012395126412082465,
593,
316,
0.2135827806778252,
4,
0.6699970411136746,
"leaky_relu",
"normal"
],
[
228,
1754003101,
10,
1754003111,
1754003117,
6,
"python3 .tests\/mnist\/train --epochs 136 --learning_rate 0.0962682883530482647 --batch_size 298 --hidden_size 180 --dropout 0.14311577938497066498 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.48285122495144605637",
"",
1,
"",
"c143",
531801,
"228_0",
"FAILED",
"SOBOL",
136,
0.09626828835304826,
298,
180,
0.14311577938497066,
3,
0.48285122495144606,
"leaky_relu",
"normal"
],
[
229,
1754003294,
23,
1754003317,
1754003324,
7,
"python3 .tests\/mnist\/train --epochs 55 --learning_rate 0.02394300473334267862 --batch_size 1060 --hidden_size 1956 --dropout 0.31084748636931180954 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.55606205668300390244",
"",
1,
"",
"c139",
531809,
"229_0",
"FAILED",
"SOBOL",
55,
0.02394300473334268,
1060,
1956,
0.3108474863693118,
2,
0.5560620566830039,
"leaky_relu",
"normal"
],
[
230,
1754003425,
15,
1754003440,
1754003446,
6,
"python3 .tests\/mnist\/train --epochs 88 --learning_rate 0.06839879946077243034 --batch_size 898 --hidden_size 1001 --dropout 0.46499752812087535858 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.22339383885264396667",
"",
1,
"",
"c143",
531810,
"230_0",
"FAILED",
"SOBOL",
88,
0.06839879946077243,
898,
1001,
0.46499752812087536,
1,
0.22339383885264397,
"leaky_relu",
"normal"
],
[
231,
1754003595,
26,
1754003621,
1754003627,
6,
"python3 .tests\/mnist\/train --epochs 199 --learning_rate 0.03912302783582360249 --batch_size 1664 --hidden_size 1262 --dropout 0.11026935558766126633 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.80063442885875701904",
"",
1,
"",
"c143",
531811,
"231_0",
"FAILED",
"SOBOL",
199,
0.0391230278358236,
1664,
1262,
0.11026935558766127,
4,
0.800634428858757,
"leaky_relu",
"normal"
],
[
232,
1754003769,
32,
1754003801,
1754003807,
6,
"python3 .tests\/mnist\/train --epochs 180 --learning_rate 0.0800728035908285507 --batch_size 912 --hidden_size 1905 --dropout 0.43744266172870993614 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.3848582906648516655",
"",
1,
"",
"c143",
531812,
"232_0",
"FAILED",
"SOBOL",
180,
0.08007280359082855,
912,
1905,
0.43744266172870994,
4,
0.38485829066485167,
"leaky_relu",
"normal"
],
[
233,
1754003950,
30,
1754003980,
1754003986,
6,
"python3 .tests\/mnist\/train --epochs 95 --learning_rate 0.00306048536869697307 --batch_size 1674 --hidden_size 103 --dropout 0.01874835463240742683 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.59082250948995351791",
"",
1,
"",
"c143",
531813,
"233_0",
"FAILED",
"SOBOL",
95,
0.003060485368696973,
1674,
103,
0.018748354632407427,
1,
0.5908225094899535,
"leaky_relu",
"normal"
],
[
234,
1754004123,
8,
1754004131,
1754004137,
6,
"python3 .tests\/mnist\/train --epochs 38 --learning_rate 0.05844963787342422751 --batch_size 475 --hidden_size 1068 --dropout 0.23567304899916052818 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.12564702704548835754",
"",
1,
"",
"c143",
531817,
"234_0",
"FAILED",
"SOBOL",
38,
0.05844963787342423,
475,
1068,
0.23567304899916053,
2,
0.12564702704548836,
"leaky_relu",
"normal"
],
[
235,
1754004333,
8,
1754004341,
1754004347,
6,
"python3 .tests\/mnist\/train --epochs 142 --learning_rate 0.03698558239103295897 --batch_size 1242 --hidden_size 813 --dropout 0.34139433922246098518 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.83563715964555740356",
"",
1,
"",
"c143",
531818,
"235_0",
"FAILED",
"SOBOL",
142,
0.03698558239103296,
1242,
813,
0.341394339222461,
3,
0.8356371596455574,
"leaky_relu",
"normal"
],
[
236,
1754004539,
12,
1754004551,
1754004557,
6,
"python3 .tests\/mnist\/train --epochs 124 --learning_rate 0.07165371297280304086 --batch_size 1983 --hidden_size 695 --dropout 0.27117912285029888153 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.02326389960944652557",
"",
1,
"",
"c143",
531819,
"236_0",
"FAILED",
"SOBOL",
124,
0.07165371297280304,
1983,
695,
0.2711791228502989,
4,
0.023263899609446526,
"leaky_relu",
"normal"
],
[
237,
1754004729,
33,
1754004762,
1754004768,
6,
"python3 .tests\/mnist\/train --epochs 20 --learning_rate 0.04857916098342277694 --batch_size 706 --hidden_size 1473 --dropout 0.18108281772583723068 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.93827301450073719025",
"",
1,
"",
"c143",
531820,
"237_0",
"FAILED",
"SOBOL",
20,
0.04857916098342278,
706,
1473,
0.18108281772583723,
1,
0.9382730145007372,
"leaky_relu",
"normal"
],
[
238,
1754004858,
22,
1754004880,
1754004887,
7,
"python3 .tests\/mnist\/train --epochs 77 --learning_rate 0.09298317637392319868 --batch_size 1507 --hidden_size 511 --dropout 0.08891016803681850433 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.27870050165802240372",
"",
1,
"",
"c143",
531821,
"238_0",
"FAILED",
"SOBOL",
77,
0.0929831763739232,
1507,
511,
0.0889101680368185,
2,
0.2787005016580224,
"leaky_relu",
"normal"
],
[
239,
1754005067,
24,
1754005091,
1754005097,
6,
"python3 .tests\/mnist\/train --epochs 163 --learning_rate 0.01455412888723425606 --batch_size 234 --hidden_size 1784 --dropout 0.49197949003428220749 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.69773655850440263748",
"",
1,
"",
"c143",
531822,
"239_0",
"FAILED",
"SOBOL",
163,
0.014554128887234256,
234,
1784,
0.4919794900342822,
3,
0.6977365585044026,
"leaky_relu",
"normal"
],
[
240,
1754005339,
23,
1754005362,
1754005368,
6,
"python3 .tests\/mnist\/train --epochs 157 --learning_rate 0.08945932743073441162 --batch_size 1780 --hidden_size 958 --dropout 0.19502743147313594818 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.90170437470078468323",
"",
1,
"",
"c143",
531824,
"240_0",
"FAILED",
"SOBOL",
157,
0.08945932743073441,
1780,
958,
0.19502743147313595,
1,
0.9017043747007847,
"leaky_relu",
"normal"
],
[
241,
1754005479,
35,
1754005514,
1754005520,
6,
"python3 .tests\/mnist\/train --epochs 70 --learning_rate 0.01806119484092108887 --batch_size 1013 --hidden_size 1210 --dropout 0.35494794975966215134 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.07446571439504623413",
"",
1,
"",
"c155",
531825,
"241_0",
"FAILED",
"SOBOL",
70,
0.01806119484092109,
1013,
1210,
0.35494794975966215,
4,
0.07446571439504623,
"leaky_relu",
"normal"
],
[
242,
1754005657,
36,
1754005693,
1754005699,
6,
"python3 .tests\/mnist\/train --epochs 14 --learning_rate 0.07359692285987548543 --batch_size 1200 --hidden_size 248 --dropout 0.38385766558349132538 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.6424930645152926445",
"",
1,
"",
"c155",
531826,
"242_0",
"FAILED",
"SOBOL",
14,
0.07359692285987549,
1200,
248,
0.3838576655834913,
3,
0.6424930645152926,
"leaky_relu",
"normal"
],
[
243,
1754005833,
9,
1754005842,
1754005848,
6,
"python3 .tests\/mnist\/train --epochs 119 --learning_rate 0.04661611665421166312 --batch_size 437 --hidden_size 2047 --dropout 0.03694068174809217453 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.31928030308336019516",
"",
1,
"",
"c155",
531827,
"243_0",
"FAILED",
"SOBOL",
119,
0.04661611665421166,
437,
2047,
0.036940681748092175,
2,
0.3192803030833602,
"leaky_relu",
"normal"
],
[
244,
1754006039,
13,
1754006052,
1754006058,
6,
"python3 .tests\/mnist\/train --epochs 149 --learning_rate 0.06195061433154159386 --batch_size 717 --hidden_size 1642 --dropout 0.10733901849016547203 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.50641755852848291397",
"",
1,
"",
"c155",
531828,
"244_0",
"FAILED",
"SOBOL",
149,
0.061950614331541594,
717,
1642,
0.10733901849016547,
1,
0.5064175585284829,
"leaky_relu",
"normal"
],
[
245,
1754006234,
28,
1754006262,
1754006268,
6,
"python3 .tests\/mnist\/train --epochs 43 --learning_rate 0.03345561713286675926 --batch_size 1989 --hidden_size 366 --dropout 0.43863098742440342903 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.45463005919009447098",
"",
1,
"",
"c155",
531829,
"245_0",
"FAILED",
"SOBOL",
43,
0.03345561713286676,
1989,
366,
0.43863098742440343,
4,
0.45463005919009447,
"leaky_relu",
"normal"
],
[
246,
1754006352,
30,
1754006382,
1754006388,
6,
"python3 .tests\/mnist\/train --epochs 100 --learning_rate 0.07810366976604797562 --batch_size 161 --hidden_size 1331 --dropout 0.28448094567283987999 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.76185424439609050751",
"",
1,
"",
"c155",
531832,
"246_0",
"FAILED",
"SOBOL",
100,
0.07810366976604798,
161,
1331,
0.2844809456728399,
3,
0.7618542443960905,
"leaky_relu",
"normal"
],
[
247,
1754006529,
34,
1754006563,
1754006569,
6,
"python3 .tests\/mnist\/train --epochs 187 --learning_rate 0.00499757894079200932 --batch_size 1437 --hidden_size 550 --dropout 0.14018544228747487068 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.21409364230930805206",
"",
1,
"",
"c155",
531833,
"247_0",
"FAILED",
"SOBOL",
187,
0.004997578940792009,
1437,
550,
0.14018544228747487,
2,
0.21409364230930805,
"leaky_relu",
"normal"
],
[
248,
1754006705,
8,
1754006713,
1754006719,
6,
"python3 .tests\/mnist\/train --epochs 193 --learning_rate 0.06410941733734681902 --batch_size 119 --hidden_size 427 --dropout 0.31307337991893291473 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.59665901307016611099",
"",
1,
"",
"c155",
531835,
"248_0",
"FAILED",
"SOBOL",
193,
0.06410941733734682,
119,
427,
0.3130733799189329,
2,
0.5966590130701661,
"leaky_relu",
"normal"
],
[
249,
1754006915,
7,
1754006922,
1754006929,
7,
"python3 .tests\/mnist\/train --epochs 83 --learning_rate 0.04342614149611444263 --batch_size 1391 --hidden_size 1709 --dropout 0.23079088609665632248 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.42762108612805604935",
"",
1,
"",
"c155",
531837,
"249_0",
"FAILED",
"SOBOL",
83,
0.04342614149611444,
1391,
1709,
0.23079088609665632,
3,
0.42762108612805605,
"leaky_relu",
"normal"
],
[
250,
1754007116,
17,
1754007133,
1754007139,
6,
"python3 .tests\/mnist\/train --epochs 50 --learning_rate 0.09901364885199816224 --batch_size 567 --hidden_size 754 --dropout 0.01386619172990322113 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.85184960626065731049",
"",
1,
"",
"c155",
531838,
"250_0",
"FAILED",
"SOBOL",
50,
0.09901364885199816,
567,
754,
0.013866191729903221,
4,
0.8518496062606573,
"leaky_relu",
"normal"
],
[
251,
1754007259,
25,
1754007284,
1754007290,
6,
"python3 .tests\/mnist\/train --epochs 130 --learning_rate 0.02122053012916818443 --batch_size 1844 --hidden_size 1509 --dropout 0.40912170242518186569 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.18684236146509647369",
"",
1,
"",
"c155",
531839,
"251_0",
"FAILED",
"SOBOL",
130,
0.021220530129168184,
1844,
1509,
0.40912170242518187,
1,
0.18684236146509647,
"leaky_relu",
"normal"
],
[
252,
1754007445,
19,
1754007464,
1754007471,
7,
"python3 .tests\/mnist\/train --epochs 112 --learning_rate 0.08732168773148209218 --batch_size 1118 --hidden_size 1150 --dropout 0.47928351303562521935 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.99920898303389549255",
"",
1,
"",
"c155",
531841,
"252_0",
"FAILED",
"SOBOL",
112,
0.08732168773148209,
1118,
1150,
0.4792835130356252,
2,
0.9992089830338955,
"leaky_relu",
"normal"
],
[
253,
1754007626,
17,
1754007643,
1754007650,
7,
"python3 .tests\/mnist\/train --epochs 32 --learning_rate 0.00811183378422632856 --batch_size 352 --hidden_size 890 --dropout 0.06840301724150776863 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.03921690583229064941",
"",
1,
"",
"c155",
531842,
"253_0",
"FAILED",
"SOBOL",
32,
0.008111833784226329,
352,
890,
0.06840301724150777,
3,
0.03921690583229065,
"leaky_relu",
"normal"
],
[
254,
1754007850,
35,
1754007885,
1754007891,
6,
"python3 .tests\/mnist\/train --epochs 65 --learning_rate 0.05271420998575166578 --batch_size 1543 --hidden_size 1844 --dropout 0.16057566693052649498 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.73975163977593183517",
"",
1,
"",
"c155",
531843,
"254_0",
"FAILED",
"SOBOL",
65,
0.052714209985751666,
1543,
1844,
0.1605756669305265,
4,
0.7397516397759318,
"leaky_relu",
"normal"
],
[
255,
1754007973,
31,
1754008004,
1754008011,
7,
"python3 .tests\/mnist\/train --epochs 175 --learning_rate 0.03042043167766183762 --batch_size 780 --hidden_size 69 --dropout 0.25848314585164189339 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.28378936555236577988",
"",
1,
"",
"c155",
531844,
"255_0",
"FAILED",
"SOBOL",
175,
0.030420431677661838,
780,
69,
0.2584831458516419,
1,
0.2837893655523658,
"leaky_relu",
"normal"
],
[
256,
1754008161,
23,
1754008184,
1754008190,
6,
"python3 .tests\/mnist\/train --epochs 175 --learning_rate 0.05249378890797496561 --batch_size 24 --hidden_size 1265 --dropout 0.46456344053149223328 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.53359002061188220978",
"",
1,
"",
"c155",
531846,
"256_0",
"FAILED",
"SOBOL",
175,
0.052493788907974966,
24,
1265,
0.46456344053149223,
3,
0.5335900206118822,
"leaky_relu",
"normal"
],
[
257,
1754008349,
16,
1754008365,
1754008371,
6,
"python3 .tests\/mnist\/train --epochs 65 --learning_rate 0.03024893106242642141 --batch_size 1302 --hidden_size 998 --dropout 0.11665618512779474258 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.48973735980689525604",
"",
1,
"",
"c155",
531847,
"257_0",
"FAILED",
"SOBOL",
65,
0.03024893106242642,
1302,
998,
0.11665618512779474,
2,
0.48973735980689526,
"leaky_relu",
"normal"
],
[
258,
1754008536,
8,
1754008544,
1754008550,
6,
"python3 .tests\/mnist\/train --epochs 33 --learning_rate 0.08720043923689052567 --batch_size 596 --hidden_size 1959 --dropout 0.14557734504342079163 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.78987401444464921951",
"",
1,
"",
"c155",
531849,
"258_0",
"FAILED",
"SOBOL",
33,
0.08720043923689053,
596,
1959,
0.1455773450434208,
1,
0.7898740144446492,
"leaky_relu",
"normal"
],
[
259,
1754008752,
33,
1754008785,
1754008791,
6,
"python3 .tests\/mnist\/train --epochs 112 --learning_rate 0.00784421203844249196 --batch_size 1870 --hidden_size 177 --dropout 0.30645761732012033463 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.24980309698730707169",
"",
1,
"",
"c155",
531850,
"259_0",
"FAILED",
"SOBOL",
112,
0.007844212038442492,
1870,
177,
0.30645761732012033,
4,
0.24980309698730707,
"leaky_relu",
"normal"
],
[
260,
1754008967,
27,
1754008994,
1754009000,
6,
"python3 .tests\/mnist\/train --epochs 130 --learning_rate 0.09913508619992063287 --batch_size 1065 --hidden_size 311 --dropout 0.36124238697811961174 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.93719237204641103745",
"",
1,
"",
"c155",
531851,
"260_0",
"FAILED",
"SOBOL",
130,
0.09913508619992063,
1065,
311,
0.3612423869781196,
3,
0.937192372046411,
"leaky_relu",
"normal"
],
[
261,
1754009095,
19,
1754009114,
1754009120,
6,
"python3 .tests\/mnist\/train --epochs 50 --learning_rate 0.02148834296323359067 --batch_size 301 --hidden_size 1602 --dropout 0.21598712960258126259 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.10226253699511289597",
"",
1,
"",
"c155",
531852,
"261_0",
"FAILED",
"SOBOL",
50,
0.02148834296323359,
301,
1602,
0.21598712960258126,
2,
0.1022625369951129,
"leaky_relu",
"normal"
],
[
262,
1754009279,
16,
1754009295,
1754009301,
6,
"python3 .tests\/mnist\/train --epochs 83 --learning_rate 0.06433002652347087624 --batch_size 1662 --hidden_size 638 --dropout 0.06181801436468958855 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.6768743470311164856",
"",
1,
"",
"c155",
531855,
"262_0",
"FAILED",
"SOBOL",
83,
0.06433002652347088,
1662,
638,
0.06181801436468959,
1,
0.6768743470311165,
"leaky_relu",
"normal"
],
[
263,
1754009478,
28,
1754009506,
1754009512,
6,
"python3 .tests\/mnist\/train --epochs 193 --learning_rate 0.04359783394461498596 --batch_size 892 --hidden_size 1403 --dropout 0.39410025486722588539 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.34572728350758552551",
"",
1,
"",
"c155",
531857,
"263_0",
"FAILED",
"SOBOL",
193,
0.043597833944614986,
892,
1403,
0.3941002548672259,
4,
0.3457272835075855,
"leaky_relu",
"normal"
],
[
264,
1754009610,
14,
1754009624,
1754009631,
7,
"python3 .tests\/mnist\/train --epochs 188 --learning_rate 0.07783433008818887999 --batch_size 1679 --hidden_size 1781 --dropout 0.09041427448391914368 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.96462865080684423447",
"",
1,
"",
"c155",
531858,
"264_0",
"FAILED",
"SOBOL",
188,
0.07783433008818888,
1679,
1781,
0.09041427448391914,
4,
0.9646286508068442,
"leaky_relu",
"normal"
],
[
265,
1754009839,
26,
1754009865,
1754009871,
6,
"python3 .tests\/mnist\/train --epochs 100 --learning_rate 0.00487461549405939897 --batch_size 915 --hidden_size 515 --dropout 0.48470955435186624527 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.01257045846432447433",
"",
1,
"",
"c155",
531859,
"265_0",
"FAILED",
"SOBOL",
100,
0.004874615494059399,
915,
515,
0.48470955435186625,
1,
0.012570458464324474,
"leaky_relu",
"normal"
],
[
266,
1754009964,
21,
1754009985,
1754009991,
6,
"python3 .tests\/mnist\/train --epochs 43 --learning_rate 0.0617804472368676319 --batch_size 1239 --hidden_size 1470 --dropout 0.26776578649878501892 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.70455281436443328857",
"",
1,
"",
"c155",
531860,
"266_0",
"FAILED",
"SOBOL",
43,
0.06178044723686763,
1239,
1470,
0.267765786498785,
2,
0.7045528143644333,
"leaky_relu",
"normal"
],
[
267,
1754010150,
15,
1754010165,
1754010171,
6,
"python3 .tests\/mnist\/train --epochs 149 --learning_rate 0.03323653255558573633 --batch_size 470 --hidden_size 698 --dropout 0.18647404108196496964 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.25628117844462394714",
"",
1,
"",
"c155",
531861,
"267_0",
"FAILED",
"SOBOL",
149,
0.033236532555585736,
470,
698,
0.18647404108196497,
3,
0.25628117844462395,
"leaky_relu",
"normal"
],
[
268,
1754010369,
7,
1754010376,
1754010382,
6,
"python3 .tests\/mnist\/train --epochs 119 --learning_rate 0.07376689737630076626 --batch_size 702 --hidden_size 818 --dropout 0.2410070556215941906 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.5684115234762430191",
"",
1,
"",
"c155",
531862,
"268_0",
"FAILED",
"SOBOL",
119,
0.07376689737630077,
702,
818,
0.2410070556215942,
4,
0.568411523476243,
"leaky_relu",
"normal"
],
[
269,
1754010581,
35,
1754010616,
1754010622,
6,
"python3 .tests\/mnist\/train --epochs 14 --learning_rate 0.04683501088819467389 --batch_size 1980 --hidden_size 1063 --dropout 0.33792378613725304604 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.39168337546288967133",
"",
1,
"",
"c155",
531864,
"269_0",
"FAILED",
"SOBOL",
14,
0.046835010888194674,
1980,
1063,
0.33792378613725305,
1,
0.39168337546288967,
"leaky_relu",
"normal"
],
[
270,
1754010709,
26,
1754010735,
1754010741,
6,
"python3 .tests\/mnist\/train --epochs 71 --learning_rate 0.08972847378536127905 --batch_size 237 --hidden_size 108 --dropout 0.43010787991806864738 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.82493776548653841019",
"",
1,
"",
"c155",
531865,
"270_0",
"FAILED",
"SOBOL",
71,
0.08972847378536128,
237,
108,
0.43010787991806865,
2,
0.8249377654865384,
"leaky_relu",
"normal"
],
[
271,
1754010900,
15,
1754010915,
1754010921,
6,
"python3 .tests\/mnist\/train --epochs 158 --learning_rate 0.01818396868933923674 --batch_size 1512 --hidden_size 1900 --dropout 0.02018761495128273964 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.1519952649250626564",
"",
1,
"",
"c155",
531866,
"271_0",
"FAILED",
"SOBOL",
158,
0.018183968689339237,
1512,
1900,
0.02018761495128274,
3,
0.15199526492506266,
"leaky_relu",
"normal"
],
[
272,
1754011100,
26,
1754011126,
1754011132,
6,
"python3 .tests\/mnist\/train --epochs 163 --learning_rate 0.09325079849219881922 --batch_size 1017 --hidden_size 555 --dropout 0.28595045534893870354 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.44778326153755187988",
"",
1,
"",
"c155",
531868,
"272_0",
"FAILED",
"SOBOL",
163,
0.09325079849219882,
1017,
555,
0.2859504553489387,
1,
0.4477832615375519,
"leaky_relu",
"normal"
],
[
273,
1754011234,
13,
1754011247,
1754011253,
6,
"python3 .tests\/mnist\/train --epochs 77 --learning_rate 0.01467537551936693579 --batch_size 1784 --hidden_size 1326 --dropout 0.13288138667121529579 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.52892845496535301208",
"",
1,
"",
"c155",
531869,
"273_0",
"FAILED",
"SOBOL",
77,
0.014675375519366936,
1784,
1326,
0.1328813866712153,
4,
0.528928454965353,
"leaky_relu",
"normal"
],
[
274,
1754011456,
31,
1754011487,
1754011494,
7,
"python3 .tests\/mnist\/train --epochs 20 --learning_rate 0.0718252147055137985 --batch_size 433 --hidden_size 372 --dropout 0.10396022675558924675 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.18770751263946294785",
"",
1,
"",
"c155",
531871,
"274_0",
"FAILED",
"SOBOL",
20,
0.0718252147055138,
433,
372,
0.10396022675558925,
3,
0.18770751263946295,
"leaky_relu",
"normal"
],
[
275,
1754011592,
15,
1754011607,
1754011613,
6,
"python3 .tests\/mnist\/train --epochs 124 --learning_rate 0.04879957945375704154 --batch_size 1197 --hidden_size 1636 --dropout 0.44405627856031060219 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.77263921778649091721",
"",
1,
"",
"c155",
531873,
"275_0",
"FAILED",
"SOBOL",
124,
0.04879957945375704,
1197,
1636,
0.4440562785603106,
2,
0.7726392177864909,
"leaky_relu",
"normal"
],
[
276,
1754011813,
33,
1754011846,
1754011852,
6,
"python3 .tests\/mnist\/train --epochs 142 --learning_rate 0.05827794654239901173 --batch_size 1986 --hidden_size 2044 --dropout 0.38921810314059257507 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.08525665570050477982",
"",
1,
"",
"c155",
531875,
"276_0",
"FAILED",
"SOBOL",
142,
0.05827794654239901,
1986,
2044,
0.3892181031405926,
1,
0.08525665570050478,
"leaky_relu",
"normal"
],
[
277,
1754011945,
22,
1754011967,
1754011973,
6,
"python3 .tests\/mnist\/train --epochs 38 --learning_rate 0.03676497059746645923 --batch_size 711 --hidden_size 252 --dropout 0.03349703643471002579 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.87532562855631113052",
"",
1,
"",
"c155",
531876,
"277_0",
"FAILED",
"SOBOL",
38,
0.03676497059746646,
711,
252,
0.033497036434710026,
4,
0.8753256285563111,
"leaky_relu",
"normal"
],
[
278,
1754012138,
9,
1754012147,
1754012153,
6,
"python3 .tests\/mnist\/train --epochs 95 --learning_rate 0.07980499112925493188 --batch_size 1442 --hidden_size 1206 --dropout 0.18766615167260169983 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.34178284741938114166",
"",
1,
"",
"c155",
531877,
"278_0",
"FAILED",
"SOBOL",
95,
0.07980499112925493,
1442,
1206,
0.1876661516726017,
3,
0.34178284741938114,
"leaky_relu",
"normal"
],
[
279,
1754012367,
19,
1754012386,
1754012393,
7,
"python3 .tests\/mnist\/train --epochs 181 --learning_rate 0.00293904615831561437 --batch_size 163 --hidden_size 961 --dropout 0.35636023525148630142 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.63563745282590389252",
"",
1,
"",
"c155",
531878,
"279_0",
"FAILED",
"SOBOL",
181,
0.0029390461583156144,
163,
961,
0.3563602352514863,
2,
0.6356374528259039,
"leaky_relu",
"normal"
],
[
280,
1754012599,
29,
1754012628,
1754012634,
6,
"python3 .tests\/mnist\/train --epochs 199 --learning_rate 0.0686178844105452268 --batch_size 1388 --hidden_size 63 --dropout 0.16010751901194453239 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.04994682688266038895",
"",
1,
"",
"c155",
531879,
"280_0",
"FAILED",
"SOBOL",
199,
0.06861788441054523,
1388,
63,
0.16010751901194453,
2,
0.04994682688266039,
"leaky_relu",
"normal"
],
[
281,
1754012736,
13,
1754012749,
1754012755,
6,
"python3 .tests\/mnist\/train --epochs 88 --learning_rate 0.03929319306803867595 --batch_size 113 --hidden_size 1849 --dropout 0.26483543822541832924 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.972891257144510746",
"",
1,
"",
"c155",
531880,
"281_0",
"FAILED",
"SOBOL",
88,
0.039293193068038676,
113,
1849,
0.26483543822541833,
3,
0.9728912571445107,
"leaky_relu",
"normal"
],
[
282,
1754012965,
23,
1754012988,
1754012994,
6,
"python3 .tests\/mnist\/train --epochs 56 --learning_rate 0.09639125291725621214 --batch_size 1849 --hidden_size 885 --dropout 0.48177920607849955559 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.30623085983097553253",
"",
1,
"",
"c155",
531884,
"282_0",
"FAILED",
"SOBOL",
56,
0.09639125291725621,
1849,
885,
0.48177920607849956,
4,
0.30623085983097553,
"leaky_relu",
"normal"
],
[
283,
1754013100,
9,
1754013109,
1754013115,
6,
"python3 .tests\/mnist\/train --epochs 137 --learning_rate 0.02421234180375933867 --batch_size 570 --hidden_size 1156 --dropout 0.06404775241389870644 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.73295707814395427704",
"",
1,
"",
"c155",
531886,
"283_0",
"FAILED",
"SOBOL",
137,
0.02421234180375934,
570,
1156,
0.0640477524138987,
1,
0.7329570781439543,
"leaky_relu",
"normal"
],
[
284,
1754013331,
15,
1754013346,
1754013352,
6,
"python3 .tests\/mnist\/train --epochs 107 --learning_rate 0.082889685025271026 --batch_size 355 --hidden_size 1513 --dropout 0.00944607332348823547 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.4208353385329246521",
"",
1,
"",
"c156",
531887,
"284_0",
"FAILED",
"SOBOL",
107,
0.08288968502527103,
355,
1513,
0.009446073323488235,
2,
0.42083533853292465,
"leaky_relu",
"normal"
],
[
285,
1754013547,
9,
1754013556,
1754013562,
6,
"python3 .tests\/mnist\/train --epochs 26 --learning_rate 0.01212597745001316174 --batch_size 1123 --hidden_size 751 --dropout 0.41155254188925027847 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.61910885944962501526",
"",
1,
"",
"c156",
531888,
"285_0",
"FAILED",
"SOBOL",
26,
0.012125977450013162,
1123,
751,
0.4115525418892503,
3,
0.619108859449625,
"leaky_relu",
"normal"
],
[
286,
1754013768,
28,
1754013796,
1754013802,
6,
"python3 .tests\/mnist\/train --epochs 58 --learning_rate 0.05521167441345752047 --batch_size 775 --hidden_size 1712 --dropout 0.31936844810843467712 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.16051725205034017563",
"",
1,
"",
"c156",
531890,
"286_0",
"FAILED",
"SOBOL",
58,
0.05521167441345752,
775,
1712,
0.3193684481084347,
4,
0.16051725205034018,
"leaky_relu",
"normal"
],
[
287,
1754013902,
14,
1754013916,
1754013922,
6,
"python3 .tests\/mnist\/train --epochs 170 --learning_rate 0.0274990053042583199 --batch_size 1540 --hidden_size 424 --dropout 0.23026551399379968643 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.86257355939596891403",
"",
1,
"",
"c156",
531891,
"287_0",
"FAILED",
"SOBOL",
170,
0.02749900530425832,
1540,
424,
0.2302655139937997,
1,
0.8625735593959689,
"leaky_relu",
"normal"
],
[
288,
1754014142,
14,
1754014156,
1754014162,
6,
"python3 .tests\/mnist\/train --epochs 166 --learning_rate 0.08474125467162579861 --batch_size 1268 --hidden_size 929 --dropout 0.40122691402211785316 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.20973245240747928619",
"",
1,
"",
"c156",
531892,
"288_0",
"FAILED",
"SOBOL",
166,
0.0847412546716258,
1268,
929,
0.40122691402211785,
1,
0.2097324524074793,
"leaky_relu",
"normal"
],
[
289,
1754014358,
9,
1754014367,
1754014373,
6,
"python3 .tests\/mnist\/train --epochs 62 --learning_rate 0.00776592376546934252 --batch_size 504 --hidden_size 1175 --dropout 0.05282984254881739616 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.75181870721280574799",
"",
1,
"",
"c156",
531893,
"289_0",
"FAILED",
"SOBOL",
62,
0.0077659237654693425,
504,
1175,
0.052829842548817396,
4,
0.7518187072128057,
"leaky_relu",
"normal"
],
[
290,
1754014576,
31,
1754014607,
1754014613,
6,
"python3 .tests\/mnist\/train --epochs 24 --learning_rate 0.05060751494774595738 --batch_size 1713 --hidden_size 219 --dropout 0.20751769701018929482 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.46529312897473573685",
"",
1,
"",
"c156",
531894,
"290_0",
"FAILED",
"SOBOL",
24,
0.05060751494774596,
1713,
219,
0.2075176970101893,
3,
0.46529312897473574,
"leaky_relu",
"normal"
],
[
291,
1754014710,
17,
1754014727,
1754014733,
6,
"python3 .tests\/mnist\/train --epochs 109 --learning_rate 0.0292040947942808285 --batch_size 945 --hidden_size 2012 --dropout 0.36791122285649180412 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.51115829590708017349",
"",
1,
"",
"c156",
531899,
"291_0",
"FAILED",
"SOBOL",
109,
0.02920409479428083,
945,
2012,
0.3679112228564918,
2,
0.5111582959070802,
"leaky_relu",
"normal"
],
[
292,
1754014919,
18,
1754014937,
1754014943,
6,
"python3 .tests\/mnist\/train --epochs 139 --learning_rate 0.06386038944983854493 --batch_size 203 --hidden_size 1605 --dropout 0.29737938288599252701 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.32329627778381109238",
"",
1,
"",
"c156",
531901,
"292_0",
"FAILED",
"SOBOL",
139,
0.06386038944983854,
203,
1605,
0.2973793828859925,
1,
0.3232962777838111,
"leaky_relu",
"normal"
],
[
293,
1754015073,
14,
1754015087,
1754015093,
6,
"python3 .tests\/mnist\/train --epochs 53 --learning_rate 0.04074882630500942932 --batch_size 1482 --hidden_size 339 --dropout 0.15261084213852882385 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.65243131201714277267",
"",
1,
"",
"c156",
531902,
"293_0",
"FAILED",
"SOBOL",
53,
0.04074882630500943,
1482,
339,
0.15261084213852882,
4,
0.6524313120171428,
"leaky_relu",
"normal"
],
[
294,
1754015305,
22,
1754015327,
1754015333,
6,
"python3 .tests\/mnist\/train --epochs 92 --learning_rate 0.09770042685743421385 --batch_size 672 --hidden_size 1294 --dropout 0.1231709429994225502 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.06420889496803283691",
"",
1,
"",
"c156",
531903,
"294_0",
"FAILED",
"SOBOL",
92,
0.09770042685743421,
672,
1294,
0.12317094299942255,
3,
0.06420889496803284,
"leaky_relu",
"normal"
],
[
295,
1754015443,
4,
1754015447,
1754015453,
6,
"python3 .tests\/mnist\/train --epochs 196 --learning_rate 0.01921072020234540143 --batch_size 1946 --hidden_size 523 --dropout 0.45594302937388420105 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.89712196215987205505",
"",
1,
"",
"c156",
531904,
"295_0",
"FAILED",
"SOBOL",
196,
0.0192107202023454,
1946,
523,
0.4559430293738842,
2,
0.897121962159872,
"leaky_relu",
"normal"
],
[
296,
1754015677,
11,
1754015688,
1754015694,
6,
"python3 .tests\/mnist\/train --epochs 179 --learning_rate 0.06013619124139660266 --batch_size 625 --hidden_size 392 --dropout 0.02926710108295083046 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.29629103001207113266",
"",
1,
"",
"c156",
531905,
"296_0",
"FAILED",
"SOBOL",
179,
0.0601361912413966,
625,
392,
0.02926710108295083,
2,
0.29629103001207113,
"leaky_relu",
"normal"
],
[
297,
1754015899,
29,
1754015928,
1754015934,
6,
"python3 .tests\/mnist\/train --epochs 97 --learning_rate 0.0323375942391250365 --batch_size 1905 --hidden_size 1680 --dropout 0.42307301191613078117 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.742668922059237957",
"",
1,
"",
"c156",
531906,
"297_0",
"FAILED",
"SOBOL",
97,
0.032337594239125036,
1905,
1680,
0.4230730119161308,
3,
0.742668922059238,
"leaky_relu",
"normal"
],
[
298,
1754016039,
9,
1754016048,
1754016054,
6,
"python3 .tests\/mnist\/train --epochs 35 --learning_rate 0.07523115547412075055 --batch_size 58 --hidden_size 719 --dropout 0.33140777656808495522 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.03695388883352279663",
"",
1,
"",
"c156",
531907,
"298_0",
"FAILED",
"SOBOL",
35,
0.07523115547412075,
58,
719,
0.33140777656808496,
4,
0.0369538888335228,
"leaky_relu",
"normal"
],
[
299,
1754016276,
12,
1754016288,
1754016294,
6,
"python3 .tests\/mnist\/train --epochs 146 --learning_rate 0.00455316421660594602 --batch_size 1332 --hidden_size 1481 --dropout 0.24962883768603205681 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.98712116852402687073",
"",
1,
"",
"c156",
531908,
"299_0",
"FAILED",
"SOBOL",
146,
0.004553164216605946,
1332,
1481,
0.24962883768603206,
1,
0.9871211685240269,
"leaky_relu",
"normal"
],
[
300,
1754016506,
22,
1754016528,
1754016534,
6,
"python3 .tests\/mnist\/train --epochs 128 --learning_rate 0.08843818666824139474 --batch_size 1627 --hidden_size 1123 --dropout 0.17934875283390283585 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.17448754794895648956",
"",
1,
"",
"c156",
531909,
"300_0",
"FAILED",
"SOBOL",
128,
0.0884381866682414,
1627,
1123,
0.17934875283390284,
2,
0.1744875479489565,
"leaky_relu",
"normal"
],
[
301,
1754016645,
33,
1754016678,
1754016685,
7,
"python3 .tests\/mnist\/train --epochs 17 --learning_rate 0.01614988961952738486 --batch_size 863 --hidden_size 853 --dropout 0.2767527066171169281 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.84931953065097332001",
"",
1,
"",
"c156",
531910,
"301_0",
"FAILED",
"SOBOL",
17,
0.016149889619527385,
863,
853,
0.27675270661711693,
3,
0.8493195306509733,
"leaky_relu",
"normal"
],
[
302,
1754016848,
10,
1754016858,
1754016864,
6,
"python3 .tests\/mnist\/train --epochs 79 --learning_rate 0.07305562302450649415 --batch_size 1035 --hidden_size 1817 --dropout 0.49317761603742837906 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.42979828733950853348",
"",
1,
"",
"c156",
531911,
"302_0",
"FAILED",
"SOBOL",
79,
0.0730556230245065,
1035,
1817,
0.4931776160374284,
4,
0.42979828733950853,
"leaky_relu",
"normal"
],
[
303,
1754017087,
11,
1754017098,
1754017105,
7,
"python3 .tests\/mnist\/train --epochs 161 --learning_rate 0.04384048747346737385 --batch_size 267 --hidden_size 32 --dropout 0.0837466903030872345 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.60842065606266260147",
"",
1,
"",
"c156",
531912,
"303_0",
"FAILED",
"SOBOL",
161,
0.043840487473467374,
267,
32,
0.08374669030308723,
1,
0.6084206560626626,
"leaky_relu",
"normal"
],
[
304,
1754017316,
23,
1754017339,
1754017345,
6,
"python3 .tests\/mnist\/train --epochs 154 --learning_rate 0.06876584754976444724 --batch_size 1815 --hidden_size 1370 --dropout 0.34935588482767343521 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.81069476157426834106",
"",
1,
"",
"c156",
531913,
"304_0",
"FAILED",
"SOBOL",
154,
0.06876584754976445,
1815,
1370,
0.34935588482767344,
3,
0.8106947615742683,
"leaky_relu",
"normal"
],
[
305,
1754017459,
30,
1754017489,
1754017495,
6,
"python3 .tests\/mnist\/train --epochs 74 --learning_rate 0.04814399448507466345 --batch_size 540 --hidden_size 606 --dropout 0.19677615538239479065 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.22777600958943367004",
"",
1,
"",
"c156",
531914,
"305_0",
"FAILED",
"SOBOL",
74,
0.04814399448507466,
540,
606,
0.1967761553823948,
2,
0.22777600958943367,
"leaky_relu",
"normal"
],
[
306,
1754017676,
23,
1754017699,
1754017705,
6,
"python3 .tests\/mnist\/train --epochs 12 --learning_rate 0.09118391667903401332 --batch_size 1358 --hidden_size 1570 --dropout 0.042088300921022892 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.55135755892843008041",
"",
1,
"",
"c156",
531920,
"306_0",
"FAILED",
"SOBOL",
12,
0.09118391667903401,
1358,
1570,
0.04208830092102289,
1,
0.5513575589284301,
"leaky_relu",
"normal"
],
[
307,
1754017888,
21,
1754017909,
1754017915,
6,
"python3 .tests\/mnist\/train --epochs 121 --learning_rate 0.01342704550351016268 --batch_size 80 --hidden_size 279 --dropout 0.38267157599329948425 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.472228209488093853",
"",
1,
"",
"c156",
531929,
"307_0",
"FAILED",
"SOBOL",
121,
0.013427045503510163,
80,
279,
0.3826715759932995,
4,
0.47222820948809385,
"leaky_relu",
"normal"
],
[
308,
1754018092,
28,
1754018120,
1754018126,
6,
"python3 .tests\/mnist\/train --epochs 151 --learning_rate 0.0795407549612317244 --batch_size 805 --hidden_size 145 --dropout 0.45301268110051751137 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.66008358914405107498",
"",
1,
"",
"c156",
531934,
"308_0",
"FAILED",
"SOBOL",
151,
0.07954075496123172,
805,
145,
0.4530126811005175,
3,
0.6600835891440511,
"leaky_relu",
"normal"
],
[
309,
1754018301,
28,
1754018329,
1754018336,
7,
"python3 .tests\/mnist\/train --epochs 42 --learning_rate 0.00026950207690708343 --batch_size 1574 --hidden_size 1927 --dropout 0.09680442092940211296 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.36421266291290521622",
"",
1,
"",
"c156",
531941,
"309_0",
"FAILED",
"SOBOL",
42,
0.0002695020769070834,
1574,
1927,
0.09680442092940211,
2,
0.3642126629129052,
"leaky_relu",
"normal"
],
[
310,
1754018511,
29,
1754018540,
1754018546,
6,
"python3 .tests\/mnist\/train --epochs 104 --learning_rate 0.05741943960088306126 --batch_size 389 --hidden_size 966 --dropout 0.12624432006850838661 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.91539436765015125275",
"",
1,
"",
"c156",
531943,
"310_0",
"FAILED",
"SOBOL",
104,
0.05741943960088306,
389,
966,
0.1262443200685084,
1,
0.9153943676501513,
"leaky_relu",
"normal"
],
[
311,
1754018720,
30,
1754018750,
1754018756,
6,
"python3 .tests\/mnist\/train --epochs 184 --learning_rate 0.03508943758496083781 --batch_size 1153 --hidden_size 1233 --dropout 0.29444903461262583733 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.12331387214362621307",
"",
1,
"",
"c156",
531944,
"311_0",
"FAILED",
"SOBOL",
184,
0.03508943758496084,
1153,
1233,
0.29444903461262584,
4,
0.12331387214362621,
"leaky_relu",
"normal"
],
[
312,
1754018927,
3,
1754018930,
1754018936,
6,
"python3 .tests\/mnist\/train --epochs 191 --learning_rate 0.09417694742608816172 --batch_size 398 --hidden_size 1868 --dropout 0.22130785975605249405 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.69484025705605745316",
"",
1,
"",
"c156",
531945,
"312_0",
"FAILED",
"SOBOL",
191,
0.09417694742608816,
398,
1868,
0.2213078597560525,
4,
0.6948402570560575,
"leaky_relu",
"normal"
],
[
313,
1754019171,
30,
1754019201,
1754019207,
6,
"python3 .tests\/mnist\/train --epochs 86 --learning_rate 0.02271741664418950798 --batch_size 1167 --hidden_size 76 --dropout 0.3265256248414516449 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.26622363273054361343",
"",
1,
"",
"c155",
531946,
"313_0",
"FAILED",
"SOBOL",
86,
0.022717416644189508,
1167,
76,
0.32652562484145164,
1,
0.2662236327305436,
"leaky_relu",
"normal"
],
[
314,
1754019344,
6,
1754019350,
1754019357,
7,
"python3 .tests\/mnist\/train --epochs 47 --learning_rate 0.06580320598559454004 --batch_size 986 --hidden_size 1031 --dropout 0.41819086018949747086 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.95040088333189487457",
"",
1,
"",
"c156",
531947,
"314_0",
"FAILED",
"SOBOL",
47,
0.06580320598559454,
986,
1031,
0.41819086018949747,
2,
0.9504008833318949,
"leaky_relu",
"normal"
],
[
315,
1754019588,
34,
1754019622,
1754019628,
6,
"python3 .tests\/mnist\/train --epochs 134 --learning_rate 0.03878617532711476495 --batch_size 1751 --hidden_size 786 --dropout 0.0009461231529712677 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.02556315623223781586",
"",
1,
"",
"c156",
531948,
"315_0",
"FAILED",
"SOBOL",
134,
0.038786175327114765,
1751,
786,
0.0009461231529712677,
3,
0.025563156232237816,
"leaky_relu",
"normal"
],
[
316,
1754019731,
10,
1754019741,
1754019747,
6,
"python3 .tests\/mnist\/train --epochs 116 --learning_rate 0.05410809805454687427 --batch_size 1472 --hidden_size 666 --dropout 0.07105073193088173866 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.83818821609020233154",
"",
1,
"",
"c156",
531949,
"316_0",
"FAILED",
"SOBOL",
116,
0.054108098054546874,
1472,
666,
0.07105073193088174,
4,
0.8381882160902023,
"leaky_relu",
"normal"
],
[
317,
1754019976,
5,
1754019981,
1754019987,
6,
"python3 .tests\/mnist\/train --epochs 29 --learning_rate 0.02567452288743108865 --batch_size 197 --hidden_size 1438 --dropout 0.47267045406624674797 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.13802663609385490417",
"",
1,
"",
"c156",
531950,
"317_0",
"FAILED",
"SOBOL",
29,
0.02567452288743109,
197,
1438,
0.47267045406624675,
1,
0.1380266360938549,
"leaky_relu",
"normal"
],
[
318,
1754020210,
11,
1754020221,
1754020227,
6,
"python3 .tests\/mnist\/train --epochs 67 --learning_rate 0.08277249035868794458 --batch_size 2020 --hidden_size 483 --dropout 0.25624554464593529701 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.57910092081874608994",
"",
1,
"",
"c156",
531951,
"318_0",
"FAILED",
"SOBOL",
67,
0.08277249035868794,
2020,
483,
0.2562455446459353,
2,
0.5791009208187461,
"leaky_relu",
"normal"
],
[
319,
1754020438,
23,
1754020461,
1754020467,
6,
"python3 .tests\/mnist\/train --epochs 173 --learning_rate 0.00970264782572165252 --batch_size 742 --hidden_size 1749 --dropout 0.16665279446169734001 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.38271732907742261887",
"",
1,
"",
"c156",
531952,
"319_0",
"FAILED",
"SOBOL",
173,
0.009702647825721653,
742,
1749,
0.16665279446169734,
3,
0.3827173290774226,
"leaky_relu",
"normal"
],
[
320,
1754020684,
18,
1754020702,
1754020708,
6,
"python3 .tests\/mnist\/train --epochs 171 --learning_rate 0.09718602949567139992 --batch_size 1968 --hidden_size 100 --dropout 0.04749383497983217239 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.33138340804725885391",
"",
1,
"",
"c156",
531953,
"320_0",
"FAILED",
"SOBOL",
171,
0.0971860294956714,
1968,
100,
0.04749383497983217,
4,
0.33138340804725885,
"leaky_relu",
"normal"
],
[
321,
1754020899,
13,
1754020912,
1754020918,
6,
"python3 .tests\/mnist\/train --epochs 69 --learning_rate 0.02032017988262698263 --batch_size 690 --hidden_size 1877 --dropout 0.40271004289388656616 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.62920745927840471268",
"",
1,
"",
"c156",
531954,
"321_0",
"FAILED",
"SOBOL",
69,
0.020320179882626983,
690,
1877,
0.40271004289388657,
1,
0.6292074592784047,
"leaky_relu",
"normal"
],
[
322,
1754021131,
21,
1754021152,
1754021158,
6,
"python3 .tests\/mnist\/train --epochs 30 --learning_rate 0.06316023490881547686 --batch_size 1524 --hidden_size 793 --dropout 0.37307178694754838943 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.08779901079833507538",
"",
1,
"",
"c156",
531955,
"322_0",
"FAILED",
"SOBOL",
30,
0.06316023490881548,
1524,
793,
0.3730717869475484,
2,
0.08779901079833508,
"leaky_relu",
"normal"
],
[
323,
1754021298,
4,
1754021302,
1754021308,
6,
"python3 .tests\/mnist\/train --epochs 114 --learning_rate 0.04164735432177782415 --batch_size 249 --hidden_size 1055 --dropout 0.20582859218120574951 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.88964513130486011505",
"",
1,
"",
"c156",
531956,
"323_0",
"FAILED",
"SOBOL",
114,
0.041647354321777824,
249,
1055,
0.20582859218120575,
3,
0.8896451313048601,
"leaky_relu",
"normal"
],
[
324,
1754021555,
17,
1754021572,
1754021578,
6,
"python3 .tests\/mnist\/train --epochs 133 --learning_rate 0.05131948865285144296 --batch_size 927 --hidden_size 1413 --dropout 0.15135663235560059547 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.20176737383008003235",
"",
1,
"",
"c156",
531957,
"324_0",
"FAILED",
"SOBOL",
133,
0.05131948865285144,
927,
1413,
0.1513566323556006,
4,
0.20176737383008003,
"leaky_relu",
"normal"
],
[
325,
1754021791,
21,
1754021812,
1754021818,
6,
"python3 .tests\/mnist\/train --epochs 48 --learning_rate 0.02829375804319977927 --batch_size 1691 --hidden_size 659 --dropout 0.30297481222078204155 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.77492050081491470337",
"",
1,
"",
"c156",
531958,
"325_0",
"FAILED",
"SOBOL",
48,
0.02829375804319978,
1691,
659,
0.30297481222078204,
1,
0.7749205008149147,
"leaky_relu",
"normal"
],
[
326,
1754021959,
3,
1754021962,
1754021968,
6,
"python3 .tests\/mnist\/train --epochs 87 --learning_rate 0.08524382243953645966 --batch_size 458 --hidden_size 1740 --dropout 0.45737274223938584328 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.44158096145838499069",
"",
1,
"",
"c156",
531959,
"326_0",
"FAILED",
"SOBOL",
87,
0.08524382243953646,
458,
1740,
0.45737274223938584,
2,
0.441580961458385,
"leaky_relu",
"normal"
],
[
327,
1754022209,
13,
1754022222,
1754022229,
7,
"python3 .tests\/mnist\/train --epochs 189 --learning_rate 0.00666830410880967991 --batch_size 1227 --hidden_size 460 --dropout 0.11778154922649264336 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.51875718589872121811",
"",
1,
"",
"c155",
531960,
"327_0",
"FAILED",
"SOBOL",
189,
0.00666830410880968,
1227,
460,
0.11778154922649264,
3,
0.5187571858987212,
"leaky_relu",
"normal"
],
[
328,
1754022577,
16,
1754022593,
1754022599,
6,
"python3 .tests\/mnist\/train --epochs 186 --learning_rate 0.07259278448454103971 --batch_size 313 --hidden_size 583 --dropout 0.42920379061251878738 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.16694970056414604187",
"",
1,
"",
"c156",
531961,
"328_0",
"FAILED",
"SOBOL",
186,
0.07259278448454104,
313,
583,
0.4292037906125188,
3,
0.16694970056414604,
"leaky_relu",
"normal"
],
[
329,
1754022952,
32,
1754022984,
1754022990,
6,
"python3 .tests\/mnist\/train --epochs 103 --learning_rate 0.04488002001744696018 --batch_size 1077 --hidden_size 1362 --dropout 0.02662298083305358887 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.87297065556049346924",
"",
1,
"",
"c156",
531962,
"329_0",
"FAILED",
"SOBOL",
103,
0.04488002001744696,
1077,
1362,
0.02662298083305359,
2,
0.8729706555604935,
"leaky_relu",
"normal"
],
[
330,
1754023112,
7,
1754023119,
1754023125,
6,
"python3 .tests\/mnist\/train --epochs 40 --learning_rate 0.08777204509635457008 --batch_size 881 --hidden_size 272 --dropout 0.24330729711800813675 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.40651338081806898117",
"",
1,
"",
"c155",
531963,
"330_0",
"FAILED",
"SOBOL",
40,
0.08777204509635457,
881,
272,
0.24330729711800814,
1,
0.406513380818069,
"leaky_relu",
"normal"
],
[
331,
1754023380,
25,
1754023405,
1754023411,
6,
"python3 .tests\/mnist\/train --epochs 153 --learning_rate 0.01700824216320179563 --batch_size 1650 --hidden_size 1545 --dropout 0.33389163762331008911 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.61656884755939245224",
"",
1,
"",
"c155",
531964,
"331_0",
"FAILED",
"SOBOL",
153,
0.017008242163201796,
1650,
1545,
0.3338916376233101,
4,
0.6165688475593925,
"leaky_relu",
"normal"
],
[
332,
1754023531,
23,
1754023554,
1754023560,
6,
"python3 .tests\/mnist\/train --epochs 123 --learning_rate 0.075885455532418572 --batch_size 1290 --hidden_size 1952 --dropout 0.27916789287701249123 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.30395095888525247574",
"",
1,
"",
"c156",
531965,
"332_0",
"FAILED",
"SOBOL",
123,
0.07588545553241857,
1290,
1952,
0.2791678928770125,
3,
0.3039509588852525,
"leaky_relu",
"normal"
],
[
333,
1754023755,
9,
1754023764,
1754023770,
6,
"python3 .tests\/mnist\/train --epochs 10 --learning_rate 0.00370663977681659181 --batch_size 12 --hidden_size 152 --dropout 0.17295856727287173271 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.71889570821076631546",
"",
1,
"",
"c156",
531966,
"333_0",
"FAILED",
"SOBOL",
10,
0.003706639776816592,
12,
152,
0.17295856727287173,
2,
0.7188957082107663,
"leaky_relu",
"normal"
],
[
334,
1754024017,
17,
1754024034,
1754024040,
6,
"python3 .tests\/mnist\/train --epochs 73 --learning_rate 0.06061083702570759651 --batch_size 1882 --hidden_size 1243 --dropout 0.08152220631018280983 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.06011671386659145355",
"",
1,
"",
"c156",
531967,
"334_0",
"FAILED",
"SOBOL",
73,
0.060610837025707597,
1882,
1243,
0.08152220631018281,
1,
0.060116713866591454,
"leaky_relu",
"normal"
],
[
335,
1754024264,
10,
1754024274,
1754024280,
6,
"python3 .tests\/mnist\/train --epochs 156 --learning_rate 0.03128624104109593157 --batch_size 608 --hidden_size 989 --dropout 0.4997280011884868145 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.97909506596624851227",
"",
1,
"",
"c156",
531968,
"335_0",
"FAILED",
"SOBOL",
156,
0.03128624104109593,
608,
989,
0.4997280011884868,
4,
0.9790950659662485,
"leaky_relu",
"normal"
],
[
336,
1754024509,
5,
1754024514,
1754024520,
6,
"python3 .tests\/mnist\/train --epochs 159 --learning_rate 0.05632297913863324595 --batch_size 1103 --hidden_size 1689 --dropout 0.20289825880900025368 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.68330744188278913498",
"",
1,
"",
"c156",
531970,
"336_0",
"FAILED",
"SOBOL",
159,
0.056322979138633246,
1103,
1689,
0.20289825880900025,
2,
0.6833074418827891,
"leaky_relu",
"normal"
],
[
337,
1754024773,
11,
1754024784,
1754024791,
7,
"python3 .tests\/mnist\/train --epochs 81 --learning_rate 0.03559088191767224157 --batch_size 335 --hidden_size 415 --dropout 0.34670524997636675835 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.35612553264945745468",
"",
1,
"",
"c156",
531971,
"337_0",
"FAILED",
"SOBOL",
81,
0.03559088191767224,
335,
415,
0.34670524997636676,
3,
0.35612553264945745,
"leaky_relu",
"normal"
],
[
338,
1754025031,
24,
1754025055,
1754025061,
6,
"python3 .tests\/mnist\/train --epochs 18 --learning_rate 0.07862928881508297885 --batch_size 1560 --hidden_size 1506 --dropout 0.37634350592270493507 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.92287119850516319275",
"",
1,
"",
"c156",
531972,
"338_0",
"FAILED",
"SOBOL",
18,
0.07862928881508298,
1560,
1506,
0.37634350592270494,
4,
0.9228711985051632,
"leaky_relu",
"normal"
],
[
339,
1754025187,
18,
1754025205,
1754025211,
6,
"python3 .tests\/mnist\/train --epochs 126 --learning_rate 0.00098264093629084532 --batch_size 795 --hidden_size 726 --dropout 0.04456350160762667656 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.09972375631332397461",
"",
1,
"",
"c156",
531973,
"339_0",
"FAILED",
"SOBOL",
126,
0.0009826409362908453,
795,
726,
0.04456350160762668,
1,
0.09972375631332397,
"leaky_relu",
"normal"
],
[
340,
1754025466,
9,
1754025475,
1754025481,
6,
"python3 .tests\/mnist\/train --epochs 144 --learning_rate 0.09208279930797405588 --batch_size 133 --hidden_size 846 --dropout 0.0992261962965130806 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.78759296797215938568",
"",
1,
"",
"c156",
531974,
"340_0",
"FAILED",
"SOBOL",
144,
0.09208279930797406,
133,
846,
0.09922619629651308,
2,
0.7875929679721594,
"leaky_relu",
"normal"
],
[
341,
1754025710,
6,
1754025716,
1754025722,
6,
"python3 .tests\/mnist\/train --epochs 36 --learning_rate 0.01272647675163112585 --batch_size 1408 --hidden_size 1099 --dropout 0.44663121551275253296 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.23574108816683292389",
"",
1,
"",
"c156",
531975,
"341_0",
"FAILED",
"SOBOL",
36,
0.012726476751631126,
1408,
1099,
0.44663121551275253,
3,
0.23574108816683292,
"leaky_relu",
"normal"
],
[
342,
1754025960,
26,
1754025986,
1754025992,
6,
"python3 .tests\/mnist\/train --epochs 99 --learning_rate 0.06987489897905849179 --batch_size 550 --hidden_size 9 --dropout 0.29223328549414873123 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.5437586689367890358",
"",
1,
"",
"c156",
531976,
"342_0",
"FAILED",
"SOBOL",
99,
0.06987489897905849,
550,
9,
0.29223328549414873,
4,
0.543758668936789,
"leaky_relu",
"normal"
],
[
343,
1754026116,
20,
1754026136,
1754026142,
6,
"python3 .tests\/mnist\/train --epochs 177 --learning_rate 0.04762994577561505821 --batch_size 1829 --hidden_size 1808 --dropout 0.13280127942562103271 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.49594037700444459915",
"",
1,
"",
"c156",
531977,
"343_0",
"FAILED",
"SOBOL",
177,
0.04762994577561506,
1829,
1808,
0.13280127942562103,
1,
0.4959403770044446,
"leaky_relu",
"normal"
],
[
344,
1754026352,
24,
1754026376,
1754026382,
6,
"python3 .tests\/mnist\/train --epochs 197 --learning_rate 0.08172149773269891948 --batch_size 731 --hidden_size 1166 --dropout 0.32119566434994339943 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.81453709118068218231",
"",
1,
"",
"c156",
531978,
"344_0",
"FAILED",
"SOBOL",
197,
0.08172149773269892,
731,
1166,
0.3211956643499434,
1,
0.8145370911806822,
"leaky_relu",
"normal"
],
[
345,
1754026512,
15,
1754026527,
1754026533,
6,
"python3 .tests\/mnist\/train --epochs 91 --learning_rate 0.01017689727878198086 --batch_size 2006 --hidden_size 906 --dropout 0.22280015004798769951 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.14556448347866535187",
"",
1,
"",
"c156",
531979,
"345_0",
"FAILED",
"SOBOL",
91,
0.01017689727878198,
2006,
906,
0.2228001500479877,
4,
0.14556448347866535,
"leaky_relu",
"normal"
],
[
346,
1754026777,
20,
1754026797,
1754026803,
6,
"python3 .tests\/mnist\/train --epochs 52 --learning_rate 0.05326117132363841766 --batch_size 143 --hidden_size 1987 --dropout 0.00611583376303315163 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.57095272932201623917",
"",
1,
"",
"c156",
531980,
"346_0",
"FAILED",
"SOBOL",
52,
0.05326117132363842,
143,
1987,
0.006115833763033152,
3,
0.5709527293220162,
"leaky_relu",
"normal"
],
[
347,
1754027006,
31,
1754027037,
1754027043,
6,
"python3 .tests\/mnist\/train --epochs 141 --learning_rate 0.02632918947763741163 --batch_size 1422 --hidden_size 213 --dropout 0.4165078173391520977 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.40600223559886217117",
"",
1,
"",
"c156",
531982,
"347_0",
"FAILED",
"SOBOL",
141,
0.02632918947763741,
1422,
213,
0.4165078173391521,
2,
0.40600223559886217,
"leaky_relu",
"normal"
],
[
348,
1754027167,
20,
1754027187,
1754027193,
6,
"python3 .tests\/mnist\/train --epochs 111 --learning_rate 0.06666273560328409009 --batch_size 1764 --hidden_size 347 --dropout 0.47140703815966844559 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.7186134709045290947",
"",
1,
"",
"c156",
531983,
"348_0",
"FAILED",
"SOBOL",
111,
0.06666273560328409,
1764,
347,
0.47140703815966845,
1,
0.7186134709045291,
"leaky_relu",
"normal"
],
[
349,
1754027413,
15,
1754027428,
1754027434,
6,
"python3 .tests\/mnist\/train --epochs 22 --learning_rate 0.03811891627989710124 --batch_size 997 --hidden_size 1630 --dropout 0.07664003968238830566 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.25856370385736227036",
"",
1,
"",
"c156",
531985,
"349_0",
"FAILED",
"SOBOL",
22,
0.0381189162798971,
997,
1630,
0.0766400396823883,
4,
0.25856370385736227,
"leaky_relu",
"normal"
],
[
350,
1754027668,
30,
1754027698,
1754027704,
6,
"python3 .tests\/mnist\/train --epochs 61 --learning_rate 0.09521536845460534804 --batch_size 1217 --hidden_size 546 --dropout 0.16807640064507722855 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.95842698588967323303",
"",
1,
"",
"c156",
531990,
"350_0",
"FAILED",
"SOBOL",
61,
0.09521536845460535,
1217,
546,
0.16807640064507723,
3,
0.9584269858896732,
"leaky_relu",
"normal"
],
[
351,
1754027826,
22,
1754027848,
1754027854,
6,
"python3 .tests\/mnist\/train --epochs 168 --learning_rate 0.02225574921837076767 --batch_size 453 --hidden_size 1303 --dropout 0.25084692984819412231 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.00240033119916915894",
"",
1,
"",
"c156",
531994,
"351_0",
"FAILED",
"SOBOL",
168,
0.022255749218370768,
453,
1303,
0.2508469298481941,
2,
0.002400331199169159,
"leaky_relu",
"normal"
],
[
352,
1754028054,
4,
1754028058,
1754028064,
6,
"python3 .tests\/mnist\/train --epochs 168 --learning_rate 0.06503582952979952703 --batch_size 851 --hidden_size 1840 --dropout 0.11114323092624545097 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.91402951721101999283",
"",
1,
"",
"c156",
531996,
"352_0",
"FAILED",
"SOBOL",
168,
0.06503582952979953,
851,
1840,
0.11114323092624545,
2,
0.91402951721102,
"leaky_relu",
"normal"
],
[
353,
1754028329,
34,
1754028363,
1754028369,
6,
"python3 .tests\/mnist\/train --epochs 60 --learning_rate 0.0427059228717722103 --batch_size 1615 --hidden_size 41 --dropout 0.46587269240990281105 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.11028866935521364212",
"",
1,
"",
"c156",
531997,
"353_0",
"FAILED",
"SOBOL",
60,
0.04270592287177221,
1615,
41,
0.4658726924099028,
3,
0.11028866935521364,
"leaky_relu",
"normal"
],
[
354,
1754028499,
10,
1754028509,
1754028515,
6,
"python3 .tests\/mnist\/train --epochs 27 --learning_rate 0.09965589489014820002 --batch_size 279 --hidden_size 1130 --dropout 0.31193246645852923393 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.66921444796025753021",
"",
1,
"",
"c156",
531999,
"354_0",
"FAILED",
"SOBOL",
27,
0.0996558948901482,
279,
1130,
0.31193246645852923,
4,
0.6692144479602575,
"leaky_relu",
"normal"
],
[
355,
1754028778,
27,
1754028805,
1754028811,
6,
"python3 .tests\/mnist\/train --epochs 105 --learning_rate 0.02038473736371845119 --batch_size 1047 --hidden_size 878 --dropout 0.1441994556225836277 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.36950046755373477936",
"",
1,
"",
"c155",
532001,
"355_0",
"FAILED",
"SOBOL",
105,
0.02038473736371845,
1047,
878,
0.14419945562258363,
1,
0.3695004675537348,
"leaky_relu",
"normal"
],
[
356,
1754028940,
19,
1754028959,
1754028965,
6,
"python3 .tests\/mnist\/train --epochs 135 --learning_rate 0.08669221406387166151 --batch_size 1917 --hidden_size 758 --dropout 0.21441848576068878174 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.55687495693564414978",
"",
1,
"",
"c156",
532002,
"356_0",
"FAILED",
"SOBOL",
135,
0.08669221406387166,
1917,
758,
0.21441848576068878,
2,
0.5568749569356441,
"leaky_relu",
"normal"
],
[
357,
1754029219,
10,
1754029229,
1754029236,
7,
"python3 .tests\/mnist\/train --epochs 57 --learning_rate 0.00893524753045290762 --batch_size 637 --hidden_size 1537 --dropout 0.36652651149779558182 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.48158913850784301758",
"",
1,
"",
"c156",
532004,
"357_0",
"FAILED",
"SOBOL",
57,
0.008935247530452908,
637,
1537,
0.3665265114977956,
3,
0.481589138507843,
"leaky_relu",
"normal"
],
[
358,
1754029482,
18,
1754029500,
1754029506,
6,
"python3 .tests\/mnist\/train --epochs 90 --learning_rate 0.05177539493460209252 --batch_size 1321 --hidden_size 447 --dropout 0.39570706337690353394 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.79741183202713727951",
"",
1,
"",
"c156",
532006,
"358_0",
"FAILED",
"SOBOL",
90,
0.05177539493460209,
1321,
447,
0.39570706337690353,
4,
0.7974118320271373,
"leaky_relu",
"normal"
],
[
359,
1754029738,
32,
1754029770,
1754029776,
6,
"python3 .tests\/mnist\/train --epochs 198 --learning_rate 0.031153446512017402 --batch_size 46 --hidden_size 1721 --dropout 0.05660258699208498001 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.22615200188010931015",
"",
1,
"",
"c156",
532011,
"359_0",
"FAILED",
"SOBOL",
198,
0.031153446512017402,
46,
1721,
0.05660258699208498,
1,
0.2261520018801093,
"leaky_relu",
"normal"
],
[
360,
1754030015,
25,
1754030040,
1754030047,
7,
"python3 .tests\/mnist\/train --epochs 182 --learning_rate 0.09038895199227146848 --batch_size 1494 --hidden_size 1335 --dropout 0.49113673670217394829 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.59212366119027137756",
"",
1,
"",
"c156",
532012,
"360_0",
"FAILED",
"SOBOL",
182,
0.09038895199227147,
1494,
1335,
0.49113673670217395,
1,
0.5921236611902714,
"leaky_relu",
"normal"
],
[
361,
1754030176,
14,
1754030190,
1754030197,
7,
"python3 .tests\/mnist\/train --epochs 94 --learning_rate 0.01731901410141028705 --batch_size 215 --hidden_size 578 --dropout 0.08806873345747590065 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.3840845152735710144",
"",
1,
"",
"c156",
532014,
"361_0",
"FAILED",
"SOBOL",
94,
0.017319014101410287,
215,
578,
0.0880687334574759,
4,
0.384084515273571,
"leaky_relu",
"normal"
],
[
362,
1754030456,
5,
1754030461,
1754030467,
6,
"python3 .tests\/mnist\/train --epochs 37 --learning_rate 0.07422330968813040109 --batch_size 1934 --hidden_size 1662 --dropout 0.17996291769668459892 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.83290287386626005173",
"",
1,
"",
"c156",
532015,
"362_0",
"FAILED",
"SOBOL",
37,
0.0742233096881304,
1934,
1662,
0.1799629176966846,
3,
0.83290287386626,
"leaky_relu",
"normal"
],
[
363,
1754030721,
10,
1754030731,
1754030737,
6,
"python3 .tests\/mnist\/train --epochs 144 --learning_rate 0.0457896391631197261 --batch_size 660 --hidden_size 378 --dropout 0.27005788916721940041 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.12889344152063131332",
"",
1,
"",
"c156",
532018,
"363_0",
"FAILED",
"SOBOL",
144,
0.045789639163119726,
660,
378,
0.2700578891672194,
2,
0.1288934415206313,
"leaky_relu",
"normal"
],
[
364,
1754030984,
18,
1754031002,
1754031008,
6,
"python3 .tests\/mnist\/train --epochs 126 --learning_rate 0.06131143203825691057 --batch_size 492 --hidden_size 244 --dropout 0.34052870422601699829 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.9410385647788643837",
"",
1,
"",
"c156",
532022,
"364_0",
"FAILED",
"SOBOL",
126,
0.06131143203825691,
492,
244,
0.340528704226017,
1,
0.9410385647788644,
"leaky_relu",
"normal"
],
[
365,
1754031252,
20,
1754031272,
1754031278,
6,
"python3 .tests\/mnist\/train --epochs 19 --learning_rate 0.03429449673767202139 --batch_size 1257 --hidden_size 2019 --dropout 0.23480871785432100296 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.02004725951701402664",
"",
1,
"",
"c156",
532027,
"365_0",
"FAILED",
"SOBOL",
19,
0.03429449673767202,
1257,
2019,
0.234808717854321,
4,
0.020047259517014027,
"leaky_relu",
"normal"
],
[
366,
1754031518,
25,
1754031543,
1754031549,
6,
"python3 .tests\/mnist\/train --epochs 76 --learning_rate 0.07718642347875051546 --batch_size 957 --hidden_size 938 --dropout 0.01766657829284667969 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.69646565429866313934",
"",
1,
"",
"c156",
532029,
"366_0",
"FAILED",
"SOBOL",
76,
0.07718642347875052,
957,
938,
0.01766657829284668,
3,
0.6964656542986631,
"leaky_relu",
"normal"
],
[
367,
1754031682,
10,
1754031692,
1754031699,
7,
"python3 .tests\/mnist\/train --epochs 164 --learning_rate 0.00572698805474676238 --batch_size 1725 --hidden_size 1198 --dropout 0.43635959643870592117 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.27950506098568439484",
"",
1,
"",
"c156",
532034,
"367_0",
"FAILED",
"SOBOL",
164,
0.005726988054746762,
1725,
1198,
0.4363595964387059,
2,
0.2795050609856844,
"leaky_relu",
"normal"
],
[
368,
1754031968,
25,
1754031993,
1754032000,
7,
"python3 .tests\/mnist\/train --epochs 156 --learning_rate 0.08070990291009658146 --batch_size 177 --hidden_size 491 --dropout 0.13931728899478912354 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.07723052334040403366",
"",
1,
"",
"c156",
532035,
"368_0",
"FAILED",
"SOBOL",
156,
0.08070990291009658,
177,
491,
0.13931728899478912,
4,
0.07723052334040403,
"leaky_relu",
"normal"
],
[
369,
1754032164,
10,
1754032174,
1754032180,
6,
"python3 .tests\/mnist\/train --epochs 72 --learning_rate 0.00222029161290265625 --batch_size 1452 --hidden_size 1772 --dropout 0.28361150342971086502 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.89848848339170217514",
"",
1,
"",
"c156",
532036,
"369_0",
"FAILED",
"SOBOL",
72,
0.0022202916129026562,
1452,
1772,
0.28361150342971087,
1,
0.8984884833917022,
"leaky_relu",
"normal"
],
[
370,
1754032459,
14,
1754032473,
1754032479,
6,
"python3 .tests\/mnist\/train --epochs 15 --learning_rate 0.05936861550250091546 --batch_size 762 --hidden_size 691 --dropout 0.43755172938108444214 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.31800966337323188782",
"",
1,
"",
"c156",
532037,
"370_0",
"FAILED",
"SOBOL",
15,
0.059368615502500915,
762,
691,
0.43755172938108444,
2,
0.3180096633732319,
"leaky_relu",
"normal"
],
[
371,
1754032725,
19,
1754032744,
1754032750,
6,
"python3 .tests\/mnist\/train --epochs 118 --learning_rate 0.03625714771556668575 --batch_size 2040 --hidden_size 1445 --dropout 0.10626106429845094681 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.6432973518967628479",
"",
1,
"",
"c156",
532040,
"371_0",
"FAILED",
"SOBOL",
118,
0.036257147715566686,
2040,
1445,
0.10626106429845095,
3,
0.6432973518967628,
"leaky_relu",
"normal"
],
[
372,
1754033005,
9,
1754033014,
1754033020,
6,
"python3 .tests\/mnist\/train --epochs 147 --learning_rate 0.0707227265813294842 --batch_size 1187 --hidden_size 1088 --dropout 0.03609543992206454277 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.45593148283660411835",
"",
1,
"",
"c156",
532043,
"372_0",
"FAILED",
"SOBOL",
147,
0.07072272658132948,
1187,
1088,
0.03609543992206454,
4,
0.4559314828366041,
"leaky_relu",
"normal"
],
[
373,
1754033273,
11,
1754033284,
1754033290,
6,
"python3 .tests\/mnist\/train --epochs 45 --learning_rate 0.04931921106996946941 --batch_size 418 --hidden_size 825 --dropout 0.38301109010353684425 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.50564351864159107208",
"",
1,
"",
"c156",
532045,
"373_0",
"FAILED",
"SOBOL",
45,
0.04931921106996947,
418,
825,
0.38301109010353684,
1,
0.5056435186415911,
"leaky_relu",
"normal"
],
[
374,
1754033544,
10,
1754033554,
1754033561,
7,
"python3 .tests\/mnist\/train --epochs 102 --learning_rate 0.09235771630520932252 --batch_size 1731 --hidden_size 1909 --dropout 0.35383053822442889214 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.21135860774666070938",
"",
1,
"",
"c156",
532046,
"374_0",
"FAILED",
"SOBOL",
102,
0.09235771630520932,
1731,
1909,
0.3538305382244289,
2,
0.2113586077466607,
"leaky_relu",
"normal"
],
[
375,
1754033823,
32,
1754033855,
1754033861,
6,
"python3 .tests\/mnist\/train --epochs 186 --learning_rate 0.01538229004115797618 --batch_size 966 --hidden_size 131 --dropout 0.1939113386906683445 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.76510140020400285721",
"",
1,
"",
"c156",
532047,
"375_0",
"FAILED",
"SOBOL",
186,
0.015382290041157976,
966,
131,
0.19391133869066834,
3,
0.7651014002040029,
"leaky_relu",
"normal"
],
[
376,
1754034000,
9,
1754034009,
1754034015,
6,
"python3 .tests\/mnist\/train --epochs 194 --learning_rate 0.05606517040934414636 --batch_size 1594 --hidden_size 1021 --dropout 0.25931636244058609009 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.42843419872224330902",
"",
1,
"",
"c143",
532051,
"376_0",
"FAILED",
"SOBOL",
194,
0.056065170409344146,
1594,
1021,
0.2593163624405861,
3,
0.4284341987222433,
"leaky_relu",
"normal"
],
[
377,
1754034300,
5,
1754034305,
1754034311,
6,
"python3 .tests\/mnist\/train --epochs 82 --learning_rate 0.0268499395004101124 --batch_size 825 --hidden_size 1274 --dropout 0.16140756476670503616 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.5953967217355966568",
"",
1,
"",
"c156",
532078,
"377_0",
"FAILED",
"SOBOL",
82,
0.026849939500410112,
825,
1274,
0.16140756476670504,
2,
0.5953967217355967,
"leaky_relu",
"normal"
],
[
378,
1754034573,
36,
1754034609,
1754034615,
6,
"python3 .tests\/mnist\/train --epochs 49 --learning_rate 0.08394648405307904293 --batch_size 1133 --hidden_size 184 --dropout 0.06951338052749633789 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.18361907545477151871",
"",
1,
"",
"c143",
532082,
"378_0",
"FAILED",
"SOBOL",
49,
0.08394648405307904,
1133,
184,
0.06951338052749634,
1,
0.18361907545477152,
"leaky_relu",
"normal"
],
[
379,
1754034765,
25,
1754034790,
1754034796,
6,
"python3 .tests\/mnist\/train --epochs 132 --learning_rate 0.0116580916464701298 --batch_size 369 --hidden_size 1984 --dropout 0.48039520997554063797 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.85460845101624727249",
"",
1,
"",
"c143",
532085,
"379_0",
"FAILED",
"SOBOL",
132,
0.01165809164647013,
369,
1984,
0.48039520997554064,
4,
0.8546084510162473,
"leaky_relu",
"normal"
],
[
380,
1754035055,
33,
1754035088,
1754035094,
6,
"python3 .tests\/mnist\/train --epochs 114 --learning_rate 0.09534629540303722617 --batch_size 520 --hidden_size 1577 --dropout 0.40999305946752429008 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.04247002582997083664",
"",
1,
"",
"c143",
532088,
"380_0",
"FAILED",
"SOBOL",
114,
0.09534629540303723,
520,
1577,
0.4099930594675243,
3,
0.04247002582997084,
"leaky_relu",
"normal"
],
[
381,
1754035233,
5,
1754035238,
1754035244,
6,
"python3 .tests\/mnist\/train --epochs 31 --learning_rate 0.02466839950341731535 --batch_size 1795 --hidden_size 304 --dropout 0.01473624492064118385 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.99648134317249059677",
"",
1,
"",
"c143",
532091,
"381_0",
"FAILED",
"SOBOL",
31,
0.024668399503417315,
1795,
304,
0.014736244920641184,
2,
0.9964813431724906,
"leaky_relu",
"normal"
],
[
382,
1754035561,
7,
1754035568,
1754035574,
6,
"python3 .tests\/mnist\/train --epochs 64 --learning_rate 0.06775258117031306149 --batch_size 100 --hidden_size 1393 --dropout 0.23187838448211550713 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.28300697728991508484",
"",
1,
"",
"c142",
532147,
"382_0",
"FAILED",
"SOBOL",
64,
0.06775258117031306,
100,
1393,
0.2318783844821155,
1,
0.2830069772899151,
"leaky_relu",
"normal"
],
[
383,
1754035836,
31,
1754035867,
1754035873,
6,
"python3 .tests\/mnist\/train --epochs 177 --learning_rate 0.03995407952593640205 --batch_size 1378 --hidden_size 615 --dropout 0.3141621672548353672 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.74104423820972442627",
"",
1,
"",
"c142",
532213,
"383_0",
"FAILED",
"SOBOL",
177,
0.0399540795259364,
1378,
615,
0.31416216725483537,
4,
0.7410442382097244,
"leaky_relu",
"normal"
],
[
384,
1754036005,
26,
1754036031,
1754036037,
6,
"python3 .tests\/mnist\/train --epochs 176 --learning_rate 0.07564003783521243418 --batch_size 564 --hidden_size 1462 --dropout 0.20352629385888576508 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.17739812936633825302",
"",
1,
"",
"c138",
532247,
"384_0",
"FAILED",
"SOBOL",
176,
0.07564003783521243,
564,
1462,
0.20352629385888577,
2,
0.17739812936633825,
"leaky_relu",
"normal"
],
[
385,
1754036256,
34,
1754036290,
1754036296,
6,
"python3 .tests\/mnist\/train --epochs 65 --learning_rate 0.00414425727105699471 --batch_size 1839 --hidden_size 705 --dropout 0.37174628209322690964 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.84643177967518568039",
"",
1,
"",
"c143",
532385,
"385_0",
"FAILED",
"SOBOL",
65,
0.004144257271056995,
1839,
705,
0.3717462820932269,
3,
0.8464317796751857,
"leaky_relu",
"normal"
],
[
386,
1754036505,
24,
1754036529,
1754036535,
6,
"python3 .tests\/mnist\/train --epochs 32 --learning_rate 0.05967846105366014786 --batch_size 120 --hidden_size 1789 --dropout 0.40508098714053630829 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.43660755455493927002",
"",
1,
"",
"c142",
532396,
"386_0",
"FAILED",
"SOBOL",
32,
0.05967846105366015,
120,
1789,
0.4050809871405363,
4,
0.43660755455493927,
"leaky_relu",
"normal"
],
[
387,
1754036754,
25,
1754036779,
1754036785,
6,
"python3 .tests\/mnist\/train --epochs 113 --learning_rate 0.03279529984240420887 --batch_size 1398 --hidden_size 506 --dropout 0.04888797085732221603 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.60161907598376274109",
"",
1,
"",
"c131",
532486,
"387_0",
"FAILED",
"SOBOL",
113,
0.03279529984240421,
1398,
506,
0.048887970857322216,
1,
0.6016190759837627,
"leaky_relu",
"normal"
],
[
388,
1754037006,
33,
1754037039,
1754037045,
6,
"python3 .tests\/mnist\/train --epochs 131 --learning_rate 0.07274433872385882571 --batch_size 1566 --hidden_size 117 --dropout 0.11934734275564551353 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.28948184289038181305",
"",
1,
"",
"c131",
532496,
"388_0",
"FAILED",
"SOBOL",
131,
0.07274433872385883,
1566,
117,
0.11934734275564551,
2,
0.2894818428903818,
"leaky_relu",
"normal"
],
[
389,
1754037333,
6,
1754037339,
1754037345,
6,
"python3 .tests\/mnist\/train --epochs 49 --learning_rate 0.04415169951071032384 --batch_size 797 --hidden_size 1891 --dropout 0.45991534413769841194 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.74947053752839565277",
"",
1,
"",
"c156",
532504,
"389_0",
"FAILED",
"SOBOL",
49,
0.044151699510710324,
797,
1891,
0.4599153441376984,
3,
0.7494705375283957,
"leaky_relu",
"normal"
],
[
390,
1754037612,
44,
1754037656,
1754037662,
6,
"python3 .tests\/mnist\/train --epochs 82 --learning_rate 0.08879822194767185428 --batch_size 1097 --hidden_size 811 --dropout 0.30134031316265463829 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.03404322732239961624",
"",
1,
"",
"c137",
532628,
"390_0",
"FAILED",
"SOBOL",
82,
0.08879822194767185,
1097,
811,
0.30134031316265464,
4,
0.034043227322399616,
"leaky_relu",
"normal"
],
[
391,
1754037782,
8,
1754037790,
1754037796,
6,
"python3 .tests\/mnist\/train --epochs 194 --learning_rate 0.01578978207669221034 --batch_size 333 --hidden_size 1070 --dropout 0.14874533982947468758 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.99000888410955667496",
"",
1,
"",
"c143",
532682,
"391_0",
"FAILED",
"SOBOL",
194,
0.01578978207669221,
333,
1070,
0.1487453398294747,
1,
0.9900088841095567,
"leaky_relu",
"normal"
],
[
392,
1754038081,
10,
1754038091,
1754038097,
6,
"python3 .tests\/mnist\/train --epochs 187 --learning_rate 0.05029623064709828201 --batch_size 1207 --hidden_size 1968 --dropout 0.33524408750236034393 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.32423845119774341583",
"",
1,
"",
"c143",
532687,
"392_0",
"FAILED",
"SOBOL",
187,
0.05029623064709828,
1207,
1968,
0.33524408750236034,
1,
0.3242384511977434,
"leaky_relu",
"normal"
],
[
393,
1754038358,
34,
1754038392,
1754038398,
6,
"python3 .tests\/mnist\/train --epochs 101 --learning_rate 0.02951530683152377849 --batch_size 438 --hidden_size 168 --dropout 0.24563606362789869308 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.6514814477413892746",
"",
1,
"",
"c143",
532700,
"393_0",
"FAILED",
"SOBOL",
101,
0.02951530683152378,
438,
168,
0.2456360636278987,
4,
0.6514814477413893,
"leaky_relu",
"normal"
],
[
394,
1754038534,
10,
1754038544,
1754038550,
6,
"python3 .tests\/mnist\/train --epochs 44 --learning_rate 0.08510128995105624428 --batch_size 1775 --hidden_size 1258 --dropout 0.02532397769391536713 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.06904980260878801346",
"",
1,
"",
"c143",
532706,
"394_0",
"FAILED",
"SOBOL",
44,
0.08510128995105624,
1775,
1258,
0.025323977693915367,
3,
0.06904980260878801,
"leaky_relu",
"normal"
],
[
395,
1754038846,
27,
1754038873,
1754038879,
6,
"python3 .tests\/mnist\/train --epochs 148 --learning_rate 0.00740581622263416714 --batch_size 1010 --hidden_size 1005 --dropout 0.42692845594137907028 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.89225822780281305313",
"",
1,
"",
"c143",
532746,
"395_0",
"FAILED",
"SOBOL",
148,
0.007405816222634167,
1010,
1005,
0.42692845594137907,
2,
0.892258227802813,
"leaky_relu",
"normal"
],
[
396,
1754039050,
33,
1754039083,
1754039089,
6,
"python3 .tests\/mnist\/train --epochs 118 --learning_rate 0.09810930921852589748 --batch_size 142 --hidden_size 630 --dropout 0.49715130170807242393 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.20489164348691701889",
"",
1,
"",
"c143",
532760,
"396_0",
"FAILED",
"SOBOL",
118,
0.0981093092185259,
142,
630,
0.4971513017080724,
1,
0.20489164348691702,
"leaky_relu",
"normal"
],
[
397,
1754039320,
35,
1754039355,
1754039361,
6,
"python3 .tests\/mnist\/train --epochs 15 --learning_rate 0.01880181325679644924 --batch_size 1416 --hidden_size 1410 --dropout 0.07992183836176991463 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.75668246578425168991",
"",
1,
"",
"c143",
532780,
"397_0",
"FAILED",
"SOBOL",
15,
0.01880181325679645,
1416,
1410,
0.07992183836176991,
4,
0.7566824657842517,
"leaky_relu",
"normal"
],
[
398,
1754039587,
6,
1754039593,
1754039599,
6,
"python3 .tests\/mnist\/train --epochs 71 --learning_rate 0.06340265926210210401 --batch_size 734 --hidden_size 319 --dropout 0.17548187961801886559 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.46435085684061050415",
"",
1,
"",
"c143",
532783,
"398_0",
"FAILED",
"SOBOL",
71,
0.0634026592621021,
734,
319,
0.17548187961801887,
3,
0.4643508568406105,
"leaky_relu",
"normal"
],
[
399,
1754039897,
26,
1754039923,
1754039929,
6,
"python3 .tests\/mnist\/train --epochs 157 --learning_rate 0.04120653190828860168 --batch_size 2012 --hidden_size 1593 --dropout 0.28071488859131932259 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.51210813596844673157",
"",
1,
"",
"c152",
532787,
"399_0",
"FAILED",
"SOBOL",
157,
0.0412065319082886,
2012,
1593,
0.2807148885913193,
2,
0.5121081359684467,
"leaky_relu",
"normal"
],
[
400,
1754040168,
26,
1754040194,
1754040200,
6,
"python3 .tests\/mnist\/train --epochs 164 --learning_rate 0.06612664767285808542 --batch_size 464 --hidden_size 893 --dropout 0.04595763375982642174 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.84108359832316637039",
"",
1,
"",
"c152",
532789,
"400_0",
"FAILED",
"SOBOL",
164,
0.06612664767285809,
464,
893,
0.04595763375982642,
4,
0.8410835983231664,
"leaky_relu",
"normal"
],
[
401,
1754040368,
36,
1754040404,
1754040410,
6,
"python3 .tests\/mnist\/train --epochs 76 --learning_rate 0.03846270905539394408 --batch_size 1229 --hidden_size 1147 --dropout 0.37871444644406437874 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.13512368593364953995",
"",
1,
"",
"c152",
532791,
"401_0",
"FAILED",
"SOBOL",
76,
0.038462709055393944,
1229,
1147,
0.3787144464440644,
1,
0.13512368593364954,
"leaky_relu",
"normal"
],
[
402,
1754040625,
20,
1754040645,
1754040651,
6,
"python3 .tests\/mnist\/train --epochs 20 --learning_rate 0.09380465791217983129 --batch_size 921 --hidden_size 56 --dropout 0.34537974139675498009 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.58589486964046955109",
"",
1,
"",
"c152",
532832,
"402_0",
"FAILED",
"SOBOL",
20,
0.09380465791217983,
921,
56,
0.345379741396755,
2,
0.5858948696404696,
"leaky_relu",
"normal"
],
[
403,
1754040929,
26,
1754040955,
1754040961,
6,
"python3 .tests\/mnist\/train --epochs 125 --learning_rate 0.02308968157364055598 --batch_size 1689 --hidden_size 1856 --dropout 0.20059595676138997078 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.37590043060481548309",
"",
1,
"",
"c151",
532844,
"403_0",
"FAILED",
"SOBOL",
125,
0.023089681573640556,
1689,
1856,
0.20059595676138997,
3,
0.3759004306048155,
"leaky_relu",
"normal"
],
[
404,
1754041130,
24,
1754041154,
1754041160,
6,
"python3 .tests\/mnist\/train --epochs 143 --learning_rate 0.08235135376311839006 --batch_size 1538 --hidden_size 1705 --dropout 0.13018999062478542328 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.68804626911878585815",
"",
1,
"",
"c151",
532847,
"404_0",
"FAILED",
"SOBOL",
143,
0.08235135376311839,
1538,
1705,
0.13018999062478542,
4,
0.6880462691187859,
"leaky_relu",
"normal"
],
[
405,
1754041410,
16,
1754041426,
1754041432,
6,
"python3 .tests\/mnist\/train --epochs 38 --learning_rate 0.01012371215788647645 --batch_size 259 --hidden_size 431 --dropout 0.29059879016131162643 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.27304044738411903381",
"",
1,
"",
"c152",
532892,
"405_0",
"FAILED",
"SOBOL",
38,
0.010123712157886476,
259,
431,
0.2905987901613116,
1,
0.27304044738411903,
"leaky_relu",
"normal"
],
[
406,
1754041698,
27,
1754041725,
1754041731,
6,
"python3 .tests\/mnist\/train --epochs 94 --learning_rate 0.05457798562889919214 --batch_size 1955 --hidden_size 1521 --dropout 0.44917382113635540009 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.94750554021447896957",
"",
1,
"",
"c152",
532929,
"406_0",
"FAILED",
"SOBOL",
94,
0.05457798562889919,
1955,
1521,
0.4491738211363554,
2,
0.947505540214479,
"leaky_relu",
"normal"
],
[
407,
1754041911,
26,
1754041937,
1754041943,
6,
"python3 .tests\/mnist\/train --epochs 182 --learning_rate 0.02520456304967403499 --batch_size 679 --hidden_size 742 --dropout 0.10079199355095624924 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.02846619021147489548",
"",
1,
"",
"c152",
532940,
"407_0",
"FAILED",
"SOBOL",
182,
0.025204563049674035,
679,
742,
0.10079199355095625,
3,
0.028466190211474895,
"leaky_relu",
"normal"
],
[
408,
1754042168,
32,
1754042200,
1754042212,
12,
"python3 .tests\/mnist\/train --epochs 199 --learning_rate 0.0907627800834644588 --batch_size 1881 --hidden_size 364 --dropout 0.41423247894272208214 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.66104108095169067383",
"",
1,
"",
"c125",
532978,
"408_0",
"FAILED",
"SOBOL",
199,
0.09076278008346446,
1881,
364,
0.4142324789427221,
3,
0.6610410809516907,
"leaky_relu",
"normal"
],
[
409,
1754042432,
27,
1754042459,
1754042465,
6,
"python3 .tests\/mnist\/train --epochs 89 --learning_rate 0.01384810983567498661 --batch_size 602 --hidden_size 1644 --dropout 0.00481682689860463142 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.36327811703085899353",
"",
1,
"",
"c125",
532992,
"409_0",
"FAILED",
"SOBOL",
89,
0.013848109835674987,
602,
1644,
0.004816826898604631,
2,
0.363278117030859,
"leaky_relu",
"normal"
],
[
410,
1754042724,
33,
1754042757,
1754042763,
6,
"python3 .tests\/mnist\/train --epochs 56 --learning_rate 0.06923573512411676512 --batch_size 1293 --hidden_size 563 --dropout 0.22512891283258795738 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.9202504744753241539",
"",
1,
"",
"c125",
533003,
"410_0",
"FAILED",
"SOBOL",
56,
0.06923573512411677,
1293,
563,
0.22512891283258796,
1,
0.9202504744753242,
"leaky_relu",
"normal"
],
[
411,
1754042992,
35,
1754043027,
1754043033,
6,
"python3 .tests\/mnist\/train --epochs 136 --learning_rate 0.04767403464731761326 --batch_size 18 --hidden_size 1317 --dropout 0.32254811050370335579 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.11846533697098493576",
"",
1,
"",
"c125",
533016,
"411_0",
"FAILED",
"SOBOL",
136,
0.04767403464731761,
18,
1317,
0.32254811050370336,
4,
0.11846533697098494,
"leaky_relu",
"normal"
],
[
412,
1754043256,
33,
1754043289,
1754043295,
6,
"python3 .tests\/mnist\/train --epochs 106 --learning_rate 0.05774288128814660664 --batch_size 871 --hidden_size 1215 --dropout 0.25239392928779125214 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.80583863425999879837",
"",
1,
"",
"c152",
533030,
"412_0",
"FAILED",
"SOBOL",
106,
0.05774288128814661,
871,
1215,
0.25239392928779125,
3,
0.8058386342599988,
"leaky_relu",
"normal"
],
[
413,
1754043522,
18,
1754043540,
1754043546,
6,
"python3 .tests\/mnist\/train --epochs 26 --learning_rate 0.03476597131324001 --batch_size 1635 --hidden_size 953 --dropout 0.17059971671551465988 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.23262444976717233658",
"",
1,
"",
"c125",
533045,
"413_0",
"FAILED",
"SOBOL",
26,
0.03476597131324001,
1635,
953,
0.17059971671551466,
2,
0.23262444976717234,
"leaky_relu",
"normal"
],
[
414,
1754043835,
32,
1754043867,
1754043873,
6,
"python3 .tests\/mnist\/train --epochs 59 --learning_rate 0.07916846544732339397 --batch_size 323 --hidden_size 2036 --dropout 0.07503967545926570892 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.55040008760988712311",
"",
1,
"",
"c125",
533056,
"414_0",
"FAILED",
"SOBOL",
59,
0.0791684654473234,
323,
2036,
0.07503967545926571,
1,
0.5504000876098871,
"leaky_relu",
"normal"
],
[
415,
1754044013,
28,
1754044041,
1754044047,
6,
"python3 .tests\/mnist\/train --epochs 169 --learning_rate 0.0006417670063581318 --batch_size 1091 --hidden_size 259 --dropout 0.46883034240454435349 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.47316285036504268646",
"",
1,
"",
"c152",
533063,
"415_0",
"FAILED",
"SOBOL",
169,
0.0006417670063581318,
1091,
259,
0.46883034240454435,
4,
0.4731628503650427,
"leaky_relu",
"normal"
],
[
416,
1754044283,
37,
1754044320,
1754044327,
7,
"python3 .tests\/mnist\/train --epochs 167 --learning_rate 0.06214050710075535999 --batch_size 1745 --hidden_size 710 --dropout 0.14161891909316182137 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.56350202020257711411",
"",
1,
"",
"c125",
533073,
"416_0",
"FAILED",
"SOBOL",
167,
0.06214050710075536,
1745,
710,
0.14161891909316182,
4,
0.5635020202025771,
"leaky_relu",
"normal"
],
[
417,
1754044567,
34,
1754044601,
1754044607,
6,
"python3 .tests\/mnist\/train --epochs 62 --learning_rate 0.03287644959720783383 --batch_size 977 --hidden_size 1489 --dropout 0.31032824655994772911 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.39660056959837675095",
"",
1,
"",
"c154",
533087,
"417_0",
"FAILED",
"SOBOL",
62,
0.032876449597207834,
977,
1489,
0.31032824655994773,
1,
0.39660056959837675,
"leaky_relu",
"normal"
],
[
418,
1754044839,
13,
1754044852,
1754044858,
6,
"python3 .tests\/mnist\/train --epochs 23 --learning_rate 0.07752307037199847317 --batch_size 1173 --hidden_size 400 --dropout 0.46838453831151127815 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.82394211739301681519",
"",
1,
"",
"c125",
533097,
"418_0",
"FAILED",
"SOBOL",
23,
0.07752307037199847,
1173,
400,
0.4683845383115113,
2,
0.8239421173930168,
"leaky_relu",
"normal"
],
[
419,
1754045155,
37,
1754045192,
1754045198,
6,
"python3 .tests\/mnist\/train --epochs 110 --learning_rate 0.00518585211575962619 --batch_size 409 --hidden_size 1673 --dropout 0.11267874529585242271 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.15301373973488807678",
"",
1,
"",
"c117",
533114,
"419_0",
"FAILED",
"SOBOL",
110,
0.005185852115759626,
409,
1673,
0.11267874529585242,
3,
0.15301373973488808,
"leaky_relu",
"normal"
],
[
420,
1754045480,
33,
1754045513,
1754045519,
6,
"python3 .tests\/mnist\/train --epochs 140 --learning_rate 0.08927072050313465679 --batch_size 767 --hidden_size 1824 --dropout 0.05796644371002912521 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.96562425978481769562",
"",
1,
"",
"c117",
533135,
"420_0",
"FAILED",
"SOBOL",
140,
0.08927072050313466,
767,
1824,
0.057966443710029125,
4,
0.9656242597848177,
"leaky_relu",
"normal"
],
[
421,
1754045666,
29,
1754045695,
1754045701,
6,
"python3 .tests\/mnist\/train --epochs 53 --learning_rate 0.01864165119812823818 --batch_size 2042 --hidden_size 24 --dropout 0.3980472516268491745 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.01155189983546733856",
"",
1,
"",
"c154",
533143,
"421_0",
"FAILED",
"SOBOL",
53,
0.018641651198128238,
2042,
24,
0.3980472516268492,
1,
0.011551899835467339,
"leaky_relu",
"normal"
],
[
422,
1754045963,
60,
1754046023,
1754046030,
7,
"python3 .tests\/mnist\/train --epochs 91 --learning_rate 0.07417575664290226856 --batch_size 171 --hidden_size 1115 --dropout 0.36523128580302000046 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.70946235675364732742",
"",
1,
"",
"c69",
533164,
"422_0",
"FAILED",
"SOBOL",
91,
0.07417575664290227,
171,
1115,
0.36523128580302,
2,
0.7094623567536473,
"leaky_relu",
"normal"
],
[
423,
1754046261,
22,
1754046283,
1754046289,
6,
"python3 .tests\/mnist\/train --epochs 197 --learning_rate 0.04642608084815554731 --batch_size 1450 --hidden_size 861 --dropout 0.21214694343507289886 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.25136406812816858292",
"",
1,
"",
"c120",
533178,
"423_0",
"FAILED",
"SOBOL",
197,
0.04642608084815555,
1450,
861,
0.2121469434350729,
3,
0.2513640681281686,
"leaky_relu",
"normal"
],
[
424,
1754046587,
10,
1754046597,
1754046603,
6,
"python3 .tests\/mnist\/train --epochs 178 --learning_rate 0.08674268595466390341 --batch_size 90 --hidden_size 227 --dropout 0.2716351640410721302 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.93031449057161808014",
"",
1,
"",
"c120",
533196,
"424_0",
"FAILED",
"SOBOL",
178,
0.0867426859546639,
90,
227,
0.27163516404107213,
3,
0.9303144905716181,
"leaky_relu",
"normal"
],
[
425,
1754046884,
14,
1754046898,
1754046904,
6,
"python3 .tests\/mnist\/train --epochs 98 --learning_rate 0.00830189454723149513 --batch_size 1364 --hidden_size 2005 --dropout 0.18251698603853583336 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.10911758802831172943",
"",
1,
"",
"c125",
533210,
"425_0",
"FAILED",
"SOBOL",
98,
0.008301894547231495,
1364,
2005,
0.18251698603853583,
2,
0.10911758802831173,
"leaky_relu",
"normal"
],
[
426,
1754047190,
9,
1754047199,
1754047205,
6,
"python3 .tests\/mnist\/train --epochs 35 --learning_rate 0.0529026481745764679 --batch_size 530 --hidden_size 920 --dropout 0.08643808634951710701 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.6739103095605969429",
"",
1,
"",
"c154",
533230,
"426_0",
"FAILED",
"SOBOL",
35,
0.05290264817457647,
530,
920,
0.08643808634951711,
1,
0.6739103095605969,
"leaky_relu",
"normal"
],
[
427,
1754047495,
38,
1754047533,
1754047539,
6,
"python3 .tests\/mnist\/train --epochs 145 --learning_rate 0.02984000102238729829 --batch_size 1809 --hidden_size 1183 --dropout 0.48852928122505545616 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.34868363384157419205",
"",
1,
"",
"c125",
533250,
"427_0",
"FAILED",
"SOBOL",
145,
0.0298400010223873,
1809,
1183,
0.48852928122505546,
4,
0.3486836338415742,
"leaky_relu",
"normal"
],
[
428,
1754047688,
48,
1754047736,
1754047749,
13,
"python3 .tests\/mnist\/train --epochs 127 --learning_rate 0.06469008638735861128 --batch_size 1131 --hidden_size 1286 --dropout 0.43405350577086210251 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.53655403759330511093",
"",
1,
"",
"c124",
533262,
"428_0",
"FAILED",
"SOBOL",
127,
0.06469008638735861,
1131,
1286,
0.4340535057708621,
3,
0.5365540375933051,
"leaky_relu",
"normal"
],
[
429,
1754047998,
12,
1754048010,
1754048016,
6,
"python3 .tests\/mnist\/train --epochs 18 --learning_rate 0.04323775098623708346 --batch_size 363 --hidden_size 531 --dropout 0.01633729599416255951 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.48678091447800397873",
"",
1,
"",
"c124",
533281,
"429_0",
"FAILED",
"SOBOL",
18,
0.04323775098623708,
363,
531,
0.01633729599416256,
2,
0.486780914478004,
"leaky_relu",
"normal"
],
[
430,
1754048330,
10,
1754048340,
1754048346,
6,
"python3 .tests\/mnist\/train --epochs 80 --learning_rate 0.09882382648373022604 --batch_size 1595 --hidden_size 1612 --dropout 0.23716824036091566086 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.79675191640853881836",
"",
1,
"",
"c124",
533300,
"430_0",
"FAILED",
"SOBOL",
80,
0.09882382648373023,
1595,
1612,
0.23716824036091566,
1,
0.7967519164085388,
"leaky_relu",
"normal"
],
[
431,
1754048661,
10,
1754048671,
1754048677,
6,
"python3 .tests\/mnist\/train --epochs 160 --learning_rate 0.02179957958493381961 --batch_size 831 --hidden_size 332 --dropout 0.34191143326461315155 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.242948140949010849",
"",
1,
"",
"c124",
533310,
"431_0",
"FAILED",
"SOBOL",
160,
0.02179957958493382,
831,
332,
0.34191143326461315,
4,
0.24294814094901085,
"leaky_relu",
"normal"
],
[
432,
1754048969,
10,
1754048979,
1754048985,
6,
"python3 .tests\/mnist\/train --epochs 155 --learning_rate 0.09686116507606581938 --batch_size 1326 --hidden_size 1038 --dropout 0.10779658239334821701 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.41591051686555147171",
"",
1,
"",
"c155",
533318,
"432_0",
"FAILED",
"SOBOL",
155,
0.09686116507606582,
1326,
1038,
0.10779658239334822,
2,
0.41591051686555147,
"leaky_relu",
"normal"
],
[
433,
1754049281,
19,
1754049300,
1754049306,
6,
"python3 .tests\/mnist\/train --epochs 73 --learning_rate 0.02374240655045956397 --batch_size 48 --hidden_size 779 --dropout 0.4400635790079832077 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.62401073519140481949",
"",
1,
"",
"c155",
533326,
"433_0",
"FAILED",
"SOBOL",
73,
0.023742406550459564,
48,
779,
0.4400635790079832,
3,
0.6240107351914048,
"leaky_relu",
"normal"
],
[
434,
1754049584,
9,
1754049593,
1754049599,
6,
"python3 .tests\/mnist\/train --epochs 11 --learning_rate 0.06819677239943296165 --batch_size 1910 --hidden_size 1859 --dropout 0.28200728725641965866 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.15950640477240085602",
"",
1,
"",
"c125",
533339,
"434_0",
"FAILED",
"SOBOL",
11,
0.06819677239943296,
1910,
1859,
0.28200728725641966,
4,
0.15950640477240086,
"leaky_relu",
"normal"
],
[
435,
1754049895,
6,
1754049901,
1754049907,
6,
"python3 .tests\/mnist\/train --epochs 122 --learning_rate 0.03971428198466078058 --batch_size 636 --hidden_size 85 --dropout 0.13673675619065761566 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.8635768350213766098",
"",
1,
"",
"c125",
533346,
"435_0",
"FAILED",
"SOBOL",
122,
0.03971428198466078,
636,
85,
0.13673675619065762,
1,
0.8635768350213766,
"leaky_relu",
"normal"
],
[
436,
1754050205,
30,
1754050235,
1754050241,
6,
"python3 .tests\/mnist\/train --epochs 152 --learning_rate 0.05483936180505902258 --batch_size 293 --hidden_size 474 --dropout 0.19163979263976216316 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.05095775425434112549",
"",
1,
"",
"c151",
533360,
"436_0",
"FAILED",
"SOBOL",
152,
0.05483936180505902,
293,
474,
0.19163979263976216,
2,
0.050957754254341125,
"leaky_relu",
"normal"
],
[
437,
1754050490,
13,
1754050503,
1754050510,
7,
"python3 .tests\/mnist\/train --epochs 41 --learning_rate 0.02787124713921919697 --batch_size 1058 --hidden_size 1757 --dropout 0.35253530880436301231 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.97188801690936088562",
"",
1,
"",
"c155",
533369,
"437_0",
"FAILED",
"SOBOL",
41,
0.027871247139219197,
1058,
1757,
0.352535308804363,
3,
0.9718880169093609,
"leaky_relu",
"normal"
],
[
438,
1754050801,
7,
1754050808,
1754050814,
6,
"python3 .tests\/mnist\/train --epochs 103 --learning_rate 0.08321310361804440392 --batch_size 837 --hidden_size 673 --dropout 0.38535127462819218636 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.31115560140460729599",
"",
1,
"",
"c155",
533372,
"438_0",
"FAILED",
"SOBOL",
103,
0.0832131036180444,
837,
673,
0.3853512746281922,
4,
0.3111556014046073,
"leaky_relu",
"normal"
],
[
439,
1754051108,
25,
1754051133,
1754051139,
6,
"python3 .tests\/mnist\/train --epochs 185 --learning_rate 0.01180248808380216473 --batch_size 1606 --hidden_size 1430 --dropout 0.03745929291471838951 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.72805516701191663742",
"",
1,
"",
"c155",
533383,
"439_0",
"FAILED",
"SOBOL",
185,
0.011802488083802165,
1606,
1430,
0.03745929291471839,
1,
0.7280551670119166,
"leaky_relu",
"normal"
],
[
440,
1754051426,
6,
1754051432,
1754051439,
7,
"python3 .tests\/mnist\/train --epochs 190 --learning_rate 0.07145290209711530061 --batch_size 955 --hidden_size 1561 --dropout 0.47778775822371244431 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.07839397341012954712",
"",
1,
"",
"c155",
533390,
"440_0",
"FAILED",
"SOBOL",
190,
0.0714529020971153,
955,
1561,
0.47778775822371244,
1,
0.07839397341012955,
"leaky_relu",
"normal"
],
[
441,
1754051745,
10,
1754051755,
1754051761,
6,
"python3 .tests\/mnist\/train --epochs 86 --learning_rate 0.04917182128871791513 --batch_size 1719 --hidden_size 287 --dropout 0.06788273714482784271 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.8821958787739276886",
"",
1,
"",
"c125",
533396,
"441_0",
"FAILED",
"SOBOL",
86,
0.049171821288717915,
1719,
287,
0.06788273714482784,
4,
0.8821958787739277,
"leaky_relu",
"normal"
],
[
442,
1754052070,
10,
1754052080,
1754052086,
6,
"python3 .tests\/mnist\/train --epochs 47 --learning_rate 0.09357421708497219714 --batch_size 494 --hidden_size 1378 --dropout 0.16396163683384656906 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.33883412834256887436",
"",
1,
"",
"c155",
533411,
"442_0",
"FAILED",
"SOBOL",
47,
0.0935742170849722,
494,
1378,
0.16396163683384657,
3,
0.3388341283425689,
"leaky_relu",
"normal"
],
[
443,
1754052388,
5,
1754052393,
1754052399,
6,
"python3 .tests\/mnist\/train --epochs 133 --learning_rate 0.01435188615315593878 --batch_size 1263 --hidden_size 598 --dropout 0.26089364103972911835 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.63860912155359983444",
"",
1,
"",
"c154",
533417,
"443_0",
"FAILED",
"SOBOL",
133,
0.014351886153155939,
1263,
598,
0.2608936410397291,
2,
0.6386091215535998,
"leaky_relu",
"normal"
],
[
444,
1754052705,
19,
1754052724,
1754052731,
7,
"python3 .tests\/mnist\/train --epochs 115 --learning_rate 0.08027490328806452524 --batch_size 1924 --hidden_size 974 --dropout 0.315544892568141222 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.45073207933455705643",
"",
1,
"",
"c125",
533433,
"444_0",
"FAILED",
"SOBOL",
115,
0.08027490328806453,
1924,
974,
0.3155448925681412,
1,
0.45073207933455706,
"leaky_relu",
"normal"
],
[
445,
1754053021,
34,
1754053055,
1754053061,
6,
"python3 .tests\/mnist\/train --epochs 29 --learning_rate 0.0024691109050158414 --batch_size 646 --hidden_size 1226 --dropout 0.23423790326341986656 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.52595681045204401016",
"",
1,
"",
"c143",
533440,
"445_0",
"FAILED",
"SOBOL",
29,
0.0024691109050158414,
646,
1226,
0.23423790326341987,
4,
0.525956810452044,
"leaky_relu",
"normal"
],
[
446,
1754053221,
9,
1754053230,
1754053236,
6,
"python3 .tests\/mnist\/train --epochs 68 --learning_rate 0.05785683453128673964 --batch_size 1504 --hidden_size 136 --dropout 0.01340695889666676521 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.1945700962096452713",
"",
1,
"",
"c124",
533467,
"446_0",
"FAILED",
"SOBOL",
68,
0.05785683453128674,
1504,
136,
0.013406958896666765,
3,
0.19457009620964527,
"leaky_relu",
"normal"
],
[
447,
1754053564,
16,
1754053580,
1754053586,
6,
"python3 .tests\/mnist\/train --epochs 172 --learning_rate 0.03718605951408856386 --batch_size 229 --hidden_size 1936 --dropout 0.40768696507439017296 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.76576894335448741913",
"",
1,
"",
"c124",
533474,
"447_0",
"FAILED",
"SOBOL",
172,
0.037186059514088564,
229,
1936,
0.4076869650743902,
2,
0.7657689433544874,
"leaky_relu",
"normal"
],
[
448,
1754053888,
7,
1754053895,
1754053901,
6,
"python3 .tests\/mnist\/train --epochs 173 --learning_rate 0.07469322110195644737 --batch_size 1428 --hidden_size 264 --dropout 0.30809616949409246445 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.94197313115000724792",
"",
1,
"",
"c125",
533480,
"448_0",
"FAILED",
"SOBOL",
173,
0.07469322110195645,
1428,
264,
0.30809616949409246,
1,
0.9419731311500072,
"leaky_relu",
"normal"
],
[
449,
1754054219,
5,
1754054224,
1754054231,
7,
"python3 .tests\/mnist\/train --epochs 67 --learning_rate 0.04531970316483639738 --batch_size 154 --hidden_size 1553 --dropout 0.14819221384823322296 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.01908974349498748779",
"",
1,
"",
"c155",
533494,
"449_0",
"FAILED",
"SOBOL",
67,
0.0453197031648364,
154,
1553,
0.14819221384823322,
4,
0.019089743494987488,
"leaky_relu",
"normal"
],
[
450,
1754054541,
7,
1754054548,
1754054554,
6,
"python3 .tests\/mnist\/train --epochs 28 --learning_rate 0.08996783923617564238 --batch_size 2000 --hidden_size 591 --dropout 0.11508633848279714584 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.70131416898220777512",
"",
1,
"",
"c125",
533499,
"450_0",
"FAILED",
"SOBOL",
28,
0.08996783923617564,
2000,
591,
0.11508633848279715,
3,
0.7013141689822078,
"leaky_relu",
"normal"
],
[
451,
1754054854,
40,
1754054894,
1754054901,
7,
"python3 .tests\/mnist\/train --epochs 117 --learning_rate 0.01774010227304883419 --batch_size 722 --hidden_size 1353 --dropout 0.46201726235449314117 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.27464897837489843369",
"",
1,
"",
"c122",
533510,
"451_0",
"FAILED",
"SOBOL",
117,
0.017740102273048834,
722,
1353,
0.46201726235449314,
2,
0.27464897837489843,
"leaky_relu",
"normal"
],
[
452,
1754055050,
11,
1754055061,
1754055068,
7,
"python3 .tests\/mnist\/train --epochs 135 --learning_rate 0.07681411012536847049 --batch_size 426 --hidden_size 1251 --dropout 0.39173336373642086983 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.58727523032575845718",
"",
1,
"",
"c124",
533526,
"452_0",
"FAILED",
"SOBOL",
135,
0.07681411012536847,
426,
1251,
0.39173336373642087,
1,
0.5872752303257585,
"leaky_relu",
"normal"
],
[
453,
1754055393,
25,
1754055418,
1754055424,
6,
"python3 .tests\/mnist\/train --epochs 46 --learning_rate 0.0060992291447240863 --batch_size 1195 --hidden_size 980 --dropout 0.06042745476588606834 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.38894063699990510941",
"",
1,
"",
"c155",
533534,
"453_0",
"FAILED",
"SOBOL",
46,
0.006099229144724086,
1195,
980,
0.06042745476588607,
4,
0.3889406369999051,
"leaky_relu",
"normal"
],
[
454,
1754055724,
25,
1754055749,
1754055755,
6,
"python3 .tests\/mnist\/train --epochs 85 --learning_rate 0.06163484988604673448 --batch_size 1022 --hidden_size 1945 --dropout 0.21828537480905652046 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.83196822367608547211",
"",
1,
"",
"c124",
533543,
"454_0",
"FAILED",
"SOBOL",
85,
0.061634849886046734,
1022,
1945,
0.21828537480905652,
3,
0.8319682236760855,
"leaky_relu",
"normal"
],
[
455,
1754056050,
12,
1754056062,
1754056068,
6,
"python3 .tests\/mnist\/train --epochs 191 --learning_rate 0.0339710066264774721 --batch_size 1787 --hidden_size 159 --dropout 0.3625643155537545681 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.12985091842710971832",
"",
1,
"",
"c151",
533548,
"455_0",
"FAILED",
"SOBOL",
191,
0.03397100662647747,
1787,
159,
0.36256431555375457,
2,
0.12985091842710972,
"leaky_relu",
"normal"
],
[
456,
1754056373,
12,
1754056385,
1754056391,
6,
"python3 .tests\/mnist\/train --epochs 183 --learning_rate 0.09928358153676614117 --batch_size 785 --hidden_size 802 --dropout 0.1839543050155043602 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.55977788660675287247",
"",
1,
"",
"c124",
533590,
"456_0",
"FAILED",
"SOBOL",
183,
0.09928358153676614,
785,
802,
0.18395430501550436,
2,
0.5597778866067529,
"leaky_relu",
"normal"
],
[
457,
1754056687,
29,
1754056716,
1754056722,
6,
"python3 .tests\/mnist\/train --epochs 105 --learning_rate 0.02075697845369577424 --batch_size 1554 --hidden_size 1047 --dropout 0.26622284390032291412 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.47869378048926591873",
"",
1,
"",
"c155",
533605,
"457_0",
"FAILED",
"SOBOL",
105,
0.020756978453695774,
1554,
1047,
0.2662228439003229,
3,
0.4786937804892659,
"leaky_relu",
"normal"
],
[
458,
1754056913,
22,
1754056935,
1754056941,
6,
"python3 .tests\/mnist\/train --epochs 42 --learning_rate 0.065359247377589344 --batch_size 345 --hidden_size 92 --dropout 0.4872826775535941124 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.80422875098884105682",
"",
1,
"",
"c125",
533611,
"458_0",
"FAILED",
"SOBOL",
42,
0.06535924737758934,
345,
92,
0.4872826775535941,
4,
0.8042287509888411,
"leaky_relu",
"normal"
],
[
459,
1754057263,
31,
1754057294,
1754057300,
6,
"python3 .tests\/mnist\/train --epochs 150 --learning_rate 0.04238243276057765407 --batch_size 1109 --hidden_size 1884 --dropout 0.09201058931648731232 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.219358028843998909",
"",
1,
"",
"c125",
533622,
"459_0",
"FAILED",
"SOBOL",
150,
0.042382432760577654,
1109,
1884,
0.09201058931648731,
1,
0.2193580288439989,
"leaky_relu",
"normal"
],
[
460,
1754057611,
5,
1754057616,
1754057622,
6,
"python3 .tests\/mnist\/train --epochs 120 --learning_rate 0.05224530634842813881 --batch_size 1850 --hidden_size 1732 --dropout 0.02149019436910748482 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.90721269324421882629",
"",
1,
"",
"c153",
533627,
"460_0",
"FAILED",
"SOBOL",
120,
0.05224530634842814,
1850,
1732,
0.021490194369107485,
2,
0.9072126932442188,
"leaky_relu",
"normal"
],
[
461,
1754057932,
34,
1754057966,
1754057978,
12,
"python3 .tests\/mnist\/train --epochs 12 --learning_rate 0.03068351051373407329 --batch_size 576 --hidden_size 467 --dropout 0.43238726770505309105 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.11708266288042068481",
"",
1,
"",
"c122",
533663,
"461_0",
"FAILED",
"SOBOL",
12,
0.030683510513734073,
576,
467,
0.4323872677050531,
3,
0.11708266288042068,
"leaky_relu",
"normal"
],
[
462,
1754058129,
26,
1754058155,
1754058162,
7,
"python3 .tests\/mnist\/train --epochs 75 --learning_rate 0.08627110130777583541 --batch_size 1386 --hidden_size 1421 --dropout 0.33656775997951626778 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.66631142329424619675",
"",
1,
"",
"c125",
533674,
"462_0",
"FAILED",
"SOBOL",
75,
0.08627110130777584,
1386,
1421,
0.33656775997951627,
4,
0.6663114232942462,
"leaky_relu",
"normal"
],
[
463,
1754058469,
9,
1754058478,
1754058484,
6,
"python3 .tests\/mnist\/train --epochs 153 --learning_rate 0.0093563357020914565 --batch_size 108 --hidden_size 651 --dropout 0.2386742359958589077 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.37239580508321523666",
"",
1,
"",
"c151",
533681,
"463_0",
"FAILED",
"SOBOL",
153,
0.009356335702091456,
108,
651,
0.2386742359958589,
1,
0.37239580508321524,
"leaky_relu",
"normal"
],
[
464,
1754058787,
33,
1754058820,
1754058832,
12,
"python3 .tests\/mnist\/train --epochs 162 --learning_rate 0.08430654317198321701 --batch_size 1655 --hidden_size 1995 --dropout 0.44151009665802121162 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.04341991059482097626",
"",
1,
"",
"c122",
533689,
"464_0",
"FAILED",
"SOBOL",
162,
0.08430654317198322,
1655,
1995,
0.4415100966580212,
3,
0.043419910594820976,
"leaky_relu",
"normal"
],
[
465,
1754058990,
8,
1754058998,
1754059004,
6,
"python3 .tests\/mnist\/train --epochs 79 --learning_rate 0.01129800794310867849 --batch_size 891 --hidden_size 204 --dropout 0.10239037638530135155 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.99553914554417133331",
"",
1,
"",
"c150",
533697,
"465_0",
"FAILED",
"SOBOL",
79,
0.011298007943108678,
891,
204,
0.10239037638530135,
2,
0.9955391455441713,
"leaky_relu",
"normal"
],
[
466,
1754059336,
23,
1754059359,
1754059365,
6,
"python3 .tests\/mnist\/train --epochs 16 --learning_rate 0.05575390994817019247 --batch_size 1071 --hidden_size 1158 --dropout 0.13549625175073742867 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.28787069115787744522",
"",
1,
"",
"c143",
533706,
"466_0",
"FAILED",
"SOBOL",
16,
0.05575390994817019,
1071,
1158,
0.13549625175073743,
1,
0.28787069115787745,
"leaky_relu",
"normal"
],
[
467,
1754059671,
8,
1754059679,
1754059685,
6,
"python3 .tests\/mnist\/train --epochs 129 --learning_rate 0.02716117537712678387 --batch_size 303 --hidden_size 914 --dropout 0.2875890037976205349 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.73620335478335618973",
"",
1,
"",
"c125",
533711,
"467_0",
"FAILED",
"SOBOL",
129,
0.027161175377126784,
303,
914,
0.28758900379762053,
4,
0.7362033547833562,
"leaky_relu",
"normal"
],
[
468,
1754060003,
14,
1754060017,
1754060024,
7,
"python3 .tests\/mnist\/train --epochs 147 --learning_rate 0.06729482714310289215 --batch_size 582 --hidden_size 538 --dropout 0.35768216755241155624 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.42357044946402311325",
"",
1,
"",
"c150",
533713,
"468_0",
"FAILED",
"SOBOL",
147,
0.06729482714310289,
582,
538,
0.35768216755241156,
3,
0.4235704494640231,
"leaky_relu",
"normal"
],
[
469,
1754060338,
34,
1754060372,
1754060378,
6,
"python3 .tests\/mnist\/train --epochs 34 --learning_rate 0.04041176128974185294 --batch_size 1861 --hidden_size 1310 --dropout 0.18996440060436725616 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.60023752506822347641",
"",
1,
"",
"c150",
533725,
"469_0",
"FAILED",
"SOBOL",
34,
0.04041176128974185,
1861,
1310,
0.18996440060436726,
2,
0.6002375250682235,
"leaky_relu",
"normal"
],
[
470,
1754060541,
250,
1754060791,
1754060797,
6,
"python3 .tests\/mnist\/train --epochs 97 --learning_rate 0.09575515392465516751 --batch_size 38 --hidden_size 355 --dropout 0.03210648056119680405 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.18266922608017921448",
"",
1,
"",
"c150",
533727,
"470_0",
"FAILED",
"SOBOL",
97,
0.09575515392465517,
38,
355,
0.032106480561196804,
1,
0.18266922608017921,
"leaky_relu",
"normal"
],
[
471,
1754060867,
59,
1754060926,
1754060932,
6,
"python3 .tests\/mnist\/train --epochs 179 --learning_rate 0.02425946871839463823 --batch_size 1313 --hidden_size 1621 --dropout 0.38685121573507785797 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.85555072873830795288",
"",
1,
"",
"c150",
533731,
"471_0",
"FAILED",
"SOBOL",
179,
0.024259468718394638,
1313,
1621,
0.38685121573507786,
4,
0.855550728738308,
"leaky_relu",
"normal"
],
[
472,
1754061162,
6,
1754061168,
1754061174,
6,
"python3 .tests\/mnist\/train --epochs 195 --learning_rate 0.05891086147529073919 --batch_size 239 --hidden_size 1498 --dropout 0.06564406352117657661 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.45881921332329511642",
"",
1,
"",
"c150",
533732,
"472_0",
"FAILED",
"SOBOL",
195,
0.05891086147529074,
239,
1498,
0.06564406352117658,
4,
0.4588192133232951,
"leaky_relu",
"normal"
],
[
473,
1754061522,
44,
1754061566,
1754061578,
12,
"python3 .tests\/mnist\/train --epochs 93 --learning_rate 0.03671482947937213664 --batch_size 1518 --hidden_size 733 --dropout 0.48435232555493712425 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.50273296143859624863",
"",
1,
"",
"c122",
533740,
"473_0",
"FAILED",
"SOBOL",
93,
0.03671482947937214,
1518,
733,
0.4843523255549371,
1,
0.5027329614385962,
"leaky_relu",
"normal"
],
[
474,
1754061731,
15,
1754061746,
1754061752,
6,
"python3 .tests\/mnist\/train --epochs 54 --learning_rate 0.0811187614317145228 --batch_size 699 --hidden_size 1698 --dropout 0.26329249190166592598 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.2181602083146572113",
"",
1,
"",
"c122",
533743,
"474_0",
"FAILED",
"SOBOL",
54,
0.08111876143171452,
699,
1698,
0.2632924919016659,
2,
0.2181602083146572,
"leaky_relu",
"normal"
],
[
475,
1754062079,
14,
1754062093,
1754062099,
6,
"python3 .tests\/mnist\/train --epochs 138 --learning_rate 0.00181136082787998042 --batch_size 1974 --hidden_size 406 --dropout 0.1575877792201936245 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.75829210877418518066",
"",
1,
"",
"c122",
533770,
"475_0",
"FAILED",
"SOBOL",
138,
0.0018113608278799804,
1974,
406,
0.15758777922019362,
3,
0.7582921087741852,
"leaky_relu",
"normal"
],
[
476,
1754062404,
21,
1754062425,
1754062431,
6,
"python3 .tests\/mnist\/train --epochs 109 --learning_rate 0.0927177754241134966 --batch_size 1249 --hidden_size 17 --dropout 0.227932698093354702 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.07042889855802059174",
"",
1,
"",
"c122",
533772,
"476_0",
"FAILED",
"SOBOL",
109,
0.0927177754241135,
1249,
17,
0.2279326980933547,
4,
0.07042889855802059,
"leaky_relu",
"normal"
],
[
477,
1754062748,
19,
1754062767,
1754062774,
7,
"python3 .tests\/mnist\/train --epochs 24 --learning_rate 0.01502220633779652488 --batch_size 484 --hidden_size 1800 --dropout 0.31801242567598819733 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.90529767610132694244",
"",
1,
"",
"c104",
533787,
"477_0",
"FAILED",
"SOBOL",
24,
0.015022206337796525,
484,
1800,
0.3180124256759882,
1,
0.9052976761013269,
"leaky_relu",
"normal"
],
[
478,
1754063081,
5,
1754063086,
1754063092,
6,
"python3 .tests\/mnist\/train --epochs 63 --learning_rate 0.0704114661201555303 --batch_size 1669 --hidden_size 838 --dropout 0.4138319334015250206 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.31512195710092782974",
"",
1,
"",
"c104",
533789,
"478_0",
"FAILED",
"SOBOL",
63,
0.07041146612015553,
1669,
838,
0.413831933401525,
2,
0.31512195710092783,
"leaky_relu",
"normal"
],
[
479,
1754063413,
5,
1754063418,
1754063424,
6,
"python3 .tests\/mnist\/train --epochs 165 --learning_rate 0.04963044694668614087 --batch_size 901 --hidden_size 1106 --dropout 0.01074865646660327911 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.6462080078199505806",
"",
1,
"",
"c104",
533794,
"479_0",
"FAILED",
"SOBOL",
165,
0.04963044694668614,
901,
1106,
0.010748656466603279,
3,
0.6462080078199506,
"leaky_relu",
"normal"
],
[
480,
1754063752,
22,
1754063774,
1754063781,
7,
"python3 .tests\/mnist\/train --epochs 170 --learning_rate 0.08809548752860166254 --batch_size 375 --hidden_size 1653 --dropout 0.36920239543542265892 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.29708069935441017151",
"",
1,
"",
"c121",
533799,
"480_0",
"FAILED",
"SOBOL",
170,
0.08809548752860166,
375,
1653,
0.36920239543542266,
3,
0.29708069935441017,
"leaky_relu",
"normal"
],
[
481,
1754064081,
5,
1754064086,
1754064092,
6,
"python3 .tests\/mnist\/train --epochs 58 --learning_rate 0.01668477663646452183 --batch_size 1143 --hidden_size 387 --dropout 0.20978566305711865425 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.72575839608907699585",
"",
1,
"",
"c104",
533803,
"481_0",
"FAILED",
"SOBOL",
58,
0.016684776636464522,
1143,
387,
0.20978566305711865,
2,
0.725758396089077,
"leaky_relu",
"normal"
],
[
482,
1754064411,
13,
1754064424,
1754064430,
6,
"python3 .tests\/mnist\/train --epochs 25 --learning_rate 0.07222049571561627024 --batch_size 819 --hidden_size 1342 --dropout 0.05147003894671797752 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.05714505445212125778",
"",
1,
"",
"c104",
533806,
"482_0",
"FAILED",
"SOBOL",
25,
0.07222049571561627,
819,
1342,
0.05147003894671798,
1,
0.05714505445212126,
"leaky_relu",
"normal"
],
[
483,
1754064765,
12,
1754064777,
1754064783,
6,
"python3 .tests\/mnist\/train --epochs 108 --learning_rate 0.04525228569188156219 --batch_size 1583 --hidden_size 570 --dropout 0.39889030205085873604 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.98204377945512533188",
"",
1,
"",
"c104",
533811,
"483_0",
"FAILED",
"SOBOL",
108,
0.04525228569188156,
1583,
570,
0.39889030205085874,
4,
0.9820437794551253,
"leaky_relu",
"normal"
],
[
484,
1754065129,
23,
1754065152,
1754065158,
6,
"python3 .tests\/mnist\/train --epochs 138 --learning_rate 0.06018970117512159601 --batch_size 1352 --hidden_size 945 --dropout 0.45342713035643100739 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.16992132458835840225",
"",
1,
"",
"c137",
533813,
"484_0",
"FAILED",
"SOBOL",
138,
0.060189701175121596,
1352,
945,
0.453427130356431,
3,
0.1699213245883584,
"leaky_relu",
"normal"
],
[
485,
1754065469,
15,
1754065484,
1754065490,
6,
"python3 .tests\/mnist\/train --epochs 55 --learning_rate 0.03170730611824431472 --batch_size 78 --hidden_size 1190 --dropout 0.12163185235112905502 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.8700218619778752327",
"",
1,
"",
"c143",
533816,
"485_0",
"FAILED",
"SOBOL",
55,
0.031707306118244315,
78,
1190,
0.12163185235112906,
2,
0.8700218619778752,
"leaky_relu",
"normal"
],
[
486,
1754065806,
7,
1754065813,
1754065820,
7,
"python3 .tests\/mnist\/train --epochs 88 --learning_rate 0.07635534385175445082 --batch_size 1821 --hidden_size 236 --dropout 0.15519543178379535675 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.41338367573916912079",
"",
1,
"",
"c143",
533821,
"486_0",
"FAILED",
"SOBOL",
88,
0.07635534385175445,
1821,
236,
0.15519543178379536,
1,
0.4133836757391691,
"leaky_relu",
"normal"
],
[
487,
1754066154,
31,
1754066185,
1754066197,
12,
"python3 .tests\/mnist\/train --epochs 200 --learning_rate 0.00323668068404309476 --batch_size 542 --hidden_size 2027 --dropout 0.29898717906326055527 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.60970623977482318878",
"",
1,
"",
"c137",
533822,
"487_0",
"FAILED",
"SOBOL",
200,
0.0032366806840430948,
542,
2027,
0.29898717906326056,
4,
0.6097062397748232,
"leaky_relu",
"normal"
],
[
488,
1754066380,
30,
1754066410,
1754066422,
12,
"python3 .tests\/mnist\/train --epochs 180 --learning_rate 0.0627390990582294833 --batch_size 2030 --hidden_size 1138 --dropout 0.24726573890075087547 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.19686550740152597427",
"",
1,
"",
"c137",
533825,
"488_0",
"FAILED",
"SOBOL",
180,
0.06273909905822948,
2030,
1138,
0.24726573890075088,
4,
0.19686550740152597,
"leaky_relu",
"normal"
],
[
489,
1754066774,
56,
1754066830,
1754066836,
6,
"python3 .tests\/mnist\/train --epochs 96 --learning_rate 0.0420684193989262073 --batch_size 755 --hidden_size 870 --dropout 0.33002099441364407539 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.77984531689435243607",
"",
1,
"",
"c155",
533828,
"489_0",
"FAILED",
"SOBOL",
96,
0.04206841939892621,
755,
870,
0.3300209944136441,
1,
0.7798453168943524,
"leaky_relu",
"normal"
],
[
490,
1754066991,
6,
1754066997,
1754067003,
6,
"python3 .tests\/mnist\/train --epochs 39 --learning_rate 0.09765591781500727875 --batch_size 1462 --hidden_size 1831 --dropout 0.42538267886266112328 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.44057767651975154877",
"",
1,
"",
"c155",
533830,
"490_0",
"FAILED",
"SOBOL",
39,
0.09765591781500728,
1462,
1831,
0.4253826788626611,
2,
0.44057767651975155,
"leaky_relu",
"normal"
],
[
491,
1754067348,
26,
1754067374,
1754067386,
12,
"python3 .tests\/mnist\/train --epochs 141 --learning_rate 0.01985022078985348645 --batch_size 183 --hidden_size 49 --dropout 0.0306004364974796772 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.51976803876459598541",
"",
1,
"",
"c125",
533842,
"491_0",
"FAILED",
"SOBOL",
141,
0.019850220789853486,
183,
49,
0.030600436497479677,
3,
0.519768038764596,
"leaky_relu",
"normal"
],
[
492,
1754067588,
27,
1754067615,
1754067621,
6,
"python3 .tests\/mnist\/train --epochs 123 --learning_rate 0.08556726487178355212 --batch_size 989 --hidden_size 438 --dropout 0.0853737611323595047 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.33238666877150535583",
"",
1,
"",
"c125",
533845,
"492_0",
"FAILED",
"SOBOL",
123,
0.08556726487178355,
989,
438,
0.0853737611323595,
4,
0.33238666877150536,
"leaky_relu",
"normal"
],
[
493,
1754067957,
16,
1754067973,
1754067979,
6,
"python3 .tests\/mnist\/train --epochs 21 --learning_rate 0.00634483858207240698 --batch_size 1757 --hidden_size 1729 --dropout 0.49578101839870214462 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.62819650769233703613",
"",
1,
"",
"c139",
533847,
"493_0",
"FAILED",
"SOBOL",
21,
0.006344838582072407,
1757,
1729,
0.49578101839870214,
1,
0.628196507692337,
"leaky_relu",
"normal"
],
[
494,
1754068297,
15,
1754068312,
1754068318,
6,
"python3 .tests\/mnist\/train --epochs 78 --learning_rate 0.05094719988392666654 --batch_size 397 --hidden_size 765 --dropout 0.27517900802195072174 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.09270090144127607346",
"",
1,
"",
"c139",
533848,
"494_0",
"FAILED",
"SOBOL",
78,
0.05094719988392667,
397,
765,
0.2751790080219507,
2,
0.09270090144127607,
"leaky_relu",
"normal"
],
[
495,
1754068636,
25,
1754068661,
1754068667,
6,
"python3 .tests\/mnist\/train --epochs 162 --learning_rate 0.02866602371763438128 --batch_size 1161 --hidden_size 1530 --dropout 0.17679873760789632797 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.8847204139456152916",
"",
1,
"",
"c139",
533852,
"495_0",
"FAILED",
"SOBOL",
162,
0.02866602371763438,
1161,
1530,
0.17679873760789633,
3,
0.8847204139456153,
"leaky_relu",
"normal"
],
[
496,
1754068981,
16,
1754068997,
1754069003,
6,
"python3 .tests\/mnist\/train --epochs 159 --learning_rate 0.05367005442971364143 --batch_size 666 --hidden_size 191 --dropout 0.38033496774733066559 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.71175841055810451508",
"",
1,
"",
"c139",
533857,
"496_0",
"FAILED",
"SOBOL",
159,
0.05367005442971364,
666,
191,
0.38033496774733067,
1,
0.7117584105581045,
"leaky_relu",
"normal"
],
[
497,
1754069315,
11,
1754069326,
1754069332,
6,
"python3 .tests\/mnist\/train --epochs 70 --learning_rate 0.02592028327707201346 --batch_size 1944 --hidden_size 1976 --dropout 0.04072850104421377182 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.26544159092009067535",
"",
1,
"",
"c154",
533860,
"497_0",
"FAILED",
"SOBOL",
70,
0.025920283277072013,
1944,
1976,
0.04072850104421377,
4,
0.2654415909200907,
"leaky_relu",
"normal"
],
[
498,
1754069657,
12,
1754069669,
1754069675,
6,
"python3 .tests\/mnist\/train --epochs 13 --learning_rate 0.08126376828994602564 --batch_size 209 --hidden_size 1013 --dropout 0.19904412515461444855 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.95547064486891031265",
"",
1,
"",
"c139",
533862,
"498_0",
"FAILED",
"SOBOL",
13,
0.08126376828994603,
209,
1013,
0.19904412515461445,
3,
0.9554706448689103,
"leaky_relu",
"normal"
],
[
499,
1754070014,
12,
1754070026,
1754070032,
6,
"python3 .tests\/mnist\/train --epochs 120 --learning_rate 0.01063460362704470898 --batch_size 1484 --hidden_size 1283 --dropout 0.35064706113189458847 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.00536436308175325394",
"",
1,
"",
"c139",
533863,
"499_0",
"FAILED",
"SOBOL",
120,
0.010634603627044709,
1484,
1283,
0.3506470611318946,
2,
0.005364363081753254,
"leaky_relu",
"normal"
]
];
var tab_worker_usage_csv_json = [
[
1753975660.7213888,
20,
0,
0
],
[
1753975664.2572968,
20,
0,
0
],
[
1753975664.7256398,
20,
0,
0
],
[
1753975682.7106574,
20,
0,
0
],
[
1753975704.7390018,
20,
0,
0
],
[
1753975708.7118025,
20,
0,
0
],
[
1753975712.7173173,
20,
0,
0
],
[
1753975717.8706498,
20,
1,
5
],
[
1753975722.777351,
20,
1,
5
],
[
1753975730.7213576,
20,
1,
5
],
[
1753975734.788594,
20,
1,
5
],
[
1753975738.8905435,
20,
1,
5
],
[
1753975744.0599673,
20,
2,
10
],
[
1753975753.7484632,
20,
1,
5
],
[
1753975764.70179,
20,
1,
5
],
[
1753975773.727281,
20,
0,
0
],
[
1753975798.2488492,
20,
0,
0
],
[
1753975803.0904803,
20,
0,
0
],
[
1753975807.7102814,
20,
0,
0
],
[
1753975813.0989776,
20,
1,
5
],
[
1753975817.7256682,
20,
1,
5
],
[
1753975827.3120852,
20,
0,
0
],
[
1753975851.739522,
20,
0,
0
],
[
1753975860.921493,
20,
0,
0
],
[
1753975865.201668,
20,
0,
0
],
[
1753975870.7276278,
20,
0,
0
],
[
1753975876.176713,
20,
1,
5
],
[
1753975880.967898,
20,
1,
5
],
[
1753975889.705698,
20,
1,
5
],
[
1753975894.32155,
20,
1,
5
],
[
1753975903.1276894,
20,
1,
5
],
[
1753975907.715219,
20,
1,
5
],
[
1753975912.7186255,
20,
1,
5
],
[
1753975918.2422955,
20,
1,
5
],
[
1753975927.1360736,
20,
1,
5
],
[
1753975935.806762,
20,
1,
5
],
[
1753975940.7192688,
20,
1,
5
],
[
1753975949.7101526,
20,
0,
0
],
[
1753975954.1588318,
20,
0,
0
],
[
1753975979.7303784,
20,
0,
0
],
[
1753975985.732642,
20,
1,
5
],
[
1753975990.7148182,
20,
1,
5
],
[
1753975999.7105076,
20,
1,
5
],
[
1753976009.9544659,
20,
0,
0
],
[
1753976018.8641138,
20,
0,
0
],
[
1753976024.7076685,
20,
0,
0
],
[
1753976029.3354669,
20,
0,
0
],
[
1753976035.9483006,
20,
1,
5
],
[
1753976056.7228334,
20,
1,
5
],
[
1753976066.7230253,
20,
1,
5
],
[
1753976075.9871304,
20,
0,
0
],
[
1753976085.1952202,
20,
0,
0
],
[
1753976089.8400397,
20,
0,
0
],
[
1753976094.7302701,
20,
0,
0
],
[
1753976102.7201483,
20,
1,
5
],
[
1753976107.9523144,
20,
1,
5
],
[
1753976118.7165308,
20,
1,
5
],
[
1753976138.2224753,
20,
1,
5
],
[
1753976147.715413,
20,
0,
0
],
[
1753976152.7107697,
20,
0,
0
],
[
1753976162.1316266,
20,
0,
0
],
[
1753976168.927755,
20,
1,
5
],
[
1753976184.71523,
20,
1,
5
],
[
1753976184.7190044,
20,
1,
5
],
[
1753976198.910127,
20,
0,
0
],
[
1753976204.2772145,
20,
0,
0
],
[
1753976213.2787147,
20,
0,
0
],
[
1753976217.7987943,
20,
0,
0
],
[
1753976232.0422492,
20,
0,
0
],
[
1753976238.9303033,
20,
1,
5
],
[
1753976244.7230177,
20,
1,
5
],
[
1753976267.9477139,
20,
1,
5
],
[
1753976272.9670372,
20,
1,
5
],
[
1753976283.182911,
20,
0,
0
],
[
1753976288.9154956,
20,
1,
5
],
[
1753976297.7195106,
20,
1,
5
],
[
1753976308.023022,
20,
0,
0
],
[
1753976317.7098954,
20,
0,
0
],
[
1753976326.919813,
20,
0,
0
],
[
1753976331.7186012,
20,
0,
0
],
[
1753976336.7203681,
20,
0,
0
],
[
1753976352.9168494,
20,
1,
5
],
[
1753976364.0032732,
20,
1,
5
],
[
1753976374.1654303,
20,
0,
0
],
[
1753976379.7107418,
20,
0,
0
],
[
1753976389.1262188,
20,
0,
0
],
[
1753976393.8052053,
20,
0,
0
],
[
1753976398.7226226,
20,
0,
0
],
[
1753976408.035928,
20,
1,
5
],
[
1753976417.3247724,
20,
1,
5
],
[
1753976433.0561795,
20,
1,
5
],
[
1753976443.7234793,
20,
0,
0
],
[
1753976452.9772785,
20,
0,
0
],
[
1753976457.910643,
20,
0,
0
],
[
1753976462.866395,
20,
0,
0
],
[
1753976469.9872372,
20,
1,
5
],
[
1753976475.1719003,
20,
1,
5
],
[
1753976484.887164,
20,
1,
5
],
[
1753976494.73123,
20,
0,
0
],
[
1753976517.7202296,
20,
0,
0
],
[
1753976523.2073674,
20,
0,
0
],
[
1753976528.216844,
20,
0,
0
],
[
1753976534.147389,
20,
1,
5
],
[
1753976539.701184,
20,
1,
5
],
[
1753976549.9197938,
20,
0,
0
],
[
1753976555.7111504,
20,
0,
0
],
[
1753976565.7182696,
20,
0,
0
],
[
1753976570.737345,
20,
0,
0
],
[
1753976576.9437582,
20,
0,
0
],
[
1753976583.0531456,
20,
1,
5
],
[
1753976589.7073371,
20,
1,
5
],
[
1753976600.0734863,
20,
1,
5
],
[
1753976605.717743,
20,
1,
5
],
[
1753976615.708901,
20,
0,
0
],
[
1753976621.8336573,
20,
0,
0
],
[
1753976627.10855,
20,
0,
0
],
[
1753976633.3508534,
20,
1,
5
],
[
1753976639.0670376,
20,
1,
5
],
[
1753976649.2356374,
20,
1,
5
],
[
1753976655.1368282,
20,
1,
5
],
[
1753976666.714662,
20,
0,
0
],
[
1753976672.0046308,
20,
0,
0
],
[
1753976696.7171075,
20,
0,
0
],
[
1753976702.9449995,
20,
1,
5
],
[
1753976708.7105145,
20,
1,
5
],
[
1753976719.7232244,
20,
1,
5
],
[
1753976731.712015,
20,
0,
0
],
[
1753976742.7491975,
20,
0,
0
],
[
1753976747.9010248,
20,
0,
0
],
[
1753976754.2920778,
20,
0,
0
],
[
1753976774.7066398,
20,
1,
5
],
[
1753976797.0704925,
20,
0,
0
],
[
1753976797.0834544,
20,
0,
0
],
[
1753976811.926273,
20,
0,
0
],
[
1753976817.710334,
20,
0,
0
],
[
1753976827.9339874,
20,
0,
0
],
[
1753976833.7651992,
20,
0,
0
],
[
1753976839.7096364,
20,
0,
0
],
[
1753976862.731416,
20,
1,
5
],
[
1753976870.1545613,
20,
1,
5
],
[
1753976870.254973,
20,
1,
5
],
[
1753976870.720678,
20,
1,
5
],
[
1753976881.00972,
20,
0,
0
],
[
1753976892.051651,
20,
0,
0
],
[
1753976898.7060204,
20,
0,
0
],
[
1753976920.8248277,
20,
0,
0
],
[
1753976926.7294703,
20,
0,
0
],
[
1753976932.2169237,
20,
0,
0
],
[
1753976938.9170918,
20,
1,
5
],
[
1753976946.997945,
20,
1,
5
],
[
1753976957.7168984,
20,
1,
5
],
[
1753976963.722444,
20,
1,
5
],
[
1753976987.7123806,
20,
0,
0
],
[
1753976994.9266205,
20,
1,
5
],
[
1753977000.958479,
20,
1,
5
],
[
1753977011.766509,
20,
1,
5
],
[
1753977019.078646,
20,
1,
5
],
[
1753977039.2155647,
20,
0,
0
],
[
1753977046.7174356,
20,
0,
0
],
[
1753977052.714539,
20,
0,
0
],
[
1753977059.0076647,
20,
1,
5
],
[
1753977080.7262387,
20,
1,
5
],
[
1753977103.085638,
20,
0,
0
],
[
1753977109.7410586,
20,
0,
0
],
[
1753977121.7063072,
20,
0,
0
],
[
1753977127.0413816,
20,
0,
0
],
[
1753977133.1253288,
20,
0,
0
],
[
1753977140.725925,
20,
1,
5
],
[
1753977155.9997063,
20,
1,
5
],
[
1753977179.710041,
20,
1,
5
],
[
1753977185.748702,
20,
1,
5
],
[
1753977196.7299724,
20,
0,
0
],
[
1753977201.9966717,
20,
0,
0
],
[
1753977217.901249,
20,
0,
0
],
[
1753977225.9078712,
20,
1,
5
],
[
1753977231.9811976,
20,
1,
5
],
[
1753977243.7158713,
20,
0,
0
],
[
1753977249.8513007,
20,
0,
0
],
[
1753977260.7221842,
20,
0,
0
],
[
1753977266.1084964,
20,
0,
0
],
[
1753977272.2842035,
20,
0,
0
],
[
1753977278.9894087,
20,
1,
5
],
[
1753977296.0009897,
20,
1,
5
],
[
1753977308.7162938,
20,
0,
0
],
[
1753977316.726365,
20,
0,
0
],
[
1753977330.0933528,
20,
0,
0
],
[
1753977353.9444344,
20,
0,
0
],
[
1753977360.0537167,
20,
0,
0
],
[
1753977366.9640803,
20,
1,
5
],
[
1753977373.717646,
20,
1,
5
],
[
1753977387.7056236,
20,
0,
0
],
[
1753977399.7918057,
20,
0,
0
],
[
1753977410.8469813,
20,
0,
0
],
[
1753977432.1222935,
20,
0,
0
],
[
1753977438.7074106,
20,
0,
0
],
[
1753977445.7700062,
20,
1,
5
],
[
1753977452.1876988,
20,
1,
5
],
[
1753977471.0522196,
20,
1,
5
],
[
1753977483.7223175,
20,
0,
0
],
[
1753977512.7070882,
20,
0,
0
],
[
1753977519.1864533,
20,
0,
0
],
[
1753977524.9706032,
20,
0,
0
],
[
1753977531.960313,
20,
1,
5
],
[
1753977541.7367542,
20,
1,
5
],
[
1753977553.7537005,
20,
1,
5
],
[
1753977559.944934,
20,
1,
5
],
[
1753977583.215869,
20,
0,
0
],
[
1753977590.9650633,
20,
0,
0
],
[
1753977597.714304,
20,
0,
0
],
[
1753977615.9938028,
20,
1,
5
],
[
1753977635.0691469,
20,
0,
0
],
[
1753977635.075998,
20,
0,
0
],
[
1753977663.1964333,
20,
0,
0
],
[
1753977671.8254118,
20,
0,
0
],
[
1753977696.7661898,
20,
0,
0
],
[
1753977707.0027797,
20,
0,
0
],
[
1753977713.7437491,
20,
0,
0
],
[
1753977720.920262,
20,
1,
5
],
[
1753977729.1657689,
20,
1,
5
],
[
1753977764.0177953,
20,
1,
5
],
[
1753977770.7417672,
20,
0,
0
],
[
1753977782.7971895,
20,
0,
0
],
[
1753977789.9354708,
20,
1,
5
],
[
1753977796.7205493,
20,
1,
5
],
[
1753977809.0984814,
20,
0,
0
],
[
1753977822.779651,
20,
0,
0
],
[
1753977838.025001,
20,
0,
0
],
[
1753977857.8818266,
20,
0,
0
],
[
1753977871.7125657,
20,
0,
0
],
[
1753977882.9022274,
20,
1,
5
],
[
1753977889.9925528,
20,
1,
5
],
[
1753977903.0302787,
20,
0,
0
],
[
1753977909.7175817,
20,
0,
0
],
[
1753977921.9178731,
20,
0,
0
],
[
1753977941.719116,
20,
0,
0
],
[
1753977949.7484376,
20,
0,
0
],
[
1753977957.7846048,
20,
1,
5
],
[
1753977964.2718399,
20,
1,
5
],
[
1753977977.7103817,
20,
1,
5
],
[
1753977984.7223566,
20,
1,
5
],
[
1753978006.7043514,
20,
0,
0
],
[
1753978013.252502,
20,
0,
0
],
[
1753978037.718232,
20,
0,
0
],
[
1753978045.7209344,
20,
1,
5
],
[
1753978061.9716222,
20,
1,
5
],
[
1753978076.7273095,
20,
1,
5
],
[
1753978090.7508175,
20,
0,
0
],
[
1753978126.7415001,
20,
0,
0
],
[
1753978133.0947435,
20,
0,
0
],
[
1753978139.7289348,
20,
0,
0
],
[
1753978149.9257295,
20,
1,
5
],
[
1753978156.9538932,
20,
1,
5
],
[
1753978199.7051878,
20,
0,
0
],
[
1753978208.829209,
20,
0,
0
],
[
1753978226.7076,
20,
0,
0
],
[
1753978245.7273033,
20,
0,
0
],
[
1753978265.1401095,
20,
0,
0
],
[
1753978277.1241899,
20,
1,
5
],
[
1753978288.0637448,
20,
1,
5
],
[
1753978301.7386787,
20,
1,
5
],
[
1753978309.8969164,
20,
1,
5
],
[
1753978323.281271,
20,
0,
0
],
[
1753978331.713776,
20,
0,
0
],
[
1753978345.2972074,
20,
0,
0
],
[
1753978352.9135273,
20,
1,
5
],
[
1753978361.0154843,
20,
1,
5
],
[
1753978374.1921537,
20,
1,
5
],
[
1753978388.8476737,
20,
0,
0
],
[
1753978403.908606,
20,
0,
0
],
[
1753978421.3091116,
20,
0,
0
],
[
1753978441.3010786,
20,
0,
0
],
[
1753978456.288791,
20,
1,
5
],
[
1753978463.0959127,
20,
1,
5
],
[
1753978488.0617225,
20,
0,
0
],
[
1753978495.2316551,
20,
0,
0
],
[
1753978520.8919828,
20,
0,
0
],
[
1753978527.7323077,
20,
0,
0
],
[
1753978534.7172332,
20,
0,
0
],
[
1753978543.0074883,
20,
1,
5
],
[
1753978549.983953,
20,
1,
5
],
[
1753978584.7198248,
20,
0,
0
],
[
1753978592.0298264,
20,
0,
0
],
[
1753978638.7486336,
20,
0,
0
],
[
1753978648.7513003,
20,
0,
0
],
[
1753978648.850684,
20,
0,
0
],
[
1753978651.2642276,
20,
0,
0
],
[
1753978670.724561,
20,
0,
0
],
[
1753978678.1913397,
20,
0,
0
],
[
1753978685.2246246,
20,
0,
0
],
[
1753978693.9995556,
20,
1,
5
],
[
1753978702.7701232,
20,
1,
5
],
[
1753978715.8987424,
20,
0,
0
],
[
1753978722.7112854,
20,
0,
0
],
[
1753978729.7272027,
20,
0,
0
],
[
1753978737.712408,
20,
1,
5
],
[
1753978745.7135808,
20,
1,
5
],
[
1753978759.712294,
20,
1,
5
],
[
1753978773.785658,
20,
0,
0
],
[
1753978798.7073736,
20,
0,
0
],
[
1753978805.713386,
20,
0,
0
],
[
1753978812.7104418,
20,
0,
0
],
[
1753978820.413532,
20,
1,
5
],
[
1753978827.9599593,
20,
1,
5
],
[
1753978844.28848,
20,
1,
5
],
[
1753978853.1740098,
20,
1,
5
],
[
1753978869.1526074,
20,
0,
0
],
[
1753978885.715073,
20,
0,
0
],
[
1753978892.7127867,
20,
0,
0
],
[
1753978900.7039123,
20,
1,
5
],
[
1753978907.9859116,
20,
1,
5
],
[
1753978921.769208,
20,
0,
0
],
[
1753978935.712648,
20,
0,
0
],
[
1753978949.71248,
20,
0,
0
],
[
1753978956.7159433,
20,
0,
0
],
[
1753978980.7266812,
20,
0,
0
],
[
1753978989.7053995,
20,
1,
5
],
[
1753978996.9994977,
20,
1,
5
],
[
1753979010.7197852,
20,
0,
0
],
[
1753979024.710016,
20,
0,
0
],
[
1753979037.9820576,
20,
0,
0
],
[
1753979053.7279527,
20,
0,
0
],
[
1753979061.7116284,
20,
0,
0
],
[
1753979070.2461665,
20,
1,
5
],
[
1753979077.7111657,
20,
1,
5
],
[
1753979092.7199402,
20,
1,
5
],
[
1753979142.298911,
20,
0,
0
],
[
1753979170.957058,
20,
0,
0
],
[
1753979178.0800545,
20,
0,
0
],
[
1753979187.9030128,
20,
0,
0
],
[
1753979195.91815,
20,
1,
5
],
[
1753979203.7160978,
20,
1,
5
],
[
1753979224.7095222,
20,
0,
0
],
[
1753979270.8943763,
20,
0,
0
],
[
1753979295.1582766,
20,
0,
0
],
[
1753979302.741292,
20,
0,
0
],
[
1753979310.0512357,
20,
0,
0
],
[
1753979318.2247257,
20,
1,
5
],
[
1753979325.7491455,
20,
1,
5
],
[
1753979355.1966872,
20,
0,
0
],
[
1753979369.3019137,
20,
0,
0
],
[
1753979399.711179,
20,
0,
0
],
[
1753979411.9387038,
20,
0,
0
],
[
1753979420.7235458,
20,
0,
0
],
[
1753979429.1157064,
20,
1,
5
],
[
1753979437.0572298,
20,
1,
5
],
[
1753979451.7446432,
20,
1,
5
],
[
1753979466.7147732,
20,
0,
0
],
[
1753979481.0816298,
20,
0,
0
],
[
1753979488.7120514,
20,
0,
0
],
[
1753979496.7269228,
20,
0,
0
],
[
1753979505.9095619,
20,
1,
5
],
[
1753979533.980536,
20,
1,
5
],
[
1753979553.2843912,
20,
0,
0
],
[
1753979561.866457,
20,
0,
0
],
[
1753979577.7362766,
20,
0,
0
],
[
1753979586.7168841,
20,
0,
0
],
[
1753979610.731303,
20,
0,
0
],
[
1753979619.2505662,
20,
1,
5
],
[
1753979627.7110298,
20,
1,
5
],
[
1753979658.7112453,
20,
0,
0
],
[
1753979692.8120193,
20,
0,
0
],
[
1753979707.9114656,
20,
0,
0
],
[
1753979715.7294922,
20,
0,
0
],
[
1753979723.1493213,
20,
0,
0
],
[
1753979731.709843,
20,
1,
5
],
[
1753979740.2105887,
20,
1,
5
],
[
1753979755.2863536,
20,
1,
5
],
[
1753979801.7566092,
20,
0,
0
],
[
1753979829.7105134,
20,
0,
0
],
[
1753979837.0467482,
20,
0,
0
],
[
1753979845.1837294,
20,
0,
0
],
[
1753979853.7094824,
20,
1,
5
],
[
1753979861.6600716,
20,
1,
5
],
[
1753979877.2299469,
20,
0,
0
],
[
1753979894.230642,
20,
0,
0
],
[
1753979916.0054207,
20,
0,
0
],
[
1753979928.7217646,
20,
0,
0
],
[
1753979936.9008968,
20,
0,
0
],
[
1753979945.9859052,
20,
1,
5
],
[
1753979953.7157235,
20,
1,
5
],
[
1753979969.2894077,
20,
0,
0
],
[
1753979985.749278,
20,
0,
0
],
[
1753980001.7377586,
20,
0,
0
],
[
1753980048.7093968,
20,
0,
0
],
[
1753980071.741971,
20,
0,
0
],
[
1753980091.04286,
20,
1,
5
],
[
1753980101.1854296,
20,
1,
5
],
[
1753980116.7280762,
20,
1,
5
],
[
1753980132.0253801,
20,
0,
0
],
[
1753980146.8294683,
20,
0,
0
],
[
1753980154.1401305,
20,
0,
0
],
[
1753980161.8092134,
20,
0,
0
],
[
1753980171.1631684,
20,
1,
5
],
[
1753980181.0081618,
20,
1,
5
],
[
1753980196.82953,
20,
1,
5
],
[
1753980204.9759233,
20,
1,
5
],
[
1753980244.2071528,
20,
0,
0
],
[
1753980264.7232718,
20,
0,
0
],
[
1753980273.0461378,
20,
0,
0
],
[
1753980286.719492,
20,
1,
5
],
[
1753980295.1572242,
20,
1,
5
],
[
1753980325.0525699,
20,
0,
0
],
[
1753980333.7228122,
20,
0,
0
],
[
1753980361.0842528,
20,
0,
0
],
[
1753980384.7801578,
20,
0,
0
],
[
1753980396.9427118,
20,
0,
0
],
[
1753980406.114394,
20,
1,
5
],
[
1753980414.09139,
20,
1,
5
],
[
1753980429.8968,
20,
0,
0
],
[
1753980438.713694,
20,
0,
0
],
[
1753980454.9224856,
20,
0,
0
],
[
1753980463.0625002,
20,
0,
0
],
[
1753980471.9195347,
20,
0,
0
],
[
1753980490.9124472,
20,
1,
5
],
[
1753980503.9926014,
20,
1,
5
],
[
1753980526.9216173,
20,
0,
0
],
[
1753980535.0839813,
20,
0,
0
],
[
1753980550.1781845,
20,
0,
0
],
[
1753980558.7691462,
20,
0,
0
],
[
1753980567.0446732,
20,
0,
0
],
[
1753980575.9184005,
20,
1,
5
],
[
1753980584.0032053,
20,
1,
5
],
[
1753980624.2165403,
20,
0,
0
],
[
1753980639.9147327,
20,
0,
0
],
[
1753980688.772154,
20,
0,
0
],
[
1753980699.3455613,
20,
0,
0
],
[
1753980699.7926009,
20,
0,
0
],
[
1753980701.7200143,
20,
0,
0
],
[
1753980719.7088146,
20,
0,
0
],
[
1753980727.2074184,
20,
0,
0
],
[
1753980735.723238,
20,
0,
0
],
[
1753980745.043478,
20,
1,
5
],
[
1753980755.0704858,
20,
1,
5
],
[
1753980772.9194865,
20,
1,
5
],
[
1753980780.9320261,
20,
0,
0
],
[
1753980799.0020068,
20,
0,
0
],
[
1753980808.261613,
20,
1,
5
],
[
1753980816.9859843,
20,
1,
5
],
[
1753980833.716704,
20,
1,
5
],
[
1753980842.740218,
20,
1,
5
],
[
1753980859.9921489,
20,
0,
0
],
[
1753980867.748255,
20,
0,
0
],
[
1753980876.0429094,
20,
0,
0
],
[
1753980884.9503222,
20,
1,
5
],
[
1753980894.0241053,
20,
1,
5
],
[
1753980914.7031496,
20,
0,
0
],
[
1753980942.7286851,
20,
0,
0
],
[
1753980958.7271352,
20,
0,
0
],
[
1753980971.0866225,
20,
0,
0
],
[
1753980979.3113453,
20,
0,
0
],
[
1753980988.912719,
20,
1,
5
],
[
1753981002.9401312,
20,
1,
5
],
[
1753981020.9947796,
20,
0,
0
],
[
1753981037.6918218,
20,
0,
0
],
[
1753981055.6808574,
20,
0,
0
],
[
1753981063.7355223,
20,
0,
0
],
[
1753981072.976524,
20,
0,
0
],
[
1753981083.0948737,
20,
1,
5
],
[
1753981092.6218498,
20,
1,
5
],
[
1753981109.7101746,
20,
1,
5
],
[
1753981127.1937664,
20,
0,
0
],
[
1753981143.7259693,
20,
0,
0
],
[
1753981152.0491214,
20,
0,
0
],
[
1753981160.717464,
20,
0,
0
],
[
1753981169.907899,
20,
1,
5
],
[
1753981179.0530372,
20,
1,
5
],
[
1753981200.7457635,
20,
1,
5
],
[
1753981231.0848415,
20,
0,
0
],
[
1753981247.721742,
20,
0,
0
],
[
1753981256.8675866,
20,
0,
0
],
[
1753981265.2648304,
20,
0,
0
],
[
1753981274.9128888,
20,
1,
5
],
[
1753981284.711269,
20,
1,
5
],
[
1753981301.7057884,
20,
0,
0
],
[
1753981310.937904,
20,
0,
0
],
[
1753981327.8797824,
20,
0,
0
],
[
1753981336.7186856,
20,
0,
0
],
[
1753981346.9647017,
20,
0,
0
],
[
1753981356.9908364,
20,
1,
5
],
[
1753981366.0675812,
20,
1,
5
],
[
1753981383.7050612,
20,
0,
0
],
[
1753981410.731663,
20,
0,
0
],
[
1753981428.7345366,
20,
0,
0
],
[
1753981437.0089443,
20,
0,
0
],
[
1753981445.7212121,
20,
0,
0
],
[
1753981454.988609,
20,
1,
5
],
[
1753981463.9797275,
20,
1,
5
],
[
1753981491.71923,
20,
0,
0
],
[
1753981501.7212493,
20,
0,
0
],
[
1753981518.2772768,
20,
0,
0
],
[
1753981526.9160168,
20,
0,
0
],
[
1753981535.826744,
20,
0,
0
],
[
1753981566.1061456,
20,
1,
5
],
[
1753981574.9675546,
20,
1,
5
],
[
1753981602.1416702,
20,
0,
0
],
[
1753981612.72007,
20,
0,
0
],
[
1753981629.0099154,
20,
0,
0
],
[
1753981643.7445624,
20,
0,
0
],
[
1753981652.823488,
20,
0,
0
],
[
1753981662.9088337,
20,
1,
5
],
[
1753981671.928711,
20,
1,
5
],
[
1753981689.1227603,
20,
0,
0
],
[
1753981701.0315497,
20,
0,
0
],
[
1753981728.093989,
20,
0,
0
],
[
1753981746.7974086,
20,
0,
0
],
[
1753981759.7102306,
20,
0,
0
],
[
1753981769.7081876,
20,
1,
5
],
[
1753981778.9046953,
20,
1,
5
],
[
1753981797.0303104,
20,
1,
5
],
[
1753981815.207625,
20,
0,
0
],
[
1753981832.9011264,
20,
0,
0
],
[
1753981850.713345,
20,
0,
0
],
[
1753981859.851836,
20,
0,
0
],
[
1753981869.927438,
20,
1,
5
],
[
1753981879.19499,
20,
1,
5
],
[
1753981896.723791,
20,
0,
0
],
[
1753981915.7407007,
20,
0,
0
],
[
1753981939.0596583,
20,
0,
0
],
[
1753981963.9419856,
20,
0,
0
],
[
1753981977.7033947,
20,
0,
0
],
[
1753981988.952766,
20,
1,
5
],
[
1753981999.2881906,
20,
1,
5
],
[
1753982035.2917163,
20,
0,
0
],
[
1753982053.725155,
20,
0,
0
],
[
1753982071.1640604,
20,
0,
0
],
[
1753982080.0985765,
20,
0,
0
],
[
1753982089.141745,
20,
0,
0
],
[
1753982098.7304165,
20,
1,
5
],
[
1753982109.6947849,
20,
1,
5
],
[
1753982126.856756,
20,
1,
5
],
[
1753982146.8186145,
20,
0,
0
],
[
1753982190.7586186,
20,
0,
0
],
[
1753982200.0088842,
20,
0,
0
],
[
1753982208.751019,
20,
0,
0
],
[
1753982218.9161122,
20,
1,
5
],
[
1753982227.9934359,
20,
1,
5
],
[
1753982246.055239,
20,
1,
5
],
[
1753982264.7190893,
20,
0,
0
],
[
1753982291.9536731,
20,
0,
0
],
[
1753982321.7354536,
20,
0,
0
],
[
1753982332.067271,
20,
0,
0
],
[
1753982342.9326556,
20,
1,
5
],
[
1753982352.984186,
20,
1,
5
],
[
1753982371.7091613,
20,
0,
0
],
[
1753982400.7201345,
20,
0,
0
],
[
1753982442.7164974,
20,
0,
0
],
[
1753982451.7879257,
20,
0,
0
],
[
1753982464.1860583,
20,
0,
0
],
[
1753982474.9105482,
20,
1,
5
],
[
1753982485.009475,
20,
1,
5
],
[
1753982532.7112246,
20,
0,
0
],
[
1753982556.2606933,
20,
0,
0
],
[
1753982601.7223592,
20,
0,
0
],
[
1753982616.1648464,
20,
0,
0
],
[
1753982625.197054,
20,
0,
0
],
[
1753982635.9132967,
20,
1,
5
],
[
1753982646.7088804,
20,
1,
5
],
[
1753982675.723007,
20,
1,
5
],
[
1753982705.7608738,
20,
0,
0
],
[
1753982746.128165,
20,
0,
0
],
[
1753982757.0322962,
20,
0,
0
],
[
1753982781.7139308,
20,
0,
0
],
[
1753982792.718968,
20,
1,
5
],
[
1753982803.017795,
20,
1,
5
],
[
1753982821.2093916,
20,
0,
0
],
[
1753982831.6687248,
20,
0,
0
],
[
1753982888.9700434,
20,
0,
0
],
[
1753982912.0056794,
20,
0,
0
],
[
1753982912.1193297,
20,
0,
0
],
[
1753982914.1308389,
20,
0,
0
],
[
1753982931.7114394,
20,
0,
0
],
[
1753982944.7016635,
20,
0,
0
],
[
1753982954.7127903,
20,
0,
0
],
[
1753982964.9262824,
20,
1,
5
],
[
1753982987.706248,
20,
1,
5
],
[
1753983025.7193904,
20,
1,
5
],
[
1753983034.883105,
20,
0,
0
],
[
1753983060.950673,
20,
0,
0
],
[
1753983071.2871432,
20,
1,
5
],
[
1753983081.283162,
20,
1,
5
],
[
1753983120.8290493,
20,
0,
0
],
[
1753983139.7053616,
20,
0,
0
],
[
1753983159.710564,
20,
0,
0
],
[
1753983191.052654,
20,
0,
0
],
[
1753983223.288262,
20,
0,
0
],
[
1753983235.9339848,
20,
1,
5
],
[
1753983246.98487,
20,
1,
5
],
[
1753983266.8082502,
20,
1,
5
],
[
1753983287.2052815,
20,
0,
0
],
[
1753983306.7139218,
20,
0,
0
],
[
1753983315.7181666,
20,
0,
0
],
[
1753983325.205722,
20,
0,
0
],
[
1753983350.9835536,
20,
1,
5
],
[
1753983367.1518886,
20,
1,
5
],
[
1753983407.840091,
20,
0,
0
],
[
1753983418.7806482,
20,
0,
0
],
[
1753983437.727402,
20,
0,
0
],
[
1753983465.276386,
20,
0,
0
],
[
1753983492.1944907,
20,
0,
0
],
[
1753983512.9315317,
20,
1,
5
],
[
1753983528.7060423,
20,
1,
5
],
[
1753983557.7819242,
20,
0,
0
],
[
1753983577.7052047,
20,
0,
0
],
[
1753983613.8898003,
20,
0,
0
],
[
1753983633.7110393,
20,
0,
0
],
[
1753983643.2182264,
20,
0,
0
],
[
1753983662.9949446,
20,
1,
5
],
[
1753983682.9956489,
20,
1,
5
],
[
1753983703.0046475,
20,
0,
0
],
[
1753983713.893349,
20,
0,
0
],
[
1753983733.007078,
20,
0,
0
],
[
1753983742.711991,
20,
0,
0
],
[
1753983768.7430418,
20,
0,
0
],
[
1753983781.7192163,
20,
1,
5
],
[
1753983791.7392852,
20,
1,
5
],
[
1753983824.7121902,
20,
0,
0
],
[
1753983839.3417394,
20,
0,
0
],
[
1753983872.7347906,
20,
0,
0
],
[
1753983882.064276,
20,
0,
0
],
[
1753983891.8744848,
20,
0,
0
],
[
1753983902.3007302,
20,
1,
5
],
[
1753983912.7906094,
20,
1,
5
],
[
1753983933.070496,
20,
0,
0
],
[
1753983955.7310576,
20,
0,
0
],
[
1753983974.7302852,
20,
0,
0
],
[
1753983985.787147,
20,
0,
0
],
[
1753983995.7708938,
20,
0,
0
],
[
1753984006.1768417,
20,
1,
5
],
[
1753984019.107448,
20,
1,
5
],
[
1753984048.7427769,
20,
0,
0
],
[
1753984062.1276026,
20,
0,
0
],
[
1753984099.922278,
20,
0,
0
],
[
1753984110.9722683,
20,
0,
0
],
[
1753984121.267703,
20,
0,
0
],
[
1753984131.9216979,
20,
1,
5
],
[
1753984142.7061338,
20,
1,
5
],
[
1753984173.8632898,
20,
1,
5
],
[
1753984193.975023,
20,
0,
0
],
[
1753984215.2151964,
20,
0,
0
],
[
1753984225.0823212,
20,
0,
0
],
[
1753984235.6970575,
20,
0,
0
],
[
1753984246.7304618,
20,
1,
5
],
[
1753984273.8851464,
20,
1,
5
],
[
1753984293.76487,
20,
0,
0
],
[
1753984316.7398717,
20,
0,
0
],
[
1753984340.1628933,
20,
0,
0
],
[
1753984349.8169923,
20,
0,
0
],
[
1753984359.8436646,
20,
0,
0
],
[
1753984371.742539,
20,
1,
5
],
[
1753984382.0744991,
20,
0,
0
],
[
1753984382.0806127,
20,
0,
0
],
[
1753984416.951097,
20,
0,
0
],
[
1753984427.7308757,
20,
0,
0
],
[
1753984458.0910878,
20,
0,
0
],
[
1753984467.7783718,
20,
0,
0
],
[
1753984477.7045822,
20,
0,
0
],
[
1753984488.0922103,
20,
1,
5
],
[
1753984499.7153456,
20,
1,
5
],
[
1753984519.7119439,
20,
0,
0
],
[
1753984529.140187,
20,
0,
0
],
[
1753984539.2157295,
20,
0,
0
],
[
1753984560.9228928,
20,
1,
5
],
[
1753984571.7097497,
20,
1,
5
],
[
1753984602.9575717,
20,
0,
0
],
[
1753984637.7181532,
20,
0,
0
],
[
1753984668.711311,
20,
0,
0
],
[
1753984678.250403,
20,
0,
0
],
[
1753984688.2614815,
20,
0,
0
],
[
1753984698.920535,
20,
1,
5
],
[
1753984709.2510633,
20,
1,
5
],
[
1753984728.8933685,
20,
0,
0
],
[
1753984739.7188914,
20,
0,
0
],
[
1753984759.0561182,
20,
0,
0
],
[
1753984768.7897885,
20,
0,
0
],
[
1753984779.218824,
20,
0,
0
],
[
1753984789.9349027,
20,
1,
5
],
[
1753984823.7180312,
20,
0,
0
],
[
1753984823.7671301,
20,
0,
0
],
[
1753984862.1115708,
20,
0,
0
],
[
1753984872.7013853,
20,
0,
0
],
[
1753984892.1109176,
20,
0,
0
],
[
1753984901.7284975,
20,
0,
0
],
[
1753984911.8293316,
20,
0,
0
],
[
1753984922.9249663,
20,
1,
5
],
[
1753984948.7041113,
20,
1,
5
],
[
1753984971.7553165,
20,
0,
0
],
[
1753984981.7077327,
20,
0,
0
],
[
1753985005.7313294,
20,
0,
0
],
[
1753985017.1487527,
20,
1,
5
],
[
1753985035.9825127,
20,
1,
5
],
[
1753985059.7420197,
20,
0,
0
],
[
1753985080.7127123,
20,
0,
0
],
[
1753985101.7768793,
20,
0,
0
],
[
1753985123.8524299,
20,
0,
0
],
[
1753985134.8309443,
20,
0,
0
],
[
1753985146.0999477,
20,
1,
5
],
[
1753985157.9978397,
20,
1,
5
],
[
1753985178.7124865,
20,
0,
0
],
[
1753985200.7324207,
20,
0,
0
],
[
1753985227.7164304,
20,
0,
0
],
[
1753985237.8650298,
20,
0,
0
],
[
1753985248.7100003,
20,
0,
0
],
[
1753985259.9078555,
20,
1,
5
],
[
1753985271.1295881,
20,
1,
5
],
[
1753985297.7371192,
20,
0,
0
],
[
1753985311.0381885,
20,
0,
0
],
[
1753985336.7088645,
20,
0,
0
],
[
1753985347.8120804,
20,
0,
0
],
[
1753985347.9085064,
20,
0,
0
],
[
1753985350.227075,
20,
0,
0
],
[
1753985373.9604657,
20,
0,
0
],
[
1753985384.7036974,
20,
0,
0
],
[
1753985409.188902,
20,
0,
0
],
[
1753985421.7423043,
20,
1,
5
],
[
1753985456.7172124,
20,
0,
0
],
[
1753985477.7003465,
20,
0,
0
],
[
1753985488.7177758,
20,
0,
0
],
[
1753985508.7192798,
20,
0,
0
],
[
1753985519.8040946,
20,
0,
0
],
[
1753985530.676872,
20,
0,
0
],
[
1753985543.7177987,
20,
1,
5
],
[
1753985556.7218783,
20,
1,
5
],
[
1753985589.9906557,
20,
1,
5
],
[
1753985610.7285314,
20,
0,
0
],
[
1753985631.774464,
20,
0,
0
],
[
1753985643.7194552,
20,
1,
5
],
[
1753985667.97369,
20,
1,
5
],
[
1753985690.8875258,
20,
0,
0
],
[
1753985712.1346035,
20,
0,
0
],
[
1753985734.0411932,
20,
0,
0
],
[
1753985757.1741033,
20,
0,
0
],
[
1753985767.7082603,
20,
0,
0
],
[
1753985785.7271047,
20,
1,
5
],
[
1753985796.7196755,
20,
1,
5
],
[
1753985817.7119818,
20,
1,
5
],
[
1753985853.7173736,
20,
0,
0
],
[
1753985875.1975594,
20,
0,
0
],
[
1753985890.719689,
20,
0,
0
],
[
1753985901.2517152,
20,
0,
0
],
[
1753985917.9662142,
20,
1,
5
],
[
1753985934.225645,
20,
1,
5
],
[
1753985955.7213812,
20,
0,
0
],
[
1753985980.7263563,
20,
0,
0
],
[
1753986016.9996414,
20,
0,
0
],
[
1753986028.035746,
20,
0,
0
],
[
1753986039.790963,
20,
0,
0
],
[
1753986052.0244765,
20,
1,
5
],
[
1753986074.7077618,
20,
0,
0
],
[
1753986074.7117412,
20,
0,
0
],
[
1753986131.133188,
20,
0,
0
],
[
1753986143.7082305,
20,
0,
0
],
[
1753986164.0834851,
20,
0,
0
],
[
1753986174.1375346,
20,
0,
0
],
[
1753986185.007795,
20,
0,
0
],
[
1753986196.297499,
20,
1,
5
],
[
1753986208.9805129,
20,
1,
5
],
[
1753986229.7616706,
20,
0,
0
],
[
1753986240.1878777,
20,
0,
0
],
[
1753986250.975339,
20,
0,
0
],
[
1753986279.0039508,
20,
1,
5
],
[
1753986292.0233471,
20,
1,
5
],
[
1753986313.7045212,
20,
0,
0
],
[
1753986325.030295,
20,
0,
0
],
[
1753986370.9783556,
20,
0,
0
],
[
1753986381.2875614,
20,
0,
0
],
[
1753986392.3013277,
20,
0,
0
],
[
1753986404.919925,
20,
1,
5
],
[
1753986417.0850754,
20,
1,
5
],
[
1753986463.7418585,
20,
0,
0
],
[
1753986475.0550978,
20,
0,
0
],
[
1753986496.0372756,
20,
0,
0
],
[
1753986506.710714,
20,
0,
0
],
[
1753986517.708062,
20,
0,
0
],
[
1753986529.126431,
20,
1,
5
],
[
1753986540.2719302,
20,
1,
5
],
[
1753986561.9336574,
20,
0,
0
],
[
1753986573.2125533,
20,
0,
0
],
[
1753986611.8511703,
20,
0,
0
],
[
1753986622.2000117,
20,
0,
0
],
[
1753986633.0576324,
20,
0,
0
],
[
1753986644.9129426,
20,
1,
5
],
[
1753986656.2932777,
20,
1,
5
],
[
1753986692.100475,
20,
0,
0
],
[
1753986707.7200606,
20,
0,
0
],
[
1753986729.692921,
20,
0,
0
],
[
1753986740.2481267,
20,
0,
0
],
[
1753986751.77547,
20,
0,
0
],
[
1753986763.161731,
20,
1,
5
],
[
1753986785.0177062,
20,
1,
5
],
[
1753986814.2220163,
20,
0,
0
],
[
1753986826.1480083,
20,
0,
0
],
[
1753986847.7094345,
20,
0,
0
],
[
1753986858.2506626,
20,
0,
0
],
[
1753986873.9116757,
20,
0,
0
],
[
1753986885.9107563,
20,
1,
5
],
[
1753986897.315309,
20,
1,
5
],
[
1753986919.7432795,
20,
0,
0
],
[
1753986931.7081301,
20,
0,
0
],
[
1753986976.7149005,
20,
0,
0
],
[
1753986990.9737303,
20,
0,
0
],
[
1753987003.2599375,
20,
0,
0
],
[
1753987014.9879918,
20,
1,
5
],
[
1753987027.0198183,
20,
1,
5
],
[
1753987075.0222454,
20,
0,
0
],
[
1753987086.7184622,
20,
0,
0
],
[
1753987109.8703642,
20,
0,
0
],
[
1753987134.2540011,
20,
0,
0
],
[
1753987150.7321088,
20,
0,
0
],
[
1753987165.2494662,
20,
1,
5
],
[
1753987177.9771705,
20,
1,
5
],
[
1753987200.1306446,
20,
1,
5
],
[
1753987222.7510974,
20,
0,
0
],
[
1753987244.71472,
20,
0,
0
],
[
1753987255.750852,
20,
0,
0
],
[
1753987267.696396,
20,
0,
0
],
[
1753987298.0414782,
20,
1,
5
],
[
1753987311.970265,
20,
1,
5
],
[
1753987334.9285681,
20,
0,
0
],
[
1753987357.3107498,
20,
0,
0
],
[
1753987393.8673594,
20,
0,
0
],
[
1753987408.2836142,
20,
0,
0
],
[
1753987419.7113252,
20,
0,
0
],
[
1753987431.9152448,
20,
1,
5
],
[
1753987454.7109237,
20,
0,
0
],
[
1753987454.7407162,
20,
0,
0
],
[
1753987507.8424075,
20,
0,
0
],
[
1753987519.7142944,
20,
0,
0
],
[
1753987542.7199283,
20,
0,
0
],
[
1753987553.7191076,
20,
0,
0
],
[
1753987565.277141,
20,
0,
0
],
[
1753987577.2993388,
20,
1,
5
],
[
1753987590.7882705,
20,
1,
5
],
[
1753987614.0238683,
20,
0,
0
],
[
1753987624.9099088,
20,
0,
0
],
[
1753987636.7200513,
20,
0,
0
],
[
1753987648.9318502,
20,
1,
5
],
[
1753987661.983422,
20,
1,
5
],
[
1753987688.764556,
20,
0,
0
],
[
1753987711.7031555,
20,
0,
0
],
[
1753987736.7501822,
20,
0,
0
],
[
1753987747.71796,
20,
0,
0
],
[
1753987759.948323,
20,
0,
0
],
[
1753987771.9359455,
20,
1,
5
],
[
1753987787.7143872,
20,
1,
5
],
[
1753987810.7304115,
20,
0,
0
],
[
1753987821.975137,
20,
0,
0
],
[
1753987846.7566397,
20,
0,
0
],
[
1753987858.8066378,
20,
0,
0
],
[
1753987858.9027581,
20,
0,
0
],
[
1753987861.7245874,
20,
0,
0
],
[
1753987883.9457717,
20,
0,
0
],
[
1753987894.8073676,
20,
0,
0
],
[
1753987906.716627,
20,
0,
0
],
[
1753987918.9271986,
20,
1,
5
],
[
1753987934.965852,
20,
1,
5
],
[
1753987957.8661811,
20,
0,
0
],
[
1753987968.8838675,
20,
0,
0
],
[
1753987995.7169974,
20,
0,
0
],
[
1753988007.9257827,
20,
1,
5
],
[
1753988021.04957,
20,
1,
5
],
[
1753988044.0974228,
20,
1,
5
],
[
1753988067.2610288,
20,
0,
0
],
[
1753988089.706617,
20,
0,
0
],
[
1753988100.9750009,
20,
0,
0
],
[
1753988115.039892,
20,
0,
0
],
[
1753988127.7054324,
20,
1,
5
],
[
1753988139.706027,
20,
1,
5
],
[
1753988162.927548,
20,
1,
5
],
[
1753988188.0786667,
20,
0,
0
],
[
1753988210.7031083,
20,
0,
0
],
[
1753988221.9203405,
20,
0,
0
],
[
1753988233.8137095,
20,
0,
0
],
[
1753988247.0127842,
20,
1,
5
],
[
1753988260.0660481,
20,
1,
5
],
[
1753988287.275939,
20,
0,
0
],
[
1753988310.6563425,
20,
0,
0
],
[
1753988333.8201451,
20,
0,
0
],
[
1753988344.9156888,
20,
0,
0
],
[
1753988357.7423258,
20,
0,
0
],
[
1753988369.9998112,
20,
1,
5
],
[
1753988387.101341,
20,
1,
5
],
[
1753988415.0512874,
20,
0,
0
],
[
1753988440.291935,
20,
0,
0
],
[
1753988463.7117338,
20,
0,
0
],
[
1753988474.8440065,
20,
0,
0
],
[
1753988486.8341606,
20,
0,
0
],
[
1753988499.1660345,
20,
1,
5
],
[
1753988512.1376483,
20,
1,
5
],
[
1753988536.7297153,
20,
0,
0
],
[
1753988549.103518,
20,
0,
0
],
[
1753988571.7859216,
20,
0,
0
],
[
1753988583.0687518,
20,
0,
0
],
[
1753988596.0766413,
20,
0,
0
],
[
1753988613.1364236,
20,
1,
5
],
[
1753988625.7221308,
20,
1,
5
],
[
1753988650.236393,
20,
0,
0
],
[
1753988674.7089982,
20,
0,
0
],
[
1753988697.835803,
20,
0,
0
],
[
1753988709.1287036,
20,
0,
0
],
[
1753988726.1747727,
20,
0,
0
],
[
1753988738.8852882,
20,
1,
5
],
[
1753988751.073762,
20,
1,
5
],
[
1753988774.7889318,
20,
0,
0
],
[
1753988798.704474,
20,
0,
0
],
[
1753988821.8647544,
20,
0,
0
],
[
1753988834.2982728,
20,
0,
0
],
[
1753988847.2817178,
20,
0,
0
],
[
1753988860.911113,
20,
1,
5
],
[
1753988873.2206602,
20,
1,
5
],
[
1753988897.718911,
20,
1,
5
],
[
1753988922.851096,
20,
0,
0
],
[
1753988945.9760008,
20,
0,
0
],
[
1753988957.7365282,
20,
0,
0
],
[
1753988969.95666,
20,
0,
0
],
[
1753988982.7048812,
20,
1,
5
],
[
1753988996.0289993,
20,
1,
5
],
[
1753989019.9504375,
20,
0,
0
],
[
1753989032.7266054,
20,
0,
0
],
[
1753989056.206548,
20,
0,
0
],
[
1753989067.7321448,
20,
0,
0
],
[
1753989079.7193575,
20,
0,
0
],
[
1753989092.2925227,
20,
1,
5
],
[
1753989109.086895,
20,
1,
5
],
[
1753989132.9153473,
20,
0,
0
],
[
1753989156.7170703,
20,
0,
0
],
[
1753989183.7059274,
20,
0,
0
],
[
1753989195.1428957,
20,
0,
0
],
[
1753989207.7113104,
20,
0,
0
],
[
1753989220.7193758,
20,
1,
5
],
[
1753989234.7071323,
20,
1,
5
],
[
1753989258.7378325,
20,
0,
0
],
[
1753989271.7138717,
20,
0,
0
],
[
1753989298.8508852,
20,
0,
0
],
[
1753989310.7261918,
20,
0,
0
],
[
1753989323.7061324,
20,
0,
0
],
[
1753989337.9957066,
20,
1,
5
],
[
1753989351.971147,
20,
1,
5
],
[
1753989377.7225106,
20,
0,
0
],
[
1753989402.3014133,
20,
0,
0
],
[
1753989458.7344067,
20,
0,
0
],
[
1753989470.7386315,
20,
0,
0
],
[
1753989486.8867984,
20,
0,
0
],
[
1753989500.9738252,
20,
1,
5
],
[
1753989514.0118108,
20,
1,
5
],
[
1753989539.0112004,
20,
0,
0
],
[
1753989551.8439953,
20,
0,
0
],
[
1753989575.9235446,
20,
0,
0
],
[
1753989587.9329093,
20,
0,
0
],
[
1753989600.7344878,
20,
0,
0
],
[
1753989613.9087927,
20,
1,
5
],
[
1753989626.999251,
20,
1,
5
],
[
1753989651.9308224,
20,
0,
0
],
[
1753989666.1925688,
20,
0,
0
],
[
1753989690.2910726,
20,
0,
0
],
[
1753989701.960792,
20,
0,
0
],
[
1753989714.2714818,
20,
0,
0
],
[
1753989727.1714263,
20,
1,
5
],
[
1753989739.989839,
20,
1,
5
],
[
1753989765.742292,
20,
0,
0
],
[
1753989790.7102413,
20,
0,
0
],
[
1753989815.0514362,
20,
0,
0
],
[
1753989827.7608545,
20,
0,
0
],
[
1753989840.280017,
20,
0,
0
],
[
1753989853.8930883,
20,
1,
5
],
[
1753989866.9835632,
20,
1,
5
],
[
1753989893.10374,
20,
0,
0
],
[
1753989906.2163103,
20,
0,
0
],
[
1753989930.7096124,
20,
0,
0
],
[
1753989942.712317,
20,
0,
0
],
[
1753989955.7092066,
20,
0,
0
],
[
1753989968.934889,
20,
1,
5
],
[
1753989983.022232,
20,
1,
5
],
[
1753990008.1722612,
20,
0,
0
],
[
1753990033.23888,
20,
0,
0
],
[
1753990057.8653545,
20,
0,
0
],
[
1753990070.9831445,
20,
0,
0
],
[
1753990083.7336555,
20,
0,
0
],
[
1753990096.97322,
20,
1,
5
],
[
1753990109.9916813,
20,
1,
5
],
[
1753990134.8442144,
20,
0,
0
],
[
1753990148.7198644,
20,
0,
0
],
[
1753990173.2831914,
20,
0,
0
],
[
1753990185.2825732,
20,
0,
0
],
[
1753990198.1296115,
20,
0,
0
],
[
1753990211.7226026,
20,
1,
5
],
[
1753990225.134042,
20,
1,
5
],
[
1753990249.74135,
20,
0,
0
],
[
1753990261.9135697,
20,
0,
0
],
[
1753990286.9207606,
20,
0,
0
],
[
1753990299.720741,
20,
0,
0
],
[
1753990299.819441,
20,
0,
0
],
[
1753990302.7239408,
20,
0,
0
],
[
1753990327.7336292,
20,
0,
0
],
[
1753990339.797204,
20,
0,
0
],
[
1753990352.7121613,
20,
0,
0
],
[
1753990365.9118016,
20,
1,
5
],
[
1753990380.7436934,
20,
1,
5
],
[
1753990405.283395,
20,
0,
0
],
[
1753990417.7714987,
20,
0,
0
],
[
1753990430.721136,
20,
0,
0
],
[
1753990443.9151714,
20,
1,
5
],
[
1753990457.240513,
20,
1,
5
],
[
1753990482.1149335,
20,
0,
0
],
[
1753990507.9979262,
20,
0,
0
],
[
1753990533.7499373,
20,
0,
0
],
[
1753990545.9392753,
20,
0,
0
],
[
1753990559.9307659,
20,
0,
0
],
[
1753990573.1213906,
20,
1,
5
],
[
1753990586.1180289,
20,
1,
5
],
[
1753990610.9066997,
20,
0,
0
],
[
1753990624.7176356,
20,
0,
0
],
[
1753990649.0912004,
20,
0,
0
],
[
1753990661.1813188,
20,
0,
0
],
[
1753990674.136555,
20,
0,
0
],
[
1753990687.7089443,
20,
1,
5
],
[
1753990701.016172,
20,
1,
5
],
[
1753990726.7371917,
20,
0,
0
],
[
1753990754.1573536,
20,
0,
0
],
[
1753990779.7045078,
20,
0,
0
],
[
1753990791.7649188,
20,
0,
0
],
[
1753990815.9179711,
20,
0,
0
],
[
1753990831.9300015,
20,
1,
5
],
[
1753990845.720633,
20,
1,
5
],
[
1753990872.0720234,
20,
0,
0
],
[
1753990900.9780838,
20,
0,
0
],
[
1753990926.1232405,
20,
0,
0
],
[
1753990938.7145286,
20,
0,
0
],
[
1753990951.8784997,
20,
0,
0
],
[
1753990966.967128,
20,
1,
5
],
[
1753990981.2304642,
20,
1,
5
],
[
1753991007.0434508,
20,
0,
0
],
[
1753991020.71362,
20,
0,
0
],
[
1753991045.941386,
20,
0,
0
],
[
1753991058.717806,
20,
0,
0
],
[
1753991071.932697,
20,
0,
0
],
[
1753991085.7143784,
20,
1,
5
],
[
1753991100.3274274,
20,
1,
5
],
[
1753991126.2301095,
20,
0,
0
],
[
1753991140.162612,
20,
0,
0
],
[
1753991166.7085676,
20,
0,
0
],
[
1753991179.8894377,
20,
0,
0
],
[
1753991192.982238,
20,
0,
0
],
[
1753991206.7984576,
20,
1,
5
],
[
1753991220.1853752,
20,
1,
5
],
[
1753991246.2040486,
20,
0,
0
],
[
1753991260.2343526,
20,
0,
0
],
[
1753991285.7372816,
20,
0,
0
],
[
1753991299.7058992,
20,
0,
0
],
[
1753991313.0325956,
20,
0,
0
],
[
1753991327.8972526,
20,
1,
5
],
[
1753991341.715773,
20,
1,
5
],
[
1753991367.728875,
20,
0,
0
],
[
1753991382.7141094,
20,
0,
0
],
[
1753991409.2154999,
20,
0,
0
],
[
1753991421.708131,
20,
0,
0
],
[
1753991435.2905107,
20,
0,
0
],
[
1753991449.3017926,
20,
1,
5
],
[
1753991464.178839,
20,
1,
5
],
[
1753991490.1294944,
20,
0,
0
],
[
1753991503.8103495,
20,
0,
0
],
[
1753991529.710939,
20,
0,
0
],
[
1753991542.2527068,
20,
0,
0
],
[
1753991559.788509,
20,
0,
0
],
[
1753991573.915318,
20,
1,
5
],
[
1753991588.0448518,
20,
0,
0
],
[
1753991588.0522075,
20,
0,
0
],
[
1753991626.092232,
20,
0,
0
],
[
1753991641.0235102,
20,
0,
0
],
[
1753991671.7272325,
20,
0,
0
],
[
1753991684.7312942,
20,
0,
0
],
[
1753991698.0235522,
20,
0,
0
],
[
1753991712.986014,
20,
1,
5
],
[
1753991728.7143414,
20,
1,
5
],
[
1753991754.3247144,
20,
0,
0
],
[
1753991767.7219675,
20,
0,
0
],
[
1753991781.706188,
20,
0,
0
],
[
1753991795.928217,
20,
1,
5
],
[
1753991809.707769,
20,
1,
5
],
[
1753991835.9237547,
20,
1,
5
],
[
1753991863.9826014,
20,
0,
0
],
[
1753991891.7432523,
20,
0,
0
],
[
1753991904.6981978,
20,
0,
0
],
[
1753991918.1224084,
20,
0,
0
],
[
1753991932.0255165,
20,
1,
5
],
[
1753991945.9379053,
20,
1,
5
],
[
1753991973.8160472,
20,
0,
0
],
[
1753991987.8086817,
20,
0,
0
],
[
1753992014.082683,
20,
0,
0
],
[
1753992027.1009765,
20,
0,
0
],
[
1753992040.7167628,
20,
0,
0
],
[
1753992057.914014,
20,
1,
5
],
[
1753992072.077155,
20,
1,
5
],
[
1753992100.7174501,
20,
0,
0
],
[
1753992127.7107265,
20,
0,
0
],
[
1753992153.7124822,
20,
0,
0
],
[
1753992166.7164605,
20,
0,
0
],
[
1753992180.7078302,
20,
0,
0
],
[
1753992194.9179535,
20,
1,
5
],
[
1753992209.0060105,
20,
1,
5
],
[
1753992235.72058,
20,
0,
0
],
[
1753992249.7896934,
20,
0,
0
],
[
1753992276.3098102,
20,
0,
0
],
[
1753992289.7118359,
20,
0,
0
],
[
1753992303.7306864,
20,
0,
0
],
[
1753992319.1632397,
20,
1,
5
],
[
1753992333.0297468,
20,
1,
5
],
[
1753992361.264571,
20,
0,
0
],
[
1753992375.9493353,
20,
0,
0
],
[
1753992406.7969666,
20,
0,
0
],
[
1753992419.9503412,
20,
0,
0
],
[
1753992433.806076,
20,
0,
0
],
[
1753992448.2321947,
20,
1,
5
],
[
1753992462.2464678,
20,
1,
5
],
[
1753992489.699229,
20,
0,
0
],
[
1753992517.6984942,
20,
0,
0
],
[
1753992544.320982,
20,
0,
0
],
[
1753992558.7091012,
20,
0,
0
],
[
1753992572.8448508,
20,
0,
0
],
[
1753992587.718151,
20,
1,
5
],
[
1753992602.7090054,
20,
1,
5
],
[
1753992629.9645631,
20,
0,
0
],
[
1753992644.7099261,
20,
0,
0
],
[
1753992671.7882175,
20,
0,
0
],
[
1753992684.8845193,
20,
0,
0
],
[
1753992699.8985996,
20,
0,
0
],
[
1753992714.1171424,
20,
1,
5
],
[
1753992728.7163844,
20,
1,
5
],
[
1753992758.3848937,
20,
0,
0
],
[
1753992772.4529371,
20,
0,
0
],
[
1753992801.119272,
20,
0,
0
],
[
1753992816.2791674,
20,
0,
0
],
[
1753992816.7068849,
20,
0,
0
],
[
1753992819.8484652,
20,
0,
0
],
[
1753992846.9391725,
20,
0,
0
],
[
1753992860.0377395,
20,
0,
0
],
[
1753992874.23267,
20,
0,
0
],
[
1753992888.7088568,
20,
1,
5
],
[
1753992905.1002202,
20,
1,
5
],
[
1753992931.9870334,
20,
0,
0
],
[
1753992945.715164,
20,
0,
0
],
[
1753992959.8399475,
20,
0,
0
],
[
1753992974.8640482,
20,
1,
5
],
[
1753992989.1140566,
20,
1,
5
],
[
1753993017.7124429,
20,
0,
0
],
[
1753993037.9756594,
20,
0,
0
],
[
1753993064.9060116,
20,
0,
0
],
[
1753993078.072311,
20,
0,
0
],
[
1753993092.2349012,
20,
0,
0
],
[
1753993108.9179301,
20,
1,
5
],
[
1753993123.701669,
20,
1,
5
],
[
1753993151.076349,
20,
0,
0
],
[
1753993181.7326047,
20,
0,
0
],
[
1753993209.963404,
20,
0,
0
],
[
1753993224.723632,
20,
0,
0
],
[
1753993238.8432035,
20,
0,
0
],
[
1753993256.1589224,
20,
1,
5
],
[
1753993284.0880675,
20,
0,
0
],
[
1753993285.1062715,
20,
0,
0
],
[
1753993320.7117343,
20,
0,
0
],
[
1753993335.2526178,
20,
0,
0
],
[
1753993362.7098258,
20,
0,
0
],
[
1753993376.0679197,
20,
0,
0
],
[
1753993390.6968558,
20,
0,
0
],
[
1753993405.4784193,
20,
1,
5
],
[
1753993435.825741,
20,
0,
0
],
[
1753993464.3077815,
20,
0,
0
],
[
1753993478.707057,
20,
0,
0
],
[
1753993494.1322827,
20,
0,
0
],
[
1753993508.935355,
20,
1,
5
],
[
1753993523.7134545,
20,
1,
5
],
[
1753993552.316193,
20,
0,
0
],
[
1753993581.9910529,
20,
0,
0
],
[
1753993609.7217338,
20,
0,
0
],
[
1753993623.1153207,
20,
0,
0
],
[
1753993637.7153366,
20,
0,
0
],
[
1753993653.3231962,
20,
1,
5
],
[
1753993668.592471,
20,
1,
5
],
[
1753993696.7109923,
20,
0,
0
],
[
1753993725.7176392,
20,
0,
0
],
[
1753993753.5562532,
20,
0,
0
],
[
1753993767.0081499,
20,
0,
0
],
[
1753993781.2335057,
20,
0,
0
],
[
1753993795.9258914,
20,
1,
5
],
[
1753993811.1377995,
20,
0,
0
],
[
1753993811.1439676,
20,
0,
0
],
[
1753993847.6992104,
20,
0,
0
],
[
1753993863.7097955,
20,
0,
0
],
[
1753993891.8161616,
20,
0,
0
],
[
1753993905.2983336,
20,
0,
0
],
[
1753993919.9291258,
20,
0,
0
],
[
1753993935.2935958,
20,
1,
5
],
[
1753993952.8739278,
20,
1,
5
],
[
1753993980.975845,
20,
0,
0
],
[
1753993994.7029269,
20,
0,
0
],
[
1753994009.7148707,
20,
0,
0
],
[
1753994024.9207501,
20,
1,
5
],
[
1753994039.987585,
20,
1,
5
],
[
1753994068.7261126,
20,
0,
0
],
[
1753994083.718736,
20,
0,
0
],
[
1753994113.1977677,
20,
0,
0
],
[
1753994126.9418836,
20,
0,
0
],
[
1753994142.7211816,
20,
0,
0
],
[
1753994157.7154708,
20,
1,
5
],
[
1753994187.031818,
20,
0,
0
],
[
1753994187.0354598,
20,
0,
0
],
[
1753994223.9176607,
20,
0,
0
],
[
1753994238.7594535,
20,
0,
0
],
[
1753994266.7218618,
20,
0,
0
],
[
1753994280.7122056,
20,
0,
0
],
[
1753994295.2364848,
20,
0,
0
],
[
1753994310.1024015,
20,
1,
5
],
[
1753994327.0232112,
20,
1,
5
],
[
1753994354.9257224,
20,
0,
0
],
[
1753994368.7430215,
20,
0,
0
],
[
1753994397.708716,
20,
0,
0
],
[
1753994413.1967483,
20,
1,
5
],
[
1753994428.027227,
20,
1,
5
],
[
1753994456.709531,
20,
0,
0
],
[
1753994471.797283,
20,
0,
0
],
[
1753994499.8379018,
20,
0,
0
],
[
1753994513.7150445,
20,
0,
0
],
[
1753994528.7678037,
20,
0,
0
],
[
1753994543.922983,
20,
1,
5
],
[
1753994559.0755622,
20,
1,
5
],
[
1753994587.9759145,
20,
0,
0
],
[
1753994604.7092707,
20,
0,
0
],
[
1753994633.1725643,
20,
0,
0
],
[
1753994647.7215993,
20,
0,
0
],
[
1753994662.726823,
20,
0,
0
],
[
1753994678.0262897,
20,
1,
5
],
[
1753994693.2259104,
20,
1,
5
],
[
1753994722.7139108,
20,
0,
0
],
[
1753994752.699775,
20,
0,
0
],
[
1753994781.1818867,
20,
0,
0
],
[
1753994796.186021,
20,
0,
0
],
[
1753994810.8493865,
20,
0,
0
],
[
1753994825.9431212,
20,
1,
5
],
[
1753994840.9793568,
20,
1,
5
],
[
1753994873.2401903,
20,
0,
0
],
[
1753994904.0658846,
20,
0,
0
],
[
1753994932.9133391,
20,
0,
0
],
[
1753994946.9815192,
20,
0,
0
],
[
1753994961.8445408,
20,
0,
0
],
[
1753994978.9350457,
20,
1,
5
],
[
1753994998.7113862,
20,
1,
5
],
[
1753995027.7750015,
20,
0,
0
],
[
1753995043.8864586,
20,
0,
0
],
[
1753995072.709387,
20,
0,
0
],
[
1753995088.7094607,
20,
0,
0
],
[
1753995104.7085125,
20,
0,
0
],
[
1753995120.0525243,
20,
1,
5
],
[
1753995149.2872732,
20,
0,
0
],
[
1753995149.2925515,
20,
0,
0
],
[
1753995187.2888188,
20,
0,
0
],
[
1753995202.7161462,
20,
0,
0
],
[
1753995231.7637687,
20,
0,
0
],
[
1753995246.0812552,
20,
0,
0
],
[
1753995261.6392763,
20,
0,
0
],
[
1753995277.9089253,
20,
1,
5
],
[
1753995295.7404163,
20,
1,
5
],
[
1753995331.72637,
20,
0,
0
],
[
1753995346.0065272,
20,
0,
0
],
[
1753995361.1698718,
20,
0,
0
],
[
1753995376.922503,
20,
1,
5
],
[
1753995392.7181528,
20,
1,
5
],
[
1753995422.7107866,
20,
0,
0
],
[
1753995437.2363017,
20,
0,
0
],
[
1753995467.1740432,
20,
0,
0
],
[
1753995485.1522322,
20,
0,
0
],
[
1753995485.2468536,
20,
0,
0
],
[
1753995488.7442713,
20,
0,
0
],
[
1753995522.0507088,
20,
0,
0
],
[
1753995536.2649057,
20,
0,
0
],
[
1753995553.85481,
20,
0,
0
],
[
1753995570.989326,
20,
1,
5
],
[
1753995600.8865469,
20,
0,
0
],
[
1753995630.8914201,
20,
0,
0
],
[
1753995648.7214491,
20,
0,
0
],
[
1753995678.7163217,
20,
0,
0
],
[
1753995693.0432112,
20,
0,
0
],
[
1753995708.7137475,
20,
0,
0
],
[
1753995724.1783977,
20,
1,
5
],
[
1753995742.1124787,
20,
1,
5
],
[
1753995775.9346943,
20,
0,
0
],
[
1753995793.7091835,
20,
0,
0
],
[
1753995823.1456718,
20,
0,
0
],
[
1753995838.9201045,
20,
1,
5
],
[
1753995871.7030516,
20,
0,
0
],
[
1753995871.712734,
20,
0,
0
],
[
1753995910.7104402,
20,
0,
0
],
[
1753995926.7116816,
20,
0,
0
],
[
1753995956.705876,
20,
0,
0
],
[
1753995972.2068942,
20,
0,
0
],
[
1753995988.983296,
20,
0,
0
],
[
1753996005.8866503,
20,
1,
5
],
[
1753996024.7082698,
20,
1,
5
],
[
1753996054.783746,
20,
0,
0
],
[
1753996069.71209,
20,
0,
0
],
[
1753996086.189621,
20,
0,
0
],
[
1753996101.9294417,
20,
1,
5
],
[
1753996117.7096875,
20,
1,
5
],
[
1753996151.2708755,
20,
0,
0
],
[
1753996167.2428918,
20,
0,
0
],
[
1753996197.8447857,
20,
0,
0
],
[
1753996212.715667,
20,
0,
0
],
[
1753996228.7105062,
20,
0,
0
],
[
1753996244.7043543,
20,
1,
5
],
[
1753996260.6397128,
20,
1,
5
],
[
1753996294.705883,
20,
0,
0
],
[
1753996310.7026193,
20,
0,
0
],
[
1753996340.7209365,
20,
0,
0
],
[
1753996355.7028255,
20,
0,
0
],
[
1753996371.736084,
20,
0,
0
],
[
1753996387.9120395,
20,
1,
5
],
[
1753996403.9864438,
20,
1,
5
],
[
1753996439.814911,
20,
0,
0
],
[
1753996471.7315185,
20,
0,
0
],
[
1753996501.734825,
20,
0,
0
],
[
1753996517.1991582,
20,
0,
0
],
[
1753996533.7176545,
20,
0,
0
],
[
1753996550.1238356,
20,
1,
5
],
[
1753996566.7233863,
20,
1,
5
],
[
1753996597.7070444,
20,
0,
0
],
[
1753996613.9186935,
20,
0,
0
],
[
1753996644.2042508,
20,
0,
0
],
[
1753996659.1744266,
20,
0,
0
],
[
1753996674.7973008,
20,
0,
0
],
[
1753996691.8367085,
20,
1,
5
],
[
1753996708.993709,
20,
1,
5
],
[
1753996739.694924,
20,
0,
0
],
[
1753996755.9275339,
20,
0,
0
],
[
1753996786.3029783,
20,
0,
0
],
[
1753996801.0323322,
20,
0,
0
],
[
1753996816.9068923,
20,
0,
0
],
[
1753996832.9140565,
20,
1,
5
],
[
1753996850.1511369,
20,
1,
5
],
[
1753996880.8421862,
20,
0,
0
],
[
1753996913.2074616,
20,
0,
0
],
[
1753996943.8882198,
20,
0,
0
],
[
1753996958.8462038,
20,
0,
0
],
[
1753996976.140462,
20,
0,
0
],
[
1753996992.241723,
20,
1,
5
],
[
1753997008.705392,
20,
1,
5
],
[
1753997039.7682495,
20,
0,
0
],
[
1753997056.0691638,
20,
0,
0
],
[
1753997087.8260467,
20,
0,
0
],
[
1753997102.7646596,
20,
0,
0
],
[
1753997118.793652,
20,
0,
0
],
[
1753997134.9495316,
20,
1,
5
],
[
1753997151.9760947,
20,
1,
5
],
[
1753997183.8578103,
20,
0,
0
],
[
1753997215.762424,
20,
0,
0
],
[
1753997246.732967,
20,
0,
0
],
[
1753997267.0519524,
20,
0,
0
],
[
1753997283.3028576,
20,
0,
0
],
[
1753997299.9525416,
20,
1,
5
],
[
1753997316.268019,
20,
1,
5
],
[
1753997348.8550918,
20,
0,
0
],
[
1753997366.2211905,
20,
0,
0
],
[
1753997399.8016038,
20,
0,
0
],
[
1753997414.8568802,
20,
0,
0
],
[
1753997431.111323,
20,
0,
0
],
[
1753997447.7320948,
20,
1,
5
],
[
1753997464.1452308,
20,
1,
5
],
[
1753997496.0407436,
20,
0,
0
],
[
1753997513.773281,
20,
0,
0
],
[
1753997544.728048,
20,
0,
0
],
[
1753997559.9255278,
20,
0,
0
],
[
1753997576.025944,
20,
0,
0
],
[
1753997593.1907406,
20,
1,
5
],
[
1753997610.7331553,
20,
1,
5
],
[
1753997643.235354,
20,
0,
0
],
[
1753997660.0475607,
20,
0,
0
],
[
1753997690.9763615,
20,
0,
0
],
[
1753997706.0308568,
20,
0,
0
],
[
1753997723.1184714,
20,
0,
0
],
[
1753997739.9676673,
20,
1,
5
],
[
1753997756.7452714,
20,
1,
5
],
[
1753997788.1347132,
20,
0,
0
],
[
1753997804.8038266,
20,
0,
0
],
[
1753997836.1323698,
20,
0,
0
],
[
1753997852.757912,
20,
0,
0
],
[
1753997868.8175921,
20,
0,
0
],
[
1753997885.7198567,
20,
1,
5
],
[
1753997902.2197855,
20,
1,
5
],
[
1753997933.8239465,
20,
0,
0
],
[
1753997950.7775412,
20,
0,
0
],
[
1753997983.746833,
20,
0,
0
],
[
1753997999.1774688,
20,
0,
0
],
[
1753998015.7589176,
20,
0,
0
],
[
1753998032.8718674,
20,
1,
5
],
[
1753998070.74491,
20,
0,
0
],
[
1753998070.7666528,
20,
0,
0
],
[
1753998112.1436784,
20,
0,
0
],
[
1753998129.0986104,
20,
0,
0
],
[
1753998162.2334204,
20,
0,
0
],
[
1753998177.8009014,
20,
0,
0
],
[
1753998226.1911051,
20,
0,
0
],
[
1753998243.9568903,
20,
1,
5
],
[
1753998263.0073442,
20,
1,
5
],
[
1753998294.1085074,
20,
0,
0
],
[
1753998311.9627557,
20,
0,
0
],
[
1753998343.764126,
20,
0,
0
],
[
1753998360.2191534,
20,
1,
5
],
[
1753998392.734927,
20,
0,
0
],
[
1753998392.7385976,
20,
0,
0
],
[
1753998434.723226,
20,
0,
0
],
[
1753998452.9242427,
20,
0,
0
],
[
1753998453.0175798,
20,
0,
0
],
[
1753998456.8748488,
20,
0,
0
],
[
1753998488.7372453,
20,
0,
0
],
[
1753998504.0616553,
20,
0,
0
],
[
1753998524.2453187,
20,
0,
0
],
[
1753998542.2306967,
20,
1,
5
],
[
1753998574.0744302,
20,
0,
0
],
[
1753998607.7657027,
20,
0,
0
],
[
1753998624.7824552,
20,
0,
0
],
[
1753998657.0038335,
20,
0,
0
],
[
1753998672.7434292,
20,
0,
0
],
[
1753998689.7310703,
20,
0,
0
],
[
1753998706.7578413,
20,
1,
5
],
[
1753998726.750682,
20,
1,
5
],
[
1753998760.9312885,
20,
0,
0
],
[
1753998778.747795,
20,
0,
0
],
[
1753998795.7507432,
20,
0,
0
],
[
1753998814.0353503,
20,
1,
5
],
[
1753998846.7583015,
20,
0,
0
],
[
1753998846.7617445,
20,
0,
0
],
[
1753998889.0947506,
20,
0,
0
],
[
1753998907.1921878,
20,
0,
0
],
[
1753998939.7331727,
20,
0,
0
],
[
1753998955.747189,
20,
0,
0
],
[
1753998972.2571867,
20,
0,
0
],
[
1753998990.9581418,
20,
1,
5
],
[
1753999024.142359,
20,
0,
0
],
[
1753999056.795527,
20,
0,
0
],
[
1753999073.8299134,
20,
0,
0
],
[
1753999107.2817287,
20,
0,
0
],
[
1753999122.8979297,
20,
0,
0
],
[
1753999139.799424,
20,
0,
0
],
[
1753999156.9389777,
20,
1,
5
],
[
1753999177.7600534,
20,
1,
5
],
[
1753999222.7391706,
20,
0,
0
],
[
1753999238.802402,
20,
0,
0
],
[
1753999255.8127275,
20,
0,
0
],
[
1753999272.972422,
20,
1,
5
],
[
1753999290.2255614,
20,
1,
5
],
[
1753999324.762681,
20,
0,
0
],
[
1753999342.0184767,
20,
0,
0
],
[
1753999374.7691753,
20,
0,
0
],
[
1753999391.756161,
20,
0,
0
],
[
1753999409.7404141,
20,
0,
0
],
[
1753999428.3029234,
20,
1,
5
],
[
1753999446.0781655,
20,
1,
5
],
[
1753999481.7373173,
20,
0,
0
],
[
1753999500.1638734,
20,
0,
0
],
[
1753999534.2082171,
20,
0,
0
],
[
1753999550.7657673,
20,
0,
0
],
[
1753999568.7303321,
20,
0,
0
],
[
1753999586.035928,
20,
1,
5
],
[
1753999604.0439434,
20,
0,
0
],
[
1753999604.0494928,
20,
0,
0
],
[
1753999651.7595391,
20,
0,
0
],
[
1753999669.7668705,
20,
0,
0
],
[
1753999705.9911926,
20,
0,
0
],
[
1753999722.9838986,
20,
0,
0
],
[
1753999740.1199007,
20,
0,
0
],
[
1753999757.2284062,
20,
1,
5
],
[
1753999777.728111,
20,
1,
5
],
[
1753999811.7412658,
20,
0,
0
],
[
1753999828.7244499,
20,
0,
0
],
[
1753999846.9560566,
20,
0,
0
],
[
1753999864.0797014,
20,
1,
5
],
[
1753999898.1000772,
20,
0,
0
],
[
1753999898.107648,
20,
0,
0
],
[
1753999942.73977,
20,
0,
0
],
[
1753999960.9306178,
20,
0,
0
],
[
1753999995.165129,
20,
0,
0
],
[
1754000012.931153,
20,
0,
0
],
[
1754000031.749629,
20,
0,
0
],
[
1754000049.9595776,
20,
1,
5
],
[
1754000072.7289932,
20,
1,
5
],
[
1754000106.7345073,
20,
0,
0
],
[
1754000122.8818002,
20,
0,
0
],
[
1754000141.7310317,
20,
0,
0
],
[
1754000159.9464724,
20,
1,
5
],
[
1754000194.061753,
20,
0,
0
],
[
1754000194.0705378,
20,
0,
0
],
[
1754000238.730022,
20,
0,
0
],
[
1754000256.8101938,
20,
0,
0
],
[
1754000290.7395809,
20,
0,
0
],
[
1754000306.9994855,
20,
0,
0
],
[
1754000324.0467098,
20,
0,
0
],
[
1754000341.9373307,
20,
1,
5
],
[
1754000375.258039,
20,
0,
0
],
[
1754000408.7342758,
20,
0,
0
],
[
1754000426.140941,
20,
0,
0
],
[
1754000459.2386866,
20,
0,
0
],
[
1754000475.282342,
20,
0,
0
],
[
1754000492.728713,
20,
0,
0
],
[
1754000510.0927434,
20,
1,
5
],
[
1754000530.7798574,
20,
1,
5
],
[
1754000564.1702662,
20,
0,
0
],
[
1754000580.823831,
20,
0,
0
],
[
1754000598.959799,
20,
0,
0
],
[
1754000616.7218673,
20,
1,
5
],
[
1754000634.0456638,
20,
1,
5
],
[
1754000670.0789988,
20,
0,
0
],
[
1754000687.723214,
20,
0,
0
],
[
1754000721.753377,
20,
0,
0
],
[
1754000739.046994,
20,
0,
0
],
[
1754000756.7319193,
20,
0,
0
],
[
1754000774.918252,
20,
1,
5
],
[
1754000794.0404065,
20,
1,
5
],
[
1754000829.1194289,
20,
0,
0
],
[
1754000847.223656,
20,
0,
0
],
[
1754000882.9898887,
20,
0,
0
],
[
1754000899.7658951,
20,
0,
0
],
[
1754000917.7267704,
20,
0,
0
],
[
1754000936.9671998,
20,
1,
5
],
[
1754000972.0961084,
20,
0,
0
],
[
1754000972.1009438,
20,
0,
0
],
[
1754001021.7451205,
20,
0,
0
],
[
1754001039.7406678,
20,
0,
0
],
[
1754001075.7406032,
20,
0,
0
],
[
1754001097.3610594,
20,
0,
0
],
[
1754001114.9782789,
20,
0,
0
],
[
1754001132.734591,
20,
1,
5
],
[
1754001153.7317386,
20,
1,
5
],
[
1754001193.7707589,
20,
0,
0
],
[
1754001211.733297,
20,
0,
0
],
[
1754001229.7560477,
20,
0,
0
],
[
1754001247.949163,
20,
1,
5
],
[
1754001266.0177228,
20,
1,
5
],
[
1754001307.2440155,
20,
0,
0
],
[
1754001342.037432,
20,
0,
0
],
[
1754001376.165677,
20,
0,
0
],
[
1754001396.7418666,
20,
0,
0
],
[
1754001414.7465618,
20,
0,
0
],
[
1754001432.952531,
20,
1,
5
],
[
1754001456.9973726,
20,
1,
5
],
[
1754001491.7349992,
20,
0,
0
],
[
1754001508.91093,
20,
0,
0
],
[
1754001545.0888252,
20,
0,
0
],
[
1754001563.708579,
20,
0,
0
],
[
1754001563.805677,
20,
0,
0
],
[
1754001567.9280186,
20,
0,
0
],
[
1754001609.7160661,
20,
0,
0
],
[
1754001628.0240066,
20,
0,
0
],
[
1754001645.908454,
20,
0,
0
],
[
1754001663.9489746,
20,
1,
5
],
[
1754001698.7313004,
20,
0,
0
],
[
1754001739.717793,
20,
0,
0
],
[
1754001758.8901932,
20,
0,
0
],
[
1754001792.983218,
20,
0,
0
],
[
1754001809.9244773,
20,
0,
0
],
[
1754001827.8079886,
20,
0,
0
],
[
1754001845.9176795,
20,
1,
5
],
[
1754001866.7457502,
20,
1,
5
],
[
1754001905.7651684,
20,
0,
0
],
[
1754001922.7195406,
20,
0,
0
],
[
1754001940.7287414,
20,
0,
0
],
[
1754001965.921761,
20,
1,
5
],
[
1754001985.9738038,
20,
1,
5
],
[
1754002021.769087,
20,
0,
0
],
[
1754002056.9841285,
20,
0,
0
],
[
1754002098.886063,
20,
0,
0
],
[
1754002116.034585,
20,
0,
0
],
[
1754002134.2985184,
20,
0,
0
],
[
1754002152.2534034,
20,
1,
5
],
[
1754002170.970767,
20,
1,
5
],
[
1754002218.0211656,
20,
0,
0
],
[
1754002238.7215474,
20,
0,
0
],
[
1754002274.9287107,
20,
0,
0
],
[
1754002292.6979454,
20,
0,
0
],
[
1754002310.7314982,
20,
0,
0
],
[
1754002329.934563,
20,
1,
5
],
[
1754002348.7099414,
20,
1,
5
],
[
1754002384.7100904,
20,
0,
0
],
[
1754002403.7119217,
20,
0,
0
],
[
1754002451.7128491,
20,
0,
0
],
[
1754002469.0028903,
20,
0,
0
],
[
1754002487.076539,
20,
0,
0
],
[
1754002505.9094396,
20,
1,
5
],
[
1754002543.066808,
20,
0,
0
],
[
1754002543.073,
20,
0,
0
],
[
1754002595.074806,
20,
0,
0
],
[
1754002613.8459141,
20,
0,
0
],
[
1754002649.259474,
20,
0,
0
],
[
1754002666.9806237,
20,
0,
0
],
[
1754002688.1231306,
20,
0,
0
],
[
1754002713.895796,
20,
1,
5
],
[
1754002753.9977791,
20,
0,
0
],
[
1754002790.8653011,
20,
0,
0
],
[
1754002810.2633483,
20,
0,
0
],
[
1754002846.7656744,
20,
0,
0
],
[
1754002864.2180603,
20,
0,
0
],
[
1754002883.7191522,
20,
0,
0
],
[
1754002902.0163538,
20,
1,
5
],
[
1754002941.9740474,
20,
1,
5
],
[
1754002987.7154334,
20,
0,
0
],
[
1754003007.1940691,
20,
0,
0
],
[
1754003043.2618759,
20,
0,
0
],
[
1754003065.1165786,
20,
0,
0
],
[
1754003083.8878198,
20,
0,
0
],
[
1754003103.1776388,
20,
1,
5
],
[
1754003145.7335813,
20,
0,
0
],
[
1754003185.7215118,
20,
0,
0
],
[
1754003204.7382963,
20,
0,
0
],
[
1754003240.9720004,
20,
0,
0
],
[
1754003258.9474757,
20,
0,
0
],
[
1754003277.6999762,
20,
0,
0
],
[
1754003296.1400416,
20,
1,
5
],
[
1754003318.2733746,
20,
1,
5
],
[
1754003368.7066343,
20,
0,
0
],
[
1754003388.706066,
20,
0,
0
],
[
1754003407.9048328,
20,
0,
0
],
[
1754003427.1874714,
20,
1,
5
],
[
1754003446.1166244,
20,
1,
5
],
[
1754003482.779707,
20,
0,
0
],
[
1754003505.7073474,
20,
0,
0
],
[
1754003540.9453735,
20,
0,
0
],
[
1754003558.7097747,
20,
0,
0
],
[
1754003577.2588367,
20,
0,
0
],
[
1754003597.1331668,
20,
1,
5
],
[
1754003616.7279675,
20,
1,
5
],
[
1754003660.7587976,
20,
0,
0
],
[
1754003679.9564662,
20,
0,
0
],
[
1754003715.725984,
20,
0,
0
],
[
1754003732.9394858,
20,
0,
0
],
[
1754003751.7324288,
20,
0,
0
],
[
1754003770.72694,
20,
1,
5
],
[
1754003790.292793,
20,
1,
5
],
[
1754003829.2336972,
20,
0,
0
],
[
1754003849.8382409,
20,
0,
0
],
[
1754003892.0027218,
20,
0,
0
],
[
1754003909.2579024,
20,
0,
0
],
[
1754003927.9826622,
20,
0,
0
],
[
1754003951.7081654,
20,
1,
5
],
[
1754003970.9795191,
20,
1,
5
],
[
1754004007.8695247,
20,
0,
0
],
[
1754004026.859207,
20,
0,
0
],
[
1754004069.166918,
20,
0,
0
],
[
1754004086.814374,
20,
0,
0
],
[
1754004105.7301204,
20,
0,
0
],
[
1754004125.0815344,
20,
1,
5
],
[
1754004162.1110866,
20,
0,
0
],
[
1754004162.117004,
20,
0,
0
],
[
1754004210.8264077,
20,
0,
0
],
[
1754004230.2446625,
20,
0,
0
],
[
1754004268.7496717,
20,
0,
0
],
[
1754004286.7620912,
20,
0,
0
],
[
1754004315.7166176,
20,
0,
0
],
[
1754004335.148383,
20,
1,
5
],
[
1754004378.2499034,
20,
0,
0
],
[
1754004416.1183915,
20,
0,
0
],
[
1754004435.7166533,
20,
0,
0
],
[
1754004472.837624,
20,
0,
0
],
[
1754004490.7807064,
20,
0,
0
],
[
1754004511.0856273,
20,
0,
0
],
[
1754004540.7244647,
20,
1,
5
],
[
1754004579.1253147,
20,
0,
0
],
[
1754004616.723989,
20,
0,
0
],
[
1754004636.2481246,
20,
0,
0
],
[
1754004673.7102256,
20,
0,
0
],
[
1754004691.7117014,
20,
0,
0
],
[
1754004711.7152636,
20,
0,
0
],
[
1754004730.9286697,
20,
1,
5
],
[
1754004759.721413,
20,
1,
5
],
[
1754004801.7164261,
20,
0,
0
],
[
1754004820.1390295,
20,
0,
0
],
[
1754004839.704775,
20,
0,
0
],
[
1754004859.7029486,
20,
1,
5
],
[
1754004881.7163713,
20,
1,
5
],
[
1754004937.914255,
20,
0,
0
],
[
1754004957.7070436,
20,
0,
0
],
[
1754004995.3046775,
20,
0,
0
],
[
1754005024.8921812,
20,
0,
0
],
[
1754005047.7064204,
20,
0,
0
],
[
1754005069.0312352,
20,
1,
5
],
[
1754005088.281922,
20,
1,
5
],
[
1754005131.2741568,
20,
0,
0
],
[
1754005149.9333935,
20,
0,
0
],
[
1754005198.7488236,
20,
0,
0
],
[
1754005221.355702,
20,
0,
0
],
[
1754005221.774515,
20,
0,
0
],
[
1754005226.2091365,
20,
0,
0
],
[
1754005265.1181238,
20,
0,
0
],
[
1754005283.0494933,
20,
0,
0
],
[
1754005304.2462246,
20,
0,
0
],
[
1754005340.7143946,
20,
1,
5
],
[
1754005362.9553814,
20,
1,
5
],
[
1754005399.8838918,
20,
0,
0
],
[
1754005418.0745454,
20,
0,
0
],
[
1754005438.1986094,
20,
0,
0
],
[
1754005481.2446694,
20,
1,
5
],
[
1754005501.9924912,
20,
1,
5
],
[
1754005544.7376037,
20,
0,
0
],
[
1754005564.710225,
20,
0,
0
],
[
1754005601.8070817,
20,
0,
0
],
[
1754005620.1150675,
20,
0,
0
],
[
1754005639.802161,
20,
0,
0
],
[
1754005659.1628675,
20,
1,
5
],
[
1754005678.9913857,
20,
1,
5
],
[
1754005720.194841,
20,
0,
0
],
[
1754005739.727262,
20,
0,
0
],
[
1754005777.010372,
20,
0,
0
],
[
1754005795.7220013,
20,
0,
0
],
[
1754005815.0560777,
20,
0,
0
],
[
1754005834.6971264,
20,
1,
5
],
[
1754005872.3476121,
20,
0,
0
],
[
1754005872.6784313,
20,
0,
0
],
[
1754005924.7180965,
20,
0,
0
],
[
1754005945.1253486,
20,
0,
0
],
[
1754005983.708072,
20,
0,
0
],
[
1754006001.718141,
20,
0,
0
],
[
1754006021.111538,
20,
0,
0
],
[
1754006040.899048,
20,
1,
5
],
[
1754006079.7210135,
20,
0,
0
],
[
1754006117.9352689,
20,
0,
0
],
[
1754006138.709453,
20,
0,
0
],
[
1754006178.7072768,
20,
0,
0
],
[
1754006196.7708008,
20,
0,
0
],
[
1754006216.7396688,
20,
0,
0
],
[
1754006235.9071016,
20,
1,
5
],
[
1754006258.7046423,
20,
1,
5
],
[
1754006296.0346763,
20,
0,
0
],
[
1754006314.3131428,
20,
0,
0
],
[
1754006334.2115252,
20,
0,
0
],
[
1754006353.93303,
20,
1,
5
],
[
1754006374.0234616,
20,
1,
5
],
[
1754006411.983839,
20,
0,
0
],
[
1754006431.8363435,
20,
0,
0
],
[
1754006470.7123597,
20,
0,
0
],
[
1754006489.9303818,
20,
0,
0
],
[
1754006509.7043986,
20,
0,
0
],
[
1754006530.9378002,
20,
1,
5
],
[
1754006550.8509648,
20,
1,
5
],
[
1754006589.2840104,
20,
0,
0
],
[
1754006609.7099516,
20,
0,
0
],
[
1754006648.7040653,
20,
0,
0
],
[
1754006667.1404665,
20,
0,
0
],
[
1754006686.8868847,
20,
0,
0
],
[
1754006706.7183084,
20,
1,
5
],
[
1754006744.771338,
20,
0,
0
],
[
1754006744.7769632,
20,
0,
0
],
[
1754006796.8854246,
20,
0,
0
],
[
1754006816.7171183,
20,
0,
0
],
[
1754006858.7258055,
20,
0,
0
],
[
1754006877.3320634,
20,
0,
0
],
[
1754006897.2925925,
20,
0,
0
],
[
1754006917.060531,
20,
1,
5
],
[
1754006957.0019724,
20,
0,
0
],
[
1754006995.1511433,
20,
0,
0
],
[
1754007016.7499154,
20,
0,
0
],
[
1754007055.0627892,
20,
0,
0
],
[
1754007075.1595345,
20,
0,
0
],
[
1754007095.0412114,
20,
0,
0
],
[
1754007117.9438224,
20,
1,
5
],
[
1754007159.98758,
20,
0,
0
],
[
1754007201.7164114,
20,
0,
0
],
[
1754007220.7146988,
20,
0,
0
],
[
1754007240.7259457,
20,
0,
0
],
[
1754007260.9227915,
20,
1,
5
],
[
1754007281.9789047,
20,
1,
5
],
[
1754007323.8816617,
20,
0,
0
],
[
1754007345.2956135,
20,
0,
0
],
[
1754007387.3244576,
20,
0,
0
],
[
1754007406.7167132,
20,
0,
0
],
[
1754007427.0525146,
20,
0,
0
],
[
1754007447.057652,
20,
1,
5
],
[
1754007467.704601,
20,
1,
5
],
[
1754007506.8297071,
20,
0,
0
],
[
1754007527.7022152,
20,
0,
0
],
[
1754007567.713794,
20,
0,
0
],
[
1754007586.7282374,
20,
0,
0
],
[
1754007607.0727255,
20,
0,
0
],
[
1754007628.1258073,
20,
1,
5
],
[
1754007674.2013607,
20,
0,
0
],
[
1754007674.2090182,
20,
0,
0
],
[
1754007728.906067,
20,
0,
0
],
[
1754007752.8781438,
20,
0,
0
],
[
1754007792.7092638,
20,
0,
0
],
[
1754007811.726702,
20,
0,
0
],
[
1754007832.0637202,
20,
0,
0
],
[
1754007852.0744486,
20,
1,
5
],
[
1754007875.9555051,
20,
1,
5
],
[
1754007915.983149,
20,
0,
0
],
[
1754007934.820522,
20,
0,
0
],
[
1754007954.8908074,
20,
0,
0
],
[
1754007974.9185052,
20,
1,
5
],
[
1754007997.0145888,
20,
1,
5
],
[
1754008036.7158353,
20,
0,
0
],
[
1754008057.9998136,
20,
0,
0
],
[
1754008097.7971246,
20,
0,
0
],
[
1754008117.732964,
20,
0,
0
],
[
1754008138.03374,
20,
0,
0
],
[
1754008162.7078266,
20,
1,
5
],
[
1754008187.0630634,
20,
1,
5
],
[
1754008227.9592361,
20,
0,
0
],
[
1754008249.7810907,
20,
0,
0
],
[
1754008290.149478,
20,
0,
0
],
[
1754008309.1210825,
20,
0,
0
],
[
1754008329.9082286,
20,
0,
0
],
[
1754008350.3018832,
20,
1,
5
],
[
1754008371.100379,
20,
1,
5
],
[
1754008415.1978786,
20,
0,
0
],
[
1754008435.7640924,
20,
0,
0
],
[
1754008477.2500315,
20,
0,
0
],
[
1754008496.6988494,
20,
0,
0
],
[
1754008517.0462265,
20,
0,
0
],
[
1754008537.713889,
20,
1,
5
],
[
1754008577.2830396,
20,
0,
0
],
[
1754008578.4317586,
20,
0,
0
],
[
1754008633.078477,
20,
0,
0
],
[
1754008654.7083032,
20,
0,
0
],
[
1754008693.8584452,
20,
0,
0
],
[
1754008713.7091565,
20,
0,
0
],
[
1754008733.9987183,
20,
0,
0
],
[
1754008753.993738,
20,
1,
5
],
[
1754008778.7213268,
20,
1,
5
],
[
1754008778.7775943,
20,
1,
5
],
[
1754008778.9412806,
20,
1,
5
],
[
1754008803.0045376,
20,
0,
0
],
[
1754008842.8878436,
20,
0,
0
],
[
1754008867.039505,
20,
0,
0
],
[
1754008907.730009,
20,
0,
0
],
[
1754008927.2671158,
20,
0,
0
],
[
1754008947.851744,
20,
0,
0
],
[
1754008968.3293285,
20,
1,
5
],
[
1754008994.0588536,
20,
1,
5
],
[
1754009033.8717086,
20,
0,
0
],
[
1754009053.703085,
20,
0,
0
],
[
1754009075.8019202,
20,
0,
0
],
[
1754009096.9258144,
20,
1,
5
],
[
1754009119.127253,
20,
1,
5
],
[
1754009158.9160411,
20,
0,
0
],
[
1754009179.704274,
20,
0,
0
],
[
1754009219.8807077,
20,
0,
0
],
[
1754009239.195572,
20,
0,
0
],
[
1754009259.941903,
20,
0,
0
],
[
1754009280.7095191,
20,
1,
5
],
[
1754009303.1280189,
20,
0,
0
],
[
1754009303.1342585,
20,
0,
0
],
[
1754009355.9747066,
20,
0,
0
],
[
1754009378.7037928,
20,
0,
0
],
[
1754009418.7399306,
20,
0,
0
],
[
1754009438.7040777,
20,
0,
0
],
[
1754009459.1891813,
20,
0,
0
],
[
1754009480.9423566,
20,
1,
5
],
[
1754009506.2222228,
20,
1,
5
],
[
1754009549.159547,
20,
0,
0
],
[
1754009568.7001302,
20,
0,
0
],
[
1754009589.7087433,
20,
0,
0
],
[
1754009611.7433975,
20,
1,
5
],
[
1754009652.050267,
20,
0,
0
],
[
1754009652.0559163,
20,
0,
0
],
[
1754009709.7071931,
20,
0,
0
],
[
1754009731.0906835,
20,
0,
0
],
[
1754009771.7163844,
20,
0,
0
],
[
1754009795.9952366,
20,
0,
0
],
[
1754009816.7126303,
20,
0,
0
],
[
1754009841.107614,
20,
1,
5
],
[
1754009864.9731617,
20,
1,
5
],
[
1754009904.6890192,
20,
0,
0
],
[
1754009924.694362,
20,
0,
0
],
[
1754009945.7087579,
20,
0,
0
],
[
1754009966.1579113,
20,
1,
5
],
[
1754009987.289095,
20,
1,
5
],
[
1754010029.7445383,
20,
0,
0
],
[
1754010050.9745831,
20,
0,
0
],
[
1754010090.761077,
20,
0,
0
],
[
1754010110.2332466,
20,
0,
0
],
[
1754010131.034872,
20,
0,
0
],
[
1754010151.7128232,
20,
1,
5
],
[
1754010193.10018,
20,
0,
0
],
[
1754010193.1049688,
20,
0,
0
],
[
1754010247.6998239,
20,
0,
0
],
[
1754010268.760875,
20,
0,
0
],
[
1754010308.7045465,
20,
0,
0
],
[
1754010328.7047944,
20,
0,
0
],
[
1754010349.6952922,
20,
0,
0
],
[
1754010371.2301824,
20,
1,
5
],
[
1754010411.7230737,
20,
0,
0
],
[
1754010457.2835286,
20,
0,
0
],
[
1754010478.7172441,
20,
0,
0
],
[
1754010521.7275472,
20,
0,
0
],
[
1754010541.3198662,
20,
0,
0
],
[
1754010562.075327,
20,
0,
0
],
[
1754010582.9266477,
20,
1,
5
],
[
1754010607.1816642,
20,
1,
5
],
[
1754010648.022248,
20,
0,
0
],
[
1754010667.9143772,
20,
0,
0
],
[
1754010689.3138483,
20,
0,
0
],
[
1754010710.7034688,
20,
1,
5
],
[
1754010731.9748266,
20,
1,
5
],
[
1754010776.722003,
20,
0,
0
],
[
1754010798.2853115,
20,
0,
0
],
[
1754010839.7306895,
20,
0,
0
],
[
1754010859.7054744,
20,
0,
0
],
[
1754010880.7829697,
20,
0,
0
],
[
1754010901.7095013,
20,
1,
5
],
[
1754010923.0684724,
20,
0,
0
],
[
1754010923.0735638,
20,
0,
0
],
[
1754010976.7059782,
20,
0,
0
],
[
1754010999.7076495,
20,
0,
0
],
[
1754011040.2612407,
20,
0,
0
],
[
1754011059.8115983,
20,
0,
0
],
[
1754011080.717578,
20,
0,
0
],
[
1754011101.7199173,
20,
1,
5
],
[
1754011127.7261624,
20,
1,
5
],
[
1754011168.7086444,
20,
0,
0
],
[
1754011188.7103167,
20,
0,
0
],
[
1754011210.7162235,
20,
0,
0
],
[
1754011235.9233868,
20,
1,
5
],
[
1754011277.010184,
20,
0,
0
],
[
1754011277.017889,
20,
0,
0
],
[
1754011331.7339888,
20,
0,
0
],
[
1754011354.0519986,
20,
0,
0
],
[
1754011394.2682285,
20,
0,
0
],
[
1754011414.7133589,
20,
0,
0
],
[
1754011436.195259,
20,
0,
0
],
[
1754011463.2315328,
20,
1,
5
],
[
1754011488.7084742,
20,
1,
5
],
[
1754011529.7152605,
20,
0,
0
],
[
1754011550.198755,
20,
0,
0
],
[
1754011571.821058,
20,
0,
0
],
[
1754011593.9033709,
20,
1,
5
],
[
1754011634.7213705,
20,
0,
0
],
[
1754011634.7249255,
20,
0,
0
],
[
1754011690.121724,
20,
0,
0
],
[
1754011711.7140706,
20,
0,
0
],
[
1754011752.7028391,
20,
0,
0
],
[
1754011772.7013276,
20,
0,
0
],
[
1754011793.883377,
20,
0,
0
],
[
1754011814.916975,
20,
1,
5
],
[
1754011839.713621,
20,
1,
5
],
[
1754011880.7250617,
20,
0,
0
],
[
1754011902.1499271,
20,
0,
0
],
[
1754011923.7574794,
20,
0,
0
],
[
1754011946.690179,
20,
1,
5
],
[
1754011968.7085278,
20,
1,
5
],
[
1754012011.2462265,
20,
0,
0
],
[
1754012033.7143307,
20,
0,
0
],
[
1754012074.7198887,
20,
0,
0
],
[
1754012094.7101693,
20,
0,
0
],
[
1754012117.019161,
20,
0,
0
],
[
1754012141.2028344,
20,
1,
5
],
[
1754012183.7455106,
20,
0,
0
],
[
1754012183.941052,
20,
0,
0
],
[
1754012238.7054923,
20,
0,
0
],
[
1754012260.721063,
20,
0,
0
],
[
1754012301.8001509,
20,
0,
0
],
[
1754012321.8083754,
20,
0,
0
],
[
1754012344.7073405,
20,
0,
0
],
[
1754012368.6997633,
20,
1,
5
],
[
1754012394.72488,
20,
0,
0
],
[
1754012394.8598063,
20,
0,
0
],
[
1754012395.0663984,
20,
0,
0
],
[
1754012421.7114866,
20,
0,
0
],
[
1754012463.2892277,
20,
0,
0
],
[
1754012490.187412,
20,
0,
0
],
[
1754012531.707342,
20,
0,
0
],
[
1754012552.7045844,
20,
0,
0
],
[
1754012575.7885778,
20,
0,
0
],
[
1754012600.7064683,
20,
1,
5
],
[
1754012629.7177868,
20,
1,
5
],
[
1754012674.0885313,
20,
0,
0
],
[
1754012694.809802,
20,
0,
0
],
[
1754012716.7212,
20,
0,
0
],
[
1754012738.1424568,
20,
1,
5
],
[
1754012781.0795321,
20,
0,
0
],
[
1754012781.0885496,
20,
0,
0
],
[
1754012837.700403,
20,
0,
0
],
[
1754012859.9800527,
20,
0,
0
],
[
1754012902.7068853,
20,
0,
0
],
[
1754012923.029273,
20,
0,
0
],
[
1754012945.9022014,
20,
0,
0
],
[
1754012967.1996572,
20,
1,
5
],
[
1754012993.7583535,
20,
1,
5
],
[
1754013035.7240238,
20,
0,
0
],
[
1754013057.70868,
20,
0,
0
],
[
1754013080.0592723,
20,
0,
0
],
[
1754013101.9268458,
20,
1,
5
],
[
1754013145.061562,
20,
0,
0
],
[
1754013145.0674703,
20,
0,
0
],
[
1754013201.9473767,
20,
0,
0
],
[
1754013224.7352068,
20,
0,
0
],
[
1754013266.1568801,
20,
0,
0
],
[
1754013287.897431,
20,
0,
0
],
[
1754013310.702007,
20,
0,
0
],
[
1754013332.9603848,
20,
1,
5
],
[
1754013377.0833435,
20,
0,
0
],
[
1754013418.9934173,
20,
0,
0
],
[
1754013441.1350017,
20,
0,
0
],
[
1754013482.8291306,
20,
0,
0
],
[
1754013503.1614237,
20,
0,
0
],
[
1754013527.0854669,
20,
0,
0
],
[
1754013549.2754445,
20,
1,
5
],
[
1754013591.274643,
20,
0,
0
],
[
1754013633.716252,
20,
0,
0
],
[
1754013661.2827418,
20,
0,
0
],
[
1754013704.6988876,
20,
0,
0
],
[
1754013725.0035586,
20,
0,
0
],
[
1754013748.7131565,
20,
0,
0
],
[
1754013770.1692219,
20,
1,
5
],
[
1754013795.7218826,
20,
1,
5
],
[
1754013838.957508,
20,
0,
0
],
[
1754013859.7814562,
20,
0,
0
],
[
1754013881.7556698,
20,
0,
0
],
[
1754013904.7123413,
20,
1,
5
],
[
1754013949.7032285,
20,
0,
0
],
[
1754013949.7069657,
20,
0,
0
],
[
1754014010.8166502,
20,
0,
0
],
[
1754014033.3457582,
20,
0,
0
],
[
1754014075.2776465,
20,
0,
0
],
[
1754014099.7618735,
20,
0,
0
],
[
1754014121.8514423,
20,
0,
0
],
[
1754014144.9469018,
20,
1,
5
],
[
1754014188.0025415,
20,
0,
0
],
[
1754014230.936253,
20,
0,
0
],
[
1754014253.0898297,
20,
0,
0
],
[
1754014295.715126,
20,
0,
0
],
[
1754014315.9548178,
20,
0,
0
],
[
1754014337.7163973,
20,
0,
0
],
[
1754014359.9186285,
20,
1,
5
],
[
1754014404.9909003,
20,
0,
0
],
[
1754014447.8228438,
20,
0,
0
],
[
1754014470.2568426,
20,
0,
0
],
[
1754014512.7172642,
20,
0,
0
],
[
1754014532.892636,
20,
0,
0
],
[
1754014554.9059362,
20,
0,
0
],
[
1754014577.693827,
20,
1,
5
],
[
1754014603.7110448,
20,
1,
5
],
[
1754014645.7318463,
20,
0,
0
],
[
1754014667.217944,
20,
0,
0
],
[
1754014689.7009826,
20,
0,
0
],
[
1754014711.7122989,
20,
1,
5
],
[
1754014734.087021,
20,
0,
0
],
[
1754014734.0989065,
20,
0,
0
],
[
1754014791.0856125,
20,
0,
0
],
[
1754014813.7109108,
20,
0,
0
],
[
1754014856.0066729,
20,
0,
0
],
[
1754014876.7331514,
20,
0,
0
],
[
1754014899.1737351,
20,
0,
0
],
[
1754014920.9680572,
20,
1,
5
],
[
1754014967.707053,
20,
0,
0
],
[
1754015009.8867218,
20,
0,
0
],
[
1754015030.6986942,
20,
0,
0
],
[
1754015052.7153962,
20,
0,
0
],
[
1754015074.716768,
20,
1,
5
],
[
1754015119.3048806,
20,
0,
0
],
[
1754015119.3092837,
20,
0,
0
],
[
1754015176.1150064,
20,
0,
0
],
[
1754015198.7122788,
20,
0,
0
],
[
1754015240.974992,
20,
0,
0
],
[
1754015261.7656975,
20,
0,
0
],
[
1754015284.8943124,
20,
0,
0
],
[
1754015306.9496515,
20,
1,
5
],
[
1754015332.8995852,
20,
1,
5
],
[
1754015377.7106607,
20,
0,
0
],
[
1754015399.0737612,
20,
0,
0
],
[
1754015422.7659664,
20,
0,
0
],
[
1754015444.9348328,
20,
1,
5
],
[
1754015488.0609481,
20,
0,
0
],
[
1754015488.0678434,
20,
0,
0
],
[
1754015545.2202835,
20,
0,
0
],
[
1754015567.7025943,
20,
0,
0
],
[
1754015611.7113261,
20,
0,
0
],
[
1754015632.7193394,
20,
0,
0
],
[
1754015656.3020566,
20,
0,
0
],
[
1754015678.3053493,
20,
1,
5
],
[
1754015722.701317,
20,
0,
0
],
[
1754015766.5669265,
20,
0,
0
],
[
1754015789.709724,
20,
0,
0
],
[
1754015834.707951,
20,
0,
0
],
[
1754015855.8465664,
20,
0,
0
],
[
1754015878.7264624,
20,
0,
0
],
[
1754015900.9088678,
20,
1,
5
],
[
1754015927.7069433,
20,
1,
5
],
[
1754015971.7275877,
20,
0,
0
],
[
1754015993.169598,
20,
0,
0
],
[
1754016015.7207594,
20,
0,
0
],
[
1754016040.7198937,
20,
1,
5
],
[
1754016084.7044542,
20,
0,
0
],
[
1754016084.708086,
20,
0,
0
],
[
1754016142.7123601,
20,
0,
0
],
[
1754016165.9335687,
20,
0,
0
],
[
1754016210.7204204,
20,
0,
0
],
[
1754016231.9201422,
20,
0,
0
],
[
1754016254.7025099,
20,
0,
0
],
[
1754016277.70206,
20,
1,
5
],
[
1754016321.150618,
20,
0,
0
],
[
1754016364.859461,
20,
0,
0
],
[
1754016388.8285904,
20,
0,
0
],
[
1754016388.9303577,
20,
0,
0
],
[
1754016394.7096822,
20,
0,
0
],
[
1754016437.7202814,
20,
0,
0
],
[
1754016458.7059152,
20,
0,
0
],
[
1754016481.712594,
20,
0,
0
],
[
1754016507.9319427,
20,
1,
5
],
[
1754016534.7307463,
20,
1,
5
],
[
1754016578.705596,
20,
0,
0
],
[
1754016600.7074509,
20,
0,
0
],
[
1754016624.7098842,
20,
0,
0
],
[
1754016647.0050783,
20,
1,
5
],
[
1754016670.1623688,
20,
1,
5
],
[
1754016715.1874409,
20,
0,
0
],
[
1754016738.716413,
20,
0,
0
],
[
1754016782.7180948,
20,
0,
0
],
[
1754016803.8825684,
20,
0,
0
],
[
1754016827.0189302,
20,
0,
0
],
[
1754016849.7221994,
20,
1,
5
],
[
1754016894.102587,
20,
0,
0
],
[
1754016894.1089375,
20,
0,
0
],
[
1754016955.8749957,
20,
0,
0
],
[
1754016978.710641,
20,
0,
0
],
[
1754017021.871427,
20,
0,
0
],
[
1754017042.9028485,
20,
0,
0
],
[
1754017066.3217964,
20,
0,
0
],
[
1754017088.711797,
20,
1,
5
],
[
1754017137.053934,
20,
0,
0
],
[
1754017181.755191,
20,
0,
0
],
[
1754017206.0774763,
20,
0,
0
],
[
1754017250.178181,
20,
0,
0
],
[
1754017272.0968604,
20,
0,
0
],
[
1754017294.9607122,
20,
0,
0
],
[
1754017317.8987825,
20,
1,
5
],
[
1754017344.7157907,
20,
1,
5
],
[
1754017388.8548973,
20,
0,
0
],
[
1754017411.7183032,
20,
0,
0
],
[
1754017438.0830357,
20,
0,
0
],
[
1754017460.9259214,
20,
1,
5
],
[
1754017484.0794713,
20,
1,
5
],
[
1754017529.2044797,
20,
0,
0
],
[
1754017553.7750483,
20,
0,
0
],
[
1754017605.7424254,
20,
0,
0
],
[
1754017627.719838,
20,
0,
0
],
[
1754017654.7230039,
20,
0,
0
],
[
1754017677.9446354,
20,
1,
5
],
[
1754017701.7147996,
20,
1,
5
],
[
1754017746.973962,
20,
0,
0
],
[
1754017770.7091668,
20,
0,
0
],
[
1754017819.7840464,
20,
0,
0
],
[
1754017842.7107189,
20,
0,
0
],
[
1754017866.7154505,
20,
0,
0
],
[
1754017889.7021875,
20,
1,
5
],
[
1754017913.0501928,
20,
1,
5
],
[
1754017956.9823415,
20,
0,
0
],
[
1754017980.0822597,
20,
0,
0
],
[
1754018025.9290898,
20,
0,
0
],
[
1754018047.7046576,
20,
0,
0
],
[
1754018070.7067707,
20,
0,
0
],
[
1754018094.0863624,
20,
1,
5
],
[
1754018118.0116792,
20,
1,
5
],
[
1754018163.8344724,
20,
0,
0
],
[
1754018187.7263753,
20,
0,
0
],
[
1754018234.0252905,
20,
0,
0
],
[
1754018255.7801383,
20,
0,
0
],
[
1754018279.7258077,
20,
0,
0
],
[
1754018302.926272,
20,
1,
5
],
[
1754018326.1517084,
20,
1,
5
],
[
1754018374.7966745,
20,
0,
0
],
[
1754018399.695097,
20,
0,
0
],
[
1754018444.722128,
20,
0,
0
],
[
1754018466.7290761,
20,
0,
0
],
[
1754018490.1244116,
20,
0,
0
],
[
1754018512.9262645,
20,
1,
5
],
[
1754018536.175693,
20,
1,
5
],
[
1754018583.70473,
20,
0,
0
],
[
1754018608.4023101,
20,
0,
0
],
[
1754018653.714614,
20,
0,
0
],
[
1754018675.2787137,
20,
0,
0
],
[
1754018698.815249,
20,
0,
0
],
[
1754018721.708641,
20,
1,
5
],
[
1754018745.9859378,
20,
1,
5
],
[
1754018791.842913,
20,
0,
0
],
[
1754018815.7193327,
20,
0,
0
],
[
1754018860.7082858,
20,
0,
0
],
[
1754018882.7429187,
20,
0,
0
],
[
1754018906.1913812,
20,
0,
0
],
[
1754018928.9473877,
20,
1,
5
],
[
1754018975.0183258,
20,
0,
0
],
[
1754018976.0541391,
20,
0,
0
],
[
1754019034.7065413,
20,
0,
0
],
[
1754019058.7085652,
20,
0,
0
],
[
1754019104.3113558,
20,
0,
0
],
[
1754019126.199614,
20,
0,
0
],
[
1754019149.7034981,
20,
0,
0
],
[
1754019172.7158177,
20,
1,
5
],
[
1754019199.7676277,
20,
1,
5
],
[
1754019244.706882,
20,
0,
0
],
[
1754019298.7088592,
20,
0,
0
],
[
1754019323.185772,
20,
0,
0
],
[
1754019346.1912143,
20,
1,
5
],
[
1754019391.2172751,
20,
0,
0
],
[
1754019391.2241344,
20,
0,
0
],
[
1754019450.9544196,
20,
0,
0
],
[
1754019474.7092311,
20,
0,
0
],
[
1754019521.9637115,
20,
0,
0
],
[
1754019543.812876,
20,
0,
0
],
[
1754019567.0289857,
20,
0,
0
],
[
1754019589.9146974,
20,
1,
5
],
[
1754019617.720054,
20,
1,
5
],
[
1754019663.0925436,
20,
0,
0
],
[
1754019684.8333926,
20,
0,
0
],
[
1754019709.6982918,
20,
0,
0
],
[
1754019732.926816,
20,
1,
5
],
[
1754019778.0923412,
20,
0,
0
],
[
1754019778.0980854,
20,
0,
0
],
[
1754019838.735503,
20,
0,
0
],
[
1754019862.258569,
20,
0,
0
],
[
1754019907.809809,
20,
0,
0
],
[
1754019929.8459096,
20,
0,
0
],
[
1754019954.263551,
20,
0,
0
],
[
1754019977.2981157,
20,
1,
5
],
[
1754020026.0793216,
20,
0,
0
],
[
1754020071.9902933,
20,
0,
0
],
[
1754020096.193134,
20,
0,
0
],
[
1754020141.2232943,
20,
0,
0
],
[
1754020163.8128994,
20,
0,
0
],
[
1754020188.7249894,
20,
0,
0
],
[
1754020211.706284,
20,
1,
5
],
[
1754020257.0338724,
20,
0,
0
],
[
1754020302.1426568,
20,
0,
0
],
[
1754020325.8146782,
20,
0,
0
],
[
1754020370.728801,
20,
0,
0
],
[
1754020393.2610211,
20,
0,
0
],
[
1754020416.7527578,
20,
0,
0
],
[
1754020439.8898017,
20,
1,
5
],
[
1754020467.8144858,
20,
1,
5
],
[
1754020467.8949244,
20,
1,
5
],
[
1754020468.0598478,
20,
1,
5
],
[
1754020494.9830287,
20,
0,
0
],
[
1754020540.7203596,
20,
0,
0
],
[
1754020568.232422,
20,
0,
0
],
[
1754020616.0397174,
20,
0,
0
],
[
1754020638.703882,
20,
0,
0
],
[
1754020662.1604052,
20,
0,
0
],
[
1754020685.700874,
20,
1,
5
],
[
1754020710.0113692,
20,
0,
0
],
[
1754020756.6785433,
20,
0,
0
],
[
1754020780.724916,
20,
0,
0
],
[
1754020826.7180543,
20,
0,
0
],
[
1754020848.9440274,
20,
0,
0
],
[
1754020877.707218,
20,
0,
0
],
[
1754020900.9527762,
20,
1,
5
],
[
1754020947.0102527,
20,
0,
0
],
[
1754020992.9384987,
20,
0,
0
],
[
1754021017.0865602,
20,
0,
0
],
[
1754021062.779158,
20,
0,
0
],
[
1754021085.6996908,
20,
0,
0
],
[
1754021109.704206,
20,
0,
0
],
[
1754021133.152168,
20,
1,
5
],
[
1754021183.2427993,
20,
0,
0
],
[
1754021229.7014678,
20,
0,
0
],
[
1754021252.169809,
20,
0,
0
],
[
1754021276.2298234,
20,
0,
0
],
[
1754021299.72076,
20,
1,
5
],
[
1754021351.1051936,
20,
0,
0
],
[
1754021351.1123247,
20,
0,
0
],
[
1754021412.9857156,
20,
0,
0
],
[
1754021439.0341613,
20,
0,
0
],
[
1754021485.015125,
20,
0,
0
],
[
1754021507.2166603,
20,
0,
0
],
[
1754021532.7091713,
20,
0,
0
],
[
1754021557.1760573,
20,
1,
5
],
[
1754021603.96381,
20,
0,
0
],
[
1754021650.7181132,
20,
0,
0
],
[
1754021675.1467803,
20,
0,
0
],
[
1754021721.855463,
20,
0,
0
],
[
1754021744.2450378,
20,
0,
0
],
[
1754021768.7112792,
20,
0,
0
],
[
1754021792.2953017,
20,
1,
5
],
[
1754021843.8155198,
20,
0,
0
],
[
1754021889.7161198,
20,
0,
0
],
[
1754021912.7726505,
20,
0,
0
],
[
1754021936.8349304,
20,
0,
0
],
[
1754021960.7207704,
20,
1,
5
],
[
1754022008.2447104,
20,
0,
0
],
[
1754022008.2499917,
20,
0,
0
],
[
1754022070.7065995,
20,
0,
0
],
[
1754022094.8563657,
20,
0,
0
],
[
1754022140.8971915,
20,
0,
0
],
[
1754022163.22139,
20,
0,
0
],
[
1754022187.2032993,
20,
0,
0
],
[
1754022210.716733,
20,
1,
5
],
[
1754022259.7041364,
20,
0,
0
],
[
1754022306.8313947,
20,
0,
0
],
[
1754022359.803509,
20,
0,
0
],
[
1754022452.1416495,
20,
0,
0
],
[
1754022492.8186028,
20,
0,
0
],
[
1754022536.7187932,
20,
0,
0
],
[
1754022579.0905032,
20,
1,
5
],
[
1754022663.7147338,
20,
0,
0
],
[
1754022747.6996174,
20,
0,
0
],
[
1754022790.8574185,
20,
0,
0
],
[
1754022861.0314744,
20,
0,
0
],
[
1754022894.6996617,
20,
0,
0
],
[
1754022926.459599,
20,
0,
0
],
[
1754022954.170231,
20,
1,
5
],
[
1754022984.8613856,
20,
1,
5
],
[
1754023034.7495177,
20,
0,
0
],
[
1754023060.7126937,
20,
0,
0
],
[
1754023087.786804,
20,
0,
0
],
[
1754023113.9600732,
20,
1,
5
],
[
1754023169.319711,
20,
0,
0
],
[
1754023169.6269786,
20,
0,
0
],
[
1754023232.6939044,
20,
0,
0
],
[
1754023258.055506,
20,
0,
0
],
[
1754023306.714457,
20,
0,
0
],
[
1754023329.7243552,
20,
0,
0
],
[
1754023356.3766582,
20,
0,
0
],
[
1754023383.1096666,
20,
1,
5
],
[
1754023411.8206494,
20,
1,
5
],
[
1754023460.0804782,
20,
0,
0
],
[
1754023482.7070467,
20,
0,
0
],
[
1754023508.8045506,
20,
0,
0
],
[
1754023532.917342,
20,
1,
5
],
[
1754023557.7083495,
20,
1,
5
],
[
1754023606.7339466,
20,
0,
0
],
[
1754023632.7483459,
20,
0,
0
],
[
1754023678.801317,
20,
0,
0
],
[
1754023705.7087123,
20,
0,
0
],
[
1754023731.1887484,
20,
0,
0
],
[
1754023756.933926,
20,
1,
5
],
[
1754023806.0784643,
20,
0,
0
],
[
1754023806.0832136,
20,
0,
0
],
[
1754023868.871218,
20,
0,
0
],
[
1754023897.116625,
20,
0,
0
],
[
1754023946.7024357,
20,
0,
0
],
[
1754023969.7237415,
20,
0,
0
],
[
1754023994.700909,
20,
0,
0
],
[
1754024018.9081252,
20,
1,
5
],
[
1754024068.0238752,
20,
0,
0
],
[
1754024116.7093909,
20,
0,
0
],
[
1754024141.705949,
20,
0,
0
],
[
1754024188.7093742,
20,
0,
0
],
[
1754024214.7155666,
20,
0,
0
],
[
1754024240.2256546,
20,
0,
0
],
[
1754024265.2968075,
20,
1,
5
],
[
1754024315.0100183,
20,
0,
0
],
[
1754024362.205081,
20,
0,
0
],
[
1754024388.0565262,
20,
0,
0
],
[
1754024437.7048109,
20,
0,
0
],
[
1754024460.7120085,
20,
0,
0
],
[
1754024485.7137957,
20,
0,
0
],
[
1754024510.7093475,
20,
1,
5
],
[
1754024570.2117445,
20,
0,
0
],
[
1754024618.8697855,
20,
0,
0
],
[
1754024645.7904112,
20,
0,
0
],
[
1754024694.1734064,
20,
0,
0
],
[
1754024721.7948828,
20,
0,
0
],
[
1754024749.8618872,
20,
0,
0
],
[
1754024779.9827373,
20,
1,
5
],
[
1754024827.9836311,
20,
0,
0
],
[
1754024880.7089722,
20,
0,
0
],
[
1754024905.700837,
20,
0,
0
],
[
1754024954.7037783,
20,
0,
0
],
[
1754024977.7934377,
20,
0,
0
],
[
1754025006.741815,
20,
0,
0
],
[
1754025033.2088592,
20,
1,
5
],
[
1754025062.7184083,
20,
0,
0
],
[
1754025111.736548,
20,
0,
0
],
[
1754025134.8940685,
20,
0,
0
],
[
1754025163.9532404,
20,
0,
0
],
[
1754025188.9268813,
20,
1,
5
],
[
1754025241.0323367,
20,
0,
0
],
[
1754025241.0376773,
20,
0,
0
],
[
1754025308.1225138,
20,
0,
0
],
[
1754025333.8924932,
20,
0,
0
],
[
1754025334.009235,
20,
0,
0
],
[
1754025339.9385428,
20,
0,
0
],
[
1754025391.7179284,
20,
0,
0
],
[
1754025416.721434,
20,
0,
0
],
[
1754025442.9666114,
20,
0,
0
],
[
1754025468.2695282,
20,
1,
5
],
[
1754025516.3055687,
20,
0,
0
],
[
1754025566.7151413,
20,
0,
0
],
[
1754025591.7138739,
20,
0,
0
],
[
1754025638.8418825,
20,
0,
0
],
[
1754025661.9397223,
20,
0,
0
],
[
1754025687.8544462,
20,
0,
0
],
[
1754025711.9997637,
20,
1,
5
],
[
1754025760.988086,
20,
0,
0
],
[
1754025811.2272897,
20,
0,
0
],
[
1754025838.9665995,
20,
0,
0
],
[
1754025886.7414,
20,
0,
0
],
[
1754025910.9279923,
20,
0,
0
],
[
1754025936.9002793,
20,
0,
0
],
[
1754025961.6943533,
20,
1,
5
],
[
1754025990.8730233,
20,
1,
5
],
[
1754026043.7092838,
20,
0,
0
],
[
1754026066.963752,
20,
0,
0
],
[
1754026092.2631037,
20,
0,
0
],
[
1754026117.9289303,
20,
1,
5
],
[
1754026143.7061844,
20,
0,
0
],
[
1754026148.6972046,
20,
0,
0
],
[
1754026208.7067542,
20,
0,
0
],
[
1754026234.7622125,
20,
0,
0
],
[
1754026282.1998386,
20,
0,
0
],
[
1754026305.043494,
20,
0,
0
],
[
1754026329.814788,
20,
0,
0
],
[
1754026354.0548928,
20,
1,
5
],
[
1754026383.9158874,
20,
0,
0
],
[
1754026439.7059095,
20,
0,
0
],
[
1754026462.9529524,
20,
0,
0
],
[
1754026487.7579174,
20,
0,
0
],
[
1754026513.7024586,
20,
1,
5
],
[
1754026562.0811977,
20,
0,
0
],
[
1754026562.0875704,
20,
0,
0
],
[
1754026627.70672,
20,
0,
0
],
[
1754026653.7132764,
20,
0,
0
],
[
1754026703.0698824,
20,
0,
0
],
[
1754026726.7147818,
20,
0,
0
],
[
1754026753.7077656,
20,
0,
0
],
[
1754026778.9213138,
20,
1,
5
],
[
1754026805.134648,
20,
0,
0
],
[
1754026857.702437,
20,
0,
0
],
[
1754026883.936702,
20,
0,
0
],
[
1754026933.2751527,
20,
0,
0
],
[
1754026956.8286328,
20,
0,
0
],
[
1754026983.0692532,
20,
0,
0
],
[
1754027007.927251,
20,
1,
5
],
[
1754027040.036712,
20,
1,
5
],
[
1754027089.7102382,
20,
0,
0
],
[
1754027114.6942914,
20,
0,
0
],
[
1754027144.1019273,
20,
0,
0
],
[
1754027168.9125314,
20,
1,
5
],
[
1754027196.063494,
20,
0,
0
],
[
1754027196.0694203,
20,
0,
0
],
[
1754027261.7058523,
20,
0,
0
],
[
1754027289.612018,
20,
0,
0
],
[
1754027339.399224,
20,
0,
0
],
[
1754027363.949006,
20,
0,
0
],
[
1754027389.7042987,
20,
0,
0
],
[
1754027414.700448,
20,
1,
5
],
[
1754027464.8192174,
20,
0,
0
],
[
1754027515.8995135,
20,
0,
0
],
[
1754027541.7121577,
20,
0,
0
],
[
1754027590.7166853,
20,
0,
0
],
[
1754027614.1172826,
20,
0,
0
],
[
1754027639.8153067,
20,
0,
0
],
[
1754027669.933379,
20,
1,
5
],
[
1754027700.0208848,
20,
1,
5
],
[
1754027753.8094385,
20,
0,
0
],
[
1754027777.7140257,
20,
0,
0
],
[
1754027803.1733804,
20,
0,
0
],
[
1754027828.129222,
20,
1,
5
],
[
1754027853.9898305,
20,
1,
5
],
[
1754027903.9214828,
20,
0,
0
],
[
1754027929.9221394,
20,
0,
0
],
[
1754027980.7019215,
20,
0,
0
],
[
1754028005.113258,
20,
0,
0
],
[
1754028030.9801588,
20,
0,
0
],
[
1754028055.895037,
20,
1,
5
],
[
1754028108.0669227,
20,
0,
0
],
[
1754028108.0751503,
20,
0,
0
],
[
1754028173.7010949,
20,
0,
0
],
[
1754028200.7116222,
20,
0,
0
],
[
1754028250.7226067,
20,
0,
0
],
[
1754028276.715047,
20,
0,
0
],
[
1754028303.219407,
20,
0,
0
],
[
1754028330.710877,
20,
1,
5
],
[
1754028368.1008728,
20,
1,
5
],
[
1754028420.2249305,
20,
0,
0
],
[
1754028445.977575,
20,
0,
0
],
[
1754028471.9833136,
20,
0,
0
],
[
1754028500.9079397,
20,
1,
5
],
[
1754028558.9860559,
20,
0,
0
],
[
1754028558.9916875,
20,
0,
0
],
[
1754028625.758166,
20,
0,
0
],
[
1754028652.7052007,
20,
0,
0
],
[
1754028703.8258,
20,
0,
0
],
[
1754028727.7101092,
20,
0,
0
],
[
1754028753.280952,
20,
0,
0
],
[
1754028779.9434478,
20,
1,
5
],
[
1754028810.0511234,
20,
1,
5
],
[
1754028864.6956966,
20,
0,
0
],
[
1754028889.907802,
20,
0,
0
],
[
1754028916.8220232,
20,
0,
0
],
[
1754028942.1245496,
20,
1,
5
],
[
1754028994.0682232,
20,
0,
0
],
[
1754028994.0768237,
20,
0,
0
],
[
1754029059.8114672,
20,
0,
0
],
[
1754029086.0809407,
20,
0,
0
],
[
1754029141.0498152,
20,
0,
0
],
[
1754029169.9007866,
20,
0,
0
],
[
1754029195.7337132,
20,
0,
0
],
[
1754029221.9306436,
20,
1,
5
],
[
1754029271.9721005,
20,
0,
0
],
[
1754029327.8816578,
20,
0,
0
],
[
1754029355.1474402,
20,
0,
0
],
[
1754029408.7089608,
20,
0,
0
],
[
1754029432.7020953,
20,
0,
0
],
[
1754029458.6947024,
20,
0,
0
],
[
1754029483.9092448,
20,
1,
5
],
[
1754029533.7126305,
20,
0,
0
],
[
1754029586.7324405,
20,
0,
0
],
[
1754029612.7242384,
20,
0,
0
],
[
1754029663.2159052,
20,
0,
0
],
[
1754029687.0258043,
20,
0,
0
],
[
1754029714.1871855,
20,
0,
0
],
[
1754029739.2973864,
20,
1,
5
],
[
1754029774.7138374,
20,
1,
5
],
[
1754029774.7795055,
20,
1,
5
],
[
1754029774.9368627,
20,
1,
5
],
[
1754029804.6988144,
20,
0,
0
],
[
1754029856.156571,
20,
0,
0
],
[
1754029886.7053542,
20,
0,
0
],
[
1754029940.2797859,
20,
0,
0
],
[
1754029964.9763734,
20,
0,
0
],
[
1754029990.9069486,
20,
0,
0
],
[
1754030016.9280417,
20,
1,
5
],
[
1754030048.7065015,
20,
1,
5
],
[
1754030101.706833,
20,
0,
0
],
[
1754030126.7152529,
20,
0,
0
],
[
1754030152.7277143,
20,
0,
0
],
[
1754030178.0608804,
20,
1,
5
],
[
1754030228.6998482,
20,
0,
0
],
[
1754030228.7057462,
20,
0,
0
],
[
1754030296.7062805,
20,
0,
0
],
[
1754030323.352529,
20,
0,
0
],
[
1754030378.1747677,
20,
0,
0
],
[
1754030402.707087,
20,
0,
0
],
[
1754030429.7048235,
20,
0,
0
],
[
1754030457.9535112,
20,
1,
5
],
[
1754030511.9853852,
20,
0,
0
],
[
1754030562.9722676,
20,
0,
0
],
[
1754030589.8309216,
20,
0,
0
],
[
1754030645.2309475,
20,
0,
0
],
[
1754030669.7760317,
20,
0,
0
],
[
1754030696.7045543,
20,
0,
0
],
[
1754030724.2529073,
20,
1,
5
],
[
1754030775.9900463,
20,
0,
0
],
[
1754030826.7077672,
20,
0,
0
],
[
1754030853.7050233,
20,
0,
0
],
[
1754030905.7221932,
20,
0,
0
],
[
1754030930.7229156,
20,
0,
0
],
[
1754030959.7063453,
20,
0,
0
],
[
1754030985.7528489,
20,
1,
5
],
[
1754031039.9925935,
20,
0,
0
],
[
1754031091.1225476,
20,
0,
0
],
[
1754031117.9089153,
20,
0,
0
],
[
1754031174.1493437,
20,
0,
0
],
[
1754031200.7135253,
20,
0,
0
],
[
1754031227.033324,
20,
0,
0
],
[
1754031254.044338,
20,
1,
5
],
[
1754031306.7125728,
20,
0,
0
],
[
1754031358.2160091,
20,
0,
0
],
[
1754031388.0200157,
20,
0,
0
],
[
1754031440.1343844,
20,
0,
0
],
[
1754031466.8781319,
20,
0,
0
],
[
1754031493.9094539,
20,
0,
0
],
[
1754031519.9228847,
20,
1,
5
],
[
1754031550.69876,
20,
0,
0
],
[
1754031604.8213265,
20,
0,
0
],
[
1754031629.7131166,
20,
0,
0
],
[
1754031656.7310908,
20,
0,
0
],
[
1754031683.9421577,
20,
1,
5
],
[
1754031740.10314,
20,
0,
0
],
[
1754031741.100668,
20,
0,
0
],
[
1754031810.727065,
20,
0,
0
],
[
1754031838.1346416,
20,
0,
0
],
[
1754031891.8182218,
20,
0,
0
],
[
1754031916.7179964,
20,
0,
0
],
[
1754031943.7090483,
20,
0,
0
],
[
1754031969.314166,
20,
1,
5
],
[
1754032028.7096817,
20,
0,
0
],
[
1754032081.1508198,
20,
0,
0
],
[
1754032108.1708584,
20,
0,
0
],
[
1754032136.5414727,
20,
0,
0
],
[
1754032165.954757,
20,
1,
5
],
[
1754032223.707535,
20,
0,
0
],
[
1754032223.7110229,
20,
0,
0
],
[
1754032297.2020464,
20,
0,
0
],
[
1754032324.8358145,
20,
0,
0
],
[
1754032377.1234455,
20,
0,
0
],
[
1754032401.9567363,
20,
0,
0
],
[
1754032430.1217618,
20,
0,
0
],
[
1754032460.9127352,
20,
1,
5
],
[
1754032512.9827065,
20,
0,
0
],
[
1754032565.7324176,
20,
0,
0
],
[
1754032595.7134778,
20,
0,
0
],
[
1754032647.8025286,
20,
0,
0
],
[
1754032673.0848806,
20,
0,
0
],
[
1754032700.705976,
20,
0,
0
],
[
1754032726.938642,
20,
1,
5
],
[
1754032781.9842649,
20,
0,
0
],
[
1754032838.7035718,
20,
0,
0
],
[
1754032867.7276406,
20,
0,
0
],
[
1754032924.8087156,
20,
0,
0
],
[
1754032954.1789389,
20,
0,
0
],
[
1754032980.73037,
20,
0,
0
],
[
1754033007.1190946,
20,
1,
5
],
[
1754033059.0023744,
20,
0,
0
],
[
1754033114.236987,
20,
0,
0
],
[
1754033141.7198074,
20,
0,
0
],
[
1754033194.708521,
20,
0,
0
],
[
1754033219.791583,
20,
0,
0
],
[
1754033247.307504,
20,
0,
0
],
[
1754033275.1489077,
20,
1,
5
],
[
1754033326.9890234,
20,
0,
0
],
[
1754033383.7110972,
20,
0,
0
],
[
1754033410.8099132,
20,
0,
0
],
[
1754033465.8698652,
20,
0,
0
],
[
1754033490.960905,
20,
0,
0
],
[
1754033519.869454,
20,
0,
0
],
[
1754033546.1238897,
20,
1,
5
],
[
1754033598.205463,
20,
0,
0
],
[
1754033655.840511,
20,
0,
0
],
[
1754033686.266279,
20,
0,
0
],
[
1754033741.7068648,
20,
0,
0
],
[
1754033767.7030063,
20,
0,
0
],
[
1754033795.712531,
20,
0,
0
],
[
1754033824.9448888,
20,
1,
5
],
[
1754033857.1376097,
20,
1,
5
],
[
1754033910.7732904,
20,
0,
0
],
[
1754033939.6978,
20,
0,
0
],
[
1754033971.7134368,
20,
0,
0
],
[
1754034001.7108054,
20,
1,
5
],
[
1754034063.7063468,
20,
0,
0
],
[
1754034063.7099817,
20,
0,
0
],
[
1754034134.762319,
20,
0,
0
],
[
1754034164.7113066,
20,
0,
0
],
[
1754034219.7152371,
20,
0,
0
],
[
1754034247.7195637,
20,
0,
0
],
[
1754034275.803012,
20,
0,
0
],
[
1754034303.2358735,
20,
1,
5
],
[
1754034356.0099897,
20,
0,
0
],
[
1754034410.7141454,
20,
0,
0
],
[
1754034438.1162503,
20,
0,
0
],
[
1754034493.1389732,
20,
0,
0
],
[
1754034518.2705555,
20,
0,
0
],
[
1754034545.732269,
20,
0,
0
],
[
1754034575.1580136,
20,
1,
5
],
[
1754034606.7145498,
20,
1,
5
],
[
1754034664.1143947,
20,
0,
0
],
[
1754034691.7019818,
20,
0,
0
],
[
1754034729.9333415,
20,
0,
0
],
[
1754034766.9361203,
20,
1,
5
],
[
1754034799.0976872,
20,
0,
0
],
[
1754034799.1056523,
20,
0,
0
],
[
1754034882.0159898,
20,
0,
0
],
[
1754034912.7046442,
20,
0,
0
],
[
1754034913.8380997,
20,
0,
0
],
[
1754034920.7223368,
20,
0,
0
],
[
1754034976.0479693,
20,
0,
0
],
[
1754035001.8600724,
20,
0,
0
],
[
1754035029.7214172,
20,
0,
0
],
[
1754035056.9494207,
20,
1,
5
],
[
1754035090.258983,
20,
1,
5
],
[
1754035144.133714,
20,
0,
0
],
[
1754035171.8661208,
20,
0,
0
],
[
1754035199.6983244,
20,
0,
0
],
[
1754035234.7058566,
20,
1,
5
],
[
1754035306.7137544,
20,
0,
0
],
[
1754035306.717412,
20,
0,
0
],
[
1754035386.9405098,
20,
0,
0
],
[
1754035420.6998968,
20,
0,
0
],
[
1754035477.0072124,
20,
0,
0
],
[
1754035506.7333558,
20,
0,
0
],
[
1754035536.0447083,
20,
0,
0
],
[
1754035563.13614,
20,
1,
5
],
[
1754035617.9822197,
20,
0,
0
],
[
1754035672.713633,
20,
0,
0
],
[
1754035701.3005707,
20,
0,
0
],
[
1754035754.7271686,
20,
0,
0
],
[
1754035780.8107927,
20,
0,
0
],
[
1754035810.7234476,
20,
0,
0
],
[
1754035837.7028883,
20,
1,
5
],
[
1754035871.0711057,
20,
1,
5
],
[
1754035924.7141583,
20,
0,
0
],
[
1754035950.7979977,
20,
0,
0
],
[
1754035978.7172697,
20,
0,
0
],
[
1754036006.926723,
20,
1,
5
],
[
1754036036.0467906,
20,
1,
5
],
[
1754036092.3366604,
20,
0,
0
],
[
1754036120.9352143,
20,
0,
0
],
[
1754036174.705655,
20,
0,
0
],
[
1754036200.7141905,
20,
0,
0
],
[
1754036229.9727376,
20,
0,
0
],
[
1754036258.0326848,
20,
1,
5
],
[
1754036286.1187222,
20,
1,
5
],
[
1754036341.952974,
20,
0,
0
],
[
1754036372.0647874,
20,
0,
0
],
[
1754036425.3058822,
20,
0,
0
],
[
1754036451.7146626,
20,
0,
0
],
[
1754036479.3007257,
20,
0,
0
],
[
1754036506.9297488,
20,
1,
5
],
[
1754036534.9830801,
20,
1,
5
],
[
1754036589.7278683,
20,
0,
0
],
[
1754036619.7190785,
20,
0,
0
],
[
1754036672.8314898,
20,
0,
0
],
[
1754036699.7183223,
20,
0,
0
],
[
1754036728.724728,
20,
0,
0
],
[
1754036755.930539,
20,
1,
5
],
[
1754036783.9893749,
20,
1,
5
],
[
1754036839.9551983,
20,
0,
0
],
[
1754036869.2870336,
20,
0,
0
],
[
1754036923.0668318,
20,
0,
0
],
[
1754036952.9413931,
20,
0,
0
],
[
1754036980.878808,
20,
0,
0
],
[
1754037009.1715055,
20,
1,
5
],
[
1754037086.0788255,
20,
0,
0
],
[
1754037086.1098654,
20,
0,
0
],
[
1754037163.7076795,
20,
0,
0
],
[
1754037194.1118436,
20,
0,
0
],
[
1754037247.7068555,
20,
0,
0
],
[
1754037277.701803,
20,
0,
0
],
[
1754037307.7144184,
20,
0,
0
],
[
1754037335.234632,
20,
1,
5
],
[
1754037389.9827394,
20,
0,
0
],
[
1754037443.9779215,
20,
0,
0
],
[
1754037472.1802607,
20,
0,
0
],
[
1754037526.705471,
20,
0,
0
],
[
1754037553.7196798,
20,
0,
0
],
[
1754037586.7123902,
20,
0,
0
],
[
1754037613.9180846,
20,
1,
5
],
[
1754037646.7240531,
20,
1,
5
],
[
1754037702.8761933,
20,
0,
0
],
[
1754037728.820711,
20,
0,
0
],
[
1754037756.7142696,
20,
0,
0
],
[
1754037784.0947835,
20,
1,
5
],
[
1754037842.077733,
20,
0,
0
],
[
1754037842.0882354,
20,
0,
0
],
[
1754037914.9856822,
20,
0,
0
],
[
1754037943.7105553,
20,
0,
0
],
[
1754037998.7051964,
20,
0,
0
],
[
1754038024.9442878,
20,
0,
0
],
[
1754038054.7524123,
20,
0,
0
],
[
1754038083.7590904,
20,
1,
5
],
[
1754038139.717383,
20,
0,
0
],
[
1754038194.705139,
20,
0,
0
],
[
1754038223.7114584,
20,
0,
0
],
[
1754038277.7234175,
20,
0,
0
],
[
1754038303.843577,
20,
0,
0
],
[
1754038332.0119314,
20,
0,
0
],
[
1754038359.8951426,
20,
1,
5
],
[
1754038393.7295008,
20,
1,
5
],
[
1754038450.7089334,
20,
0,
0
],
[
1754038477.7097318,
20,
0,
0
],
[
1754038507.871157,
20,
0,
0
],
[
1754038535.921648,
20,
1,
5
],
[
1754038593.0147166,
20,
0,
0
],
[
1754038593.019881,
20,
0,
0
],
[
1754038673.9627416,
20,
0,
0
],
[
1754038705.7742915,
20,
0,
0
],
[
1754038760.745376,
20,
0,
0
],
[
1754038787.7181695,
20,
0,
0
],
[
1754038819.72252,
20,
0,
0
],
[
1754038847.9305067,
20,
1,
5
],
[
1754038912.181725,
20,
0,
0
],
[
1754038967.1269083,
20,
0,
0
],
[
1754038994.0025272,
20,
0,
0
],
[
1754039024.2671447,
20,
0,
0
],
[
1754039052.2870514,
20,
1,
5
],
[
1754039082.2434516,
20,
1,
5
],
[
1754039139.6998377,
20,
0,
0
],
[
1754039170.2647169,
20,
0,
0
],
[
1754039233.7097795,
20,
0,
0
],
[
1754039262.708524,
20,
0,
0
],
[
1754039292.877171,
20,
0,
0
],
[
1754039321.7171247,
20,
1,
5
],
[
1754039352.7141402,
20,
1,
5
],
[
1754039414.733286,
20,
0,
0
],
[
1754039445.7224267,
20,
0,
0
],
[
1754039502.7411442,
20,
0,
0
],
[
1754039530.7118719,
20,
0,
0
],
[
1754039561.0093656,
20,
0,
0
],
[
1754039589.0265949,
20,
1,
5
],
[
1754039645.0478299,
20,
0,
0
],
[
1754039645.0552278,
20,
0,
0
],
[
1754039724.2114663,
20,
0,
0
],
[
1754039753.7070355,
20,
0,
0
],
[
1754039812.036661,
20,
0,
0
],
[
1754039838.718908,
20,
0,
0
],
[
1754039868.0286796,
20,
0,
0
],
[
1754039899.2438912,
20,
1,
5
],
[
1754039930.7287498,
20,
0,
0
],
[
1754039988.7109334,
20,
0,
0
],
[
1754040017.144818,
20,
0,
0
],
[
1754040017.2440557,
20,
0,
0
],
[
1754040024.700197,
20,
0,
0
],
[
1754040079.042405,
20,
0,
0
],
[
1754040105.7468083,
20,
0,
0
],
[
1754040138.709714,
20,
0,
0
],
[
1754040169.9334316,
20,
1,
5
],
[
1754040231.2965064,
20,
0,
0
],
[
1754040286.1069374,
20,
0,
0
],
[
1754040313.2452238,
20,
0,
0
],
[
1754040341.7734551,
20,
0,
0
],
[
1754040370.0991857,
20,
1,
5
],
[
1754040399.1914184,
20,
1,
5
],
[
1754040459.1713908,
20,
0,
0
],
[
1754040487.9704092,
20,
0,
0
],
[
1754040542.7146702,
20,
0,
0
],
[
1754040569.9996712,
20,
0,
0
],
[
1754040599.1828108,
20,
0,
0
],
[
1754040627.2323663,
20,
1,
5
],
[
1754040685.0872612,
20,
0,
0
],
[
1754040685.0932598,
20,
0,
0
],
[
1754040760.0457182,
20,
0,
0
],
[
1754040789.308828,
20,
0,
0
],
[
1754040845.7114499,
20,
0,
0
],
[
1754040873.797568,
20,
0,
0
],
[
1754040902.7802627,
20,
0,
0
],
[
1754040930.707,
20,
1,
5
],
[
1754040992.112554,
20,
0,
0
],
[
1754041048.075754,
20,
0,
0
],
[
1754041075.7588592,
20,
0,
0
],
[
1754041104.6968548,
20,
0,
0
],
[
1754041132.236838,
20,
1,
5
],
[
1754041161.1728945,
20,
1,
5
],
[
1754041161.1798158,
20,
1,
5
],
[
1754041239.2859945,
20,
0,
0
],
[
1754041268.7141268,
20,
0,
0
],
[
1754041325.7175915,
20,
0,
0
],
[
1754041353.7934837,
20,
0,
0
],
[
1754041382.7089045,
20,
0,
0
],
[
1754041411.89936,
20,
1,
5
],
[
1754041467.977215,
20,
0,
0
],
[
1754041524.7208223,
20,
0,
0
],
[
1754041554.2293391,
20,
0,
0
],
[
1754041612.7105772,
20,
0,
0
],
[
1754041642.7215173,
20,
0,
0
],
[
1754041671.7093291,
20,
0,
0
],
[
1754041699.6948602,
20,
1,
5
],
[
1754041761.1682186,
20,
0,
0
],
[
1754041820.9858131,
20,
0,
0
],
[
1754041855.1534863,
20,
0,
0
],
[
1754041884.2070096,
20,
0,
0
],
[
1754041912.7058883,
20,
1,
5
],
[
1754041941.9332073,
20,
1,
5
],
[
1754041999.0289123,
20,
0,
0
],
[
1754042030.0850215,
20,
0,
0
],
[
1754042085.2168295,
20,
0,
0
],
[
1754042112.0925026,
20,
0,
0
],
[
1754042141.3259766,
20,
0,
0
],
[
1754042170.9750443,
20,
1,
5
],
[
1754042202.0936408,
20,
1,
5
],
[
1754042260.770159,
20,
0,
0
],
[
1754042291.0130942,
20,
0,
0
],
[
1754042346.7858548,
20,
0,
0
],
[
1754042374.0199316,
20,
0,
0
],
[
1754042404.7386732,
20,
0,
0
],
[
1754042434.0939808,
20,
1,
5
],
[
1754042464.702996,
20,
1,
5
],
[
1754042536.1928368,
20,
0,
0
],
[
1754042569.2156992,
20,
0,
0
],
[
1754042630.7253363,
20,
0,
0
],
[
1754042659.255115,
20,
0,
0
],
[
1754042695.217511,
20,
0,
0
],
[
1754042726.1996434,
20,
1,
5
],
[
1754042757.9982898,
20,
1,
5
],
[
1754042816.9101698,
20,
0,
0
],
[
1754042846.7802386,
20,
0,
0
],
[
1754042903.9851909,
20,
0,
0
],
[
1754042933.74362,
20,
0,
0
],
[
1754042962.975723,
20,
0,
0
],
[
1754042993.9258156,
20,
1,
5
],
[
1754043024.9574792,
20,
1,
5
],
[
1754043082.7170248,
20,
0,
0
],
[
1754043112.7383726,
20,
0,
0
],
[
1754043168.7318788,
20,
0,
0
],
[
1754043195.8711073,
20,
0,
0
],
[
1754043227.0719824,
20,
0,
0
],
[
1754043258.9911013,
20,
1,
5
],
[
1754043289.0840898,
20,
1,
5
],
[
1754043346.7218258,
20,
0,
0
],
[
1754043376.8995435,
20,
0,
0
],
[
1754043434.257635,
20,
0,
0
],
[
1754043462.7180793,
20,
0,
0
],
[
1754043495.7906463,
20,
0,
0
],
[
1754043525.1672635,
20,
1,
5
],
[
1754043583.184067,
20,
0,
0
],
[
1754043583.1891181,
20,
0,
0
],
[
1754043658.7065492,
20,
0,
0
],
[
1754043688.8076918,
20,
0,
0
],
[
1754043744.7110865,
20,
0,
0
],
[
1754043777.719774,
20,
0,
0
],
[
1754043807.7121542,
20,
0,
0
],
[
1754043836.2996664,
20,
1,
5
],
[
1754043870.8606057,
20,
1,
5
],
[
1754043927.7615306,
20,
0,
0
],
[
1754043955.708147,
20,
0,
0
],
[
1754043985.7076395,
20,
0,
0
],
[
1754044014.9216433,
20,
1,
5
],
[
1754044045.0703628,
20,
1,
5
],
[
1754044105.736555,
20,
0,
0
],
[
1754044135.8697195,
20,
0,
0
],
[
1754044192.923973,
20,
0,
0
],
[
1754044222.1179245,
20,
0,
0
],
[
1754044255.7413614,
20,
0,
0
],
[
1754044285.1350074,
20,
1,
5
],
[
1754044315.9495406,
20,
1,
5
],
[
1754044376.2615795,
20,
0,
0
],
[
1754044408.716515,
20,
0,
0
],
[
1754044470.0113251,
20,
0,
0
],
[
1754044497.7737446,
20,
0,
0
],
[
1754044535.2251475,
20,
0,
0
],
[
1754044568.9185317,
20,
1,
5
],
[
1754044601.9880881,
20,
1,
5
],
[
1754044663.132789,
20,
0,
0
],
[
1754044693.7205572,
20,
0,
0
],
[
1754044751.7725947,
20,
0,
0
],
[
1754044779.9523518,
20,
0,
0
],
[
1754044811.7041438,
20,
0,
0
],
[
1754044841.0905728,
20,
1,
5
],
[
1754044900.0868363,
20,
0,
0
],
[
1754044900.0929468,
20,
0,
0
],
[
1754044977.7114058,
20,
0,
0
],
[
1754045008.717303,
20,
0,
0
],
[
1754045069.7179284,
20,
0,
0
],
[
1754045097.7167482,
20,
0,
0
],
[
1754045127.7961264,
20,
0,
0
],
[
1754045156.9396038,
20,
1,
5
],
[
1754045193.1764753,
20,
1,
5
],
[
1754045193.2473683,
20,
1,
5
],
[
1754045194.7008767,
20,
1,
5
],
[
1754045229.2018545,
20,
0,
0
],
[
1754045289.2540193,
20,
0,
0
],
[
1754045324.7008464,
20,
0,
0
],
[
1754045383.707114,
20,
0,
0
],
[
1754045412.0408432,
20,
0,
0
],
[
1754045442.7211483,
20,
0,
0
],
[
1754045482.024805,
20,
1,
5
],
[
1754045517.9594932,
20,
1,
5
],
[
1754045576.2909286,
20,
0,
0
],
[
1754045605.2470794,
20,
0,
0
],
[
1754045638.703285,
20,
0,
0
],
[
1754045668.207422,
20,
1,
5
],
[
1754045699.1088402,
20,
1,
5
],
[
1754045760.2410352,
20,
0,
0
],
[
1754045796.0561376,
20,
0,
0
],
[
1754045860.1989825,
20,
0,
0
],
[
1754045894.7346532,
20,
0,
0
],
[
1754045927.665879,
20,
0,
0
],
[
1754045965.105004,
20,
1,
5
],
[
1754046000.725923,
20,
1,
5
],
[
1754046064.1859002,
20,
0,
0
],
[
1754046099.7146332,
20,
0,
0
],
[
1754046173.135777,
20,
0,
0
],
[
1754046201.7315116,
20,
0,
0
],
[
1754046232.263292,
20,
0,
0
],
[
1754046262.7462504,
20,
1,
5
],
[
1754046321.7118514,
20,
0,
0
],
[
1754046321.7159486,
20,
0,
0
],
[
1754046408.127372,
20,
0,
0
],
[
1754046438.7104821,
20,
0,
0
],
[
1754046497.6818624,
20,
0,
0
],
[
1754046525.732312,
20,
0,
0
],
[
1754046556.707622,
20,
0,
0
],
[
1754046589.2946935,
20,
1,
5
],
[
1754046648.9804628,
20,
0,
0
],
[
1754046709.3087673,
20,
0,
0
],
[
1754046739.9498887,
20,
0,
0
],
[
1754046797.9046264,
20,
0,
0
],
[
1754046825.7638805,
20,
0,
0
],
[
1754046856.0849202,
20,
0,
0
],
[
1754046885.7064846,
20,
1,
5
],
[
1754046945.167936,
20,
0,
0
],
[
1754047007.87595,
20,
0,
0
],
[
1754047039.7202945,
20,
0,
0
],
[
1754047101.7066276,
20,
0,
0
],
[
1754047130.722443,
20,
0,
0
],
[
1754047161.7138875,
20,
0,
0
],
[
1754047192.7154658,
20,
1,
5
],
[
1754047251.9871254,
20,
0,
0
],
[
1754047311.8074028,
20,
0,
0
],
[
1754047343.7073894,
20,
0,
0
],
[
1754047401.9536633,
20,
0,
0
],
[
1754047430.7206364,
20,
0,
0
],
[
1754047465.7128668,
20,
0,
0
],
[
1754047496.2981932,
20,
1,
5
],
[
1754047532.7273958,
20,
1,
5
],
[
1754047593.7130933,
20,
0,
0
],
[
1754047623.7257738,
20,
0,
0
],
[
1754047659.706552,
20,
0,
0
],
[
1754047689.9223177,
20,
1,
5
],
[
1754047720.991554,
20,
1,
5
],
[
1754047812.7078223,
20,
0,
0
],
[
1754047843.8702085,
20,
0,
0
],
[
1754047902.7121975,
20,
0,
0
],
[
1754047935.7186484,
20,
0,
0
],
[
1754047970.1623726,
20,
0,
0
],
[
1754047999.921567,
20,
1,
5
],
[
1754048059.706333,
20,
0,
0
],
[
1754048059.7101386,
20,
0,
0
],
[
1754048138.7127507,
20,
0,
0
],
[
1754048170.9880989,
20,
0,
0
],
[
1754048234.1013453,
20,
0,
0
],
[
1754048264.706789,
20,
0,
0
],
[
1754048295.2563424,
20,
0,
0
],
[
1754048332.7191706,
20,
1,
5
],
[
1754048404.7130058,
20,
0,
0
],
[
1754048471.7266047,
20,
0,
0
],
[
1754048506.7119856,
20,
0,
0
],
[
1754048570.802903,
20,
0,
0
],
[
1754048601.7151654,
20,
0,
0
],
[
1754048632.704276,
20,
0,
0
],
[
1754048662.9412374,
20,
1,
5
],
[
1754048725.006197,
20,
0,
0
],
[
1754048785.236311,
20,
0,
0
],
[
1754048816.2510514,
20,
0,
0
],
[
1754048875.9226604,
20,
0,
0
],
[
1754048904.7081292,
20,
0,
0
],
[
1754048940.7354803,
20,
0,
0
],
[
1754048970.715302,
20,
1,
5
],
[
1754049031.892771,
20,
0,
0
],
[
1754049095.1342602,
20,
0,
0
],
[
1754049128.7197058,
20,
0,
0
],
[
1754049189.29812,
20,
0,
0
],
[
1754049218.7975588,
20,
0,
0
],
[
1754049250.8613348,
20,
0,
0
],
[
1754049282.9403446,
20,
1,
5
],
[
1754049342.7221634,
20,
0,
0
],
[
1754049404.0803041,
20,
0,
0
],
[
1754049435.2926698,
20,
0,
0
],
[
1754049494.7060144,
20,
0,
0
],
[
1754049523.7045302,
20,
0,
0
],
[
1754049555.7992032,
20,
0,
0
],
[
1754049585.9283679,
20,
1,
5
],
[
1754049647.2017705,
20,
0,
0
],
[
1754049707.1985052,
20,
0,
0
],
[
1754049738.7167776,
20,
0,
0
],
[
1754049798.715297,
20,
0,
0
],
[
1754049827.7025397,
20,
0,
0
],
[
1754049866.2585516,
20,
0,
0
],
[
1754049896.3198137,
20,
1,
5
],
[
1754049956.2877939,
20,
0,
0
],
[
1754050015.9041872,
20,
0,
0
],
[
1754050046.983367,
20,
0,
0
],
[
1754050107.8851125,
20,
0,
0
],
[
1754050136.2838106,
20,
0,
0
],
[
1754050167.2854965,
20,
0,
0
],
[
1754050207.0111752,
20,
1,
5
],
[
1754050242.7101,
20,
1,
5
],
[
1754050305.1372304,
20,
0,
0
],
[
1754050338.2211688,
20,
0,
0
],
[
1754050398.9377427,
20,
0,
0
],
[
1754050429.7031562,
20,
0,
0
],
[
1754050460.7888515,
20,
0,
0
],
[
1754050492.1718545,
20,
1,
5
],
[
1754050555.0031204,
20,
0,
0
],
[
1754050618.7022219,
20,
0,
0
],
[
1754050650.2234406,
20,
0,
0
],
[
1754050709.9269185,
20,
0,
0
],
[
1754050739.0706937,
20,
0,
0
],
[
1754050772.2657163,
20,
0,
0
],
[
1754050802.719197,
20,
1,
5
],
[
1754050863.9793763,
20,
0,
0
],
[
1754050927.203907,
20,
0,
0
],
[
1754050960.0072339,
20,
0,
0
],
[
1754051019.8972995,
20,
0,
0
],
[
1754051048.880504,
20,
0,
0
],
[
1754051080.0025966,
20,
0,
0
],
[
1754051110.0068417,
20,
1,
5
],
[
1754051170.991868,
20,
0,
0
],
[
1754051233.954716,
20,
0,
0
],
[
1754051266.7096806,
20,
0,
0
],
[
1754051266.803455,
20,
0,
0
],
[
1754051274.7028782,
20,
0,
0
],
[
1754051336.108561,
20,
0,
0
],
[
1754051366.7076082,
20,
0,
0
],
[
1754051397.7144222,
20,
0,
0
],
[
1754051428.9808986,
20,
1,
5
],
[
1754051492.1023302,
20,
0,
0
],
[
1754051554.0367815,
20,
0,
0
],
[
1754051586.2080483,
20,
0,
0
],
[
1754051648.9479716,
20,
0,
0
],
[
1754051683.7105052,
20,
0,
0
],
[
1754051716.017937,
20,
0,
0
],
[
1754051746.9425156,
20,
1,
5
],
[
1754051812.719719,
20,
0,
0
],
[
1754051877.8264503,
20,
0,
0
],
[
1754051909.9361703,
20,
0,
0
],
[
1754051970.860717,
20,
0,
0
],
[
1754052000.71848,
20,
0,
0
],
[
1754052036.7064428,
20,
0,
0
],
[
1754052071.7163239,
20,
1,
5
],
[
1754052133.701669,
20,
0,
0
],
[
1754052197.82836,
20,
0,
0
],
[
1754052229.7200532,
20,
0,
0
],
[
1754052296.7173908,
20,
0,
0
],
[
1754052326.7236388,
20,
0,
0
],
[
1754052358.2865808,
20,
0,
0
],
[
1754052391.0442095,
20,
1,
5
],
[
1754052452.9681158,
20,
0,
0
],
[
1754052513.7186723,
20,
0,
0
],
[
1754052545.7630076,
20,
0,
0
],
[
1754052609.7125862,
20,
0,
0
],
[
1754052641.7135575,
20,
0,
0
],
[
1754052676.2980814,
20,
0,
0
],
[
1754052706.7138875,
20,
1,
5
],
[
1754052767.1901963,
20,
0,
0
],
[
1754052830.7053084,
20,
0,
0
],
[
1754052865.1127555,
20,
0,
0
],
[
1754052930.8445747,
20,
0,
0
],
[
1754052960.7129207,
20,
0,
0
],
[
1754052992.0509033,
20,
0,
0
],
[
1754053023.071929,
20,
1,
5
],
[
1754053059.700837,
20,
1,
5
],
[
1754053122.7146387,
20,
0,
0
],
[
1754053152.6876569,
20,
0,
0
],
[
1754053190.7167575,
20,
0,
0
],
[
1754053223.1966069,
20,
1,
5
],
[
1754053286.7108681,
20,
0,
0
],
[
1754053286.714489,
20,
0,
0
],
[
1754053369.7403433,
20,
0,
0
],
[
1754053402.7023003,
20,
0,
0
],
[
1754053470.900741,
20,
0,
0
],
[
1754053500.7151117,
20,
0,
0
],
[
1754053534.7051575,
20,
0,
0
],
[
1754053567.2461467,
20,
1,
5
],
[
1754053628.9383798,
20,
0,
0
],
[
1754053690.9662278,
20,
0,
0
],
[
1754053723.7348166,
20,
0,
0
],
[
1754053795.1019907,
20,
0,
0
],
[
1754053824.7144952,
20,
0,
0
],
[
1754053858.2077665,
20,
0,
0
],
[
1754053889.2934632,
20,
1,
5
],
[
1754053956.7129483,
20,
0,
0
],
[
1754054021.7229967,
20,
0,
0
],
[
1754054054.7189765,
20,
0,
0
],
[
1754054125.773271,
20,
0,
0
],
[
1754054156.2610273,
20,
0,
0
],
[
1754054188.234615,
20,
0,
0
],
[
1754054221.1015499,
20,
1,
5
],
[
1754054291.030754,
20,
0,
0
],
[
1754054353.8702123,
20,
0,
0
],
[
1754054387.0659955,
20,
0,
0
],
[
1754054449.73174,
20,
0,
0
],
[
1754054479.705808,
20,
0,
0
],
[
1754054512.1456296,
20,
0,
0
],
[
1754054542.918986,
20,
1,
5
],
[
1754054605.0743444,
20,
0,
0
],
[
1754054668.1157854,
20,
0,
0
],
[
1754054700.2804718,
20,
0,
0
],
[
1754054762.7573566,
20,
0,
0
],
[
1754054792.259018,
20,
0,
0
],
[
1754054824.7077668,
20,
0,
0
],
[
1754054855.9184072,
20,
1,
5
],
[
1754054893.9715033,
20,
1,
5
],
[
1754054957.7348473,
20,
0,
0
],
[
1754054987.739454,
20,
0,
0
],
[
1754055019.8990986,
20,
0,
0
],
[
1754055051.2930186,
20,
1,
5
],
[
1754055120.7151773,
20,
0,
0
],
[
1754055120.7185395,
20,
0,
0
],
[
1754055207.7128682,
20,
0,
0
],
[
1754055239.7864182,
20,
0,
0
],
[
1754055300.7824292,
20,
0,
0
],
[
1754055331.2437487,
20,
0,
0
],
[
1754055363.161897,
20,
0,
0
],
[
1754055394.5625885,
20,
1,
5
],
[
1754055456.706024,
20,
0,
0
],
[
1754055518.713298,
20,
0,
0
],
[
1754055551.7150767,
20,
0,
0
],
[
1754055630.7046525,
20,
0,
0
],
[
1754055660.8936164,
20,
0,
0
],
[
1754055693.7108507,
20,
0,
0
],
[
1754055726.2921648,
20,
1,
5
],
[
1754055796.9640598,
20,
0,
0
],
[
1754055863.1690884,
20,
0,
0
],
[
1754055895.752704,
20,
0,
0
],
[
1754055957.222508,
20,
0,
0
],
[
1754055987.709156,
20,
0,
0
],
[
1754056020.699438,
20,
0,
0
],
[
1754056052.7086132,
20,
1,
5
],
[
1754056115.719668,
20,
0,
0
],
[
1754056179.6999695,
20,
0,
0
],
[
1754056212.6029184,
20,
0,
0
],
[
1754056275.9031267,
20,
0,
0
],
[
1754056310.7043788,
20,
0,
0
],
[
1754056342.8767653,
20,
0,
0
],
[
1754056374.9597573,
20,
1,
5
],
[
1754056437.7094085,
20,
0,
0
],
[
1754056499.7099185,
20,
0,
0
],
[
1754056532.7721503,
20,
0,
0
],
[
1754056594.8589234,
20,
0,
0
],
[
1754056624.8363545,
20,
0,
0
],
[
1754056657.7120256,
20,
0,
0
],
[
1754056688.920917,
20,
1,
5
],
[
1754056758.8850825,
20,
0,
0
],
[
1754056820.7068539,
20,
0,
0
],
[
1754056850.71351,
20,
0,
0
],
[
1754056883.280187,
20,
0,
0
],
[
1754056914.958719,
20,
1,
5
],
[
1754056979.694893,
20,
0,
0
],
[
1754056979.6982648,
20,
0,
0
],
[
1754057067.70595,
20,
0,
0
],
[
1754057101.7162018,
20,
0,
0
],
[
1754057169.7819407,
20,
0,
0
],
[
1754057200.8276627,
20,
0,
0
],
[
1754057233.1408112,
20,
0,
0
],
[
1754057264.911944,
20,
1,
5
],
[
1754057332.7120962,
20,
0,
0
],
[
1754057403.7448034,
20,
0,
0
],
[
1754057440.1372647,
20,
0,
0
],
[
1754057440.234886,
20,
0,
0
],
[
1754057448.0966005,
20,
0,
0
],
[
1754057511.7034495,
20,
0,
0
],
[
1754057542.1786005,
20,
0,
0
],
[
1754057578.272405,
20,
0,
0
],
[
1754057612.713417,
20,
1,
5
],
[
1754057677.7310061,
20,
0,
0
],
[
1754057740.715057,
20,
0,
0
],
[
1754057773.9256835,
20,
0,
0
],
[
1754057835.8451612,
20,
0,
0
],
[
1754057868.728966,
20,
0,
0
],
[
1754057902.7112055,
20,
0,
0
],
[
1754057933.910784,
20,
1,
5
],
[
1754057972.072924,
20,
1,
5
],
[
1754058034.3141885,
20,
0,
0
],
[
1754058064.7448106,
20,
0,
0
],
[
1754058097.7050166,
20,
0,
0
],
[
1754058131.7108357,
20,
1,
5
],
[
1754058194.7126215,
20,
0,
0
],
[
1754058194.7164156,
20,
0,
0
],
[
1754058278.7062938,
20,
0,
0
],
[
1754058311.2907763,
20,
0,
0
],
[
1754058373.2857132,
20,
0,
0
],
[
1754058403.7929485,
20,
0,
0
],
[
1754058438.8299239,
20,
0,
0
],
[
1754058470.91968,
20,
1,
5
],
[
1754058533.1575184,
20,
0,
0
],
[
1754058597.714896,
20,
0,
0
],
[
1754058630.713472,
20,
0,
0
],
[
1754058693.7090988,
20,
0,
0
],
[
1754058723.7849443,
20,
0,
0
],
[
1754058757.7043722,
20,
0,
0
],
[
1754058788.849163,
20,
1,
5
],
[
1754058828.7083685,
20,
1,
5
],
[
1754058891.7123616,
20,
0,
0
],
[
1754058923.4623296,
20,
0,
0
],
[
1754058960.2823348,
20,
0,
0
],
[
1754058992.9415262,
20,
1,
5
],
[
1754059058.1122267,
20,
0,
0
],
[
1754059058.115541,
20,
0,
0
],
[
1754059142.7064505,
20,
0,
0
],
[
1754059175.7153897,
20,
0,
0
],
[
1754059240.9508128,
20,
0,
0
],
[
1754059272.7899659,
20,
0,
0
],
[
1754059305.7146,
20,
0,
0
],
[
1754059337.7215633,
20,
1,
5
],
[
1754059401.1733365,
20,
0,
0
],
[
1754059466.720779,
20,
0,
0
],
[
1754059499.97695,
20,
0,
0
],
[
1754059563.7178833,
20,
0,
0
],
[
1754059594.1250904,
20,
0,
0
],
[
1754059627.1064649,
20,
0,
0
],
[
1754059673.1737998,
20,
1,
5
],
[
1754059742.9924266,
20,
0,
0
],
[
1754059808.711129,
20,
0,
0
],
[
1754059841.9001956,
20,
0,
0
],
[
1754059905.1924548,
20,
0,
0
],
[
1754059936.1401968,
20,
0,
0
],
[
1754059972.7116551,
20,
0,
0
],
[
1754060004.6971347,
20,
1,
5
],
[
1754060068.2302682,
20,
0,
0
],
[
1754060132.7140176,
20,
0,
0
],
[
1754060169.1040506,
20,
0,
0
],
[
1754060237.119296,
20,
0,
0
],
[
1754060269.7152262,
20,
0,
0
],
[
1754060305.279356,
20,
0,
0
],
[
1754060339.3119922,
20,
1,
5
],
[
1754060378.700383,
20,
1,
5
],
[
1754060444.213011,
20,
0,
0
],
[
1754060476.0751493,
20,
0,
0
],
[
1754060509.6984122,
20,
0,
0
],
[
1754060543.2671537,
20,
1,
5
],
[
1754060576.7107985,
20,
1,
5
],
[
1754060641.8194149,
20,
1,
5
],
[
1754060676.3110497,
20,
1,
5
],
[
1754060740.8274534,
20,
1,
5
],
[
1754060771.968114,
20,
1,
5
],
[
1754060836.7299976,
20,
0,
0
],
[
1754060868.7126315,
20,
1,
5
],
[
1754060902.2691107,
20,
1,
5
],
[
1754060967.2508903,
20,
0,
0
],
[
1754061002.7106655,
20,
0,
0
],
[
1754061066.9019837,
20,
0,
0
],
[
1754061098.7330747,
20,
0,
0
],
[
1754061131.716898,
20,
0,
0
],
[
1754061163.83228,
20,
1,
5
],
[
1754061229.1647794,
20,
0,
0
],
[
1754061229.1717658,
20,
0,
0
],
[
1754061316.7585697,
20,
0,
0
],
[
1754061351.7171044,
20,
0,
0
],
[
1754061415.074482,
20,
0,
0
],
[
1754061445.7206113,
20,
0,
0
],
[
1754061478.8899777,
20,
0,
0
],
[
1754061524.0961292,
20,
1,
5
],
[
1754061565.8422165,
20,
1,
5
],
[
1754061636.7057612,
20,
0,
0
],
[
1754061667.8101528,
20,
0,
0
],
[
1754061700.9512548,
20,
0,
0
],
[
1754061732.922935,
20,
1,
5
],
[
1754061798.08755,
20,
0,
0
],
[
1754061798.092133,
20,
0,
0
],
[
1754061883.7084146,
20,
0,
0
],
[
1754061918.1298928,
20,
0,
0
],
[
1754061982.2601767,
20,
0,
0
],
[
1754062014.7096448,
20,
0,
0
],
[
1754062048.7274199,
20,
0,
0
],
[
1754062080.9261487,
20,
1,
5
],
[
1754062145.7192104,
20,
0,
0
],
[
1754062210.2540822,
20,
0,
0
],
[
1754062243.9126945,
20,
0,
0
],
[
1754062308.811714,
20,
0,
0
],
[
1754062340.2887936,
20,
0,
0
],
[
1754062373.7126093,
20,
0,
0
],
[
1754062405.946871,
20,
1,
5
],
[
1754062470.0824077,
20,
0,
0
],
[
1754062550.7215974,
20,
0,
0
],
[
1754062585.7657034,
20,
0,
0
],
[
1754062650.721393,
20,
0,
0
],
[
1754062682.7210073,
20,
0,
0
],
[
1754062716.3086205,
20,
0,
0
],
[
1754062749.9365525,
20,
1,
5
],
[
1754062816.162768,
20,
0,
0
],
[
1754062881.8111908,
20,
0,
0
],
[
1754062916.7329738,
20,
0,
0
],
[
1754062983.7127297,
20,
0,
0
],
[
1754063014.7791212,
20,
0,
0
],
[
1754063049.2444243,
20,
0,
0
],
[
1754063082.2982554,
20,
1,
5
],
[
1754063148.2400723,
20,
0,
0
],
[
1754063215.050431,
20,
0,
0
],
[
1754063249.1583538,
20,
0,
0
],
[
1754063313.7061112,
20,
0,
0
],
[
1754063345.7191372,
20,
0,
0
],
[
1754063380.2392688,
20,
0,
0
],
[
1754063414.9385052,
20,
1,
5
],
[
1754063479.9789438,
20,
0,
0
],
[
1754063545.7139666,
20,
0,
0
],
[
1754063580.7017722,
20,
0,
0
],
[
1754063580.8190856,
20,
0,
0
],
[
1754063589.121436,
20,
0,
0
],
[
1754063654.9492395,
20,
0,
0
],
[
1754063687.2618809,
20,
0,
0
],
[
1754063721.1757376,
20,
0,
0
],
[
1754063753.706094,
20,
1,
5
],
[
1754063819.0867064,
20,
0,
0
],
[
1754063885.2214293,
20,
0,
0
],
[
1754063918.9941332,
20,
0,
0
],
[
1754063983.3049192,
20,
0,
0
],
[
1754064014.7312262,
20,
0,
0
],
[
1754064048.687652,
20,
0,
0
],
[
1754064082.9322624,
20,
1,
5
],
[
1754064149.220404,
20,
0,
0
],
[
1754064214.8677177,
20,
0,
0
],
[
1754064249.039925,
20,
0,
0
],
[
1754064314.7129014,
20,
0,
0
],
[
1754064346.3127754,
20,
0,
0
],
[
1754064380.1566176,
20,
0,
0
],
[
1754064412.928946,
20,
1,
5
],
[
1754064481.0163531,
20,
0,
0
],
[
1754064547.2170122,
20,
0,
0
],
[
1754064585.717877,
20,
0,
0
],
[
1754064663.0678833,
20,
0,
0
],
[
1754064696.9628327,
20,
0,
0
],
[
1754064732.261103,
20,
0,
0
],
[
1754064766.965195,
20,
1,
5
],
[
1754064836.707537,
20,
0,
0
],
[
1754064912.7798212,
20,
0,
0
],
[
1754064952.6987188,
20,
0,
0
],
[
1754065030.7196295,
20,
0,
0
],
[
1754065062.7148724,
20,
0,
0
],
[
1754065097.9307477,
20,
0,
0
],
[
1754065131.1593657,
20,
1,
5
],
[
1754065202.9852386,
20,
0,
0
],
[
1754065270.7224066,
20,
0,
0
],
[
1754065305.7234507,
20,
0,
0
],
[
1754065371.1874483,
20,
0,
0
],
[
1754065403.2478445,
20,
0,
0
],
[
1754065437.7231607,
20,
0,
0
],
[
1754065470.7214034,
20,
1,
5
],
[
1754065538.9828534,
20,
0,
0
],
[
1754065605.0405266,
20,
0,
0
],
[
1754065640.7498178,
20,
0,
0
],
[
1754065708.7083726,
20,
0,
0
],
[
1754065740.7824345,
20,
0,
0
],
[
1754065775.1426606,
20,
0,
0
],
[
1754065808.0280375,
20,
1,
5
],
[
1754065873.7045355,
20,
0,
0
],
[
1754065943.0996075,
20,
0,
0
],
[
1754065977.8303065,
20,
0,
0
],
[
1754066044.7770736,
20,
0,
0
],
[
1754066078.037122,
20,
0,
0
],
[
1754066113.2108228,
20,
0,
0
],
[
1754066155.2867477,
20,
1,
5
],
[
1754066196.7237968,
20,
1,
5
],
[
1754066272.9752028,
20,
0,
0
],
[
1754066307.3007689,
20,
0,
0
],
[
1754066342.7243304,
20,
0,
0
],
[
1754066382.1935234,
20,
1,
5
],
[
1754066461.089663,
20,
0,
0
],
[
1754066461.0935032,
20,
0,
0
],
[
1754066557.3031418,
20,
0,
0
],
[
1754066593.08072,
20,
0,
0
],
[
1754066661.7149727,
20,
0,
0
],
[
1754066695.7295544,
20,
0,
0
],
[
1754066737.703032,
20,
0,
0
],
[
1754066775.7080112,
20,
1,
5
],
[
1754066823.870736,
20,
1,
5
],
[
1754066893.7051432,
20,
0,
0
],
[
1754066925.7145927,
20,
0,
0
],
[
1754066960.1179352,
20,
0,
0
],
[
1754066992.9721553,
20,
1,
5
],
[
1754067059.7064438,
20,
0,
0
],
[
1754067059.7099023,
20,
0,
0
],
[
1754067148.7052023,
20,
0,
0
],
[
1754067183.7087638,
20,
0,
0
],
[
1754067249.3020427,
20,
0,
0
],
[
1754067281.0358152,
20,
0,
0
],
[
1754067316.7141228,
20,
0,
0
],
[
1754067349.9291556,
20,
1,
5
],
[
1754067422.1426284,
20,
0,
0
],
[
1754067487.9513776,
20,
0,
0
],
[
1754067520.7070665,
20,
0,
0
],
[
1754067556.714928,
20,
0,
0
],
[
1754067589.948298,
20,
1,
5
],
[
1754067658.6981041,
20,
0,
0
],
[
1754067658.7017422,
20,
0,
0
],
[
1754067748.7121398,
20,
0,
0
],
[
1754067785.8603678,
20,
0,
0
],
[
1754067855.7154665,
20,
0,
0
],
[
1754067888.7029884,
20,
0,
0
],
[
1754067923.8832695,
20,
0,
0
],
[
1754067958.9336646,
20,
1,
5
],
[
1754068026.7100484,
20,
0,
0
],
[
1754068095.127985,
20,
0,
0
],
[
1754068130.733996,
20,
0,
0
],
[
1754068197.1686766,
20,
0,
0
],
[
1754068229.9687557,
20,
0,
0
],
[
1754068264.7137778,
20,
0,
0
],
[
1754068298.9400415,
20,
1,
5
],
[
1754068365.2023242,
20,
0,
0
],
[
1754068432.7224805,
20,
0,
0
],
[
1754068468.123554,
20,
0,
0
],
[
1754068537.2019718,
20,
0,
0
],
[
1754068569.7010555,
20,
0,
0
],
[
1754068604.7081757,
20,
0,
0
],
[
1754068639.0225544,
20,
1,
5
],
[
1754068708.0786512,
20,
0,
0
],
[
1754068778.7047298,
20,
0,
0
],
[
1754068814.1007805,
20,
0,
0
],
[
1754068880.7247941,
20,
0,
0
],
[
1754068913.7053344,
20,
0,
0
],
[
1754068948.7093737,
20,
0,
0
],
[
1754068982.9895606,
20,
1,
5
],
[
1754069049.69906,
20,
0,
0
],
[
1754069116.9725683,
20,
0,
0
],
[
1754069151.7253256,
20,
0,
0
],
[
1754069217.7158763,
20,
0,
0
],
[
1754069249.7219162,
20,
0,
0
],
[
1754069283.886101,
20,
0,
0
],
[
1754069317.2210767,
20,
1,
5
],
[
1754069385.9888227,
20,
0,
0
],
[
1754069453.9369943,
20,
0,
0
],
[
1754069488.7679174,
20,
0,
0
],
[
1754069554.7559807,
20,
0,
0
],
[
1754069587.8970635,
20,
0,
0
],
[
1754069624.694735,
20,
0,
0
],
[
1754069658.3038101,
20,
1,
5
],
[
1754069725.720971,
20,
0,
0
],
[
1754069792.9105368,
20,
0,
0
],
[
1754069828.9500256,
20,
0,
0
],
[
1754069896.7106903,
20,
0,
0
],
[
1754069930.7083385,
20,
0,
0
],
[
1754069979.0486915,
20,
0,
0
],
[
1754070015.9509225,
20,
1,
5
],
[
1754070090.142214,
20,
0,
0
],
[
1754070157.1127462,
20,
0,
0
],
[
1754070193.6965373,
20,
0,
0
],
[
1754070193.7901711,
20,
0,
0
],
[
1754070196.716394,
20,
0,
0
]
];
var tab_main_worker_cpu_ram_csv_json = [
[
1753975656,
714.78125,
7.2
],
[
1753975660,
715.28125,
5.7
],
[
1753975664,
715.28125,
10.2
],
[
1753975664,
715.28125,
23.1
],
[
1753975664,
715.28125,
16.6
],
[
1753975664,
715.78125,
14.9
],
[
1753975664,
715.78125,
23.5
],
[
1753976870,
733.5234375,
8
],
[
1753976870,
733.5234375,
8.3
],
[
1753976870,
733.5234375,
6.1
],
[
1753976870,
733.5234375,
8.3
],
[
1753978648,
735.5234375,
6.6
],
[
1753978648,
735.5234375,
7.7
],
[
1753978648,
735.5234375,
5.8
],
[
1753978648,
735.5234375,
7.7
],
[
1753980699,
737.5234375,
4.1
],
[
1753980699,
737.5234375,
7.7
],
[
1753980699,
737.5234375,
2.5
],
[
1753980699,
737.5234375,
7.7
],
[
1753982912,
740.0234375,
6.5
],
[
1753982912,
740.0234375,
17.6
],
[
1753982912,
740.0234375,
7
],
[
1753982912,
740.0234375,
5.8
],
[
1753985347,
744.0234375,
6.7
],
[
1753985347,
744.0234375,
8.3
],
[
1753985347,
744.0234375,
7.3
],
[
1753985347,
744.0234375,
8.3
],
[
1753987858,
748.0078125,
6.8
],
[
1753987858,
748.0078125,
8.3
],
[
1753987858,
748.0078125,
8
],
[
1753987858,
748.0078125,
9.1
],
[
1753990299,
750.0078125,
7.2
],
[
1753990299,
750.0078125,
15.4
],
[
1753990299,
750.0078125,
6.8
],
[
1753990299,
750.0078125,
9.1
],
[
1753992816,
752.0078125,
7.3
],
[
1753992816,
752.0078125,
15.4
],
[
1753992816,
752.0078125,
5.8
],
[
1753992816,
752.0078125,
7.1
],
[
1753995485,
755.0078125,
6.6
],
[
1753995485,
755.0078125,
8.3
],
[
1753995485,
755.0078125,
5.4
],
[
1753995485,
755.0078125,
15.4
],
[
1753998452,
757.5078125,
5.9
],
[
1753998452,
757.5078125,
14.3
],
[
1753998453,
757.5078125,
5.7
],
[
1753998453,
757.5078125,
5.9
],
[
1754001563,
762.640625,
5.9
],
[
1754001563,
762.640625,
8.3
],
[
1754001563,
762.640625,
6.7
],
[
1754001563,
762.640625,
15.4
],
[
1754005221,
764.140625,
11.1
],
[
1754005221,
764.140625,
33.3
],
[
1754005221,
764.140625,
16.5
],
[
1754005221,
764.140625,
21.4
],
[
1754008778,
765.640625,
12.3
],
[
1754008778,
765.640625,
23.1
],
[
1754008778,
765.640625,
17.4
],
[
1754008778,
765.640625,
21.4
],
[
1754012394,
768.21875,
12.9
],
[
1754012394,
768.21875,
13.3
],
[
1754012394,
768.21875,
7.8
],
[
1754012394,
768.21875,
8.3
],
[
1754016388,
766.328125,
7.6
],
[
1754016388,
766.328125,
7.7
],
[
1754016388,
766.328125,
5.3
],
[
1754016388,
766.328125,
8.3
],
[
1754020467,
766.9453125,
6.1
],
[
1754020467,
766.9453125,
15.4
],
[
1754020467,
766.9453125,
5.6
],
[
1754020467,
766.9453125,
8.3
],
[
1754025333,
763.14453125,
5.9
],
[
1754025333,
763.14453125,
15.4
],
[
1754025334,
763.14453125,
6.7
],
[
1754025334,
763.14453125,
13.3
],
[
1754029774,
771.8671875,
6.1
],
[
1754029774,
771.8671875,
8.3
],
[
1754029774,
771.8671875,
5.2
],
[
1754029774,
771.8671875,
9.1
],
[
1754034912,
759.015625,
6.4
],
[
1754034912,
759.015625,
16.7
],
[
1754034913,
759.015625,
9.3
],
[
1754034913,
759.015625,
20
],
[
1754040017,
764.890625,
8.5
],
[
1754040017,
764.890625,
7.1
],
[
1754040017,
764.890625,
7.7
],
[
1754040017,
764.890625,
8.3
],
[
1754045193,
769.2578125,
7.7
],
[
1754045193,
769.2578125,
8.3
],
[
1754045193,
769.2578125,
6.7
],
[
1754045193,
769.2578125,
7.7
],
[
1754051266,
769.3515625,
7.6
],
[
1754051266,
769.3515625,
21.4
],
[
1754051266,
769.3515625,
7.7
],
[
1754051266,
769.3515625,
15.4
],
[
1754057440,
768.296875,
7.6
],
[
1754057440,
768.296875,
21.4
],
[
1754057440,
768.296875,
6.6
],
[
1754057440,
768.296875,
9.1
],
[
1754063580,
767.00390625,
7.7
],
[
1754063580,
767.00390625,
7.7
],
[
1754063580,
767.00390625,
6.9
],
[
1754070193,
768.5625,
7.7
],
[
1754070193,
768.5625,
15.4
],
[
1754070193,
768.5625,
7.2
],
[
1754070193,
768.5625,
8.3
],
[
1754070196,
764.06640625,
8.8
],
[
1754070196,
764.06640625,
14.3
]
];
var tab_main_worker_cpu_ram_headers_json = [
"timestamp",
"ram_usage_mb",
"cpu_usage_percent"
];
"use strict";
function add_default_layout_data (layout, no_height = 0) {
layout["width"] = get_graph_width();
if (!no_height) {
layout["height"] = get_graph_height();
}
layout["paper_bgcolor"] = 'rgba(0,0,0,0)';
layout["plot_bgcolor"] = 'rgba(0,0,0,0)';
return layout;
}
function get_marker_size() {
return 12;
}
function get_text_color() {
return theme == "dark" ? "white" : "black";
}
function get_font_size() {
return 14;
}
function get_graph_height() {
return 800;
}
function get_font_data() {
return {
size: get_font_size(),
color: get_text_color()
}
}
function get_axis_title_data(name, axis_type = "") {
if(axis_type) {
return {
text: name,
type: axis_type,
font: get_font_data()
};
}
return {
text: name,
font: get_font_data()
};
}
function get_graph_width() {
var width = document.body.clientWidth || window.innerWidth || document.documentElement.clientWidth;
return Math.max(800, Math.floor(width * 0.9));
}
function createTable(data, headers, table_name) {
if (!$("#" + table_name).length) {
console.error("#" + table_name + " not found");
return;
}
new gridjs.Grid({
columns: headers,
data: data,
search: true,
sort: true,
ellipsis: false
}).render(document.getElementById(table_name));
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
colorize_table_entries();
add_colorize_to_gridjs_table();
}
function download_as_file(id, filename) {
var text = $("#" + id).text();
var blob = new Blob([text], {
type: "text/plain"
});
var link = document.createElement("a");
link.href = URL.createObjectURL(blob);
link.download = filename;
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
}
function copy_to_clipboard_from_id (id) {
var text = $("#" + id).text();
copy_to_clipboard(text);
}
function copy_to_clipboard(text) {
if (!navigator.clipboard) {
let textarea = document.createElement("textarea");
textarea.value = text;
document.body.appendChild(textarea);
textarea.select();
try {
document.execCommand("copy");
} catch (err) {
console.error("Copy failed:", err);
}
document.body.removeChild(textarea);
return;
}
navigator.clipboard.writeText(text).then(() => {
console.log("Text copied to clipboard");
}).catch(err => {
console.error("Failed to copy text:", err);
});
}
function filterNonEmptyRows(data) {
var new_data = [];
for (var row_idx = 0; row_idx < data.length; row_idx++) {
var line = data[row_idx];
var line_has_empty_data = false;
for (var col_idx = 0; col_idx < line.length; col_idx++) {
var col_header_name = tab_results_headers_json[col_idx];
var single_data_point = line[col_idx];
if(single_data_point === "" && !special_col_names.includes(col_header_name)) {
line_has_empty_data = true;
continue;
}
}
if(!line_has_empty_data) {
new_data.push(line);
}
}
return new_data;
}
function make_text_in_parallel_plot_nicer() {
$(".parcoords g > g > text").each(function() {
if (theme == "dark") {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "white")
.css("stroke", "black")
.css("stroke-width", "2px")
.css("paint-order", "stroke fill");
} else {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "black")
.css("stroke", "unset")
.css("stroke-width", "unset")
.css("paint-order", "stroke fill");
}
});
}
function createParallelPlot(dataArray, headers, resultNames, ignoreColumns = [], reload = false) {
try {
if ($("#parallel-plot").data("loaded") === "true" && !reload) {
return;
}
// Filter rows ohne leere Werte (wie in deinem Originalcode)
dataArray = filterNonEmptyRows(dataArray);
const ignoreSet = new Set(ignoreColumns);
const numericalCols = [];
const categoricalCols = [];
const categoryMappings = {};
const enable_slurm_id_if_exists = $("#enable_slurm_id_if_exists").is(":checked");
// Spalten einteilen in numerisch oder kategorisch + category mappings aufbauen
headers.forEach((header, colIndex) => {
if (ignoreSet.has(header)) return;
if (!enable_slurm_id_if_exists && header === "OO_Info_SLURM_JOB_ID") return;
const values = dataArray.map(row => row[colIndex]);
if (values.every(val => !isNaN(parseFloat(val)))) {
numericalCols.push({ name: header, index: colIndex });
} else {
categoricalCols.push({ name: header, index: colIndex });
const uniqueValues = [...new Set(values)];
categoryMappings[header] = Object.fromEntries(uniqueValues.map((val, i) => [val, i]));
}
});
// Erzeuge UI für Checkboxen und Min/Max Inputs für numerische Spalten
const controlContainerId = "parallel-plot-controls";
let controlContainer = $("#" + controlContainerId);
if (controlContainer.length === 0) {
controlContainer = $('<div id="' + controlContainerId + '" style="margin-bottom:10px; display: flex;"></div>');
$("#parallel-plot").before(controlContainer);
} else {
controlContainer.empty();
}
// Map um Checkbox-Zustände und Min/Max-Werte zu speichern
const columnVisibility = {};
const minMaxLimits = {};
// Checkboxen + Min/Max Felder generieren mit Boxen, max-Breite, Umbruch und Zeilenumbruch nach jeder Box
headers.forEach((header) => {
try {
if (ignoreSet.has(header)) return;
if (!enable_slurm_id_if_exists && header === "OO_Info_SLURM_JOB_ID") return;
const isNumerical = numericalCols.some(col => col.name === header);
const checkboxId = `chk_${header}`;
const minInputId = `min_${header}`;
const maxInputId = `max_${header}`;
columnVisibility[header] = true;
minMaxLimits[header] = { min: null, max: null };
// Wrapper Box mit max-Breite, Umbruch, Block-Level-Element für newline nach jeder Box
const boxWrapper = $('<div></div>').css({
border: "1px solid #ddd",
borderRadius: "8px",
padding: "12px 16px",
marginBottom: "12px",
boxShadow: "0 2px 6px rgba(0,0,0,0.1)",
backgroundColor: "#fff",
display: "flex",
flexWrap: "wrap",
alignItems: "center",
gap: "15px",
maxWidth: "350px",
width: "100%", // damit bei kleinen Screens die Box maximal voll breit ist
boxSizing: "border-box"
});
// Innerer Container mit Flexbox für Ausrichtung der Elemente, flex-grow damit Inputs genug Platz bekommen
const container = $('<div></div>').css({
display: "flex",
alignItems: "center",
gap: "10px",
flexWrap: "wrap",
flexGrow: 1,
minWidth: "0" // wichtig für flexbox Overflow Handling
});
// Checkbox mit Label
const checkbox = $(`<input type="checkbox" id="${checkboxId}" checked />`);
const label = $(`<label for="${checkboxId}" style="font-weight: 600; min-width: 140px; cursor: pointer; white-space: nowrap;">${header}</label>`);
container.append(checkbox).append(label);
if (isNumerical) {
// Werte ermitteln (nur gültige Zahlen)
const numericValues = dataArray
.map(row => parseFloat(row[headers.indexOf(header)]))
.filter(val => !isNaN(val));
const minVal = numericValues.length > 0 ? Math.min(...numericValues) : 0;
const maxVal = numericValues.length > 0 ? Math.max(...numericValues) : 100;
// Min Input mit Label
const minWrapper = $('<div></div>').css({
display: "flex",
flexDirection: "column",
alignItems: "flex-start",
minWidth: "90px"
});
const minLabel = $('<label></label>').attr("for", minInputId).text("Min").css({
fontSize: "0.75rem",
color: "#555",
marginBottom: "2px"
});
const minInput = $(`<input type="number" id="${minInputId}" placeholder="min" />`).css({
width: "80px",
padding: "5px 8px",
borderRadius: "5px",
border: "1px solid #ccc",
boxShadow: "inset 0 1px 3px rgba(0,0,0,0.1)",
transition: "border-color 0.3s ease"
});
minInput.attr("min", minVal);
minInput.attr("max", maxVal);
minInput.on("focus", function () {
$(this).css("border-color", "#007BFF");
});
minInput.on("blur", function () {
$(this).css("border-color", "#ccc");
});
minWrapper.append(minLabel).append(minInput);
// Max Input mit Label
const maxWrapper = $('<div></div>').css({
display: "flex",
flexDirection: "column",
alignItems: "flex-start",
minWidth: "90px"
});
const maxLabel = $('<label></label>').attr("for", maxInputId).text("Max").css({
fontSize: "0.75rem",
color: "#555",
marginBottom: "2px"
});
const maxInput = $(`<input type="number" id="${maxInputId}" placeholder="max" />`).css({
width: "80px",
padding: "5px 8px",
borderRadius: "5px",
border: "1px solid #ccc",
boxShadow: "inset 0 1px 3px rgba(0,0,0,0.1)",
transition: "border-color 0.3s ease"
});
maxInput.attr("min", minVal);
maxInput.attr("max", maxVal);
maxInput.on("focus", function () {
$(this).css("border-color", "#007BFF");
});
maxInput.on("blur", function () {
$(this).css("border-color", "#ccc");
});
maxWrapper.append(maxLabel).append(maxInput);
// Events für min/max Eingaben
minInput.on("input", function () {
const val = parseFloat($(this).val());
minMaxLimits[header].min = isNaN(val) ? null : val;
updatePlot();
});
maxInput.on("input", function () {
const val = parseFloat($(this).val());
minMaxLimits[header].max = isNaN(val) ? null : val;
updatePlot();
});
container.append(minWrapper).append(maxWrapper);
}
// Checkbox Change Event
checkbox.on("change", function () {
columnVisibility[header] = $(this).is(":checked");
updatePlot();
});
boxWrapper.append(container);
// Jede Box bekommt ihren eigenen Block (also newline)
controlContainer.append(boxWrapper);
} catch (error) {
console.error(`Fehler bei Header '${header}':`, error);
}
});
// Erzeuge Ergebnis-Auswahl für Farbskala (color by result)
const resultSelectId = "result-select";
let resultSelect = $(`#${resultSelectId}`);
if (resultSelect.length === 0) {
resultSelect = $(`<select id="${resultSelectId}"></select>`);
controlContainer.before(resultSelect);
} else {
resultSelect.empty();
}
resultSelect.append('<option value="none">No color</option>');
for (let i = 0; i < resultNames.length; i++) {
let minMaxInfo = "min [auto]";
if (typeof result_min_max !== "undefined" && result_min_max[i] !== undefined) {
minMaxInfo = result_min_max[i];
}
resultSelect.append(`<option value="${resultNames[i]}">${resultNames[i]} (${minMaxInfo})</option>`);
}
let colorValues = null;
let colorScale = null;
resultSelect.off("change").on("change", function () {
const selectedResult = $(this).val();
if (selectedResult === "none") {
colorValues = null;
colorScale = null;
} else {
const col = numericalCols.find(c => c.name.toLowerCase() === selectedResult.toLowerCase());
if (!col) {
colorValues = null;
colorScale = null;
updatePlot();
return;
}
colorValues = dataArray.map(row => parseFloat(row[col.index]));
let invertColor = false;
if (typeof result_min_max !== "undefined") {
const idx = resultNames.indexOf(selectedResult);
if (idx !== -1) {
invertColor = result_min_max[idx] === "max";
}
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
}
updatePlot();
});
// Initial Auswahl: kein Farbwert, oder erstes Ergebnis falls nur eins
if (resultNames.length === 1) {
resultSelect.val(resultNames[0]).trigger("change");
} else {
resultSelect.val("none").trigger("change");
}
function updatePlot() {
try {
// Filter Spalten nach Checkboxen
const filteredNumericalCols = numericalCols.filter(col => columnVisibility[col.name]);
const filteredCategoricalCols = categoricalCols.filter(col => columnVisibility[col.name]);
// Filtere die Datenzeilen, um nur die zu behalten, die innerhalb aller gesetzten Min/Max Limits liegen
const filteredData = dataArray.filter(row => {
for (let col of filteredNumericalCols) {
const val = parseFloat(row[col.index]);
if (isNaN(val)) return false; // ungültiger Wert raus
const limits = minMaxLimits[col.name];
if (limits.min !== null && val < limits.min) return false;
if (limits.max !== null && val > limits.max) return false;
}
// Kategorische Werte ignorieren Filter (könntest hier evtl. erweitern)
return true;
});
const dimensions = [];
// Füge numerische Dimensionen hinzu mit Min/Max Limits (Range anhand gefilterter Daten)
filteredNumericalCols.forEach(col => {
let vals = filteredData.map(row => parseFloat(row[col.index]));
// Fallback falls alle Werte NaN (sollte eigentlich nicht vorkommen)
const realMin = vals.length > 0 ? Math.min(...vals) : 0;
const realMax = vals.length > 0 ? Math.max(...vals) : 100;
dimensions.push({
label: col.name,
values: vals,
range: [realMin, realMax]
});
});
// Kategorische Dimensionen (aus gefilterten Daten)
filteredCategoricalCols.forEach(col => {
const vals = filteredData.map(row => categoryMappings[col.name][row[col.index]]);
dimensions.push({
label: col.name,
values: vals,
tickvals: Object.values(categoryMappings[col.name]),
ticktext: Object.keys(categoryMappings[col.name])
});
});
// Linienfarbe bestimmen, falls Farbskala gesetzt ist
let filteredColorValues = null;
if (colorValues) {
// Da colorValues für alle Daten sind, filtere sie auch entsprechend
filteredColorValues = filteredData.map(row => {
const col = numericalCols.find(c => c.name.toLowerCase() === resultSelect.val().toLowerCase());
return col ? parseFloat(row[col.index]) : null;
});
}
const trace = {
type: 'parcoords',
dimensions: dimensions,
line: filteredColorValues ? { color: filteredColorValues, colorscale: colorScale } : {},
unselected: {
line: {
color: get_text_color(),
opacity: 0
}
},
};
dimensions.forEach(dim => {
if (!dim.line) {
dim.line = {};
}
if (!dim.line.color) {
dim.line.color = 'rgba(169,169,169, 0.01)';
}
});
Plotly.newPlot('parallel-plot', [trace], add_default_layout_data({}));
make_text_in_parallel_plot_nicer();
} catch (error) {
console.error("Fehler in updatePlot():", error);
}
}
updatePlot();
$("#parallel-plot").data("loaded", "true");
make_text_in_parallel_plot_nicer();
} catch (err) {
console.error("Error in createParallelPlot:", err);
}
}
function plotWorkerUsage() {
if($("#workerUsagePlot").data("loaded") == "true") {
return;
}
var data = tab_worker_usage_csv_json;
if (!Array.isArray(data) || data.length === 0) {
console.error("Invalid or empty data provided.");
return;
}
let timestamps = [];
let desiredWorkers = [];
let realWorkers = [];
for (let i = 0; i < data.length; i++) {
let entry = data[i];
if (!Array.isArray(entry) || entry.length < 3) {
console.warn("Skipping invalid entry:", entry);
continue;
}
let unixTime = parseFloat(entry[0]);
let desired = parseInt(entry[1], 10);
let real = parseInt(entry[2], 10);
if (isNaN(unixTime) || isNaN(desired) || isNaN(real)) {
console.warn("Skipping invalid numerical values:", entry);
continue;
}
timestamps.push(new Date(unixTime * 1000).toISOString());
desiredWorkers.push(desired);
realWorkers.push(real);
}
let trace1 = {
x: timestamps,
y: desiredWorkers,
mode: 'lines+markers',
name: 'Desired Workers',
line: {
color: 'blue'
}
};
let trace2 = {
x: timestamps,
y: realWorkers,
mode: 'lines+markers',
name: 'Real Workers',
line: {
color: 'red'
}
};
let layout = {
title: "Worker Usage Over Time",
xaxis: {
title: get_axis_title_data("Time", "date")
},
yaxis: {
title: get_axis_title_data("Number of Workers")
},
legend: {
x: 0,
y: 1
}
};
Plotly.newPlot('workerUsagePlot', [trace1, trace2], add_default_layout_data(layout));
$("#workerUsagePlot").data("loaded", "true");
}
function plotCPUAndRAMUsage() {
if($("#mainWorkerCPURAM").data("loaded") == "true") {
return;
}
var timestamps = tab_main_worker_cpu_ram_csv_json.map(row => new Date(row[0] * 1000));
var ramUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[1]);
var cpuUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[2]);
var trace1 = {
x: timestamps,
y: cpuUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'CPU Usage (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: ramUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'RAM Usage (MB)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'CPU and RAM Usage Over Time',
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
overlaying: 'y',
side: 'right',
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var data = [trace1, trace2];
Plotly.newPlot('mainWorkerCPURAM', data, add_default_layout_data(layout));
$("#mainWorkerCPURAM").data("loaded", "true");
}
function plotScatter2d() {
if ($("#plotScatter2d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter2d");
var minInput = document.getElementById("minValue");
var maxInput = document.getElementById("maxValue");
if (!minInput || !maxInput) {
minInput = document.createElement("input");
minInput.id = "minValue";
minInput.type = "number";
minInput.placeholder = "Min Value";
minInput.step = "any";
maxInput = document.createElement("input");
maxInput.id = "maxValue";
maxInput.type = "number";
maxInput.placeholder = "Max Value";
maxInput.step = "any";
var inputContainer = document.createElement("div");
inputContainer.style.marginBottom = "10px";
inputContainer.appendChild(minInput);
inputContainer.appendChild(maxInput);
plotDiv.appendChild(inputContainer);
}
var resultSelect = document.getElementById("resultSelect");
if (result_names.length > 1 && !resultSelect) {
resultSelect = document.createElement("select");
resultSelect.id = "resultSelect";
resultSelect.style.marginBottom = "10px";
var sortedResults = [...result_names].sort();
sortedResults.forEach(result => {
var option = document.createElement("option");
option.value = result;
option.textContent = result;
resultSelect.appendChild(option);
});
var selectContainer = document.createElement("div");
selectContainer.style.marginBottom = "10px";
selectContainer.appendChild(resultSelect);
plotDiv.appendChild(selectContainer);
}
minInput.addEventListener("input", updatePlots);
maxInput.addEventListener("input", updatePlots);
if (resultSelect) {
resultSelect.addEventListener("change", updatePlots);
}
updatePlots();
async function updatePlots() {
var minValue = parseFloat(minInput.value);
var maxValue = parseFloat(maxInput.value);
if (isNaN(minValue)) minValue = -Infinity;
if (isNaN(maxValue)) maxValue = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var selectedResult = resultSelect ? resultSelect.value : result_names[0];
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue !== -Infinity) minResult = Math.max(minResult, minValue);
if (maxValue !== Infinity) maxResult = Math.min(maxResult, maxValue);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
!col.startsWith("OO_Info") &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 2) {
console.error("Not enough columns for Scatter-Plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
showlegend: false
};
let subDiv = document.createElement("div");
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
symbol: data.map(d => d.result === null ? 'x' : 'circle'),
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter',
showlegend: false
};
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
$("#plotScatter2d").data("loaded", "true");
}
function plotScatter3d() {
if ($("#plotScatter3d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter3d");
if (!plotDiv) {
console.error("Div element with id 'plotScatter3d' not found");
return;
}
plotDiv.innerHTML = "";
var minInput3d = document.getElementById("minValue3d");
var maxInput3d = document.getElementById("maxValue3d");
if (!minInput3d || !maxInput3d) {
minInput3d = document.createElement("input");
minInput3d.id = "minValue3d";
minInput3d.type = "number";
minInput3d.placeholder = "Min Value";
minInput3d.step = "any";
maxInput3d = document.createElement("input");
maxInput3d.id = "maxValue3d";
maxInput3d.type = "number";
maxInput3d.placeholder = "Max Value";
maxInput3d.step = "any";
var inputContainer3d = document.createElement("div");
inputContainer3d.style.marginBottom = "10px";
inputContainer3d.appendChild(minInput3d);
inputContainer3d.appendChild(maxInput3d);
plotDiv.appendChild(inputContainer3d);
}
var select3d = document.getElementById("select3dScatter");
if (result_names.length > 1 && !select3d) {
if (!select3d) {
select3d = document.createElement("select");
select3d.id = "select3dScatter";
select3d.style.marginBottom = "10px";
select3d.innerHTML = result_names.map(name => `<option value="${name}">${name}</option>`).join("");
select3d.addEventListener("change", updatePlots3d);
plotDiv.appendChild(select3d);
}
}
minInput3d.addEventListener("input", updatePlots3d);
maxInput3d.addEventListener("input", updatePlots3d);
updatePlots3d();
async function updatePlots3d() {
var selectedResult = select3d ? select3d.value : result_names[0];
var minValue3d = parseFloat(minInput3d.value);
var maxValue3d = parseFloat(maxInput3d.value);
if (isNaN(minValue3d)) minValue3d = -Infinity;
if (isNaN(maxValue3d)) maxValue3d = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue3d !== -Infinity) minResult = Math.max(minResult, minValue3d);
if (maxValue3d !== Infinity) maxResult = Math.min(maxResult, maxValue3d);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
!col.startsWith("OO_Info") &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 3) {
console.error("Not enough columns for 3D scatter plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
for (let k = j + 1; k < numericColumns.length; k++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let zCol = numericColumns[k];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let zIndex = tab_results_headers_json.indexOf(zCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
z: parseFloat(row[zIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y) vs ${zCol} (z), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
scene: {
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
zaxis: {
title: get_axis_title_data(zCol)
}
},
showlegend: false
};
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
z: data.map(d => d.z),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter3d',
showlegend: false
};
let subDiv = document.createElement("div");
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
}
$("#plotScatter3d").data("loaded", "true");
}
async function plot_worker_cpu_ram() {
if($("#worker_cpu_ram_pre").data("loaded") == "true") {
return;
}
const logData = $("#worker_cpu_ram_pre").text();
const regex = /^Unix-Timestamp: (\d+), Hostname: ([\w-]+), CPU: ([\d.]+)%, RAM: ([\d.]+) MB \/ ([\d.]+) MB$/;
const hostData = {};
logData.split("\n").forEach(line => {
line = line.trim();
const match = line.match(regex);
if (match) {
const timestamp = new Date(parseInt(match[1]) * 1000);
const hostname = match[2];
const cpu = parseFloat(match[3]);
const ram = parseFloat(match[4]);
if (!hostData[hostname]) {
hostData[hostname] = { timestamps: [], cpuUsage: [], ramUsage: [] };
}
hostData[hostname].timestamps.push(timestamp);
hostData[hostname].cpuUsage.push(cpu);
hostData[hostname].ramUsage.push(ram);
}
});
if (!Object.keys(hostData).length) {
console.log("No valid data found");
return;
}
const container = document.getElementById("cpuRamWorkerChartContainer");
container.innerHTML = "";
var i = 1;
Object.entries(hostData).forEach(([hostname, { timestamps, cpuUsage, ramUsage }], index) => {
const chartId = `workerChart_${index}`;
const chartDiv = document.createElement("div");
chartDiv.id = chartId;
chartDiv.style.marginBottom = "40px";
container.appendChild(chartDiv);
const cpuTrace = {
x: timestamps,
y: cpuUsage,
mode: "lines+markers",
name: "CPU Usage (%)",
yaxis: "y1",
line: {
color: "red"
}
};
const ramTrace = {
x: timestamps,
y: ramUsage,
mode: "lines+markers",
name: "RAM Usage (MB)",
yaxis: "y2",
line: {
color: "blue"
}
};
const layout = {
title: `Worker CPU and RAM Usage - ${hostname}`,
xaxis: {
title: get_axis_title_data("Timestamp", "date")
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
side: "left",
color: "red"
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
side: "right",
overlaying: "y",
color: "blue"
},
showlegend: true
};
Plotly.newPlot(chartId, [cpuTrace, ramTrace], add_default_layout_data(layout));
i++;
});
$("#plot_worker_cpu_ram_button").remove();
$("#worker_cpu_ram_pre").data("loaded", "true");
}
function load_log_file(log_nr, filename) {
var pre_id = `single_run_${log_nr}_pre`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}&filename=${filename}`;
fetch(url)
.then(response => response.json())
.then(data => {
if (data.data) {
$("#" + pre_id).html(data.data);
$("#" + pre_id).data("loaded", true);
} else {
log(`No 'data' key found in response.`);
}
$("#spinner_log_" + log_nr).remove();
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#spinner_log_" + log_nr).remove();
});
}
}
function load_debug_log () {
var pre_id = `here_debuglogs_go`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_debug_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}`;
fetch(url)
.then(response => response.json())
.then(data => {
$("#debug_log_spinner").remove();
if (data.data) {
try {
$("#" + pre_id).html(data.data);
} catch (err) {
$("#" + pre_id).text(`Error loading data: ${err}`);
}
$("#" + pre_id).data("loaded", true);
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
} else {
log(`No 'data' key found in response.`);
}
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#debug_log_spinner").remove();
});
}
}
function plotBoxplot() {
if ($("#plotBoxplot").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
!col.startsWith("OO_Info") &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough numeric columns for Boxplot");
return;
}
var resultIndex = tab_results_headers_json.findIndex(function(header) {
return result_names.includes(header.toLowerCase());
});
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
var plotDiv = document.getElementById("plotBoxplot");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'box',
name: col,
boxmean: 'sd',
marker: {
color: 'rgb(0, 255, 0)'
},
};
});
let layout = {
title: 'Boxplot of Numerical Columns',
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Value")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotBoxplot").data("loaded", "true");
}
function plotHeatmap() {
if ($("#plotHeatmap").data("loaded") === "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col => {
if (special_col_names.includes(col) || result_names.includes(col)) {
return false;
}
if (!col.startsWith("OO_Info")) {
return true;
}
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.every(row => {
let value = parseFloat(row[index]);
return !isNaN(value) && isFinite(value);
});
});
if (numericColumns.length < 2) {
console.error("Not enough valid numeric columns for Heatmap");
return;
}
var columnData = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.map(row => parseFloat(row[index]));
});
var dataMatrix = numericColumns.map((_, i) =>
numericColumns.map((_, j) => {
let values = columnData[i].map((val, index) => (val + columnData[j][index]) / 2);
return values.reduce((a, b) => a + b, 0) / values.length;
})
);
var trace = {
z: dataMatrix,
x: numericColumns,
y: numericColumns,
colorscale: 'Viridis',
type: 'heatmap'
};
var layout = {
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
var plotDiv = document.getElementById("plotHeatmap");
plotDiv.innerHTML = "";
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotHeatmap").data("loaded", "true");
}
function plotHistogram() {
if ($("#plotHistogram").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
!col.startsWith("OO_Info") &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Histogram");
return;
}
var plotDiv = document.getElementById("plotHistogram");
plotDiv.innerHTML = "";
const colorPalette = ['#ff9999', '#66b3ff', '#99ff99', '#ffcc99', '#c2c2f0', '#ffb3e6'];
let traces = numericColumns.map((col, index) => {
let data = tab_results_csv_json.map(row => parseFloat(row[tab_results_headers_json.indexOf(col)]));
return {
x: data,
type: 'histogram',
name: col,
opacity: 0.7,
marker: {
color: colorPalette[index % colorPalette.length]
},
autobinx: true
};
});
let layout = {
title: 'Histogram of Numerical Columns',
xaxis: {
title: get_axis_title_data("Value")
},
yaxis: {
title: get_axis_title_data("Frequency")
},
showlegend: true,
barmode: 'overlay'
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotHistogram").data("loaded", "true");
}
function plotViolin() {
if ($("#plotViolin").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
!col.startsWith("OO_Info") &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Violin Plot");
return;
}
var plotDiv = document.getElementById("plotViolin");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'violin',
name: col,
box: {
visible: true
},
line: {
color: 'rgb(0, 255, 0)'
},
marker: {
color: 'rgb(0, 255, 0)'
},
meanline: {
visible: true
},
};
});
let layout = {
title: 'Violin Plot of Numerical Columns',
yaxis: {
title: get_axis_title_data("Value")
},
xaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotViolin").data("loaded", "true");
}
function plotExitCodesPieChart() {
if ($("#plotExitCodesPieChart").data("loaded") == "true") {
return;
}
var exitCodes = tab_results_csv_json.map(row => row[tab_results_headers_json.indexOf("exit_code")]);
var exitCodeCounts = exitCodes.reduce(function(counts, exitCode) {
counts[exitCode] = (counts[exitCode] || 0) + 1;
return counts;
}, {});
var labels = Object.keys(exitCodeCounts);
var values = Object.values(exitCodeCounts);
var plotDiv = document.getElementById("plotExitCodesPieChart");
plotDiv.innerHTML = "";
var trace = {
labels: labels,
values: values,
type: 'pie',
hoverinfo: 'label+percent',
textinfo: 'label+value',
marker: {
colors: ['#ff9999','#66b3ff','#99ff99','#ffcc99','#c2c2f0']
}
};
var layout = {
title: 'Exit Code Distribution',
showlegend: true
};
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotExitCodesPieChart").data("loaded", "true");
}
function plotResultEvolution() {
if ($("#plotResultEvolution").data("loaded") == "true") {
return;
}
result_names.forEach(resultName => {
var relevantColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !col.startsWith("OO_Info") && col.toLowerCase() !== resultName.toLowerCase()
);
var xColumnIndex = tab_results_headers_json.indexOf("trial_index");
var resultIndex = tab_results_headers_json.indexOf(resultName);
let data = tab_results_csv_json.map(row => ({
x: row[xColumnIndex],
y: parseFloat(row[resultIndex])
}));
data.sort((a, b) => a.x - b.x);
let xData = data.map(item => item.x);
let yData = data.map(item => item.y);
let trace = {
x: xData,
y: yData,
mode: 'lines+markers',
name: resultName,
line: {
shape: 'linear'
},
marker: {
size: get_marker_size()
}
};
let layout = {
title: `Evolution of ${resultName} over time`,
xaxis: {
title: get_axis_title_data("Trial-Index")
},
yaxis: {
title: get_axis_title_data(resultName)
},
showlegend: true
};
let subDiv = document.createElement("div");
document.getElementById("plotResultEvolution").appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
});
$("#plotResultEvolution").data("loaded", "true");
}
function plotResultPairs() {
if ($("#plotResultPairs").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotResultPairs");
plotDiv.innerHTML = "";
for (let i = 0; i < result_names.length; i++) {
for (let j = i + 1; j < result_names.length; j++) {
let xName = result_names[i];
let yName = result_names[j];
let xIndex = tab_results_headers_json.indexOf(xName);
let yIndex = tab_results_headers_json.indexOf(yName);
let data = tab_results_csv_json
.filter(row => row[xIndex] !== "" && row[yIndex] !== "")
.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
status: row[tab_results_headers_json.indexOf("trial_status")]
}));
let colors = data.map(d => d.status === "COMPLETED" ? 'green' : (d.status === "FAILED" ? 'red' : 'gray'));
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: colors
},
text: data.map(d => `Status: ${d.status}`),
type: 'scatter',
showlegend: false
};
let layout = {
xaxis: {
title: get_axis_title_data(xName)
},
yaxis: {
title: get_axis_title_data(yName)
},
showlegend: false
};
let subDiv = document.createElement("div");
plotDiv.appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
$("#plotResultPairs").data("loaded", "true");
}
function add_up_down_arrows_for_scrolling () {
const upArrow = document.createElement('div');
const downArrow = document.createElement('div');
const style = document.createElement('style');
style.innerHTML = `
.scroll-arrow {
position: fixed;
right: 10px;
z-index: 100;
cursor: pointer;
font-size: 25px;
display: none;
background-color: green;
color: white;
padding: 5px;
outline: 2px solid white;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.5);
transition: background-color 0.3s, transform 0.3s;
}
.scroll-arrow:hover {
background-color: darkgreen;
transform: scale(1.1);
}
#up-arrow {
top: 10px;
}
#down-arrow {
bottom: 10px;
}
`;
document.head.appendChild(style);
upArrow.id = "up-arrow";
upArrow.classList.add("scroll-arrow");
upArrow.classList.add("invert_in_dark_mode");
upArrow.innerHTML = "↑";
downArrow.id = "down-arrow";
downArrow.classList.add("scroll-arrow");
downArrow.classList.add("invert_in_dark_mode");
downArrow.innerHTML = "↓";
document.body.appendChild(upArrow);
document.body.appendChild(downArrow);
function checkScrollPosition() {
const scrollPosition = window.scrollY;
const pageHeight = document.documentElement.scrollHeight;
const windowHeight = window.innerHeight;
if (scrollPosition > 0) {
upArrow.style.display = "block";
} else {
upArrow.style.display = "none";
}
if (scrollPosition + windowHeight < pageHeight) {
downArrow.style.display = "block";
} else {
downArrow.style.display = "none";
}
}
window.addEventListener("scroll", checkScrollPosition);
upArrow.addEventListener("click", function () {
window.scrollTo({ top: 0, behavior: 'smooth' });
});
downArrow.addEventListener("click", function () {
window.scrollTo({ top: document.documentElement.scrollHeight, behavior: 'smooth' });
});
checkScrollPosition();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
function plotGPUUsage() {
if ($("#tab_gpu_usage").data("loaded") === "true") {
return;
}
Object.keys(gpu_usage).forEach(node => {
const nodeData = gpu_usage[node];
var timestamps = [];
var gpuUtilizations = [];
var temperatures = [];
nodeData.forEach(entry => {
try {
var timestamp = new Date(entry[0]* 1000);
var utilization = parseFloat(entry[1]);
var temperature = parseFloat(entry[2]);
if (!isNaN(timestamp) && !isNaN(utilization) && !isNaN(temperature)) {
timestamps.push(timestamp);
gpuUtilizations.push(utilization);
temperatures.push(temperature);
} else {
console.warn("Invalid data point:", entry);
}
} catch (error) {
console.error("Error processing GPU data entry:", error, entry);
}
});
var trace1 = {
x: timestamps,
y: gpuUtilizations,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Utilization (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: temperatures,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Temperature (°C)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'GPU Usage Over Time - ' + node,
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("GPU Utilization (%)"),
overlaying: 'y',
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("GPU Temperature (°C)"),
overlaying: 'y',
side: 'right',
position: 0.85,
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var divId = 'gpu_usage_plot_' + node;
if (!document.getElementById(divId)) {
var div = document.createElement('div');
div.id = divId;
div.className = 'gpu-usage-plot';
document.getElementById('tab_gpu_usage').appendChild(div);
}
var plotData = [trace1, trace2];
Plotly.newPlot(divId, plotData, add_default_layout_data(layout));
});
$("#tab_gpu_usage").data("loaded", "true");
}
function plotResultsDistributionByGenerationMethod() {
if ("true" === $("#plotResultsDistributionByGenerationMethod").data("loaded")) {
return;
}
var res_col = result_names[0];
var gen_method_col = "generation_node";
var data = {};
tab_results_csv_json.forEach(row => {
var gen_method = row[tab_results_headers_json.indexOf(gen_method_col)];
var result = row[tab_results_headers_json.indexOf(res_col)];
if (!data[gen_method]) {
data[gen_method] = [];
}
data[gen_method].push(result);
});
var traces = Object.keys(data).map(method => {
return {
y: data[method],
type: 'box',
name: method,
boxpoints: 'outliers',
jitter: 0.5,
pointpos: 0
};
});
var layout = {
title: 'Distribution of Results by Generation Method',
yaxis: {
title: get_axis_title_data(res_col)
},
xaxis: {
title: get_axis_title_data("Generation Method")
},
boxmode: 'group'
};
Plotly.newPlot("plotResultsDistributionByGenerationMethod", traces, add_default_layout_data(layout));
$("#plotResultsDistributionByGenerationMethod").data("loaded", "true");
}
function plotJobStatusDistribution() {
if ($("#plotJobStatusDistribution").data("loaded") === "true") {
return;
}
var status_col = "trial_status";
var status_counts = {};
tab_results_csv_json.forEach(row => {
var status = row[tab_results_headers_json.indexOf(status_col)];
if (status) {
status_counts[status] = (status_counts[status] || 0) + 1;
}
});
var statuses = Object.keys(status_counts);
var counts = Object.values(status_counts);
var colors = statuses.map((status, i) =>
status === "FAILED" ? "#FF0000" : `hsl(${30 + ((i * 137) % 330)}, 70%, 50%)`
);
var trace = {
x: statuses,
y: counts,
type: 'bar',
marker: { color: colors }
};
var layout = {
title: 'Distribution of Job Status',
xaxis: { title: 'Trial Status' },
yaxis: { title: 'Nr. of jobs' }
};
Plotly.newPlot("plotJobStatusDistribution", [trace], add_default_layout_data(layout));
$("#plotJobStatusDistribution").data("loaded", "true");
}
function _colorize_table_entries_by_generation_method () {
document.querySelectorAll('[data-column-id="generation_node"]').forEach(el => {
let text = el.textContent.toLowerCase();
let color = text.includes("manual") ? "green" :
text.includes("sobol") ? "orange" :
text.includes("saasbo") ? "pink" :
text.includes("uniform") ? "lightblue" :
text.includes("legacy_gpei") ? "sienna" :
text.includes("bo_mixed") ? "aqua" :
text.includes("randomforest") ? "darkseagreen" :
text.includes("external_generator") ? "purple" :
text.includes("botorch") ? "yellow" : "";
if (color !== "") {
el.style.backgroundColor = color;
}
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_trial_status () {
document.querySelectorAll('[data-column-id="trial_status"]').forEach(el => {
let color = el.textContent.includes("COMPLETED") ? "lightgreen" :
el.textContent.includes("RUNNING") ? "orange" :
el.textContent.includes("FAILED") ? "red" :
el.textContent.includes("CANDIDATE") ? "lightblue" :
el.textContent.includes("ABANDONED") ? "yellow" : "";
if (color) el.style.backgroundColor = color;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_queue_time() {
let cells = [...document.querySelectorAll('[data-column-id="queue_time"]')];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => !isNaN(v));
if (values.length === 0) return;
let min = Math.min(...values);
let max = Math.max(...values);
let range = max - min || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value)) return;
let ratio = (value - min) / range;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_run_time() {
let cells = [...document.querySelectorAll('[data-column-id="run_time"]')];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => !isNaN(v));
if (values.length === 0) return;
let min = Math.min(...values);
let max = Math.max(...values);
let range = max - min || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value)) return;
let ratio = (value - min) / range;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_results() {
result_names.forEach((name, index) => {
let minMax = result_min_max[index];
let selector_query = `[data-column-id="${name}"]`;
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => v > 0 && !isNaN(v));
if (values.length === 0) return;
let logValues = values.map(v => Math.log(v));
let logMin = Math.min(...logValues);
let logMax = Math.max(...logValues);
let logRange = logMax - logMin || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value) || value <= 0) return;
let logValue = Math.log(value);
let ratio = (logValue - logMin) / logRange;
if (minMax === "max") ratio = 1 - ratio;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
});
}
function _colorize_table_entries_by_generation_node_or_hostname() {
["hostname", "generation_node"].forEach(element => {
let selector_query = '[data-column-id="' + element + '"]:not(.gridjs-th)';
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let uniqueValues = [...new Set(cells.map(el => el.textContent.trim()))];
let colorMap = {};
uniqueValues.forEach((value, index) => {
let hue = Math.round((360 / uniqueValues.length) * index);
colorMap[value] = `hsl(${hue}, 70%, 60%)`;
});
cells.forEach(el => {
let value = el.textContent.trim();
if (colorMap[value]) {
el.style.backgroundColor = colorMap[value];
el.classList.add("invert_in_dark_mode");
}
});
});
}
function colorize_table_entries () {
setTimeout(() => {
if (typeof result_names !== "undefined" && Array.isArray(result_names) && result_names.length > 0) {
_colorize_table_entries_by_trial_status();
_colorize_table_entries_by_results();
_colorize_table_entries_by_run_time();
_colorize_table_entries_by_queue_time();
_colorize_table_entries_by_generation_method();
_colorize_table_entries_by_generation_node_or_hostname();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
}, 300);
}
function add_colorize_to_gridjs_table () {
let searchInput = document.querySelector(".gridjs-search-input");
if (searchInput) {
searchInput.addEventListener("input", colorize_table_entries);
}
}
function updatePreWidths() {
var width = window.innerWidth * 0.95;
var pres = document.getElementsByTagName('pre');
for (var i = 0; i < pres.length; i++) {
pres[i].style.width = width + 'px';
}
}
function demo_mode(nr_sec = 3) {
let i = 0;
let tabs = $('menu[role="tablist"] > button');
setInterval(() => {
tabs.attr('aria-selected', 'false').removeClass('active');
let tab = tabs.eq(i % tabs.length);
tab.attr('aria-selected', 'true').addClass('active');
tab.trigger('click');
i++;
}, nr_sec * 1000);
}
function resizePlotlyCharts() {
const plotlyElements = document.querySelectorAll('.js-plotly-plot');
if (plotlyElements.length) {
const windowWidth = window.innerWidth;
const windowHeight = window.innerHeight;
const newWidth = windowWidth * 0.9;
const newHeight = windowHeight * 0.9;
plotlyElements.forEach(function(element, index) {
const layout = {
width: newWidth,
height: newHeight,
plot_bgcolor: 'rgba(0, 0, 0, 0)',
paper_bgcolor: 'rgba(0, 0, 0, 0)',
};
Plotly.relayout(element, layout)
});
}
make_text_in_parallel_plot_nicer();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
function plotTimelineFromGlobals() {
if (
typeof tab_results_headers_json === "undefined" ||
typeof tab_results_csv_json === "undefined" ||
!Array.isArray(tab_results_headers_json) ||
!Array.isArray(tab_results_csv_json)
) {
console.warn("Global variables 'tab_results_headers_json' or 'tab_results_csv_json' missing or invalid.");
return null;
}
const headers = tab_results_headers_json;
const data = tab_results_csv_json;
const col = name => headers.indexOf(name);
const ix_trial_index = col("trial_index");
const ix_start_time = col("start_time");
const ix_end_time = col("end_time");
const ix_status = col("trial_status");
if ([ix_trial_index, ix_start_time, ix_end_time, ix_status].some(ix => ix === -1)) {
console.warn("One or more needed columns missing");
return null;
}
const traces = [];
// Add dummy traces for legend
traces.push({
type: "scatter",
mode: "lines",
x: [null, null],
y: [null, null],
line: { color: "green", width: 4 },
name: "COMPLETED",
showlegend: true,
hoverinfo: "none"
});
traces.push({
type: "scatter",
mode: "lines",
x: [null, null],
y: [null, null],
line: { color: "yellow", width: 4 },
name: "RUNNING",
showlegend: true,
hoverinfo: "none"
});
traces.push({
type: "scatter",
mode: "lines",
x: [null, null],
y: [null, null],
line: { color: "red", width: 4 },
name: "FAILED/OTHER",
showlegend: true,
hoverinfo: "none"
});
for (const row of data) {
const trial_index = row[ix_trial_index];
const start = row[ix_start_time];
const end = row[ix_end_time];
const status = row[ix_status];
if (
trial_index === "" || start === "" || end === "" ||
isNaN(start) || isNaN(end)
) continue;
let color = "red"; // default
if (status === "COMPLETED") color = "green";
else if (status === "RUNNING") color = "yellow";
traces.push({
type: "scatter",
mode: "lines",
x: [new Date(start * 1000), new Date(end * 1000)],
y: [trial_index, trial_index],
line: { color: color, width: 4 },
name: `Trial ${trial_index} (${status})`,
showlegend: false,
hoverinfo: "x+y+name"
});
}
if (traces.length <= 3) { // only dummy traces added
console.warn("No valid data for plotting found.");
return null;
}
const layout = {
title: "Trial Timeline",
xaxis: {
title: "Time",
type: "date"
},
yaxis: {
title: "Trial Index",
autorange: "reversed"
},
margin: { t: 50 }
};
Plotly.newPlot('plot_timeline', traces, add_default_layout_data(layout));
return true;
}
function createResultParameterCanvases(this_res_name) {
if (
typeof special_col_names === "undefined" ||
typeof result_names === "undefined" ||
typeof result_min_max === "undefined" ||
typeof tab_results_headers_json === "undefined" ||
typeof tab_results_csv_json === "undefined"
) {
console.error("Missing one or more required global variables.");
return null;
}
if (
!Array.isArray(special_col_names) ||
!Array.isArray(result_names) ||
!Array.isArray(result_min_max) ||
!Array.isArray(tab_results_headers_json) ||
!Array.isArray(tab_results_csv_json)
) {
console.error("All inputs must be arrays.");
return null;
}
function getColumnIndexMap(headers) {
var map = {};
for (var i = 0; i < headers.length; i++) {
map[headers[i]] = i;
}
return map;
}
function getColumnData(data, index) {
var result = [];
for (var i = 0; i < data.length; i++) {
result.push(data[i][index]);
}
return result;
}
function normalize(value, min, max) {
if (max === min) {
return 0.5;
}
return (value - min) / (max - min);
}
function interpolateColor(ratio, reverse) {
var r = reverse ? ratio : 1 - ratio;
var g = reverse ? 1 - ratio : ratio;
var b = 0;
r = Math.floor(r * 255);
g = Math.floor(g * 255);
return "rgb(" + r + "," + g + "," + b + ")";
}
function createCanvas(width, height) {
var canvas = document.createElement("canvas");
canvas.width = width;
canvas.height = height;
return canvas;
}
function isNumericArray(arr) {
for (var i = 0; i < arr.length; i++) {
var val = arr[i];
if (typeof val !== "number" || isNaN(val)) {
return false;
}
}
return true;
}
function findBestRowIndex() {
var bestIndex = 0;
for (var i = 1; i < tab_results_csv_json.length; i++) {
var better = false;
for (var r = 0; r < result_names.length; r++) {
var col = result_names[r];
var colIdx = header_map[col];
var goal = result_min_max[r]; // "min" or "max"
var valCurrent = tab_results_csv_json[i][colIdx];
var valBest = tab_results_csv_json[bestIndex][colIdx];
if (goal === "min" && valCurrent < valBest) {
better = true;
break;
}
if (goal === "max" && valCurrent > valBest) {
better = true;
break;
}
}
if (better) {
bestIndex = i;
}
}
return bestIndex;
}
var canvas_width = 1000;
var canvas_height = 100;
var header_map = getColumnIndexMap(tab_results_headers_json);
var parameter_columns = tab_results_headers_json.filter(function (name) {
return (
!special_col_names.includes(name) &&
!result_names.includes(name) &&
!name.startsWith("OO_Info_")
);
});
var container = document.createElement("div");
for (var r = 0; r < result_names.length; r++) {
var result_name = result_names[r];
if (this_res_name == result_name) {
var result_index = header_map[result_name];
var result_goal = result_min_max[r]; // "min" or "max"
var result_values = getColumnData(tab_results_csv_json, result_index);
var result_min = Math.min.apply(null, result_values);
var result_max = Math.max.apply(null, result_values);
var heading = document.createElement("h2");
heading.textContent = "Interpretation for result: " + result_name + " (goal: " + result_goal + ")";
heading.style.fontFamily = "sans-serif";
heading.style.marginTop = "24px";
heading.style.marginBottom = "12px";
container.appendChild(heading);
var table = document.createElement("table");
table.style.borderCollapse = "collapse";
table.style.marginBottom = "32px";
var thead = document.createElement("thead");
var headRow = document.createElement("tr");
var th1 = document.createElement("th");
th1.textContent = "Parameter";
th1.style.textAlign = "left";
th1.style.padding = "6px 12px";
var th2 = document.createElement("th");
th2.textContent = "Distribution of result";
th2.style.textAlign = "left";
th2.style.padding = "6px 12px";
headRow.appendChild(th1);
headRow.appendChild(th2);
thead.appendChild(headRow);
table.appendChild(thead);
var tbody = document.createElement("tbody");
for (var p = 0; p < parameter_columns.length; p++) {
var param_name = parameter_columns[p];
var param_index = header_map[param_name];
var param_values = getColumnData(tab_results_csv_json, param_index);
if (!isNumericArray(param_values)) {
continue;
}
var param_min = Math.min.apply(null, param_values);
var param_max = Math.max.apply(null, param_values);
var canvas = createCanvas(canvas_width, canvas_height);
canvas.classList.add("invert_in_dark_mode");
var ctx = canvas.getContext("2d");
ctx.fillStyle = "white";
ctx.fillRect(0, 0, canvas.width, canvas.height);
var x_groups = {};
for (var i = 0; i < tab_results_csv_json.length; i++) {
var raw_param = tab_results_csv_json[i][param_index];
var raw_result = tab_results_csv_json[i][result_index];
var x_ratio = normalize(raw_param, param_min, param_max);
var x = Math.floor(x_ratio * (canvas_width - 1));
if (!x_groups[x]) {
x_groups[x] = [];
}
x_groups[x].push(raw_result);
}
for (var x in x_groups) {
var values = x_groups[x];
values.sort(function (a, b) {
return a - b;
});
var stripe_height = canvas_height / values.length;
for (var i = 0; i < values.length; i++) {
var y_start = i * stripe_height;
var y_end = (i + 1) * stripe_height;
var value = values[i];
var result_ratio = normalize(value, result_min, result_max);
var color = interpolateColor(result_ratio, result_goal === "min");
ctx.beginPath();
ctx.strokeStyle = color;
ctx.lineWidth = 1;
ctx.moveTo(Number(x) + 0.5, y_start);
ctx.lineTo(Number(x) + 0.5, y_end);
ctx.stroke();
}
}
var row = document.createElement("tr");
var cell_param = document.createElement("td");
cell_param.textContent = param_name;
cell_param.style.padding = "4px 12px";
cell_param.style.verticalAlign = "top";
cell_param.style.fontFamily = "monospace";
cell_param.style.whiteSpace = "nowrap";
var cell_canvas = document.createElement("td");
cell_canvas.appendChild(canvas);
cell_canvas.style.padding = "4px 12px";
row.appendChild(cell_param);
row.appendChild(cell_canvas);
tbody.appendChild(row);
}
table.appendChild(tbody);
container.appendChild(table);
}
}
// === Summary: Best result ===
var bestIndex = findBestRowIndex();
var bestRow = tab_results_csv_json[bestIndex];
var ul = document.createElement("ul");
ul.style.margin = "0";
ul.style.paddingLeft = "24px";
// Alle Result-Spalten
for (var i = 0; i < result_names.length; i++) {
var name = result_names[i];
var val = bestRow[header_map[name]];
var li = document.createElement("li");
li.textContent = name + " = " + val;
ul.appendChild(li);
}
// Alle Parameter-Spalten (außer special_col_names)
for (var i = 0; i < tab_results_headers_json.length; i++) {
var name = tab_results_headers_json[i];
if (special_col_names.includes(name) || name.startsWith("OO_Info_") || result_names.includes(name)) {
continue;
}
var val = bestRow[header_map[name]];
var li = document.createElement("li");
li.textContent = name + " = " + val;
ul.appendChild(li);
}
return container;
}
function initializeResultParameterVisualizations() {
try {
var elements = $('.result_parameter_visualization');
if (!elements || elements.length === 0) {
console.warn('No .result_parameter_visualization elements found.');
return;
}
elements.each(function () {
var element = $(this);
if (element.data('initialized')) {
return; // Already initialized, skip
}
var resname = element.attr('data-resname');
if (!resname) {
console.error('Missing data-resname attribute for element:', this);
return;
}
try {
var html = createResultParameterCanvases(resname);
element.html(html);
element.data('initialized', true);
} catch (err) {
console.error('Error while calling createResultParameterCanvases for resname:', resname, err);
}
});
} catch (outerErr) {
console.error('Failed to initialize result parameter visualizations:', outerErr);
}
}
function plotParameterDistributionsByStatus() {
const container = document.getElementById('parameter_by_status_distribution');
if (!container) {
console.error("Kein Container mit id 'parameter_by_status_distribution' gefunden.");
return null;
}
if ($(container).data("loaded") === "true") {
return;
}
if (
typeof special_col_names === "undefined" ||
typeof result_names === "undefined" ||
typeof result_min_max === "undefined" ||
typeof tab_results_headers_json === "undefined" ||
typeof tab_results_csv_json === "undefined"
) {
console.error("Missing one or more required global variables.");
return null;
}
if (
!Array.isArray(special_col_names) ||
!Array.isArray(result_names) ||
!Array.isArray(result_min_max) ||
!Array.isArray(tab_results_headers_json) ||
!Array.isArray(tab_results_csv_json)
) {
console.error("All inputs must be arrays.");
return null;
}
container.innerHTML = "";
const statusIndex = tab_results_headers_json.indexOf("trial_status");
if (statusIndex < 0) {
container.textContent = "Kein 'trial_status' in den Daten gefunden.";
return null;
}
const trialStatuses = [...new Set(tab_results_csv_json.map(row => row[statusIndex]))].filter(s => s != null);
const paramCols = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) &&
!result_names.includes(col)
);
for (const param of paramCols) {
const paramIndex = tab_results_headers_json.indexOf(param);
if (paramIndex < 0) continue;
const traces = [];
trialStatuses.forEach((status) => {
const filteredValues = tab_results_csv_json
.filter(row => row[statusIndex] === status)
.map(row => row[paramIndex])
.filter(val => val !== "" && val != null && !isNaN(val))
.map(Number);
if (filteredValues.length > 1) {
// Histogramm-Bins automatisch mit Plotly bestimmen lassen oder eigene
// Hier: bins in 20 Stück
const nbins = 20;
traces.push({
type: 'histogram',
x: filteredValues,
name: status,
opacity: 0.6,
xbingroup: 0,
marker: {color: getColorForStatus(status)},
nbinsx: nbins,
// für Overlay-Stil:
// histfunc: 'count', // default
// autobinx: false,
// xbins: {start: Math.min(...filteredValues), end: Math.max(...filteredValues), size: (Math.max(...filteredValues) - Math.min(...filteredValues)) / nbins}
});
}
});
if (traces.length > 0) {
const h2 = document.createElement('h2');
if(!param.startsWith("OO_Info_")) {
h2.textContent = `Histogram: ${param}`;
container.appendChild(h2);
const plotDiv = document.createElement('div');
plotDiv.style.marginBottom = '30px';
container.appendChild(plotDiv);
Plotly.newPlot(plotDiv, traces, {
barmode: 'overlay', // 'stack' oder 'overlay'
xaxis: {
title: { text: String(param) }, // Sicherstellen, dass es ein Textobjekt ist
automargin: true,
tickangle: -45, // Optional: bessere Lesbarkeit
titlefont: { size: 16 } // Optional: größerer Titel
},
yaxis: {
title: { text: 'Count' }, // Titel explizit als Objekt angeben
automargin: true,
titlefont: { size: 16 } // Optional: größerer Titel
},
margin: {
l: 60,
r: 30,
t: 30,
b: 80 // genug Platz für x-Achsentitel
},
legend: {
orientation: "h"
}
}, {
responsive: true
});
}
}
}
$(container).data("loaded", "true");
// Color mapping (falls nicht global)
function getColorForStatus(status) {
const baseAlpha = 0.5;
switch(status.toUpperCase()) {
case 'FAILED': return `rgba(214, 39, 40, ${baseAlpha})`;
case 'COMPLETED': return `rgba(44, 160, 44, ${baseAlpha})`;
case 'ABANDONED': return `rgba(255, 215, 0, ${baseAlpha})`;
case 'RUNNING': return `rgba(50, 50, 44, ${baseAlpha})`;
default:
const otherColors = [
`rgba(31, 119, 180, ${baseAlpha})`,
`rgba(255, 127, 14, ${baseAlpha})`,
`rgba(148, 103, 189, ${baseAlpha})`,
`rgba(140, 86, 75, ${baseAlpha})`,
`rgba(227, 119, 194, ${baseAlpha})`,
`rgba(127, 127, 127, ${baseAlpha})`,
`rgba(188, 189, 34, ${baseAlpha})`,
`rgba(23, 190, 207, ${baseAlpha})`
];
let hash = 0;
for (let i = 0; i < status.length; i++) {
hash = status.charCodeAt(i) + ((hash << 5) - hash);
}
const index = Math.abs(hash) % otherColors.length;
return otherColors[index];
}
}
resizePlotlyCharts();
}
window.addEventListener('load', updatePreWidths);
window.addEventListener('resize', updatePreWidths);
$(document).ready(function() {
colorize_table_entries();
add_up_down_arrows_for_scrolling();
add_colorize_to_gridjs_table();
});
window.addEventListener('resize', function() {
resizePlotlyCharts();
});
"use strict";
function get_row_by_index(idx) {
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
var trial_index_col_idx = tab_results_headers_json.indexOf("trial_index");
if(trial_index_col_idx == -1) {
error(`"trial_index" could not be found in tab_results_headers_json. Cannot continue`);
return null;
}
for (var i = 0; i < tab_results_csv_json.length; i++) {
var row = tab_results_csv_json[i];
var trial_index = row[trial_index_col_idx];
if (trial_index == idx) {
return row;
}
}
return null;
}
function load_pareto_graph_from_idxs () {
if (!Object.keys(window).includes("pareto_idxs")) {
error("pareto_idxs is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
if(pareto_idxs === null) {
var err_msg = "pareto_idxs is null. Cannot plot or create tables from empty data. This can be caused by a defective <tt>pareto_idxs.json</tt> file. Please try reloading, or re-calculating the pareto-front and re-submitting if this problem persists.";
$("#pareto_from_idxs_table").html(`<div class="caveat alarm">${err_msg}</div>`);
return;
}
var table = get_pareto_table_data_from_idx();
var html_tables = createParetoTablesFromData(table);
$("#pareto_from_idxs_table").html(html_tables);
renderParetoFrontPlots(table);
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
function renderParetoFrontPlots(data) {
try {
let container = document.getElementById("pareto_front_idxs_plot_container");
if (!container) {
console.error("DIV with id 'pareto_front_idxs_plot_container' not found.");
return;
}
container.innerHTML = "";
if(data === undefined || data === null) {
var err_msg = "There was an error getting the data for Pareto-Fronts. See the developer's console to see further details.";
$("#pareto_from_idxs_table").html(`<div class="caveat alarm">${err_msg}</div>`);
return;
}
Object.keys(data).forEach((key, idx) => {
if (!key.startsWith("Pareto front for ")) return;
let label = key.replace("Pareto front for ", "");
let [xKey, yKey] = label.split("/");
if (!xKey || !yKey) {
console.warn("Could not extract two objectives from key:", key);
return;
}
let entries = data[key];
let x = [];
let y = [];
let hoverTexts = [];
entries.forEach((entry) => {
let results = entry.results || {};
let values = entry.values || {};
let xVal = (results[xKey] || [])[0];
let yVal = (results[yKey] || [])[0];
if (xVal === undefined || yVal === undefined) {
console.warn("Missing values for", xKey, yKey, "in", entry);
return;
}
x.push(xVal);
y.push(yVal);
let hoverInfo = [];
if ("trial_index" in values) {
hoverInfo.push(`<b>Trial Index:</b> ${values.trial_index[0]}`);
}
Object.keys(values)
.filter(k => k !== "trial_index")
.sort()
.forEach(k => {
hoverInfo.push(`<b>${k}:</b> ${values[k][0]}`);
});
Object.keys(results)
.sort()
.forEach(k => {
hoverInfo.push(`<b>${k}:</b> ${results[k][0]}`);
});
hoverTexts.push(hoverInfo.join("<br>"));
});
let wrapper = document.createElement("div");
wrapper.style.marginBottom = "30px";
let titleEl = document.createElement("h3");
titleEl.textContent = `Pareto Front: ${xKey} (${getMinMaxByResultName(xKey)}) vs ${yKey} (${getMinMaxByResultName(yKey)})`;
wrapper.appendChild(titleEl);
let divId = `pareto_plot_${idx}`;
let plotDiv = document.createElement("div");
plotDiv.id = divId;
plotDiv.style.width = "100%";
plotDiv.style.height = "400px";
wrapper.appendChild(plotDiv);
container.appendChild(wrapper);
let trace = {
x: x,
y: y,
text: hoverTexts,
hoverinfo: "text",
mode: "markers",
type: "scatter",
marker: {
size: 8,
color: 'rgb(31, 119, 180)',
line: {
width: 1,
color: 'black'
}
},
name: label
};
let layout = {
xaxis: { title: { text: xKey } },
yaxis: { title: { text: yKey } },
margin: { t: 10, l: 60, r: 20, b: 50 },
hovermode: "closest",
showlegend: false
};
Plotly.newPlot(divId, [trace], add_default_layout_data(layout, 1));
});
} catch (e) {
console.error("Error while rendering Pareto front plots:", e);
}
}
function createParetoTablesFromData(data) {
try {
var container = document.createElement("div");
var parsedData;
try {
parsedData = typeof data === "string" ? JSON.parse(data) : data;
} catch (e) {
console.error("JSON parsing failed:", e);
return container;
}
for (var sectionTitle in parsedData) {
if (!parsedData.hasOwnProperty(sectionTitle)) {
continue;
}
var sectionData = parsedData[sectionTitle];
var heading = document.createElement("h2");
heading.textContent = sectionTitle;
container.appendChild(heading);
var table = document.createElement("table");
table.style.borderCollapse = "collapse";
table.style.marginBottom = "2em";
table.style.width = "100%";
var thead = document.createElement("thead");
var headerRow = document.createElement("tr");
var allValueKeys = new Set();
var allResultKeys = new Set();
sectionData.forEach(entry => {
var values = entry.values || {};
var results = entry.results || {};
Object.keys(values).forEach(key => {
allValueKeys.add(key);
});
Object.keys(results).forEach(key => {
allResultKeys.add(key);
});
});
var sortedValueKeys = Array.from(allValueKeys).sort();
var sortedResultKeys = Array.from(allResultKeys).sort();
if (sortedValueKeys.includes("trial_index")) {
sortedValueKeys = sortedValueKeys.filter(k => k !== "trial_index");
sortedValueKeys.unshift("trial_index");
}
var allColumns = [...sortedValueKeys, ...sortedResultKeys];
allColumns.forEach(col => {
var th = document.createElement("th");
th.textContent = col;
th.style.border = "1px solid black";
th.style.padding = "4px";
headerRow.appendChild(th);
});
thead.appendChild(headerRow);
table.appendChild(thead);
var tbody = document.createElement("tbody");
sectionData.forEach(entry => {
var tr = document.createElement("tr");
allColumns.forEach(col => {
var td = document.createElement("td");
td.style.border = "1px solid black";
td.style.padding = "4px";
var value = null;
if (col in entry.values) {
value = entry.values[col];
} else if (col in entry.results) {
value = entry.results[col];
}
if (Array.isArray(value)) {
td.textContent = value.join(", ");
} else {
td.textContent = value !== null && value !== undefined ? value : "";
}
tr.appendChild(td);
});
tbody.appendChild(tr);
});
table.appendChild(tbody);
container.appendChild(table);
}
return container;
} catch (err) {
console.error("Unexpected error:", err);
var errorDiv = document.createElement("div");
errorDiv.textContent = "Error generating tables.";
return errorDiv;
}
}
function get_pareto_table_data_from_idx () {
if (!Object.keys(window).includes("pareto_idxs")) {
error("pareto_idxs is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
var x_keys = Object.keys(pareto_idxs);
var tables = {};
for (var i = 0; i < x_keys.length; i++) {
var x_key = x_keys[i];
var y_keys = Object.keys(pareto_idxs[x_key]);
for (var j = 0; j < y_keys.length; j++) {
var y_key = y_keys[j];
var indices = pareto_idxs[x_key][y_key];
for (var k = 0; k < indices.length; k++) {
var idx = indices[k];
var row = get_row_by_index(idx);
if(row === null) {
error(`Error getting the row for index ${idx}`);
return;
}
var row_dict = {
"results": {},
"values": {},
};
for (var l = 0; l < tab_results_headers_json.length; l++) {
var header = tab_results_headers_json[l];
if (!special_col_names.includes(header) || header == "trial_index") {
var val = row[l];
if (result_names.includes(header)) {
if (!Object.keys(row_dict["results"]).includes(header)) {
row_dict["results"][header] = [];
}
row_dict["results"][header].push(val);
} else {
if (!Object.keys(row_dict["values"]).includes(header)) {
row_dict["values"][header] = [];
}
row_dict["values"][header].push(val);
}
}
}
var table_key = `Pareto front for ${x_key}/${y_key}`;
if(!Object.keys(tables).includes(table_key)) {
tables[table_key] = [];
}
tables[table_key].push(row_dict);
}
}
}
return tables;
}
function getMinMaxByResultName(resultName) {
try {
if (typeof resultName !== "string") {
error("Parameter resultName must be a string");
return;
}
if (!Array.isArray(result_names)) {
error("Global variable result_names is not an array or undefined");
return;
}
if (!Array.isArray(result_min_max)) {
error("Global variable result_min_max is not an array or undefined");
return;
}
if (result_names.length !== result_min_max.length) {
error("Global arrays result_names and result_min_max must have the same length");
return;
}
var index = result_names.indexOf(resultName);
if (index === -1) {
error("Result name '" + resultName + "' not found in result_names");
return;
}
var minMaxValue = result_min_max[index];
if (minMaxValue !== "min" && minMaxValue !== "max") {
error("Value for result name '" + resultName + "' is invalid: expected 'min' or 'max'");
return;
}
return minMaxValue;
} catch (e) {
error("Unexpected error: " + e.message);
}
}
$(document).ready(function() {
colorize_table_entries();;
plotWorkerUsage();;
plotCPUAndRAMUsage();;
plotParameterDistributionsByStatus();;
plotTimelineFromGlobals();
colorize_table_entries();
});
</script>
<h1><img class='invert_icon' src='i/overview.svg' style='height: 1em' /> Overview</h1>
<button onclick="window.open('https://imageseg.scads.de/omniax/gui?partition=alpha&experiment_name=mnist_gpu_noall&reservation=&account=&mem_gb=10&time=2880&worker_timeout=120&max_eval=500&num_parallel_jobs=20&gpus=1&num_random_steps=20&follow=1&live_share=1&send_anonymized_usage_stats=1&constraints=&result_names=VAL_ACC%3Dmax&run_program=python3%20.tests%2Fmnist%2Ftrain%20--epochs%20%25epochs%20--learning_rate%20%25lr%20--batch_size%20%25batch_size%20--hidden_size%20%25hidden_size%20--dropout%20%25dropout%20--activation%20%25activation%20--num_dense_layers%20%25num_dense_layers%20--init%20%25init%20--weight_decay%20%25weight_decay&run_program_once=&cpus_per_task=1&nodes_per_job=1&seed=&dryrun=0&debug=0&revert_to_random_when_seemingly_exhausted=1&gridsearch=0&model=BOTORCH_MODULAR&external_generator=&n_estimators_randomforest=100&installation_method=clone&run_mode=local&disable_tqdm=0&verbose_tqdm=0&force_local_execution=0&auto_exclude_defective_hosts=0&show_sixel_general=0&show_sixel_trial_index_result=0&show_sixel_scatter=0&show_worker_percentage_table_at_end=0&occ=0&occ_type=euclid&no_sleep=0&slurm_use_srun=0&verbose_break_run_search_table=0&abbreviate_job_names=0&main_process_gb=8&max_nr_of_zero_results=50&slurm_signal_delay_s=0&max_failed_jobs=0&exclude=&username=&generation_strategy=&root_venv_dir=&workdir=&dont_jit_compile=0&fit_out_of_design=0&refit_on_cv=0&show_generate_time_table=0&dont_warm_start_refitting=0&max_attempts_for_generation=20&num_restarts=20&raw_samples=1024&max_abandoned_retrial=20&max_num_of_parallel_sruns=16&force_choice_for_ranges=0&no_transform_inputs=0&fit_abandoned=0&no_normalize_y=0&verbose=0&generate_all_jobs_at_once=0&flame_graph=0&checkout_to_latest_tested_version=0&parameter_0_name=epochs&parameter_0_type=range&parameter_0_min=10&parameter_0_max=200&parameter_0_number_type=int&parameter_0_log_scale=false&parameter_1_name=lr&parameter_1_type=range&parameter_1_min=0.00001&parameter_1_max=0.1&parameter_1_number_type=float&parameter_1_log_scale=false&parameter_2_name=batch_size&parameter_2_type=range&parameter_2_min=8&parameter_2_max=2048&parameter_2_number_type=int&parameter_2_log_scale=false&parameter_3_name=hidden_size&parameter_3_type=range&parameter_3_min=8&parameter_3_max=2048&parameter_3_number_type=int&parameter_3_log_scale=false&parameter_4_name=dropout&parameter_4_type=range&parameter_4_min=0&parameter_4_max=0.5&parameter_4_number_type=float&parameter_4_log_scale=false&parameter_5_name=activation&parameter_5_type=fixed&parameter_5_value=leaky_relu&parameter_6_name=num_dense_layers&parameter_6_type=range&parameter_6_min=1&parameter_6_max=4&parameter_6_number_type=int&parameter_6_log_scale=false&parameter_7_name=init&parameter_7_type=fixed&parameter_7_value=normal&parameter_8_name=weight_decay&parameter_8_type=range&parameter_8_min=0&parameter_8_max=1&parameter_8_number_type=float&parameter_8_log_scale=false&partition=alpha&num_parameters=9', '_blank')">GUI page with all the settings of this job</button><br><br><h2>Experiment overview </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Setting</th><th>Value </th></tr></thead><tbody><tr><td> Model for non-random steps</td><td>BOTORCH_MODULAR </td></tr><tr><td> Max. nr. evaluations</td><td>500 </td></tr><tr><td> Number random steps</td><td>20 </td></tr><tr><td> Nr. of workers (parameter)</td><td>20 </td></tr><tr><td> Main process memory (GB)</td><td>8 </td></tr><tr><td> Worker memory (GB)</td><td>10 </td></tr></tbody></table><h2>Job Summary per Generation Node</h2>
<table border='1' cellpadding='5' cellspacing='0'>
<thead><tr><th>Generation Node</th><th>Total</th><th>FAILED</th></tr></thead>
<tbody>
<tr><td>SOBOL</td><td>500</td><td>500</td></tr>
</tbody></table>
<h2>Experiment parameters </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Name</th><th>Type</th><th>Lower bound</th><th>Upper bound</th><th>Values</th><th>Type</th><th>Log Scale? </th></tr></thead><tbody><tr><td> epochs</td><td>range</td><td>10</td><td>200</td><td></td><td>int</td><td>No </td></tr><tr><td> lr</td><td>range</td><td>1e-05</td><td>0.1</td><td></td><td>float</td><td>No </td></tr><tr><td> batch_size</td><td>range</td><td>8</td><td>2048</td><td></td><td>int</td><td>No </td></tr><tr><td> hidden_size</td><td>range</td><td>8</td><td>2048</td><td></td><td>int</td><td>No </td></tr><tr><td> dropout</td><td>range</td><td>0</td><td>0.5</td><td></td><td>float</td><td>No </td></tr><tr><td> activation</td><td>fixed</td><td></td><td></td><td>leaky_relu</td><td></td><td></td></tr><tr><td> num_dense_layers</td><td>range</td><td>1</td><td>4</td><td></td><td>int</td><td>No </td></tr><tr><td> init</td><td>fixed</td><td></td><td></td><td>normal</td><td></td><td></td></tr><tr><td> weight_decay</td><td>range</td><td>0</td><td>1</td><td></td><td>float</td><td>No </td></tr></tbody></table><h2>Number of evaluations</h2>
<table>
<tbody>
<tr>
<th>Failed</th>
<th>Succeeded</th>
<th>Running</th>
<th>Total</th>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>0</td>
<td>500</td>
</tr>
</tbody>
</table>
<h2>Result names and types</h2>
<table>
<tr><th>name</th><th>min/max</th></tr>
<tr>
<td>VAL_ACC</td>
<td>max</td>
</tr>
</table>
<h2>Last progressbar status</h2>
<tt>2025-08-01 19:42:37: Sobol, failed: 500 ('VAL_ACC: <FLOAT>' not found), finishing jobs, finished 1 job</tt><br>
<h2>Git-Version</h2>
<tt>Commit: fd9a77baef8329dee25b16be3be2a5b9c654d8f7 (7753-1-gfd9a77bae)
</tt>
<h1><img class='invert_icon' src='i/csv.svg' style='height: 1em' /> Results</h1>
<div id='tab_results_csv_table'></div>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'><img src='i/download.svg' style='height: 1em'> Download »results.csv« as file</button>
<pre id='tab_results_csv_table_pre'>trial_index,submit_time,queue_time,start_time,end_time,run_time,program_string,VAL_ACC,exit_code,signal,hostname,OO_Info_SLURM_JOB_ID,arm_name,trial_status,generation_node,epochs,lr,batch_size,hidden_size,dropout,num_dense_layers,weight_decay,activation,init
0,1753975716,22,1753975738,1753975744,6,python3 .tests/mnist/train --epochs 174 --learning_rate 0.09150210371792316666 --batch_size 1146 --hidden_size 2032 --dropout 0.14986142516136169434 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.84562003612518310547,,1,,c150,531280,0_0,FAILED,SOBOL,174,0.091502103717923166659176104076,1146,2032,0.1498614251613616943359375,3,0.84562003612518310546875,leaky_relu,normal
1,1753975742,16,1753975758,1753975764,6,python3 .tests/mnist/train --epochs 66 --learning_rate 0.01291484379452653361 --batch_size 380 --hidden_size 231 --dropout 0.30245773214846849442 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.1786609254777431488,,1,,c150,531281,1_0,FAILED,SOBOL,66,0.012914843794526533610200758062,380,231,0.302457732148468494415283203125,2,0.1786609254777431488037109375,leaky_relu,normal
2,1753975811,7,1753975818,1753975824,6,python3 .tests/mnist/train --epochs 33 --learning_rate 0.0700646978803444731 --batch_size 1579 --hidden_size 1195 --dropout 0.46076191216707229614 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.60484287049621343613,,1,,c150,531283,2_0,FAILED,SOBOL,33,0.070064697880344473102098845629,1579,1195,0.460761912167072296142578125,1,0.604842870496213436126708984375,leaky_relu,normal
3,1753975874,34,1753975908,1753975914,6,python3 .tests/mnist/train --epochs 111 --learning_rate 0.04705087210788392454 --batch_size 816 --hidden_size 941 --dropout 0.12019259203225374222 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.43385011237114667892,,1,,c150,531285,3_0,FAILED,SOBOL,111,0.047050872107883924544413645208,816,941,0.120192592032253742218017578125,4,0.433850112371146678924560546875,leaky_relu,normal
4,1753975916,24,1753975940,1753975946,6,python3 .tests/mnist/train --epochs 129 --learning_rate 0.05690190976952203689 --batch_size 75 --hidden_size 567 --dropout 0.04996593249961733818 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.7462160186842083931,,1,,c137,531286,4_0,FAILED,SOBOL,129,0.056901909769522036885991411737,75,567,0.049965932499617338180541992188,3,0.746216018684208393096923828125,leaky_relu,normal
5,1753975984,13,1753975997,1753976003,6,python3 .tests/mnist/train --epochs 51 --learning_rate 0.03540074926375411796 --batch_size 1347 --hidden_size 1345 --dropout 0.40616023773327469826 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.29220897797495126724,,1,,c150,531288,5_0,FAILED,SOBOL,51,0.035400749263754117956981559701,1347,1345,0.406160237733274698257446289062,2,0.292208977974951267242431640625,leaky_relu,normal
6,1753976034,26,1753976060,1753976066,6,python3 .tests/mnist/train --epochs 84 --learning_rate 0.07844077873534523182 --batch_size 547 --hidden_size 384 --dropout 0.37261573178693652153 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.99079076386988162994,,1,,c152,531296,6_0,FAILED,SOBOL,84,0.078440778735345231820197398065,547,384,0.372615731786936521530151367188,1,0.99079076386988162994384765625,leaky_relu,normal
7,1753976101,38,1753976139,1753976145,6,python3 .tests/mnist/train --epochs 192 --learning_rate 0.00156300044563598942 --batch_size 1824 --hidden_size 1656 --dropout 0.2043944397009909153 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.03274922631680965424,,1,,c137,531299,7_0,FAILED,SOBOL,192,0.001563000445635989417783595634,1824,1656,0.204394439700990915298461914062,4,0.03274922631680965423583984375,leaky_relu,normal
8,1753976167,10,1753976177,1753976184,7,python3 .tests/mnist/train --epochs 188 --learning_rate 0.06685127063997090002 --batch_size 753 --hidden_size 1525 --dropout 0.27962609380483627319 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.64871518034487962723,,1,,c137,531301,8_0,FAILED,SOBOL,188,0.06685127063997090002267498221,753,1525,0.279626093804836273193359375,4,0.648715180344879627227783203125,leaky_relu,normal
9,1753976237,31,1753976268,1753976274,6,python3 .tests/mnist/train --epochs 99 --learning_rate 0.03753838877676055757 --batch_size 2025 --hidden_size 770 --dropout 0.17439438868314027786 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.32745389733463525772,,1,,c150,531302,9_0,FAILED,SOBOL,99,0.037538388776760557574707632966,2025,770,0.174394388683140277862548828125,1,0.327453897334635257720947265625,leaky_relu,normal
10,1753976287,10,1753976297,1753976304,7,python3 .tests/mnist/train --epochs 43 --learning_rate 0.09463646352564916708 --batch_size 188 --hidden_size 1724 --dropout 0.07905177772045135498 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.89352841861546039581,,1,,c150,531303,10_0,FAILED,SOBOL,43,0.094636463525649167083386714694,188,1724,0.07905177772045135498046875,2,0.89352841861546039581298828125,leaky_relu,normal
11,1753976351,9,1753976360,1753976366,6,python3 .tests/mnist/train --epochs 149 --learning_rate 0.02244571313351392816 --batch_size 1465 --hidden_size 443 --dropout 0.49627995211631059647 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.06824405305087566376,,1,,c150,531304,11_0,FAILED,SOBOL,149,0.022445713133513928161377748438,1465,443,0.496279952116310596466064453125,3,0.06824405305087566375732421875,leaky_relu,normal
12,1753976406,22,1753976428,1753976434,6,python3 .tests/mnist/train --epochs 119 --learning_rate 0.08153158149650320541 --batch_size 1760 --hidden_size 52 --dropout 0.42581676645204424858 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.75538250058889389038,,1,,c150,531305,12_0,FAILED,SOBOL,119,0.081531581496503205408465930759,1760,52,0.425816766452044248580932617188,4,0.755382500588893890380859375,leaky_relu,normal
13,1753976467,11,1753976478,1753976484,6,python3 .tests/mnist/train --epochs 13 --learning_rate 0.01075604060247540607 --batch_size 993 --hidden_size 1829 --dropout 0.02421360695734620094 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.20566612854599952698,,1,,c137,531308,13_0,FAILED,SOBOL,13,0.010756040602475406067761731776,993,1829,0.024213606957346200942993164062,1,0.2056661285459995269775390625,leaky_relu,normal
14,1753976532,6,1753976538,1753976544,6,python3 .tests/mnist/train --epochs 69 --learning_rate 0.05384174650572241122 --batch_size 1156 --hidden_size 873 --dropout 0.24480417324230074883 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.51484361942857503891,,1,,c150,531310,14_0,FAILED,SOBOL,69,0.053841746505722411220151712996,1156,873,0.244804173242300748825073242188,2,0.514843619428575038909912109375,leaky_relu,normal
15,1753976581,19,1753976600,1753976606,6,python3 .tests/mnist/train --epochs 158 --learning_rate 0.02614089283568784769 --batch_size 393 --hidden_size 1135 --dropout 0.33441086346283555031 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.46110516320914030075,,1,,c150,531311,15_0,FAILED,SOBOL,158,0.026140892835687847689518648053,393,1135,0.334410863462835550308227539062,3,0.461105163209140300750732421875,leaky_relu,normal
16,1753976632,27,1753976659,1753976665,6,python3 .tests/mnist/train --epochs 162 --learning_rate 0.05111736474364996646 --batch_size 1939 --hidden_size 299 --dropout 0.09968544496223330498 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.1338229794055223465,,1,,c150,531312,16_0,FAILED,SOBOL,162,0.051117364743649966463134859396,1939,299,0.099685444962233304977416992188,1,0.13382297940552234649658203125,leaky_relu,normal
17,1753976701,17,1753976718,1753976724,6,python3 .tests/mnist/train --epochs 78 --learning_rate 0.02888510903989896517 --batch_size 663 --hidden_size 1582 --dropout 0.44806593889370560646 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.84185883216559886932,,1,,c150,531314,17_0,FAILED,SOBOL,78,0.028885109039898965166415223393,663,1582,0.448065938893705606460571289062,4,0.84185883216559886932373046875,leaky_relu,normal
18,1753976773,5,1753976778,1753976784,6,python3 .tests/mnist/train --epochs 21 --learning_rate 0.08583660231469199264 --batch_size 1487 --hidden_size 626 --dropout 0.28976175887510180473 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.37863617856055498123,,1,,c137,531318,18_0,FAILED,SOBOL,21,0.085836602314691992643425066944,1487,626,0.289761758875101804733276367188,3,0.378636178560554981231689453125,leaky_relu,normal
19,1753976861,7,1753976868,1753976874,6,python3 .tests/mnist/train --epochs 123 --learning_rate 0.00646780277378857134 --batch_size 214 --hidden_size 1382 --dropout 0.1293542780913412571 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.58264890406280755997,,1,,c150,531319,19_0,FAILED,SOBOL,123,0.00646780277378857133829814785,214,1382,0.129354278091341257095336914062,2,0.582648904062807559967041015625,leaky_relu,normal
20,1753976937,22,1753976959,1753976965,6,python3 .tests/mnist/train --epochs 141 --learning_rate 0.09738676922542974235 --batch_size 940 --hidden_size 1278 --dropout 0.19951227307319641113 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.27027445193380117416,,1,,c150,531321,20_0,FAILED,SOBOL,141,0.097386769225429742347088790666,940,1278,0.1995122730731964111328125,1,0.270274451933801174163818359375,leaky_relu,normal
21,1753976993,25,1753977018,1753977024,6,python3 .tests/mnist/train --epochs 39 --learning_rate 0.0197274476864188926 --batch_size 1702 --hidden_size 1017 --dropout 0.34429476875811815262 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.69126145076006650925,,1,,c150,531322,21_0,FAILED,SOBOL,39,0.019727447686418892597304264314,1702,1017,0.344294768758118152618408203125,4,0.691261450760066509246826171875,leaky_relu,normal
22,1753977057,26,1753977083,1753977089,6,python3 .tests/mnist/train --epochs 95 --learning_rate 0.06256912230685353349 --batch_size 511 --hidden_size 1972 --dropout 0.37783927470445632935 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.02973563224077224731,,1,,c150,531328,22_0,FAILED,SOBOL,95,0.062569122306853533488357754777,511,1972,0.377839274704456329345703125,3,0.029735632240772247314453125,leaky_relu,normal
23,1753977139,43,1753977182,1753977188,6,python3 .tests/mnist/train --epochs 180 --learning_rate 0.04184952590992675053 --batch_size 1277 --hidden_size 196 --dropout 0.04508376587182283401 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.94670053198933601379,,1,,c137,531329,23_0,FAILED,SOBOL,180,0.041849525909926750533163186674,1277,196,0.045083765871822834014892578125,2,0.9467005319893360137939453125,leaky_relu,normal
24,1753977224,4,1753977228,1753977234,6,python3 .tests/mnist/train --epochs 200 --learning_rate 0.07647659011139534835 --batch_size 278 --hidden_size 830 --dropout 0.46991341514512896538 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.36002381052821874619,,1,,c150,531332,24_0,FAILED,SOBOL,200,0.076476590111395348348111156156,278,830,0.469913415145128965377807617188,2,0.360023810528218746185302734375,leaky_relu,normal
25,1753977277,13,1753977290,1753977296,6,python3 .tests/mnist/train --epochs 87 --learning_rate 0.00350430317481048451 --batch_size 1040 --hidden_size 1082 --dropout 0.07612144434824585915 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.66376801114529371262,,1,,c150,531333,25_0,FAILED,SOBOL,87,0.003504303174810484509255070762,1040,1082,0.076121444348245859146118164062,3,0.663768011145293712615966796875,leaky_relu,normal
26,1753977365,13,1753977378,1753977384,6,python3 .tests/mnist/train --epochs 54 --learning_rate 0.06041012001794764108 --batch_size 854 --hidden_size 121 --dropout 0.17146405531093478203 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.11924652755260467529,,1,,c156,531336,26_0,FAILED,SOBOL,54,0.060410120017947641080091614185,854,121,0.171464055310934782028198242188,4,0.11924652755260467529296875,leaky_relu,normal
27,1753977444,23,1753977467,1753977474,7,python3 .tests/mnist/train --epochs 137 --learning_rate 0.03187880747846328494 --batch_size 1620 --hidden_size 1919 --dropout 0.25325955683365464211 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.91895715519785881042,,1,,c156,531337,27_0,FAILED,SOBOL,137,0.031878807478463284941216926427,1620,1919,0.253259556833654642105102539062,1,0.9189571551978588104248046875,leaky_relu,normal
28,1753977530,29,1753977559,1753977565,6,python3 .tests/mnist/train --epochs 107 --learning_rate 0.07199988429454155792 --batch_size 1342 --hidden_size 1769 --dropout 0.32366933673620223999 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.23181205429136753082,,1,,c150,531341,28_0,FAILED,SOBOL,107,0.071999884294541557916424778796,1342,1769,0.323669336736202239990234375,2,0.23181205429136753082275390625,leaky_relu,normal
29,1753977614,5,1753977619,1753977625,6,python3 .tests/mnist/train --epochs 25 --learning_rate 0.04508059398836457288 --batch_size 65 --hidden_size 494 --dropout 0.22624882031232118607 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.80710211955010890961,,1,,c150,531342,29_0,FAILED,SOBOL,25,0.045080593988364572877181046806,65,494,0.226248820312321186065673828125,3,0.80710211955010890960693359375,leaky_relu,normal
30,1753977719,42,1753977761,1753977767,6,python3 .tests/mnist/train --epochs 58 --learning_rate 0.08797404794572853681 --batch_size 1894 --hidden_size 1458 --dropout 0.00565825402736663818 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.47638684976845979691,,1,,c137,531348,30_0,FAILED,SOBOL,58,0.087974047945728536812559639202,1894,1458,0.00565825402736663818359375,4,0.476386849768459796905517578125,leaky_relu,normal
31,1753977788,11,1753977799,1753977805,6,python3 .tests/mnist/train --epochs 170 --learning_rate 0.01641696454738266961 --batch_size 620 --hidden_size 678 --dropout 0.41507523972541093826 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.54764243308454751968,,1,,c137,531350,31_0,FAILED,SOBOL,170,0.016416964547382669609154604018,620,678,0.415075239725410938262939453125,1,0.547642433084547519683837890625,leaky_relu,normal
32,1753977881,8,1753977889,1753977895,6,python3 .tests/mnist/train --epochs 165 --learning_rate 0.07053280997264199659 --batch_size 158 --hidden_size 164 --dropout 0.21103275800123810768 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.39579505473375320435,,1,,c137,531353,32_0,FAILED,SOBOL,165,0.07053280997264199658758343503,158,164,0.211032758001238107681274414062,1,0.395795054733753204345703125,leaky_relu,normal
33,1753977956,39,1753977995,1753978001,6,python3 .tests/mnist/train --epochs 63 --learning_rate 0.04989835476615466642 --batch_size 1431 --hidden_size 1939 --dropout 0.36411578161641955376 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.56477196887135505676,,1,,c141,531355,33_0,FAILED,SOBOL,63,0.049898354766154666417588003924,1431,1939,0.364115781616419553756713867188,4,0.5647719688713550567626953125,leaky_relu,normal
34,1753978044,32,1753978076,1753978082,6,python3 .tests/mnist/train --epochs 24 --learning_rate 0.09293829185978509655 --batch_size 718 --hidden_size 986 --dropout 0.39720258349552750587 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.1562294280156493187,,1,,c153,531356,34_0,FAILED,SOBOL,24,0.092938291859785096549195770876,718,986,0.397202583495527505874633789062,3,0.156229428015649318695068359375,leaky_relu,normal
35,1753978148,11,1753978159,1753978165,6,python3 .tests/mnist/train --epochs 108 --learning_rate 0.01519399302671663524 --batch_size 1995 --hidden_size 1246 --dropout 0.05712310923263430595 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.82117561530321836472,,1,,c156,531358,35_0,FAILED,SOBOL,108,0.015193993026716635236228469807,1995,1246,0.057123109232634305953979492188,2,0.821175615303218364715576171875,leaky_relu,normal
36,1753978275,35,1753978310,1753978316,6,python3 .tests/mnist/train --epochs 138 --learning_rate 0.08089843831927516493 --batch_size 1190 --hidden_size 1350 --dropout 0.11160269845277070999 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.00830644089728593826,,1,,c156,531360,36_0,FAILED,SOBOL,138,0.080898438319275164931632104981,1190,1350,0.111602698452770709991455078125,1,0.008306440897285938262939453125,leaky_relu,normal
37,1753978351,17,1753978368,1753978374,6,python3 .tests/mnist/train --epochs 54 --learning_rate 0.00163976373727433406 --batch_size 424 --hidden_size 594 --dropout 0.46730718761682510376 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.96835950110107660294,,1,,c156,531362,37_0,FAILED,SOBOL,54,0.001639763737274334059676461628,424,594,0.467307187616825103759765625,4,0.968359501101076602935791015625,leaky_relu,normal
38,1753978455,3,1753978458,1753978465,7,python3 .tests/mnist/train --epochs 93 --learning_rate 0.05878971020105295403 --batch_size 1789 --hidden_size 1549 --dropout 0.30946071166545152664 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.25213879533112049103,,1,,c156,531363,38_0,FAILED,SOBOL,93,0.05878971020105295403057610315,1789,1549,0.309460711665451526641845703125,3,0.25213879533112049102783203125,leaky_relu,normal
39,1753978541,7,1753978549,1753978555,6,python3 .tests/mnist/train --epochs 195 --learning_rate 0.03644711200320162325 --batch_size 1028 --hidden_size 268 --dropout 0.14075267314910888672 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.70816215686500072479,,1,,c156,531364,39_0,FAILED,SOBOL,195,0.036447112003201623253723084872,1028,268,0.14075267314910888671875,2,0.70816215686500072479248046875,leaky_relu,normal
40,1753978691,8,1753978699,1753978705,6,python3 .tests/mnist/train --epochs 179 --learning_rate 0.09592522566143424356 --batch_size 1549 --hidden_size 645 --dropout 0.34300212794914841652 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.10636038053780794144,,1,,c156,531366,40_0,FAILED,SOBOL,179,0.095925225661434243562553092488,1549,645,0.343002127949148416519165039062,2,0.106360380537807941436767578125,leaky_relu,normal
41,1753978736,23,1753978759,1753978765,6,python3 .tests/mnist/train --epochs 96 --learning_rate 0.02447826722199097568 --batch_size 782 --hidden_size 1427 --dropout 0.238257646095007658 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.93353804294019937515,,1,,c156,531367,41_0,FAILED,SOBOL,96,0.024478267221990975682777147426,782,1427,0.238257646095007658004760742188,3,0.933538042940199375152587890625,leaky_relu,normal
42,1753978819,30,1753978849,1753978855,6,python3 .tests/mnist/train --epochs 34 --learning_rate 0.067564071463067088 --batch_size 1112 --hidden_size 462 --dropout 0.01720925653353333473 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.34994667209684848785,,1,,c156,531373,42_0,FAILED,SOBOL,34,0.067564071463067087996989812382,1112,462,0.017209256533533334732055664062,4,0.34994667209684848785400390625,leaky_relu,normal
43,1753978899,10,1753978909,1753978915,6,python3 .tests/mnist/train --epochs 146 --learning_rate 0.04053443866278976654 --batch_size 350 --hidden_size 1737 --dropout 0.4349267701618373394 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.67309836111962795258,,1,,c156,531374,43_0,FAILED,SOBOL,146,0.040534438662789766538718794209,350,1737,0.434926770161837339401245117188,1,0.67309836111962795257568359375,leaky_relu,normal
44,1753978988,11,1753978999,1753979005,6,python3 .tests/mnist/train --epochs 128 --learning_rate 0.05548447751985863957 --batch_size 581 --hidden_size 1888 --dropout 0.48964288551360368729 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.48548714816570281982,,1,,c156,531375,44_0,FAILED,SOBOL,128,0.055484477519858639571470604324,581,1888,0.489642885513603687286376953125,2,0.48548714816570281982421875,leaky_relu,normal
45,1753979068,21,1753979089,1753979095,6,python3 .tests/mnist/train --epochs 16 --learning_rate 0.02703830617081374316 --batch_size 1854 --hidden_size 89 --dropout 0.08755035698413848877 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.53733567520976066589,,1,,c156,531376,45_0,FAILED,SOBOL,16,0.02703830617081374315668895747,1854,89,0.08755035698413848876953125,3,0.5373356752097606658935546875,leaky_relu,normal
46,1753979194,15,1753979209,1753979215,6,python3 .tests/mnist/train --epochs 78 --learning_rate 0.08413628258187323683 --batch_size 104 --hidden_size 1050 --dropout 0.18335079122334718704 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.24567551817744970322,,1,,c156,531378,46_0,FAILED,SOBOL,78,0.084136282581873236829927975577,104,1050,0.183350791223347187042236328125,4,0.245675518177449703216552734375,leaky_relu,normal
47,1753979316,31,1753979347,1753979354,7,python3 .tests/mnist/train --epochs 161 --learning_rate 0.0110790183512307714 --batch_size 1381 --hidden_size 798 --dropout 0.2724702879786491394 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.79349716287106275558,,1,,c156,531379,47_0,FAILED,SOBOL,161,0.011079018351230771402549102334,1381,798,0.272470287978649139404296875,1,0.793497162871062755584716796875,leaky_relu,normal
48,1753979427,22,1753979449,1753979455,6,python3 .tests/mnist/train --epochs 153 --learning_rate 0.0860993135013803923 --batch_size 888 --hidden_size 1624 --dropout 0.03856775630265474319 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.62271718122065067291,,1,,c156,531380,48_0,FAILED,SOBOL,153,0.086099313501380392299466848272,888,1624,0.038567756302654743194580078125,3,0.62271718122065067291259765625,leaky_relu,normal
49,1753979503,27,1753979530,1753979536,6,python3 .tests/mnist/train --epochs 75 --learning_rate 0.00913582187386229733 --batch_size 1651 --hidden_size 352 --dropout 0.38646105676889419556 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.41669194959104061127,,1,,c156,531382,49_0,FAILED,SOBOL,75,0.009135821873862297326507331263,1651,352,0.386461056768894195556640625,2,0.41669194959104061126708984375,leaky_relu,normal
50,1753979617,12,1753979629,1753979635,6,python3 .tests/mnist/train --epochs 12 --learning_rate 0.05197739815646783279 --batch_size 308 --hidden_size 1313 --dropout 0.35337425488978624344 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.86630352307111024857,,1,,c156,531383,50_0,FAILED,SOBOL,12,0.051977398156467832790461613968,308,1313,0.353374254889786243438720703125,1,0.866303523071110248565673828125,leaky_relu,normal
51,1753979730,20,1753979750,1753979756,6,python3 .tests/mnist/train --epochs 120 --learning_rate 0.03056216852370649897 --batch_size 1074 --hidden_size 535 --dropout 0.19247740507125854492 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.15625233296304941177,,1,,c156,531386,51_0,FAILED,SOBOL,120,0.030562168523706498973746548131,1074,535,0.192477405071258544921875,4,0.156252332963049411773681640625,leaky_relu,normal
52,1753979852,18,1753979870,1753979876,6,python3 .tests/mnist/train --epochs 150 --learning_rate 0.06562696448126807691 --batch_size 1863 --hidden_size 909 --dropout 0.13782233977690339088 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.9691301276907324791,,1,,c156,531387,52_0,FAILED,SOBOL,150,0.065626964481268076911923969874,1863,909,0.137822339776903390884399414062,3,0.969130127690732479095458984375,leaky_relu,normal
53,1753979944,16,1753979960,1753979966,6,python3 .tests/mnist/train --epochs 42 --learning_rate 0.04250358589727432079 --batch_size 587 --hidden_size 1164 --dropout 0.28309417469426989555 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.05418199580162763596,,1,,c156,531389,53_0,FAILED,SOBOL,42,0.042503585897274320792860180518,587,1164,0.283094174694269895553588867188,2,0.054181995801627635955810546875,leaky_relu,normal
54,1753980089,21,1753980110,1753980116,6,python3 .tests/mnist/train --epochs 104 --learning_rate 0.09945517750989646411 --batch_size 1307 --hidden_size 199 --dropout 0.44094065064564347267 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.72931841015815734863,,1,,c156,531391,54_0,FAILED,SOBOL,104,0.099455177509896464105310087689,1307,199,0.440940650645643472671508789062,1,0.7293184101581573486328125,leaky_relu,normal
55,1753980168,34,1753980202,1753980208,6,python3 .tests/mnist/train --epochs 183 --learning_rate 0.02097730417357757809 --batch_size 35 --hidden_size 2000 --dropout 0.10867236508056521416 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.31034344062209129333,,1,,c152,531392,55_0,FAILED,SOBOL,183,0.020977304173577578094711526546,35,2000,0.108672365080565214157104492188,4,0.3103434406220912933349609375,leaky_relu,normal
56,1753980285,5,1753980290,1753980296,6,python3 .tests/mnist/train --epochs 191 --learning_rate 0.06151217139552347946 --batch_size 1521 --hidden_size 1103 --dropout 0.40660580713301897049 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.87894967850297689438,,1,,c156,531393,56_0,FAILED,SOBOL,191,0.061512171395523479455746951317,1521,1103,0.406605807133018970489501953125,4,0.878949678502976894378662109375,leaky_relu,normal
57,1753980404,6,1753980410,1753980416,6,python3 .tests/mnist/train --epochs 84 --learning_rate 0.03370176491395571183 --batch_size 244 --hidden_size 841 --dropout 0.01232708990573883057 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.08112996350973844528,,1,,c156,531394,57_0,FAILED,SOBOL,84,0.033701764913955711833182249393,244,841,0.01232708990573883056640625,1,0.081129963509738445281982421875,leaky_relu,normal
58,1753980489,11,1753980500,1753980506,6,python3 .tests/mnist/train --epochs 45 --learning_rate 0.07659531124928034562 --batch_size 1969 --hidden_size 1797 --dropout 0.23337547946721315384 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.63938411325216293335,,1,,c156,531396,58_0,FAILED,SOBOL,45,0.076595311249280345622381105386,1969,1797,0.233375479467213153839111328125,2,0.639384113252162933349609375,leaky_relu,normal
59,1753980574,16,1753980590,1753980596,6,python3 .tests/mnist/train --epochs 134 --learning_rate 0.00592915927040390655 --batch_size 697 --hidden_size 20 --dropout 0.31468116492033004761 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.33753365650773048401,,1,,c156,531398,59_0,FAILED,SOBOL,134,0.005929159270403906549506967139,697,20,0.314681164920330047607421875,3,0.3375336565077304840087890625,leaky_relu,normal
60,1753980743,27,1753980770,1753980777,7,python3 .tests/mnist/train --epochs 116 --learning_rate 0.09018682845556177941 --batch_size 481 --hidden_size 411 --dropout 0.25977431470528244972 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.52515156753361225128,,1,,c156,531399,60_0,FAILED,SOBOL,116,0.090186828455561779405158517875,481,411,0.259774314705282449722290039062,4,0.52515156753361225128173828125,leaky_relu,normal
61,1753980806,38,1753980844,1753980850,6,python3 .tests/mnist/train --epochs 28 --learning_rate 0.01791036472561769247 --batch_size 1244 --hidden_size 1692 --dropout 0.1628436441533267498 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.45200176350772380829,,1,,c143,531408,61_0,FAILED,SOBOL,28,0.017910364725617692466252961481,1244,1692,0.162843644153326749801635742188,1,0.45200176350772380828857421875,leaky_relu,normal
62,1753980883,9,1753980892,1753980899,7,python3 .tests/mnist/train --epochs 66 --learning_rate 0.07481608919079416053 --batch_size 906 --hidden_size 738 --dropout 0.06704320991411805153 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.7689838828518986702,,1,,c143,531410,62_0,FAILED,SOBOL,66,0.074816089190794160534991874556,906,738,0.067043209914118051528930664062,2,0.768983882851898670196533203125,leaky_relu,normal
63,1753980987,25,1753981012,1753981019,7,python3 .tests/mnist/train --epochs 173 --learning_rate 0.04558913820059039279 --batch_size 1672 --hidden_size 1493 --dropout 0.4769469122402369976 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.19180433545261621475,,1,,c143,531412,63_0,FAILED,SOBOL,173,0.04558913820059039279097845565,1672,1493,0.476946912240236997604370117188,3,0.191804335452616214752197265625,leaky_relu,normal
64,1753981080,22,1753981102,1753981108,6,python3 .tests/mnist/train --epochs 172 --learning_rate 0.05807734835951589708 --batch_size 974 --hidden_size 866 --dropout 0.3617018992081284523 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.01645461004227399826,,1,,c143,531413,64_0,FAILED,SOBOL,172,0.058077348359515897080473934011,974,866,0.361701899208128452301025390625,4,0.016454610042273998260498046875,leaky_relu,normal
65,1753981168,42,1753981210,1753981217,7,python3 .tests/mnist/train --epochs 68 --learning_rate 0.03735784732048400697 --batch_size 1740 --hidden_size 1110 --dropout 0.21742163971066474915 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.9450746169313788414,,1,,c143,531415,65_0,FAILED,SOBOL,68,0.037357847320484006969909529516,1740,1110,0.2174216397106647491455078125,1,0.945074616931378841400146484375,leaky_relu,normal
66,1753981273,10,1753981283,1753981289,6,python3 .tests/mnist/train --epochs 29 --learning_rate 0.08039624527809210996 --batch_size 413 --hidden_size 29 --dropout 0.0593462744727730751 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.27578994259238243103,,1,,c143,531417,66_0,FAILED,SOBOL,29,0.080396245278092109964873657191,413,29,0.059346274472773075103759765625,2,0.2757899425923824310302734375,leaky_relu,normal
67,1753981355,17,1753981372,1753981378,6,python3 .tests/mnist/train --epochs 115 --learning_rate 0.00273701909697614655 --batch_size 1176 --hidden_size 1820 --dropout 0.39065351709723472595 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.70062428712844848633,,1,,c143,531418,67_0,FAILED,SOBOL,115,0.002737019096976146554506259534,1176,1820,0.3906535170972347259521484375,3,0.700624287128448486328125,leaky_relu,normal
68,1753981453,9,1753981462,1753981468,6,python3 .tests/mnist/train --epochs 133 --learning_rate 0.09345306394827553043 --batch_size 2045 --hidden_size 1670 --dropout 0.46117772767320275307 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.38776894472539424896,,1,,c143,531421,68_0,FAILED,SOBOL,133,0.093453063948275530425924273459,2045,1670,0.461177727673202753067016601562,4,0.38776894472539424896240234375,leaky_relu,normal
69,1753981564,19,1753981583,1753981589,6,python3 .tests/mnist/train --epochs 47 --learning_rate 0.01408416904947720587 --batch_size 773 --hidden_size 402 --dropout 0.11424549994990229607 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.58793480135500431061,,1,,c143,531423,69_0,FAILED,SOBOL,47,0.014084169049477205867826334895,773,402,0.114245499949902296066284179688,1,0.58793480135500431060791015625,leaky_relu,normal
70,1753981661,12,1753981673,1753981679,6,python3 .tests/mnist/train --epochs 86 --learning_rate 0.07123257637723348634 --batch_size 1445 --hidden_size 1486 --dropout 0.14707290986552834511 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.13245622161775827408,,1,,c143,531424,70_0,FAILED,SOBOL,86,0.071232576377233486342177570805,1445,1486,0.147072909865528345108032226562,2,0.132456221617758274078369140625,leaky_relu,normal
71,1753981768,27,1753981795,1753981801,6,python3 .tests/mnist/train --epochs 189 --learning_rate 0.04900022531558760608 --batch_size 169 --hidden_size 713 --dropout 0.30697815446183085442 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.82883553672581911087,,1,,c143,531426,71_0,FAILED,SOBOL,189,0.049000225315587606078615579008,169,713,0.306978154461830854415893554688,3,0.828835536725819110870361328125,leaky_relu,normal
72,1753981868,17,1753981885,1753981891,6,python3 .tests/mnist/train --epochs 184 --learning_rate 0.08348234533056617113 --batch_size 1367 --hidden_size 327 --dropout 0.23951315972954034805 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.47801033966243267059,,1,,c143,531427,72_0,FAILED,SOBOL,184,0.083482345330566171126562835525,1367,327,0.239513159729540348052978515625,3,0.47801033966243267059326171875,leaky_relu,normal
73,1753981987,40,1753982027,1753982033,6,python3 .tests/mnist/train --epochs 103 --learning_rate 0.01192516657432541281 --batch_size 95 --hidden_size 1617 --dropout 0.33740539476275444031 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.56092576868832111359,,1,,c143,531428,73_0,FAILED,SOBOL,103,0.011925166574325412813251112709,95,1617,0.3374053947627544403076171875,2,0.56092576868832111358642578125,leaky_relu,normal
74,1753982097,31,1753982128,1753982135,7,python3 .tests/mnist/train --epochs 40 --learning_rate 0.05500943167937920319 --batch_size 1804 --hidden_size 527 --dropout 0.43349573854357004166 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.22245164308696985245,,1,,c143,531429,74_0,FAILED,SOBOL,40,0.055009431679379203194990566317,1804,527,0.433495738543570041656494140625,1,0.222451643086969852447509765625,leaky_relu,normal
75,1753982217,27,1753982244,1753982250,6,python3 .tests/mnist/train --epochs 151 --learning_rate 0.02809004601530730796 --batch_size 527 --hidden_size 1290 --dropout 0.02259996905922889709 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.80158431548625230789,,1,,c143,531430,75_0,FAILED,SOBOL,151,0.02809004601530730796388191095,527,1290,0.0225999690592288970947265625,4,0.801584315486252307891845703125,leaky_relu,normal
76,1753982341,23,1753982364,1753982370,6,python3 .tests/mnist/train --epochs 122 --learning_rate 0.06802650994686409991 --batch_size 360 --hidden_size 1186 --dropout 0.09288768330588936806 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.11395927798002958298,,1,,c143,531435,76_0,FAILED,SOBOL,122,0.068026509946864099909191736515,360,1186,0.092887683305889368057250976562,3,0.113959277980029582977294921875,leaky_relu,normal
77,1753982473,13,1753982486,1753982492,6,python3 .tests/mnist/train --epochs 10 --learning_rate 0.03949529276527465049 --batch_size 1126 --hidden_size 918 --dropout 0.48815843788906931877 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.90982586797326803207,,1,,c143,531436,77_0,FAILED,SOBOL,10,0.03949529276527465049273502018,1126,918,0.488158437889069318771362304688,2,0.909825867973268032073974609375,leaky_relu,normal
78,1753982634,31,1753982665,1753982677,12,python3 .tests/mnist/train --epochs 73 --learning_rate 0.09659173004031182397 --batch_size 836 --hidden_size 2007 --dropout 0.26730842003598809242 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.37304845824837684631,,1,,c143,531437,78_0,FAILED,SOBOL,73,0.096591730040311823968224302916,836,2007,0.267308420035988092422485351562,1,0.3730484582483768463134765625,leaky_relu,normal
79,1753982791,23,1753982814,1753982820,6,python3 .tests/mnist/train --epochs 154 --learning_rate 0.02361953846162185428 --batch_size 1599 --hidden_size 224 --dropout 0.18504119990393519402 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.66513328999280929565,,1,,c143,531440,79_0,FAILED,SOBOL,154,0.023619538461621854275040988114,1599,224,0.185041199903935194015502929688,4,0.665133289992809295654296875,leaky_relu,normal
80,1753982963,60,1753983023,1753983029,6,python3 .tests/mnist/train --epochs 160 --learning_rate 0.09855591866426170744 --batch_size 53 --hidden_size 1433 --dropout 0.38772316882386803627 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.99241501186043024063,,1,,c142,531443,80_0,FAILED,SOBOL,160,0.098555918664261707440310544825,53,1433,0.387723168823868036270141601562,2,0.992415011860430240631103515625,leaky_relu,normal
81,1753983070,39,1753983109,1753983115,6,python3 .tests/mnist/train --epochs 80 --learning_rate 0.0216782357324473568 --batch_size 1330 --hidden_size 671 --dropout 0.03297975240275263786 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.04603382665663957596,,1,,c142,531444,81_0,FAILED,SOBOL,80,0.021678235732447356798324733518,1330,671,0.032979752402752637863159179688,3,0.046033826656639575958251953125,leaky_relu,normal
82,1753983234,31,1753983265,1753983271,6,python3 .tests/mnist/train --epochs 17 --learning_rate 0.06451829969843850265 --batch_size 632 --hidden_size 1760 --dropout 0.1910551176406443119 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.7368562798947095871,,1,,c152,531446,82_0,FAILED,SOBOL,17,0.064518299698438502653985437973,632,1760,0.191055117640644311904907226562,4,0.73685627989470958709716796875,leaky_relu,normal
83,1753983349,38,1753983387,1753983393,6,python3 .tests/mnist/train --epochs 127 --learning_rate 0.04301723455056549045 --batch_size 1906 --hidden_size 471 --dropout 0.35877155093476176262 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.28669229336082935333,,1,,c151,531449,83_0,FAILED,SOBOL,127,0.043017234550565490447393557361,1906,471,0.358771550934761762619018554688,1,0.28669229336082935333251953125,leaky_relu,normal
84,1753983511,34,1753983545,1753983551,6,python3 .tests/mnist/train --epochs 145 --learning_rate 0.05307424526518211838 --batch_size 1052 --hidden_size 80 --dropout 0.2884228164330124855 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.59955434873700141907,,1,,c151,531450,84_0,FAILED,SOBOL,145,0.05307424526518211838066463315,1052,80,0.288422816433012485504150390625,2,0.5995543487370014190673828125,leaky_relu,normal
85,1753983659,26,1753983685,1753983691,6,python3 .tests/mnist/train --epochs 35 --learning_rate 0.0300603241348266631 --batch_size 290 --hidden_size 1864 --dropout 0.13633136823773384094 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.42471805959939956665,,1,,c152,531451,85_0,FAILED,SOBOL,35,0.030060324134826663100561461306,290,1864,0.1363313682377338409423828125,3,0.424718059599399566650390625,leaky_relu,normal
86,1753983780,24,1753983804,1753983810,6,python3 .tests/mnist/train --epochs 98 --learning_rate 0.08701040343083442374 --batch_size 1608 --hidden_size 774 --dropout 0.1035039583221077919 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.85864360164850950241,,1,,c152,531453,86_0,FAILED,SOBOL,98,0.087010403430834423743611694135,1608,774,0.103503958322107791900634765625,4,0.858643601648509502410888671875,leaky_relu,normal
87,1753983901,24,1753983925,1753983931,6,python3 .tests/mnist/train --epochs 178 --learning_rate 0.00842304582146927681 --batch_size 842 --hidden_size 1043 --dropout 0.44262238964438438416 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.18002553936094045639,,1,,c152,531455,87_0,FAILED,SOBOL,178,0.008423045821469276814297266753,842,1043,0.4426223896443843841552734375,1,0.180025539360940456390380859375,leaky_relu,normal
88,1753984004,9,1753984013,1753984019,6,python3 .tests/mnist/train --epochs 196 --learning_rate 0.0739569581393059311 --batch_size 1714 --hidden_size 1933 --dropout 0.00990401068702340126 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.50156147405505180359,,1,,c142,531458,88_0,FAILED,SOBOL,196,0.073956958139305931099194424405,1714,1933,0.009904010687023401260375976562,1,0.5015614740550518035888671875,leaky_relu,normal
89,1753984130,43,1753984173,1753984179,6,python3 .tests/mnist/train --epochs 91 --learning_rate 0.04625600911137648513 --batch_size 952 --hidden_size 139 --dropout 0.41298857657238841057 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.45947857201099395752,,1,,c151,531460,89_0,FAILED,SOBOL,91,0.046256009111376485132272051715,952,139,0.412988576572388410568237304688,4,0.45947857201099395751953125,leaky_relu,normal
90,1753984245,31,1753984276,1753984282,6,python3 .tests/mnist/train --epochs 52 --learning_rate 0.08914804313008674319 --batch_size 1265 --hidden_size 1223 --dropout 0.31689823279157280922 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.76089673023670911789,,1,,c151,531461,90_0,FAILED,SOBOL,52,0.089148043130086743190965137273,1265,1223,0.316898232791572809219360351562,3,0.760896730236709117889404296875,leaky_relu,normal
91,1753984370,4,1753984374,1753984381,7,python3 .tests/mnist/train --epochs 140 --learning_rate 0.01837240687816403886 --batch_size 500 --hidden_size 976 --dropout 0.22681720135733485222 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.21502821054309606552,,1,,c151,531462,91_0,FAILED,SOBOL,140,0.018372406878164038862566442845,500,976,0.226817201357334852218627929688,2,0.215028210543096065521240234375,leaky_relu,normal
92,1753984486,8,1753984494,1753984500,6,python3 .tests/mnist/train --epochs 110 --learning_rate 0.07764593957831152082 --batch_size 651 --hidden_size 603 --dropout 0.15672022197395563126 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.90266185346990823746,,1,,c142,531465,92_0,FAILED,SOBOL,110,0.077645939578311520823383773404,651,603,0.156720221973955631256103515625,1,0.902661853469908237457275390625,leaky_relu,normal
93,1753984559,26,1753984585,1753984591,6,python3 .tests/mnist/train --epochs 22 --learning_rate 0.00545528454407118255 --batch_size 1927 --hidden_size 1373 --dropout 0.2624262683093547821 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.07353106606751680374,,1,,c152,531468,93_0,FAILED,SOBOL,22,0.005455284544071182552260612653,1927,1373,0.2624262683093547821044921875,4,0.073531066067516803741455078125,leaky_relu,normal
94,1753984697,8,1753984705,1753984711,6,python3 .tests/mnist/train --epochs 61 --learning_rate 0.06235949669263326361 --batch_size 226 --hidden_size 292 --dropout 0.48327628616243600845 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.64734918437898159027,,1,,c152,531473,94_0,FAILED,SOBOL,61,0.062359496692633263614791161444,226,292,0.483276286162436008453369140625,3,0.64734918437898159027099609375,leaky_relu,normal
95,1753984788,8,1753984796,1753984802,6,python3 .tests/mnist/train --epochs 166 --learning_rate 0.03304671018731780707 --batch_size 1499 --hidden_size 1557 --dropout 0.0645667053759098053 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.31443187035620212555,,1,,c152,531474,95_0,FAILED,SOBOL,166,0.033046710187317807072560071902,1499,1557,0.0645667053759098052978515625,2,0.31443187035620212554931640625,leaky_relu,normal
96,1753984921,33,1753984954,1753984961,7,python3 .tests/mnist/train --epochs 169 --learning_rate 0.07894938012505882396 --batch_size 1834 --hidden_size 1075 --dropout 0.29985149530693888664 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.72311420273035764694,,1,,c152,531475,96_0,FAILED,SOBOL,169,0.078949380125058823964856458133,1834,1075,0.299851495306938886642456054688,2,0.723114202730357646942138671875,leaky_relu,normal
97,1753985015,34,1753985049,1753985056,7,python3 .tests/mnist/train --epochs 59 --learning_rate 0.0004716021466348321 --batch_size 561 --hidden_size 805 --dropout 0.15606108168140053749 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.30017407890409231186,,1,,c152,531476,97_0,FAILED,SOBOL,59,0.000471602146634832099930667582,561,805,0.156061081681400537490844726562,3,0.300174078904092311859130859375,leaky_relu,normal
98,1753985144,11,1753985155,1753985161,6,python3 .tests/mnist/train --epochs 26 --learning_rate 0.05761991709643044662 --batch_size 1401 --hidden_size 1896 --dropout 0.12271493254229426384 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.9831918962299823761,,1,,c152,531477,98_0,FAILED,SOBOL,26,0.057619917096430446623589460842,1401,1896,0.122714932542294263839721679688,4,0.9831918962299823760986328125,leaky_relu,normal
99,1753985258,17,1753985275,1753985281,6,python3 .tests/mnist/train --epochs 106 --learning_rate 0.03449663387033157641 --batch_size 124 --hidden_size 112 --dropout 0.45450889179483056068 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.05646137148141860962,,1,,c152,531479,99_0,FAILED,SOBOL,106,0.034496633870331576410261931187,124,112,0.454508891794830560684204101562,1,0.056461371481418609619140625,leaky_relu,normal
100,1753985419,6,1753985425,1753985431,6,python3 .tests/mnist/train --epochs 136 --learning_rate 0.06935850822755135203 --batch_size 802 --hidden_size 503 --dropout 0.39973175153136253357 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.86884397082030773163,,1,,c142,531481,100_0,FAILED,SOBOL,136,0.069358508227551352032236309242,802,503,0.3997317515313625335693359375,2,0.86884397082030773162841796875,leaky_relu,normal
101,1753985542,49,1753985591,1753985597,6,python3 .tests/mnist/train --epochs 56 --learning_rate 0.04794318323689513578 --batch_size 1569 --hidden_size 1792 --dropout 0.05231277737766504288 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.1705737430602312088,,1,,c142,531482,101_0,FAILED,SOBOL,56,0.047943183236895135779231935658,1569,1792,0.052312777377665042877197265625,3,0.17057374306023120880126953125,leaky_relu,normal
102,1753985641,35,1753985676,1753985682,6,python3 .tests/mnist/train --epochs 89 --learning_rate 0.09098167357246392251 --batch_size 330 --hidden_size 702 --dropout 0.21090688183903694153 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.61231964919716119766,,1,,c142,531485,102_0,FAILED,SOBOL,89,0.090981673572463922505804134744,330,702,0.2109068818390369415283203125,4,0.612319649197161197662353515625,leaky_relu,normal
103,1753985784,31,1753985815,1753985821,6,python3 .tests/mnist/train --epochs 198 --learning_rate 0.01401808658705093122 --batch_size 1092 --hidden_size 1465 --dropout 0.37032231036573648453 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.41026004869490861893,,1,,c142,531488,103_0,FAILED,SOBOL,198,0.014018086587050931218767502173,1092,1465,0.370322310365736484527587890625,1,0.410260048694908618927001953125,leaky_relu,normal
104,1753985916,19,1753985935,1753985942,7,python3 .tests/mnist/train --epochs 181 --learning_rate 0.05431036313813180499 --batch_size 444 --hidden_size 1588 --dropout 0.1759617137722671032 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.7791556771844625473,,1,,c142,531490,104_0,FAILED,SOBOL,181,0.054310363138131804994213069904,444,1588,0.175961713772267103195190429688,1,0.77915567718446254730224609375,leaky_relu,normal
105,1753986049,6,1753986055,1753986061,6,python3 .tests/mnist/train --epochs 94 --learning_rate 0.025083316790033134 --batch_size 1210 --hidden_size 324 --dropout 0.27434328803792595863 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.19800623692572116852,,1,,c142,531491,105_0,FAILED,SOBOL,94,0.025083316790033133997228631529,1210,324,0.274343288037925958633422851562,4,0.19800623692572116851806640625,leaky_relu,normal
106,1753986195,12,1753986207,1753986213,6,python3 .tests/mnist/train --epochs 37 --learning_rate 0.08217985240289941984 --batch_size 1008 --hidden_size 1405 --dropout 0.49467444745823740959 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.52286975923925638199,,1,,c142,531495,106_0,FAILED,SOBOL,37,0.082179852402899419838711025932,1008,1405,0.494674447458237409591674804688,3,0.522869759239256381988525390625,leaky_relu,normal
107,1753986277,18,1753986295,1753986301,6,python3 .tests/mnist/train --epochs 142 --learning_rate 0.00990329331506043659 --batch_size 1770 --hidden_size 635 --dropout 0.08426590124145150185 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.43794230092316865921,,1,,c142,531497,107_0,FAILED,SOBOL,142,0.009903293315060436585728353975,1770,635,0.084265901241451501846313476562,2,0.437942300923168659210205078125,leaky_relu,normal
108,1753986402,13,1753986415,1753986422,7,python3 .tests/mnist/train --epochs 125 --learning_rate 0.09397634961569682754 --batch_size 1412 --hidden_size 1008 --dropout 0.02972525730729103088 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.62506406288594007492,,1,,c142,531498,108_0,FAILED,SOBOL,125,0.093976349615696827544120139919,1412,1008,0.0297252573072910308837890625,1,0.625064062885940074920654296875,leaky_relu,normal
109,1753986527,8,1753986535,1753986541,6,python3 .tests/mnist/train --epochs 19 --learning_rate 0.02331029299471527524 --batch_size 138 --hidden_size 1255 --dropout 0.42450881842523813248 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.33499173726886510849,,1,,c142,531502,109_0,FAILED,SOBOL,19,0.023310292994715275244343999361,138,1255,0.424508818425238132476806640625,4,0.334991737268865108489990234375,leaky_relu,normal
110,1753986643,13,1753986656,1753986662,6,python3 .tests/mnist/train --epochs 76 --learning_rate 0.06639445976193994459 --batch_size 2015 --hidden_size 171 --dropout 0.32893733307719230652 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.88538021966814994812,,1,,c142,531503,110_0,FAILED,SOBOL,76,0.066394459761939944586472961419,2015,171,0.3289373330771923065185546875,3,0.8853802196681499481201171875,leaky_relu,normal
111,1753986761,34,1753986795,1753986801,6,python3 .tests/mnist/train --epochs 164 --learning_rate 0.03858414863826707675 --batch_size 738 --hidden_size 1965 --dropout 0.24618074391037225723 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.09152896702289581299,,1,,c142,531504,111_0,FAILED,SOBOL,164,0.038584148638267076747432327011,738,1965,0.246180743910372257232666015625,2,0.09152896702289581298828125,leaky_relu,normal
112,1753986884,12,1753986896,1753986902,6,python3 .tests/mnist/train --epochs 157 --learning_rate 0.0636719985674694261 --batch_size 1232 --hidden_size 745 --dropout 0.44962674006819725037 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.26230935100466012955,,1,,c142,531505,112_0,FAILED,SOBOL,157,0.06367199856746942610019601716,1232,745,0.4496267400681972503662109375,4,0.262309351004660129547119140625,leaky_relu,normal
113,1753987013,43,1753987056,1753987063,7,python3 .tests/mnist/train --epochs 71 --learning_rate 0.04132949572751299511 --batch_size 469 --hidden_size 1518 --dropout 0.09439395461231470108 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.7143632667139172554,,1,,c142,531507,113_0,FAILED,SOBOL,71,0.041329495727512995106867066397,469,1518,0.094393954612314701080322265625,1,0.714363266713917255401611328125,leaky_relu,normal
114,1753987163,34,1753987197,1753987203,6,python3 .tests/mnist/train --epochs 14 --learning_rate 0.09827947668569163298 --batch_size 1684 --hidden_size 434 --dropout 0.12774010375142097473 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.00602348707616329193,,1,,c142,531508,114_0,FAILED,SOBOL,14,0.098279476685691632975583331699,1684,434,0.1277401037514209747314453125,2,0.00602348707616329193115234375,leaky_relu,normal
115,1753987296,21,1753987317,1753987323,6,python3 .tests/mnist/train --epochs 118 --learning_rate 0.0190208974615857021 --batch_size 918 --hidden_size 1701 --dropout 0.29496934358030557632 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.95429939962923526764,,1,,c142,531510,115_0,FAILED,SOBOL,118,0.019020897461585702103992190359,918,1701,0.294969343580305576324462890625,3,0.95429939962923526763916015625,leaky_relu,normal
116,1753987430,6,1753987436,1753987442,6,python3 .tests/mnist/train --epochs 148 --learning_rate 0.08493131580712273698 --batch_size 256 --hidden_size 1851 --dropout 0.34981514839455485344 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.1419101618230342865,,1,,c142,531512,116_0,FAILED,SOBOL,148,0.084931315807122736982748278933,256,1851,0.349815148394554853439331054688,4,0.1419101618230342864990234375,leaky_relu,normal
117,1753987576,11,1753987587,1753987593,6,python3 .tests/mnist/train --epochs 44 --learning_rate 0.00718692161615937936 --batch_size 1533 --hidden_size 61 --dropout 0.19821092346683144569 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.81863492727279663086,,1,,c142,531513,117_0,FAILED,SOBOL,44,0.007186921616159379355703862302,1533,61,0.198210923466831445693969726562,1,0.818634927272796630859375,leaky_relu,normal
118,1753987647,29,1753987676,1753987682,6,python3 .tests/mnist/train --epochs 101 --learning_rate 0.05002708391997964105 --batch_size 685 --hidden_size 1142 --dropout 0.03961681900545954704 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.40222624223679304123,,1,,c142,531514,118_0,FAILED,SOBOL,101,0.050027083919979641046804630378,685,1142,0.039616819005459547042846679688,2,0.402226242236793041229248046875,leaky_relu,normal
119,1753987770,26,1753987796,1753987802,6,python3 .tests/mnist/train --epochs 187 --learning_rate 0.02939253335559740762 --batch_size 1957 --hidden_size 898 --dropout 0.37922458956018090248 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.57517212536185979843,,1,,c142,531515,119_0,FAILED,SOBOL,187,0.029392533355597407623838179802,1957,898,0.379224589560180902481079101562,3,0.575172125361859798431396484375,leaky_relu,normal
120,1753987917,30,1753987947,1753987953,6,python3 .tests/mnist/train --epochs 193 --learning_rate 0.08901864265295676704 --batch_size 599 --hidden_size 256 --dropout 0.07352435961365699768 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.23947194591164588928,,1,,c142,531516,120_0,FAILED,SOBOL,193,0.08901864265295676703626526205,599,256,0.0735243596136569976806640625,3,0.2394719459116458892822265625,leaky_relu,normal
121,1753988006,31,1753988037,1753988043,6,python3 .tests/mnist/train --epochs 82 --learning_rate 0.01596128306441940356 --batch_size 1875 --hidden_size 2039 --dropout 0.47611910942941904068 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.78332894295454025269,,1,,c142,531517,121_0,FAILED,SOBOL,82,0.015961283064419403560085797267,1875,2039,0.476119109429419040679931640625,2,0.783328942954540252685546875,leaky_relu,normal
122,1753988126,31,1753988157,1753988163,6,python3 .tests/mnist/train --epochs 49 --learning_rate 0.07286558759094216575 --batch_size 23 --hidden_size 949 --dropout 0.25578795000910758972 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.49954971205443143845,,1,,c142,531519,122_0,FAILED,SOBOL,49,0.072865587590942165752139203505,23,949,0.2557879500091075897216796875,1,0.499549712054431438446044921875,leaky_relu,normal
123,1753988245,32,1753988277,1753988283,6,python3 .tests/mnist/train --epochs 131 --learning_rate 0.04441932088400237649 --batch_size 1295 --hidden_size 1218 --dropout 0.16522017214447259903 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.53961629327386617661,,1,,c142,531521,123_0,FAILED,SOBOL,131,0.044419320884002376492727393043,1295,1218,0.165220172144472599029541015625,4,0.539616293273866176605224609375,leaky_relu,normal
124,1753988368,29,1753988397,1753988403,6,python3 .tests/mnist/train --epochs 113 --learning_rate 0.05955702407822945077 --batch_size 1639 --hidden_size 1322 --dropout 0.21981422184035181999 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.35248597059398889542,,1,,c142,531522,124_0,FAILED,SOBOL,113,0.059557024078229450769761399442,1639,1322,0.219814221840351819992065429688,3,0.352485970593988895416259765625,leaky_relu,normal
125,1753988497,20,1753988517,1753988523,6,python3 .tests/mnist/train --epochs 31 --learning_rate 0.03252748663584702216 --batch_size 876 --hidden_size 558 --dropout 0.32600698480382561684 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.68741912860423326492,,1,,c142,531523,125_0,FAILED,SOBOL,31,0.032527486635847022156120544878,876,558,0.326006984803825616836547851562,2,0.687419128604233264923095703125,leaky_relu,normal
126,1753988611,26,1753988637,1753988644,7,python3 .tests/mnist/train --epochs 64 --learning_rate 0.07541942827659658954 --batch_size 1086 --hidden_size 1649 --dropout 0.42157847015187144279 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.09596161358058452606,,1,,c142,531525,126_0,FAILED,SOBOL,64,0.075419428276596589544311655118,1086,1649,0.421578470151871442794799804688,1,0.09596161358058452606201171875,leaky_relu,normal
127,1753988737,20,1753988757,1753988763,6,python3 .tests/mnist/train --epochs 175 --learning_rate 0.00397256519504822752 --batch_size 320 --hidden_size 359 --dropout 0.00335873523727059364 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.92710535414516925812,,1,,c142,531526,127_0,FAILED,SOBOL,175,0.003972565195048227519591943491,320,359,0.003358735237270593643188476562,4,0.92710535414516925811767578125,leaky_relu,normal
128,1753988858,45,1753988903,1753988909,6,python3 .tests/mnist/train --epochs 176 --learning_rate 0.06787535501873120936 --batch_size 1611 --hidden_size 1716 --dropout 0.39323020912706851959 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.49038906116038560867,,1,,c152,531527,128_0,FAILED,SOBOL,176,0.067875355018731209355564715224,1611,1716,0.39323020912706851959228515625,2,0.490389061160385608673095703125,leaky_relu,normal
129,1753988981,18,1753988999,1753989005,6,python3 .tests/mnist/train --epochs 63 --learning_rate 0.04022322588056326254 --batch_size 848 --hidden_size 452 --dropout 0.06094664987176656723 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.53241093549877405167,,1,,c152,531528,129_0,FAILED,SOBOL,63,0.040223225880563262535360991023,848,452,0.060946649871766567230224609375,3,0.532410935498774051666259765625,leaky_relu,normal
130,1753989091,27,1753989118,1753989124,6,python3 .tests/mnist/train --epochs 31 --learning_rate 0.09556518963702023695 --batch_size 1051 --hidden_size 1533 --dropout 0.21489831991493701935 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.24667875654995441437,,1,,c152,531529,130_0,FAILED,SOBOL,31,0.095565189637020236945730289335,1051,1533,0.21489831991493701934814453125,4,0.24667875654995441436767578125,leaky_relu,normal
131,1753989219,19,1753989238,1753989244,6,python3 .tests/mnist/train --epochs 114 --learning_rate 0.02483837401984259619 --batch_size 284 --hidden_size 763 --dropout 0.36015491094440221786 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.79248623363673686981,,1,,c152,531530,131_0,FAILED,SOBOL,114,0.024838374019842596185370098283,284,763,0.360154910944402217864990234375,1,0.79248623363673686981201171875,leaky_relu,normal
132,1753989335,24,1753989359,1753989366,7,python3 .tests/mnist/train --epochs 131 --learning_rate 0.08372739947579802 --batch_size 643 --hidden_size 881 --dropout 0.30562571203336119652 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.10535710304975509644,,1,,c152,531531,132_0,FAILED,SOBOL,131,0.083727399475798020000993915346,643,881,0.305625712033361196517944335938,2,0.105357103049755096435546875,leaky_relu,normal
133,1753989498,12,1753989510,1753989516,6,python3 .tests/mnist/train --epochs 49 --learning_rate 0.01148792455179616957 --batch_size 1919 --hidden_size 1127 --dropout 0.14474413590505719185 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.93454888835549354553,,1,,c152,531532,133_0,FAILED,SOBOL,49,0.011487924551796169572726036279,1919,1127,0.144744135905057191848754882812,3,0.9345488883554935455322265625,leaky_relu,normal
134,1753989612,17,1753989629,1753989635,6,python3 .tests/mnist/train --epochs 81 --learning_rate 0.05594220696261153342 --batch_size 43 --hidden_size 44 --dropout 0.11554451053962111473 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.34504479821771383286,,1,,c152,531533,134_0,FAILED,SOBOL,81,0.055942206962611533416218634329,43,44,0.115544510539621114730834960938,4,0.345044798217713832855224609375,leaky_relu,normal
135,1753989725,24,1753989749,1753989755,6,python3 .tests/mnist/train --epochs 194 --learning_rate 0.02658059982255101331 --batch_size 1315 --hidden_size 1837 --dropout 0.46345305489376187325 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.6780231846496462822,,1,,c143,531535,135_0,FAILED,SOBOL,194,0.02658059982255101330594904141,1315,1837,0.463453054893761873245239257812,1,0.678023184649646282196044921875,leaky_relu,normal
136,1753989852,17,1753989869,1753989875,6,python3 .tests/mnist/train --epochs 186 --learning_rate 0.09252940875370986584 --batch_size 220 --hidden_size 1203 --dropout 0.02103416807949542999 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.01517671346664428711,,1,,c143,531538,136_0,FAILED,SOBOL,186,0.092529408753709865842473902831,220,1203,0.02103416807949542999267578125,1,0.015176713466644287109375,leaky_relu,normal
137,1753989967,23,1753989990,1753989996,6,python3 .tests/mnist/train --epochs 102 --learning_rate 0.01560289922728203341 --batch_size 1497 --hidden_size 933 --dropout 0.43095314409583806992 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.96149691566824913025,,1,,c143,531539,137_0,FAILED,SOBOL,102,0.015602899227282033406405403753,1497,933,0.430953144095838069915771484375,4,0.9614969156682491302490234375,leaky_relu,normal
138,1753990095,14,1753990109,1753990115,6,python3 .tests/mnist/train --epochs 45 --learning_rate 0.07099053941539489043 --batch_size 657 --hidden_size 2024 --dropout 0.33903988637030124664 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.25511044170707464218,,1,,c143,531540,138_0,FAILED,SOBOL,45,0.070990539415394890432331465036,657,2024,0.33903988637030124664306640625,3,0.255110441707074642181396484375,leaky_relu,normal
139,1753990210,20,1753990230,1753990236,6,python3 .tests/mnist/train --epochs 147 --learning_rate 0.04944064841789194004 --batch_size 1929 --hidden_size 240 --dropout 0.24212445970624685287 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.70521334093064069748,,1,,c143,531541,139_0,FAILED,SOBOL,147,0.049440648417891940036295039818,1929,240,0.242124459706246852874755859375,2,0.705213340930640697479248046875,leaky_relu,normal
140,1753990364,15,1753990379,1753990386,7,python3 .tests/mnist/train --epochs 117 --learning_rate 0.05910099375671708233 --batch_size 1252 --hidden_size 376 --dropout 0.18734350567683577538 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.39282338786870241165,,1,,c143,531542,140_0,FAILED,SOBOL,117,0.0591009937567170823280449099,1252,376,0.187343505676835775375366210938,1,0.392823387868702411651611328125,leaky_relu,normal
141,1753990442,27,1753990469,1753990475,6,python3 .tests/mnist/train --epochs 15 --learning_rate 0.03613589922097511925 --batch_size 489 --hidden_size 1665 --dropout 0.2686339174397289753 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.5677206898108124733,,1,,c143,531544,141_0,FAILED,SOBOL,15,0.036135899220975119250365281687,489,1665,0.268633917439728975296020507812,4,0.567720689810812473297119140625,leaky_relu,normal
142,1753990571,19,1753990590,1753990596,6,python3 .tests/mnist/train --epochs 72 --learning_rate 0.08053840229486115831 --batch_size 1728 --hidden_size 575 --dropout 0.48578750109300017357 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.14935917593538761139,,1,,c143,531545,142_0,FAILED,SOBOL,72,0.080538402294861158314809301828,1728,575,0.485787501093000173568725585938,3,0.14935917593538761138916015625,leaky_relu,normal
143,1753990686,24,1753990710,1753990716,6,python3 .tests/mnist/train --epochs 156 --learning_rate 0.00199987053512595608 --batch_size 962 --hidden_size 1337 --dropout 0.09149353997781872749 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.82803829573094844818,,1,,c143,531546,143_0,FAILED,SOBOL,156,0.001999870535125956080152453964,962,1337,0.091493539977818727493286132812,2,0.82803829573094844818115234375,leaky_relu,normal
144,1753990830,30,1753990860,1753990866,6,python3 .tests/mnist/train --epochs 164 --learning_rate 0.07701644709986635307 --batch_size 1456 --hidden_size 128 --dropout 0.35722455894574522972 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.53006867971271276474,,1,,c143,531547,144_0,FAILED,SOBOL,164,0.077016447099866353065422686086,1456,128,0.357224558945745229721069335938,4,0.530068679712712764739990234375,leaky_relu,normal
145,1753990964,17,1753990981,1753990987,6,python3 .tests/mnist/train --epochs 76 --learning_rate 0.0055080941932555286 --batch_size 182 --hidden_size 1912 --dropout 0.18853179411962628365 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.44709222298115491867,,1,,c143,531548,145_0,FAILED,SOBOL,76,0.005508094193255528604746817933,182,1912,0.188531794119626283645629882812,1,0.447092222981154918670654296875,leaky_relu,normal
146,1753991084,18,1753991102,1753991108,6,python3 .tests/mnist/train --epochs 19 --learning_rate 0.06104228307618760757 --batch_size 2035 --hidden_size 822 --dropout 0.03458012407645583153 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.77000243961811065674,,1,,c152,531549,146_0,FAILED,SOBOL,19,0.061042283076187607571139182028,2035,822,0.034580124076455831527709960938,2,0.77000243961811065673828125,leaky_relu,normal
147,1753991205,16,1753991221,1753991227,6,python3 .tests/mnist/train --epochs 125 --learning_rate 0.03417172400672920801 --batch_size 758 --hidden_size 1090 --dropout 0.39029985712841153145 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.19080872461199760437,,1,,c152,531551,147_0,FAILED,SOBOL,125,0.034171724006729208011901022246,758,1090,0.390299857128411531448364257812,3,0.1908087246119976043701171875,leaky_relu,normal
148,1753991326,14,1753991340,1753991346,6,python3 .tests/mnist/train --epochs 143 --learning_rate 0.0744926467585470542 --batch_size 416 --hidden_size 1450 --dropout 0.4448977205902338028 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.87793120183050632477,,1,,c142,531553,148_0,FAILED,SOBOL,143,0.074492646758547054197663328523,416,1450,0.44489772059023380279541015625,4,0.87793120183050632476806640625,leaky_relu,normal
149,1753991448,13,1753991461,1753991467,6,python3 .tests/mnist/train --epochs 36 --learning_rate 0.04591260372732766659 --batch_size 1182 --hidden_size 686 --dropout 0.10480297263711690903 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.08212560974061489105,,1,,c143,531556,149_0,FAILED,SOBOL,36,0.045912603727327666591762067583,1182,686,0.104802972637116909027099609375,1,0.08212560974061489105224609375,leaky_relu,normal
150,1753991572,8,1753991580,1753991586,6,python3 .tests/mnist/train --epochs 93 --learning_rate 0.09055911722448654888 --batch_size 972 --hidden_size 1776 --dropout 0.13400259800255298615 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.63446692097932100296,,1,,c143,531558,150_0,FAILED,SOBOL,93,0.090559117224486548880513225868,972,1776,0.13400259800255298614501953125,2,0.634466920979321002960205078125,leaky_relu,normal
151,1753991710,20,1753991730,1753991736,6,python3 .tests/mnist/train --epochs 182 --learning_rate 0.01753809905118309045 --batch_size 1734 --hidden_size 487 --dropout 0.28707037772983312607 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.34244316164404153824,,1,,c143,531559,151_0,FAILED,SOBOL,182,0.017538099051183090454353319387,1734,487,0.287070377729833126068115234375,3,0.342443161644041538238525390625,leaky_relu,normal
152,1753991794,47,1753991841,1753991847,6,python3 .tests/mnist/train --epochs 198 --learning_rate 0.05165395572422073339 --batch_size 822 --hidden_size 617 --dropout 0.22942849760875105858 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.97598508186638355255,,1,,c155,531560,152_0,FAILED,SOBOL,198,0.051653955724220733392026971842,822,617,0.229428497608751058578491210938,3,0.97598508186638355255126953125,leaky_relu,normal
153,1753991930,11,1753991941,1753991948,7,python3 .tests/mnist/train --epochs 89 --learning_rate 0.03088563405044376931 --batch_size 1588 --hidden_size 1391 --dropout 0.31853272067382931709 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.04730409197509288788,,1,,c155,531562,153_0,FAILED,SOBOL,89,0.03088563405044376930508320811,1588,1391,0.318532720673829317092895507812,2,0.04730409197509288787841796875,leaky_relu,normal
154,1753992056,36,1753992092,1753992098,6,python3 .tests/mnist/train --epochs 57 --learning_rate 0.08647160227030516177 --batch_size 374 --hidden_size 307 --dropout 0.41044597839936614037 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.73227485734969377518,,1,,c155,531563,154_0,FAILED,SOBOL,57,0.086471602270305161774821556264,374,307,0.410445978399366140365600585938,1,0.732274857349693775177001953125,leaky_relu,normal
155,1753992193,15,1753992208,1753992215,7,python3 .tests/mnist/train --epochs 135 --learning_rate 0.00876355619942769531 --batch_size 1136 --hidden_size 1574 --dropout 0.0083382059819996357 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.30737942550331354141,,1,,c155,531566,155_0,FAILED,SOBOL,135,0.00876355619942769531460768917,1136,1574,0.008338205981999635696411132812,4,0.307379425503313541412353515625,leaky_relu,normal
156,1753992316,16,1753992332,1753992338,6,python3 .tests/mnist/train --epochs 105 --learning_rate 0.09987631336048245767 --batch_size 1798 --hidden_size 1979 --dropout 0.0631725657731294632 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.61976083274930715561,,1,,c155,531567,156_0,FAILED,SOBOL,105,0.099876313360482457670563860574,1798,1979,0.06317256577312946319580078125,3,0.619760832749307155609130859375,leaky_relu,normal
157,1753992446,36,1753992482,1753992488,6,python3 .tests/mnist/train --epochs 27 --learning_rate 0.02055623909642920188 --batch_size 525 --hidden_size 188 --dropout 0.48090535309165716171 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.41965598892420530319,,1,,c155,531568,157_0,FAILED,SOBOL,27,0.020556239096429201884674853318,525,188,0.480905353091657161712646484375,2,0.419655988924205303192138671875,leaky_relu,normal
158,1753992586,17,1753992603,1753992609,6,python3 .tests/mnist/train --epochs 60 --learning_rate 0.06515707616193219809 --batch_size 1373 --hidden_size 1270 --dropout 0.26375176943838596344 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.85944847017526626587,,1,,c155,531569,158_0,FAILED,SOBOL,60,0.065157076161932198088422296678,1373,1270,0.26375176943838596343994140625,1,0.859448470175266265869140625,leaky_relu,normal
159,1753992712,10,1753992722,1753992729,7,python3 .tests/mnist/train --epochs 168 --learning_rate 0.04297354499004781697 --batch_size 97 --hidden_size 1026 --dropout 0.15902253147214651108 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.16313021257519721985,,1,,c155,531570,159_0,FAILED,SOBOL,168,0.042973544990047816971578953371,97,1026,0.159022531472146511077880859375,4,0.1631302125751972198486328125,leaky_relu,normal
160,1753992887,18,1753992905,1753992911,6,python3 .tests/mnist/train --epochs 167 --learning_rate 0.09509421755285933642 --batch_size 687 --hidden_size 454 --dropout 0.45681497501209378242 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.75247946847230195999,,1,,c155,531572,160_0,FAILED,SOBOL,167,0.095094217552859336417547808651,687,454,0.456814975012093782424926757812,4,0.752479468472301959991455078125,leaky_relu,normal
161,1753992973,22,1753992995,1753993001,6,python3 .tests/mnist/train --epochs 60 --learning_rate 0.02198803136970848074 --batch_size 1963 --hidden_size 1745 --dropout 0.12404422229155898094 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.20856147352606058121,,1,,c155,531573,161_0,FAILED,SOBOL,60,0.021988031369708480738944800237,1963,1745,0.124044222291558980941772460938,1,0.208561473526060581207275390625,leaky_relu,normal
162,1753993107,36,1753993143,1753993149,6,python3 .tests/mnist/train --epochs 22 --learning_rate 0.06644241211835295868 --batch_size 254 --hidden_size 654 --dropout 0.15370155172422528267 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.5080268029123544693,,1,,c155,531575,162_0,FAILED,SOBOL,22,0.06644241211835295868315398593,254,654,0.153701551724225282669067382812,2,0.50802680291235446929931640625,leaky_relu,normal
163,1753993253,10,1753993263,1753993269,6,python3 .tests/mnist/train --epochs 110 --learning_rate 0.03794731956178323123 --batch_size 1527 --hidden_size 1418 --dropout 0.29846877371892333031 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.46789914928376674652,,1,,c143,531580,163_0,FAILED,SOBOL,110,0.037947319561783231234297630863,1527,1418,0.298468773718923330307006835938,3,0.46789914928376674652099609375,leaky_relu,normal
164,1753993404,10,1753993414,1753993421,7,python3 .tests/mnist/train --epochs 140 --learning_rate 0.05348168738681823714 --batch_size 1694 --hidden_size 1059 --dropout 0.36874504294246435165 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.65553207695484161377,,1,,c143,531582,164_0,FAILED,SOBOL,140,0.053481687386818237139873843944,1694,1059,0.368745042942464351654052734375,4,0.65553207695484161376953125,leaky_relu,normal
165,1753993507,25,1753993532,1753993538,6,python3 .tests/mnist/train --epochs 52 --learning_rate 0.02650097653904930073 --batch_size 932 --hidden_size 790 --dropout 0.20835280604660511017 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.32065994665026664734,,1,,c155,531583,165_0,FAILED,SOBOL,52,0.026500976539049300728656533011,932,790,0.20835280604660511016845703125,1,0.3206599466502666473388671875,leaky_relu,normal
166,1753993651,32,1753993683,1753993689,6,python3 .tests/mnist/train --epochs 90 --learning_rate 0.0818428419576771593 --batch_size 1222 --hidden_size 1880 --dropout 0.05394343193620443344 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.89643137063831090927,,1,,c143,531586,166_0,FAILED,SOBOL,90,0.081842841957677159303585767702,1222,1880,0.053943431936204433441162109375,2,0.896431370638310909271240234375,leaky_relu,normal
167,1753993794,9,1753993803,1753993809,6,python3 .tests/mnist/train --epochs 197 --learning_rate 0.01044480472575873113 --batch_size 456 --hidden_size 96 --dropout 0.40233919955790042877 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.06534867268055677414,,1,,c143,531589,167_0,FAILED,SOBOL,197,0.010444804725758731131501910738,456,96,0.40233919955790042877197265625,3,0.065348672680556774139404296875,leaky_relu,normal
168,1753993934,18,1753993952,1753993958,6,python3 .tests/mnist/train --epochs 177 --learning_rate 0.06970463876144029902 --batch_size 1080 --hidden_size 994 --dropout 0.08290203707292675972 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.7452813759446144104,,1,,c156,531591,168_0,FAILED,SOBOL,177,0.069704638761440299021820976577,1080,994,0.082902037072926759719848632812,3,0.745281375944614410400390625,leaky_relu,normal
169,1753994023,18,1753994041,1753994047,6,python3 .tests/mnist/train --epochs 98 --learning_rate 0.04741095581124537411 --batch_size 318 --hidden_size 1237 --dropout 0.49233426665887236595 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.29316644743084907532,,1,,c156,531592,169_0,FAILED,SOBOL,98,0.047410955811245374114104578211,318,1237,0.492334266658872365951538085938,2,0.2931664474308490753173828125,leaky_relu,normal
170,1753994156,6,1753994162,1753994168,6,python3 .tests/mnist/train --epochs 36 --learning_rate 0.09181336650717072945 --batch_size 1644 --hidden_size 157 --dropout 0.27563850628212094307 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.98594232555478811264,,1,,c156,531593,170_0,FAILED,SOBOL,36,0.091813366507170729446940526941,1644,157,0.275638506282120943069458007812,1,0.985942325554788112640380859375,leaky_relu,normal
171,1753994308,33,1753994341,1753994347,6,python3 .tests/mnist/train --epochs 144 --learning_rate 0.01260360791780986041 --batch_size 878 --hidden_size 1947 --dropout 0.17823326354846358299 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.03760535549372434616,,1,,c156,531595,171_0,FAILED,SOBOL,144,0.012603607917809860408664413001,878,1947,0.178233263548463582992553710938,4,0.037605355493724346160888671875,leaky_relu,normal
172,1753994411,22,1753994433,1753994439,6,python3 .tests/mnist/train --epochs 126 --learning_rate 0.07889853276255541503 --batch_size 9 --hidden_size 1542 --dropout 0.24876128789037466049 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.85046860296279191971,,1,,c143,531617,172_0,FAILED,SOBOL,126,0.078898532762555415032146299836,9,1542,0.248761287890374660491943359375,3,0.850468602962791919708251953125,leaky_relu,normal
173,1753994542,11,1753994553,1753994559,6,python3 .tests/mnist/train --epochs 18 --learning_rate 0.00110531868183054048 --batch_size 1286 --hidden_size 275 --dropout 0.33054154552519321442 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.17380482051521539688,,1,,c143,531628,173_0,FAILED,SOBOL,18,0.001105318681830540477467605953,1286,275,0.33054154552519321441650390625,2,0.173804820515215396881103515625,leaky_relu,normal
174,1753994676,27,1753994703,1753994709,6,python3 .tests/mnist/train --epochs 80 --learning_rate 0.05649305124790408861 --batch_size 613 --hidden_size 1358 --dropout 0.4219969799742102623 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.60577741451561450958,,1,,c143,531631,174_0,FAILED,SOBOL,80,0.056493051247904088607576511549,613,1358,0.421996979974210262298583984375,1,0.60577741451561450958251953125,leaky_relu,normal
175,1753994824,28,1753994852,1753994858,6,python3 .tests/mnist/train --epochs 159 --learning_rate 0.03580968004877679856 --batch_size 1886 --hidden_size 586 --dropout 0.02818973548710346222 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.43289261870086193085,,1,,c156,531634,175_0,FAILED,SOBOL,159,0.035809680048776798555465461504,1886,586,0.02818973548710346221923828125,4,0.43289261870086193084716796875,leaky_relu,normal
176,1753994977,25,1753995002,1753995008,6,python3 .tests/mnist/train --epochs 155 --learning_rate 0.06078243337132968604 --batch_size 340 --hidden_size 1805 --dropout 0.29358662571758031845 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.22892434056848287582,,1,,c156,531635,176_0,FAILED,SOBOL,155,0.060782433371329686044859386129,340,1805,0.293586625717580318450927734375,2,0.228924340568482875823974609375,leaky_relu,normal
177,1753995118,4,1753995122,1753995128,6,python3 .tests/mnist/train --epochs 72 --learning_rate 0.03150656638848595842 --batch_size 1106 --hidden_size 12 --dropout 0.12538057751953601837 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.81001278292387723923,,1,,c156,531637,177_0,FAILED,SOBOL,72,0.031506566388485958418730348285,1106,12,0.12538057751953601837158203125,3,0.810012782923877239227294921875,leaky_relu,normal
178,1753995276,26,1753995302,1753995308,6,python3 .tests/mnist/train --epochs 10 --learning_rate 0.0761531722636055175 --batch_size 792 --hidden_size 1095 --dropout 0.09572324808686971664 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.4695852324366569519,,1,,c156,531638,178_0,FAILED,SOBOL,10,0.076153172263605517500195674074,792,1095,0.095723248086869716644287109375,4,0.469585232436656951904296875,leaky_relu,normal
179,1753995375,17,1753995392,1753995398,6,python3 .tests/mnist/train --epochs 122 --learning_rate 0.00382779328600503553 --batch_size 1555 --hidden_size 849 --dropout 0.45193282701075077057 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.55445161834359169006,,1,,c156,531641,179_0,FAILED,SOBOL,122,0.003827793286005035534175222622,1555,849,0.45193282701075077056884765625,1,0.5544516183435916900634765625,leaky_relu,normal
180,1753995568,4,1753995572,1753995578,6,python3 .tests/mnist/train --epochs 152 --learning_rate 0.08750413653190247665 --batch_size 1403 --hidden_size 731 --dropout 0.38183203386142849922 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.36682538874447345734,,1,,c156,531642,180_0,FAILED,SOBOL,152,0.087504136531902476647815092292,1403,731,0.381832033861428499221801757812,2,0.36682538874447345733642578125,leaky_relu,normal
181,1753995722,30,1753995752,1753995758,6,python3 .tests/mnist/train --epochs 39 --learning_rate 0.01688690054566599485 --batch_size 131 --hidden_size 1501 --dropout 0.04124746983870863914 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.65695874206721782684,,1,,c156,531644,181_0,FAILED,SOBOL,39,0.016886900545665994854971359018,131,1501,0.041247469838708639144897460938,3,0.65695874206721782684326171875,leaky_relu,normal
182,1753995837,8,1753995845,1753995851,6,python3 .tests/mnist/train --epochs 102 --learning_rate 0.07242099705063738402 --batch_size 1832 --hidden_size 420 --dropout 0.19565684394910931587 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.12213428039103746414,,1,,c152,531646,182_0,FAILED,SOBOL,102,0.072420997050637384018223485782,1832,420,0.195656843949109315872192382812,4,0.122134280391037464141845703125,leaky_relu,normal
183,1753996004,21,1753996025,1753996031,6,python3 .tests/mnist/train --epochs 185 --learning_rate 0.04465950581672602226 --batch_size 555 --hidden_size 1684 --dropout 0.3482378772459924221 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.9160465756431221962,,1,,c152,531647,183_0,FAILED,SOBOL,185,0.044659505816726022264795403771,555,1684,0.348237877245992422103881835938,1,0.916046575643122196197509765625,leaky_relu,normal
184,1753996100,15,1753996115,1753996121,6,python3 .tests/mnist/train --epochs 189 --learning_rate 0.08536669090086594636 --batch_size 2001 --hidden_size 1306 --dropout 0.16749172564595937729 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.26932461000978946686,,1,,c152,531648,184_0,FAILED,SOBOL,189,0.085366690900865946356468327849,2001,1306,0.167491725645959377288818359375,1,0.26932461000978946685791015625,leaky_relu,normal
185,1753996243,21,1753996264,1753996270,6,python3 .tests/mnist/train --epochs 86 --learning_rate 0.00693773877207189832 --batch_size 729 --hidden_size 543 --dropout 0.25708317197859287262 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.69220372103154659271,,1,,c143,531651,185_0,FAILED,SOBOL,86,0.006937738772071898318838378827,729,543,0.25708317197859287261962890625,4,0.69220372103154659271240234375,leaky_relu,normal
186,1753996386,33,1753996419,1753996425,6,python3 .tests/mnist/train --epochs 48 --learning_rate 0.05153847749974579256 --batch_size 1425 --hidden_size 1633 --dropout 0.4737789323553442955 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.02487187553197145462,,1,,c139,531653,186_0,FAILED,SOBOL,48,0.051538477499745792564933566382,1425,1633,0.473778932355344295501708984375,3,0.024871875531971454620361328125,leaky_relu,normal
187,1753996548,18,1753996566,1753996572,6,python3 .tests/mnist/train --epochs 132 --learning_rate 0.02846402086826041455 --batch_size 149 --hidden_size 344 --dropout 0.07216049917042255402 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.95154134277254343033,,1,,c151,531662,187_0,FAILED,SOBOL,132,0.028464020868260414554029580358,149,344,0.07216049917042255401611328125,2,0.951541342772543430328369140625,leaky_relu,normal
188,1753996690,25,1753996715,1753996721,6,python3 .tests/mnist/train --epochs 114 --learning_rate 0.06294143566023559233 --batch_size 1002 --hidden_size 207 --dropout 0.00182320969179272652 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.13868671562522649765,,1,,c151,531663,188_0,FAILED,SOBOL,114,0.062941435660235592330913334536,1002,207,0.001823209691792726516723632812,1,0.138686715625226497650146484375,leaky_relu,normal
189,1753996831,34,1753996865,1753996871,6,python3 .tests/mnist/train --epochs 30 --learning_rate 0.04147728481994942401 --batch_size 1768 --hidden_size 1992 --dropout 0.41906662797555327415 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.83701792638748884201,,1,,c151,531665,189_0,FAILED,SOBOL,30,0.041477284819949424010676608532,1768,1992,0.419066627975553274154663085938,4,0.837017926387488842010498046875,leaky_relu,normal
190,1753996990,22,1753997012,1753997019,7,python3 .tests/mnist/train --epochs 69 --learning_rate 0.09706335137763992538 --batch_size 449 --hidden_size 901 --dropout 0.32761119352653622627 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.37958604097366333008,,1,,c139,531666,190_0,FAILED,SOBOL,69,0.097063351377639925376961116399,449,901,0.327611193526536226272583007812,3,0.379586040973663330078125,leaky_relu,normal
191,1753997133,31,1753997164,1753997170,6,python3 .tests/mnist/train --epochs 171 --learning_rate 0.02005093779761344189 --batch_size 1212 --hidden_size 1171 --dropout 0.22239476209506392479 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.58170672878623008728,,1,,c156,531669,191_0,FAILED,SOBOL,171,0.020050937797613441887500940197,1212,1171,0.222394762095063924789428710938,2,0.5817067287862300872802734375,leaky_relu,normal
192,1753997298,15,1753997313,1753997320,7,python3 .tests/mnist/train --epochs 172 --learning_rate 0.08255216501129791773 --batch_size 509 --hidden_size 518 --dropout 0.11889000516384840012 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.63194198720157146454,,1,,c156,531671,192_0,FAILED,SOBOL,172,0.082552165011297917729393702757,509,518,0.118890005163848400115966796875,1,0.63194198720157146453857421875,leaky_relu,normal
193,1753997446,18,1753997464,1753997470,6,python3 .tests/mnist/train --epochs 67 --learning_rate 0.00953105148009955952 --batch_size 1272 --hidden_size 1299 --dropout 0.4584825318306684494 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.32813675887882709503,,1,,c156,531672,193_0,FAILED,SOBOL,67,0.009531051480099559519709728761,1272,1299,0.45848253183066844940185546875,4,0.32813675887882709503173828125,leaky_relu,normal
194,1753997591,23,1753997614,1753997620,6,python3 .tests/mnist/train --epochs 28 --learning_rate 0.05398694454535842707 --batch_size 942 --hidden_size 335 --dropout 0.30381375085562467575 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.8883442142978310585,,1,,c156,531673,194_0,FAILED,SOBOL,28,0.053986944545358427072212492703,942,335,0.303813750855624675750732421875,3,0.888344214297831058502197265625,leaky_relu,normal
195,1753997738,26,1753997764,1753997770,6,python3 .tests/mnist/train --epochs 116 --learning_rate 0.02540680615624412927 --batch_size 1708 --hidden_size 1610 --dropout 0.15219425223767757416 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.08857254404574632645,,1,,c156,531674,195_0,FAILED,SOBOL,116,0.025406806156244129274446308386,1708,1610,0.15219425223767757415771484375,2,0.088572544045746326446533203125,leaky_relu,normal
196,1753997884,21,1753997905,1753997911,6,python3 .tests/mnist/train --epochs 133 --learning_rate 0.06592454760313033735 --batch_size 1477 --hidden_size 2015 --dropout 0.20691418321803212166 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.77619164716452360153,,1,,c155,531675,196_0,FAILED,SOBOL,133,0.06592454760313033734764331939,1477,2015,0.206914183218032121658325195312,1,0.776191647164523601531982421875,leaky_relu,normal
197,1753998031,3,1753998034,1753998040,6,python3 .tests/mnist/train --epochs 46 --learning_rate 0.03905408389156685145 --batch_size 200 --hidden_size 217 --dropout 0.3741586669348180294 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.20096257980912923813,,1,,c156,531676,197_0,FAILED,SOBOL,46,0.039054083891566851449717034939,200,217,0.374158666934818029403686523438,4,0.200962579809129238128662109375,leaky_relu,normal
198,1753998242,32,1753998274,1753998280,6,python3 .tests/mnist/train --epochs 85 --learning_rate 0.09439746162680909269 --batch_size 1949 --hidden_size 1178 --dropout 0.40358712198212742805 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.51599187031388282776,,1,,c156,531678,198_0,FAILED,SOBOL,85,0.094397461626809092694045943972,1949,1178,0.403587121982127428054809570312,3,0.5159918703138828277587890625,leaky_relu,normal
199,1753998358,6,1753998364,1753998370,6,python3 .tests/mnist/train --epochs 190 --learning_rate 0.02288920407809317409 --batch_size 677 --hidden_size 926 --dropout 0.04836961021646857262 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.4447973594069480896,,1,,c156,531680,199_0,FAILED,SOBOL,190,0.022889204078093174088426309254,677,926,0.048369610216468572616577148438,2,0.444797359406948089599609375,leaky_relu,normal
200,1753998540,4,1753998544,1753998551,7,python3 .tests/mnist/train --epochs 183 --learning_rate 0.05715000493762083938 --batch_size 1899 --hidden_size 36 --dropout 0.49864683579653501511 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.87375349085777997971,,1,,c156,531684,200_0,FAILED,SOBOL,183,0.057150004937620839384759818813,1899,36,0.498646835796535015106201171875,2,0.873753490857779979705810546875,leaky_relu,normal
201,1753998705,20,1753998725,1753998731,6,python3 .tests/mnist/train --epochs 104 --learning_rate 0.03496656912363135111 --batch_size 623 --hidden_size 1812 --dropout 0.08044234476983547211 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.16565665509551763535,,1,,c156,531688,201_0,FAILED,SOBOL,104,0.034966569123631351112546639115,623,1812,0.08044234476983547210693359375,3,0.165656655095517635345458984375,leaky_relu,normal
202,1753998811,4,1753998815,1753998821,6,python3 .tests/mnist/train --epochs 41 --learning_rate 0.07937049213617108911 --batch_size 1335 --hidden_size 858 --dropout 0.17209613602608442307 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.61331528052687644958,,1,,c156,531694,202_0,FAILED,SOBOL,41,0.079370492136171089114782262186,1335,858,0.172096136026084423065185546875,4,0.6133152805268764495849609375,leaky_relu,normal
203,1753998988,7,1753998995,1753999001,6,python3 .tests/mnist/train --epochs 151 --learning_rate 0.00005051323001272976 --batch_size 63 --hidden_size 1119 --dropout 0.27830417267978191376 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.40924146771430969238,,1,,c156,531695,203_0,FAILED,SOBOL,151,0.000050513230012729764943114896,63,1119,0.27830417267978191375732421875,1,0.4092414677143096923828125,leaky_relu,normal
204,1753999155,20,1753999175,1753999181,6,python3 .tests/mnist/train --epochs 121 --learning_rate 0.0913539861808624204 --batch_size 868 --hidden_size 1478 --dropout 0.33277231873944401741 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.72211854718625545502,,1,,c156,531696,204_0,FAILED,SOBOL,121,0.091353986180862420396486811569,868,1478,0.332772318739444017410278320312,2,0.72211854718625545501708984375,leaky_relu,normal
205,1753999271,24,1753999295,1753999302,7,python3 .tests/mnist/train --epochs 11 --learning_rate 0.01364584475209005242 --batch_size 1631 --hidden_size 722 --dropout 0.24218929698690772057 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.30119256116449832916,,1,,c156,531697,205_0,FAILED,SOBOL,11,0.013645844752090052418025400982,1631,722,0.242189296986907720565795898438,3,0.30119256116449832916259765625,leaky_relu,normal
206,1753999427,19,1753999446,1753999453,7,python3 .tests/mnist/train --epochs 74 --learning_rate 0.06903508963477797411 --batch_size 264 --hidden_size 1677 --dropout 0.02578346105292439461 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.97828240040689706802,,1,,c156,531698,206_0,FAILED,SOBOL,74,0.069035089634777974110235732041,264,1677,0.025783461052924394607543945312,4,0.978282400406897068023681640625,leaky_relu,normal
207,1753999584,12,1753999596,1753999602,6,python3 .tests/mnist/train --epochs 154 --learning_rate 0.04826667260310613106 --batch_size 1031 --hidden_size 395 --dropout 0.42836293717846274376 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.06137855816632509232,,1,,c156,531699,207_0,FAILED,SOBOL,154,0.048266672603106131056449612515,1031,395,0.428362937178462743759155273438,1,0.061378558166325092315673828125,leaky_relu,normal
208,1753999755,21,1753999776,1753999782,6,python3 .tests/mnist/train --epochs 160 --learning_rate 0.07332334087316878801 --batch_size 537 --hidden_size 1231 --dropout 0.13168710144236683846 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.35934857651591300964,,1,,c156,531700,208_0,FAILED,SOBOL,160,0.073323340873168788012215202343,537,1231,0.131687101442366838455200195312,3,0.3593485765159130096435546875,leaky_relu,normal
209,1753999862,4,1753999866,1753999872,6,python3 .tests/mnist/train --epochs 79 --learning_rate 0.04396163837521337853 --batch_size 1810 --hidden_size 969 --dropout 0.29111777385696768761 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.68054883182048797607,,1,,c156,531703,209_0,FAILED,SOBOL,79,0.043961638375213378526762397769,1810,969,0.291117773856967687606811523438,2,0.68054883182048797607421875,leaky_relu,normal
210,1754000048,28,1754000076,1754000082,6,python3 .tests/mnist/train --epochs 16 --learning_rate 0.08860978338635526474 --batch_size 85 --hidden_size 1924 --dropout 0.44578655483201146126 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.09891040902584791183,,1,,c156,531707,210_0,FAILED,SOBOL,16,0.088609783386355264744871362836,85,1924,0.445786554832011461257934570312,1,0.098910409025847911834716796875,leaky_relu,normal
211,1754000158,8,1754000166,1754000172,6,python3 .tests/mnist/train --epochs 127 --learning_rate 0.01637021310445852668 --batch_size 1361 --hidden_size 148 --dropout 0.09838285436853766441 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.92413373198360204697,,1,,c156,531708,211_0,FAILED,SOBOL,127,0.016370213104458526676143748091,1361,148,0.098382854368537664413452148438,4,0.924133731983602046966552734375,leaky_relu,normal
212,1754000340,6,1754000346,1754000352,6,python3 .tests/mnist/train --epochs 145 --learning_rate 0.07505936841270886839 --batch_size 1576 --hidden_size 284 --dropout 0.04348744731396436691 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.2365232342854142189,,1,,c156,531709,212_0,FAILED,SOBOL,145,0.075059368412708868389948690947,1576,284,0.043487447313964366912841796875,3,0.236523234285414218902587890625,leaky_relu,normal
213,1754000508,18,1754000526,1754000532,6,python3 .tests/mnist/train --epochs 34 --learning_rate 0.00433264815342612568 --batch_size 810 --hidden_size 1565 --dropout 0.3752661626785993576 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.78630060423165559769,,1,,c156,531710,213_0,FAILED,SOBOL,34,0.004332648153426125678389091433,810,1565,0.37526616267859935760498046875,2,0.786300604231655597686767578125,leaky_relu,normal
214,1754000615,31,1754000646,1754000652,6,python3 .tests/mnist/train --epochs 97 --learning_rate 0.05986828379441985065 --batch_size 1148 --hidden_size 611 --dropout 0.34583770763128995895 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.49268702231347560883,,1,,c156,531711,214_0,FAILED,SOBOL,97,0.05986828379441985065190223736,1148,611,0.345837707631289958953857421875,1,0.49268702231347560882568359375,leaky_relu,normal
215,1754000773,23,1754000796,1754000802,6,python3 .tests/mnist/train --epochs 178 --learning_rate 0.03221625001414679668 --batch_size 386 --hidden_size 1366 --dropout 0.20203202031552791595 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.5464865509420633316,,1,,c156,531713,215_0,FAILED,SOBOL,178,0.032216250014146796676328676767,386,1366,0.20203202031552791595458984375,4,0.54648655094206333160400390625,leaky_relu,normal
216,1754000935,12,1754000947,1754000953,6,python3 .tests/mnist/train --epochs 196 --learning_rate 0.09791941682180389794 --batch_size 1170 --hidden_size 1752 --dropout 0.25193763198330998421 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.14683488104492425919,,1,,c156,531716,216_0,FAILED,SOBOL,196,0.097919416821803897943432559714,1170,1752,0.251937631983309984207153320312,4,0.146834881044924259185791015625,leaky_relu,normal
217,1754001131,26,1754001157,1754001163,6,python3 .tests/mnist/train --epochs 92 --learning_rate 0.01938098041996360113 --batch_size 404 --hidden_size 480 --dropout 0.16916579892858862877 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.81373303849250078201,,1,,c156,531717,217_0,FAILED,SOBOL,92,0.019380980419963601130151076291,404,480,0.169165798928588628768920898438,1,0.813733038492500782012939453125,leaky_relu,normal
218,1754001246,39,1754001285,1754001291,6,python3 .tests/mnist/train --epochs 53 --learning_rate 0.06398325828365981904 --batch_size 1746 --hidden_size 1441 --dropout 0.07751200767233967781 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.40323719196021556854,,1,,c156,531718,218_0,FAILED,SOBOL,53,0.06398325828365981904344295117,1746,1441,0.077512007672339677810668945312,2,0.40323719196021556854248046875,leaky_relu,normal
219,1754001431,26,1754001457,1754001463,6,python3 .tests/mnist/train --epochs 139 --learning_rate 0.04101825910581276269 --batch_size 984 --hidden_size 663 --dropout 0.47228029510006308556 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.57416886277496814728,,1,,c156,531720,219_0,FAILED,SOBOL,139,0.041018259105812762688181294379,984,663,0.472280295100063085556030273438,3,0.57416886277496814727783203125,leaky_relu,normal
220,1754001662,5,1754001667,1754001673,6,python3 .tests/mnist/train --epochs 109 --learning_rate 0.05048483720220626331 --batch_size 194 --hidden_size 781 --dropout 0.4176214141771197319 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.26129849627614021301,,1,,c156,531723,220_0,FAILED,SOBOL,109,0.050484837202206263306880629216,194,781,0.417621414177119731903076171875,4,0.2612984962761402130126953125,leaky_relu,normal
221,1754001844,33,1754001877,1754001883,6,python3 .tests/mnist/train --epochs 23 --learning_rate 0.02893485084680840619 --batch_size 1467 --hidden_size 1036 --dropout 0.00722811184823513031 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.7153665497899055481,,1,,c156,531724,221_0,FAILED,SOBOL,23,0.028934850846808406188426232575,1467,1036,0.00722811184823513031005859375,1,0.715366549789905548095703125,leaky_relu,normal
222,1754001964,34,1754001998,1754002004,6,python3 .tests/mnist/train --epochs 62 --learning_rate 0.08452245654052123469 --batch_size 746 --hidden_size 72 --dropout 0.22363394778221845627 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.00109867285937070847,,1,,c156,531726,222_0,FAILED,SOBOL,62,0.08452245654052123469135437972,746,72,0.223633947782218456268310546875,2,0.001098672859370708465576171875,leaky_relu,normal
223,1754002150,29,1754002179,1754002185,6,python3 .tests/mnist/train --epochs 166 --learning_rate 0.0075958516561985016 --batch_size 2023 --hidden_size 1873 --dropout 0.32203079573810100555 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.95920126792043447495,,1,,c151,531736,223_0,FAILED,SOBOL,166,0.007595851656198501604400075138,2023,1873,0.32203079573810100555419921875,3,0.959201267920434474945068359375,leaky_relu,normal
224,1754002328,29,1754002357,1754002364,7,python3 .tests/mnist/train --epochs 169 --learning_rate 0.05543056827494875771 --batch_size 1306 --hidden_size 1397 --dropout 0.05549603095278143883 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.11301699839532375336,,1,,c156,531748,224_0,FAILED,SOBOL,169,0.055430568274948757712117242136,1306,1397,0.055496030952781438827514648438,3,0.11301699839532375335693359375,leaky_relu,normal
225,1754002504,5,1754002509,1754002516,7,python3 .tests/mnist/train --epochs 58 --learning_rate 0.02766898168314248577 --batch_size 29 --hidden_size 643 --dropout 0.39459918858483433723 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.91077571548521518707,,1,,c152,531761,225_0,FAILED,SOBOL,58,0.027668981683142485766824236748,29,643,0.394599188584834337234497070312,2,0.91077571548521518707275390625,leaky_relu,normal
226,1754002712,8,1754002720,1754002726,6,python3 .tests/mnist/train --epochs 25 --learning_rate 0.08301245775621385325 --batch_size 1866 --hidden_size 1597 --dropout 0.36568947276100516319 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.36820765677839517593,,1,,c155,531762,226_0,FAILED,SOBOL,25,0.083012457756213853254934065262,1866,1597,0.365689472761005163192749023438,1,0.368207656778395175933837890625,leaky_relu,normal
227,1754002900,35,1754002935,1754002941,6,python3 .tests/mnist/train --epochs 107 --learning_rate 0.01239512641208246474 --batch_size 593 --hidden_size 316 --dropout 0.21358278067782521248 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.66999704111367464066,,1,,c143,531778,227_0,FAILED,SOBOL,107,0.012395126412082464739672360565,593,316,0.213582780677825212478637695312,4,0.669997041113674640655517578125,leaky_relu,normal
228,1754003101,10,1754003111,1754003117,6,python3 .tests/mnist/train --epochs 136 --learning_rate 0.0962682883530482647 --batch_size 298 --hidden_size 180 --dropout 0.14311577938497066498 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.48285122495144605637,,1,,c143,531801,228_0,FAILED,SOBOL,136,0.096268288353048264704980852002,298,180,0.14311577938497066497802734375,3,0.482851224951446056365966796875,leaky_relu,normal
229,1754003294,23,1754003317,1754003324,7,python3 .tests/mnist/train --epochs 55 --learning_rate 0.02394300473334267862 --batch_size 1060 --hidden_size 1956 --dropout 0.31084748636931180954 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.55606205668300390244,,1,,c139,531809,229_0,FAILED,SOBOL,55,0.023943004733342678619356647118,1060,1956,0.310847486369311809539794921875,2,0.556062056683003902435302734375,leaky_relu,normal
230,1754003425,15,1754003440,1754003446,6,python3 .tests/mnist/train --epochs 88 --learning_rate 0.06839879946077243034 --batch_size 898 --hidden_size 1001 --dropout 0.46499752812087535858 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.22339383885264396667,,1,,c143,531810,230_0,FAILED,SOBOL,88,0.068398799460772430336419347441,898,1001,0.46499752812087535858154296875,1,0.2233938388526439666748046875,leaky_relu,normal
231,1754003595,26,1754003621,1754003627,6,python3 .tests/mnist/train --epochs 199 --learning_rate 0.03912302783582360249 --batch_size 1664 --hidden_size 1262 --dropout 0.11026935558766126633 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.80063442885875701904,,1,,c143,531811,231_0,FAILED,SOBOL,199,0.039123027835823602493814377112,1664,1262,0.110269355587661266326904296875,4,0.80063442885875701904296875,leaky_relu,normal
232,1754003769,32,1754003801,1754003807,6,python3 .tests/mnist/train --epochs 180 --learning_rate 0.0800728035908285507 --batch_size 912 --hidden_size 1905 --dropout 0.43744266172870993614 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.3848582906648516655,,1,,c143,531812,232_0,FAILED,SOBOL,180,0.080072803590828550701630206277,912,1905,0.437442661728709936141967773438,4,0.384858290664851665496826171875,leaky_relu,normal
233,1754003950,30,1754003980,1754003986,6,python3 .tests/mnist/train --epochs 95 --learning_rate 0.00306048536869697307 --batch_size 1674 --hidden_size 103 --dropout 0.01874835463240742683 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.59082250948995351791,,1,,c143,531813,233_0,FAILED,SOBOL,95,0.00306048536869697306722626351,1674,103,0.018748354632407426834106445312,1,0.590822509489953517913818359375,leaky_relu,normal
234,1754004123,8,1754004131,1754004137,6,python3 .tests/mnist/train --epochs 38 --learning_rate 0.05844963787342422751 --batch_size 475 --hidden_size 1068 --dropout 0.23567304899916052818 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.12564702704548835754,,1,,c143,531817,234_0,FAILED,SOBOL,38,0.058449637873424227507701544937,475,1068,0.235673048999160528182983398438,2,0.1256470270454883575439453125,leaky_relu,normal
235,1754004333,8,1754004341,1754004347,6,python3 .tests/mnist/train --epochs 142 --learning_rate 0.03698558239103295897 --batch_size 1242 --hidden_size 813 --dropout 0.34139433922246098518 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.83563715964555740356,,1,,c143,531818,235_0,FAILED,SOBOL,142,0.036985582391032958970988886449,1242,813,0.341394339222460985183715820312,3,0.835637159645557403564453125,leaky_relu,normal
236,1754004539,12,1754004551,1754004557,6,python3 .tests/mnist/train --epochs 124 --learning_rate 0.07165371297280304086 --batch_size 1983 --hidden_size 695 --dropout 0.27117912285029888153 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.02326389960944652557,,1,,c143,531819,236_0,FAILED,SOBOL,124,0.071653712972803040859304246624,1983,695,0.27117912285029888153076171875,4,0.02326389960944652557373046875,leaky_relu,normal
237,1754004729,33,1754004762,1754004768,6,python3 .tests/mnist/train --epochs 20 --learning_rate 0.04857916098342277694 --batch_size 706 --hidden_size 1473 --dropout 0.18108281772583723068 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.93827301450073719025,,1,,c143,531820,237_0,FAILED,SOBOL,20,0.048579160983422776942664000899,706,1473,0.181082817725837230682373046875,1,0.93827301450073719024658203125,leaky_relu,normal
238,1754004858,22,1754004880,1754004887,7,python3 .tests/mnist/train --epochs 77 --learning_rate 0.09298317637392319868 --batch_size 1507 --hidden_size 511 --dropout 0.08891016803681850433 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.27870050165802240372,,1,,c143,531821,238_0,FAILED,SOBOL,77,0.092983176373923198676507695382,1507,511,0.08891016803681850433349609375,2,0.278700501658022403717041015625,leaky_relu,normal
239,1754005067,24,1754005091,1754005097,6,python3 .tests/mnist/train --epochs 163 --learning_rate 0.01455412888723425606 --batch_size 234 --hidden_size 1784 --dropout 0.49197949003428220749 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.69773655850440263748,,1,,c143,531822,239_0,FAILED,SOBOL,163,0.014554128887234256059524106774,234,1784,0.491979490034282207489013671875,3,0.697736558504402637481689453125,leaky_relu,normal
240,1754005339,23,1754005362,1754005368,6,python3 .tests/mnist/train --epochs 157 --learning_rate 0.08945932743073441162 --batch_size 1780 --hidden_size 958 --dropout 0.19502743147313594818 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.90170437470078468323,,1,,c143,531824,240_0,FAILED,SOBOL,157,0.089459327430734411623625135235,1780,958,0.19502743147313594818115234375,1,0.9017043747007846832275390625,leaky_relu,normal
241,1754005479,35,1754005514,1754005520,6,python3 .tests/mnist/train --epochs 70 --learning_rate 0.01806119484092108887 --batch_size 1013 --hidden_size 1210 --dropout 0.35494794975966215134 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.07446571439504623413,,1,,c155,531825,241_0,FAILED,SOBOL,70,0.018061194840921088872187638685,1013,1210,0.354947949759662151336669921875,4,0.074465714395046234130859375,leaky_relu,normal
242,1754005657,36,1754005693,1754005699,6,python3 .tests/mnist/train --epochs 14 --learning_rate 0.07359692285987548543 --batch_size 1200 --hidden_size 248 --dropout 0.38385766558349132538 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.6424930645152926445,,1,,c155,531826,242_0,FAILED,SOBOL,14,0.073596922859875485434244524185,1200,248,0.38385766558349132537841796875,3,0.642493064515292644500732421875,leaky_relu,normal
243,1754005833,9,1754005842,1754005848,6,python3 .tests/mnist/train --epochs 119 --learning_rate 0.04661611665421166312 --batch_size 437 --hidden_size 2047 --dropout 0.03694068174809217453 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.31928030308336019516,,1,,c155,531827,243_0,FAILED,SOBOL,119,0.046616116654211663117290953551,437,2047,0.036940681748092174530029296875,2,0.319280303083360195159912109375,leaky_relu,normal
244,1754006039,13,1754006052,1754006058,6,python3 .tests/mnist/train --epochs 149 --learning_rate 0.06195061433154159386 --batch_size 717 --hidden_size 1642 --dropout 0.10733901849016547203 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.50641755852848291397,,1,,c155,531828,244_0,FAILED,SOBOL,149,0.061950614331541593859942196332,717,1642,0.107339018490165472030639648438,1,0.506417558528482913970947265625,leaky_relu,normal
245,1754006234,28,1754006262,1754006268,6,python3 .tests/mnist/train --epochs 43 --learning_rate 0.03345561713286675926 --batch_size 1989 --hidden_size 366 --dropout 0.43863098742440342903 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.45463005919009447098,,1,,c155,531829,245_0,FAILED,SOBOL,43,0.033455617132866759255716004873,1989,366,0.438630987424403429031372070312,4,0.454630059190094470977783203125,leaky_relu,normal
246,1754006352,30,1754006382,1754006388,6,python3 .tests/mnist/train --epochs 100 --learning_rate 0.07810366976604797562 --batch_size 161 --hidden_size 1331 --dropout 0.28448094567283987999 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.76185424439609050751,,1,,c155,531832,246_0,FAILED,SOBOL,100,0.078103669766047975620004706343,161,1331,0.284480945672839879989624023438,3,0.76185424439609050750732421875,leaky_relu,normal
247,1754006529,34,1754006563,1754006569,6,python3 .tests/mnist/train --epochs 187 --learning_rate 0.00499757894079200932 --batch_size 1437 --hidden_size 550 --dropout 0.14018544228747487068 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.21409364230930805206,,1,,c155,531833,247_0,FAILED,SOBOL,187,0.004997578940792009316584909584,1437,550,0.140185442287474870681762695312,2,0.21409364230930805206298828125,leaky_relu,normal
248,1754006705,8,1754006713,1754006719,6,python3 .tests/mnist/train --epochs 193 --learning_rate 0.06410941733734681902 --batch_size 119 --hidden_size 427 --dropout 0.31307337991893291473 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.59665901307016611099,,1,,c155,531835,248_0,FAILED,SOBOL,193,0.064109417337346819021348665046,119,427,0.31307337991893291473388671875,2,0.596659013070166110992431640625,leaky_relu,normal
249,1754006915,7,1754006922,1754006929,7,python3 .tests/mnist/train --epochs 83 --learning_rate 0.04342614149611444263 --batch_size 1391 --hidden_size 1709 --dropout 0.23079088609665632248 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.42762108612805604935,,1,,c155,531837,249_0,FAILED,SOBOL,83,0.043426141496114442630549490332,1391,1709,0.230790886096656322479248046875,3,0.427621086128056049346923828125,leaky_relu,normal
250,1754007116,17,1754007133,1754007139,6,python3 .tests/mnist/train --epochs 50 --learning_rate 0.09901364885199816224 --batch_size 567 --hidden_size 754 --dropout 0.01386619172990322113 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.85184960626065731049,,1,,c155,531838,250_0,FAILED,SOBOL,50,0.099013648851998162236931477764,567,754,0.01386619172990322113037109375,4,0.85184960626065731048583984375,leaky_relu,normal
251,1754007259,25,1754007284,1754007290,6,python3 .tests/mnist/train --epochs 130 --learning_rate 0.02122053012916818443 --batch_size 1844 --hidden_size 1509 --dropout 0.40912170242518186569 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.18684236146509647369,,1,,c155,531839,251_0,FAILED,SOBOL,130,0.021220530129168184430010768438,1844,1509,0.409121702425181865692138671875,1,0.18684236146509647369384765625,leaky_relu,normal
252,1754007445,19,1754007464,1754007471,7,python3 .tests/mnist/train --epochs 112 --learning_rate 0.08732168773148209218 --batch_size 1118 --hidden_size 1150 --dropout 0.47928351303562521935 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.99920898303389549255,,1,,c155,531841,252_0,FAILED,SOBOL,112,0.087321687731482092176271692097,1118,1150,0.479283513035625219345092773438,2,0.9992089830338954925537109375,leaky_relu,normal
253,1754007626,17,1754007643,1754007650,7,python3 .tests/mnist/train --epochs 32 --learning_rate 0.00811183378422632856 --batch_size 352 --hidden_size 890 --dropout 0.06840301724150776863 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.03921690583229064941,,1,,c155,531842,253_0,FAILED,SOBOL,32,0.008111833784226328558641938571,352,890,0.068403017241507768630981445312,3,0.0392169058322906494140625,leaky_relu,normal
254,1754007850,35,1754007885,1754007891,6,python3 .tests/mnist/train --epochs 65 --learning_rate 0.05271420998575166578 --batch_size 1543 --hidden_size 1844 --dropout 0.16057566693052649498 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.73975163977593183517,,1,,c155,531843,254_0,FAILED,SOBOL,65,0.052714209985751665776820829024,1543,1844,0.160575666930526494979858398438,4,0.739751639775931835174560546875,leaky_relu,normal
255,1754007973,31,1754008004,1754008011,7,python3 .tests/mnist/train --epochs 175 --learning_rate 0.03042043167766183762 --batch_size 780 --hidden_size 69 --dropout 0.25848314585164189339 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.28378936555236577988,,1,,c155,531844,255_0,FAILED,SOBOL,175,0.030420431677661837616133411188,780,69,0.258483145851641893386840820312,1,0.283789365552365779876708984375,leaky_relu,normal
256,1754008161,23,1754008184,1754008190,6,python3 .tests/mnist/train --epochs 175 --learning_rate 0.05249378890797496561 --batch_size 24 --hidden_size 1265 --dropout 0.46456344053149223328 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.53359002061188220978,,1,,c155,531846,256_0,FAILED,SOBOL,175,0.052493788907974965607383666111,24,1265,0.4645634405314922332763671875,3,0.53359002061188220977783203125,leaky_relu,normal
257,1754008349,16,1754008365,1754008371,6,python3 .tests/mnist/train --epochs 65 --learning_rate 0.03024893106242642141 --batch_size 1302 --hidden_size 998 --dropout 0.11665618512779474258 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.48973735980689525604,,1,,c155,531847,257_0,FAILED,SOBOL,65,0.030248931062426421406685861371,1302,998,0.116656185127794742584228515625,2,0.48973735980689525604248046875,leaky_relu,normal
258,1754008536,8,1754008544,1754008550,6,python3 .tests/mnist/train --epochs 33 --learning_rate 0.08720043923689052567 --batch_size 596 --hidden_size 1959 --dropout 0.14557734504342079163 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.78987401444464921951,,1,,c155,531849,258_0,FAILED,SOBOL,33,0.087200439236890525673828733488,596,1959,0.1455773450434207916259765625,1,0.789874014444649219512939453125,leaky_relu,normal
259,1754008752,33,1754008785,1754008791,6,python3 .tests/mnist/train --epochs 112 --learning_rate 0.00784421203844249196 --batch_size 1870 --hidden_size 177 --dropout 0.30645761732012033463 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.24980309698730707169,,1,,c155,531850,259_0,FAILED,SOBOL,112,0.007844212038442491957690450022,1870,177,0.306457617320120334625244140625,4,0.249803096987307071685791015625,leaky_relu,normal
260,1754008967,27,1754008994,1754009000,6,python3 .tests/mnist/train --epochs 130 --learning_rate 0.09913508619992063287 --batch_size 1065 --hidden_size 311 --dropout 0.36124238697811961174 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.93719237204641103745,,1,,c155,531851,260_0,FAILED,SOBOL,130,0.099135086199920632865634217978,1065,311,0.361242386978119611740112304688,3,0.937192372046411037445068359375,leaky_relu,normal
261,1754009095,19,1754009114,1754009120,6,python3 .tests/mnist/train --epochs 50 --learning_rate 0.02148834296323359067 --batch_size 301 --hidden_size 1602 --dropout 0.21598712960258126259 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.10226253699511289597,,1,,c155,531852,261_0,FAILED,SOBOL,50,0.021488342963233590665605987624,301,1602,0.215987129602581262588500976562,2,0.102262536995112895965576171875,leaky_relu,normal
262,1754009279,16,1754009295,1754009301,6,python3 .tests/mnist/train --epochs 83 --learning_rate 0.06433002652347087624 --batch_size 1662 --hidden_size 638 --dropout 0.06181801436468958855 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.6768743470311164856,,1,,c155,531855,262_0,FAILED,SOBOL,83,0.064330026523470876242960514446,1662,638,0.061818014364689588546752929688,1,0.676874347031116485595703125,leaky_relu,normal
263,1754009478,28,1754009506,1754009512,6,python3 .tests/mnist/train --epochs 193 --learning_rate 0.04359783394461498596 --batch_size 892 --hidden_size 1403 --dropout 0.39410025486722588539 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.34572728350758552551,,1,,c155,531857,263_0,FAILED,SOBOL,193,0.043597833944614985957066721767,892,1403,0.394100254867225885391235351562,4,0.3457272835075855255126953125,leaky_relu,normal
264,1754009610,14,1754009624,1754009631,7,python3 .tests/mnist/train --epochs 188 --learning_rate 0.07783433008818887999 --batch_size 1679 --hidden_size 1781 --dropout 0.09041427448391914368 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.96462865080684423447,,1,,c155,531858,264_0,FAILED,SOBOL,188,0.077834330088188879992472379854,1679,1781,0.0904142744839191436767578125,4,0.964628650806844234466552734375,leaky_relu,normal
265,1754009839,26,1754009865,1754009871,6,python3 .tests/mnist/train --epochs 100 --learning_rate 0.00487461549405939897 --batch_size 915 --hidden_size 515 --dropout 0.48470955435186624527 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.01257045846432447433,,1,,c155,531859,265_0,FAILED,SOBOL,100,0.004874615494059398972115371151,915,515,0.484709554351866245269775390625,1,0.012570458464324474334716796875,leaky_relu,normal
266,1754009964,21,1754009985,1754009991,6,python3 .tests/mnist/train --epochs 43 --learning_rate 0.0617804472368676319 --batch_size 1239 --hidden_size 1470 --dropout 0.26776578649878501892 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.70455281436443328857,,1,,c155,531860,266_0,FAILED,SOBOL,43,0.061780447236867631899404074147,1239,1470,0.2677657864987850189208984375,2,0.70455281436443328857421875,leaky_relu,normal
267,1754010150,15,1754010165,1754010171,6,python3 .tests/mnist/train --epochs 149 --learning_rate 0.03323653255558573633 --batch_size 470 --hidden_size 698 --dropout 0.18647404108196496964 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.25628117844462394714,,1,,c155,531861,267_0,FAILED,SOBOL,149,0.033236532555585736325998169605,470,698,0.186474041081964969635009765625,3,0.2562811784446239471435546875,leaky_relu,normal
268,1754010369,7,1754010376,1754010382,6,python3 .tests/mnist/train --epochs 119 --learning_rate 0.07376689737630076626 --batch_size 702 --hidden_size 818 --dropout 0.2410070556215941906 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.5684115234762430191,,1,,c155,531862,268_0,FAILED,SOBOL,119,0.073766897376300766264733965727,702,818,0.241007055621594190597534179688,4,0.56841152347624301910400390625,leaky_relu,normal
269,1754010581,35,1754010616,1754010622,6,python3 .tests/mnist/train --epochs 14 --learning_rate 0.04683501088819467389 --batch_size 1980 --hidden_size 1063 --dropout 0.33792378613725304604 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.39168337546288967133,,1,,c155,531864,269_0,FAILED,SOBOL,14,0.046835010888194673894791009161,1980,1063,0.337923786137253046035766601562,1,0.39168337546288967132568359375,leaky_relu,normal
270,1754010709,26,1754010735,1754010741,6,python3 .tests/mnist/train --epochs 71 --learning_rate 0.08972847378536127905 --batch_size 237 --hidden_size 108 --dropout 0.43010787991806864738 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.82493776548653841019,,1,,c155,531865,270_0,FAILED,SOBOL,71,0.089728473785361279047023685962,237,108,0.430107879918068647384643554688,2,0.824937765486538410186767578125,leaky_relu,normal
271,1754010900,15,1754010915,1754010921,6,python3 .tests/mnist/train --epochs 158 --learning_rate 0.01818396868933923674 --batch_size 1512 --hidden_size 1900 --dropout 0.02018761495128273964 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.1519952649250626564,,1,,c155,531866,271_0,FAILED,SOBOL,158,0.018183968689339236740609706544,1512,1900,0.020187614951282739639282226562,3,0.151995264925062656402587890625,leaky_relu,normal
272,1754011100,26,1754011126,1754011132,6,python3 .tests/mnist/train --epochs 163 --learning_rate 0.09325079849219881922 --batch_size 1017 --hidden_size 555 --dropout 0.28595045534893870354 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.44778326153755187988,,1,,c155,531868,272_0,FAILED,SOBOL,163,0.093250798492198819222842587351,1017,555,0.285950455348938703536987304688,1,0.4477832615375518798828125,leaky_relu,normal
273,1754011234,13,1754011247,1754011253,6,python3 .tests/mnist/train --epochs 77 --learning_rate 0.01467537551936693579 --batch_size 1784 --hidden_size 1326 --dropout 0.13288138667121529579 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.52892845496535301208,,1,,c155,531869,273_0,FAILED,SOBOL,77,0.014675375519366935794796091841,1784,1326,0.132881386671215295791625976562,4,0.5289284549653530120849609375,leaky_relu,normal
274,1754011456,31,1754011487,1754011494,7,python3 .tests/mnist/train --epochs 20 --learning_rate 0.0718252147055137985 --batch_size 433 --hidden_size 372 --dropout 0.10396022675558924675 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.18770751263946294785,,1,,c155,531871,274_0,FAILED,SOBOL,20,0.071825214705513798496561150841,433,372,0.103960226755589246749877929688,3,0.187707512639462947845458984375,leaky_relu,normal
275,1754011592,15,1754011607,1754011613,6,python3 .tests/mnist/train --epochs 124 --learning_rate 0.04879957945375704154 --batch_size 1197 --hidden_size 1636 --dropout 0.44405627856031060219 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.77263921778649091721,,1,,c155,531873,275_0,FAILED,SOBOL,124,0.048799579453757041536121619174,1197,1636,0.444056278560310602188110351562,2,0.772639217786490917205810546875,leaky_relu,normal
276,1754011813,33,1754011846,1754011852,6,python3 .tests/mnist/train --epochs 142 --learning_rate 0.05827794654239901173 --batch_size 1986 --hidden_size 2044 --dropout 0.38921810314059257507 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.08525665570050477982,,1,,c155,531875,276_0,FAILED,SOBOL,142,0.058277946542399011731205860087,1986,2044,0.3892181031405925750732421875,1,0.085256655700504779815673828125,leaky_relu,normal
277,1754011945,22,1754011967,1754011973,6,python3 .tests/mnist/train --epochs 38 --learning_rate 0.03676497059746645923 --batch_size 711 --hidden_size 252 --dropout 0.03349703643471002579 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.87532562855631113052,,1,,c155,531876,277_0,FAILED,SOBOL,38,0.036764970597466459234503588505,711,252,0.033497036434710025787353515625,4,0.875325628556311130523681640625,leaky_relu,normal
278,1754012138,9,1754012147,1754012153,6,python3 .tests/mnist/train --epochs 95 --learning_rate 0.07980499112925493188 --batch_size 1442 --hidden_size 1206 --dropout 0.18766615167260169983 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.34178284741938114166,,1,,c155,531877,278_0,FAILED,SOBOL,95,0.079804991129254931880865342464,1442,1206,0.1876661516726016998291015625,3,0.34178284741938114166259765625,leaky_relu,normal
279,1754012367,19,1754012386,1754012393,7,python3 .tests/mnist/train --epochs 181 --learning_rate 0.00293904615831561437 --batch_size 163 --hidden_size 961 --dropout 0.35636023525148630142 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.63563745282590389252,,1,,c155,531878,279_0,FAILED,SOBOL,181,0.002939046158315614370309942771,163,961,0.356360235251486301422119140625,2,0.63563745282590389251708984375,leaky_relu,normal
280,1754012599,29,1754012628,1754012634,6,python3 .tests/mnist/train --epochs 199 --learning_rate 0.0686178844105452268 --batch_size 1388 --hidden_size 63 --dropout 0.16010751901194453239 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.04994682688266038895,,1,,c155,531879,280_0,FAILED,SOBOL,199,0.068617884410545226803179730268,1388,63,0.160107519011944532394409179688,2,0.049946826882660388946533203125,leaky_relu,normal
281,1754012736,13,1754012749,1754012755,6,python3 .tests/mnist/train --epochs 88 --learning_rate 0.03929319306803867595 --batch_size 113 --hidden_size 1849 --dropout 0.26483543822541832924 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.972891257144510746,,1,,c155,531880,281_0,FAILED,SOBOL,88,0.039293193068038675952458049778,113,1849,0.264835438225418329238891601562,3,0.972891257144510746002197265625,leaky_relu,normal
282,1754012965,23,1754012988,1754012994,6,python3 .tests/mnist/train --epochs 56 --learning_rate 0.09639125291725621214 --batch_size 1849 --hidden_size 885 --dropout 0.48177920607849955559 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.30623085983097553253,,1,,c155,531884,282_0,FAILED,SOBOL,56,0.096391252917256212140451054893,1849,885,0.481779206078499555587768554688,4,0.30623085983097553253173828125,leaky_relu,normal
283,1754013100,9,1754013109,1754013115,6,python3 .tests/mnist/train --epochs 137 --learning_rate 0.02421234180375933867 --batch_size 570 --hidden_size 1156 --dropout 0.06404775241389870644 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.73295707814395427704,,1,,c155,531886,283_0,FAILED,SOBOL,137,0.02421234180375933867090942897,570,1156,0.064047752413898706436157226562,1,0.73295707814395427703857421875,leaky_relu,normal
284,1754013331,15,1754013346,1754013352,6,python3 .tests/mnist/train --epochs 107 --learning_rate 0.082889685025271026 --batch_size 355 --hidden_size 1513 --dropout 0.00944607332348823547 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.4208353385329246521,,1,,c156,531887,284_0,FAILED,SOBOL,107,0.082889685025271025997639640082,355,1513,0.0094460733234882354736328125,2,0.420835338532924652099609375,leaky_relu,normal
285,1754013547,9,1754013556,1754013562,6,python3 .tests/mnist/train --epochs 26 --learning_rate 0.01212597745001316174 --batch_size 1123 --hidden_size 751 --dropout 0.41155254188925027847 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.61910885944962501526,,1,,c156,531888,285_0,FAILED,SOBOL,26,0.012125977450013161740294265201,1123,751,0.411552541889250278472900390625,3,0.6191088594496250152587890625,leaky_relu,normal
286,1754013768,28,1754013796,1754013802,6,python3 .tests/mnist/train --epochs 58 --learning_rate 0.05521167441345752047 --batch_size 775 --hidden_size 1712 --dropout 0.31936844810843467712 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.16051725205034017563,,1,,c156,531890,286_0,FAILED,SOBOL,58,0.055211674413457520471659734085,775,1712,0.3193684481084346771240234375,4,0.160517252050340175628662109375,leaky_relu,normal
287,1754013902,14,1754013916,1754013922,6,python3 .tests/mnist/train --epochs 170 --learning_rate 0.0274990053042583199 --batch_size 1540 --hidden_size 424 --dropout 0.23026551399379968643 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.86257355939596891403,,1,,c156,531891,287_0,FAILED,SOBOL,170,0.027499005304258319903887297642,1540,424,0.230265513993799686431884765625,1,0.862573559395968914031982421875,leaky_relu,normal
288,1754014142,14,1754014156,1754014162,6,python3 .tests/mnist/train --epochs 166 --learning_rate 0.08474125467162579861 --batch_size 1268 --hidden_size 929 --dropout 0.40122691402211785316 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.20973245240747928619,,1,,c156,531892,288_0,FAILED,SOBOL,166,0.084741254671625798611245272696,1268,929,0.401226914022117853164672851562,1,0.20973245240747928619384765625,leaky_relu,normal
289,1754014358,9,1754014367,1754014373,6,python3 .tests/mnist/train --epochs 62 --learning_rate 0.00776592376546934252 --batch_size 504 --hidden_size 1175 --dropout 0.05282984254881739616 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.75181870721280574799,,1,,c156,531893,289_0,FAILED,SOBOL,62,0.007765923765469342522627105296,504,1175,0.052829842548817396163940429688,4,0.75181870721280574798583984375,leaky_relu,normal
290,1754014576,31,1754014607,1754014613,6,python3 .tests/mnist/train --epochs 24 --learning_rate 0.05060751494774595738 --batch_size 1713 --hidden_size 219 --dropout 0.20751769701018929482 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.46529312897473573685,,1,,c156,531894,290_0,FAILED,SOBOL,24,0.050607514947745957378799630533,1713,219,0.207517697010189294815063476562,3,0.465293128974735736846923828125,leaky_relu,normal
291,1754014710,17,1754014727,1754014733,6,python3 .tests/mnist/train --epochs 109 --learning_rate 0.0292040947942808285 --batch_size 945 --hidden_size 2012 --dropout 0.36791122285649180412 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.51115829590708017349,,1,,c156,531899,291_0,FAILED,SOBOL,109,0.029204094794280828495391943989,945,2012,0.367911222856491804122924804688,2,0.511158295907080173492431640625,leaky_relu,normal
292,1754014919,18,1754014937,1754014943,6,python3 .tests/mnist/train --epochs 139 --learning_rate 0.06386038944983854493 --batch_size 203 --hidden_size 1605 --dropout 0.29737938288599252701 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.32329627778381109238,,1,,c156,531901,292_0,FAILED,SOBOL,139,0.063860389449838544928539363355,203,1605,0.297379382885992527008056640625,1,0.323296277783811092376708984375,leaky_relu,normal
293,1754015073,14,1754015087,1754015093,6,python3 .tests/mnist/train --epochs 53 --learning_rate 0.04074882630500942932 --batch_size 1482 --hidden_size 339 --dropout 0.15261084213852882385 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.65243131201714277267,,1,,c156,531902,293_0,FAILED,SOBOL,53,0.040748826305009429316061897453,1482,339,0.1526108421385288238525390625,4,0.652431312017142772674560546875,leaky_relu,normal
294,1754015305,22,1754015327,1754015333,6,python3 .tests/mnist/train --epochs 92 --learning_rate 0.09770042685743421385 --batch_size 672 --hidden_size 1294 --dropout 0.1231709429994225502 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.06420889496803283691,,1,,c156,531903,294_0,FAILED,SOBOL,92,0.097700426857434213845365889028,672,1294,0.123170942999422550201416015625,3,0.0642088949680328369140625,leaky_relu,normal
295,1754015443,4,1754015447,1754015453,6,python3 .tests/mnist/train --epochs 196 --learning_rate 0.01921072020234540143 --batch_size 1946 --hidden_size 523 --dropout 0.45594302937388420105 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.89712196215987205505,,1,,c156,531904,295_0,FAILED,SOBOL,196,0.019210720202345401425025883668,1946,523,0.4559430293738842010498046875,2,0.8971219621598720550537109375,leaky_relu,normal
296,1754015677,11,1754015688,1754015694,6,python3 .tests/mnist/train --epochs 179 --learning_rate 0.06013619124139660266 --batch_size 625 --hidden_size 392 --dropout 0.02926710108295083046 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.29629103001207113266,,1,,c156,531905,296_0,FAILED,SOBOL,179,0.060136191241396602658042525036,625,392,0.029267101082950830459594726562,2,0.296291030012071132659912109375,leaky_relu,normal
297,1754015899,29,1754015928,1754015934,6,python3 .tests/mnist/train --epochs 97 --learning_rate 0.0323375942391250365 --batch_size 1905 --hidden_size 1680 --dropout 0.42307301191613078117 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.742668922059237957,,1,,c156,531906,297_0,FAILED,SOBOL,97,0.032337594239125036499338250451,1905,1680,0.423073011916130781173706054688,3,0.742668922059237957000732421875,leaky_relu,normal
298,1754016039,9,1754016048,1754016054,6,python3 .tests/mnist/train --epochs 35 --learning_rate 0.07523115547412075055 --batch_size 58 --hidden_size 719 --dropout 0.33140777656808495522 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.03695388883352279663,,1,,c156,531907,298_0,FAILED,SOBOL,35,0.075231155474120750548117086964,58,719,0.331407776568084955215454101562,4,0.036953888833522796630859375,leaky_relu,normal
299,1754016276,12,1754016288,1754016294,6,python3 .tests/mnist/train --epochs 146 --learning_rate 0.00455316421660594602 --batch_size 1332 --hidden_size 1481 --dropout 0.24962883768603205681 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.98712116852402687073,,1,,c156,531908,299_0,FAILED,SOBOL,146,0.004553164216605946022775608384,1332,1481,0.249628837686032056808471679688,1,0.9871211685240268707275390625,leaky_relu,normal
300,1754016506,22,1754016528,1754016534,6,python3 .tests/mnist/train --epochs 128 --learning_rate 0.08843818666824139474 --batch_size 1627 --hidden_size 1123 --dropout 0.17934875283390283585 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.17448754794895648956,,1,,c156,531909,300_0,FAILED,SOBOL,128,0.088438186668241394738920746477,1627,1123,0.179348752833902835845947265625,2,0.17448754794895648956298828125,leaky_relu,normal
301,1754016645,33,1754016678,1754016685,7,python3 .tests/mnist/train --epochs 17 --learning_rate 0.01614988961952738486 --batch_size 863 --hidden_size 853 --dropout 0.2767527066171169281 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.84931953065097332001,,1,,c156,531910,301_0,FAILED,SOBOL,17,0.016149889619527384859720697818,863,853,0.2767527066171169281005859375,3,0.84931953065097332000732421875,leaky_relu,normal
302,1754016848,10,1754016858,1754016864,6,python3 .tests/mnist/train --epochs 79 --learning_rate 0.07305562302450649415 --batch_size 1035 --hidden_size 1817 --dropout 0.49317761603742837906 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.42979828733950853348,,1,,c156,531911,302_0,FAILED,SOBOL,79,0.073055623024506494145313695299,1035,1817,0.493177616037428379058837890625,4,0.429798287339508533477783203125,leaky_relu,normal
303,1754017087,11,1754017098,1754017105,7,python3 .tests/mnist/train --epochs 161 --learning_rate 0.04384048747346737385 --batch_size 267 --hidden_size 32 --dropout 0.0837466903030872345 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.60842065606266260147,,1,,c156,531912,303_0,FAILED,SOBOL,161,0.043840487473467373846780503754,267,32,0.0837466903030872344970703125,1,0.608420656062662601470947265625,leaky_relu,normal
304,1754017316,23,1754017339,1754017345,6,python3 .tests/mnist/train --epochs 154 --learning_rate 0.06876584754976444724 --batch_size 1815 --hidden_size 1370 --dropout 0.34935588482767343521 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.81069476157426834106,,1,,c156,531913,304_0,FAILED,SOBOL,154,0.068765847549764447244058374054,1815,1370,0.349355884827673435211181640625,3,0.810694761574268341064453125,leaky_relu,normal
305,1754017459,30,1754017489,1754017495,6,python3 .tests/mnist/train --epochs 74 --learning_rate 0.04814399448507466345 --batch_size 540 --hidden_size 606 --dropout 0.19677615538239479065 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.22777600958943367004,,1,,c156,531914,305_0,FAILED,SOBOL,74,0.048143994485074663447488063639,540,606,0.1967761553823947906494140625,2,0.2277760095894336700439453125,leaky_relu,normal
306,1754017676,23,1754017699,1754017705,6,python3 .tests/mnist/train --epochs 12 --learning_rate 0.09118391667903401332 --batch_size 1358 --hidden_size 1570 --dropout 0.042088300921022892 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.55135755892843008041,,1,,c156,531920,306_0,FAILED,SOBOL,12,0.091183916679034013319515850071,1358,1570,0.042088300921022891998291015625,1,0.551357558928430080413818359375,leaky_relu,normal
307,1754017888,21,1754017909,1754017915,6,python3 .tests/mnist/train --epochs 121 --learning_rate 0.01342704550351016268 --batch_size 80 --hidden_size 279 --dropout 0.38267157599329948425 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.472228209488093853,,1,,c156,531929,307_0,FAILED,SOBOL,121,0.013427045503510162682836437398,80,279,0.3826715759932994842529296875,4,0.472228209488093852996826171875,leaky_relu,normal
308,1754018092,28,1754018120,1754018126,6,python3 .tests/mnist/train --epochs 151 --learning_rate 0.0795407549612317244 --batch_size 805 --hidden_size 145 --dropout 0.45301268110051751137 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.66008358914405107498,,1,,c156,531934,308_0,FAILED,SOBOL,151,0.079540754961231724395886999446,805,145,0.453012681100517511367797851562,3,0.660083589144051074981689453125,leaky_relu,normal
309,1754018301,28,1754018329,1754018336,7,python3 .tests/mnist/train --epochs 42 --learning_rate 0.00026950207690708343 --batch_size 1574 --hidden_size 1927 --dropout 0.09680442092940211296 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.36421266291290521622,,1,,c156,531941,309_0,FAILED,SOBOL,42,0.000269502076907083426299954754,1574,1927,0.096804420929402112960815429688,2,0.364212662912905216217041015625,leaky_relu,normal
310,1754018511,29,1754018540,1754018546,6,python3 .tests/mnist/train --epochs 104 --learning_rate 0.05741943960088306126 --batch_size 389 --hidden_size 966 --dropout 0.12624432006850838661 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.91539436765015125275,,1,,c156,531943,310_0,FAILED,SOBOL,104,0.057419439600883061258773665259,389,966,0.126244320068508386611938476562,1,0.91539436765015125274658203125,leaky_relu,normal
311,1754018720,30,1754018750,1754018756,6,python3 .tests/mnist/train --epochs 184 --learning_rate 0.03508943758496083781 --batch_size 1153 --hidden_size 1233 --dropout 0.29444903461262583733 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.12331387214362621307,,1,,c156,531944,311_0,FAILED,SOBOL,184,0.035089437584960837812619871556,1153,1233,0.294449034612625837326049804688,4,0.12331387214362621307373046875,leaky_relu,normal
312,1754018927,3,1754018930,1754018936,6,python3 .tests/mnist/train --epochs 191 --learning_rate 0.09417694742608816172 --batch_size 398 --hidden_size 1868 --dropout 0.22130785975605249405 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.69484025705605745316,,1,,c156,531945,312_0,FAILED,SOBOL,191,0.094176947426088161718915614529,398,1868,0.221307859756052494049072265625,4,0.694840257056057453155517578125,leaky_relu,normal
313,1754019171,30,1754019201,1754019207,6,python3 .tests/mnist/train --epochs 86 --learning_rate 0.02271741664418950798 --batch_size 1167 --hidden_size 76 --dropout 0.3265256248414516449 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.26622363273054361343,,1,,c155,531946,313_0,FAILED,SOBOL,86,0.022717416644189507984874509816,1167,76,0.3265256248414516448974609375,1,0.266223632730543613433837890625,leaky_relu,normal
314,1754019344,6,1754019350,1754019357,7,python3 .tests/mnist/train --epochs 47 --learning_rate 0.06580320598559454004 --batch_size 986 --hidden_size 1031 --dropout 0.41819086018949747086 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.95040088333189487457,,1,,c156,531947,314_0,FAILED,SOBOL,47,0.065803205985594540039507194251,986,1031,0.418190860189497470855712890625,2,0.95040088333189487457275390625,leaky_relu,normal
315,1754019588,34,1754019622,1754019628,6,python3 .tests/mnist/train --epochs 134 --learning_rate 0.03878617532711476495 --batch_size 1751 --hidden_size 786 --dropout 0.0009461231529712677 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.02556315623223781586,,1,,c156,531948,315_0,FAILED,SOBOL,134,0.03878617532711476495466129677,1751,786,0.0009461231529712677001953125,3,0.02556315623223781585693359375,leaky_relu,normal
316,1754019731,10,1754019741,1754019747,6,python3 .tests/mnist/train --epochs 116 --learning_rate 0.05410809805454687427 --batch_size 1472 --hidden_size 666 --dropout 0.07105073193088173866 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.83818821609020233154,,1,,c156,531949,316_0,FAILED,SOBOL,116,0.054108098054546874267067835262,1472,666,0.071050731930881738662719726562,4,0.83818821609020233154296875,leaky_relu,normal
317,1754019976,5,1754019981,1754019987,6,python3 .tests/mnist/train --epochs 29 --learning_rate 0.02567452288743108865 --batch_size 197 --hidden_size 1438 --dropout 0.47267045406624674797 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.13802663609385490417,,1,,c156,531950,317_0,FAILED,SOBOL,29,0.025674522887431088652432364938,197,1438,0.472670454066246747970581054688,1,0.1380266360938549041748046875,leaky_relu,normal
318,1754020210,11,1754020221,1754020227,6,python3 .tests/mnist/train --epochs 67 --learning_rate 0.08277249035868794458 --batch_size 2020 --hidden_size 483 --dropout 0.25624554464593529701 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.57910092081874608994,,1,,c156,531951,318_0,FAILED,SOBOL,67,0.082772490358687944578264250595,2020,483,0.256245544645935297012329101562,2,0.579100920818746089935302734375,leaky_relu,normal
319,1754020438,23,1754020461,1754020467,6,python3 .tests/mnist/train --epochs 173 --learning_rate 0.00970264782572165252 --batch_size 742 --hidden_size 1749 --dropout 0.16665279446169734001 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.38271732907742261887,,1,,c156,531952,319_0,FAILED,SOBOL,173,0.009702647825721652519170845608,742,1749,0.166652794461697340011596679688,3,0.382717329077422618865966796875,leaky_relu,normal
320,1754020684,18,1754020702,1754020708,6,python3 .tests/mnist/train --epochs 171 --learning_rate 0.09718602949567139992 --batch_size 1968 --hidden_size 100 --dropout 0.04749383497983217239 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.33138340804725885391,,1,,c156,531953,320_0,FAILED,SOBOL,171,0.097186029495671399924816569182,1968,100,0.047493834979832172393798828125,4,0.331383408047258853912353515625,leaky_relu,normal
321,1754020899,13,1754020912,1754020918,6,python3 .tests/mnist/train --epochs 69 --learning_rate 0.02032017988262698263 --batch_size 690 --hidden_size 1877 --dropout 0.40271004289388656616 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.62920745927840471268,,1,,c156,531954,321_0,FAILED,SOBOL,69,0.020320179882626982631466106,690,1877,0.402710042893886566162109375,1,0.629207459278404712677001953125,leaky_relu,normal
322,1754021131,21,1754021152,1754021158,6,python3 .tests/mnist/train --epochs 30 --learning_rate 0.06316023490881547686 --batch_size 1524 --hidden_size 793 --dropout 0.37307178694754838943 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.08779901079833507538,,1,,c156,531955,322_0,FAILED,SOBOL,30,0.063160234908815476861931870189,1524,793,0.373071786947548389434814453125,2,0.08779901079833507537841796875,leaky_relu,normal
323,1754021298,4,1754021302,1754021308,6,python3 .tests/mnist/train --epochs 114 --learning_rate 0.04164735432177782415 --batch_size 249 --hidden_size 1055 --dropout 0.20582859218120574951 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.88964513130486011505,,1,,c156,531956,323_0,FAILED,SOBOL,114,0.041647354321777824148753666123,249,1055,0.20582859218120574951171875,3,0.88964513130486011505126953125,leaky_relu,normal
324,1754021555,17,1754021572,1754021578,6,python3 .tests/mnist/train --epochs 133 --learning_rate 0.05131948865285144296 --batch_size 927 --hidden_size 1413 --dropout 0.15135663235560059547 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.20176737383008003235,,1,,c156,531957,324_0,FAILED,SOBOL,133,0.051319488652851442955782346189,927,1413,0.151356632355600595474243164062,4,0.2017673738300800323486328125,leaky_relu,normal
325,1754021791,21,1754021812,1754021818,6,python3 .tests/mnist/train --epochs 48 --learning_rate 0.02829375804319977927 --batch_size 1691 --hidden_size 659 --dropout 0.30297481222078204155 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.77492050081491470337,,1,,c156,531958,325_0,FAILED,SOBOL,48,0.028293758043199779272924843099,1691,659,0.302974812220782041549682617188,1,0.774920500814914703369140625,leaky_relu,normal
326,1754021959,3,1754021962,1754021968,6,python3 .tests/mnist/train --epochs 87 --learning_rate 0.08524382243953645966 --batch_size 458 --hidden_size 1740 --dropout 0.45737274223938584328 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.44158096145838499069,,1,,c156,531959,326_0,FAILED,SOBOL,87,0.085243822439536459656395095408,458,1740,0.457372742239385843276977539062,2,0.441580961458384990692138671875,leaky_relu,normal
327,1754022209,13,1754022222,1754022229,7,python3 .tests/mnist/train --epochs 189 --learning_rate 0.00666830410880967991 --batch_size 1227 --hidden_size 460 --dropout 0.11778154922649264336 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.51875718589872121811,,1,,c155,531960,327_0,FAILED,SOBOL,189,0.006668304108809679914271484336,1227,460,0.117781549226492643356323242188,3,0.518757185898721218109130859375,leaky_relu,normal
328,1754022577,16,1754022593,1754022599,6,python3 .tests/mnist/train --epochs 186 --learning_rate 0.07259278448454103971 --batch_size 313 --hidden_size 583 --dropout 0.42920379061251878738 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.16694970056414604187,,1,,c156,531961,328_0,FAILED,SOBOL,186,0.072592784484541039713434429359,313,583,0.429203790612518787384033203125,3,0.1669497005641460418701171875,leaky_relu,normal
329,1754022952,32,1754022984,1754022990,6,python3 .tests/mnist/train --epochs 103 --learning_rate 0.04488002001744696018 --batch_size 1077 --hidden_size 1362 --dropout 0.02662298083305358887 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.87297065556049346924,,1,,c156,531962,329_0,FAILED,SOBOL,103,0.044880020017446960178819637122,1077,1362,0.0266229808330535888671875,2,0.87297065556049346923828125,leaky_relu,normal
330,1754023112,7,1754023119,1754023125,6,python3 .tests/mnist/train --epochs 40 --learning_rate 0.08777204509635457008 --batch_size 881 --hidden_size 272 --dropout 0.24330729711800813675 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.40651338081806898117,,1,,c155,531963,330_0,FAILED,SOBOL,40,0.087772045096354570081764734368,881,272,0.243307297118008136749267578125,1,0.406513380818068981170654296875,leaky_relu,normal
331,1754023380,25,1754023405,1754023411,6,python3 .tests/mnist/train --epochs 153 --learning_rate 0.01700824216320179563 --batch_size 1650 --hidden_size 1545 --dropout 0.33389163762331008911 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.61656884755939245224,,1,,c155,531964,331_0,FAILED,SOBOL,153,0.017008242163201795632554436111,1650,1545,0.333891637623310089111328125,4,0.616568847559392452239990234375,leaky_relu,normal
332,1754023531,23,1754023554,1754023560,6,python3 .tests/mnist/train --epochs 123 --learning_rate 0.075885455532418572 --batch_size 1290 --hidden_size 1952 --dropout 0.27916789287701249123 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.30395095888525247574,,1,,c156,531965,332_0,FAILED,SOBOL,123,0.075885455532418571999997425337,1290,1952,0.279167892877012491226196289062,3,0.303950958885252475738525390625,leaky_relu,normal
333,1754023755,9,1754023764,1754023770,6,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00370663977681659181 --batch_size 12 --hidden_size 152 --dropout 0.17295856727287173271 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.71889570821076631546,,1,,c156,531966,333_0,FAILED,SOBOL,10,0.003706639776816591808766832017,12,152,0.172958567272871732711791992188,2,0.718895708210766315460205078125,leaky_relu,normal
334,1754024017,17,1754024034,1754024040,6,python3 .tests/mnist/train --epochs 73 --learning_rate 0.06061083702570759651 --batch_size 1882 --hidden_size 1243 --dropout 0.08152220631018280983 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.06011671386659145355,,1,,c156,531967,334_0,FAILED,SOBOL,73,0.060610837025707596514845221236,1882,1243,0.081522206310182809829711914062,1,0.06011671386659145355224609375,leaky_relu,normal
335,1754024264,10,1754024274,1754024280,6,python3 .tests/mnist/train --epochs 156 --learning_rate 0.03128624104109593157 --batch_size 608 --hidden_size 989 --dropout 0.4997280011884868145 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.97909506596624851227,,1,,c156,531968,335_0,FAILED,SOBOL,156,0.031286241041095931569859800447,608,989,0.499728001188486814498901367188,4,0.97909506596624851226806640625,leaky_relu,normal
336,1754024509,5,1754024514,1754024520,6,python3 .tests/mnist/train --epochs 159 --learning_rate 0.05632297913863324595 --batch_size 1103 --hidden_size 1689 --dropout 0.20289825880900025368 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.68330744188278913498,,1,,c156,531970,336_0,FAILED,SOBOL,159,0.056322979138633245954626005414,1103,1689,0.202898258809000253677368164062,2,0.683307441882789134979248046875,leaky_relu,normal
337,1754024773,11,1754024784,1754024791,7,python3 .tests/mnist/train --epochs 81 --learning_rate 0.03559088191767224157 --batch_size 335 --hidden_size 415 --dropout 0.34670524997636675835 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.35612553264945745468,,1,,c156,531971,337_0,FAILED,SOBOL,81,0.035590881917672241574468472436,335,415,0.346705249976366758346557617188,3,0.356125532649457454681396484375,leaky_relu,normal
338,1754025031,24,1754025055,1754025061,6,python3 .tests/mnist/train --epochs 18 --learning_rate 0.07862928881508297885 --batch_size 1560 --hidden_size 1506 --dropout 0.37634350592270493507 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.92287119850516319275,,1,,c156,531972,338_0,FAILED,SOBOL,18,0.078629288815082978847392780608,1560,1506,0.376343505922704935073852539062,4,0.9228711985051631927490234375,leaky_relu,normal
339,1754025187,18,1754025205,1754025211,6,python3 .tests/mnist/train --epochs 126 --learning_rate 0.00098264093629084532 --batch_size 795 --hidden_size 726 --dropout 0.04456350160762667656 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.09972375631332397461,,1,,c156,531973,339_0,FAILED,SOBOL,126,0.000982640936290845321346432151,795,726,0.044563501607626676559448242188,1,0.099723756313323974609375,leaky_relu,normal
340,1754025466,9,1754025475,1754025481,6,python3 .tests/mnist/train --epochs 144 --learning_rate 0.09208279930797405588 --batch_size 133 --hidden_size 846 --dropout 0.0992261962965130806 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.78759296797215938568,,1,,c156,531974,340_0,FAILED,SOBOL,144,0.092082799307974055880166019961,133,846,0.099226196296513080596923828125,2,0.78759296797215938568115234375,leaky_relu,normal
341,1754025710,6,1754025716,1754025722,6,python3 .tests/mnist/train --epochs 36 --learning_rate 0.01272647675163112585 --batch_size 1408 --hidden_size 1099 --dropout 0.44663121551275253296 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.23574108816683292389,,1,,c156,531975,341_0,FAILED,SOBOL,36,0.012726476751631125849950620932,1408,1099,0.446631215512752532958984375,3,0.23574108816683292388916015625,leaky_relu,normal
342,1754025960,26,1754025986,1754025992,6,python3 .tests/mnist/train --epochs 99 --learning_rate 0.06987489897905849179 --batch_size 550 --hidden_size 9 --dropout 0.29223328549414873123 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.5437586689367890358,,1,,c156,531976,342_0,FAILED,SOBOL,99,0.069874898979058491788052265292,550,9,0.292233285494148731231689453125,4,0.543758668936789035797119140625,leaky_relu,normal
343,1754026116,20,1754026136,1754026142,6,python3 .tests/mnist/train --epochs 177 --learning_rate 0.04762994577561505821 --batch_size 1829 --hidden_size 1808 --dropout 0.13280127942562103271 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.49594037700444459915,,1,,c156,531977,343_0,FAILED,SOBOL,177,0.047629945775615058212171248897,1829,1808,0.13280127942562103271484375,1,0.495940377004444599151611328125,leaky_relu,normal
344,1754026352,24,1754026376,1754026382,6,python3 .tests/mnist/train --epochs 197 --learning_rate 0.08172149773269891948 --batch_size 731 --hidden_size 1166 --dropout 0.32119566434994339943 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.81453709118068218231,,1,,c156,531978,344_0,FAILED,SOBOL,197,0.081721497732698919480576194019,731,1166,0.321195664349943399429321289062,1,0.81453709118068218231201171875,leaky_relu,normal
345,1754026512,15,1754026527,1754026533,6,python3 .tests/mnist/train --epochs 91 --learning_rate 0.01017689727878198086 --batch_size 2006 --hidden_size 906 --dropout 0.22280015004798769951 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.14556448347866535187,,1,,c156,531979,345_0,FAILED,SOBOL,91,0.010176897278781980860085099039,2006,906,0.222800150047987699508666992188,4,0.14556448347866535186767578125,leaky_relu,normal
346,1754026777,20,1754026797,1754026803,6,python3 .tests/mnist/train --epochs 52 --learning_rate 0.05326117132363841766 --batch_size 143 --hidden_size 1987 --dropout 0.00611583376303315163 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.57095272932201623917,,1,,c156,531980,346_0,FAILED,SOBOL,52,0.053261171323638417662849064982,143,1987,0.006115833763033151626586914062,3,0.570952729322016239166259765625,leaky_relu,normal
347,1754027006,31,1754027037,1754027043,6,python3 .tests/mnist/train --epochs 141 --learning_rate 0.02632918947763741163 --batch_size 1422 --hidden_size 213 --dropout 0.4165078173391520977 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.40600223559886217117,,1,,c156,531982,347_0,FAILED,SOBOL,141,0.026329189477637411631594233086,1422,213,0.416507817339152097702026367188,2,0.406002235598862171173095703125,leaky_relu,normal
348,1754027167,20,1754027187,1754027193,6,python3 .tests/mnist/train --epochs 111 --learning_rate 0.06666273560328409009 --batch_size 1764 --hidden_size 347 --dropout 0.47140703815966844559 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.7186134709045290947,,1,,c156,531983,348_0,FAILED,SOBOL,111,0.066662735603284090091236180342,1764,347,0.471407038159668445587158203125,1,0.718613470904529094696044921875,leaky_relu,normal
349,1754027413,15,1754027428,1754027434,6,python3 .tests/mnist/train --epochs 22 --learning_rate 0.03811891627989710124 --batch_size 997 --hidden_size 1630 --dropout 0.07664003968238830566 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.25856370385736227036,,1,,c156,531985,349_0,FAILED,SOBOL,22,0.038118916279897101240248247223,997,1630,0.0766400396823883056640625,4,0.258563703857362270355224609375,leaky_relu,normal
350,1754027668,30,1754027698,1754027704,6,python3 .tests/mnist/train --epochs 61 --learning_rate 0.09521536845460534804 --batch_size 1217 --hidden_size 546 --dropout 0.16807640064507722855 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.95842698588967323303,,1,,c156,531990,350_0,FAILED,SOBOL,61,0.095215368454605348036423606572,1217,546,0.168076400645077228546142578125,3,0.9584269858896732330322265625,leaky_relu,normal
351,1754027826,22,1754027848,1754027854,6,python3 .tests/mnist/train --epochs 168 --learning_rate 0.02225574921837076767 --batch_size 453 --hidden_size 1303 --dropout 0.25084692984819412231 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.00240033119916915894,,1,,c156,531994,351_0,FAILED,SOBOL,168,0.022255749218370767666952403374,453,1303,0.250846929848194122314453125,2,0.002400331199169158935546875,leaky_relu,normal
352,1754028054,4,1754028058,1754028064,6,python3 .tests/mnist/train --epochs 168 --learning_rate 0.06503582952979952703 --batch_size 851 --hidden_size 1840 --dropout 0.11114323092624545097 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.91402951721101999283,,1,,c156,531996,352_0,FAILED,SOBOL,168,0.065035829529799527026767691495,851,1840,0.111143230926245450973510742188,2,0.914029517211019992828369140625,leaky_relu,normal
353,1754028329,34,1754028363,1754028369,6,python3 .tests/mnist/train --epochs 60 --learning_rate 0.0427059228717722103 --batch_size 1615 --hidden_size 41 --dropout 0.46587269240990281105 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.11028866935521364212,,1,,c156,531997,353_0,FAILED,SOBOL,60,0.042705922871772210303031869216,1615,41,0.465872692409902811050415039062,3,0.110288669355213642120361328125,leaky_relu,normal
354,1754028499,10,1754028509,1754028515,6,python3 .tests/mnist/train --epochs 27 --learning_rate 0.09965589489014820002 --batch_size 279 --hidden_size 1130 --dropout 0.31193246645852923393 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.66921444796025753021,,1,,c156,531999,354_0,FAILED,SOBOL,27,0.099655894890148200016000146206,279,1130,0.311932466458529233932495117188,4,0.66921444796025753021240234375,leaky_relu,normal
355,1754028778,27,1754028805,1754028811,6,python3 .tests/mnist/train --epochs 105 --learning_rate 0.02038473736371845119 --batch_size 1047 --hidden_size 878 --dropout 0.1441994556225836277 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.36950046755373477936,,1,,c155,532001,355_0,FAILED,SOBOL,105,0.020384737363718451186311853007,1047,878,0.144199455622583627700805664062,1,0.36950046755373477935791015625,leaky_relu,normal
356,1754028940,19,1754028959,1754028965,6,python3 .tests/mnist/train --epochs 135 --learning_rate 0.08669221406387166151 --batch_size 1917 --hidden_size 758 --dropout 0.21441848576068878174 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.55687495693564414978,,1,,c156,532002,356_0,FAILED,SOBOL,135,0.086692214063871661511306854209,1917,758,0.21441848576068878173828125,2,0.5568749569356441497802734375,leaky_relu,normal
357,1754029219,10,1754029229,1754029236,7,python3 .tests/mnist/train --epochs 57 --learning_rate 0.00893524753045290762 --batch_size 637 --hidden_size 1537 --dropout 0.36652651149779558182 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.48158913850784301758,,1,,c156,532004,357_0,FAILED,SOBOL,57,0.008935247530452907621656422066,637,1537,0.366526511497795581817626953125,3,0.481589138507843017578125,leaky_relu,normal
358,1754029482,18,1754029500,1754029506,6,python3 .tests/mnist/train --epochs 90 --learning_rate 0.05177539493460209252 --batch_size 1321 --hidden_size 447 --dropout 0.39570706337690353394 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.79741183202713727951,,1,,c156,532006,358_0,FAILED,SOBOL,90,0.051775394934602092522624161575,1321,447,0.395707063376903533935546875,4,0.797411832027137279510498046875,leaky_relu,normal
359,1754029738,32,1754029770,1754029776,6,python3 .tests/mnist/train --epochs 198 --learning_rate 0.031153446512017402 --batch_size 46 --hidden_size 1721 --dropout 0.05660258699208498001 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.22615200188010931015,,1,,c156,532011,359_0,FAILED,SOBOL,198,0.031153446512017402003635879737,46,1721,0.056602586992084980010986328125,1,0.226152001880109310150146484375,leaky_relu,normal
360,1754030015,25,1754030040,1754030047,7,python3 .tests/mnist/train --epochs 182 --learning_rate 0.09038895199227146848 --batch_size 1494 --hidden_size 1335 --dropout 0.49113673670217394829 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.59212366119027137756,,1,,c156,532012,360_0,FAILED,SOBOL,182,0.090388951992271468482975649295,1494,1335,0.491136736702173948287963867188,1,0.5921236611902713775634765625,leaky_relu,normal
361,1754030176,14,1754030190,1754030197,7,python3 .tests/mnist/train --epochs 94 --learning_rate 0.01731901410141028705 --batch_size 215 --hidden_size 578 --dropout 0.08806873345747590065 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.3840845152735710144,,1,,c156,532014,361_0,FAILED,SOBOL,94,0.017319014101410287048699032653,215,578,0.088068733457475900650024414062,4,0.384084515273571014404296875,leaky_relu,normal
362,1754030456,5,1754030461,1754030467,6,python3 .tests/mnist/train --epochs 37 --learning_rate 0.07422330968813040109 --batch_size 1934 --hidden_size 1662 --dropout 0.17996291769668459892 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.83290287386626005173,,1,,c156,532015,362_0,FAILED,SOBOL,37,0.074223309688130401085004450579,1934,1662,0.179962917696684598922729492188,3,0.832902873866260051727294921875,leaky_relu,normal
363,1754030721,10,1754030731,1754030737,6,python3 .tests/mnist/train --epochs 144 --learning_rate 0.0457896391631197261 --batch_size 660 --hidden_size 378 --dropout 0.27005788916721940041 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.12889344152063131332,,1,,c156,532018,363_0,FAILED,SOBOL,144,0.0457896391631197260951857686,660,378,0.270057889167219400405883789062,2,0.128893441520631313323974609375,leaky_relu,normal
364,1754030984,18,1754031002,1754031008,6,python3 .tests/mnist/train --epochs 126 --learning_rate 0.06131143203825691057 --batch_size 492 --hidden_size 244 --dropout 0.34052870422601699829 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.9410385647788643837,,1,,c156,532022,364_0,FAILED,SOBOL,126,0.061311432038256910570517277392,492,244,0.340528704226016998291015625,1,0.941038564778864383697509765625,leaky_relu,normal
365,1754031252,20,1754031272,1754031278,6,python3 .tests/mnist/train --epochs 19 --learning_rate 0.03429449673767202139 --batch_size 1257 --hidden_size 2019 --dropout 0.23480871785432100296 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.02004725951701402664,,1,,c156,532027,365_0,FAILED,SOBOL,19,0.034294496737672021391407639612,1257,2019,0.234808717854321002960205078125,4,0.020047259517014026641845703125,leaky_relu,normal
366,1754031518,25,1754031543,1754031549,6,python3 .tests/mnist/train --epochs 76 --learning_rate 0.07718642347875051546 --batch_size 957 --hidden_size 938 --dropout 0.01766657829284667969 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.69646565429866313934,,1,,c156,532029,366_0,FAILED,SOBOL,76,0.077186423478750515458912673239,957,938,0.0176665782928466796875,3,0.69646565429866313934326171875,leaky_relu,normal
367,1754031682,10,1754031692,1754031699,7,python3 .tests/mnist/train --epochs 164 --learning_rate 0.00572698805474676238 --batch_size 1725 --hidden_size 1198 --dropout 0.43635959643870592117 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.27950506098568439484,,1,,c156,532034,367_0,FAILED,SOBOL,164,0.005726988054746762375757374031,1725,1198,0.436359596438705921173095703125,2,0.27950506098568439483642578125,leaky_relu,normal
368,1754031968,25,1754031993,1754032000,7,python3 .tests/mnist/train --epochs 156 --learning_rate 0.08070990291009658146 --batch_size 177 --hidden_size 491 --dropout 0.13931728899478912354 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.07723052334040403366,,1,,c156,532035,368_0,FAILED,SOBOL,156,0.080709902910096581463150755553,177,491,0.13931728899478912353515625,4,0.077230523340404033660888671875,leaky_relu,normal
369,1754032164,10,1754032174,1754032180,6,python3 .tests/mnist/train --epochs 72 --learning_rate 0.00222029161290265625 --batch_size 1452 --hidden_size 1772 --dropout 0.28361150342971086502 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.89848848339170217514,,1,,c156,532036,369_0,FAILED,SOBOL,72,0.002220291612902656249589616877,1452,1772,0.283611503429710865020751953125,1,0.898488483391702175140380859375,leaky_relu,normal
370,1754032459,14,1754032473,1754032479,6,python3 .tests/mnist/train --epochs 15 --learning_rate 0.05936861550250091546 --batch_size 762 --hidden_size 691 --dropout 0.43755172938108444214 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.31800966337323188782,,1,,c156,532037,370_0,FAILED,SOBOL,15,0.059368615502500915459549446496,762,691,0.437551729381084442138671875,2,0.3180096633732318878173828125,leaky_relu,normal
371,1754032725,19,1754032744,1754032750,6,python3 .tests/mnist/train --epochs 118 --learning_rate 0.03625714771556668575 --batch_size 2040 --hidden_size 1445 --dropout 0.10626106429845094681 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.6432973518967628479,,1,,c156,532040,371_0,FAILED,SOBOL,118,0.036257147715566685752808240295,2040,1445,0.106261064298450946807861328125,3,0.643297351896762847900390625,leaky_relu,normal
372,1754033005,9,1754033014,1754033020,6,python3 .tests/mnist/train --epochs 147 --learning_rate 0.0707227265813294842 --batch_size 1187 --hidden_size 1088 --dropout 0.03609543992206454277 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.45593148283660411835,,1,,c156,532043,372_0,FAILED,SOBOL,147,0.070722726581329484196736245849,1187,1088,0.036095439922064542770385742188,4,0.45593148283660411834716796875,leaky_relu,normal
373,1754033273,11,1754033284,1754033290,6,python3 .tests/mnist/train --epochs 45 --learning_rate 0.04931921106996946941 --batch_size 418 --hidden_size 825 --dropout 0.38301109010353684425 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.50564351864159107208,,1,,c156,532045,373_0,FAILED,SOBOL,45,0.049319211069969469407592299603,418,825,0.383011090103536844253540039062,1,0.50564351864159107208251953125,leaky_relu,normal
374,1754033544,10,1754033554,1754033561,7,python3 .tests/mnist/train --epochs 102 --learning_rate 0.09235771630520932252 --batch_size 1731 --hidden_size 1909 --dropout 0.35383053822442889214 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.21135860774666070938,,1,,c156,532046,374_0,FAILED,SOBOL,102,0.092357716305209322515956671396,1731,1909,0.353830538224428892135620117188,2,0.211358607746660709381103515625,leaky_relu,normal
375,1754033823,32,1754033855,1754033861,6,python3 .tests/mnist/train --epochs 186 --learning_rate 0.01538229004115797618 --batch_size 966 --hidden_size 131 --dropout 0.1939113386906683445 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.76510140020400285721,,1,,c156,532047,375_0,FAILED,SOBOL,186,0.015382290041157976184793554353,966,131,0.193911338690668344497680664062,3,0.765101400204002857208251953125,leaky_relu,normal
376,1754034000,9,1754034009,1754034015,6,python3 .tests/mnist/train --epochs 194 --learning_rate 0.05606517040934414636 --batch_size 1594 --hidden_size 1021 --dropout 0.25931636244058609009 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.42843419872224330902,,1,,c143,532051,376_0,FAILED,SOBOL,194,0.056065170409344146362773386727,1594,1021,0.259316362440586090087890625,3,0.42843419872224330902099609375,leaky_relu,normal
377,1754034300,5,1754034305,1754034311,6,python3 .tests/mnist/train --epochs 82 --learning_rate 0.0268499395004101124 --batch_size 825 --hidden_size 1274 --dropout 0.16140756476670503616 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.5953967217355966568,,1,,c156,532078,377_0,FAILED,SOBOL,82,0.026849939500410112402928319852,825,1274,0.161407564766705036163330078125,2,0.59539672173559665679931640625,leaky_relu,normal
378,1754034573,36,1754034609,1754034615,6,python3 .tests/mnist/train --epochs 49 --learning_rate 0.08394648405307904293 --batch_size 1133 --hidden_size 184 --dropout 0.06951338052749633789 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.18361907545477151871,,1,,c143,532082,378_0,FAILED,SOBOL,49,0.083946484053079042930711750614,1133,184,0.069513380527496337890625,1,0.183619075454771518707275390625,leaky_relu,normal
379,1754034765,25,1754034790,1754034796,6,python3 .tests/mnist/train --epochs 132 --learning_rate 0.0116580916464701298 --batch_size 369 --hidden_size 1984 --dropout 0.48039520997554063797 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.85460845101624727249,,1,,c143,532085,379_0,FAILED,SOBOL,132,0.011658091646470129798540682486,369,1984,0.480395209975540637969970703125,4,0.854608451016247272491455078125,leaky_relu,normal
380,1754035055,33,1754035088,1754035094,6,python3 .tests/mnist/train --epochs 114 --learning_rate 0.09534629540303722617 --batch_size 520 --hidden_size 1577 --dropout 0.40999305946752429008 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.04247002582997083664,,1,,c143,532088,380_0,FAILED,SOBOL,114,0.095346295403037226168230233725,520,1577,0.409993059467524290084838867188,3,0.042470025829970836639404296875,leaky_relu,normal
381,1754035233,5,1754035238,1754035244,6,python3 .tests/mnist/train --epochs 31 --learning_rate 0.02466839950341731535 --batch_size 1795 --hidden_size 304 --dropout 0.01473624492064118385 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.99648134317249059677,,1,,c143,532091,381_0,FAILED,SOBOL,31,0.024668399503417315354880656741,1795,304,0.014736244920641183853149414062,2,0.996481343172490596771240234375,leaky_relu,normal
382,1754035561,7,1754035568,1754035574,6,python3 .tests/mnist/train --epochs 64 --learning_rate 0.06775258117031306149 --batch_size 100 --hidden_size 1393 --dropout 0.23187838448211550713 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.28300697728991508484,,1,,c142,532147,382_0,FAILED,SOBOL,64,0.067752581170313061487142647366,100,1393,0.231878384482115507125854492188,1,0.2830069772899150848388671875,leaky_relu,normal
383,1754035836,31,1754035867,1754035873,6,python3 .tests/mnist/train --epochs 177 --learning_rate 0.03995407952593640205 --batch_size 1378 --hidden_size 615 --dropout 0.3141621672548353672 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.74104423820972442627,,1,,c142,532213,383_0,FAILED,SOBOL,177,0.039954079525936402050856344204,1378,615,0.314162167254835367202758789062,4,0.74104423820972442626953125,leaky_relu,normal
384,1754036005,26,1754036031,1754036037,6,python3 .tests/mnist/train --epochs 176 --learning_rate 0.07564003783521243418 --batch_size 564 --hidden_size 1462 --dropout 0.20352629385888576508 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.17739812936633825302,,1,,c138,532247,384_0,FAILED,SOBOL,176,0.075640037835212434180753859891,564,1462,0.20352629385888576507568359375,2,0.177398129366338253021240234375,leaky_relu,normal
385,1754036256,34,1754036290,1754036296,6,python3 .tests/mnist/train --epochs 65 --learning_rate 0.00414425727105699471 --batch_size 1839 --hidden_size 705 --dropout 0.37174628209322690964 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.84643177967518568039,,1,,c143,532385,385_0,FAILED,SOBOL,65,0.004144257271056994706981413401,1839,705,0.371746282093226909637451171875,3,0.846431779675185680389404296875,leaky_relu,normal
386,1754036505,24,1754036529,1754036535,6,python3 .tests/mnist/train --epochs 32 --learning_rate 0.05967846105366014786 --batch_size 120 --hidden_size 1789 --dropout 0.40508098714053630829 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.43660755455493927002,,1,,c142,532396,386_0,FAILED,SOBOL,32,0.059678461053660147861421592097,120,1789,0.40508098714053630828857421875,4,0.43660755455493927001953125,leaky_relu,normal
387,1754036754,25,1754036779,1754036785,6,python3 .tests/mnist/train --epochs 113 --learning_rate 0.03279529984240420887 --batch_size 1398 --hidden_size 506 --dropout 0.04888797085732221603 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.60161907598376274109,,1,,c131,532486,387_0,FAILED,SOBOL,113,0.032795299842404208867652215531,1398,506,0.048887970857322216033935546875,1,0.6016190759837627410888671875,leaky_relu,normal
388,1754037006,33,1754037039,1754037045,6,python3 .tests/mnist/train --epochs 131 --learning_rate 0.07274433872385882571 --batch_size 1566 --hidden_size 117 --dropout 0.11934734275564551353 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.28948184289038181305,,1,,c131,532496,388_0,FAILED,SOBOL,131,0.072744338723858825712653697337,1566,117,0.119347342755645513534545898438,2,0.28948184289038181304931640625,leaky_relu,normal
389,1754037333,6,1754037339,1754037345,6,python3 .tests/mnist/train --epochs 49 --learning_rate 0.04415169951071032384 --batch_size 797 --hidden_size 1891 --dropout 0.45991534413769841194 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.74947053752839565277,,1,,c156,532504,389_0,FAILED,SOBOL,49,0.044151699510710323837159307914,797,1891,0.459915344137698411941528320312,3,0.74947053752839565277099609375,leaky_relu,normal
390,1754037612,44,1754037656,1754037662,6,python3 .tests/mnist/train --epochs 82 --learning_rate 0.08879822194767185428 --batch_size 1097 --hidden_size 811 --dropout 0.30134031316265463829 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.03404322732239961624,,1,,c137,532628,390_0,FAILED,SOBOL,82,0.088798221947671854281658454511,1097,811,0.301340313162654638290405273438,4,0.034043227322399616241455078125,leaky_relu,normal
391,1754037782,8,1754037790,1754037796,6,python3 .tests/mnist/train --epochs 194 --learning_rate 0.01578978207669221034 --batch_size 333 --hidden_size 1070 --dropout 0.14874533982947468758 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.99000888410955667496,,1,,c143,532682,391_0,FAILED,SOBOL,194,0.015789782076692210344148747936,333,1070,0.148745339829474687576293945312,1,0.990008884109556674957275390625,leaky_relu,normal
392,1754038081,10,1754038091,1754038097,6,python3 .tests/mnist/train --epochs 187 --learning_rate 0.05029623064709828201 --batch_size 1207 --hidden_size 1968 --dropout 0.33524408750236034393 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.32423845119774341583,,1,,c143,532687,392_0,FAILED,SOBOL,187,0.050296230647098282007245728664,1207,1968,0.33524408750236034393310546875,1,0.32423845119774341583251953125,leaky_relu,normal
393,1754038358,34,1754038392,1754038398,6,python3 .tests/mnist/train --epochs 101 --learning_rate 0.02951530683152377849 --batch_size 438 --hidden_size 168 --dropout 0.24563606362789869308 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.6514814477413892746,,1,,c143,532700,393_0,FAILED,SOBOL,101,0.029515306831523778485770748148,438,168,0.245636063627898693084716796875,4,0.65148144774138927459716796875,leaky_relu,normal
394,1754038534,10,1754038544,1754038550,6,python3 .tests/mnist/train --epochs 44 --learning_rate 0.08510128995105624428 --batch_size 1775 --hidden_size 1258 --dropout 0.02532397769391536713 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.06904980260878801346,,1,,c143,532706,394_0,FAILED,SOBOL,44,0.085101289951056244276195172915,1775,1258,0.02532397769391536712646484375,3,0.069049802608788013458251953125,leaky_relu,normal
395,1754038846,27,1754038873,1754038879,6,python3 .tests/mnist/train --epochs 148 --learning_rate 0.00740581622263416714 --batch_size 1010 --hidden_size 1005 --dropout 0.42692845594137907028 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.89225822780281305313,,1,,c143,532746,395_0,FAILED,SOBOL,148,0.007405816222634167139693417425,1010,1005,0.426928455941379070281982421875,2,0.892258227802813053131103515625,leaky_relu,normal
396,1754039050,33,1754039083,1754039089,6,python3 .tests/mnist/train --epochs 118 --learning_rate 0.09810930921852589748 --batch_size 142 --hidden_size 630 --dropout 0.49715130170807242393 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.20489164348691701889,,1,,c143,532760,396_0,FAILED,SOBOL,118,0.098109309218525897478002661956,142,630,0.497151301708072423934936523438,1,0.204891643486917018890380859375,leaky_relu,normal
397,1754039320,35,1754039355,1754039361,6,python3 .tests/mnist/train --epochs 15 --learning_rate 0.01880181325679644924 --batch_size 1416 --hidden_size 1410 --dropout 0.07992183836176991463 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.75668246578425168991,,1,,c143,532780,397_0,FAILED,SOBOL,15,0.018801813256796449241869950697,1416,1410,0.079921838361769914627075195312,4,0.756682465784251689910888671875,leaky_relu,normal
398,1754039587,6,1754039593,1754039599,6,python3 .tests/mnist/train --epochs 71 --learning_rate 0.06340265926210210401 --batch_size 734 --hidden_size 319 --dropout 0.17548187961801886559 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.46435085684061050415,,1,,c143,532783,398_0,FAILED,SOBOL,71,0.06340265926210210400970623823,734,319,0.175481879618018865585327148438,3,0.464350856840610504150390625,leaky_relu,normal
399,1754039897,26,1754039923,1754039929,6,python3 .tests/mnist/train --epochs 157 --learning_rate 0.04120653190828860168 --batch_size 2012 --hidden_size 1593 --dropout 0.28071488859131932259 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.51210813596844673157,,1,,c152,532787,399_0,FAILED,SOBOL,157,0.041206531908288601684375862533,2012,1593,0.280714888591319322586059570312,2,0.5121081359684467315673828125,leaky_relu,normal
400,1754040168,26,1754040194,1754040200,6,python3 .tests/mnist/train --epochs 164 --learning_rate 0.06612664767285808542 --batch_size 464 --hidden_size 893 --dropout 0.04595763375982642174 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.84108359832316637039,,1,,c152,532789,400_0,FAILED,SOBOL,164,0.066126647672858085424962837351,464,893,0.045957633759826421737670898438,4,0.841083598323166370391845703125,leaky_relu,normal
401,1754040368,36,1754040404,1754040410,6,python3 .tests/mnist/train --epochs 76 --learning_rate 0.03846270905539394408 --batch_size 1229 --hidden_size 1147 --dropout 0.37871444644406437874 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.13512368593364953995,,1,,c152,532791,401_0,FAILED,SOBOL,76,0.038462709055393944079792589719,1229,1147,0.378714446444064378738403320312,1,0.135123685933649539947509765625,leaky_relu,normal
402,1754040625,20,1754040645,1754040651,6,python3 .tests/mnist/train --epochs 20 --learning_rate 0.09380465791217983129 --batch_size 921 --hidden_size 56 --dropout 0.34537974139675498009 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.58589486964046955109,,1,,c152,532832,402_0,FAILED,SOBOL,20,0.093804657912179831291688003603,921,56,0.345379741396754980087280273438,2,0.58589486964046955108642578125,leaky_relu,normal
403,1754040929,26,1754040955,1754040961,6,python3 .tests/mnist/train --epochs 125 --learning_rate 0.02308968157364055598 --batch_size 1689 --hidden_size 1856 --dropout 0.20059595676138997078 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.37590043060481548309,,1,,c151,532844,403_0,FAILED,SOBOL,125,0.023089681573640555983795152883,1689,1856,0.200595956761389970779418945312,3,0.37590043060481548309326171875,leaky_relu,normal
404,1754041130,24,1754041154,1754041160,6,python3 .tests/mnist/train --epochs 143 --learning_rate 0.08235135376311839006 --batch_size 1538 --hidden_size 1705 --dropout 0.13018999062478542328 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.68804626911878585815,,1,,c151,532847,404_0,FAILED,SOBOL,143,0.082351353763118390061137574776,1538,1705,0.13018999062478542327880859375,4,0.688046269118785858154296875,leaky_relu,normal
405,1754041410,16,1754041426,1754041432,6,python3 .tests/mnist/train --epochs 38 --learning_rate 0.01012371215788647645 --batch_size 259 --hidden_size 431 --dropout 0.29059879016131162643 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.27304044738411903381,,1,,c152,532892,405_0,FAILED,SOBOL,38,0.010123712157886476450951995787,259,431,0.290598790161311626434326171875,1,0.2730404473841190338134765625,leaky_relu,normal
406,1754041698,27,1754041725,1754041731,6,python3 .tests/mnist/train --epochs 94 --learning_rate 0.05457798562889919214 --batch_size 1955 --hidden_size 1521 --dropout 0.44917382113635540009 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.94750554021447896957,,1,,c152,532929,406_0,FAILED,SOBOL,94,0.054577985628899192138696605525,1955,1521,0.44917382113635540008544921875,2,0.947505540214478969573974609375,leaky_relu,normal
407,1754041911,26,1754041937,1754041943,6,python3 .tests/mnist/train --epochs 182 --learning_rate 0.02520456304967403499 --batch_size 679 --hidden_size 742 --dropout 0.10079199355095624924 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.02846619021147489548,,1,,c152,532940,407_0,FAILED,SOBOL,182,0.025204563049674034991287641105,679,742,0.100791993550956249237060546875,3,0.028466190211474895477294921875,leaky_relu,normal
408,1754042168,32,1754042200,1754042212,12,python3 .tests/mnist/train --epochs 199 --learning_rate 0.0907627800834644588 --batch_size 1881 --hidden_size 364 --dropout 0.41423247894272208214 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.66104108095169067383,,1,,c125,532978,408_0,FAILED,SOBOL,199,0.090762780083464458802389174252,1881,364,0.414232478942722082138061523438,3,0.661041080951690673828125,leaky_relu,normal
409,1754042432,27,1754042459,1754042465,6,python3 .tests/mnist/train --epochs 89 --learning_rate 0.01384810983567498661 --batch_size 602 --hidden_size 1644 --dropout 0.00481682689860463142 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.36327811703085899353,,1,,c125,532992,409_0,FAILED,SOBOL,89,0.013848109835674986614617587577,602,1644,0.004816826898604631423950195312,2,0.3632781170308589935302734375,leaky_relu,normal
410,1754042724,33,1754042757,1754042763,6,python3 .tests/mnist/train --epochs 56 --learning_rate 0.06923573512411676512 --batch_size 1293 --hidden_size 563 --dropout 0.22512891283258795738 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.9202504744753241539,,1,,c125,533003,410_0,FAILED,SOBOL,56,0.069235735124116765115687144316,1293,563,0.225128912832587957382202148438,1,0.920250474475324153900146484375,leaky_relu,normal
411,1754042992,35,1754043027,1754043033,6,python3 .tests/mnist/train --epochs 136 --learning_rate 0.04767403464731761326 --batch_size 18 --hidden_size 1317 --dropout 0.32254811050370335579 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.11846533697098493576,,1,,c125,533016,411_0,FAILED,SOBOL,136,0.04767403464731761325579029176,18,1317,0.322548110503703355789184570312,4,0.118465336970984935760498046875,leaky_relu,normal
412,1754043256,33,1754043289,1754043295,6,python3 .tests/mnist/train --epochs 106 --learning_rate 0.05774288128814660664 --batch_size 871 --hidden_size 1215 --dropout 0.25239392928779125214 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.80583863425999879837,,1,,c152,533030,412_0,FAILED,SOBOL,106,0.057742881288146606644229308358,871,1215,0.25239392928779125213623046875,3,0.805838634259998798370361328125,leaky_relu,normal
413,1754043522,18,1754043540,1754043546,6,python3 .tests/mnist/train --epochs 26 --learning_rate 0.03476597131324001 --batch_size 1635 --hidden_size 953 --dropout 0.17059971671551465988 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.23262444976717233658,,1,,c125,533045,413_0,FAILED,SOBOL,26,0.034765971313240009998857260598,1635,953,0.170599716715514659881591796875,2,0.232624449767172336578369140625,leaky_relu,normal
414,1754043835,32,1754043867,1754043873,6,python3 .tests/mnist/train --epochs 59 --learning_rate 0.07916846544732339397 --batch_size 323 --hidden_size 2036 --dropout 0.07503967545926570892 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.55040008760988712311,,1,,c125,533056,414_0,FAILED,SOBOL,59,0.07916846544732339396865938852,323,2036,0.07503967545926570892333984375,1,0.55040008760988712310791015625,leaky_relu,normal
415,1754044013,28,1754044041,1754044047,6,python3 .tests/mnist/train --epochs 169 --learning_rate 0.0006417670063581318 --batch_size 1091 --hidden_size 259 --dropout 0.46883034240454435349 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.47316285036504268646,,1,,c152,533063,415_0,FAILED,SOBOL,169,0.000641767006358131804691358191,1091,259,0.468830342404544353485107421875,4,0.47316285036504268646240234375,leaky_relu,normal
416,1754044283,37,1754044320,1754044327,7,python3 .tests/mnist/train --epochs 167 --learning_rate 0.06214050710075535999 --batch_size 1745 --hidden_size 710 --dropout 0.14161891909316182137 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.56350202020257711411,,1,,c125,533073,416_0,FAILED,SOBOL,167,0.062140507100755359992660942225,1745,710,0.141618919093161821365356445312,4,0.563502020202577114105224609375,leaky_relu,normal
417,1754044567,34,1754044601,1754044607,6,python3 .tests/mnist/train --epochs 62 --learning_rate 0.03287644959720783383 --batch_size 977 --hidden_size 1489 --dropout 0.31032824655994772911 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.39660056959837675095,,1,,c154,533087,417_0,FAILED,SOBOL,62,0.03287644959720783383039233172,977,1489,0.310328246559947729110717773438,1,0.396600569598376750946044921875,leaky_relu,normal
418,1754044839,13,1754044852,1754044858,6,python3 .tests/mnist/train --epochs 23 --learning_rate 0.07752307037199847317 --batch_size 1173 --hidden_size 400 --dropout 0.46838453831151127815 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.82394211739301681519,,1,,c125,533097,418_0,FAILED,SOBOL,23,0.07752307037199847317143763803,1173,400,0.468384538311511278152465820312,2,0.823942117393016815185546875,leaky_relu,normal
419,1754045155,37,1754045192,1754045198,6,python3 .tests/mnist/train --epochs 110 --learning_rate 0.00518585211575962619 --batch_size 409 --hidden_size 1673 --dropout 0.11267874529585242271 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.15301373973488807678,,1,,c117,533114,419_0,FAILED,SOBOL,110,0.005185852115759626186630715239,409,1673,0.112678745295852422714233398438,3,0.1530137397348880767822265625,leaky_relu,normal
420,1754045480,33,1754045513,1754045519,6,python3 .tests/mnist/train --epochs 140 --learning_rate 0.08927072050313465679 --batch_size 767 --hidden_size 1824 --dropout 0.05796644371002912521 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.96562425978481769562,,1,,c117,533135,420_0,FAILED,SOBOL,140,0.089270720503134656786947687124,767,1824,0.057966443710029125213623046875,4,0.96562425978481769561767578125,leaky_relu,normal
421,1754045666,29,1754045695,1754045701,6,python3 .tests/mnist/train --epochs 53 --learning_rate 0.01864165119812823818 --batch_size 2042 --hidden_size 24 --dropout 0.3980472516268491745 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.01155189983546733856,,1,,c154,533143,421_0,FAILED,SOBOL,53,0.018641651198128238176021653771,2042,24,0.39804725162684917449951171875,1,0.01155189983546733856201171875,leaky_relu,normal
422,1754045963,60,1754046023,1754046030,7,python3 .tests/mnist/train --epochs 91 --learning_rate 0.07417575664290226856 --batch_size 171 --hidden_size 1115 --dropout 0.36523128580302000046 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.70946235675364732742,,1,,c69,533164,422_0,FAILED,SOBOL,91,0.07417575664290226855612786494,171,1115,0.365231285803020000457763671875,2,0.709462356753647327423095703125,leaky_relu,normal
423,1754046261,22,1754046283,1754046289,6,python3 .tests/mnist/train --epochs 197 --learning_rate 0.04642608084815554731 --batch_size 1450 --hidden_size 861 --dropout 0.21214694343507289886 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.25136406812816858292,,1,,c120,533178,423_0,FAILED,SOBOL,197,0.046426080848155547309286106383,1450,861,0.21214694343507289886474609375,3,0.251364068128168582916259765625,leaky_relu,normal
424,1754046587,10,1754046597,1754046603,6,python3 .tests/mnist/train --epochs 178 --learning_rate 0.08674268595466390341 --batch_size 90 --hidden_size 227 --dropout 0.2716351640410721302 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.93031449057161808014,,1,,c120,533196,424_0,FAILED,SOBOL,178,0.08674268595466390341375273465,90,227,0.271635164041072130203247070312,3,0.93031449057161808013916015625,leaky_relu,normal
425,1754046884,14,1754046898,1754046904,6,python3 .tests/mnist/train --epochs 98 --learning_rate 0.00830189454723149513 --batch_size 1364 --hidden_size 2005 --dropout 0.18251698603853583336 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.10911758802831172943,,1,,c125,533210,425_0,FAILED,SOBOL,98,0.008301894547231495127825873226,1364,2005,0.182516986038535833358764648438,2,0.10911758802831172943115234375,leaky_relu,normal
426,1754047190,9,1754047199,1754047205,6,python3 .tests/mnist/train --epochs 35 --learning_rate 0.0529026481745764679 --batch_size 530 --hidden_size 920 --dropout 0.08643808634951710701 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.6739103095605969429,,1,,c154,533230,426_0,FAILED,SOBOL,35,0.052902648174576467898777565324,530,920,0.086438086349517107009887695312,1,0.673910309560596942901611328125,leaky_relu,normal
427,1754047495,38,1754047533,1754047539,6,python3 .tests/mnist/train --epochs 145 --learning_rate 0.02984000102238729829 --batch_size 1809 --hidden_size 1183 --dropout 0.48852928122505545616 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.34868363384157419205,,1,,c125,533250,427_0,FAILED,SOBOL,145,0.029840001022387298290627910546,1809,1183,0.488529281225055456161499023438,4,0.348683633841574192047119140625,leaky_relu,normal
428,1754047688,48,1754047736,1754047749,13,python3 .tests/mnist/train --epochs 127 --learning_rate 0.06469008638735861128 --batch_size 1131 --hidden_size 1286 --dropout 0.43405350577086210251 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.53655403759330511093,,1,,c124,533262,428_0,FAILED,SOBOL,127,0.064690086387358611275111286432,1131,1286,0.434053505770862102508544921875,3,0.536554037593305110931396484375,leaky_relu,normal
429,1754047998,12,1754048010,1754048016,6,python3 .tests/mnist/train --epochs 18 --learning_rate 0.04323775098623708346 --batch_size 363 --hidden_size 531 --dropout 0.01633729599416255951 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.48678091447800397873,,1,,c124,533281,429_0,FAILED,SOBOL,18,0.043237750986237083461460883882,363,531,0.01633729599416255950927734375,2,0.486780914478003978729248046875,leaky_relu,normal
430,1754048330,10,1754048340,1754048346,6,python3 .tests/mnist/train --epochs 80 --learning_rate 0.09882382648373022604 --batch_size 1595 --hidden_size 1612 --dropout 0.23716824036091566086 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.79675191640853881836,,1,,c124,533300,430_0,FAILED,SOBOL,80,0.098823826483730226044599476154,1595,1612,0.237168240360915660858154296875,1,0.796751916408538818359375,leaky_relu,normal
431,1754048661,10,1754048671,1754048677,6,python3 .tests/mnist/train --epochs 160 --learning_rate 0.02179957958493381961 --batch_size 831 --hidden_size 332 --dropout 0.34191143326461315155 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.242948140949010849,,1,,c124,533310,431_0,FAILED,SOBOL,160,0.021799579584933819614844807688,831,332,0.34191143326461315155029296875,4,0.2429481409490108489990234375,leaky_relu,normal
432,1754048969,10,1754048979,1754048985,6,python3 .tests/mnist/train --epochs 155 --learning_rate 0.09686116507606581938 --batch_size 1326 --hidden_size 1038 --dropout 0.10779658239334821701 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.41591051686555147171,,1,,c155,533318,432_0,FAILED,SOBOL,155,0.096861165076065819379280696921,1326,1038,0.107796582393348217010498046875,2,0.415910516865551471710205078125,leaky_relu,normal
433,1754049281,19,1754049300,1754049306,6,python3 .tests/mnist/train --epochs 73 --learning_rate 0.02374240655045956397 --batch_size 48 --hidden_size 779 --dropout 0.4400635790079832077 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.62401073519140481949,,1,,c155,533326,433_0,FAILED,SOBOL,73,0.023742406550459563968624721042,48,779,0.44006357900798320770263671875,3,0.624010735191404819488525390625,leaky_relu,normal
434,1754049584,9,1754049593,1754049599,6,python3 .tests/mnist/train --epochs 11 --learning_rate 0.06819677239943296165 --batch_size 1910 --hidden_size 1859 --dropout 0.28200728725641965866 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.15950640477240085602,,1,,c125,533339,434_0,FAILED,SOBOL,11,0.068196772399432961653253926215,1910,1859,0.282007287256419658660888671875,4,0.15950640477240085601806640625,leaky_relu,normal
435,1754049895,6,1754049901,1754049907,6,python3 .tests/mnist/train --epochs 122 --learning_rate 0.03971428198466078058 --batch_size 636 --hidden_size 85 --dropout 0.13673675619065761566 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.8635768350213766098,,1,,c125,533346,435_0,FAILED,SOBOL,122,0.039714281984660780577822691839,636,85,0.13673675619065761566162109375,1,0.86357683502137660980224609375,leaky_relu,normal
436,1754050205,30,1754050235,1754050241,6,python3 .tests/mnist/train --epochs 152 --learning_rate 0.05483936180505902258 --batch_size 293 --hidden_size 474 --dropout 0.19163979263976216316 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.05095775425434112549,,1,,c151,533360,436_0,FAILED,SOBOL,152,0.05483936180505902258097705726,293,474,0.191639792639762163162231445312,2,0.05095775425434112548828125,leaky_relu,normal
437,1754050490,13,1754050503,1754050510,7,python3 .tests/mnist/train --epochs 41 --learning_rate 0.02787124713921919697 --batch_size 1058 --hidden_size 1757 --dropout 0.35253530880436301231 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.97188801690936088562,,1,,c155,533369,437_0,FAILED,SOBOL,41,0.027871247139219196969905922856,1058,1757,0.352535308804363012313842773438,3,0.9718880169093608856201171875,leaky_relu,normal
438,1754050801,7,1754050808,1754050814,6,python3 .tests/mnist/train --epochs 103 --learning_rate 0.08321310361804440392 --batch_size 837 --hidden_size 673 --dropout 0.38535127462819218636 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.31115560140460729599,,1,,c155,533372,438_0,FAILED,SOBOL,103,0.083213103618044403919640217282,837,673,0.385351274628192186355590820312,4,0.311155601404607295989990234375,leaky_relu,normal
439,1754051108,25,1754051133,1754051139,6,python3 .tests/mnist/train --epochs 185 --learning_rate 0.01180248808380216473 --batch_size 1606 --hidden_size 1430 --dropout 0.03745929291471838951 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.72805516701191663742,,1,,c155,533383,439_0,FAILED,SOBOL,185,0.011802488083802164728353112366,1606,1430,0.037459292914718389511108398438,1,0.728055167011916637420654296875,leaky_relu,normal
440,1754051426,6,1754051432,1754051439,7,python3 .tests/mnist/train --epochs 190 --learning_rate 0.07145290209711530061 --batch_size 955 --hidden_size 1561 --dropout 0.47778775822371244431 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.07839397341012954712,,1,,c155,533390,440_0,FAILED,SOBOL,190,0.071452902097115300605878474016,955,1561,0.477787758223712444305419921875,1,0.078393973410129547119140625,leaky_relu,normal
441,1754051745,10,1754051755,1754051761,6,python3 .tests/mnist/train --epochs 86 --learning_rate 0.04917182128871791513 --batch_size 1719 --hidden_size 287 --dropout 0.06788273714482784271 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.8821958787739276886,,1,,c125,533396,441_0,FAILED,SOBOL,86,0.049171821288717915132693292435,1719,287,0.06788273714482784271240234375,4,0.8821958787739276885986328125,leaky_relu,normal
442,1754052070,10,1754052080,1754052086,6,python3 .tests/mnist/train --epochs 47 --learning_rate 0.09357421708497219714 --batch_size 494 --hidden_size 1378 --dropout 0.16396163683384656906 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.33883412834256887436,,1,,c155,533411,442_0,FAILED,SOBOL,47,0.093574217084972197144843164551,494,1378,0.163961636833846569061279296875,3,0.338834128342568874359130859375,leaky_relu,normal
443,1754052388,5,1754052393,1754052399,6,python3 .tests/mnist/train --epochs 133 --learning_rate 0.01435188615315593878 --batch_size 1263 --hidden_size 598 --dropout 0.26089364103972911835 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.63860912155359983444,,1,,c154,533417,443_0,FAILED,SOBOL,133,0.014351886153155938782854939006,1263,598,0.26089364103972911834716796875,2,0.638609121553599834442138671875,leaky_relu,normal
444,1754052705,19,1754052724,1754052731,7,python3 .tests/mnist/train --epochs 115 --learning_rate 0.08027490328806452524 --batch_size 1924 --hidden_size 974 --dropout 0.315544892568141222 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.45073207933455705643,,1,,c125,533433,444_0,FAILED,SOBOL,115,0.080274903288064525241907176678,1924,974,0.315544892568141222000122070312,1,0.450732079334557056427001953125,leaky_relu,normal
445,1754053021,34,1754053055,1754053061,6,python3 .tests/mnist/train --epochs 29 --learning_rate 0.0024691109050158414 --batch_size 646 --hidden_size 1226 --dropout 0.23423790326341986656 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.52595681045204401016,,1,,c143,533440,445_0,FAILED,SOBOL,29,0.00246911090501584140274871082,646,1226,0.234237903263419866561889648438,4,0.525956810452044010162353515625,leaky_relu,normal
446,1754053221,9,1754053230,1754053236,6,python3 .tests/mnist/train --epochs 68 --learning_rate 0.05785683453128673964 --batch_size 1504 --hidden_size 136 --dropout 0.01340695889666676521 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.1945700962096452713,,1,,c124,533467,446_0,FAILED,SOBOL,68,0.057856834531286739642386152127,1504,136,0.013406958896666765213012695312,3,0.19457009620964527130126953125,leaky_relu,normal
447,1754053564,16,1754053580,1754053586,6,python3 .tests/mnist/train --epochs 172 --learning_rate 0.03718605951408856386 --batch_size 229 --hidden_size 1936 --dropout 0.40768696507439017296 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.76576894335448741913,,1,,c124,533474,447_0,FAILED,SOBOL,172,0.037186059514088563859868230566,229,1936,0.407686965074390172958374023438,2,0.76576894335448741912841796875,leaky_relu,normal
448,1754053888,7,1754053895,1754053901,6,python3 .tests/mnist/train --epochs 173 --learning_rate 0.07469322110195644737 --batch_size 1428 --hidden_size 264 --dropout 0.30809616949409246445 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.94197313115000724792,,1,,c125,533480,448_0,FAILED,SOBOL,173,0.074693221101956447371961189674,1428,264,0.308096169494092464447021484375,1,0.9419731311500072479248046875,leaky_relu,normal
449,1754054219,5,1754054224,1754054231,7,python3 .tests/mnist/train --epochs 67 --learning_rate 0.04531970316483639738 --batch_size 154 --hidden_size 1553 --dropout 0.14819221384823322296 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.01908974349498748779,,1,,c155,533494,449_0,FAILED,SOBOL,67,0.045319703164836397379922061646,154,1553,0.14819221384823322296142578125,4,0.01908974349498748779296875,leaky_relu,normal
450,1754054541,7,1754054548,1754054554,6,python3 .tests/mnist/train --epochs 28 --learning_rate 0.08996783923617564238 --batch_size 2000 --hidden_size 591 --dropout 0.11508633848279714584 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.70131416898220777512,,1,,c125,533499,450_0,FAILED,SOBOL,28,0.089967839236175642381176942308,2000,591,0.115086338482797145843505859375,3,0.701314168982207775115966796875,leaky_relu,normal
451,1754054854,40,1754054894,1754054901,7,python3 .tests/mnist/train --epochs 117 --learning_rate 0.01774010227304883419 --batch_size 722 --hidden_size 1353 --dropout 0.46201726235449314117 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.27464897837489843369,,1,,c122,533510,451_0,FAILED,SOBOL,117,0.017740102273048834191637723734,722,1353,0.46201726235449314117431640625,2,0.274648978374898433685302734375,leaky_relu,normal
452,1754055050,11,1754055061,1754055068,7,python3 .tests/mnist/train --epochs 135 --learning_rate 0.07681411012536847049 --batch_size 426 --hidden_size 1251 --dropout 0.39173336373642086983 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.58727523032575845718,,1,,c124,533526,452_0,FAILED,SOBOL,135,0.076814110125368470494144901295,426,1251,0.391733363736420869827270507812,1,0.587275230325758457183837890625,leaky_relu,normal
453,1754055393,25,1754055418,1754055424,6,python3 .tests/mnist/train --epochs 46 --learning_rate 0.0060992291447240863 --batch_size 1195 --hidden_size 980 --dropout 0.06042745476588606834 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.38894063699990510941,,1,,c155,533534,453_0,FAILED,SOBOL,46,0.006099229144724086296158738207,1195,980,0.060427454765886068344116210938,4,0.388940636999905109405517578125,leaky_relu,normal
454,1754055724,25,1754055749,1754055755,6,python3 .tests/mnist/train --epochs 85 --learning_rate 0.06163484988604673448 --batch_size 1022 --hidden_size 1945 --dropout 0.21828537480905652046 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.83196822367608547211,,1,,c124,533543,454_0,FAILED,SOBOL,85,0.061634849886046734479538855567,1022,1945,0.218285374809056520462036132812,3,0.83196822367608547210693359375,leaky_relu,normal
455,1754056050,12,1754056062,1754056068,6,python3 .tests/mnist/train --epochs 191 --learning_rate 0.0339710066264774721 --batch_size 1787 --hidden_size 159 --dropout 0.3625643155537545681 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.12985091842710971832,,1,,c151,533548,455_0,FAILED,SOBOL,191,0.033971006626477472101210963729,1787,159,0.362564315553754568099975585938,2,0.12985091842710971832275390625,leaky_relu,normal
456,1754056373,12,1754056385,1754056391,6,python3 .tests/mnist/train --epochs 183 --learning_rate 0.09928358153676614117 --batch_size 785 --hidden_size 802 --dropout 0.1839543050155043602 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.55977788660675287247,,1,,c124,533590,456_0,FAILED,SOBOL,183,0.099283581536766141173444566448,785,802,0.183954305015504360198974609375,2,0.559777886606752872467041015625,leaky_relu,normal
457,1754056687,29,1754056716,1754056722,6,python3 .tests/mnist/train --epochs 105 --learning_rate 0.02075697845369577424 --batch_size 1554 --hidden_size 1047 --dropout 0.26622284390032291412 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.47869378048926591873,,1,,c155,533605,457_0,FAILED,SOBOL,105,0.020756978453695774239351479196,1554,1047,0.26622284390032291412353515625,3,0.478693780489265918731689453125,leaky_relu,normal
458,1754056913,22,1754056935,1754056941,6,python3 .tests/mnist/train --epochs 42 --learning_rate 0.065359247377589344 --batch_size 345 --hidden_size 92 --dropout 0.4872826775535941124 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.80422875098884105682,,1,,c125,533611,458_0,FAILED,SOBOL,42,0.065359247377589343996895365763,345,92,0.487282677553594112396240234375,4,0.80422875098884105682373046875,leaky_relu,normal
459,1754057263,31,1754057294,1754057300,6,python3 .tests/mnist/train --epochs 150 --learning_rate 0.04238243276057765407 --batch_size 1109 --hidden_size 1884 --dropout 0.09201058931648731232 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.219358028843998909,,1,,c125,533622,459_0,FAILED,SOBOL,150,0.042382432760577654073941289425,1109,1884,0.09201058931648731231689453125,1,0.21935802884399890899658203125,leaky_relu,normal
460,1754057611,5,1754057616,1754057622,6,python3 .tests/mnist/train --epochs 120 --learning_rate 0.05224530634842813881 --batch_size 1850 --hidden_size 1732 --dropout 0.02149019436910748482 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.90721269324421882629,,1,,c153,533627,460_0,FAILED,SOBOL,120,0.05224530634842813880958090067,1850,1732,0.021490194369107484817504882812,2,0.9072126932442188262939453125,leaky_relu,normal
461,1754057932,34,1754057966,1754057978,12,python3 .tests/mnist/train --epochs 12 --learning_rate 0.03068351051373407329 --batch_size 576 --hidden_size 467 --dropout 0.43238726770505309105 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.11708266288042068481,,1,,c122,533663,461_0,FAILED,SOBOL,12,0.030683510513734073288372172783,576,467,0.432387267705053091049194335938,3,0.117082662880420684814453125,leaky_relu,normal
462,1754058129,26,1754058155,1754058162,7,python3 .tests/mnist/train --epochs 75 --learning_rate 0.08627110130777583541 --batch_size 1386 --hidden_size 1421 --dropout 0.33656775997951626778 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.66631142329424619675,,1,,c125,533674,462_0,FAILED,SOBOL,75,0.086271101307775835409508147222,1386,1421,0.336567759979516267776489257812,4,0.666311423294246196746826171875,leaky_relu,normal
463,1754058469,9,1754058478,1754058484,6,python3 .tests/mnist/train --epochs 153 --learning_rate 0.0093563357020914565 --batch_size 108 --hidden_size 651 --dropout 0.2386742359958589077 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.37239580508321523666,,1,,c151,533681,463_0,FAILED,SOBOL,153,0.009356335702091456499318589124,108,651,0.238674235995858907699584960938,1,0.372395805083215236663818359375,leaky_relu,normal
464,1754058787,33,1754058820,1754058832,12,python3 .tests/mnist/train --epochs 162 --learning_rate 0.08430654317198321701 --batch_size 1655 --hidden_size 1995 --dropout 0.44151009665802121162 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.04341991059482097626,,1,,c122,533689,464_0,FAILED,SOBOL,162,0.084306543171983217010989619666,1655,1995,0.441510096658021211624145507812,3,0.04341991059482097625732421875,leaky_relu,normal
465,1754058990,8,1754058998,1754059004,6,python3 .tests/mnist/train --epochs 79 --learning_rate 0.01129800794310867849 --batch_size 891 --hidden_size 204 --dropout 0.10239037638530135155 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.99553914554417133331,,1,,c150,533697,465_0,FAILED,SOBOL,79,0.011298007943108678494126273506,891,204,0.102390376385301351547241210938,2,0.99553914554417133331298828125,leaky_relu,normal
466,1754059336,23,1754059359,1754059365,6,python3 .tests/mnist/train --epochs 16 --learning_rate 0.05575390994817019247 --batch_size 1071 --hidden_size 1158 --dropout 0.13549625175073742867 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.28787069115787744522,,1,,c143,533706,466_0,FAILED,SOBOL,16,0.055753909948170192467653549784,1071,1158,0.135496251750737428665161132812,1,0.287870691157877445220947265625,leaky_relu,normal
467,1754059671,8,1754059679,1754059685,6,python3 .tests/mnist/train --epochs 129 --learning_rate 0.02716117537712678387 --batch_size 303 --hidden_size 914 --dropout 0.2875890037976205349 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.73620335478335618973,,1,,c125,533711,467_0,FAILED,SOBOL,129,0.027161175377126783869741188937,303,914,0.287589003797620534896850585938,4,0.736203354783356189727783203125,leaky_relu,normal
468,1754060003,14,1754060017,1754060024,7,python3 .tests/mnist/train --epochs 147 --learning_rate 0.06729482714310289215 --batch_size 582 --hidden_size 538 --dropout 0.35768216755241155624 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.42357044946402311325,,1,,c150,533713,468_0,FAILED,SOBOL,147,0.067294827143102892152981553409,582,538,0.357682167552411556243896484375,3,0.423570449464023113250732421875,leaky_relu,normal
469,1754060338,34,1754060372,1754060378,6,python3 .tests/mnist/train --epochs 34 --learning_rate 0.04041176128974185294 --batch_size 1861 --hidden_size 1310 --dropout 0.18996440060436725616 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.60023752506822347641,,1,,c150,533725,469_0,FAILED,SOBOL,34,0.040411761289741852942736244358,1861,1310,0.18996440060436725616455078125,2,0.600237525068223476409912109375,leaky_relu,normal
470,1754060541,250,1754060791,1754060797,6,python3 .tests/mnist/train --epochs 97 --learning_rate 0.09575515392465516751 --batch_size 38 --hidden_size 355 --dropout 0.03210648056119680405 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.18266922608017921448,,1,,c150,533727,470_0,FAILED,SOBOL,97,0.095755153924655167507751230005,38,355,0.032106480561196804046630859375,1,0.1826692260801792144775390625,leaky_relu,normal
471,1754060867,59,1754060926,1754060932,6,python3 .tests/mnist/train --epochs 179 --learning_rate 0.02425946871839463823 --batch_size 1313 --hidden_size 1621 --dropout 0.38685121573507785797 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.85555072873830795288,,1,,c150,533731,471_0,FAILED,SOBOL,179,0.024259468718394638225843706891,1313,1621,0.38685121573507785797119140625,4,0.855550728738307952880859375,leaky_relu,normal
472,1754061162,6,1754061168,1754061174,6,python3 .tests/mnist/train --epochs 195 --learning_rate 0.05891086147529073919 --batch_size 239 --hidden_size 1498 --dropout 0.06564406352117657661 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.45881921332329511642,,1,,c150,533732,472_0,FAILED,SOBOL,195,0.058910861475290739186494448631,239,1498,0.065644063521176576614379882812,4,0.458819213323295116424560546875,leaky_relu,normal
473,1754061522,44,1754061566,1754061578,12,python3 .tests/mnist/train --epochs 93 --learning_rate 0.03671482947937213664 --batch_size 1518 --hidden_size 733 --dropout 0.48435232555493712425 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.50273296143859624863,,1,,c122,533740,473_0,FAILED,SOBOL,93,0.03671482947937213664468814045,1518,733,0.484352325554937124252319335938,1,0.502732961438596248626708984375,leaky_relu,normal
474,1754061731,15,1754061746,1754061752,6,python3 .tests/mnist/train --epochs 54 --learning_rate 0.0811187614317145228 --batch_size 699 --hidden_size 1698 --dropout 0.26329249190166592598 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.2181602083146572113,,1,,c122,533743,474_0,FAILED,SOBOL,54,0.081118761431714522802671751833,699,1698,0.263292491901665925979614257812,2,0.2181602083146572113037109375,leaky_relu,normal
475,1754062079,14,1754062093,1754062099,6,python3 .tests/mnist/train --epochs 138 --learning_rate 0.00181136082787998042 --batch_size 1974 --hidden_size 406 --dropout 0.1575877792201936245 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.75829210877418518066,,1,,c122,533770,475_0,FAILED,SOBOL,138,0.001811360827879980421595274009,1974,406,0.157587779220193624496459960938,3,0.7582921087741851806640625,leaky_relu,normal
476,1754062404,21,1754062425,1754062431,6,python3 .tests/mnist/train --epochs 109 --learning_rate 0.0927177754241134966 --batch_size 1249 --hidden_size 17 --dropout 0.227932698093354702 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.07042889855802059174,,1,,c122,533772,476_0,FAILED,SOBOL,109,0.092717775424113496596234540448,1249,17,0.227932698093354701995849609375,4,0.07042889855802059173583984375,leaky_relu,normal
477,1754062748,19,1754062767,1754062774,7,python3 .tests/mnist/train --epochs 24 --learning_rate 0.01502220633779652488 --batch_size 484 --hidden_size 1800 --dropout 0.31801242567598819733 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.90529767610132694244,,1,,c104,533787,477_0,FAILED,SOBOL,24,0.015022206337796524880379145372,484,1800,0.31801242567598819732666015625,1,0.90529767610132694244384765625,leaky_relu,normal
478,1754063081,5,1754063086,1754063092,6,python3 .tests/mnist/train --epochs 63 --learning_rate 0.0704114661201555303 --batch_size 1669 --hidden_size 838 --dropout 0.4138319334015250206 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.31512195710092782974,,1,,c104,533789,478_0,FAILED,SOBOL,63,0.070411466120155530301616408906,1669,838,0.413831933401525020599365234375,2,0.315121957100927829742431640625,leaky_relu,normal
479,1754063413,5,1754063418,1754063424,6,python3 .tests/mnist/train --epochs 165 --learning_rate 0.04963044694668614087 --batch_size 901 --hidden_size 1106 --dropout 0.01074865646660327911 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.6462080078199505806,,1,,c104,533794,479_0,FAILED,SOBOL,165,0.049630446946686140874405168688,901,1106,0.01074865646660327911376953125,3,0.646208007819950580596923828125,leaky_relu,normal
480,1754063752,22,1754063774,1754063781,7,python3 .tests/mnist/train --epochs 170 --learning_rate 0.08809548752860166254 --batch_size 375 --hidden_size 1653 --dropout 0.36920239543542265892 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.29708069935441017151,,1,,c121,533799,480_0,FAILED,SOBOL,170,0.088095487528601662541305472587,375,1653,0.369202395435422658920288085938,3,0.2970806993544101715087890625,leaky_relu,normal
481,1754064081,5,1754064086,1754064092,6,python3 .tests/mnist/train --epochs 58 --learning_rate 0.01668477663646452183 --batch_size 1143 --hidden_size 387 --dropout 0.20978566305711865425 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.72575839608907699585,,1,,c104,533803,481_0,FAILED,SOBOL,58,0.016684776636464521831770824178,1143,387,0.209785663057118654251098632812,2,0.725758396089076995849609375,leaky_relu,normal
482,1754064411,13,1754064424,1754064430,6,python3 .tests/mnist/train --epochs 25 --learning_rate 0.07222049571561627024 --batch_size 819 --hidden_size 1342 --dropout 0.05147003894671797752 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.05714505445212125778,,1,,c104,533806,482_0,FAILED,SOBOL,25,0.072220495715616270238079721366,819,1342,0.051470038946717977523803710938,1,0.057145054452121257781982421875,leaky_relu,normal
483,1754064765,12,1754064777,1754064783,6,python3 .tests/mnist/train --epochs 108 --learning_rate 0.04525228569188156219 --batch_size 1583 --hidden_size 570 --dropout 0.39889030205085873604 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.98204377945512533188,,1,,c104,533811,483_0,FAILED,SOBOL,108,0.045252285691881562190719279215,1583,570,0.398890302050858736038208007812,4,0.982043779455125331878662109375,leaky_relu,normal
484,1754065129,23,1754065152,1754065158,6,python3 .tests/mnist/train --epochs 138 --learning_rate 0.06018970117512159601 --batch_size 1352 --hidden_size 945 --dropout 0.45342713035643100739 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.16992132458835840225,,1,,c137,533813,484_0,FAILED,SOBOL,138,0.060189701175121596010697544443,1352,945,0.45342713035643100738525390625,3,0.169921324588358402252197265625,leaky_relu,normal
485,1754065469,15,1754065484,1754065490,6,python3 .tests/mnist/train --epochs 55 --learning_rate 0.03170730611824431472 --batch_size 78 --hidden_size 1190 --dropout 0.12163185235112905502 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.8700218619778752327,,1,,c143,533816,485_0,FAILED,SOBOL,55,0.031707306118244314718790377583,78,1190,0.121631852351129055023193359375,2,0.870021861977875232696533203125,leaky_relu,normal
486,1754065806,7,1754065813,1754065820,7,python3 .tests/mnist/train --epochs 88 --learning_rate 0.07635534385175445082 --batch_size 1821 --hidden_size 236 --dropout 0.15519543178379535675 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.41338367573916912079,,1,,c143,533821,486_0,FAILED,SOBOL,88,0.076355343851754450823499098533,1821,236,0.15519543178379535675048828125,1,0.41338367573916912078857421875,leaky_relu,normal
487,1754066154,31,1754066185,1754066197,12,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00323668068404309476 --batch_size 542 --hidden_size 2027 --dropout 0.29898717906326055527 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.60970623977482318878,,1,,c137,533822,487_0,FAILED,SOBOL,200,0.003236680684043094762686321175,542,2027,0.298987179063260555267333984375,4,0.60970623977482318878173828125,leaky_relu,normal
488,1754066380,30,1754066410,1754066422,12,python3 .tests/mnist/train --epochs 180 --learning_rate 0.0627390990582294833 --batch_size 2030 --hidden_size 1138 --dropout 0.24726573890075087547 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.19686550740152597427,,1,,c137,533825,488_0,FAILED,SOBOL,180,0.062739099058229483296678097304,2030,1138,0.247265738900750875473022460938,4,0.196865507401525974273681640625,leaky_relu,normal
489,1754066774,56,1754066830,1754066836,6,python3 .tests/mnist/train --epochs 96 --learning_rate 0.0420684193989262073 --batch_size 755 --hidden_size 870 --dropout 0.33002099441364407539 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.77984531689435243607,,1,,c155,533828,489_0,FAILED,SOBOL,96,0.042068419398926207297684243258,755,870,0.330020994413644075393676757812,1,0.779845316894352436065673828125,leaky_relu,normal
490,1754066991,6,1754066997,1754067003,6,python3 .tests/mnist/train --epochs 39 --learning_rate 0.09765591781500727875 --batch_size 1462 --hidden_size 1831 --dropout 0.42538267886266112328 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.44057767651975154877,,1,,c155,533830,490_0,FAILED,SOBOL,39,0.097655917815007278748318242378,1462,1831,0.425382678862661123275756835938,2,0.44057767651975154876708984375,leaky_relu,normal
491,1754067348,26,1754067374,1754067386,12,python3 .tests/mnist/train --epochs 141 --learning_rate 0.01985022078985348645 --batch_size 183 --hidden_size 49 --dropout 0.0306004364974796772 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.51976803876459598541,,1,,c125,533842,491_0,FAILED,SOBOL,141,0.019850220789853486452747333146,183,49,0.030600436497479677200317382812,3,0.51976803876459598541259765625,leaky_relu,normal
492,1754067588,27,1754067615,1754067621,6,python3 .tests/mnist/train --epochs 123 --learning_rate 0.08556726487178355212 --batch_size 989 --hidden_size 438 --dropout 0.0853737611323595047 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.33238666877150535583,,1,,c125,533845,492_0,FAILED,SOBOL,123,0.085567264871783552115935833626,989,438,0.08537376113235950469970703125,4,0.3323866687715053558349609375,leaky_relu,normal
493,1754067957,16,1754067973,1754067979,6,python3 .tests/mnist/train --epochs 21 --learning_rate 0.00634483858207240698 --batch_size 1757 --hidden_size 1729 --dropout 0.49578101839870214462 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.62819650769233703613,,1,,c139,533847,493_0,FAILED,SOBOL,21,0.006344838582072406980849610392,1757,1729,0.495781018398702144622802734375,1,0.6281965076923370361328125,leaky_relu,normal
494,1754068297,15,1754068312,1754068318,6,python3 .tests/mnist/train --epochs 78 --learning_rate 0.05094719988392666654 --batch_size 397 --hidden_size 765 --dropout 0.27517900802195072174 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.09270090144127607346,,1,,c139,533848,494_0,FAILED,SOBOL,78,0.050947199883926666541533734289,397,765,0.27517900802195072174072265625,2,0.092700901441276073455810546875,leaky_relu,normal
495,1754068636,25,1754068661,1754068667,6,python3 .tests/mnist/train --epochs 162 --learning_rate 0.02866602371763438128 --batch_size 1161 --hidden_size 1530 --dropout 0.17679873760789632797 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.8847204139456152916,,1,,c139,533852,495_0,FAILED,SOBOL,162,0.028666023717634381284824485192,1161,1530,0.176798737607896327972412109375,3,0.884720413945615291595458984375,leaky_relu,normal
496,1754068981,16,1754068997,1754069003,6,python3 .tests/mnist/train --epochs 159 --learning_rate 0.05367005442971364143 --batch_size 666 --hidden_size 191 --dropout 0.38033496774733066559 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.71175841055810451508,,1,,c139,533857,496_0,FAILED,SOBOL,159,0.05367005442971364143067702912,666,191,0.38033496774733066558837890625,1,0.71175841055810451507568359375,leaky_relu,normal
497,1754069315,11,1754069326,1754069332,6,python3 .tests/mnist/train --epochs 70 --learning_rate 0.02592028327707201346 --batch_size 1944 --hidden_size 1976 --dropout 0.04072850104421377182 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.26544159092009067535,,1,,c154,533860,497_0,FAILED,SOBOL,70,0.025920283277072013461417299141,1944,1976,0.040728501044213771820068359375,4,0.26544159092009067535400390625,leaky_relu,normal
498,1754069657,12,1754069669,1754069675,6,python3 .tests/mnist/train --epochs 13 --learning_rate 0.08126376828994602564 --batch_size 209 --hidden_size 1013 --dropout 0.19904412515461444855 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.95547064486891031265,,1,,c139,533862,498_0,FAILED,SOBOL,13,0.081263768289946025635828164013,209,1013,0.19904412515461444854736328125,3,0.955470644868910312652587890625,leaky_relu,normal
499,1754070014,12,1754070026,1754070032,6,python3 .tests/mnist/train --epochs 120 --learning_rate 0.01063460362704470898 --batch_size 1484 --hidden_size 1283 --dropout 0.35064706113189458847 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.00536436308175325394,,1,,c139,533863,499_0,FAILED,SOBOL,120,0.010634603627044708976101539122,1484,1283,0.350647061131894588470458984375,2,0.005364363081753253936767578125,leaky_relu,normal</pre>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'><img src='i/download.svg' style='height: 1em'> Download »results.csv« as file</button>
<script>
createTable(tab_results_csv_json, tab_results_headers_json, 'tab_results_csv_table');</script>
<h1><img class='invert_icon' src='i/terminal.svg' style='height: 1em' /> Errors</h1>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_errors")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_errors", "oo_errors.txt")'><img src='i/download.svg' style='height: 1em'> Download »oo_errors.txt« as file</button>
<pre id='simple_pre_tab_tab_errors'><span style="background-color: black; color: white;">Best VAL_ACC could not be determined
</span></pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_errors")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_errors", "oo_errors.txt")'><img src='i/download.svg' style='height: 1em'> Download »oo_errors.txt« as file</button>
<h1><img class='invert_icon' src='i/terminal.svg' style='height: 1em' /> Progressbar log</h1>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_progressbar_log")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_progressbar_log", "progressbar")'><img src='i/download.svg' style='height: 1em'> Download »progressbar« as file</button>
<pre id='simple_pre_tab_tab_progressbar_log'>2025-07-31 17:27:40: SOBOL, Started OmniOpt2 run...
2025-07-31 17:28:02: Sobol, getting new HP set
2025-07-31 17:28:24: Sobol, requested 1 jobs, got 1, 22.28 s/job
2025-07-31 17:28:28: Sobol, eval #1/1 start
2025-07-31 17:28:32: Sobol, starting new job
2025-07-31 17:28:37: Sobol, unknown 1∑1 (5%/20), started new job
2025-07-31 17:28:42: Sobol, pending 1∑1 (5%/20), getting new HP set
2025-07-31 17:28:50: Sobol, running 1∑1 (5%/20), requested 1 jobs, got 1, 8.61 s/job
2025-07-31 17:28:54: Sobol, running 1∑1 (5%/20), eval #1/1 start
2025-07-31 17:28:58: Sobol, running 1∑1 (5%/20), starting new job
2025-07-31 17:29:04: Sobol, running/unknown 1/1∑2 (10%/20), started new job
2025-07-31 17:29:13: Sobol, completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:29:24: Sobol, failed: 1 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:29:33: Sobol, failed: 1 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 17:29:58: Sobol, failed: 1 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 29.22 s/job
2025-07-31 17:30:03: Sobol, failed: 1 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:30:07: Sobol, failed: 1 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:30:13: Sobol, failed: 1 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:30:17: Sobol, failed: 1 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 17:30:27: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:30:51: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 17:31:00: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 28.91 s/job
2025-07-31 17:31:05: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:31:10: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:31:16: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:31:20: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:31:29: Sobol, failed: 3 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:31:34: Sobol, failed: 3 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 17:31:43: Sobol, failed: 3 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), requested 1 jobs, got 1, 9.09 s/job
2025-07-31 17:31:47: Sobol, failed: 3 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), eval #1/1 start
2025-07-31 17:31:52: Sobol, failed: 3 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), starting new job
2025-07-31 17:31:58: Sobol, failed: 3 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:32:07: Sobol, failed: 3 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:32:15: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:32:20: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 17:32:29: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), requested 1 jobs, got 1, 9.13 s/job
2025-07-31 17:32:34: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:32:59: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:33:05: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:33:10: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:33:20: Sobol, failed: 5 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:33:29: Sobol, failed: 5 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 17:33:38: Sobol, failed: 5 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 13.57 s/job
2025-07-31 17:33:44: Sobol, failed: 5 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:33:49: Sobol, failed: 5 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:33:55: Sobol, failed: 5 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:34:16: Sobol, failed: 5 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 17:34:26: Sobol, failed: 6 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:34:36: Sobol, failed: 6 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 17:34:45: Sobol, failed: 6 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 13.93 s/job
2025-07-31 17:34:49: Sobol, failed: 6 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:34:55: Sobol, failed: 6 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:35:02: Sobol, failed: 6 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:35:07: Sobol, failed: 6 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:35:18: Sobol, failed: 7 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:35:38: Sobol, failed: 7 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 17:35:47: Sobol, failed: 7 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), requested 1 jobs, got 1, 9.43 s/job
2025-07-31 17:35:52: Sobol, failed: 7 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:36:03: Sobol, failed: 7 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), starting new job
2025-07-31 17:36:08: Sobol, failed: 7 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:36:24: Sobol, failed: 7 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 17:36:24: Sobol, failed: 7 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 17:36:38: Sobol, failed: 9 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 17:36:44: Sobol, failed: 9 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 17:36:53: Sobol, failed: 9 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 9.33 s/job
2025-07-31 17:36:57: Sobol, failed: 9 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 17:37:12: Sobol, failed: 9 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 17:37:18: Sobol, failed: 9 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 17:37:24: Sobol, failed: 9 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 17:37:48: Sobol, failed: 9 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), requested 1 jobs, got 1, 23.57 s/job
2025-07-31 17:37:52: Sobol, failed: 9 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), eval #1/1 start
2025-07-31 17:38:03: Sobol, failed: 9 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), starting new job
2025-07-31 17:38:08: Sobol, failed: 9 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:38:17: Sobol, failed: 9 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 17:38:28: Sobol, failed: 10 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:38:37: Sobol, failed: 10 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 17:38:46: Sobol, failed: 10 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 14.11 s/job
2025-07-31 17:38:51: Sobol, failed: 10 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:38:56: Sobol, failed: 10 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:39:12: Sobol, failed: 10 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:39:24: Sobol, failed: 10 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 17:39:34: Sobol, failed: 11 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:39:39: Sobol, failed: 11 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 17:39:49: Sobol, failed: 11 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 10.12 s/job
2025-07-31 17:39:53: Sobol, failed: 11 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:39:58: Sobol, failed: 11 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:40:08: Sobol, failed: 11 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:40:17: Sobol, failed: 11 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 17:40:33: Sobol, failed: 12 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:40:43: Sobol, failed: 12 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 17:40:53: Sobol, failed: 12 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 14.28 s/job
2025-07-31 17:40:57: Sobol, failed: 12 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:41:02: Sobol, failed: 12 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:41:10: Sobol, failed: 12 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:41:15: Sobol, failed: 12 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 17:41:25: Sobol, failed: 13 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:41:34: Sobol, failed: 13 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 17:41:57: Sobol, failed: 13 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 27.80 s/job
2025-07-31 17:42:03: Sobol, failed: 13 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:42:08: Sobol, failed: 13 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:42:14: Sobol, failed: 13 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:42:19: Sobol, failed: 13 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 17:42:30: Sobol, failed: 14 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:42:35: Sobol, failed: 14 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 17:42:45: Sobol, failed: 14 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 10.65 s/job
2025-07-31 17:42:50: Sobol, failed: 14 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:42:56: Sobol, failed: 14 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:43:03: Sobol, failed: 14 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:43:09: Sobol, failed: 14 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:43:20: Sobol, failed: 15 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:43:25: Sobol, failed: 15 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 17:43:36: Sobol, failed: 15 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 10.60 s/job
2025-07-31 17:43:41: Sobol, failed: 15 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:43:47: Sobol, failed: 15 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:43:53: Sobol, failed: 15 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:43:59: Sobol, failed: 15 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:44:09: Sobol, failed: 16 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:44:16: Sobol, failed: 16 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 17:44:26: Sobol, failed: 16 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 11.59 s/job
2025-07-31 17:44:32: Sobol, failed: 16 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:44:56: Sobol, failed: 16 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:45:02: Sobol, failed: 16 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:45:08: Sobol, failed: 16 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:45:19: Sobol, failed: 17 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:45:31: Sobol, failed: 17 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 17:45:42: Sobol, failed: 17 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 17.71 s/job
2025-07-31 17:45:47: Sobol, failed: 17 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:45:54: Sobol, failed: 17 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:46:15: Sobol, failed: 17 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:46:37: Sobol, failed: 17 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 17:46:37: Sobol, failed: 17 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 17:46:51: Sobol, failed: 19 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 17:46:57: Sobol, failed: 19 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 17:47:07: Sobol, failed: 19 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 10.64 s/job
2025-07-31 17:47:13: Sobol, failed: 19 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 17:47:19: Sobol, failed: 19 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 17:47:42: Sobol, failed: 19 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 17:47:50: Sobol, failed: 19 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), waiting for 1 job
2025-07-31 17:48:01: Sobol, failed: 19 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 17:48:12: Sobol, failed: 20 ('VAL_ACC: <FLOAT>' not found), waiting for 1 job, finished 1 job
2025-07-31 17:48:18: Sobol, failed: 20 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 17:48:40: Sobol, failed: 20 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 22.69 s/job
2025-07-31 17:48:46: Sobol, failed: 20 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 17:48:52: Sobol, failed: 20 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 17:48:58: Sobol, failed: 20 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 17:49:07: Sobol, failed: 20 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 17:49:17: Sobol, failed: 20 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), requested 1 jobs, got 1, 10.84 s/job
2025-07-31 17:49:23: Sobol, failed: 20 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), eval #1/1 start
2025-07-31 17:49:47: Sobol, failed: 20 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:49:54: Sobol, failed: 20 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:50:00: Sobol, failed: 20 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:50:11: Sobol, failed: 21 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:50:19: Sobol, failed: 21 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 17:50:39: Sobol, failed: 21 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 19.49 s/job
2025-07-31 17:50:46: Sobol, failed: 21 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:50:52: Sobol, failed: 21 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:50:59: Sobol, failed: 21 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:51:21: Sobol, failed: 21 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 17:51:43: Sobol, failed: 22 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:51:49: Sobol, failed: 22 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 17:52:01: Sobol, failed: 22 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 12.19 s/job
2025-07-31 17:52:07: Sobol, failed: 22 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:52:13: Sobol, failed: 22 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:52:20: Sobol, failed: 22 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:52:36: Sobol, failed: 22 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:52:59: Sobol, failed: 23 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:53:05: Sobol, failed: 23 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 17:53:16: Sobol, failed: 23 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), requested 1 jobs, got 1, 11.38 s/job
2025-07-31 17:53:22: Sobol, failed: 23 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:53:38: Sobol, failed: 23 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), starting new job
2025-07-31 17:53:45: Sobol, failed: 23 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:53:52: Sobol, failed: 23 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 17:54:03: Sobol, failed: 24 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:54:09: Sobol, failed: 24 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 17:54:20: Sobol, failed: 24 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 11.24 s/job
2025-07-31 17:54:26: Sobol, failed: 24 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:54:32: Sobol, failed: 24 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:54:39: Sobol, failed: 24 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:54:56: Sobol, failed: 24 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 17:55:08: Sobol, failed: 25 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:55:16: Sobol, failed: 25 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 17:55:30: Sobol, failed: 25 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 13.91 s/job
2025-07-31 17:55:53: Sobol, failed: 25 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:56:00: Sobol, failed: 25 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:56:07: Sobol, failed: 25 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:56:13: Sobol, failed: 25 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:56:27: Sobol, failed: 26 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:56:39: Sobol, failed: 26 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 17:56:50: Sobol, failed: 26 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 16.81 s/job
2025-07-31 17:57:12: Sobol, failed: 26 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:57:18: Sobol, failed: 26 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:57:25: Sobol, failed: 26 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:57:32: Sobol, failed: 26 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:57:51: Sobol, failed: 27 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:58:03: Sobol, failed: 27 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 17:58:32: Sobol, failed: 27 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 35.58 s/job
2025-07-31 17:58:39: Sobol, failed: 27 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:58:45: Sobol, failed: 27 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 17:58:52: Sobol, failed: 27 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 17:59:01: Sobol, failed: 27 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 17:59:13: Sobol, failed: 28 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 17:59:19: Sobol, failed: 28 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 17:59:43: Sobol, failed: 28 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 22.67 s/job
2025-07-31 17:59:50: Sobol, failed: 28 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 17:59:57: Sobol, failed: 28 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:00:16: Sobol, failed: 28 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:00:35: Sobol, failed: 28 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 18:00:35: Sobol, failed: 28 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 18:01:03: Sobol, failed: 30 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 18:01:11: Sobol, failed: 30 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 18:01:36: Sobol, failed: 30 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 25.37 s/job
2025-07-31 18:01:47: Sobol, failed: 30 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 18:01:53: Sobol, failed: 30 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 18:02:01: Sobol, failed: 30 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 18:02:09: Sobol, failed: 30 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 18:02:44: Sobol, failed: 30 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), requested 1 jobs, got 1, 35.30 s/job
2025-07-31 18:02:50: Sobol, failed: 30 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:03:02: Sobol, failed: 30 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), starting new job
2025-07-31 18:03:09: Sobol, failed: 30 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:03:16: Sobol, failed: 30 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:03:29: Sobol, failed: 31 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:03:42: Sobol, failed: 31 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:03:58: Sobol, failed: 31 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 22.80 s/job
2025-07-31 18:04:17: Sobol, failed: 31 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:04:31: Sobol, failed: 31 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:04:42: Sobol, failed: 31 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:04:50: Sobol, failed: 31 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:05:03: Sobol, failed: 32 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:05:09: Sobol, failed: 32 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:05:21: Sobol, failed: 32 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 12.81 s/job
2025-07-31 18:05:41: Sobol, failed: 32 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:05:49: Sobol, failed: 32 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:05:57: Sobol, failed: 32 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:06:04: Sobol, failed: 32 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:06:17: Sobol, failed: 33 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:06:24: Sobol, failed: 33 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 18:06:46: Sobol, failed: 33 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 22.71 s/job
2025-07-31 18:06:53: Sobol, failed: 33 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:07:17: Sobol, failed: 33 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:07:25: Sobol, failed: 33 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:07:42: Sobol, failed: 33 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:07:56: Sobol, failed: 34 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:08:10: Sobol, failed: 34 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:08:46: Sobol, failed: 34 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 42.71 s/job
2025-07-31 18:08:53: Sobol, failed: 34 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:08:59: Sobol, failed: 34 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:09:09: Sobol, failed: 34 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:09:16: Sobol, failed: 34 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:09:59: Sobol, failed: 35 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:10:08: Sobol, failed: 35 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:10:26: Sobol, failed: 35 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 17.95 s/job
2025-07-31 18:10:45: Sobol, failed: 35 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:11:05: Sobol, failed: 35 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:11:17: Sobol, failed: 35 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:11:28: Sobol, failed: 35 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:11:41: Sobol, failed: 36 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:11:49: Sobol, failed: 36 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 18:12:04: Sobol, failed: 36 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (0%/20), requested 1 jobs, got 1, 13.83 s/job
2025-07-31 18:12:11: Sobol, failed: 36 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:12:25: Sobol, failed: 36 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:12:32: Sobol, failed: 36 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:12:41: Sobol, failed: 36 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:12:54: Sobol, failed: 37 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:13:08: Sobol, failed: 37 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 18:13:24: Sobol, failed: 37 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 23.01 s/job
2025-07-31 18:13:41: Sobol, failed: 37 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:14:01: Sobol, failed: 37 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:14:16: Sobol, failed: 37 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:14:23: Sobol, failed: 37 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:14:48: Sobol, failed: 38 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:14:55: Sobol, failed: 38 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:15:20: Sobol, failed: 38 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 26.16 s/job
2025-07-31 18:15:27: Sobol, failed: 38 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:15:34: Sobol, failed: 38 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:15:43: Sobol, failed: 38 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:15:50: Sobol, failed: 38 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:16:24: Sobol, failed: 39 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs, finished 1 job
2025-07-31 18:16:32: Sobol, failed: 39 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 18:17:18: Sobol, failed: 40 ('VAL_ACC: <FLOAT>' not found), finishing previous jobs (1), finished 1 job
2025-07-31 18:17:31: Sobol, failed: 40 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 18:17:50: Sobol, failed: 40 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 16.68 s/job
2025-07-31 18:17:58: Sobol, failed: 40 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 18:18:05: Sobol, failed: 40 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 18:18:14: Sobol, failed: 40 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 18:18:22: Sobol, failed: 40 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 18:18:36: Sobol, failed: 40 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 13.63 s/job
2025-07-31 18:18:42: Sobol, failed: 40 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:18:49: Sobol, failed: 40 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:18:57: Sobol, failed: 40 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:19:05: Sobol, failed: 40 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:19:19: Sobol, failed: 41 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:19:33: Sobol, failed: 41 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 18:19:58: Sobol, failed: 41 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 31.88 s/job
2025-07-31 18:20:05: Sobol, failed: 41 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:20:12: Sobol, failed: 41 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:20:20: Sobol, failed: 41 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:20:27: Sobol, failed: 41 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:20:45: Sobol, failed: 42 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:20:53: Sobol, failed: 42 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 18:21:09: Sobol, failed: 42 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (0%/20), requested 1 jobs, got 1, 16.44 s/job
2025-07-31 18:21:25: Sobol, failed: 42 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:21:32: Sobol, failed: 42 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:21:40: Sobol, failed: 42 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:21:48: Sobol, failed: 42 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:22:01: Sobol, failed: 43 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:22:15: Sobol, failed: 43 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:22:29: Sobol, failed: 43 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 20.97 s/job
2025-07-31 18:22:36: Sobol, failed: 43 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:23:00: Sobol, failed: 43 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:23:09: Sobol, failed: 43 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:23:17: Sobol, failed: 43 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:23:30: Sobol, failed: 44 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:23:44: Sobol, failed: 44 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:23:58: Sobol, failed: 44 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 20.34 s/job
2025-07-31 18:24:13: Sobol, failed: 44 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:24:21: Sobol, failed: 44 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:24:30: Sobol, failed: 44 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:24:37: Sobol, failed: 44 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:24:53: Sobol, failed: 45 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:25:42: Sobol, failed: 45 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:26:10: Sobol, failed: 45 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 43.99 s/job
2025-07-31 18:26:18: Sobol, failed: 45 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:26:27: Sobol, failed: 45 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:26:35: Sobol, failed: 45 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:26:43: Sobol, failed: 45 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:27:04: Sobol, failed: 46 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:27:50: Sobol, failed: 46 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:28:15: Sobol, failed: 46 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 62.27 s/job
2025-07-31 18:28:22: Sobol, failed: 46 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:28:30: Sobol, failed: 46 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:28:38: Sobol, failed: 46 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:28:45: Sobol, failed: 46 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:29:15: Sobol, failed: 47 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:29:29: Sobol, failed: 47 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 18:29:59: Sobol, failed: 47 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 37.42 s/job
2025-07-31 18:30:13: Sobol, failed: 47 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:30:20: Sobol, failed: 47 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:30:29: Sobol, failed: 47 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:30:37: Sobol, failed: 47 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:30:51: Sobol, failed: 48 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:31:06: Sobol, failed: 48 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 18:31:21: Sobol, failed: 48 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 22.31 s/job
2025-07-31 18:31:28: Sobol, failed: 48 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:31:36: Sobol, failed: 48 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:31:45: Sobol, failed: 48 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:32:14: Sobol, failed: 48 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:32:33: Sobol, failed: 49 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:32:41: Sobol, failed: 49 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 18:32:57: Sobol, failed: 49 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 16.40 s/job
2025-07-31 18:33:06: Sobol, failed: 49 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:33:30: Sobol, failed: 49 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:33:39: Sobol, failed: 49 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:33:47: Sobol, failed: 49 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:34:18: Sobol, failed: 50 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:34:52: Sobol, failed: 50 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:35:07: Sobol, failed: 50 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 36.45 s/job
2025-07-31 18:35:15: Sobol, failed: 50 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:35:23: Sobol, failed: 50 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:35:31: Sobol, failed: 50 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:35:40: Sobol, failed: 50 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:35:55: Sobol, failed: 51 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:36:41: Sobol, failed: 51 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:37:09: Sobol, failed: 51 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 44.45 s/job
2025-07-31 18:37:17: Sobol, failed: 51 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:37:25: Sobol, failed: 51 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:37:33: Sobol, failed: 51 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:37:41: Sobol, failed: 51 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:37:58: Sobol, failed: 52 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:38:14: Sobol, failed: 52 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:38:36: Sobol, failed: 52 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 29.94 s/job
2025-07-31 18:38:48: Sobol, failed: 52 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:38:56: Sobol, failed: 52 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:39:06: Sobol, failed: 52 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:39:13: Sobol, failed: 52 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:39:29: Sobol, failed: 53 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:39:45: Sobol, failed: 53 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:40:01: Sobol, failed: 53 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 24.04 s/job
2025-07-31 18:40:48: Sobol, failed: 53 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:41:11: Sobol, failed: 53 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:41:31: Sobol, failed: 53 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:41:41: Sobol, failed: 53 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:41:56: Sobol, failed: 54 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:42:12: Sobol, failed: 54 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 18:42:26: Sobol, failed: 54 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 22.34 s/job
2025-07-31 18:42:34: Sobol, failed: 54 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:42:41: Sobol, failed: 54 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:42:52: Sobol, failed: 54 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:43:01: Sobol, failed: 54 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:43:16: Sobol, failed: 55 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:43:26: Sobol, failed: 55 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 18:44:04: Sobol, failed: 55 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 39.80 s/job
2025-07-31 18:44:24: Sobol, failed: 55 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:44:38: Sobol, failed: 55 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:44:46: Sobol, failed: 55 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:44:55: Sobol, failed: 55 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:45:25: Sobol, failed: 56 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:45:34: Sobol, failed: 56 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:46:01: Sobol, failed: 56 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 28.30 s/job
2025-07-31 18:46:24: Sobol, failed: 56 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:46:36: Sobol, failed: 56 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:46:46: Sobol, failed: 56 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:46:54: Sobol, failed: 56 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:47:10: Sobol, failed: 57 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:47:18: Sobol, failed: 57 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:47:34: Sobol, failed: 57 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 16.98 s/job
2025-07-31 18:47:44: Sobol, failed: 57 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:47:51: Sobol, failed: 57 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:48:10: Sobol, failed: 57 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:48:24: Sobol, failed: 57 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:48:46: Sobol, failed: 58 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:48:55: Sobol, failed: 58 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:49:10: Sobol, failed: 58 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 15.64 s/job
2025-07-31 18:49:18: Sobol, failed: 58 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:49:27: Sobol, failed: 58 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:49:36: Sobol, failed: 58 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:49:44: Sobol, failed: 58 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:50:24: Sobol, failed: 59 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs, finished 1 job
2025-07-31 18:50:39: Sobol, failed: 59 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 18:51:28: Sobol, failed: 60 ('VAL_ACC: <FLOAT>' not found), finishing previous jobs (1), finished 1 job
2025-07-31 18:51:41: Sobol, failed: 60 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 18:51:59: Sobol, failed: 60 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 17.49 s/job
2025-07-31 18:52:07: Sobol, failed: 60 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 18:52:15: Sobol, failed: 60 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 18:52:26: Sobol, failed: 60 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 18:52:35: Sobol, failed: 60 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 18:52:53: Sobol, failed: 60 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), requested 1 jobs, got 1, 18.43 s/job
2025-07-31 18:53:00: Sobol, failed: 60 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:53:19: Sobol, failed: 60 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), starting new job
2025-07-31 18:53:28: Sobol, failed: 60 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:53:37: Sobol, failed: 60 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:53:53: Sobol, failed: 61 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:54:03: Sobol, failed: 61 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 18:54:20: Sobol, failed: 61 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), requested 1 jobs, got 1, 18.12 s/job
2025-07-31 18:54:27: Sobol, failed: 61 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:54:36: Sobol, failed: 61 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:54:45: Sobol, failed: 61 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:54:54: Sobol, failed: 61 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 18:55:14: Sobol, failed: 62 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:55:42: Sobol, failed: 62 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:55:58: Sobol, failed: 62 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 21.88 s/job
2025-07-31 18:56:11: Sobol, failed: 62 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:56:19: Sobol, failed: 62 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:56:33: Sobol, failed: 62 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:56:42: Sobol, failed: 62 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:57:01: Sobol, failed: 63 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:57:17: Sobol, failed: 63 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 18:57:35: Sobol, failed: 63 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 26.06 s/job
2025-07-31 18:57:44: Sobol, failed: 63 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:57:53: Sobol, failed: 63 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:58:03: Sobol, failed: 63 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:58:12: Sobol, failed: 63 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 18:58:29: Sobol, failed: 64 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 18:58:47: Sobol, failed: 64 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 18:59:03: Sobol, failed: 64 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 25.45 s/job
2025-07-31 18:59:12: Sobol, failed: 64 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 18:59:20: Sobol, failed: 64 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 18:59:29: Sobol, failed: 64 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 18:59:39: Sobol, failed: 64 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:00:00: Sobol, failed: 65 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:00:31: Sobol, failed: 65 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 19:00:47: Sobol, failed: 65 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 25.33 s/job
2025-07-31 19:00:56: Sobol, failed: 65 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:01:05: Sobol, failed: 65 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:01:14: Sobol, failed: 65 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:01:24: Sobol, failed: 65 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 19:01:41: Sobol, failed: 66 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:01:50: Sobol, failed: 66 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:02:07: Sobol, failed: 66 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 17.70 s/job
2025-07-31 19:02:17: Sobol, failed: 66 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:02:26: Sobol, failed: 66 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:02:37: Sobol, failed: 66 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:02:46: Sobol, failed: 66 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:03:03: Sobol, failed: 67 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:03:30: Sobol, failed: 67 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:03:48: Sobol, failed: 67 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 36.90 s/job
2025-07-31 19:03:57: Sobol, failed: 67 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:04:05: Sobol, failed: 67 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:04:15: Sobol, failed: 67 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:04:24: Sobol, failed: 67 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 19:04:51: Sobol, failed: 68 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:05:01: Sobol, failed: 68 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:05:18: Sobol, failed: 68 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 17.51 s/job
2025-07-31 19:05:26: Sobol, failed: 68 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:05:35: Sobol, failed: 68 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:06:06: Sobol, failed: 68 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:06:15: Sobol, failed: 68 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:06:43: Sobol, failed: 69 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:06:52: Sobol, failed: 69 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:07:09: Sobol, failed: 69 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 17.13 s/job
2025-07-31 19:07:23: Sobol, failed: 69 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:07:32: Sobol, failed: 69 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:07:42: Sobol, failed: 69 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:07:51: Sobol, failed: 69 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 19:08:09: Sobol, failed: 70 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:08:22: Sobol, failed: 70 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:08:48: Sobol, failed: 70 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 27.80 s/job
2025-07-31 19:09:06: Sobol, failed: 70 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:09:19: Sobol, failed: 70 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:09:29: Sobol, failed: 70 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:09:38: Sobol, failed: 70 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:09:57: Sobol, failed: 71 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:10:16: Sobol, failed: 71 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 19:10:33: Sobol, failed: 71 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 27.01 s/job
2025-07-31 19:10:50: Sobol, failed: 71 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:10:59: Sobol, failed: 71 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:11:09: Sobol, failed: 71 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:11:19: Sobol, failed: 71 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 19:11:36: Sobol, failed: 72 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:11:55: Sobol, failed: 72 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:12:19: Sobol, failed: 72 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 32.46 s/job
2025-07-31 19:12:43: Sobol, failed: 72 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:12:57: Sobol, failed: 72 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:13:10: Sobol, failed: 72 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:13:19: Sobol, failed: 72 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 19:13:55: Sobol, failed: 73 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:14:13: Sobol, failed: 73 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:14:31: Sobol, failed: 73 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 26.14 s/job
2025-07-31 19:14:40: Sobol, failed: 73 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:14:49: Sobol, failed: 73 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:14:58: Sobol, failed: 73 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:15:09: Sobol, failed: 73 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:15:28: Sobol, failed: 74 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:15:46: Sobol, failed: 74 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 19:16:30: Sobol, failed: 74 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 54.28 s/job
2025-07-31 19:16:40: Sobol, failed: 74 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:16:48: Sobol, failed: 74 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:16:58: Sobol, failed: 74 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:17:08: Sobol, failed: 74 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:17:26: Sobol, failed: 75 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:17:44: Sobol, failed: 75 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 19:18:12: Sobol, failed: 75 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 36.60 s/job
2025-07-31 19:18:41: Sobol, failed: 75 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:18:52: Sobol, failed: 75 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:19:02: Sobol, failed: 75 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:19:13: Sobol, failed: 75 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:19:31: Sobol, failed: 76 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:20:00: Sobol, failed: 76 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:20:42: Sobol, failed: 76 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 61.74 s/job
2025-07-31 19:20:53: Sobol, failed: 76 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:21:04: Sobol, failed: 76 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:21:14: Sobol, failed: 76 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:21:25: Sobol, failed: 76 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 19:22:12: Sobol, failed: 77 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:22:36: Sobol, failed: 77 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:23:21: Sobol, failed: 77 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 45.94 s/job
2025-07-31 19:23:36: Sobol, failed: 77 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:23:45: Sobol, failed: 77 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:23:55: Sobol, failed: 77 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:24:06: Sobol, failed: 77 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:24:35: Sobol, failed: 78 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:25:05: Sobol, failed: 78 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 19:25:46: Sobol, failed: 78 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 49.92 s/job
2025-07-31 19:25:57: Sobol, failed: 78 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:26:21: Sobol, failed: 78 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:26:32: Sobol, failed: 78 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:26:43: Sobol, failed: 78 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:27:01: Sobol, failed: 79 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs, finished 1 job
2025-07-31 19:27:11: Sobol, failed: 79 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 19:28:08: Sobol, failed: 80 ('VAL_ACC: <FLOAT>' not found), finishing previous jobs (1), finished 1 job
2025-07-31 19:28:34: Sobol, failed: 80 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 19:28:51: Sobol, failed: 80 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 18.23 s/job
2025-07-31 19:29:04: Sobol, failed: 80 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 19:29:14: Sobol, failed: 80 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 19:29:24: Sobol, failed: 80 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 19:29:47: Sobol, failed: 80 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 19:30:25: Sobol, failed: 80 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), requested 1 jobs, got 1, 38.73 s/job
2025-07-31 19:30:34: Sobol, failed: 80 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:31:00: Sobol, failed: 80 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), starting new job
2025-07-31 19:31:11: Sobol, failed: 80 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:31:21: Sobol, failed: 80 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 19:32:00: Sobol, failed: 81 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:32:19: Sobol, failed: 81 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 19:32:39: Sobol, failed: 81 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 29.91 s/job
2025-07-31 19:33:11: Sobol, failed: 81 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:33:43: Sobol, failed: 81 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:33:55: Sobol, failed: 81 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:34:07: Sobol, failed: 81 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:34:26: Sobol, failed: 82 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:34:47: Sobol, failed: 82 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 19:35:06: Sobol, failed: 82 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 30.31 s/job
2025-07-31 19:35:15: Sobol, failed: 82 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:35:25: Sobol, failed: 82 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:35:51: Sobol, failed: 82 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:36:07: Sobol, failed: 82 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:36:48: Sobol, failed: 83 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:36:58: Sobol, failed: 83 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:37:17: Sobol, failed: 83 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 19.41 s/job
2025-07-31 19:37:45: Sobol, failed: 83 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:38:12: Sobol, failed: 83 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:38:32: Sobol, failed: 83 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:38:48: Sobol, failed: 83 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:39:17: Sobol, failed: 84 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:39:37: Sobol, failed: 84 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 19:40:14: Sobol, failed: 84 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 46.30 s/job
2025-07-31 19:40:33: Sobol, failed: 84 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:40:43: Sobol, failed: 84 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:41:03: Sobol, failed: 84 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), started new job
2025-07-31 19:41:23: Sobol, failed: 84 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 19:41:43: Sobol, failed: 85 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:41:53: Sobol, failed: 85 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:42:13: Sobol, failed: 85 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 19.93 s/job
2025-07-31 19:42:23: Sobol, failed: 85 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:42:49: Sobol, failed: 85 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:43:01: Sobol, failed: 85 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:43:11: Sobol, failed: 85 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:43:44: Sobol, failed: 86 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:43:59: Sobol, failed: 86 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:44:32: Sobol, failed: 86 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 33.90 s/job
2025-07-31 19:44:42: Sobol, failed: 86 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:44:51: Sobol, failed: 86 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:45:02: Sobol, failed: 86 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:45:12: Sobol, failed: 86 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:45:33: Sobol, failed: 87 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:45:55: Sobol, failed: 87 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:46:14: Sobol, failed: 87 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 31.78 s/job
2025-07-31 19:46:25: Sobol, failed: 87 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:46:35: Sobol, failed: 87 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:46:46: Sobol, failed: 87 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:46:59: Sobol, failed: 87 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 19:47:28: Sobol, failed: 88 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:47:42: Sobol, failed: 88 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:48:19: Sobol, failed: 88 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 38.50 s/job
2025-07-31 19:48:31: Sobol, failed: 88 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:48:41: Sobol, failed: 88 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:48:51: Sobol, failed: 88 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:49:02: Sobol, failed: 88 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:49:33: Sobol, failed: 89 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:49:54: Sobol, failed: 89 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 19:50:15: Sobol, failed: 89 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), requested 1 jobs, got 1, 30.52 s/job
2025-07-31 19:50:25: Sobol, failed: 89 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:50:35: Sobol, failed: 89 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:50:46: Sobol, failed: 89 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:51:13: Sobol, failed: 89 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 19:51:33: Sobol, failed: 90 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:51:56: Sobol, failed: 90 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:52:20: Sobol, failed: 90 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 24.21 s/job
2025-07-31 19:52:29: Sobol, failed: 90 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:52:40: Sobol, failed: 90 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:52:51: Sobol, failed: 90 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:53:02: Sobol, failed: 90 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 19:53:02: Sobol, failed: 90 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 19:53:36: Sobol, failed: 92 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 19:53:47: Sobol, failed: 92 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 19:54:18: Sobol, failed: 92 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 31.40 s/job
2025-07-31 19:54:27: Sobol, failed: 92 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 19:54:37: Sobol, failed: 92 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 19:54:48: Sobol, failed: 92 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 19:54:59: Sobol, failed: 92 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 19:55:19: Sobol, failed: 92 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 21.04 s/job
2025-07-31 19:55:29: Sobol, failed: 92 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:55:39: Sobol, failed: 92 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:56:00: Sobol, failed: 92 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:56:11: Sobol, failed: 92 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 19:56:43: Sobol, failed: 93 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:57:17: Sobol, failed: 93 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:57:48: Sobol, failed: 93 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 42.31 s/job
2025-07-31 19:57:58: Sobol, failed: 93 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:58:08: Sobol, failed: 93 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:58:18: Sobol, failed: 93 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 19:58:29: Sobol, failed: 93 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 19:58:49: Sobol, failed: 94 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 19:58:59: Sobol, failed: 94 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 19:59:19: Sobol, failed: 94 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 20.52 s/job
2025-07-31 19:59:28: Sobol, failed: 94 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 19:59:39: Sobol, failed: 94 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 19:59:49: Sobol, failed: 94 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:00:23: Sobol, failed: 94 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 20:00:23: Sobol, failed: 94 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 20:01:02: Sobol, failed: 96 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 20:01:12: Sobol, failed: 96 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 20:01:32: Sobol, failed: 96 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 20.41 s/job
2025-07-31 20:01:41: Sobol, failed: 96 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 20:01:51: Sobol, failed: 96 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 20:02:02: Sobol, failed: 96 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 20:02:28: Sobol, failed: 96 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 20:02:51: Sobol, failed: 96 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), requested 1 jobs, got 1, 24.17 s/job
2025-07-31 20:03:01: Sobol, failed: 96 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:03:25: Sobol, failed: 96 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:03:37: Sobol, failed: 96 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:03:56: Sobol, failed: 96 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 20:04:19: Sobol, failed: 97 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:04:40: Sobol, failed: 97 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:05:01: Sobol, failed: 97 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 31.73 s/job
2025-07-31 20:05:23: Sobol, failed: 97 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:05:34: Sobol, failed: 97 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:05:46: Sobol, failed: 97 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:05:58: Sobol, failed: 97 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 20:06:18: Sobol, failed: 98 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:06:40: Sobol, failed: 98 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:07:07: Sobol, failed: 98 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 27.84 s/job
2025-07-31 20:07:17: Sobol, failed: 98 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:07:28: Sobol, failed: 98 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:07:39: Sobol, failed: 98 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:07:51: Sobol, failed: 98 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 20:08:17: Sobol, failed: 99 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs, finished 1 job
2025-07-31 20:08:31: Sobol, failed: 99 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 20:08:56: Sobol, failed: 100 ('VAL_ACC: <FLOAT>' not found), finishing previous jobs (1), finished 1 job
2025-07-31 20:09:10: Sobol, failed: 100 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 20:09:33: Sobol, failed: 100 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 24.53 s/job
2025-07-31 20:09:44: Sobol, failed: 100 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 20:10:09: Sobol, failed: 100 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 20:10:21: Sobol, failed: 100 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), started new job
2025-07-31 20:10:56: Sobol, failed: 100 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 20:11:17: Sobol, failed: 101 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:11:28: Sobol, failed: 101 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 20:11:48: Sobol, failed: 101 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 20.90 s/job
2025-07-31 20:11:59: Sobol, failed: 101 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 20:12:10: Sobol, failed: 101 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 20:12:23: Sobol, failed: 101 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 20:12:36: Sobol, failed: 101 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 20:13:10: Sobol, failed: 101 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), requested 1 jobs, got 1, 34.33 s/job
2025-07-31 20:13:30: Sobol, failed: 101 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:13:51: Sobol, failed: 101 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), starting new job
2025-07-31 20:14:04: Sobol, failed: 101 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:14:27: Sobol, failed: 101 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 20:14:50: Sobol, failed: 102 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:15:12: Sobol, failed: 102 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:15:34: Sobol, failed: 102 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 32.45 s/job
2025-07-31 20:15:57: Sobol, failed: 102 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:16:07: Sobol, failed: 102 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:16:25: Sobol, failed: 102 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:16:36: Sobol, failed: 102 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 20:16:57: Sobol, failed: 103 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:17:33: Sobol, failed: 103 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:17:55: Sobol, failed: 103 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 47.28 s/job
2025-07-31 20:18:10: Sobol, failed: 103 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:18:22: Sobol, failed: 103 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:18:38: Sobol, failed: 103 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:18:54: Sobol, failed: 103 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 20:19:15: Sobol, failed: 104 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:19:40: Sobol, failed: 104 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:20:17: Sobol, failed: 104 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 37.37 s/job
2025-07-31 20:20:28: Sobol, failed: 104 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:20:39: Sobol, failed: 104 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:20:52: Sobol, failed: 104 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), started new job
2025-07-31 20:21:14: Sobol, failed: 104 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 20:21:14: Sobol, failed: 104 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 20:22:11: Sobol, failed: 106 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 20:22:23: Sobol, failed: 106 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 20:22:44: Sobol, failed: 106 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 21.59 s/job
2025-07-31 20:22:54: Sobol, failed: 106 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 20:23:05: Sobol, failed: 106 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 20:23:16: Sobol, failed: 106 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 20:23:29: Sobol, failed: 106 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 20:23:49: Sobol, failed: 106 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 21.56 s/job
2025-07-31 20:24:00: Sobol, failed: 106 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:24:11: Sobol, failed: 106 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:24:39: Sobol, failed: 106 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:24:52: Sobol, failed: 106 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 20:25:13: Sobol, failed: 107 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:25:25: Sobol, failed: 107 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:26:11: Sobol, failed: 107 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 46.88 s/job
2025-07-31 20:26:21: Sobol, failed: 107 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:26:32: Sobol, failed: 107 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:26:46: Sobol, failed: 107 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), started new job
2025-07-31 20:26:57: Sobol, failed: 107 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 20:27:43: Sobol, failed: 108 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:27:55: Sobol, failed: 108 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:28:16: Sobol, failed: 108 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 21.75 s/job
2025-07-31 20:28:26: Sobol, failed: 108 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:28:37: Sobol, failed: 108 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:28:49: Sobol, failed: 108 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:29:00: Sobol, failed: 108 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 20:29:22: Sobol, failed: 109 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:29:33: Sobol, failed: 109 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:30:11: Sobol, failed: 109 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 39.56 s/job
2025-07-31 20:30:22: Sobol, failed: 109 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:30:33: Sobol, failed: 109 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:30:44: Sobol, failed: 109 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:30:56: Sobol, failed: 109 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 20:31:33: Sobol, failed: 110 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:31:47: Sobol, failed: 110 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:32:09: Sobol, failed: 110 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 22.78 s/job
2025-07-31 20:32:20: Sobol, failed: 110 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:32:31: Sobol, failed: 110 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:32:43: Sobol, failed: 110 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:33:06: Sobol, failed: 110 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 20:33:34: Sobol, failed: 111 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:33:46: Sobol, failed: 111 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:34:07: Sobol, failed: 111 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 22.28 s/job
2025-07-31 20:34:18: Sobol, failed: 111 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:34:33: Sobol, failed: 111 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:34:45: Sobol, failed: 111 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:34:57: Sobol, failed: 111 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 20:35:19: Sobol, failed: 112 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:35:31: Sobol, failed: 112 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:36:16: Sobol, failed: 112 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 46.11 s/job
2025-07-31 20:36:32: Sobol, failed: 112 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:36:43: Sobol, failed: 112 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:36:55: Sobol, failed: 112 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:37:07: Sobol, failed: 112 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 20:37:55: Sobol, failed: 113 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:38:06: Sobol, failed: 113 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 20:38:29: Sobol, failed: 113 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), requested 1 jobs, got 1, 23.20 s/job
2025-07-31 20:38:54: Sobol, failed: 113 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:39:11: Sobol, failed: 113 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:39:25: Sobol, failed: 113 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:39:38: Sobol, failed: 113 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 20:40:00: Sobol, failed: 114 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:40:22: Sobol, failed: 114 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 20:40:44: Sobol, failed: 114 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 33.37 s/job
2025-07-31 20:40:55: Sobol, failed: 114 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:41:07: Sobol, failed: 114 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:41:38: Sobol, failed: 114 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:41:51: Sobol, failed: 114 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 20:42:15: Sobol, failed: 115 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:42:37: Sobol, failed: 115 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:43:13: Sobol, failed: 115 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 48.03 s/job
2025-07-31 20:43:28: Sobol, failed: 115 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:43:39: Sobol, failed: 115 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:43:51: Sobol, failed: 115 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:44:14: Sobol, failed: 115 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 20:44:15: Sobol, failed: 115 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 20:45:07: Sobol, failed: 117 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 20:45:19: Sobol, failed: 117 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 20:45:42: Sobol, failed: 117 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 24.17 s/job
2025-07-31 20:45:53: Sobol, failed: 117 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 20:46:05: Sobol, failed: 117 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 20:46:17: Sobol, failed: 117 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 20:46:30: Sobol, failed: 117 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 20:46:54: Sobol, failed: 117 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 23.99 s/job
2025-07-31 20:47:04: Sobol, failed: 117 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:47:16: Sobol, failed: 117 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:47:30: Sobol, failed: 117 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:47:42: Sobol, failed: 117 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 20:48:08: Sobol, failed: 118 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:48:31: Sobol, failed: 118 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:48:56: Sobol, failed: 118 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 35.91 s/job
2025-07-31 20:49:07: Sobol, failed: 118 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:49:19: Sobol, failed: 118 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:49:31: Sobol, failed: 118 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:49:47: Sobol, failed: 118 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 20:50:10: Sobol, failed: 119 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs, finished 1 job
2025-07-31 20:50:22: Sobol, failed: 119 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 20:50:46: Sobol, failed: 120 ('VAL_ACC: <FLOAT>' not found), finishing previous jobs (1), finished 1 job
2025-07-31 20:51:01: Sobol, failed: 120 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 20:51:23: Sobol, failed: 120 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 23.36 s/job
2025-07-31 20:51:34: Sobol, failed: 120 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 20:51:46: Sobol, failed: 120 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 20:51:58: Sobol, failed: 120 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 20:52:14: Sobol, failed: 120 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 20:52:37: Sobol, failed: 120 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 23.87 s/job
2025-07-31 20:52:48: Sobol, failed: 120 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:53:15: Sobol, failed: 120 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:53:27: Sobol, failed: 120 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:53:41: Sobol, failed: 120 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 20:54:04: Sobol, failed: 121 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:54:27: Sobol, failed: 121 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:54:49: Sobol, failed: 121 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 34.18 s/job
2025-07-31 20:55:01: Sobol, failed: 121 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:55:15: Sobol, failed: 121 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:55:27: Sobol, failed: 121 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:55:39: Sobol, failed: 121 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 20:56:03: Sobol, failed: 122 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:56:28: Sobol, failed: 122 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 20:56:50: Sobol, failed: 122 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 36.38 s/job
2025-07-31 20:57:01: Sobol, failed: 122 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:57:13: Sobol, failed: 122 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:57:28: Sobol, failed: 122 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:57:40: Sobol, failed: 122 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 20:58:07: Sobol, failed: 123 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 20:58:30: Sobol, failed: 123 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 20:58:53: Sobol, failed: 123 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 35.35 s/job
2025-07-31 20:59:04: Sobol, failed: 123 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 20:59:17: Sobol, failed: 123 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 20:59:30: Sobol, failed: 123 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 20:59:47: Sobol, failed: 123 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:00:15: Sobol, failed: 124 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:00:40: Sobol, failed: 124 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:01:03: Sobol, failed: 124 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 35.04 s/job
2025-07-31 21:01:14: Sobol, failed: 124 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:01:26: Sobol, failed: 124 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:01:39: Sobol, failed: 124 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:01:52: Sobol, failed: 124 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:02:16: Sobol, failed: 125 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:02:29: Sobol, failed: 125 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:02:51: Sobol, failed: 125 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 23.67 s/job
2025-07-31 21:03:03: Sobol, failed: 125 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:03:16: Sobol, failed: 125 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:03:33: Sobol, failed: 125 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:03:45: Sobol, failed: 125 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:04:10: Sobol, failed: 126 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:04:34: Sobol, failed: 126 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:04:57: Sobol, failed: 126 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 35.60 s/job
2025-07-31 21:05:09: Sobol, failed: 126 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:05:26: Sobol, failed: 126 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:05:38: Sobol, failed: 126 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:05:51: Sobol, failed: 126 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:06:14: Sobol, failed: 127 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:06:38: Sobol, failed: 127 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:07:01: Sobol, failed: 127 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 35.73 s/job
2025-07-31 21:07:14: Sobol, failed: 127 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:07:27: Sobol, failed: 127 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:07:41: Sobol, failed: 127 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:07:53: Sobol, failed: 127 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:08:18: Sobol, failed: 128 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:08:42: Sobol, failed: 128 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (0%/20), getting new HP set
2025-07-31 21:09:06: Sobol, failed: 128 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 35.45 s/job
2025-07-31 21:09:17: Sobol, failed: 128 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:09:29: Sobol, failed: 128 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:09:42: Sobol, failed: 128 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), started new job
2025-07-31 21:09:56: Sobol, failed: 128 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 21:10:20: Sobol, failed: 129 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:10:32: Sobol, failed: 129 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:10:56: Sobol, failed: 129 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 24.75 s/job
2025-07-31 21:11:07: Sobol, failed: 129 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:11:19: Sobol, failed: 129 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:11:32: Sobol, failed: 129 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:11:49: Sobol, failed: 129 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:12:13: Sobol, failed: 130 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:12:36: Sobol, failed: 130 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:13:03: Sobol, failed: 130 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 39.32 s/job
2025-07-31 21:13:15: Sobol, failed: 130 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:13:27: Sobol, failed: 130 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:13:40: Sobol, failed: 130 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:13:54: Sobol, failed: 130 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:14:18: Sobol, failed: 131 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:14:31: Sobol, failed: 131 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:14:58: Sobol, failed: 131 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 28.51 s/job
2025-07-31 21:15:10: Sobol, failed: 131 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:15:23: Sobol, failed: 131 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:15:39: Sobol, failed: 131 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), started new job
2025-07-31 21:15:51: Sobol, failed: 131 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:16:17: Sobol, failed: 132 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:16:42: Sobol, failed: 132 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:17:38: Sobol, failed: 132 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 37.07 s/job
2025-07-31 21:17:50: Sobol, failed: 132 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:18:06: Sobol, failed: 132 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:18:21: Sobol, failed: 132 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:18:34: Sobol, failed: 132 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 21:18:59: Sobol, failed: 133 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:19:11: Sobol, failed: 133 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:19:35: Sobol, failed: 133 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 25.09 s/job
2025-07-31 21:19:47: Sobol, failed: 133 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:20:00: Sobol, failed: 133 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:20:13: Sobol, failed: 133 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:20:27: Sobol, failed: 133 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 21:20:53: Sobol, failed: 134 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:21:06: Sobol, failed: 134 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:21:30: Sobol, failed: 134 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 25.13 s/job
2025-07-31 21:21:41: Sobol, failed: 134 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:21:54: Sobol, failed: 134 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:22:07: Sobol, failed: 134 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:22:20: Sobol, failed: 134 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:22:45: Sobol, failed: 135 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:23:10: Sobol, failed: 135 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:23:35: Sobol, failed: 135 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 37.33 s/job
2025-07-31 21:23:47: Sobol, failed: 135 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:24:00: Sobol, failed: 135 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:24:13: Sobol, failed: 135 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:24:27: Sobol, failed: 135 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 21:24:53: Sobol, failed: 136 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:25:06: Sobol, failed: 136 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:25:30: Sobol, failed: 136 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 25.29 s/job
2025-07-31 21:25:42: Sobol, failed: 136 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:25:55: Sobol, failed: 136 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:26:08: Sobol, failed: 136 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:26:23: Sobol, failed: 136 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:26:48: Sobol, failed: 137 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:27:13: Sobol, failed: 137 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:27:38: Sobol, failed: 137 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 37.56 s/job
2025-07-31 21:27:51: Sobol, failed: 137 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:28:03: Sobol, failed: 137 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:28:17: Sobol, failed: 137 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:28:30: Sobol, failed: 137 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 21:28:54: Sobol, failed: 138 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:29:08: Sobol, failed: 138 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:29:33: Sobol, failed: 138 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 25.65 s/job
2025-07-31 21:29:45: Sobol, failed: 138 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:29:58: Sobol, failed: 138 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:30:11: Sobol, failed: 138 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:30:25: Sobol, failed: 138 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:30:49: Sobol, failed: 139 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs, finished 1 job
2025-07-31 21:31:01: Sobol, failed: 139 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 21:31:26: Sobol, failed: 140 ('VAL_ACC: <FLOAT>' not found), finishing previous jobs (1), finished 1 job
2025-07-31 21:31:42: Sobol, failed: 140 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 21:32:07: Sobol, failed: 140 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 25.70 s/job
2025-07-31 21:32:19: Sobol, failed: 140 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 21:32:32: Sobol, failed: 140 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 21:32:45: Sobol, failed: 140 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 21:33:00: Sobol, failed: 140 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 21:33:25: Sobol, failed: 140 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 25.59 s/job
2025-07-31 21:33:37: Sobol, failed: 140 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:33:50: Sobol, failed: 140 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:34:03: Sobol, failed: 140 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:34:17: Sobol, failed: 140 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:34:42: Sobol, failed: 141 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:35:08: Sobol, failed: 141 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:35:33: Sobol, failed: 141 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 38.62 s/job
2025-07-31 21:35:45: Sobol, failed: 141 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:35:59: Sobol, failed: 141 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:36:13: Sobol, failed: 141 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:36:26: Sobol, failed: 141 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 21:36:51: Sobol, failed: 142 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:37:04: Sobol, failed: 142 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:37:29: Sobol, failed: 142 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 25.74 s/job
2025-07-31 21:37:41: Sobol, failed: 142 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:37:54: Sobol, failed: 142 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:38:07: Sobol, failed: 142 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:38:21: Sobol, failed: 142 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:38:46: Sobol, failed: 143 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:39:14: Sobol, failed: 143 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:39:39: Sobol, failed: 143 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 40.49 s/job
2025-07-31 21:39:51: Sobol, failed: 143 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:40:15: Sobol, failed: 143 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:40:31: Sobol, failed: 143 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:40:45: Sobol, failed: 143 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:41:12: Sobol, failed: 144 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:41:41: Sobol, failed: 144 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:42:06: Sobol, failed: 144 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 41.70 s/job
2025-07-31 21:42:18: Sobol, failed: 144 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:42:31: Sobol, failed: 144 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:42:46: Sobol, failed: 144 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:43:01: Sobol, failed: 144 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 21:43:27: Sobol, failed: 145 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:43:40: Sobol, failed: 145 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:44:05: Sobol, failed: 145 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 26.35 s/job
2025-07-31 21:44:18: Sobol, failed: 145 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:44:31: Sobol, failed: 145 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:44:46: Sobol, failed: 145 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:45:00: Sobol, failed: 145 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 21:45:26: Sobol, failed: 146 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:45:40: Sobol, failed: 146 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:46:06: Sobol, failed: 146 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 26.42 s/job
2025-07-31 21:46:19: Sobol, failed: 146 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:46:33: Sobol, failed: 146 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:46:46: Sobol, failed: 146 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:47:00: Sobol, failed: 146 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 21:47:26: Sobol, failed: 147 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:47:40: Sobol, failed: 147 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:48:05: Sobol, failed: 147 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 26.44 s/job
2025-07-31 21:48:19: Sobol, failed: 147 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:48:33: Sobol, failed: 147 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:48:47: Sobol, failed: 147 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:49:01: Sobol, failed: 147 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 21:49:27: Sobol, failed: 148 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:49:42: Sobol, failed: 148 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:50:09: Sobol, failed: 148 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 27.82 s/job
2025-07-31 21:50:21: Sobol, failed: 148 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:50:35: Sobol, failed: 148 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:50:49: Sobol, failed: 148 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:51:04: Sobol, failed: 148 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 21:51:30: Sobol, failed: 149 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:51:43: Sobol, failed: 149 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 21:52:09: Sobol, failed: 149 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 26.62 s/job
2025-07-31 21:52:22: Sobol, failed: 149 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:52:39: Sobol, failed: 149 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:52:53: Sobol, failed: 149 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:53:08: Sobol, failed: 149 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 21:53:08: Sobol, failed: 149 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 21:53:46: Sobol, failed: 151 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 21:54:01: Sobol, failed: 151 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 21:54:31: Sobol, failed: 151 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 31.79 s/job
2025-07-31 21:54:44: Sobol, failed: 151 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 21:54:58: Sobol, failed: 151 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 21:55:13: Sobol, failed: 151 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 21:55:28: Sobol, failed: 151 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 21:55:54: Sobol, failed: 151 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 26.73 s/job
2025-07-31 21:56:07: Sobol, failed: 151 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:56:21: Sobol, failed: 151 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:56:35: Sobol, failed: 151 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:56:49: Sobol, failed: 151 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 21:57:17: Sobol, failed: 152 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:57:44: Sobol, failed: 152 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 21:58:11: Sobol, failed: 152 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 41.98 s/job
2025-07-31 21:58:24: Sobol, failed: 152 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 21:58:38: Sobol, failed: 152 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 21:58:52: Sobol, failed: 152 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 21:59:05: Sobol, failed: 152 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 21:59:33: Sobol, failed: 153 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 21:59:47: Sobol, failed: 153 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:00:14: Sobol, failed: 153 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 27.37 s/job
2025-07-31 22:00:27: Sobol, failed: 153 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:00:40: Sobol, failed: 153 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:00:57: Sobol, failed: 153 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:01:12: Sobol, failed: 153 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 22:01:40: Sobol, failed: 154 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:02:07: Sobol, failed: 154 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:02:33: Sobol, failed: 154 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 39.45 s/job
2025-07-31 22:02:46: Sobol, failed: 154 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:03:00: Sobol, failed: 154 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:03:14: Sobol, failed: 154 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:03:29: Sobol, failed: 154 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 22:03:55: Sobol, failed: 155 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:04:09: Sobol, failed: 155 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:04:36: Sobol, failed: 155 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 27.48 s/job
2025-07-31 22:04:49: Sobol, failed: 155 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:05:03: Sobol, failed: 155 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:05:19: Sobol, failed: 155 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), started new job
2025-07-31 22:05:33: Sobol, failed: 155 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 22:06:01: Sobol, failed: 156 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:06:15: Sobol, failed: 156 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:06:46: Sobol, failed: 156 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 31.92 s/job
2025-07-31 22:06:59: Sobol, failed: 156 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:07:13: Sobol, failed: 156 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:07:28: Sobol, failed: 156 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:07:42: Sobol, failed: 156 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 22:08:09: Sobol, failed: 157 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:08:37: Sobol, failed: 157 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:09:04: Sobol, failed: 157 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 41.25 s/job
2025-07-31 22:09:18: Sobol, failed: 157 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:09:32: Sobol, failed: 157 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:09:47: Sobol, failed: 157 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:10:02: Sobol, failed: 157 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 22:10:30: Sobol, failed: 158 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:10:44: Sobol, failed: 158 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:11:11: Sobol, failed: 158 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 28.57 s/job
2025-07-31 22:11:25: Sobol, failed: 158 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:11:39: Sobol, failed: 158 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:11:54: Sobol, failed: 158 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:12:09: Sobol, failed: 158 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 22:12:38: Sobol, failed: 159 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs, finished 1 job
2025-07-31 22:12:52: Sobol, failed: 159 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 22:13:21: Sobol, failed: 160 ('VAL_ACC: <FLOAT>' not found), finishing previous jobs (1), finished 1 job
2025-07-31 22:13:39: Sobol, failed: 160 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 22:14:06: Sobol, failed: 160 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 28.23 s/job
2025-07-31 22:14:20: Sobol, failed: 160 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 22:14:34: Sobol, failed: 160 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 22:14:48: Sobol, failed: 160 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 22:15:05: Sobol, failed: 160 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 22:15:32: Sobol, failed: 160 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 28.04 s/job
2025-07-31 22:15:45: Sobol, failed: 160 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:15:59: Sobol, failed: 160 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:16:14: Sobol, failed: 160 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:16:29: Sobol, failed: 160 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 22:17:02: Sobol, failed: 161 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:17:17: Sobol, failed: 161 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:17:44: Sobol, failed: 161 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 27.93 s/job
2025-07-31 22:17:58: Sobol, failed: 161 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:18:13: Sobol, failed: 161 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:18:28: Sobol, failed: 161 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:18:43: Sobol, failed: 161 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 22:19:11: Sobol, failed: 162 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:19:42: Sobol, failed: 162 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:20:09: Sobol, failed: 162 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 45.59 s/job
2025-07-31 22:20:24: Sobol, failed: 162 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:20:38: Sobol, failed: 162 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:20:56: Sobol, failed: 162 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:21:24: Sobol, failed: 162 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 22:21:25: Sobol, failed: 162 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 22:22:00: Sobol, failed: 164 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 22:22:15: Sobol, failed: 164 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 22:22:42: Sobol, failed: 164 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 28.52 s/job
2025-07-31 22:22:56: Sobol, failed: 164 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 22:23:10: Sobol, failed: 164 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 22:23:25: Sobol, failed: 164 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 22:23:56: Sobol, failed: 164 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-07-31 22:24:24: Sobol, failed: 164 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 43.00 s/job
2025-07-31 22:24:38: Sobol, failed: 164 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:24:54: Sobol, failed: 164 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:25:08: Sobol, failed: 164 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:25:23: Sobol, failed: 164 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 22:25:53: Sobol, failed: 165 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:26:22: Sobol, failed: 165 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:26:49: Sobol, failed: 165 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 42.17 s/job
2025-07-31 22:27:03: Sobol, failed: 165 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:27:17: Sobol, failed: 165 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:27:33: Sobol, failed: 165 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:27:48: Sobol, failed: 165 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 22:28:16: Sobol, failed: 166 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:28:45: Sobol, failed: 166 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:29:13: Sobol, failed: 166 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 42.74 s/job
2025-07-31 22:29:27: Sobol, failed: 166 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:29:41: Sobol, failed: 166 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:29:55: Sobol, failed: 166 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:30:11: Sobol, failed: 166 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 22:30:11: Sobol, failed: 166 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 22:30:47: Sobol, failed: 168 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 22:31:03: Sobol, failed: 168 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 22:31:31: Sobol, failed: 168 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 29.62 s/job
2025-07-31 22:31:45: Sobol, failed: 168 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 22:31:59: Sobol, failed: 168 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 22:32:15: Sobol, failed: 168 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 22:32:32: Sobol, failed: 168 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 22:33:01: Sobol, failed: 168 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 29.15 s/job
2025-07-31 22:33:14: Sobol, failed: 168 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:33:29: Sobol, failed: 168 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:33:44: Sobol, failed: 168 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:34:00: Sobol, failed: 168 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 22:34:28: Sobol, failed: 169 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:34:43: Sobol, failed: 169 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:35:13: Sobol, failed: 169 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 29.69 s/job
2025-07-31 22:35:26: Sobol, failed: 169 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:35:42: Sobol, failed: 169 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:35:57: Sobol, failed: 169 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:36:27: Sobol, failed: 169 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 22:36:27: Sobol, failed: 169 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 22:37:03: Sobol, failed: 171 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 22:37:18: Sobol, failed: 171 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 22:37:46: Sobol, failed: 171 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 28.78 s/job
2025-07-31 22:38:00: Sobol, failed: 171 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 22:38:15: Sobol, failed: 171 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 22:38:30: Sobol, failed: 171 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 22:38:47: Sobol, failed: 171 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 22:39:15: Sobol, failed: 171 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 28.96 s/job
2025-07-31 22:39:28: Sobol, failed: 171 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:39:57: Sobol, failed: 171 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:40:13: Sobol, failed: 171 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:40:28: Sobol, failed: 171 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 22:40:56: Sobol, failed: 172 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:41:11: Sobol, failed: 172 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:41:39: Sobol, failed: 172 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 29.22 s/job
2025-07-31 22:41:53: Sobol, failed: 172 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:42:08: Sobol, failed: 172 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:42:23: Sobol, failed: 172 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:42:39: Sobol, failed: 172 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 22:43:09: Sobol, failed: 173 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:43:24: Sobol, failed: 173 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:43:53: Sobol, failed: 173 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 30.01 s/job
2025-07-31 22:44:07: Sobol, failed: 173 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:44:22: Sobol, failed: 173 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:44:38: Sobol, failed: 173 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:44:53: Sobol, failed: 173 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 22:45:22: Sobol, failed: 174 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:45:52: Sobol, failed: 174 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:46:22: Sobol, failed: 174 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 43.91 s/job
2025-07-31 22:46:36: Sobol, failed: 174 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:46:50: Sobol, failed: 174 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:47:05: Sobol, failed: 174 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:47:21: Sobol, failed: 174 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 22:47:54: Sobol, failed: 175 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:48:24: Sobol, failed: 175 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:48:52: Sobol, failed: 175 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 44.27 s/job
2025-07-31 22:49:07: Sobol, failed: 175 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:49:21: Sobol, failed: 175 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:49:38: Sobol, failed: 175 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:49:58: Sobol, failed: 175 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 22:50:27: Sobol, failed: 176 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 22:50:43: Sobol, failed: 176 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 22:51:12: Sobol, failed: 176 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 30.96 s/job
2025-07-31 22:51:28: Sobol, failed: 176 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:51:44: Sobol, failed: 176 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:52:00: Sobol, failed: 176 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:52:29: Sobol, failed: 176 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 22:52:29: Sobol, failed: 176 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 22:53:07: Sobol, failed: 178 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 22:53:22: Sobol, failed: 178 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 22:53:51: Sobol, failed: 178 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 30.27 s/job
2025-07-31 22:54:06: Sobol, failed: 178 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 22:54:21: Sobol, failed: 178 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 22:54:37: Sobol, failed: 178 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 22:54:55: Sobol, failed: 178 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 22:55:31: Sobol, failed: 178 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 36.03 s/job
2025-07-31 22:55:46: Sobol, failed: 178 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 22:56:01: Sobol, failed: 178 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 22:56:16: Sobol, failed: 178 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 22:56:32: Sobol, failed: 178 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 22:57:02: Sobol, failed: 179 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs, finished 1 job
2025-07-31 22:57:17: Sobol, failed: 179 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 22:57:47: Sobol, failed: 180 ('VAL_ACC: <FLOAT>' not found), finishing previous jobs (1), finished 1 job
2025-07-31 22:58:08: Sobol, failed: 180 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 22:58:42: Sobol, failed: 180 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 34.52 s/job
2025-07-31 22:58:56: Sobol, failed: 180 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 22:59:13: Sobol, failed: 180 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 22:59:31: Sobol, failed: 180 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), started new job
2025-07-31 23:00:00: Sobol, failed: 180 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 23:00:30: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:00:48: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 23:01:18: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 30.99 s/job
2025-07-31 23:01:33: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 23:01:48: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 23:02:04: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 23:02:22: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 23:02:57: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 34.95 s/job
2025-07-31 23:03:13: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:03:43: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:03:58: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:04:31: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 23:04:31: Sobol, failed: 181 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 23:05:10: Sobol, failed: 183 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 23:05:26: Sobol, failed: 183 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 23:05:56: Sobol, failed: 183 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 30.95 s/job
2025-07-31 23:06:12: Sobol, failed: 183 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 23:06:28: Sobol, failed: 183 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 23:06:45: Sobol, failed: 183 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 23:07:04: Sobol, failed: 183 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 23:07:34: Sobol, failed: 183 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 31.47 s/job
2025-07-31 23:07:49: Sobol, failed: 183 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:08:06: Sobol, failed: 183 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:08:21: Sobol, failed: 183 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:08:37: Sobol, failed: 183 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 23:09:11: Sobol, failed: 184 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:09:27: Sobol, failed: 184 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:09:57: Sobol, failed: 184 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 31.80 s/job
2025-07-31 23:10:12: Sobol, failed: 184 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:10:28: Sobol, failed: 184 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:10:44: Sobol, failed: 184 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:11:00: Sobol, failed: 184 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 23:11:34: Sobol, failed: 185 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:11:50: Sobol, failed: 185 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:12:20: Sobol, failed: 185 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 31.17 s/job
2025-07-31 23:12:35: Sobol, failed: 185 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:12:51: Sobol, failed: 185 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:13:07: Sobol, failed: 185 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:13:24: Sobol, failed: 185 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 23:14:00: Sobol, failed: 186 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:14:31: Sobol, failed: 186 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:15:01: Sobol, failed: 186 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 46.01 s/job
2025-07-31 23:15:17: Sobol, failed: 186 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:15:33: Sobol, failed: 186 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:15:50: Sobol, failed: 186 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:16:06: Sobol, failed: 186 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 23:16:37: Sobol, failed: 187 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:16:53: Sobol, failed: 187 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:17:24: Sobol, failed: 187 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 31.56 s/job
2025-07-31 23:17:39: Sobol, failed: 187 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:17:54: Sobol, failed: 187 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:18:11: Sobol, failed: 187 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:18:29: Sobol, failed: 187 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 23:18:59: Sobol, failed: 188 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:19:15: Sobol, failed: 188 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:19:46: Sobol, failed: 188 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 31.63 s/job
2025-07-31 23:20:01: Sobol, failed: 188 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:20:16: Sobol, failed: 188 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:20:32: Sobol, failed: 188 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:20:50: Sobol, failed: 188 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 23:21:20: Sobol, failed: 189 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:21:53: Sobol, failed: 189 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:22:23: Sobol, failed: 189 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 47.79 s/job
2025-07-31 23:22:39: Sobol, failed: 189 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:22:56: Sobol, failed: 189 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:23:12: Sobol, failed: 189 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:23:28: Sobol, failed: 189 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 23:23:59: Sobol, failed: 190 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:24:16: Sobol, failed: 190 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:24:47: Sobol, failed: 190 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 31.96 s/job
2025-07-31 23:25:02: Sobol, failed: 190 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:25:18: Sobol, failed: 190 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:25:34: Sobol, failed: 190 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:25:51: Sobol, failed: 190 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 23:26:23: Sobol, failed: 191 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:26:55: Sobol, failed: 191 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:27:31: Sobol, failed: 191 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 47.38 s/job
2025-07-31 23:27:47: Sobol, failed: 191 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:28:03: Sobol, failed: 191 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:28:19: Sobol, failed: 191 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:28:36: Sobol, failed: 191 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 23:29:08: Sobol, failed: 192 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:29:26: Sobol, failed: 192 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:29:59: Sobol, failed: 192 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 34.73 s/job
2025-07-31 23:30:14: Sobol, failed: 192 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:30:31: Sobol, failed: 192 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:30:47: Sobol, failed: 192 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:31:04: Sobol, failed: 192 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 23:31:36: Sobol, failed: 193 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:31:53: Sobol, failed: 193 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:32:24: Sobol, failed: 193 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 33.17 s/job
2025-07-31 23:32:39: Sobol, failed: 193 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:32:57: Sobol, failed: 193 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:33:13: Sobol, failed: 193 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:33:30: Sobol, failed: 193 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 23:34:03: Sobol, failed: 194 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:34:20: Sobol, failed: 194 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:34:51: Sobol, failed: 194 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 32.19 s/job
2025-07-31 23:35:06: Sobol, failed: 194 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:35:23: Sobol, failed: 194 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:35:40: Sobol, failed: 194 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:35:56: Sobol, failed: 194 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-07-31 23:36:28: Sobol, failed: 195 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:36:44: Sobol, failed: 195 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:37:16: Sobol, failed: 195 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 32.66 s/job
2025-07-31 23:37:32: Sobol, failed: 195 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:37:48: Sobol, failed: 195 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:38:05: Sobol, failed: 195 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:38:22: Sobol, failed: 195 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-07-31 23:38:53: Sobol, failed: 196 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:39:10: Sobol, failed: 196 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-07-31 23:39:43: Sobol, failed: 196 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 34.29 s/job
2025-07-31 23:39:59: Sobol, failed: 196 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:40:15: Sobol, failed: 196 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:40:32: Sobol, failed: 196 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:41:10: Sobol, failed: 196 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 23:41:10: Sobol, failed: 196 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 23:41:52: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 23:42:09: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 23:42:42: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 34.52 s/job
2025-07-31 23:42:57: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 23:43:46: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 23:44:03: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 23:44:23: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-07-31 23:44:55: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 32.49 s/job
2025-07-31 23:45:11: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:45:43: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:46:00: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-07-31 23:46:32: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 23:46:32: Sobol, failed: 198 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 23:47:14: Sobol, failed: 200 ('VAL_ACC: <FLOAT>' not found), finishing jobs, finished 2 jobs
2025-07-31 23:47:36: Sobol, failed: 200 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 23:48:08: Sobol, failed: 200 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 32.98 s/job
2025-07-31 23:48:24: Sobol, failed: 200 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 23:48:44: Sobol, failed: 200 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 23:49:02: Sobol, failed: 200 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 23:49:34: Sobol, failed: 200 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 23:50:07: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:50:24: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 23:50:57: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 33.55 s/job
2025-07-31 23:51:12: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 23:51:29: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 23:51:46: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 23:52:06: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-07-31 23:52:41: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 35.87 s/job
2025-07-31 23:52:58: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-07-31 23:53:15: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-07-31 23:53:34: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), started new job
2025-07-31 23:54:06: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 23:54:06: Sobol, failed: 201 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-07-31 23:54:49: Sobol, failed: 203 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 23:55:07: Sobol, failed: 203 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 23:55:39: Sobol, failed: 203 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 34.53 s/job
2025-07-31 23:55:55: Sobol, failed: 203 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 23:56:12: Sobol, failed: 203 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 23:56:31: Sobol, failed: 203 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), started new job
2025-07-31 23:57:04: Sobol, failed: 203 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-07-31 23:57:36: Sobol, failed: 204 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 23:57:53: Sobol, failed: 204 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-07-31 23:58:27: Sobol, failed: 204 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 34.80 s/job
2025-07-31 23:58:42: Sobol, failed: 204 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-07-31 23:58:59: Sobol, failed: 204 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-07-31 23:59:16: Sobol, failed: 204 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-07-31 23:59:37: Sobol, failed: 204 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 00:00:22: Sobol, failed: 204 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 46.56 s/job
2025-08-01 00:00:38: Sobol, failed: 204 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:00:55: Sobol, failed: 204 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:01:12: Sobol, failed: 204 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:01:30: Sobol, failed: 204 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 00:02:04: Sobol, failed: 205 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 00:02:22: Sobol, failed: 205 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 00:02:54: Sobol, failed: 205 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 33.91 s/job
2025-08-01 00:03:11: Sobol, failed: 205 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:03:30: Sobol, failed: 205 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:03:48: Sobol, failed: 205 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:04:06: Sobol, failed: 205 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 00:04:42: Sobol, failed: 206 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 00:05:01: Sobol, failed: 206 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 00:05:34: Sobol, failed: 206 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 35.41 s/job
2025-08-01 00:05:50: Sobol, failed: 206 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:06:08: Sobol, failed: 206 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:06:26: Sobol, failed: 206 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:06:44: Sobol, failed: 206 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 00:06:44: Sobol, failed: 206 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 00:07:31: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 00:07:49: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 00:08:25: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 37.68 s/job
2025-08-01 00:08:42: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 00:09:00: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 00:09:17: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 00:09:37: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 00:10:11: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 35.25 s/job
2025-08-01 00:10:28: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:10:46: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:11:04: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:11:38: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 00:11:38: Sobol, failed: 208 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 00:12:22: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 00:12:40: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 00:13:15: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 35.60 s/job
2025-08-01 00:13:32: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 00:13:51: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 00:14:10: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 00:14:32: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 00:15:06: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 35.32 s/job
2025-08-01 00:15:22: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:15:41: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:15:59: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:16:34: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 00:16:34: Sobol, failed: 210 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 00:17:18: Sobol, failed: 212 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 00:17:36: Sobol, failed: 212 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 00:18:10: Sobol, failed: 212 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 35.16 s/job
2025-08-01 00:18:26: Sobol, failed: 212 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 00:18:44: Sobol, failed: 212 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 00:19:01: Sobol, failed: 212 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 00:19:35: Sobol, failed: 212 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 00:20:08: Sobol, failed: 213 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 00:20:26: Sobol, failed: 213 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 00:20:59: Sobol, failed: 213 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 34.47 s/job
2025-08-01 00:21:15: Sobol, failed: 213 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 00:21:32: Sobol, failed: 213 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 00:21:50: Sobol, failed: 213 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 00:22:10: Sobol, failed: 213 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 00:22:44: Sobol, failed: 213 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 34.88 s/job
2025-08-01 00:23:00: Sobol, failed: 213 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:23:18: Sobol, failed: 213 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:23:36: Sobol, failed: 213 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:23:54: Sobol, failed: 213 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 00:24:30: Sobol, failed: 214 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 00:24:47: Sobol, failed: 214 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-08-01 00:25:21: Sobol, failed: 214 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 35.25 s/job
2025-08-01 00:25:39: Sobol, failed: 214 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:25:56: Sobol, failed: 214 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:26:14: Sobol, failed: 214 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:26:34: Sobol, failed: 214 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 00:27:09: Sobol, failed: 215 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 00:27:27: Sobol, failed: 215 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 00:28:03: Sobol, failed: 215 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 36.11 s/job
2025-08-01 00:28:19: Sobol, failed: 215 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:28:37: Sobol, failed: 215 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:28:56: Sobol, failed: 215 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:29:32: Sobol, failed: 215 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 00:29:32: Sobol, failed: 215 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 00:30:21: Sobol, failed: 217 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 00:30:39: Sobol, failed: 217 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 00:31:15: Sobol, failed: 217 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 37.38 s/job
2025-08-01 00:31:37: Sobol, failed: 217 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 00:31:54: Sobol, failed: 217 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 00:32:12: Sobol, failed: 217 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 00:32:33: Sobol, failed: 217 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 00:33:13: Sobol, failed: 217 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 41.58 s/job
2025-08-01 00:33:31: Sobol, failed: 217 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:33:49: Sobol, failed: 217 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:34:08: Sobol, failed: 217 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:34:26: Sobol, failed: 217 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 00:35:07: Sobol, failed: 218 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 00:35:42: Sobol, failed: 218 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 00:36:16: Sobol, failed: 218 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 51.96 s/job
2025-08-01 00:36:36: Sobol, failed: 218 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:36:54: Sobol, failed: 218 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:37:12: Sobol, failed: 218 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:37:37: Sobol, failed: 218 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 00:38:11: Sobol, failed: 219 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs, finished 1 job
2025-08-01 00:38:28: Sobol, failed: 219 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 00:39:05: Sobol, failed: 220 ('VAL_ACC: <FLOAT>' not found), finishing previous jobs (1), finished 1 job
2025-08-01 00:39:27: Sobol, failed: 220 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 00:40:09: Sobol, failed: 220 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 42.83 s/job
2025-08-01 00:40:28: Sobol, failed: 220 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 00:40:45: Sobol, failed: 220 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 00:41:03: Sobol, failed: 220 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 00:41:38: Sobol, failed: 220 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 00:42:19: Sobol, failed: 221 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 00:42:38: Sobol, failed: 221 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 00:43:12: Sobol, failed: 221 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 35.52 s/job
2025-08-01 00:43:29: Sobol, failed: 221 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 00:43:47: Sobol, failed: 221 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 00:44:05: Sobol, failed: 221 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 00:44:26: Sobol, failed: 221 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 00:45:05: Sobol, failed: 221 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 40.31 s/job
2025-08-01 00:45:22: Sobol, failed: 221 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:45:40: Sobol, failed: 221 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:46:05: Sobol, failed: 221 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:46:26: Sobol, failed: 221 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 00:47:01: Sobol, failed: 222 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 00:47:37: Sobol, failed: 222 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 00:48:19: Sobol, failed: 222 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 60.21 s/job
2025-08-01 00:48:36: Sobol, failed: 222 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:48:54: Sobol, failed: 222 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:49:12: Sobol, failed: 222 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:49:30: Sobol, failed: 222 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 00:50:18: Sobol, failed: 223 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 00:50:38: Sobol, failed: 223 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 00:51:14: Sobol, failed: 223 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 38.14 s/job
2025-08-01 00:51:32: Sobol, failed: 223 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:51:50: Sobol, failed: 223 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:52:09: Sobol, failed: 223 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:52:28: Sobol, failed: 223 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 00:53:04: Sobol, failed: 224 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 00:53:23: Sobol, failed: 224 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 00:54:11: Sobol, failed: 224 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 49.36 s/job
2025-08-01 00:54:29: Sobol, failed: 224 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 00:54:47: Sobol, failed: 224 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 00:55:05: Sobol, failed: 224 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 00:55:43: Sobol, failed: 224 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 00:55:43: Sobol, failed: 224 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 00:56:35: Sobol, failed: 226 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 00:56:53: Sobol, failed: 226 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 00:57:29: Sobol, failed: 226 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 36.84 s/job
2025-08-01 00:57:46: Sobol, failed: 226 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 00:58:08: Sobol, failed: 226 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 00:58:33: Sobol, failed: 226 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 00:59:14: Sobol, failed: 226 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 00:59:50: Sobol, failed: 227 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:00:10: Sobol, failed: 227 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 01:00:46: Sobol, failed: 227 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 36.65 s/job
2025-08-01 01:01:04: Sobol, failed: 227 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 01:01:23: Sobol, failed: 227 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 01:01:42: Sobol, failed: 227 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 01:02:22: Sobol, failed: 227 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), job_failed
2025-08-01 01:03:07: Sobol, failed: 228 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:03:27: Sobol, failed: 228 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 01:04:03: Sobol, failed: 228 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 37.52 s/job
2025-08-01 01:04:25: Sobol, failed: 228 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 01:04:43: Sobol, failed: 228 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 01:05:03: Sobol, failed: 228 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 01:05:45: Sobol, failed: 228 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 01:06:25: Sobol, failed: 229 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:06:44: Sobol, failed: 229 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 01:07:20: Sobol, failed: 229 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 37.92 s/job
2025-08-01 01:07:38: Sobol, failed: 229 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 01:07:57: Sobol, failed: 229 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 01:08:16: Sobol, failed: 229 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 01:08:38: Sobol, failed: 229 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 01:09:28: Sobol, failed: 229 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 51.60 s/job
2025-08-01 01:09:48: Sobol, failed: 229 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 01:10:07: Sobol, failed: 229 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 01:10:27: Sobol, failed: 229 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 01:10:46: Sobol, failed: 229 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 01:11:22: Sobol, failed: 230 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:11:45: Sobol, failed: 230 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 01:12:20: Sobol, failed: 230 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 36.68 s/job
2025-08-01 01:12:38: Sobol, failed: 230 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 01:12:57: Sobol, failed: 230 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 01:13:17: Sobol, failed: 230 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 01:13:36: Sobol, failed: 230 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 01:14:20: Sobol, failed: 231 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:14:39: Sobol, failed: 231 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 01:15:15: Sobol, failed: 231 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 37.20 s/job
2025-08-01 01:15:32: Sobol, failed: 231 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 01:15:51: Sobol, failed: 231 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 01:16:10: Sobol, failed: 231 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 01:16:30: Sobol, failed: 231 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 01:17:10: Sobol, failed: 232 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:17:29: Sobol, failed: 232 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 01:18:12: Sobol, failed: 232 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 43.65 s/job
2025-08-01 01:18:29: Sobol, failed: 232 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 01:18:48: Sobol, failed: 232 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 01:19:11: Sobol, failed: 232 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 01:19:31: Sobol, failed: 232 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 01:20:07: Sobol, failed: 233 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:20:26: Sobol, failed: 233 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 01:21:09: Sobol, failed: 233 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 43.77 s/job
2025-08-01 01:21:26: Sobol, failed: 233 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 01:21:45: Sobol, failed: 233 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 01:22:05: Sobol, failed: 233 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 01:22:42: Sobol, failed: 233 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 01:22:42: Sobol, failed: 233 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 01:23:30: Sobol, failed: 235 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 01:23:50: Sobol, failed: 235 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 01:24:28: Sobol, failed: 235 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 39.83 s/job
2025-08-01 01:24:46: Sobol, failed: 235 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 01:25:15: Sobol, failed: 235 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 01:25:35: Sobol, failed: 235 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 01:26:18: Sobol, failed: 235 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 01:26:56: Sobol, failed: 236 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:27:15: Sobol, failed: 236 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 01:27:52: Sobol, failed: 236 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 38.83 s/job
2025-08-01 01:28:10: Sobol, failed: 236 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 01:28:31: Sobol, failed: 236 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 01:29:00: Sobol, failed: 236 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 01:29:39: Sobol, failed: 236 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 01:30:16: Sobol, failed: 237 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:30:36: Sobol, failed: 237 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 01:31:13: Sobol, failed: 237 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 38.89 s/job
2025-08-01 01:31:31: Sobol, failed: 237 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 01:31:51: Sobol, failed: 237 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 01:32:10: Sobol, failed: 237 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 01:32:39: Sobol, failed: 237 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 01:33:21: Sobol, failed: 237 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 43.20 s/job
2025-08-01 01:33:40: Sobol, failed: 237 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 01:33:59: Sobol, failed: 237 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 01:34:20: Sobol, failed: 237 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 01:34:41: Sobol, failed: 237 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 01:35:38: Sobol, failed: 238 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:35:58: Sobol, failed: 238 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 01:36:35: Sobol, failed: 238 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 39.27 s/job
2025-08-01 01:37:04: Sobol, failed: 238 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 01:37:27: Sobol, failed: 238 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 01:37:49: Sobol, failed: 238 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 01:38:08: Sobol, failed: 238 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 01:38:51: Sobol, failed: 239 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs, finished 1 job
2025-08-01 01:39:09: Sobol, failed: 239 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 01:39:58: Sobol, failed: 240 ('VAL_ACC: <FLOAT>' not found), finishing previous jobs (1), finished 1 job
2025-08-01 01:40:26: Sobol, failed: 240 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 01:41:05: Sobol, failed: 240 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 40.41 s/job
2025-08-01 01:41:23: Sobol, failed: 240 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 01:41:44: Sobol, failed: 240 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 01:42:20: Sobol, failed: 240 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 01:42:42: Sobol, failed: 240 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 01:43:20: Sobol, failed: 240 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 38.60 s/job
2025-08-01 01:43:38: Sobol, failed: 240 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 01:43:58: Sobol, failed: 240 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 01:44:42: Sobol, failed: 240 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 01:45:02: Sobol, failed: 240 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 01:45:44: Sobol, failed: 241 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:46:04: Sobol, failed: 241 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 01:46:41: Sobol, failed: 241 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 38.80 s/job
2025-08-01 01:47:00: Sobol, failed: 241 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 01:47:19: Sobol, failed: 241 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 01:47:39: Sobol, failed: 241 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 01:47:59: Sobol, failed: 241 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 01:48:40: Sobol, failed: 242 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:48:59: Sobol, failed: 242 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 01:49:37: Sobol, failed: 242 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 38.78 s/job
2025-08-01 01:49:55: Sobol, failed: 242 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 01:50:15: Sobol, failed: 242 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 01:50:34: Sobol, failed: 242 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 01:51:12: Sobol, failed: 242 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 01:51:12: Sobol, failed: 242 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 01:52:04: Sobol, failed: 244 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 01:52:25: Sobol, failed: 244 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 01:53:03: Sobol, failed: 244 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 39.92 s/job
2025-08-01 01:53:21: Sobol, failed: 244 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 01:53:41: Sobol, failed: 244 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 01:54:00: Sobol, failed: 244 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 01:54:39: Sobol, failed: 244 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 01:55:17: Sobol, failed: 245 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 01:55:38: Sobol, failed: 245 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 01:56:18: Sobol, failed: 245 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 41.42 s/job
2025-08-01 01:56:36: Sobol, failed: 245 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 01:56:56: Sobol, failed: 245 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 01:57:15: Sobol, failed: 245 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 01:57:38: Sobol, failed: 245 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 01:58:16: Sobol, failed: 245 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 39.09 s/job
2025-08-01 01:58:34: Sobol, failed: 245 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 01:58:54: Sobol, failed: 245 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 01:59:13: Sobol, failed: 245 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 01:59:34: Sobol, failed: 245 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 02:00:12: Sobol, failed: 246 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 02:00:31: Sobol, failed: 246 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 02:01:10: Sobol, failed: 246 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 40.05 s/job
2025-08-01 02:01:29: Sobol, failed: 246 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:01:49: Sobol, failed: 246 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:02:10: Sobol, failed: 246 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:02:30: Sobol, failed: 246 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 02:03:09: Sobol, failed: 247 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 02:03:29: Sobol, failed: 247 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 02:04:08: Sobol, failed: 247 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 40.51 s/job
2025-08-01 02:04:27: Sobol, failed: 247 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:04:46: Sobol, failed: 247 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:05:06: Sobol, failed: 247 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:05:44: Sobol, failed: 247 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 02:05:44: Sobol, failed: 247 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 02:06:36: Sobol, failed: 249 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 02:06:56: Sobol, failed: 249 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 02:07:38: Sobol, failed: 249 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 43.70 s/job
2025-08-01 02:07:57: Sobol, failed: 249 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 02:08:17: Sobol, failed: 249 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 02:08:38: Sobol, failed: 249 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 02:09:17: Sobol, failed: 249 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 02:09:55: Sobol, failed: 250 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 02:10:16: Sobol, failed: 250 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 02:10:55: Sobol, failed: 250 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 40.93 s/job
2025-08-01 02:11:15: Sobol, failed: 250 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 02:11:35: Sobol, failed: 250 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 02:11:57: Sobol, failed: 250 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 02:12:40: Sobol, failed: 250 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 02:13:21: Sobol, failed: 250 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 61.89 s/job
2025-08-01 02:13:40: Sobol, failed: 250 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:14:00: Sobol, failed: 250 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:14:20: Sobol, failed: 250 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:14:42: Sobol, failed: 250 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 02:15:24: Sobol, failed: 251 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 02:15:45: Sobol, failed: 251 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 02:16:27: Sobol, failed: 251 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 43.58 s/job
2025-08-01 02:16:46: Sobol, failed: 251 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:17:07: Sobol, failed: 251 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:17:27: Sobol, failed: 251 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:17:47: Sobol, failed: 251 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 02:18:26: Sobol, failed: 252 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 02:18:47: Sobol, failed: 252 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 02:19:27: Sobol, failed: 252 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 41.68 s/job
2025-08-01 02:19:46: Sobol, failed: 252 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:20:07: Sobol, failed: 252 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:20:28: Sobol, failed: 252 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:21:14: Sobol, failed: 252 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 02:21:14: Sobol, failed: 252 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 02:22:08: Sobol, failed: 254 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 02:22:32: Sobol, failed: 254 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 02:23:12: Sobol, failed: 254 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 42.21 s/job
2025-08-01 02:23:31: Sobol, failed: 254 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 02:23:52: Sobol, failed: 254 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 02:24:12: Sobol, failed: 254 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 02:24:35: Sobol, failed: 254 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 02:25:16: Sobol, failed: 254 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 41.63 s/job
2025-08-01 02:25:34: Sobol, failed: 254 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:25:54: Sobol, failed: 254 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:26:14: Sobol, failed: 254 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:26:37: Sobol, failed: 254 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 02:27:16: Sobol, failed: 255 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 02:27:38: Sobol, failed: 255 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 02:28:17: Sobol, failed: 255 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 41.53 s/job
2025-08-01 02:28:37: Sobol, failed: 255 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:28:58: Sobol, failed: 255 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:29:22: Sobol, failed: 255 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:29:47: Sobol, failed: 255 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 02:30:29: Sobol, failed: 256 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 02:30:49: Sobol, failed: 256 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 02:31:30: Sobol, failed: 256 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 42.13 s/job
2025-08-01 02:31:49: Sobol, failed: 256 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:32:09: Sobol, failed: 256 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:32:30: Sobol, failed: 256 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:32:51: Sobol, failed: 256 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 02:33:35: Sobol, failed: 257 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 02:33:55: Sobol, failed: 257 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 02:34:37: Sobol, failed: 257 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 43.05 s/job
2025-08-01 02:34:56: Sobol, failed: 257 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:35:17: Sobol, failed: 257 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:35:37: Sobol, failed: 257 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:36:17: Sobol, failed: 257 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 02:36:18: Sobol, failed: 257 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 02:37:13: Sobol, failed: 259 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 02:37:34: Sobol, failed: 259 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 02:38:13: Sobol, failed: 259 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 41.00 s/job
2025-08-01 02:38:33: Sobol, failed: 259 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 02:38:53: Sobol, failed: 259 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 02:39:14: Sobol, failed: 259 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 02:39:38: Sobol, failed: 259 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), waiting for 1 job
2025-08-01 02:40:03: Sobol, failed: 259 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 02:40:42: Sobol, failed: 260 ('VAL_ACC: <FLOAT>' not found), waiting for 1 job, finished 1 job
2025-08-01 02:41:07: Sobol, failed: 260 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 02:41:47: Sobol, failed: 260 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 42.13 s/job
2025-08-01 02:42:07: Sobol, failed: 260 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 02:42:27: Sobol, failed: 260 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 02:42:48: Sobol, failed: 260 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 02:43:14: Sobol, failed: 260 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 02:43:53: Sobol, failed: 260 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 41.38 s/job
2025-08-01 02:44:13: Sobol, failed: 260 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:44:35: Sobol, failed: 260 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:44:56: Sobol, failed: 260 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:45:19: Sobol, failed: 260 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 02:45:59: Sobol, failed: 261 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 02:46:19: Sobol, failed: 261 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 02:46:59: Sobol, failed: 261 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 42.05 s/job
2025-08-01 02:47:19: Sobol, failed: 261 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:47:39: Sobol, failed: 261 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:48:00: Sobol, failed: 261 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:48:23: Sobol, failed: 261 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 02:48:23: Sobol, failed: 261 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 02:49:15: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 02:49:38: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 02:50:18: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 41.92 s/job
2025-08-01 02:50:38: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 02:50:59: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 02:51:21: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), started new job
2025-08-01 02:51:46: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 02:52:29: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 44.64 s/job
2025-08-01 02:52:48: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:53:09: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:53:31: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:54:12: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 02:54:12: Sobol, failed: 263 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 02:55:09: Sobol, failed: 265 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 02:55:31: Sobol, failed: 265 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 02:56:11: Sobol, failed: 265 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 42.43 s/job
2025-08-01 02:56:35: Sobol, failed: 265 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 02:56:56: Sobol, failed: 265 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 02:57:21: Sobol, failed: 265 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 02:57:44: Sobol, failed: 265 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 02:58:24: Sobol, failed: 265 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 41.17 s/job
2025-08-01 02:58:44: Sobol, failed: 265 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 02:59:05: Sobol, failed: 265 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 02:59:26: Sobol, failed: 265 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 02:59:47: Sobol, failed: 265 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 03:00:29: Sobol, failed: 266 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 03:00:50: Sobol, failed: 266 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 03:01:30: Sobol, failed: 266 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 41.50 s/job
2025-08-01 03:01:50: Sobol, failed: 266 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 03:02:11: Sobol, failed: 266 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 03:02:31: Sobol, failed: 266 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 03:03:13: Sobol, failed: 266 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:03:13: Sobol, failed: 266 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:04:07: Sobol, failed: 268 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 03:04:28: Sobol, failed: 268 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 03:05:08: Sobol, failed: 268 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 41.55 s/job
2025-08-01 03:05:28: Sobol, failed: 268 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 03:05:49: Sobol, failed: 268 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 03:06:11: Sobol, failed: 268 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 03:06:51: Sobol, failed: 268 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 03:07:37: Sobol, failed: 269 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 03:07:58: Sobol, failed: 269 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 03:08:41: Sobol, failed: 269 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 44.85 s/job
2025-08-01 03:09:01: Sobol, failed: 269 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 03:09:22: Sobol, failed: 269 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 03:09:42: Sobol, failed: 269 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 03:10:07: Sobol, failed: 269 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 03:10:48: Sobol, failed: 269 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 42.49 s/job
2025-08-01 03:11:07: Sobol, failed: 269 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 03:11:29: Sobol, failed: 269 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 03:11:50: Sobol, failed: 269 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 03:12:11: Sobol, failed: 269 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 03:12:56: Sobol, failed: 270 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 03:13:18: Sobol, failed: 270 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 03:13:59: Sobol, failed: 270 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 43.39 s/job
2025-08-01 03:14:19: Sobol, failed: 270 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 03:14:40: Sobol, failed: 270 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 03:15:01: Sobol, failed: 270 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 03:15:23: Sobol, failed: 270 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:15:23: Sobol, failed: 270 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:16:16: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 03:16:39: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 03:17:20: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 42.53 s/job
2025-08-01 03:17:39: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 03:18:00: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 03:18:21: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 03:18:47: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 03:19:28: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 43.72 s/job
2025-08-01 03:19:48: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 03:20:10: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 03:20:35: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 03:21:17: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:21:17: Sobol, failed: 272 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:22:11: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 03:22:34: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 03:23:14: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 42.07 s/job
2025-08-01 03:23:34: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 03:23:56: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 03:24:23: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), started new job
2025-08-01 03:24:48: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 03:25:29: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 42.78 s/job
2025-08-01 03:25:50: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 03:26:12: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 03:26:33: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 03:27:14: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:27:14: Sobol, failed: 274 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:28:10: Sobol, failed: 276 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 03:28:31: Sobol, failed: 276 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 03:29:12: Sobol, failed: 276 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 42.68 s/job
2025-08-01 03:29:32: Sobol, failed: 276 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 03:29:53: Sobol, failed: 276 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 03:30:14: Sobol, failed: 276 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 03:30:39: Sobol, failed: 276 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 03:31:20: Sobol, failed: 276 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 43.00 s/job
2025-08-01 03:31:42: Sobol, failed: 276 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 03:32:03: Sobol, failed: 276 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 03:32:26: Sobol, failed: 276 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 03:32:48: Sobol, failed: 276 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 03:33:31: Sobol, failed: 277 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 03:33:53: Sobol, failed: 277 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 03:34:34: Sobol, failed: 277 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 42.77 s/job
2025-08-01 03:34:54: Sobol, failed: 277 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 03:35:17: Sobol, failed: 277 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 03:35:41: Sobol, failed: 277 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 03:36:23: Sobol, failed: 277 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:36:24: Sobol, failed: 277 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:37:18: Sobol, failed: 279 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 03:37:40: Sobol, failed: 279 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 03:38:21: Sobol, failed: 279 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 42.86 s/job
2025-08-01 03:38:41: Sobol, failed: 279 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 03:39:04: Sobol, failed: 279 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 03:39:28: Sobol, failed: 279 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 03:39:55: Sobol, failed: 279 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), waiting for 1 job
2025-08-01 03:40:21: Sobol, failed: 279 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 03:41:03: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), waiting for 1 job, finished 1 job
2025-08-01 03:41:30: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 03:42:11: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 43.12 s/job
2025-08-01 03:42:32: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 03:42:55: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 03:43:20: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 03:43:49: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 03:44:34: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 46.22 s/job
2025-08-01 03:44:54: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 03:45:16: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 03:45:38: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 03:46:21: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:46:21: Sobol, failed: 280 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:47:17: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 03:47:39: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 03:48:22: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 44.35 s/job
2025-08-01 03:48:43: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 03:49:05: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 03:49:27: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 03:49:53: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 03:50:35: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 43.83 s/job
2025-08-01 03:50:57: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 03:51:20: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 03:51:41: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 03:52:25: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:52:25: Sobol, failed: 282 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 03:53:21: Sobol, failed: 284 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 03:53:44: Sobol, failed: 284 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 03:54:26: Sobol, failed: 284 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 43.37 s/job
2025-08-01 03:54:47: Sobol, failed: 284 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 03:55:10: Sobol, failed: 284 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 03:55:32: Sobol, failed: 284 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 03:56:17: Sobol, failed: 284 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 03:56:58: Sobol, failed: 285 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 03:57:21: Sobol, failed: 285 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 03:58:02: Sobol, failed: 285 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 43.52 s/job
2025-08-01 03:58:23: Sobol, failed: 285 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 03:58:47: Sobol, failed: 285 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 03:59:09: Sobol, failed: 285 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 03:59:51: Sobol, failed: 285 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 04:00:33: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 04:01:01: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 04:01:44: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 49.98 s/job
2025-08-01 04:02:05: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 04:02:28: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 04:02:50: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 04:03:15: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 04:03:59: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 44.15 s/job
2025-08-01 04:04:19: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 04:04:41: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 04:05:04: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), started new job
2025-08-01 04:05:49: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 04:05:49: Sobol, failed: 286 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 04:06:50: Sobol, failed: 288 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 04:07:13: Sobol, failed: 288 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 04:07:55: Sobol, failed: 288 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 43.80 s/job
2025-08-01 04:08:19: Sobol, failed: 288 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 04:08:41: Sobol, failed: 288 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 04:09:05: Sobol, failed: 288 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), started new job
2025-08-01 04:09:48: Sobol, failed: 288 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 04:10:30: Sobol, failed: 289 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 04:10:53: Sobol, failed: 289 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 04:11:35: Sobol, failed: 289 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 44.28 s/job
2025-08-01 04:11:55: Sobol, failed: 289 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 04:12:17: Sobol, failed: 289 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 04:12:39: Sobol, failed: 289 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 04:13:25: Sobol, failed: 289 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 04:14:07: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 04:14:30: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 04:15:12: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 44.01 s/job
2025-08-01 04:15:32: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 04:15:54: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 04:16:17: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 04:16:43: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 04:17:25: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 44.23 s/job
2025-08-01 04:17:47: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 04:18:09: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 04:18:31: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 04:18:54: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (0%/20), job_failed
2025-08-01 04:18:54: Sobol, failed: 290 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (0%/20), job_failed
2025-08-01 04:19:51: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 04:20:13: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 04:20:56: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 44.25 s/job
2025-08-01 04:21:16: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 04:21:39: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 04:22:00: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 04:22:47: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 04:23:29: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 65.21 s/job
2025-08-01 04:23:50: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 04:24:12: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 04:24:34: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 04:25:19: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 04:25:19: Sobol, failed: 292 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 04:26:16: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 04:26:38: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 04:27:20: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 44.18 s/job
2025-08-01 04:27:41: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 04:28:04: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 04:28:26: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 04:28:52: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 04:29:37: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 46.27 s/job
2025-08-01 04:29:59: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 04:30:22: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 04:30:44: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 04:31:28: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 04:31:28: Sobol, failed: 294 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 04:32:25: Sobol, failed: 296 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 04:32:47: Sobol, failed: 296 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 04:33:31: Sobol, failed: 296 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 45.49 s/job
2025-08-01 04:33:52: Sobol, failed: 296 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 04:34:16: Sobol, failed: 296 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 04:34:38: Sobol, failed: 296 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 04:35:22: Sobol, failed: 296 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 04:36:06: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 04:36:29: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 04:37:14: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 46.95 s/job
2025-08-01 04:37:35: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 04:37:58: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 04:38:20: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 04:38:47: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 04:39:31: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 45.74 s/job
2025-08-01 04:39:53: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 04:40:16: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 04:40:40: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 04:41:24: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 04:41:24: Sobol, failed: 297 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 04:42:22: Sobol, failed: 299 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 04:42:45: Sobol, failed: 299 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 04:43:30: Sobol, failed: 299 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 46.41 s/job
2025-08-01 04:43:51: Sobol, failed: 299 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 04:44:14: Sobol, failed: 299 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 04:44:37: Sobol, failed: 299 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 04:45:21: Sobol, failed: 299 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 04:46:04: Sobol, failed: 300 ('VAL_ACC: <FLOAT>' not found), finishing jobs, finished 1 job
2025-08-01 04:46:34: Sobol, failed: 300 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 04:47:17: Sobol, failed: 300 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 44.90 s/job
2025-08-01 04:47:38: Sobol, failed: 300 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 04:48:01: Sobol, failed: 300 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 04:48:27: Sobol, failed: 300 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 04:48:54: Sobol, failed: 300 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 04:49:38: Sobol, failed: 300 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 45.71 s/job
2025-08-01 04:50:00: Sobol, failed: 300 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 04:50:24: Sobol, failed: 300 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 04:50:47: Sobol, failed: 300 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 04:51:10: Sobol, failed: 300 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 04:51:55: Sobol, failed: 301 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 04:52:18: Sobol, failed: 301 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 04:53:02: Sobol, failed: 301 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 45.90 s/job
2025-08-01 04:53:23: Sobol, failed: 301 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 04:53:47: Sobol, failed: 301 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 04:54:09: Sobol, failed: 301 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 04:54:54: Sobol, failed: 301 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 04:54:54: Sobol, failed: 301 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 04:55:55: Sobol, failed: 303 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 04:56:18: Sobol, failed: 303 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 04:57:01: Sobol, failed: 303 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 45.30 s/job
2025-08-01 04:57:22: Sobol, failed: 303 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 04:57:46: Sobol, failed: 303 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 04:58:08: Sobol, failed: 303 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 04:58:57: Sobol, failed: 303 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 04:59:41: Sobol, failed: 304 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 05:00:06: Sobol, failed: 304 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 05:00:50: Sobol, failed: 304 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 46.00 s/job
2025-08-01 05:01:12: Sobol, failed: 304 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 05:01:34: Sobol, failed: 304 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 05:01:57: Sobol, failed: 304 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 05:02:24: Sobol, failed: 304 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 05:03:08: Sobol, failed: 304 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 46.10 s/job
2025-08-01 05:03:31: Sobol, failed: 304 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 05:03:58: Sobol, failed: 304 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 05:04:20: Sobol, failed: 304 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 05:04:44: Sobol, failed: 304 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 05:05:29: Sobol, failed: 305 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 05:05:53: Sobol, failed: 305 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 05:06:45: Sobol, failed: 305 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 53.62 s/job
2025-08-01 05:07:07: Sobol, failed: 305 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 05:07:34: Sobol, failed: 305 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 05:07:57: Sobol, failed: 305 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 05:08:21: Sobol, failed: 305 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 05:09:07: Sobol, failed: 306 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 05:09:30: Sobol, failed: 306 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 05:10:20: Sobol, failed: 306 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 51.04 s/job
2025-08-01 05:10:42: Sobol, failed: 306 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 05:11:06: Sobol, failed: 306 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 05:11:29: Sobol, failed: 306 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 05:11:53: Sobol, failed: 306 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 05:12:37: Sobol, failed: 307 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 05:13:00: Sobol, failed: 307 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 05:13:45: Sobol, failed: 307 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 47.65 s/job
2025-08-01 05:14:07: Sobol, failed: 307 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 05:14:31: Sobol, failed: 307 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 05:14:54: Sobol, failed: 307 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 05:15:18: Sobol, failed: 307 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 05:16:03: Sobol, failed: 308 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 05:16:27: Sobol, failed: 308 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 05:17:14: Sobol, failed: 308 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 48.30 s/job
2025-08-01 05:17:35: Sobol, failed: 308 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 05:17:59: Sobol, failed: 308 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 05:18:22: Sobol, failed: 308 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 05:18:46: Sobol, failed: 308 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 05:19:35: Sobol, failed: 309 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 05:19:59: Sobol, failed: 309 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 05:20:44: Sobol, failed: 309 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 47.02 s/job
2025-08-01 05:21:06: Sobol, failed: 309 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 05:21:30: Sobol, failed: 309 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 05:21:52: Sobol, failed: 309 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 05:22:16: Sobol, failed: 309 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 05:23:04: Sobol, failed: 310 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 05:23:28: Sobol, failed: 310 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 05:24:13: Sobol, failed: 310 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 47.05 s/job
2025-08-01 05:24:35: Sobol, failed: 310 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 05:24:58: Sobol, failed: 310 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 05:25:21: Sobol, failed: 310 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 05:25:46: Sobol, failed: 310 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), job_failed
2025-08-01 05:26:31: Sobol, failed: 311 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 05:26:55: Sobol, failed: 311 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 05:27:40: Sobol, failed: 311 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 46.88 s/job
2025-08-01 05:28:02: Sobol, failed: 311 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 05:28:26: Sobol, failed: 311 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 05:28:48: Sobol, failed: 311 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 05:29:35: Sobol, failed: 311 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 05:29:36: Sobol, failed: 311 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 05:30:34: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 05:30:58: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 05:31:44: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 47.82 s/job
2025-08-01 05:32:06: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 05:32:29: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 05:32:52: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 05:33:19: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 05:34:36: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 46.72 s/job
2025-08-01 05:34:58: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 05:35:23: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 05:35:46: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 05:36:31: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 05:36:31: Sobol, failed: 313 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 05:37:30: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 05:37:54: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 05:38:41: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 49.25 s/job
2025-08-01 05:39:03: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 05:39:27: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 05:39:49: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 05:40:17: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 05:41:03: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 47.37 s/job
2025-08-01 05:41:24: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 05:41:49: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 05:42:12: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 05:42:58: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 05:42:58: Sobol, failed: 315 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 05:43:58: Sobol, failed: 317 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 05:44:22: Sobol, failed: 317 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 05:45:07: Sobol, failed: 317 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 47.35 s/job
2025-08-01 05:45:29: Sobol, failed: 317 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 05:45:54: Sobol, failed: 317 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 05:46:17: Sobol, failed: 317 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 05:47:06: Sobol, failed: 317 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 05:47:51: Sobol, failed: 318 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 05:48:16: Sobol, failed: 318 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 05:49:01: Sobol, failed: 318 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 47.00 s/job
2025-08-01 05:49:23: Sobol, failed: 318 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 05:49:48: Sobol, failed: 318 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 05:50:11: Sobol, failed: 318 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 05:50:57: Sobol, failed: 318 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 05:51:42: Sobol, failed: 319 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 05:52:05: Sobol, failed: 319 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 05:52:50: Sobol, failed: 319 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 46.63 s/job
2025-08-01 05:53:13: Sobol, failed: 319 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 05:53:36: Sobol, failed: 319 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 05:53:59: Sobol, failed: 319 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 05:54:28: Sobol, failed: 319 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), waiting for 1 job
2025-08-01 05:54:55: Sobol, failed: 319 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 05:55:40: Sobol, failed: 320 ('VAL_ACC: <FLOAT>' not found), waiting for 1 job, finished 1 job
2025-08-01 05:56:08: Sobol, failed: 320 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 05:56:56: Sobol, failed: 320 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 49.76 s/job
2025-08-01 05:57:18: Sobol, failed: 320 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 05:57:42: Sobol, failed: 320 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 05:58:05: Sobol, failed: 320 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 05:58:30: Sobol, failed: 320 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 05:59:16: Sobol, failed: 321 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 05:59:40: Sobol, failed: 321 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 06:00:26: Sobol, failed: 321 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 47.72 s/job
2025-08-01 06:00:48: Sobol, failed: 321 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 06:01:17: Sobol, failed: 321 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 06:01:40: Sobol, failed: 321 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 06:02:27: Sobol, failed: 321 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 06:03:12: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 06:03:37: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 06:04:22: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 47.72 s/job
2025-08-01 06:04:45: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 06:05:09: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 06:05:33: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 06:06:23: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 06:07:09: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 70.63 s/job
2025-08-01 06:07:32: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 06:07:56: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 06:08:19: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 06:09:11: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 06:09:11: Sobol, failed: 322 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 06:10:12: Sobol, failed: 324 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 06:10:39: Sobol, failed: 324 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 06:11:25: Sobol, failed: 324 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 47.94 s/job
2025-08-01 06:11:47: Sobol, failed: 324 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 06:12:12: Sobol, failed: 324 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 06:12:37: Sobol, failed: 324 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 06:13:23: Sobol, failed: 324 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 06:14:10: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 06:14:35: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 06:15:21: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 48.69 s/job
2025-08-01 06:15:44: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 06:16:08: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 06:16:32: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 06:17:23: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-08-01 06:18:09: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 70.05 s/job
2025-08-01 06:18:32: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 06:18:56: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 06:19:20: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 06:20:08: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 06:20:08: Sobol, failed: 325 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 06:21:10: Sobol, failed: 327 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 06:21:34: Sobol, failed: 327 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 06:22:20: Sobol, failed: 327 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 47.90 s/job
2025-08-01 06:22:43: Sobol, failed: 327 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 06:23:07: Sobol, failed: 327 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 06:23:30: Sobol, failed: 327 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 06:24:19: Sobol, failed: 327 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 06:25:06: Sobol, failed: 328 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 06:25:59: Sobol, failed: 328 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 06:27:32: Sobol, failed: 328 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 94.32 s/job
2025-08-01 06:28:12: Sobol, failed: 328 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 06:28:56: Sobol, failed: 328 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 06:29:39: Sobol, failed: 328 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 06:31:03: Sobol, failed: 328 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 06:32:27: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 06:33:10: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 06:34:21: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 72.19 s/job
2025-08-01 06:34:54: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 06:35:26: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 06:35:54: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 06:36:24: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 06:37:14: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 51.96 s/job
2025-08-01 06:37:40: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 06:38:07: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 06:38:33: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 06:39:29: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 06:39:29: Sobol, failed: 329 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 06:40:32: Sobol, failed: 331 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 06:40:58: Sobol, failed: 331 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 06:41:46: Sobol, failed: 331 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 50.39 s/job
2025-08-01 06:42:09: Sobol, failed: 331 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 06:42:36: Sobol, failed: 331 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 06:43:03: Sobol, failed: 331 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), started new job
2025-08-01 06:43:31: Sobol, failed: 331 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 06:44:20: Sobol, failed: 331 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 50.30 s/job
2025-08-01 06:44:42: Sobol, failed: 331 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 06:45:08: Sobol, failed: 331 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 06:45:32: Sobol, failed: 331 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 06:45:57: Sobol, failed: 331 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 06:46:46: Sobol, failed: 332 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 06:47:12: Sobol, failed: 332 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 06:47:58: Sobol, failed: 332 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 49.33 s/job
2025-08-01 06:48:25: Sobol, failed: 332 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 06:48:51: Sobol, failed: 332 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 06:49:16: Sobol, failed: 332 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 06:50:06: Sobol, failed: 332 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 06:50:06: Sobol, failed: 332 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 06:51:08: Sobol, failed: 334 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 06:51:37: Sobol, failed: 334 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 06:52:26: Sobol, failed: 334 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 51.60 s/job
2025-08-01 06:52:49: Sobol, failed: 334 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 06:53:14: Sobol, failed: 334 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 06:53:38: Sobol, failed: 334 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 06:54:28: Sobol, failed: 334 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 06:55:16: Sobol, failed: 335 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 06:55:41: Sobol, failed: 335 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 06:56:28: Sobol, failed: 335 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 49.26 s/job
2025-08-01 06:56:54: Sobol, failed: 335 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 06:57:20: Sobol, failed: 335 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 06:57:45: Sobol, failed: 335 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 06:58:35: Sobol, failed: 335 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 06:59:22: Sobol, failed: 336 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 06:59:48: Sobol, failed: 336 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 07:00:37: Sobol, failed: 336 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 51.61 s/job
2025-08-01 07:01:00: Sobol, failed: 336 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 07:01:25: Sobol, failed: 336 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 07:01:50: Sobol, failed: 336 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 07:02:50: Sobol, failed: 336 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 07:03:38: Sobol, failed: 337 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 07:04:05: Sobol, failed: 337 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 07:04:54: Sobol, failed: 337 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 50.43 s/job
2025-08-01 07:05:21: Sobol, failed: 337 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 07:05:49: Sobol, failed: 337 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 07:06:20: Sobol, failed: 337 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), started new job
2025-08-01 07:07:08: Sobol, failed: 337 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 07:08:00: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 07:08:25: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 07:09:14: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 50.85 s/job
2025-08-01 07:09:37: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 07:10:06: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 07:10:33: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 07:11:02: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-08-01 07:11:51: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 51.21 s/job
2025-08-01 07:12:14: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 07:12:43: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 07:13:08: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 07:14:01: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 07:14:01: Sobol, failed: 338 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 07:15:08: Sobol, failed: 340 ('VAL_ACC: <FLOAT>' not found), finishing jobs, finished 2 jobs
2025-08-01 07:15:39: Sobol, failed: 340 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 07:16:31: Sobol, failed: 340 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 53.61 s/job
2025-08-01 07:16:56: Sobol, failed: 340 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 07:17:22: Sobol, failed: 340 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 07:17:48: Sobol, failed: 340 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 07:18:36: Sobol, failed: 340 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 07:19:26: Sobol, failed: 341 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 07:19:51: Sobol, failed: 341 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 07:20:38: Sobol, failed: 341 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 49.27 s/job
2025-08-01 07:21:01: Sobol, failed: 341 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 07:21:27: Sobol, failed: 341 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 07:21:52: Sobol, failed: 341 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 07:22:41: Sobol, failed: 341 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 07:23:31: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 07:23:58: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 07:24:46: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 49.76 s/job
2025-08-01 07:25:10: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 07:25:36: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 07:26:01: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 07:26:30: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 07:27:23: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 54.78 s/job
2025-08-01 07:27:46: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 07:28:12: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 07:28:37: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 07:29:03: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 07:29:08: Sobol, failed: 342 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 07:30:08: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 07:30:34: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 07:31:22: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 49.48 s/job
2025-08-01 07:31:45: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 07:32:09: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 07:32:34: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 07:33:03: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-08-01 07:33:59: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 57.72 s/job
2025-08-01 07:34:22: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 07:34:47: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 07:35:13: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 07:36:02: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 07:36:02: Sobol, failed: 344 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 07:37:07: Sobol, failed: 346 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 07:37:33: Sobol, failed: 346 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 07:38:23: Sobol, failed: 346 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 51.78 s/job
2025-08-01 07:38:46: Sobol, failed: 346 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 07:39:13: Sobol, failed: 346 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 07:39:38: Sobol, failed: 346 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 07:40:05: Sobol, failed: 346 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 07:40:57: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 07:41:23: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 07:42:13: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 51.50 s/job
2025-08-01 07:42:36: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 07:43:03: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 07:43:27: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 07:44:00: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 07:44:50: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 51.56 s/job
2025-08-01 07:45:14: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 07:45:44: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 07:46:08: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 07:46:36: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 07:46:36: Sobol, failed: 347 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 07:47:41: Sobol, failed: 349 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 07:48:09: Sobol, failed: 349 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 07:48:59: Sobol, failed: 349 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 51.98 s/job
2025-08-01 07:49:23: Sobol, failed: 349 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 07:49:49: Sobol, failed: 349 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 07:50:14: Sobol, failed: 349 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 07:51:04: Sobol, failed: 349 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 07:51:55: Sobol, failed: 350 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 07:52:21: Sobol, failed: 350 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 07:53:10: Sobol, failed: 350 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 50.96 s/job
2025-08-01 07:53:34: Sobol, failed: 350 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 07:53:59: Sobol, failed: 350 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 07:54:29: Sobol, failed: 350 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 07:55:00: Sobol, failed: 350 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 07:55:53: Sobol, failed: 350 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 55.95 s/job
2025-08-01 07:56:17: Sobol, failed: 350 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 07:56:43: Sobol, failed: 350 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 07:57:08: Sobol, failed: 350 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 07:57:34: Sobol, failed: 350 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 07:58:24: Sobol, failed: 351 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 07:58:49: Sobol, failed: 351 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 07:59:40: Sobol, failed: 351 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 52.51 s/job
2025-08-01 08:00:05: Sobol, failed: 351 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 08:00:31: Sobol, failed: 351 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 08:00:55: Sobol, failed: 351 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 08:01:48: Sobol, failed: 351 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 08:01:48: Sobol, failed: 351 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 08:02:53: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 08:03:20: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 08:04:10: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 52.00 s/job
2025-08-01 08:04:36: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 08:05:03: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 08:05:30: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 08:06:08: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 08:07:00: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 54.28 s/job
2025-08-01 08:07:26: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 08:07:52: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 08:08:20: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 08:09:19: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 08:09:19: Sobol, failed: 353 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 08:10:25: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 08:10:52: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 08:11:43: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 53.43 s/job
2025-08-01 08:12:07: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 08:12:33: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 08:12:59: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 08:13:30: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 08:14:24: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 56.65 s/job
2025-08-01 08:14:50: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 08:15:16: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 08:15:42: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 08:16:34: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 08:16:34: Sobol, failed: 355 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 08:17:39: Sobol, failed: 357 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 08:18:06: Sobol, failed: 357 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 08:19:01: Sobol, failed: 357 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 57.09 s/job
2025-08-01 08:19:29: Sobol, failed: 357 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 08:19:55: Sobol, failed: 357 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 08:20:21: Sobol, failed: 357 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 08:21:11: Sobol, failed: 357 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 08:22:07: Sobol, failed: 358 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 08:22:35: Sobol, failed: 358 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 08:23:28: Sobol, failed: 358 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 55.58 s/job
2025-08-01 08:23:52: Sobol, failed: 358 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 08:24:18: Sobol, failed: 358 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 08:24:43: Sobol, failed: 358 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 08:25:33: Sobol, failed: 358 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 08:26:26: Sobol, failed: 359 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 08:26:52: Sobol, failed: 359 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 08:27:43: Sobol, failed: 359 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 52.52 s/job
2025-08-01 08:28:07: Sobol, failed: 359 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 08:28:34: Sobol, failed: 359 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 08:28:59: Sobol, failed: 359 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 08:29:34: Sobol, failed: 359 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), waiting for 1 job
2025-08-01 08:30:04: Sobol, failed: 359 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 08:30:56: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), waiting for 1 job, finished 1 job
2025-08-01 08:31:26: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 08:32:20: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 55.74 s/job
2025-08-01 08:32:44: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 08:33:10: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 08:33:36: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 08:34:08: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 08:35:01: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 55.12 s/job
2025-08-01 08:35:26: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 08:35:52: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 08:36:18: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 08:37:08: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 08:37:08: Sobol, failed: 360 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 08:38:16: Sobol, failed: 362 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 08:38:43: Sobol, failed: 362 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 08:39:38: Sobol, failed: 362 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 57.01 s/job
2025-08-01 08:40:02: Sobol, failed: 362 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 08:40:29: Sobol, failed: 362 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 08:40:57: Sobol, failed: 362 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 08:41:52: Sobol, failed: 362 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 08:42:42: Sobol, failed: 363 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 08:43:09: Sobol, failed: 363 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 08:44:05: Sobol, failed: 363 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 57.60 s/job
2025-08-01 08:44:29: Sobol, failed: 363 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 08:44:56: Sobol, failed: 363 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 08:45:24: Sobol, failed: 363 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 08:46:16: Sobol, failed: 363 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 08:47:06: Sobol, failed: 364 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 08:47:33: Sobol, failed: 364 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 08:48:25: Sobol, failed: 364 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 54.24 s/job
2025-08-01 08:48:50: Sobol, failed: 364 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 08:49:19: Sobol, failed: 364 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 08:49:45: Sobol, failed: 364 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 08:50:40: Sobol, failed: 364 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 08:51:31: Sobol, failed: 365 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 08:51:57: Sobol, failed: 365 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 08:52:54: Sobol, failed: 365 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 58.44 s/job
2025-08-01 08:53:20: Sobol, failed: 365 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 08:53:47: Sobol, failed: 365 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 08:54:14: Sobol, failed: 365 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 08:55:06: Sobol, failed: 365 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 08:55:58: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 08:56:28: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 08:57:20: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 54.31 s/job
2025-08-01 08:57:46: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 08:58:13: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 08:58:39: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 08:59:10: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-08-01 09:00:04: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 56.29 s/job
2025-08-01 09:00:29: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 09:00:56: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 09:01:23: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 09:02:20: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 09:02:21: Sobol, failed: 366 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 09:03:30: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 09:03:58: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 09:04:51: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 55.93 s/job
2025-08-01 09:05:16: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 09:05:43: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 09:06:09: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 09:07:08: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-08-01 09:08:01: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 80.18 s/job
2025-08-01 09:08:28: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 09:08:56: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 09:09:25: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 09:10:23: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 09:10:23: Sobol, failed: 368 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 09:11:37: Sobol, failed: 370 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 09:12:04: Sobol, failed: 370 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 09:12:57: Sobol, failed: 370 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 54.47 s/job
2025-08-01 09:13:21: Sobol, failed: 370 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 09:13:50: Sobol, failed: 370 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 09:14:20: Sobol, failed: 370 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 09:15:13: Sobol, failed: 370 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 09:16:05: Sobol, failed: 371 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 09:16:35: Sobol, failed: 371 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 09:17:27: Sobol, failed: 371 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 54.28 s/job
2025-08-01 09:17:53: Sobol, failed: 371 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 09:18:20: Sobol, failed: 371 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 09:18:46: Sobol, failed: 371 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 09:19:42: Sobol, failed: 371 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 09:20:38: Sobol, failed: 372 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 09:21:07: Sobol, failed: 372 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 09:22:04: Sobol, failed: 372 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 59.65 s/job
2025-08-01 09:22:34: Sobol, failed: 372 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 09:23:00: Sobol, failed: 372 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 09:23:27: Sobol, failed: 372 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 09:24:19: Sobol, failed: 372 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 09:25:14: Sobol, failed: 373 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 09:25:41: Sobol, failed: 373 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 09:26:34: Sobol, failed: 373 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 55.44 s/job
2025-08-01 09:26:59: Sobol, failed: 373 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 09:27:27: Sobol, failed: 373 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 09:27:55: Sobol, failed: 373 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 09:28:47: Sobol, failed: 373 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 09:29:43: Sobol, failed: 374 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 09:30:10: Sobol, failed: 374 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 09:31:05: Sobol, failed: 374 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 57.27 s/job
2025-08-01 09:31:30: Sobol, failed: 374 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 09:31:59: Sobol, failed: 374 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 09:32:26: Sobol, failed: 374 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 09:33:18: Sobol, failed: 374 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 09:34:15: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 09:34:46: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 09:35:41: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 57.64 s/job
2025-08-01 09:36:07: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 09:36:35: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 09:37:04: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 09:37:37: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 09:38:30: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 55.72 s/job
2025-08-01 09:38:59: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 09:39:31: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 09:40:01: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 09:41:03: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 09:41:03: Sobol, failed: 375 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 09:42:14: Sobol, failed: 377 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 09:42:44: Sobol, failed: 377 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 09:43:39: Sobol, failed: 377 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 57.38 s/job
2025-08-01 09:44:07: Sobol, failed: 377 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 09:44:35: Sobol, failed: 377 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 09:45:03: Sobol, failed: 377 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 09:45:56: Sobol, failed: 377 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 09:46:50: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 09:47:18: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 09:48:13: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 57.25 s/job
2025-08-01 09:48:38: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 09:49:05: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 09:49:35: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 09:50:06: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), getting new HP set
2025-08-01 09:51:05: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 59.71 s/job
2025-08-01 09:51:31: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 09:52:09: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 09:52:46: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 09:53:19: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 09:53:19: Sobol, failed: 378 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 09:54:42: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), finishing jobs, finished 2 jobs
2025-08-01 09:55:20: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 09:56:16: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 57.68 s/job
2025-08-01 09:56:41: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 09:57:09: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 09:57:36: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 09:58:10: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 09:59:05: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 56.14 s/job
2025-08-01 09:59:31: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 09:59:59: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 10:00:34: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 10:01:46: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 10:01:46: Sobol, failed: 380 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 10:03:06: Sobol, failed: 382 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 10:03:40: Sobol, failed: 382 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 10:04:37: Sobol, failed: 382 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 58.97 s/job
2025-08-01 10:05:06: Sobol, failed: 382 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 10:05:36: Sobol, failed: 382 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 10:06:03: Sobol, failed: 382 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 10:06:58: Sobol, failed: 382 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 10:07:52: Sobol, failed: 383 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 10:08:21: Sobol, failed: 383 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 10:09:14: Sobol, failed: 383 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 55.62 s/job
2025-08-01 10:09:40: Sobol, failed: 383 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 10:10:10: Sobol, failed: 383 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 10:10:37: Sobol, failed: 383 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 10:11:11: Sobol, failed: 383 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 10:12:04: Sobol, failed: 383 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 55.66 s/job
2025-08-01 10:12:30: Sobol, failed: 383 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 10:12:58: Sobol, failed: 383 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 10:13:26: Sobol, failed: 383 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 10:13:56: Sobol, failed: 383 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 10:14:52: Sobol, failed: 384 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 10:15:20: Sobol, failed: 384 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 10:16:14: Sobol, failed: 384 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 56.05 s/job
2025-08-01 10:16:40: Sobol, failed: 384 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 10:17:11: Sobol, failed: 384 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 10:17:38: Sobol, failed: 384 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 10:18:06: Sobol, failed: 384 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 10:19:02: Sobol, failed: 385 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 10:19:32: Sobol, failed: 385 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 10:20:25: Sobol, failed: 385 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 55.60 s/job
2025-08-01 10:20:51: Sobol, failed: 385 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 10:21:19: Sobol, failed: 385 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 10:21:46: Sobol, failed: 385 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 10:22:15: Sobol, failed: 385 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 10:23:09: Sobol, failed: 386 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 10:23:39: Sobol, failed: 386 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 10:24:32: Sobol, failed: 386 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 55.43 s/job
2025-08-01 10:24:59: Sobol, failed: 386 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 10:25:28: Sobol, failed: 386 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 10:25:55: Sobol, failed: 386 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 10:26:24: Sobol, failed: 386 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 10:27:20: Sobol, failed: 387 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 10:27:49: Sobol, failed: 387 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 10:28:43: Sobol, failed: 387 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 56.15 s/job
2025-08-01 10:29:12: Sobol, failed: 387 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 10:29:40: Sobol, failed: 387 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 10:30:10: Sobol, failed: 387 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), started new job
2025-08-01 10:31:26: Sobol, failed: 387 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 10:31:26: Sobol, failed: 387 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 10:32:43: Sobol, failed: 389 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 10:33:14: Sobol, failed: 389 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 10:34:07: Sobol, failed: 389 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 55.59 s/job
2025-08-01 10:34:37: Sobol, failed: 389 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 10:35:07: Sobol, failed: 389 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 10:35:35: Sobol, failed: 389 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 10:36:30: Sobol, failed: 389 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 10:37:23: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 10:37:52: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 10:38:46: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 56.66 s/job
2025-08-01 10:39:13: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 10:39:46: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 10:40:13: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 10:40:46: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 10:41:42: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 58.83 s/job
2025-08-01 10:42:08: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 10:42:36: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 10:43:04: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 10:44:02: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 10:44:02: Sobol, failed: 390 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 10:45:14: Sobol, failed: 392 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 10:45:43: Sobol, failed: 392 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 10:46:38: Sobol, failed: 392 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 57.37 s/job
2025-08-01 10:47:04: Sobol, failed: 392 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 10:47:34: Sobol, failed: 392 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 10:48:03: Sobol, failed: 392 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 10:48:59: Sobol, failed: 392 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 10:49:54: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 10:50:23: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 10:51:17: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 56.68 s/job
2025-08-01 10:51:43: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 10:52:12: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 10:52:39: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 10:53:13: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 10:54:10: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 59.10 s/job
2025-08-01 10:54:38: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 10:55:07: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 10:55:35: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 10:56:33: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 10:56:33: Sobol, failed: 393 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 10:57:53: Sobol, failed: 395 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 10:58:25: Sobol, failed: 395 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 10:59:20: Sobol, failed: 395 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 58.72 s/job
2025-08-01 10:59:47: Sobol, failed: 395 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 11:00:19: Sobol, failed: 395 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 11:00:47: Sobol, failed: 395 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 11:01:52: Sobol, failed: 395 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 11:02:47: Sobol, failed: 395 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 57.39 s/job
2025-08-01 11:03:14: Sobol, failed: 395 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 11:03:44: Sobol, failed: 395 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 11:04:12: Sobol, failed: 395 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 11:04:42: Sobol, failed: 395 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 11:05:39: Sobol, failed: 396 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 11:06:10: Sobol, failed: 396 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 11:07:13: Sobol, failed: 396 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 65.78 s/job
2025-08-01 11:07:43: Sobol, failed: 396 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 11:08:12: Sobol, failed: 396 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 11:08:41: Sobol, failed: 396 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 11:09:12: Sobol, failed: 396 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 11:10:14: Sobol, failed: 397 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 11:10:45: Sobol, failed: 397 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 11:11:42: Sobol, failed: 397 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 59.96 s/job
2025-08-01 11:12:11: Sobol, failed: 397 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 11:12:41: Sobol, failed: 397 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 11:13:09: Sobol, failed: 397 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 11:14:05: Sobol, failed: 397 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 11:14:05: Sobol, failed: 397 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 11:15:24: Sobol, failed: 399 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 11:15:53: Sobol, failed: 399 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 11:16:52: Sobol, failed: 399 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 60.96 s/job
2025-08-01 11:17:18: Sobol, failed: 399 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 11:17:48: Sobol, failed: 399 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 11:18:19: Sobol, failed: 399 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 11:18:50: Sobol, failed: 399 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), job_failed
2025-08-01 11:19:48: Sobol, failed: 400 ('VAL_ACC: <FLOAT>' not found), finishing previous jobs (1), finished 1 job
2025-08-01 11:20:24: Sobol, failed: 400 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 11:21:19: Sobol, failed: 400 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 57.21 s/job
2025-08-01 11:21:45: Sobol, failed: 400 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 11:22:18: Sobol, failed: 400 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 11:22:49: Sobol, failed: 400 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 11:23:51: Sobol, failed: 400 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), getting new HP set
2025-08-01 11:24:46: Sobol, failed: 400 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 83.64 s/job
2025-08-01 11:25:13: Sobol, failed: 400 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 11:25:41: Sobol, failed: 400 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 11:26:10: Sobol, failed: 400 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 11:26:39: Sobol, failed: 400 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 11:27:39: Sobol, failed: 401 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 11:28:08: Sobol, failed: 401 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 11:29:02: Sobol, failed: 401 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 57.00 s/job
2025-08-01 11:29:30: Sobol, failed: 401 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 11:29:59: Sobol, failed: 401 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 11:30:27: Sobol, failed: 401 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 11:31:25: Sobol, failed: 401 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 11:31:25: Sobol, failed: 401 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 11:32:40: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 11:33:09: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 11:34:05: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 58.63 s/job
2025-08-01 11:34:33: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 11:35:02: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 11:35:30: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 11:36:32: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 11:37:28: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 85.97 s/job
2025-08-01 11:37:55: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 11:38:24: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 11:38:52: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 11:39:21: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 11:39:21: Sobol, failed: 403 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 11:40:39: Sobol, failed: 405 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 11:41:08: Sobol, failed: 405 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 11:42:05: Sobol, failed: 405 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 59.62 s/job
2025-08-01 11:42:33: Sobol, failed: 405 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 11:43:02: Sobol, failed: 405 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 11:43:31: Sobol, failed: 405 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 11:44:27: Sobol, failed: 405 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 11:45:24: Sobol, failed: 406 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 11:45:54: Sobol, failed: 406 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 11:46:52: Sobol, failed: 406 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 59.80 s/job
2025-08-01 11:47:22: Sobol, failed: 406 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 11:47:51: Sobol, failed: 406 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 11:48:19: Sobol, failed: 406 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 11:49:21: Sobol, failed: 406 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 11:50:21: Sobol, failed: 406 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 88.31 s/job
2025-08-01 11:50:55: Sobol, failed: 406 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 11:51:24: Sobol, failed: 406 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 11:51:52: Sobol, failed: 406 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 11:52:21: Sobol, failed: 406 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 11:53:19: Sobol, failed: 407 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 11:53:50: Sobol, failed: 407 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 11:54:45: Sobol, failed: 407 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 57.69 s/job
2025-08-01 11:55:12: Sobol, failed: 407 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 11:55:41: Sobol, failed: 407 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 11:56:11: Sobol, failed: 407 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 11:56:42: Sobol, failed: 407 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 11:57:40: Sobol, failed: 408 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 11:58:11: Sobol, failed: 408 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 11:59:06: Sobol, failed: 408 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 58.37 s/job
2025-08-01 11:59:34: Sobol, failed: 408 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 12:00:04: Sobol, failed: 408 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 12:00:34: Sobol, failed: 408 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 12:01:04: Sobol, failed: 408 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 12:02:16: Sobol, failed: 409 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 12:02:49: Sobol, failed: 409 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 12:03:50: Sobol, failed: 409 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 63.70 s/job
2025-08-01 12:04:19: Sobol, failed: 409 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 12:04:55: Sobol, failed: 409 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 12:05:26: Sobol, failed: 409 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 12:05:58: Sobol, failed: 409 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 12:06:57: Sobol, failed: 410 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 12:07:26: Sobol, failed: 410 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 12:08:25: Sobol, failed: 410 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 59.86 s/job
2025-08-01 12:08:53: Sobol, failed: 410 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 12:09:23: Sobol, failed: 410 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 12:09:53: Sobol, failed: 410 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), started new job
2025-08-01 12:10:24: Sobol, failed: 410 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 12:11:22: Sobol, failed: 411 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 12:11:52: Sobol, failed: 411 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 12:12:48: Sobol, failed: 411 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 58.51 s/job
2025-08-01 12:13:15: Sobol, failed: 411 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 12:13:47: Sobol, failed: 411 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 12:14:19: Sobol, failed: 411 ('VAL_ACC: <FLOAT>' not found), completed/pending 1/1∑2 (5%/20), started new job
2025-08-01 12:14:49: Sobol, failed: 411 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 12:15:46: Sobol, failed: 412 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 12:16:16: Sobol, failed: 412 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 12:17:14: Sobol, failed: 412 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 59.89 s/job
2025-08-01 12:17:42: Sobol, failed: 412 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 12:18:15: Sobol, failed: 412 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 12:18:45: Sobol, failed: 412 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), started new job
2025-08-01 12:19:43: Sobol, failed: 412 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 12:19:44: Sobol, failed: 412 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 12:20:58: Sobol, failed: 414 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 12:21:28: Sobol, failed: 414 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 12:22:24: Sobol, failed: 414 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 58.08 s/job
2025-08-01 12:22:57: Sobol, failed: 414 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 12:23:27: Sobol, failed: 414 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 12:23:56: Sobol, failed: 414 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 12:24:30: Sobol, failed: 414 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 12:25:27: Sobol, failed: 414 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 59.34 s/job
2025-08-01 12:25:55: Sobol, failed: 414 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 12:26:25: Sobol, failed: 414 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 12:26:54: Sobol, failed: 414 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 12:27:25: Sobol, failed: 414 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 12:28:25: Sobol, failed: 415 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 12:28:55: Sobol, failed: 415 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 12:29:52: Sobol, failed: 415 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 59.46 s/job
2025-08-01 12:30:22: Sobol, failed: 415 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 12:30:55: Sobol, failed: 415 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 12:31:25: Sobol, failed: 415 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 12:31:57: Sobol, failed: 415 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 12:32:56: Sobol, failed: 416 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 12:33:28: Sobol, failed: 416 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 12:34:30: Sobol, failed: 416 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 63.83 s/job
2025-08-01 12:34:57: Sobol, failed: 416 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 12:35:35: Sobol, failed: 416 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 12:36:08: Sobol, failed: 416 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 12:36:42: Sobol, failed: 416 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 12:37:43: Sobol, failed: 417 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 12:38:14: Sobol, failed: 417 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 12:39:11: Sobol, failed: 417 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 60.57 s/job
2025-08-01 12:39:39: Sobol, failed: 417 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 12:40:11: Sobol, failed: 417 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 12:40:42: Sobol, failed: 417 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 12:41:40: Sobol, failed: 417 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 12:41:40: Sobol, failed: 417 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 12:42:57: Sobol, failed: 419 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 12:43:28: Sobol, failed: 419 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 12:44:29: Sobol, failed: 419 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 63.57 s/job
2025-08-01 12:44:57: Sobol, failed: 419 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 12:45:27: Sobol, failed: 419 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 12:45:56: Sobol, failed: 419 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 12:46:34: Sobol, failed: 419 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), waiting for 1 job
2025-08-01 12:47:09: Sobol, failed: 419 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 12:48:09: Sobol, failed: 420 ('VAL_ACC: <FLOAT>' not found), waiting for 1 job, finished 1 job
2025-08-01 12:48:44: Sobol, failed: 420 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 12:49:43: Sobol, failed: 420 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 61.17 s/job
2025-08-01 12:50:12: Sobol, failed: 420 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 12:50:42: Sobol, failed: 420 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 12:51:22: Sobol, failed: 420 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 12:51:57: Sobol, failed: 420 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 12:52:56: Sobol, failed: 420 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 60.80 s/job
2025-08-01 12:53:25: Sobol, failed: 420 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 12:53:58: Sobol, failed: 420 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 12:54:28: Sobol, failed: 420 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 12:54:59: Sobol, failed: 420 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 12:56:00: Sobol, failed: 421 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 12:56:36: Sobol, failed: 421 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 12:57:40: Sobol, failed: 421 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 66.74 s/job
2025-08-01 12:58:14: Sobol, failed: 421 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 12:58:47: Sobol, failed: 421 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 12:59:25: Sobol, failed: 421 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 13:00:00: Sobol, failed: 421 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 13:01:04: Sobol, failed: 422 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 13:01:39: Sobol, failed: 422 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 13:02:53: Sobol, failed: 422 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 75.92 s/job
2025-08-01 13:03:21: Sobol, failed: 422 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 13:03:52: Sobol, failed: 422 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 13:04:22: Sobol, failed: 422 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 13:05:21: Sobol, failed: 422 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 13:05:21: Sobol, failed: 422 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 13:06:48: Sobol, failed: 424 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 13:07:18: Sobol, failed: 424 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 13:08:17: Sobol, failed: 424 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 61.29 s/job
2025-08-01 13:08:45: Sobol, failed: 424 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 13:09:16: Sobol, failed: 424 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 13:09:49: Sobol, failed: 424 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 13:10:49: Sobol, failed: 424 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 13:11:49: Sobol, failed: 425 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 13:12:19: Sobol, failed: 425 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 13:13:17: Sobol, failed: 425 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 60.42 s/job
2025-08-01 13:13:45: Sobol, failed: 425 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 13:14:16: Sobol, failed: 425 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 13:14:45: Sobol, failed: 425 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 13:15:45: Sobol, failed: 425 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 13:16:47: Sobol, failed: 426 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 13:17:19: Sobol, failed: 426 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 13:18:21: Sobol, failed: 426 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 64.42 s/job
2025-08-01 13:18:50: Sobol, failed: 426 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 13:19:21: Sobol, failed: 426 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 13:19:52: Sobol, failed: 426 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 13:20:52: Sobol, failed: 426 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 13:21:51: Sobol, failed: 427 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 13:22:23: Sobol, failed: 427 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 13:23:21: Sobol, failed: 427 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 60.87 s/job
2025-08-01 13:23:50: Sobol, failed: 427 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 13:24:25: Sobol, failed: 427 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 13:24:56: Sobol, failed: 427 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 13:25:32: Sobol, failed: 427 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 13:26:33: Sobol, failed: 427 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 63.46 s/job
2025-08-01 13:27:03: Sobol, failed: 427 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 13:27:39: Sobol, failed: 427 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 13:28:09: Sobol, failed: 427 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 13:28:41: Sobol, failed: 427 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 13:30:12: Sobol, failed: 428 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 13:30:43: Sobol, failed: 428 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 13:31:42: Sobol, failed: 428 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 61.44 s/job
2025-08-01 13:32:15: Sobol, failed: 428 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 13:32:50: Sobol, failed: 428 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 13:33:19: Sobol, failed: 428 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 13:34:19: Sobol, failed: 428 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 13:34:19: Sobol, failed: 428 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 13:35:38: Sobol, failed: 430 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 13:36:10: Sobol, failed: 430 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 13:37:14: Sobol, failed: 430 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 65.60 s/job
2025-08-01 13:37:44: Sobol, failed: 430 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 13:38:15: Sobol, failed: 430 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 13:38:52: Sobol, failed: 430 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), started new job
2025-08-01 13:40:04: Sobol, failed: 430 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 13:41:11: Sobol, failed: 431 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 13:41:46: Sobol, failed: 431 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 13:42:50: Sobol, failed: 431 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 66.70 s/job
2025-08-01 13:43:21: Sobol, failed: 431 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 13:43:52: Sobol, failed: 431 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 13:44:22: Sobol, failed: 431 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 13:45:25: Sobol, failed: 431 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 13:46:25: Sobol, failed: 432 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 13:46:56: Sobol, failed: 432 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 13:47:55: Sobol, failed: 432 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 62.19 s/job
2025-08-01 13:48:24: Sobol, failed: 432 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 13:49:00: Sobol, failed: 432 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 13:49:30: Sobol, failed: 432 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 13:50:31: Sobol, failed: 432 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 13:51:35: Sobol, failed: 433 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 13:52:08: Sobol, failed: 433 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 13:53:09: Sobol, failed: 433 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 63.39 s/job
2025-08-01 13:53:38: Sobol, failed: 433 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 13:54:10: Sobol, failed: 433 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 13:54:42: Sobol, failed: 433 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 13:55:42: Sobol, failed: 433 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 13:56:44: Sobol, failed: 434 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 13:57:15: Sobol, failed: 434 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 13:58:14: Sobol, failed: 434 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 61.73 s/job
2025-08-01 13:58:43: Sobol, failed: 434 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 13:59:15: Sobol, failed: 434 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 13:59:45: Sobol, failed: 434 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 14:00:47: Sobol, failed: 434 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 14:01:47: Sobol, failed: 435 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 14:02:18: Sobol, failed: 435 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 14:03:18: Sobol, failed: 435 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 62.35 s/job
2025-08-01 14:03:47: Sobol, failed: 435 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 14:04:26: Sobol, failed: 435 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 14:04:56: Sobol, failed: 435 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 14:05:56: Sobol, failed: 435 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 14:06:55: Sobol, failed: 436 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 14:07:26: Sobol, failed: 436 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 14:08:27: Sobol, failed: 436 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 62.39 s/job
2025-08-01 14:08:56: Sobol, failed: 436 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 14:09:27: Sobol, failed: 436 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 14:10:07: Sobol, failed: 436 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 14:10:42: Sobol, failed: 436 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), job_failed
2025-08-01 14:11:45: Sobol, failed: 437 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 14:12:18: Sobol, failed: 437 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 14:13:18: Sobol, failed: 437 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 63.37 s/job
2025-08-01 14:13:49: Sobol, failed: 437 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 14:14:20: Sobol, failed: 437 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 14:14:52: Sobol, failed: 437 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 14:15:55: Sobol, failed: 437 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 14:16:58: Sobol, failed: 438 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 14:17:30: Sobol, failed: 438 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 14:18:29: Sobol, failed: 438 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 62.23 s/job
2025-08-01 14:18:59: Sobol, failed: 438 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 14:19:32: Sobol, failed: 438 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 14:20:03: Sobol, failed: 438 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 14:21:03: Sobol, failed: 438 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 14:22:07: Sobol, failed: 439 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 14:22:40: Sobol, failed: 439 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 14:23:39: Sobol, failed: 439 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 62.44 s/job
2025-08-01 14:24:08: Sobol, failed: 439 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 14:24:40: Sobol, failed: 439 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 14:25:10: Sobol, failed: 439 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 14:26:11: Sobol, failed: 439 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 14:27:13: Sobol, failed: 440 ('VAL_ACC: <FLOAT>' not found), finishing jobs, finished 1 job
2025-08-01 14:27:54: Sobol, failed: 440 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 14:28:56: Sobol, failed: 440 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 63.26 s/job
2025-08-01 14:29:26: Sobol, failed: 440 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 14:29:57: Sobol, failed: 440 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 14:30:29: Sobol, failed: 440 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), started new job
2025-08-01 14:31:33: Sobol, failed: 440 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 14:32:34: Sobol, failed: 441 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 14:33:06: Sobol, failed: 441 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 14:34:08: Sobol, failed: 441 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 65.25 s/job
2025-08-01 14:34:43: Sobol, failed: 441 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 14:35:16: Sobol, failed: 441 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 14:35:46: Sobol, failed: 441 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 14:36:52: Sobol, failed: 441 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 14:37:57: Sobol, failed: 442 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 14:38:29: Sobol, failed: 442 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 14:39:30: Sobol, failed: 442 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 63.50 s/job
2025-08-01 14:40:00: Sobol, failed: 442 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 14:40:36: Sobol, failed: 442 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 14:41:11: Sobol, failed: 442 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 14:42:13: Sobol, failed: 442 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 14:43:17: Sobol, failed: 443 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 14:43:49: Sobol, failed: 443 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 14:44:56: Sobol, failed: 443 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 69.43 s/job
2025-08-01 14:45:26: Sobol, failed: 443 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 14:45:58: Sobol, failed: 443 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 14:46:32: Sobol, failed: 443 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), started new job
2025-08-01 14:47:32: Sobol, failed: 443 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 14:48:33: Sobol, failed: 444 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 14:49:05: Sobol, failed: 444 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 14:50:09: Sobol, failed: 444 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 66.44 s/job
2025-08-01 14:50:41: Sobol, failed: 444 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 14:51:16: Sobol, failed: 444 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 14:51:46: Sobol, failed: 444 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 14:52:47: Sobol, failed: 444 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 14:53:50: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 14:54:25: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 14:55:30: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 68.14 s/job
2025-08-01 14:56:00: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 14:56:32: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 14:57:03: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 14:57:39: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 14:58:42: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 65.85 s/job
2025-08-01 14:59:13: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 14:59:50: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 15:00:23: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 15:01:26: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 15:01:26: Sobol, failed: 445 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 15:02:49: Sobol, failed: 447 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 15:03:22: Sobol, failed: 447 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 15:04:30: Sobol, failed: 447 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 71.11 s/job
2025-08-01 15:05:00: Sobol, failed: 447 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 15:05:34: Sobol, failed: 447 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 15:06:07: Sobol, failed: 447 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 15:07:08: Sobol, failed: 447 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 15:08:10: Sobol, failed: 448 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 15:08:43: Sobol, failed: 448 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 15:09:55: Sobol, failed: 448 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 73.99 s/job
2025-08-01 15:10:24: Sobol, failed: 448 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 15:10:58: Sobol, failed: 448 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 15:11:29: Sobol, failed: 448 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 15:12:36: Sobol, failed: 448 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 15:13:41: Sobol, failed: 449 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 15:14:14: Sobol, failed: 449 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 15:15:25: Sobol, failed: 449 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 73.95 s/job
2025-08-01 15:15:56: Sobol, failed: 449 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 15:16:28: Sobol, failed: 449 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 15:17:01: Sobol, failed: 449 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 15:18:11: Sobol, failed: 449 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 15:19:13: Sobol, failed: 450 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 15:19:47: Sobol, failed: 450 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 15:20:49: Sobol, failed: 450 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 65.43 s/job
2025-08-01 15:21:19: Sobol, failed: 450 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 15:21:52: Sobol, failed: 450 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 15:22:22: Sobol, failed: 450 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 15:23:25: Sobol, failed: 450 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 15:24:28: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 15:25:00: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 15:26:02: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 65.08 s/job
2025-08-01 15:26:32: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 15:27:04: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 15:27:35: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 15:28:13: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 15:29:17: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 66.35 s/job
2025-08-01 15:29:47: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 15:30:19: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 15:30:51: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 15:32:00: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 15:32:00: Sobol, failed: 451 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 15:33:27: Sobol, failed: 453 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 15:33:59: Sobol, failed: 453 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 15:35:00: Sobol, failed: 453 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 63.55 s/job
2025-08-01 15:35:31: Sobol, failed: 453 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 15:36:03: Sobol, failed: 453 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 15:36:34: Sobol, failed: 453 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 15:37:36: Sobol, failed: 453 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 15:38:38: Sobol, failed: 454 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 15:39:11: Sobol, failed: 454 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 15:40:30: Sobol, failed: 454 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 80.30 s/job
2025-08-01 15:41:00: Sobol, failed: 454 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 15:41:33: Sobol, failed: 454 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 15:42:06: Sobol, failed: 454 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 15:43:17: Sobol, failed: 454 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 15:44:23: Sobol, failed: 455 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 15:44:55: Sobol, failed: 455 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 15:45:57: Sobol, failed: 455 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 64.20 s/job
2025-08-01 15:46:27: Sobol, failed: 455 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 15:47:00: Sobol, failed: 455 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 15:47:32: Sobol, failed: 455 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 15:48:35: Sobol, failed: 455 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 15:49:39: Sobol, failed: 456 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 15:50:12: Sobol, failed: 456 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 15:51:15: Sobol, failed: 456 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 66.07 s/job
2025-08-01 15:51:50: Sobol, failed: 456 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 15:52:22: Sobol, failed: 456 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 15:52:55: Sobol, failed: 456 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 15:53:57: Sobol, failed: 456 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 15:54:59: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 15:55:32: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 15:56:34: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 64.86 s/job
2025-08-01 15:57:04: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 15:57:37: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 15:58:08: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 15:59:19: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 16:00:20: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 96.73 s/job
2025-08-01 16:00:50: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 16:01:23: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 16:01:54: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 16:02:59: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 16:02:59: Sobol, failed: 457 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 16:04:27: Sobol, failed: 459 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 16:05:01: Sobol, failed: 459 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 16:06:09: Sobol, failed: 459 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 70.84 s/job
2025-08-01 16:06:40: Sobol, failed: 459 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 16:07:13: Sobol, failed: 459 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 16:07:44: Sobol, failed: 459 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 16:08:52: Sobol, failed: 459 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 16:10:03: Sobol, failed: 460 ('VAL_ACC: <FLOAT>' not found), finishing jobs, finished 1 job
2025-08-01 16:10:48: Sobol, failed: 460 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 16:11:51: Sobol, failed: 460 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 66.15 s/job
2025-08-01 16:12:22: Sobol, failed: 460 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 16:12:58: Sobol, failed: 460 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 16:13:32: Sobol, failed: 460 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 16:14:37: Sobol, failed: 460 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 16:15:40: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 16:16:13: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 16:17:15: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 64.72 s/job
2025-08-01 16:17:48: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 16:18:22: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 16:18:53: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 16:19:32: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 16:20:34: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 64.81 s/job
2025-08-01 16:21:04: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 16:21:37: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 16:22:11: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 16:23:14: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 16:23:14: Sobol, failed: 461 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 16:24:38: Sobol, failed: 463 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 16:25:11: Sobol, failed: 463 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 16:26:13: Sobol, failed: 463 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 64.73 s/job
2025-08-01 16:26:43: Sobol, failed: 463 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 16:27:18: Sobol, failed: 463 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 16:27:50: Sobol, failed: 463 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 16:28:53: Sobol, failed: 463 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 16:29:57: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 16:30:30: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 16:31:33: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 65.68 s/job
2025-08-01 16:32:03: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 16:32:37: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 16:33:08: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 16:33:48: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 16:34:51: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 65.74 s/job
2025-08-01 16:35:24: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 16:36:00: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 16:36:33: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 16:37:38: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 16:37:38: Sobol, failed: 464 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 16:39:02: Sobol, failed: 466 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 16:39:35: Sobol, failed: 466 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 16:40:40: Sobol, failed: 466 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 67.94 s/job
2025-08-01 16:41:12: Sobol, failed: 466 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 16:41:45: Sobol, failed: 466 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 16:42:17: Sobol, failed: 466 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 16:43:21: Sobol, failed: 466 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 16:44:26: Sobol, failed: 467 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 16:44:59: Sobol, failed: 467 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 16:46:03: Sobol, failed: 467 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 66.29 s/job
2025-08-01 16:46:34: Sobol, failed: 467 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 16:47:07: Sobol, failed: 467 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 16:47:53: Sobol, failed: 467 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 16:49:03: Sobol, failed: 467 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 16:50:08: Sobol, failed: 468 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 16:50:41: Sobol, failed: 468 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 16:51:45: Sobol, failed: 468 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 65.99 s/job
2025-08-01 16:52:16: Sobol, failed: 468 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 16:52:52: Sobol, failed: 468 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 16:53:24: Sobol, failed: 468 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 16:54:28: Sobol, failed: 468 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 16:55:32: Sobol, failed: 469 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 16:56:09: Sobol, failed: 469 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 16:57:17: Sobol, failed: 469 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 70.65 s/job
2025-08-01 16:57:49: Sobol, failed: 469 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 16:58:25: Sobol, failed: 469 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 16:58:59: Sobol, failed: 469 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 16:59:38: Sobol, failed: 469 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 17:00:44: Sobol, failed: 469 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 68.50 s/job
2025-08-01 17:01:16: Sobol, failed: 469 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 17:01:50: Sobol, failed: 469 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 17:02:23: Sobol, failed: 469 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 17:02:56: Sobol, failed: 469 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 17:04:01: Sobol, failed: 470 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 17:04:36: Sobol, failed: 470 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 17:05:40: Sobol, failed: 470 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), requested 1 jobs, got 1, 67.35 s/job
2025-08-01 17:06:12: Sobol, failed: 470 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), eval #1/1 start
2025-08-01 17:07:16: Sobol, failed: 470 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (0%/20), starting new job
2025-08-01 17:07:48: Sobol, failed: 470 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 17:08:22: Sobol, failed: 470 ('VAL_ACC: <FLOAT>' not found), completed/running 1/1∑2 (5%/20), job_failed
2025-08-01 17:09:27: Sobol, failed: 471 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 17:10:02: Sobol, failed: 471 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 17:11:06: Sobol, failed: 471 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 67.32 s/job
2025-08-01 17:11:38: Sobol, failed: 471 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 17:12:11: Sobol, failed: 471 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 17:12:43: Sobol, failed: 471 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 17:13:49: Sobol, failed: 471 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 17:13:49: Sobol, failed: 471 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 17:15:16: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 17:15:51: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 17:16:55: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 66.09 s/job
2025-08-01 17:17:25: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 17:17:58: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 17:18:44: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 17:19:25: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 17:20:36: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 73.28 s/job
2025-08-01 17:21:07: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 17:21:40: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 17:22:12: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 17:23:18: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 17:23:18: Sobol, failed: 473 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 17:24:43: Sobol, failed: 475 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 17:25:18: Sobol, failed: 475 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 17:26:22: Sobol, failed: 475 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 66.84 s/job
2025-08-01 17:26:54: Sobol, failed: 475 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 17:27:28: Sobol, failed: 475 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 17:28:00: Sobol, failed: 475 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 17:29:05: Sobol, failed: 475 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 17:30:10: Sobol, failed: 476 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 17:30:43: Sobol, failed: 476 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 17:31:48: Sobol, failed: 476 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 67.76 s/job
2025-08-01 17:32:20: Sobol, failed: 476 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 17:32:53: Sobol, failed: 476 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 17:33:25: Sobol, failed: 476 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 17:34:30: Sobol, failed: 476 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 17:35:50: Sobol, failed: 477 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 17:36:25: Sobol, failed: 477 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 17:37:30: Sobol, failed: 477 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 67.46 s/job
2025-08-01 17:38:02: Sobol, failed: 477 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 17:38:36: Sobol, failed: 477 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 17:39:09: Sobol, failed: 477 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 17:40:16: Sobol, failed: 477 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 17:41:21: Sobol, failed: 478 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 17:41:56: Sobol, failed: 478 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 17:43:03: Sobol, failed: 478 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 69.51 s/job
2025-08-01 17:43:34: Sobol, failed: 478 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 17:44:09: Sobol, failed: 478 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 17:44:42: Sobol, failed: 478 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 17:45:48: Sobol, failed: 478 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 17:46:55: Sobol, failed: 479 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 17:47:29: Sobol, failed: 479 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 17:48:33: Sobol, failed: 479 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 66.93 s/job
2025-08-01 17:49:05: Sobol, failed: 479 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 17:49:40: Sobol, failed: 479 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 17:50:14: Sobol, failed: 479 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 17:51:20: Sobol, failed: 479 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 17:52:25: Sobol, failed: 480 ('VAL_ACC: <FLOAT>' not found), finishing jobs, finished 1 job
2025-08-01 17:53:09: Sobol, failed: 480 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 17:54:14: Sobol, failed: 480 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 68.55 s/job
2025-08-01 17:54:47: Sobol, failed: 480 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 17:55:21: Sobol, failed: 480 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 17:55:53: Sobol, failed: 480 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 17:56:59: Sobol, failed: 480 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 17:58:05: Sobol, failed: 481 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 17:58:38: Sobol, failed: 481 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 17:59:43: Sobol, failed: 481 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 67.02 s/job
2025-08-01 18:00:14: Sobol, failed: 481 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 18:00:48: Sobol, failed: 481 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 18:01:22: Sobol, failed: 481 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 18:02:29: Sobol, failed: 481 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 18:03:34: Sobol, failed: 482 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 18:04:09: Sobol, failed: 482 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 18:05:14: Sobol, failed: 482 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 68.29 s/job
2025-08-01 18:05:46: Sobol, failed: 482 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 18:06:20: Sobol, failed: 482 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 18:06:52: Sobol, failed: 482 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 18:08:01: Sobol, failed: 482 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 18:09:07: Sobol, failed: 483 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 18:09:45: Sobol, failed: 483 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 18:11:03: Sobol, failed: 483 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 80.28 s/job
2025-08-01 18:11:36: Sobol, failed: 483 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 18:12:12: Sobol, failed: 483 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 18:12:46: Sobol, failed: 483 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 18:13:56: Sobol, failed: 483 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 18:15:12: Sobol, failed: 484 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 18:15:52: Sobol, failed: 484 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 18:17:10: Sobol, failed: 484 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 80.95 s/job
2025-08-01 18:17:42: Sobol, failed: 484 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 18:18:17: Sobol, failed: 484 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 18:18:51: Sobol, failed: 484 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 18:20:04: Sobol, failed: 484 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 18:21:10: Sobol, failed: 485 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 18:21:45: Sobol, failed: 485 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 18:22:51: Sobol, failed: 485 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 68.69 s/job
2025-08-01 18:23:23: Sobol, failed: 485 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 18:23:57: Sobol, failed: 485 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 18:24:30: Sobol, failed: 485 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 18:25:39: Sobol, failed: 485 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 18:26:45: Sobol, failed: 486 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 18:27:20: Sobol, failed: 486 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 18:28:28: Sobol, failed: 486 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 71.60 s/job
2025-08-01 18:29:00: Sobol, failed: 486 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 18:29:35: Sobol, failed: 486 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 18:30:08: Sobol, failed: 486 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 18:31:13: Sobol, failed: 486 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 18:32:23: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 18:32:57: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 18:34:04: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 69.74 s/job
2025-08-01 18:34:38: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 18:35:13: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 18:35:55: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 18:36:36: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 18:37:53: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 79.30 s/job
2025-08-01 18:38:27: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 18:39:02: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 18:39:42: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 18:41:01: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 18:41:01: Sobol, failed: 487 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 18:42:37: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 18:43:13: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 18:44:21: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 71.03 s/job
2025-08-01 18:44:55: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 18:45:37: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 18:46:15: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 18:47:03: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), running 1∑1 (5%/20), getting new HP set
2025-08-01 18:48:13: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 72.64 s/job
2025-08-01 18:48:45: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 18:49:20: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 18:49:52: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 18:50:59: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 18:50:59: Sobol, failed: 489 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 18:52:28: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 18:53:03: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 18:54:09: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 68.67 s/job
2025-08-01 18:54:41: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 18:55:16: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 18:55:49: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 18:57:02: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), getting new HP set
2025-08-01 18:58:07: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), requested 1 jobs, got 1, 100.26 s/job
2025-08-01 18:58:40: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), eval #1/1 start
2025-08-01 18:59:16: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), starting new job
2025-08-01 18:59:51: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), completed/unknown 1/1∑2 (5%/20), started new job
2025-08-01 19:00:58: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 19:00:58: Sobol, failed: 491 ('VAL_ACC: <FLOAT>' not found), completed 2∑2 (0%/20), job_failed
2025-08-01 19:02:28: Sobol, failed: 493 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-01 19:03:05: Sobol, failed: 493 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 19:04:15: Sobol, failed: 493 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 72.49 s/job
2025-08-01 19:04:48: Sobol, failed: 493 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 19:05:23: Sobol, failed: 493 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 19:05:58: Sobol, failed: 493 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 19:07:06: Sobol, failed: 493 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 19:08:15: Sobol, failed: 494 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 19:08:50: Sobol, failed: 494 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 19:09:57: Sobol, failed: 494 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 69.78 s/job
2025-08-01 19:10:29: Sobol, failed: 494 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 19:11:04: Sobol, failed: 494 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 19:11:38: Sobol, failed: 494 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 19:12:45: Sobol, failed: 494 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 19:13:52: Sobol, failed: 495 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 19:14:28: Sobol, failed: 495 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 19:15:37: Sobol, failed: 495 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 71.86 s/job
2025-08-01 19:16:09: Sobol, failed: 495 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 19:16:44: Sobol, failed: 495 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 19:17:19: Sobol, failed: 495 ('VAL_ACC: <FLOAT>' not found), pending 1∑1 (5%/20), started new job
2025-08-01 19:18:28: Sobol, failed: 495 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 19:19:38: Sobol, failed: 496 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 19:20:14: Sobol, failed: 496 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 19:21:20: Sobol, failed: 496 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 69.60 s/job
2025-08-01 19:21:53: Sobol, failed: 496 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 19:22:28: Sobol, failed: 496 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 19:23:03: Sobol, failed: 496 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 19:24:09: Sobol, failed: 496 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 19:25:16: Sobol, failed: 497 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 19:25:51: Sobol, failed: 497 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 19:26:57: Sobol, failed: 497 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 68.52 s/job
2025-08-01 19:27:29: Sobol, failed: 497 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 19:28:03: Sobol, failed: 497 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 19:28:37: Sobol, failed: 497 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 19:29:46: Sobol, failed: 497 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 19:30:53: Sobol, failed: 498 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 19:31:28: Sobol, failed: 498 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 19:32:34: Sobol, failed: 498 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 68.79 s/job
2025-08-01 19:33:07: Sobol, failed: 498 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 19:33:44: Sobol, failed: 498 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 19:34:18: Sobol, failed: 498 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 19:35:25: Sobol, failed: 498 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 19:36:32: Sobol, failed: 499 ('VAL_ACC: <FLOAT>' not found), finishing jobs (_get_next_trials), finished 1 job
2025-08-01 19:37:08: Sobol, failed: 499 ('VAL_ACC: <FLOAT>' not found), getting new HP set
2025-08-01 19:38:16: Sobol, failed: 499 ('VAL_ACC: <FLOAT>' not found), requested 1 jobs, got 1, 70.62 s/job
2025-08-01 19:38:50: Sobol, failed: 499 ('VAL_ACC: <FLOAT>' not found), eval #1/1 start
2025-08-01 19:39:39: Sobol, failed: 499 ('VAL_ACC: <FLOAT>' not found), starting new job
2025-08-01 19:40:15: Sobol, failed: 499 ('VAL_ACC: <FLOAT>' not found), unknown 1∑1 (5%/20), started new job
2025-08-01 19:41:30: Sobol, failed: 499 ('VAL_ACC: <FLOAT>' not found), completed 1∑1 (0%/20), job_failed
2025-08-01 19:42:37: Sobol, failed: 500 ('VAL_ACC: <FLOAT>' not found), finishing jobs, finished 1 job
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_progressbar_log")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_progressbar_log", "progressbar")'><img src='i/download.svg' style='height: 1em'> Download »progressbar« as file</button>
<h1><img class='invert_icon' src='i/terminal.svg' style='height: 1em' /> Job Submit Durations</h1>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_job_submit_durations")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_job_submit_durations", "job_submit_durations.txt")'><img src='i/download.svg' style='height: 1em'> Download »job_submit_durations.txt« as file</button>
<pre id='simple_pre_tab_tab_job_submit_durations'> Job submission durations
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━┳━━━━━━━━━━━━━━┓
┃ Batch ┃ Seconds ┃ Jobs ┃ Time per job ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━╇━━━━━━━━━━━━━━┩
│ 1 │ 9.126 │ 1 │ 9.126 │
│ 2 │ 14.459 │ 1 │ 14.459 │
│ 3 │ 10.065 │ 1 │ 10.065 │
│ 4 │ 9.914 │ 1 │ 9.914 │
│ 5 │ 14.568 │ 1 │ 14.568 │
│ 6 │ 10.519 │ 1 │ 10.519 │
│ 7 │ 27.040 │ 1 │ 27.040 │
│ 8 │ 13.026 │ 1 │ 13.026 │
│ 9 │ 22.194 │ 1 │ 22.194 │
│ 10 │ 11.997 │ 1 │ 11.997 │
│ 11 │ 14.113 │ 1 │ 14.113 │
│ 12 │ 27.307 │ 1 │ 27.307 │
│ 13 │ 18.300 │ 1 │ 18.300 │
│ 14 │ 12.091 │ 1 │ 12.091 │
│ 15 │ 11.011 │ 1 │ 11.011 │
│ 16 │ 12.314 │ 1 │ 12.314 │
│ 17 │ 11.779 │ 1 │ 11.779 │
│ 18 │ 11.564 │ 1 │ 11.564 │
│ 19 │ 42.307 │ 1 │ 42.307 │
│ 20 │ 29.153 │ 1 │ 29.153 │
│ 21 │ 14.027 │ 1 │ 14.027 │
│ 22 │ 13.070 │ 1 │ 13.070 │
│ 23 │ 27.758 │ 1 │ 27.758 │
│ 24 │ 22.596 │ 1 │ 22.596 │
│ 25 │ 13.853 │ 1 │ 13.853 │
│ 26 │ 23.296 │ 1 │ 23.296 │
│ 27 │ 13.137 │ 1 │ 13.137 │
│ 28 │ 13.570 │ 1 │ 13.570 │
│ 29 │ 16.353 │ 1 │ 16.353 │
│ 30 │ 37.101 │ 1 │ 37.101 │
│ 31 │ 14.560 │ 1 │ 14.560 │
│ 32 │ 13.422 │ 1 │ 13.422 │
│ 33 │ 18.016 │ 1 │ 18.016 │
│ 34 │ 15.408 │ 1 │ 15.408 │
│ 35 │ 23.780 │ 1 │ 23.780 │
│ 36 │ 16.813 │ 1 │ 16.813 │
│ 37 │ 22.729 │ 1 │ 22.729 │
│ 38 │ 15.503 │ 1 │ 15.503 │
│ 39 │ 21.587 │ 1 │ 21.587 │
│ 40 │ 14.978 │ 1 │ 14.978 │
│ 41 │ 16.316 │ 1 │ 16.316 │
│ 42 │ 15.550 │ 1 │ 15.550 │
│ 43 │ 14.852 │ 1 │ 14.852 │
│ 44 │ 15.166 │ 1 │ 15.166 │
│ 45 │ 16.166 │ 1 │ 16.166 │
│ 46 │ 15.718 │ 1 │ 15.718 │
│ 47 │ 15.336 │ 1 │ 15.336 │
│ 48 │ 15.309 │ 1 │ 15.309 │
│ 49 │ 15.755 │ 1 │ 15.755 │
│ 50 │ 37.063 │ 1 │ 37.063 │
│ 51 │ 16.730 │ 1 │ 16.730 │
│ 52 │ 16.864 │ 1 │ 16.864 │
│ 53 │ 15.954 │ 1 │ 15.954 │
│ 54 │ 16.469 │ 1 │ 16.469 │
│ 55 │ 29.256 │ 1 │ 29.256 │
│ 56 │ 18.897 │ 1 │ 18.897 │
│ 57 │ 21.941 │ 1 │ 21.941 │
│ 58 │ 16.981 │ 1 │ 16.981 │
│ 59 │ 31.862 │ 1 │ 31.862 │
│ 60 │ 16.667 │ 1 │ 16.667 │
│ 61 │ 18.272 │ 1 │ 18.272 │
│ 62 │ 17.755 │ 1 │ 17.755 │
│ 63 │ 17.820 │ 1 │ 17.820 │
│ 64 │ 23.160 │ 1 │ 23.160 │
│ 65 │ 19.153 │ 1 │ 19.153 │
│ 66 │ 18.391 │ 1 │ 18.391 │
│ 67 │ 18.754 │ 1 │ 18.754 │
│ 68 │ 18.895 │ 1 │ 18.895 │
│ 69 │ 17.822 │ 1 │ 17.822 │
│ 70 │ 38.695 │ 1 │ 38.695 │
│ 71 │ 18.630 │ 1 │ 18.630 │
│ 72 │ 19.074 │ 1 │ 19.074 │
│ 73 │ 19.074 │ 1 │ 19.074 │
│ 74 │ 21.753 │ 1 │ 21.753 │
│ 75 │ 19.989 │ 1 │ 19.989 │
│ 76 │ 19.042 │ 1 │ 19.042 │
│ 77 │ 20.567 │ 1 │ 20.567 │
│ 78 │ 20.421 │ 1 │ 20.421 │
│ 79 │ 21.191 │ 1 │ 21.191 │
│ 80 │ 21.036 │ 1 │ 21.036 │
│ 81 │ 31.221 │ 1 │ 31.221 │
│ 82 │ 20.117 │ 1 │ 20.117 │
│ 83 │ 23.308 │ 1 │ 23.308 │
│ 84 │ 41.735 │ 1 │ 41.735 │
│ 85 │ 35.968 │ 1 │ 35.968 │
│ 86 │ 39.324 │ 1 │ 39.324 │
│ 87 │ 22.718 │ 1 │ 22.718 │
│ 88 │ 20.532 │ 1 │ 20.532 │
│ 89 │ 23.185 │ 1 │ 23.185 │
│ 90 │ 21.143 │ 1 │ 21.143 │
│ 91 │ 38.099 │ 1 │ 38.099 │
│ 92 │ 21.859 │ 1 │ 21.859 │
│ 93 │ 20.201 │ 1 │ 20.201 │
│ 94 │ 32.122 │ 1 │ 32.122 │
│ 95 │ 20.793 │ 1 │ 20.793 │
│ 96 │ 43.983 │ 1 │ 43.983 │
│ 97 │ 34.800 │ 1 │ 34.800 │
│ 98 │ 30.220 │ 1 │ 30.220 │
│ 99 │ 23.007 │ 1 │ 23.007 │
│ 100 │ 22.528 │ 1 │ 22.528 │
│ 101 │ 47.040 │ 1 │ 47.040 │
│ 102 │ 24.488 │ 1 │ 24.488 │
│ 103 │ 36.246 │ 1 │ 36.246 │
│ 104 │ 28.567 │ 1 │ 28.567 │
│ 105 │ 32.771 │ 1 │ 32.771 │
│ 106 │ 34.440 │ 1 │ 34.440 │
│ 107 │ 22.301 │ 1 │ 22.301 │
│ 108 │ 40.671 │ 1 │ 40.671 │
│ 109 │ 24.585 │ 1 │ 24.585 │
│ 110 │ 22.383 │ 1 │ 22.383 │
│ 111 │ 23.031 │ 1 │ 23.031 │
│ 112 │ 33.378 │ 1 │ 33.378 │
│ 113 │ 23.190 │ 1 │ 23.190 │
│ 114 │ 23.337 │ 1 │ 23.337 │
│ 115 │ 25.935 │ 1 │ 25.935 │
│ 116 │ 44.181 │ 1 │ 44.181 │
│ 117 │ 34.704 │ 1 │ 34.704 │
│ 118 │ 23.763 │ 1 │ 23.763 │
│ 119 │ 25.301 │ 1 │ 25.301 │
│ 120 │ 27.421 │ 1 │ 27.421 │
│ 121 │ 26.813 │ 1 │ 26.813 │
│ 122 │ 24.160 │ 1 │ 24.160 │
│ 123 │ 24.346 │ 1 │ 24.346 │
│ 124 │ 26.040 │ 1 │ 26.040 │
│ 125 │ 30.292 │ 1 │ 30.292 │
│ 126 │ 24.095 │ 1 │ 24.095 │
│ 127 │ 29.288 │ 1 │ 29.288 │
│ 128 │ 24.701 │ 1 │ 24.701 │
│ 129 │ 25.750 │ 1 │ 25.750 │
│ 130 │ 24.745 │ 1 │ 24.745 │
│ 131 │ 29.183 │ 1 │ 29.183 │
│ 132 │ 25.616 │ 1 │ 25.616 │
│ 133 │ 28.222 │ 1 │ 28.222 │
│ 134 │ 26.694 │ 1 │ 26.694 │
│ 135 │ 25.811 │ 1 │ 25.811 │
│ 136 │ 25.514 │ 1 │ 25.514 │
│ 137 │ 26.379 │ 1 │ 26.379 │
│ 138 │ 26.259 │ 1 │ 26.259 │
│ 139 │ 25.818 │ 1 │ 25.818 │
│ 140 │ 26.813 │ 1 │ 26.813 │
│ 141 │ 26.056 │ 1 │ 26.056 │
│ 142 │ 26.357 │ 1 │ 26.357 │
│ 143 │ 27.013 │ 1 │ 27.013 │
│ 144 │ 26.448 │ 1 │ 26.448 │
│ 145 │ 29.409 │ 1 │ 29.409 │
│ 146 │ 28.095 │ 1 │ 28.095 │
│ 147 │ 28.192 │ 1 │ 28.192 │
│ 148 │ 27.012 │ 1 │ 27.012 │
│ 149 │ 28.207 │ 1 │ 28.207 │
│ 150 │ 28.734 │ 1 │ 28.734 │
│ 151 │ 27.726 │ 1 │ 27.726 │
│ 152 │ 28.407 │ 1 │ 28.407 │
│ 153 │ 27.776 │ 1 │ 27.776 │
│ 154 │ 27.357 │ 1 │ 27.357 │
│ 155 │ 31.335 │ 1 │ 31.335 │
│ 156 │ 28.471 │ 1 │ 28.471 │
│ 157 │ 29.272 │ 1 │ 29.272 │
│ 158 │ 28.244 │ 1 │ 28.244 │
│ 159 │ 29.547 │ 1 │ 29.547 │
│ 160 │ 28.381 │ 1 │ 28.381 │
│ 161 │ 28.502 │ 1 │ 28.502 │
│ 162 │ 29.080 │ 1 │ 29.080 │
│ 163 │ 30.904 │ 1 │ 30.904 │
│ 164 │ 44.954 │ 1 │ 44.954 │
│ 165 │ 29.782 │ 1 │ 29.782 │
│ 166 │ 29.187 │ 1 │ 29.187 │
│ 167 │ 30.663 │ 1 │ 30.663 │
│ 168 │ 29.612 │ 1 │ 29.612 │
│ 169 │ 30.522 │ 1 │ 30.522 │
│ 170 │ 30.120 │ 1 │ 30.120 │
│ 171 │ 43.907 │ 1 │ 43.907 │
│ 172 │ 29.320 │ 1 │ 29.320 │
│ 173 │ 30.299 │ 1 │ 30.299 │
│ 174 │ 30.346 │ 1 │ 30.346 │
│ 175 │ 30.353 │ 1 │ 30.353 │
│ 176 │ 29.931 │ 1 │ 29.931 │
│ 177 │ 36.363 │ 1 │ 36.363 │
│ 178 │ 44.540 │ 1 │ 44.540 │
│ 179 │ 31.955 │ 1 │ 31.955 │
│ 180 │ 30.996 │ 1 │ 30.996 │
│ 181 │ 46.584 │ 1 │ 46.584 │
│ 182 │ 31.037 │ 1 │ 31.037 │
│ 183 │ 47.933 │ 1 │ 47.933 │
│ 184 │ 34.163 │ 1 │ 34.163 │
│ 185 │ 32.140 │ 1 │ 32.140 │
│ 186 │ 31.513 │ 1 │ 31.513 │
│ 187 │ 32.267 │ 1 │ 32.267 │
│ 188 │ 32.586 │ 1 │ 32.586 │
│ 189 │ 33.784 │ 1 │ 33.784 │
│ 190 │ 31.979 │ 1 │ 31.979 │
│ 191 │ 32.149 │ 1 │ 32.149 │
│ 192 │ 32.838 │ 1 │ 32.838 │
│ 193 │ 32.776 │ 1 │ 32.776 │
│ 194 │ 32.846 │ 1 │ 32.846 │
│ 195 │ 34.293 │ 1 │ 34.293 │
│ 196 │ 33.191 │ 1 │ 33.191 │
│ 197 │ 33.270 │ 1 │ 33.270 │
│ 198 │ 54.400 │ 1 │ 54.400 │
│ 199 │ 34.141 │ 1 │ 34.141 │
│ 200 │ 48.477 │ 1 │ 48.477 │
│ 201 │ 49.846 │ 1 │ 49.846 │
│ 202 │ 33.873 │ 1 │ 33.873 │
│ 203 │ 50.927 │ 1 │ 50.927 │
│ 204 │ 51.690 │ 1 │ 51.690 │
│ 205 │ 35.068 │ 1 │ 35.068 │
│ 206 │ 34.200 │ 1 │ 34.200 │
│ 207 │ 36.307 │ 1 │ 36.307 │
│ 208 │ 35.104 │ 1 │ 35.104 │
│ 209 │ 34.795 │ 1 │ 34.795 │
│ 210 │ 51.405 │ 1 │ 51.405 │
│ 211 │ 37.801 │ 1 │ 37.801 │
│ 212 │ 52.078 │ 1 │ 52.078 │
│ 213 │ 51.006 │ 1 │ 51.006 │
│ 214 │ 35.483 │ 1 │ 35.483 │
│ 215 │ 34.886 │ 1 │ 34.886 │
│ 216 │ 36.385 │ 1 │ 36.385 │
│ 217 │ 54.171 │ 1 │ 54.171 │
│ 218 │ 35.688 │ 1 │ 35.688 │
│ 219 │ 35.972 │ 1 │ 35.972 │
│ 220 │ 42.185 │ 1 │ 42.185 │
│ 221 │ 52.268 │ 1 │ 52.268 │
│ 222 │ 35.954 │ 1 │ 35.954 │
│ 223 │ 45.145 │ 1 │ 45.145 │
│ 224 │ 36.233 │ 1 │ 36.233 │
│ 225 │ 37.403 │ 1 │ 37.403 │
│ 226 │ 55.595 │ 1 │ 55.595 │
│ 227 │ 65.487 │ 1 │ 65.487 │
│ 228 │ 58.116 │ 1 │ 58.116 │
│ 229 │ 56.292 │ 1 │ 56.292 │
│ 230 │ 37.676 │ 1 │ 37.676 │
│ 231 │ 38.023 │ 1 │ 38.023 │
│ 232 │ 38.929 │ 1 │ 38.929 │
│ 233 │ 38.365 │ 1 │ 38.365 │
│ 234 │ 42.658 │ 1 │ 42.658 │
│ 235 │ 56.152 │ 1 │ 56.152 │
│ 236 │ 62.614 │ 1 │ 62.614 │
│ 237 │ 68.925 │ 1 │ 68.925 │
│ 238 │ 46.055 │ 1 │ 46.055 │
│ 239 │ 41.611 │ 1 │ 41.611 │
│ 240 │ 40.541 │ 1 │ 40.541 │
│ 241 │ 55.345 │ 1 │ 55.345 │
│ 242 │ 63.569 │ 1 │ 63.569 │
│ 243 │ 38.839 │ 1 │ 38.839 │
│ 244 │ 56.977 │ 1 │ 56.977 │
│ 245 │ 58.197 │ 1 │ 58.197 │
│ 246 │ 38.877 │ 1 │ 38.877 │
│ 247 │ 39.558 │ 1 │ 39.558 │
│ 248 │ 40.893 │ 1 │ 40.893 │
│ 249 │ 57.503 │ 1 │ 57.503 │
│ 250 │ 59.342 │ 1 │ 59.342 │
│ 251 │ 43.043 │ 1 │ 43.043 │
│ 252 │ 41.073 │ 1 │ 41.073 │
│ 253 │ 40.349 │ 1 │ 40.349 │
│ 254 │ 66.811 │ 1 │ 66.811 │
│ 255 │ 40.686 │ 1 │ 40.686 │
│ 256 │ 41.715 │ 1 │ 41.715 │
│ 257 │ 47.815 │ 1 │ 47.815 │
│ 258 │ 41.005 │ 1 │ 41.005 │
│ 259 │ 59.947 │ 1 │ 59.947 │
│ 260 │ 40.500 │ 1 │ 40.500 │
│ 261 │ 42.916 │ 1 │ 42.916 │
│ 262 │ 43.139 │ 1 │ 43.139 │
│ 263 │ 42.670 │ 1 │ 42.670 │
│ 264 │ 42.729 │ 1 │ 42.729 │
│ 265 │ 61.825 │ 1 │ 61.825 │
│ 266 │ 45.290 │ 1 │ 45.290 │
│ 267 │ 41.514 │ 1 │ 41.514 │
│ 268 │ 61.780 │ 1 │ 61.780 │
│ 269 │ 61.904 │ 1 │ 61.904 │
│ 270 │ 41.642 │ 1 │ 41.642 │
│ 271 │ 42.197 │ 1 │ 42.197 │
│ 272 │ 41.924 │ 1 │ 41.924 │
│ 273 │ 42.384 │ 1 │ 42.384 │
│ 274 │ 65.888 │ 1 │ 65.888 │
│ 275 │ 49.131 │ 1 │ 49.131 │
│ 276 │ 62.572 │ 1 │ 62.572 │
│ 277 │ 42.138 │ 1 │ 42.138 │
│ 278 │ 44.409 │ 1 │ 44.409 │
│ 279 │ 66.346 │ 1 │ 66.346 │
│ 280 │ 45.898 │ 1 │ 45.898 │
│ 281 │ 50.430 │ 1 │ 50.430 │
│ 282 │ 64.006 │ 1 │ 64.006 │
│ 283 │ 45.191 │ 1 │ 45.191 │
│ 284 │ 64.535 │ 1 │ 64.535 │
│ 285 │ 66.523 │ 1 │ 66.523 │
│ 286 │ 64.966 │ 1 │ 64.966 │
│ 287 │ 43.570 │ 1 │ 43.570 │
│ 288 │ 67.357 │ 1 │ 67.357 │
│ 289 │ 65.683 │ 1 │ 65.683 │
│ 290 │ 67.164 │ 1 │ 67.164 │
│ 291 │ 44.827 │ 1 │ 44.827 │
│ 292 │ 44.023 │ 1 │ 44.023 │
│ 293 │ 43.668 │ 1 │ 43.668 │
│ 294 │ 66.361 │ 1 │ 66.361 │
│ 295 │ 44.359 │ 1 │ 44.359 │
│ 296 │ 66.171 │ 1 │ 66.171 │
│ 297 │ 67.061 │ 1 │ 67.061 │
│ 298 │ 45.248 │ 1 │ 45.248 │
│ 299 │ 68.587 │ 1 │ 68.587 │
│ 300 │ 66.461 │ 1 │ 66.461 │
│ 301 │ 49.657 │ 1 │ 49.657 │
│ 302 │ 46.488 │ 1 │ 46.488 │
│ 303 │ 66.740 │ 1 │ 66.740 │
│ 304 │ 65.534 │ 1 │ 65.534 │
│ 305 │ 45.930 │ 1 │ 45.930 │
│ 306 │ 45.806 │ 1 │ 45.806 │
│ 307 │ 48.131 │ 1 │ 48.131 │
│ 308 │ 46.606 │ 1 │ 46.606 │
│ 309 │ 47.324 │ 1 │ 47.324 │
│ 310 │ 46.434 │ 1 │ 46.434 │
│ 311 │ 45.826 │ 1 │ 45.826 │
│ 312 │ 46.702 │ 1 │ 46.702 │
│ 313 │ 68.284 │ 1 │ 68.284 │
│ 314 │ 46.421 │ 1 │ 46.421 │
│ 315 │ 68.822 │ 1 │ 68.822 │
│ 316 │ 46.487 │ 1 │ 46.487 │
│ 317 │ 68.438 │ 1 │ 68.438 │
│ 318 │ 71.595 │ 1 │ 71.595 │
│ 319 │ 68.376 │ 1 │ 68.376 │
│ 320 │ 46.473 │ 1 │ 46.473 │
│ 321 │ 47.377 │ 1 │ 47.377 │
│ 322 │ 69.226 │ 1 │ 69.226 │
│ 323 │ 47.435 │ 1 │ 47.435 │
│ 324 │ 74.371 │ 1 │ 74.371 │
│ 325 │ 70.974 │ 1 │ 70.974 │
│ 326 │ 49.149 │ 1 │ 49.149 │
│ 327 │ 71.211 │ 1 │ 71.211 │
│ 328 │ 72.006 │ 1 │ 72.006 │
│ 329 │ 126.788 │ 1 │ 126.788 │
│ 330 │ 54.565 │ 1 │ 54.565 │
│ 331 │ 81.204 │ 1 │ 81.204 │
│ 332 │ 51.575 │ 1 │ 51.575 │
│ 333 │ 48.387 │ 1 │ 48.387 │
│ 334 │ 74.358 │ 1 │ 74.358 │
│ 335 │ 73.440 │ 1 │ 73.440 │
│ 336 │ 74.579 │ 1 │ 74.579 │
│ 337 │ 84.494 │ 1 │ 84.494 │
│ 338 │ 77.991 │ 1 │ 77.991 │
│ 339 │ 51.664 │ 1 │ 51.664 │
│ 340 │ 76.526 │ 1 │ 76.526 │
│ 341 │ 73.123 │ 1 │ 73.123 │
│ 342 │ 71.706 │ 1 │ 71.706 │
│ 343 │ 49.843 │ 1 │ 49.843 │
│ 344 │ 50.934 │ 1 │ 50.934 │
│ 345 │ 50.033 │ 1 │ 50.033 │
│ 346 │ 74.031 │ 1 │ 74.031 │
│ 347 │ 51.271 │ 1 │ 51.271 │
│ 348 │ 52.874 │ 1 │ 52.874 │
│ 349 │ 50.447 │ 1 │ 50.447 │
│ 350 │ 74.073 │ 1 │ 74.073 │
│ 351 │ 55.555 │ 1 │ 55.555 │
│ 352 │ 50.486 │ 1 │ 50.486 │
│ 353 │ 76.744 │ 1 │ 76.744 │
│ 354 │ 61.293 │ 1 │ 61.293 │
│ 355 │ 86.439 │ 1 │ 86.439 │
│ 356 │ 52.370 │ 1 │ 52.370 │
│ 357 │ 76.826 │ 1 │ 76.826 │
│ 358 │ 75.771 │ 1 │ 75.771 │
│ 359 │ 75.072 │ 1 │ 75.072 │
│ 360 │ 54.982 │ 1 │ 54.982 │
│ 361 │ 53.386 │ 1 │ 53.386 │
│ 362 │ 75.605 │ 1 │ 75.605 │
│ 363 │ 82.067 │ 1 │ 82.067 │
│ 364 │ 79.227 │ 1 │ 79.227 │
│ 365 │ 80.074 │ 1 │ 80.074 │
│ 366 │ 79.132 │ 1 │ 79.132 │
│ 367 │ 52.451 │ 1 │ 52.451 │
│ 368 │ 83.351 │ 1 │ 83.351 │
│ 369 │ 55.348 │ 1 │ 55.348 │
│ 370 │ 86.941 │ 1 │ 86.941 │
│ 371 │ 82.413 │ 1 │ 82.413 │
│ 372 │ 81.251 │ 1 │ 81.251 │
│ 373 │ 78.125 │ 1 │ 78.125 │
│ 374 │ 79.438 │ 1 │ 79.438 │
│ 375 │ 78.143 │ 1 │ 78.143 │
│ 376 │ 56.930 │ 1 │ 56.930 │
│ 377 │ 91.570 │ 1 │ 91.570 │
│ 378 │ 79.816 │ 1 │ 79.816 │
│ 379 │ 56.614 │ 1 │ 56.614 │
│ 380 │ 68.788 │ 1 │ 68.788 │
│ 381 │ 55.880 │ 1 │ 55.880 │
│ 382 │ 106.775 │ 1 │ 106.775 │
│ 383 │ 82.692 │ 1 │ 82.692 │
│ 384 │ 55.766 │ 1 │ 55.766 │
│ 385 │ 57.112 │ 1 │ 57.112 │
│ 386 │ 55.920 │ 1 │ 55.920 │
│ 387 │ 55.381 │ 1 │ 55.381 │
│ 388 │ 55.356 │ 1 │ 55.356 │
│ 389 │ 104.878 │ 1 │ 104.878 │
│ 390 │ 82.239 │ 1 │ 82.239 │
│ 391 │ 55.282 │ 1 │ 55.282 │
│ 392 │ 84.999 │ 1 │ 84.999 │
│ 393 │ 84.689 │ 1 │ 84.689 │
│ 394 │ 56.575 │ 1 │ 56.575 │
│ 395 │ 84.573 │ 1 │ 84.573 │
│ 396 │ 59.351 │ 1 │ 59.351 │
│ 397 │ 57.783 │ 1 │ 57.783 │
│ 398 │ 59.392 │ 1 │ 59.392 │
│ 399 │ 83.492 │ 1 │ 83.492 │
│ 400 │ 59.718 │ 1 │ 59.718 │
│ 401 │ 61.324 │ 1 │ 61.324 │
│ 402 │ 57.215 │ 1 │ 57.215 │
│ 403 │ 85.415 │ 1 │ 85.415 │
│ 404 │ 56.726 │ 1 │ 56.726 │
│ 405 │ 56.555 │ 1 │ 56.555 │
│ 406 │ 84.985 │ 1 │ 84.985 │
│ 407 │ 57.682 │ 1 │ 57.682 │
│ 408 │ 57.266 │ 1 │ 57.266 │
│ 409 │ 60.340 │ 1 │ 60.340 │
│ 410 │ 59.897 │ 1 │ 59.897 │
│ 411 │ 62.489 │ 1 │ 62.489 │
│ 412 │ 61.510 │ 1 │ 61.510 │
│ 413 │ 61.856 │ 1 │ 61.856 │
│ 414 │ 88.332 │ 1 │ 88.332 │
│ 415 │ 58.441 │ 1 │ 58.441 │
│ 416 │ 59.563 │ 1 │ 59.563 │
│ 417 │ 59.949 │ 1 │ 59.949 │
│ 418 │ 66.427 │ 1 │ 66.427 │
│ 419 │ 87.939 │ 1 │ 87.939 │
│ 420 │ 59.321 │ 1 │ 59.321 │
│ 421 │ 70.378 │ 1 │ 70.378 │
│ 422 │ 60.558 │ 1 │ 60.558 │
│ 423 │ 72.715 │ 1 │ 72.715 │
│ 424 │ 88.948 │ 1 │ 88.948 │
│ 425 │ 92.175 │ 1 │ 92.175 │
│ 426 │ 89.055 │ 1 │ 89.055 │
│ 427 │ 90.024 │ 1 │ 90.024 │
│ 428 │ 61.927 │ 1 │ 61.927 │
│ 429 │ 61.263 │ 1 │ 61.263 │
│ 430 │ 89.107 │ 1 │ 89.107 │
│ 431 │ 109.001 │ 1 │ 109.001 │
│ 432 │ 92.472 │ 1 │ 92.472 │
│ 433 │ 91.950 │ 1 │ 91.950 │
│ 434 │ 92.520 │ 1 │ 92.520 │
│ 435 │ 90.184 │ 1 │ 90.184 │
│ 436 │ 89.823 │ 1 │ 89.823 │
│ 437 │ 74.929 │ 1 │ 74.929 │
│ 438 │ 94.036 │ 1 │ 94.036 │
│ 439 │ 91.273 │ 1 │ 91.273 │
│ 440 │ 90.738 │ 1 │ 90.738 │
│ 441 │ 94.270 │ 1 │ 94.270 │
│ 442 │ 96.235 │ 1 │ 96.235 │
│ 443 │ 96.940 │ 1 │ 96.940 │
│ 444 │ 94.283 │ 1 │ 94.283 │
│ 445 │ 90.692 │ 1 │ 90.692 │
│ 446 │ 62.301 │ 1 │ 62.301 │
│ 447 │ 95.628 │ 1 │ 95.628 │
│ 448 │ 93.978 │ 1 │ 93.978 │
│ 449 │ 98.121 │ 1 │ 98.121 │
│ 450 │ 102.010 │ 1 │ 102.010 │
│ 451 │ 92.748 │ 1 │ 92.748 │
│ 452 │ 64.149 │ 1 │ 64.149 │
│ 453 │ 100.426 │ 1 │ 100.426 │
│ 454 │ 93.249 │ 1 │ 93.249 │
│ 455 │ 102.811 │ 1 │ 102.811 │
│ 456 │ 94.839 │ 1 │ 94.839 │
│ 457 │ 94.403 │ 1 │ 94.403 │
│ 458 │ 63.759 │ 1 │ 63.759 │
│ 459 │ 95.930 │ 1 │ 95.930 │
│ 460 │ 99.159 │ 1 │ 99.159 │
│ 461 │ 99.125 │ 1 │ 99.125 │
│ 462 │ 63.814 │ 1 │ 63.814 │
│ 463 │ 96.636 │ 1 │ 96.636 │
│ 464 │ 96.188 │ 1 │ 96.188 │
│ 465 │ 65.567 │ 1 │ 65.567 │
│ 466 │ 97.551 │ 1 │ 97.551 │
│ 467 │ 95.469 │ 1 │ 95.469 │
│ 468 │ 115.374 │ 1 │ 115.374 │
│ 469 │ 95.454 │ 1 │ 95.454 │
│ 470 │ 67.602 │ 1 │ 67.602 │
│ 471 │ 66.768 │ 1 │ 66.768 │
│ 472 │ 65.318 │ 1 │ 65.318 │
│ 473 │ 97.075 │ 1 │ 97.075 │
│ 474 │ 81.474 │ 1 │ 81.474 │
│ 475 │ 96.658 │ 1 │ 96.658 │
│ 476 │ 96.379 │ 1 │ 96.379 │
│ 477 │ 96.185 │ 1 │ 96.185 │
│ 478 │ 99.869 │ 1 │ 99.869 │
│ 479 │ 98.804 │ 1 │ 98.804 │
│ 480 │ 99.264 │ 1 │ 99.264 │
│ 481 │ 97.726 │ 1 │ 97.726 │
│ 482 │ 100.704 │ 1 │ 100.704 │
│ 483 │ 99.468 │ 1 │ 99.468 │
│ 484 │ 103.960 │ 1 │ 103.960 │
│ 485 │ 104.837 │ 1 │ 104.837 │
│ 486 │ 101.167 │ 1 │ 101.167 │
│ 487 │ 98.069 │ 1 │ 98.069 │
│ 488 │ 77.538 │ 1 │ 77.538 │
│ 489 │ 118.153 │ 1 │ 118.153 │
│ 490 │ 80.928 │ 1 │ 80.928 │
│ 491 │ 99.071 │ 1 │ 99.071 │
│ 492 │ 68.148 │ 1 │ 68.148 │
│ 493 │ 101.693 │ 1 │ 101.693 │
│ 494 │ 102.342 │ 1 │ 102.342 │
│ 495 │ 100.278 │ 1 │ 100.278 │
│ 496 │ 103.551 │ 1 │ 103.551 │
│ 497 │ 100.641 │ 1 │ 100.641 │
│ 498 │ 101.875 │ 1 │ 101.875 │
│ 499 │ 100.962 │ 1 │ 100.962 │
│ 500 │ 110.907 │ 1 │ 110.907 │
├─────────┼───────────┼──────┼──────────────┤
│ Average │ 50.419 │ │ │
│ Median │ 45.816 │ │ │
│ Total │ 25209.701 │ │ │
│ Max │ 126.788 │ │ │
│ Min │ 9.126 │ │ │
└─────────┴───────────┴──────┴──────────────┘
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_job_submit_durations")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_job_submit_durations", "job_submit_durations.txt")'><img src='i/download.svg' style='height: 1em'> Download »job_submit_durations.txt« as file</button>
<h1><img class='invert_icon' src='i/terminal.svg' style='height: 1em' /> Generation Times</h1>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_job_generation_times")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_job_generation_times", "generation_times.txt")'><img src='i/download.svg' style='height: 1em'> Download »generation_times.txt« as file</button>
<pre id='simple_pre_tab_tab_job_generation_times'> Model generation times
┏━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━┳━━━━━━━━━━━━━━┓
┃ Iteration ┃ Seconds ┃ Jobs ┃ Time per job ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━╇━━━━━━━━━━━━━━┩
│ 1 │ 22.278 │ 1 │ 22.278 │
│ 2 │ 8.613 │ 1 │ 8.613 │
│ 3 │ 29.220 │ 1 │ 29.220 │
│ 4 │ 28.911 │ 1 │ 28.911 │
│ 5 │ 9.090 │ 1 │ 9.090 │
│ 6 │ 9.127 │ 1 │ 9.127 │
│ 7 │ 13.566 │ 1 │ 13.566 │
│ 8 │ 13.927 │ 1 │ 13.927 │
│ 9 │ 9.426 │ 1 │ 9.426 │
│ 10 │ 9.335 │ 1 │ 9.335 │
│ 11 │ 23.573 │ 1 │ 23.573 │
│ 12 │ 14.105 │ 1 │ 14.105 │
│ 13 │ 10.119 │ 1 │ 10.119 │
│ 14 │ 14.282 │ 1 │ 14.282 │
│ 15 │ 27.801 │ 1 │ 27.801 │
│ 16 │ 10.648 │ 1 │ 10.648 │
│ 17 │ 10.600 │ 1 │ 10.600 │
│ 18 │ 11.587 │ 1 │ 11.587 │
│ 19 │ 17.710 │ 1 │ 17.710 │
│ 20 │ 10.637 │ 1 │ 10.637 │
│ 21 │ 22.690 │ 1 │ 22.690 │
│ 22 │ 10.840 │ 1 │ 10.840 │
│ 23 │ 19.488 │ 1 │ 19.488 │
│ 24 │ 12.185 │ 1 │ 12.185 │
│ 25 │ 11.377 │ 1 │ 11.377 │
│ 26 │ 11.237 │ 1 │ 11.237 │
│ 27 │ 13.914 │ 1 │ 13.914 │
│ 28 │ 16.805 │ 1 │ 16.805 │
│ 29 │ 35.581 │ 1 │ 35.581 │
│ 30 │ 22.667 │ 1 │ 22.667 │
│ 31 │ 25.369 │ 1 │ 25.369 │
│ 32 │ 35.304 │ 1 │ 35.304 │
│ 33 │ 22.803 │ 1 │ 22.803 │
│ 34 │ 12.813 │ 1 │ 12.813 │
│ 35 │ 22.707 │ 1 │ 22.707 │
│ 36 │ 42.707 │ 1 │ 42.707 │
│ 37 │ 17.949 │ 1 │ 17.949 │
│ 38 │ 13.831 │ 1 │ 13.831 │
│ 39 │ 23.009 │ 1 │ 23.009 │
│ 40 │ 26.161 │ 1 │ 26.161 │
│ 41 │ 16.684 │ 1 │ 16.684 │
│ 42 │ 13.626 │ 1 │ 13.626 │
│ 43 │ 31.882 │ 1 │ 31.882 │
│ 44 │ 16.436 │ 1 │ 16.436 │
│ 45 │ 20.972 │ 1 │ 20.972 │
│ 46 │ 20.339 │ 1 │ 20.339 │
│ 47 │ 43.985 │ 1 │ 43.985 │
│ 48 │ 62.268 │ 1 │ 62.268 │
│ 49 │ 37.417 │ 1 │ 37.417 │
│ 50 │ 22.309 │ 1 │ 22.309 │
│ 51 │ 16.396 │ 1 │ 16.396 │
│ 52 │ 36.453 │ 1 │ 36.453 │
│ 53 │ 44.453 │ 1 │ 44.453 │
│ 54 │ 29.944 │ 1 │ 29.944 │
│ 55 │ 24.041 │ 1 │ 24.041 │
│ 56 │ 22.338 │ 1 │ 22.338 │
│ 57 │ 39.803 │ 1 │ 39.803 │
│ 58 │ 28.300 │ 1 │ 28.300 │
│ 59 │ 16.979 │ 1 │ 16.979 │
│ 60 │ 15.644 │ 1 │ 15.644 │
│ 61 │ 17.488 │ 1 │ 17.488 │
│ 62 │ 18.434 │ 1 │ 18.434 │
│ 63 │ 18.121 │ 1 │ 18.121 │
│ 64 │ 21.876 │ 1 │ 21.876 │
│ 65 │ 26.060 │ 1 │ 26.060 │
│ 66 │ 25.455 │ 1 │ 25.455 │
│ 67 │ 25.335 │ 1 │ 25.335 │
│ 68 │ 17.703 │ 1 │ 17.703 │
│ 69 │ 36.899 │ 1 │ 36.899 │
│ 70 │ 17.512 │ 1 │ 17.512 │
│ 71 │ 17.126 │ 1 │ 17.126 │
│ 72 │ 27.801 │ 1 │ 27.801 │
│ 73 │ 27.009 │ 1 │ 27.009 │
│ 74 │ 32.456 │ 1 │ 32.456 │
│ 75 │ 26.144 │ 1 │ 26.144 │
│ 76 │ 54.275 │ 1 │ 54.275 │
│ 77 │ 36.604 │ 1 │ 36.604 │
│ 78 │ 61.742 │ 1 │ 61.742 │
│ 79 │ 45.936 │ 1 │ 45.936 │
│ 80 │ 49.918 │ 1 │ 49.918 │
│ 81 │ 18.225 │ 1 │ 18.225 │
│ 82 │ 38.734 │ 1 │ 38.734 │
│ 83 │ 29.909 │ 1 │ 29.909 │
│ 84 │ 30.311 │ 1 │ 30.311 │
│ 85 │ 19.407 │ 1 │ 19.407 │
│ 86 │ 46.301 │ 1 │ 46.301 │
│ 87 │ 19.935 │ 1 │ 19.935 │
│ 88 │ 33.895 │ 1 │ 33.895 │
│ 89 │ 31.776 │ 1 │ 31.776 │
│ 90 │ 38.497 │ 1 │ 38.497 │
│ 91 │ 30.519 │ 1 │ 30.519 │
│ 92 │ 24.207 │ 1 │ 24.207 │
│ 93 │ 31.402 │ 1 │ 31.402 │
│ 94 │ 21.044 │ 1 │ 21.044 │
│ 95 │ 42.311 │ 1 │ 42.311 │
│ 96 │ 20.522 │ 1 │ 20.522 │
│ 97 │ 20.414 │ 1 │ 20.414 │
│ 98 │ 24.168 │ 1 │ 24.168 │
│ 99 │ 31.728 │ 1 │ 31.728 │
│ 100 │ 27.842 │ 1 │ 27.842 │
│ 101 │ 24.528 │ 1 │ 24.528 │
│ 102 │ 20.901 │ 1 │ 20.901 │
│ 103 │ 34.330 │ 1 │ 34.330 │
│ 104 │ 32.445 │ 1 │ 32.445 │
│ 105 │ 47.275 │ 1 │ 47.275 │
│ 106 │ 37.371 │ 1 │ 37.371 │
│ 107 │ 21.593 │ 1 │ 21.593 │
│ 108 │ 21.565 │ 1 │ 21.565 │
│ 109 │ 46.881 │ 1 │ 46.881 │
│ 110 │ 21.749 │ 1 │ 21.749 │
│ 111 │ 39.559 │ 1 │ 39.559 │
│ 112 │ 22.782 │ 1 │ 22.782 │
│ 113 │ 22.282 │ 1 │ 22.282 │
│ 114 │ 46.106 │ 1 │ 46.106 │
│ 115 │ 23.203 │ 1 │ 23.203 │
│ 116 │ 33.365 │ 1 │ 33.365 │
│ 117 │ 48.030 │ 1 │ 48.030 │
│ 118 │ 24.171 │ 1 │ 24.171 │
│ 119 │ 23.995 │ 1 │ 23.995 │
│ 120 │ 35.914 │ 1 │ 35.914 │
│ 121 │ 23.361 │ 1 │ 23.361 │
│ 122 │ 23.868 │ 1 │ 23.868 │
│ 123 │ 34.177 │ 1 │ 34.177 │
│ 124 │ 36.382 │ 1 │ 36.382 │
│ 125 │ 35.351 │ 1 │ 35.351 │
│ 126 │ 35.035 │ 1 │ 35.035 │
│ 127 │ 23.674 │ 1 │ 23.674 │
│ 128 │ 35.596 │ 1 │ 35.596 │
│ 129 │ 35.731 │ 1 │ 35.731 │
│ 130 │ 35.455 │ 1 │ 35.455 │
│ 131 │ 24.752 │ 1 │ 24.752 │
│ 132 │ 39.323 │ 1 │ 39.323 │
│ 133 │ 28.510 │ 1 │ 28.510 │
│ 134 │ 37.072 │ 1 │ 37.072 │
│ 135 │ 25.086 │ 1 │ 25.086 │
│ 136 │ 25.126 │ 1 │ 25.126 │
│ 137 │ 37.330 │ 1 │ 37.330 │
│ 138 │ 25.287 │ 1 │ 25.287 │
│ 139 │ 37.562 │ 1 │ 37.562 │
│ 140 │ 25.649 │ 1 │ 25.649 │
│ 141 │ 25.705 │ 1 │ 25.705 │
│ 142 │ 25.593 │ 1 │ 25.593 │
│ 143 │ 38.618 │ 1 │ 38.618 │
│ 144 │ 25.741 │ 1 │ 25.741 │
│ 145 │ 40.493 │ 1 │ 40.493 │
│ 146 │ 41.698 │ 1 │ 41.698 │
│ 147 │ 26.353 │ 1 │ 26.353 │
│ 148 │ 26.421 │ 1 │ 26.421 │
│ 149 │ 26.440 │ 1 │ 26.440 │
│ 150 │ 27.818 │ 1 │ 27.818 │
│ 151 │ 26.616 │ 1 │ 26.616 │
│ 152 │ 31.787 │ 1 │ 31.787 │
│ 153 │ 26.732 │ 1 │ 26.732 │
│ 154 │ 41.984 │ 1 │ 41.984 │
│ 155 │ 27.371 │ 1 │ 27.371 │
│ 156 │ 39.450 │ 1 │ 39.450 │
│ 157 │ 27.485 │ 1 │ 27.485 │
│ 158 │ 31.925 │ 1 │ 31.925 │
│ 159 │ 41.253 │ 1 │ 41.253 │
│ 160 │ 28.571 │ 1 │ 28.571 │
│ 161 │ 28.227 │ 1 │ 28.227 │
│ 162 │ 28.042 │ 1 │ 28.042 │
│ 163 │ 27.927 │ 1 │ 27.927 │
│ 164 │ 45.592 │ 1 │ 45.592 │
│ 165 │ 28.518 │ 1 │ 28.518 │
│ 166 │ 43.001 │ 1 │ 43.001 │
│ 167 │ 42.170 │ 1 │ 42.170 │
│ 168 │ 42.741 │ 1 │ 42.741 │
│ 169 │ 29.624 │ 1 │ 29.624 │
│ 170 │ 29.155 │ 1 │ 29.155 │
│ 171 │ 29.692 │ 1 │ 29.692 │
│ 172 │ 28.778 │ 1 │ 28.778 │
│ 173 │ 28.962 │ 1 │ 28.962 │
│ 174 │ 29.218 │ 1 │ 29.218 │
│ 175 │ 30.010 │ 1 │ 30.010 │
│ 176 │ 43.912 │ 1 │ 43.912 │
│ 177 │ 44.266 │ 1 │ 44.266 │
│ 178 │ 30.965 │ 1 │ 30.965 │
│ 179 │ 30.271 │ 1 │ 30.271 │
│ 180 │ 36.030 │ 1 │ 36.030 │
│ 181 │ 34.521 │ 1 │ 34.521 │
│ 182 │ 30.988 │ 1 │ 30.988 │
│ 183 │ 34.945 │ 1 │ 34.945 │
│ 184 │ 30.952 │ 1 │ 30.952 │
│ 185 │ 31.468 │ 1 │ 31.468 │
│ 186 │ 31.804 │ 1 │ 31.804 │
│ 187 │ 31.173 │ 1 │ 31.173 │
│ 188 │ 46.009 │ 1 │ 46.009 │
│ 189 │ 31.559 │ 1 │ 31.559 │
│ 190 │ 31.629 │ 1 │ 31.629 │
│ 191 │ 47.787 │ 1 │ 47.787 │
│ 192 │ 31.959 │ 1 │ 31.959 │
│ 193 │ 47.377 │ 1 │ 47.377 │
│ 194 │ 34.734 │ 1 │ 34.734 │
│ 195 │ 33.169 │ 1 │ 33.169 │
│ 196 │ 32.195 │ 1 │ 32.195 │
│ 197 │ 32.664 │ 1 │ 32.664 │
│ 198 │ 34.291 │ 1 │ 34.291 │
│ 199 │ 34.520 │ 1 │ 34.520 │
│ 200 │ 32.488 │ 1 │ 32.488 │
│ 201 │ 32.978 │ 1 │ 32.978 │
│ 202 │ 33.545 │ 1 │ 33.545 │
│ 203 │ 35.869 │ 1 │ 35.869 │
│ 204 │ 34.534 │ 1 │ 34.534 │
│ 205 │ 34.802 │ 1 │ 34.802 │
│ 206 │ 46.559 │ 1 │ 46.559 │
│ 207 │ 33.910 │ 1 │ 33.910 │
│ 208 │ 35.408 │ 1 │ 35.408 │
│ 209 │ 37.684 │ 1 │ 37.684 │
│ 210 │ 35.248 │ 1 │ 35.248 │
│ 211 │ 35.600 │ 1 │ 35.600 │
│ 212 │ 35.322 │ 1 │ 35.322 │
│ 213 │ 35.158 │ 1 │ 35.158 │
│ 214 │ 34.474 │ 1 │ 34.474 │
│ 215 │ 34.876 │ 1 │ 34.876 │
│ 216 │ 35.247 │ 1 │ 35.247 │
│ 217 │ 36.107 │ 1 │ 36.107 │
│ 218 │ 37.380 │ 1 │ 37.380 │
│ 219 │ 41.579 │ 1 │ 41.579 │
│ 220 │ 51.958 │ 1 │ 51.958 │
│ 221 │ 42.831 │ 1 │ 42.831 │
│ 222 │ 35.521 │ 1 │ 35.521 │
│ 223 │ 40.310 │ 1 │ 40.310 │
│ 224 │ 60.215 │ 1 │ 60.215 │
│ 225 │ 38.141 │ 1 │ 38.141 │
│ 226 │ 49.363 │ 1 │ 49.363 │
│ 227 │ 36.837 │ 1 │ 36.837 │
│ 228 │ 36.652 │ 1 │ 36.652 │
│ 229 │ 37.519 │ 1 │ 37.519 │
│ 230 │ 37.922 │ 1 │ 37.922 │
│ 231 │ 51.605 │ 1 │ 51.605 │
│ 232 │ 36.679 │ 1 │ 36.679 │
│ 233 │ 37.196 │ 1 │ 37.196 │
│ 234 │ 43.648 │ 1 │ 43.648 │
│ 235 │ 43.770 │ 1 │ 43.770 │
│ 236 │ 39.835 │ 1 │ 39.835 │
│ 237 │ 38.830 │ 1 │ 38.830 │
│ 238 │ 38.887 │ 1 │ 38.887 │
│ 239 │ 43.198 │ 1 │ 43.198 │
│ 240 │ 39.271 │ 1 │ 39.271 │
│ 241 │ 40.414 │ 1 │ 40.414 │
│ 242 │ 38.600 │ 1 │ 38.600 │
│ 243 │ 38.796 │ 1 │ 38.796 │
│ 244 │ 38.781 │ 1 │ 38.781 │
│ 245 │ 39.921 │ 1 │ 39.921 │
│ 246 │ 41.421 │ 1 │ 41.421 │
│ 247 │ 39.093 │ 1 │ 39.093 │
│ 248 │ 40.052 │ 1 │ 40.052 │
│ 249 │ 40.508 │ 1 │ 40.508 │
│ 250 │ 43.700 │ 1 │ 43.700 │
│ 251 │ 40.929 │ 1 │ 40.929 │
│ 252 │ 61.895 │ 1 │ 61.895 │
│ 253 │ 43.578 │ 1 │ 43.578 │
│ 254 │ 41.678 │ 1 │ 41.678 │
│ 255 │ 42.211 │ 1 │ 42.211 │
│ 256 │ 41.626 │ 1 │ 41.626 │
│ 257 │ 41.530 │ 1 │ 41.530 │
│ 258 │ 42.133 │ 1 │ 42.133 │
│ 259 │ 43.052 │ 1 │ 43.052 │
│ 260 │ 40.999 │ 1 │ 40.999 │
│ 261 │ 42.135 │ 1 │ 42.135 │
│ 262 │ 41.378 │ 1 │ 41.378 │
│ 263 │ 42.055 │ 1 │ 42.055 │
│ 264 │ 41.917 │ 1 │ 41.917 │
│ 265 │ 44.641 │ 1 │ 44.641 │
│ 266 │ 42.426 │ 1 │ 42.426 │
│ 267 │ 41.166 │ 1 │ 41.166 │
│ 268 │ 41.497 │ 1 │ 41.497 │
│ 269 │ 41.545 │ 1 │ 41.545 │
│ 270 │ 44.849 │ 1 │ 44.849 │
│ 271 │ 42.485 │ 1 │ 42.485 │
│ 272 │ 43.386 │ 1 │ 43.386 │
│ 273 │ 42.525 │ 1 │ 42.525 │
│ 274 │ 43.722 │ 1 │ 43.722 │
│ 275 │ 42.072 │ 1 │ 42.072 │
│ 276 │ 42.779 │ 1 │ 42.779 │
│ 277 │ 42.681 │ 1 │ 42.681 │
│ 278 │ 43.004 │ 1 │ 43.004 │
│ 279 │ 42.771 │ 1 │ 42.771 │
│ 280 │ 42.860 │ 1 │ 42.860 │
│ 281 │ 43.125 │ 1 │ 43.125 │
│ 282 │ 46.225 │ 1 │ 46.225 │
│ 283 │ 44.351 │ 1 │ 44.351 │
│ 284 │ 43.832 │ 1 │ 43.832 │
│ 285 │ 43.369 │ 1 │ 43.369 │
│ 286 │ 43.517 │ 1 │ 43.517 │
│ 287 │ 49.977 │ 1 │ 49.977 │
│ 288 │ 44.148 │ 1 │ 44.148 │
│ 289 │ 43.795 │ 1 │ 43.795 │
│ 290 │ 44.278 │ 1 │ 44.278 │
│ 291 │ 44.005 │ 1 │ 44.005 │
│ 292 │ 44.230 │ 1 │ 44.230 │
│ 293 │ 44.248 │ 1 │ 44.248 │
│ 294 │ 65.211 │ 1 │ 65.211 │
│ 295 │ 44.176 │ 1 │ 44.176 │
│ 296 │ 46.267 │ 1 │ 46.267 │
│ 297 │ 45.494 │ 1 │ 45.494 │
│ 298 │ 46.945 │ 1 │ 46.945 │
│ 299 │ 45.739 │ 1 │ 45.739 │
│ 300 │ 46.412 │ 1 │ 46.412 │
│ 301 │ 44.902 │ 1 │ 44.902 │
│ 302 │ 45.714 │ 1 │ 45.714 │
│ 303 │ 45.903 │ 1 │ 45.903 │
│ 304 │ 45.299 │ 1 │ 45.299 │
│ 305 │ 46.005 │ 1 │ 46.005 │
│ 306 │ 46.096 │ 1 │ 46.096 │
│ 307 │ 53.622 │ 1 │ 53.622 │
│ 308 │ 51.042 │ 1 │ 51.042 │
│ 309 │ 47.648 │ 1 │ 47.648 │
│ 310 │ 48.304 │ 1 │ 48.304 │
│ 311 │ 47.018 │ 1 │ 47.018 │
│ 312 │ 47.052 │ 1 │ 47.052 │
│ 313 │ 46.883 │ 1 │ 46.883 │
│ 314 │ 47.822 │ 1 │ 47.822 │
│ 315 │ 46.721 │ 1 │ 46.721 │
│ 316 │ 49.246 │ 1 │ 49.246 │
│ 317 │ 47.365 │ 1 │ 47.365 │
│ 318 │ 47.352 │ 1 │ 47.352 │
│ 319 │ 46.997 │ 1 │ 46.997 │
│ 320 │ 46.634 │ 1 │ 46.634 │
│ 321 │ 49.756 │ 1 │ 49.756 │
│ 322 │ 47.722 │ 1 │ 47.722 │
│ 323 │ 47.722 │ 1 │ 47.722 │
│ 324 │ 70.625 │ 1 │ 70.625 │
│ 325 │ 47.936 │ 1 │ 47.936 │
│ 326 │ 48.688 │ 1 │ 48.688 │
│ 327 │ 70.047 │ 1 │ 70.047 │
│ 328 │ 47.902 │ 1 │ 47.902 │
│ 329 │ 94.316 │ 1 │ 94.316 │
│ 330 │ 72.194 │ 1 │ 72.194 │
│ 331 │ 51.960 │ 1 │ 51.960 │
│ 332 │ 50.389 │ 1 │ 50.389 │
│ 333 │ 50.298 │ 1 │ 50.298 │
│ 334 │ 49.328 │ 1 │ 49.328 │
│ 335 │ 51.604 │ 1 │ 51.604 │
│ 336 │ 49.257 │ 1 │ 49.257 │
│ 337 │ 51.607 │ 1 │ 51.607 │
│ 338 │ 50.430 │ 1 │ 50.430 │
│ 339 │ 50.852 │ 1 │ 50.852 │
│ 340 │ 51.213 │ 1 │ 51.213 │
│ 341 │ 53.608 │ 1 │ 53.608 │
│ 342 │ 49.268 │ 1 │ 49.268 │
│ 343 │ 49.763 │ 1 │ 49.763 │
│ 344 │ 54.781 │ 1 │ 54.781 │
│ 345 │ 49.477 │ 1 │ 49.477 │
│ 346 │ 57.716 │ 1 │ 57.716 │
│ 347 │ 51.784 │ 1 │ 51.784 │
│ 348 │ 51.500 │ 1 │ 51.500 │
│ 349 │ 51.565 │ 1 │ 51.565 │
│ 350 │ 51.982 │ 1 │ 51.982 │
│ 351 │ 50.960 │ 1 │ 50.960 │
│ 352 │ 55.951 │ 1 │ 55.951 │
│ 353 │ 52.508 │ 1 │ 52.508 │
│ 354 │ 52.004 │ 1 │ 52.004 │
│ 355 │ 54.276 │ 1 │ 54.276 │
│ 356 │ 53.435 │ 1 │ 53.435 │
│ 357 │ 56.647 │ 1 │ 56.647 │
│ 358 │ 57.089 │ 1 │ 57.089 │
│ 359 │ 55.585 │ 1 │ 55.585 │
│ 360 │ 52.522 │ 1 │ 52.522 │
│ 361 │ 55.742 │ 1 │ 55.742 │
│ 362 │ 55.116 │ 1 │ 55.116 │
│ 363 │ 57.006 │ 1 │ 57.006 │
│ 364 │ 57.595 │ 1 │ 57.595 │
│ 365 │ 54.241 │ 1 │ 54.241 │
│ 366 │ 58.435 │ 1 │ 58.435 │
│ 367 │ 54.312 │ 1 │ 54.312 │
│ 368 │ 56.288 │ 1 │ 56.288 │
│ 369 │ 55.931 │ 1 │ 55.931 │
│ 370 │ 80.178 │ 1 │ 80.178 │
│ 371 │ 54.469 │ 1 │ 54.469 │
│ 372 │ 54.279 │ 1 │ 54.279 │
│ 373 │ 59.647 │ 1 │ 59.647 │
│ 374 │ 55.442 │ 1 │ 55.442 │
│ 375 │ 57.270 │ 1 │ 57.270 │
│ 376 │ 57.642 │ 1 │ 57.642 │
│ 377 │ 55.721 │ 1 │ 55.721 │
│ 378 │ 57.383 │ 1 │ 57.383 │
│ 379 │ 57.247 │ 1 │ 57.247 │
│ 380 │ 59.714 │ 1 │ 59.714 │
│ 381 │ 57.678 │ 1 │ 57.678 │
│ 382 │ 56.137 │ 1 │ 56.137 │
│ 383 │ 58.974 │ 1 │ 58.974 │
│ 384 │ 55.618 │ 1 │ 55.618 │
│ 385 │ 55.660 │ 1 │ 55.660 │
│ 386 │ 56.054 │ 1 │ 56.054 │
│ 387 │ 55.596 │ 1 │ 55.596 │
│ 388 │ 55.427 │ 1 │ 55.427 │
│ 389 │ 56.145 │ 1 │ 56.145 │
│ 390 │ 55.590 │ 1 │ 55.590 │
│ 391 │ 56.664 │ 1 │ 56.664 │
│ 392 │ 58.835 │ 1 │ 58.835 │
│ 393 │ 57.374 │ 1 │ 57.374 │
│ 394 │ 56.679 │ 1 │ 56.679 │
│ 395 │ 59.101 │ 1 │ 59.101 │
│ 396 │ 58.724 │ 1 │ 58.724 │
│ 397 │ 57.385 │ 1 │ 57.385 │
│ 398 │ 65.785 │ 1 │ 65.785 │
│ 399 │ 59.960 │ 1 │ 59.960 │
│ 400 │ 60.959 │ 1 │ 60.959 │
│ 401 │ 57.213 │ 1 │ 57.213 │
│ 402 │ 83.639 │ 1 │ 83.639 │
│ 403 │ 57.000 │ 1 │ 57.000 │
│ 404 │ 58.631 │ 1 │ 58.631 │
│ 405 │ 85.969 │ 1 │ 85.969 │
│ 406 │ 59.616 │ 1 │ 59.616 │
│ 407 │ 59.804 │ 1 │ 59.804 │
│ 408 │ 88.306 │ 1 │ 88.306 │
│ 409 │ 57.692 │ 1 │ 57.692 │
│ 410 │ 58.366 │ 1 │ 58.366 │
│ 411 │ 63.696 │ 1 │ 63.696 │
│ 412 │ 59.860 │ 1 │ 59.860 │
│ 413 │ 58.510 │ 1 │ 58.510 │
│ 414 │ 59.889 │ 1 │ 59.889 │
│ 415 │ 58.078 │ 1 │ 58.078 │
│ 416 │ 59.345 │ 1 │ 59.345 │
│ 417 │ 59.459 │ 1 │ 59.459 │
│ 418 │ 63.831 │ 1 │ 63.831 │
│ 419 │ 60.567 │ 1 │ 60.567 │
│ 420 │ 63.571 │ 1 │ 63.571 │
│ 421 │ 61.171 │ 1 │ 61.171 │
│ 422 │ 60.802 │ 1 │ 60.802 │
│ 423 │ 66.742 │ 1 │ 66.742 │
│ 424 │ 75.922 │ 1 │ 75.922 │
│ 425 │ 61.289 │ 1 │ 61.289 │
│ 426 │ 60.420 │ 1 │ 60.420 │
│ 427 │ 64.422 │ 1 │ 64.422 │
│ 428 │ 60.868 │ 1 │ 60.868 │
│ 429 │ 63.458 │ 1 │ 63.458 │
│ 430 │ 61.436 │ 1 │ 61.436 │
│ 431 │ 65.605 │ 1 │ 65.605 │
│ 432 │ 66.696 │ 1 │ 66.696 │
│ 433 │ 62.186 │ 1 │ 62.186 │
│ 434 │ 63.387 │ 1 │ 63.387 │
│ 435 │ 61.732 │ 1 │ 61.732 │
│ 436 │ 62.354 │ 1 │ 62.354 │
│ 437 │ 62.393 │ 1 │ 62.393 │
│ 438 │ 63.372 │ 1 │ 63.372 │
│ 439 │ 62.226 │ 1 │ 62.226 │
│ 440 │ 62.440 │ 1 │ 62.440 │
│ 441 │ 63.262 │ 1 │ 63.262 │
│ 442 │ 65.246 │ 1 │ 65.246 │
│ 443 │ 63.496 │ 1 │ 63.496 │
│ 444 │ 69.433 │ 1 │ 69.433 │
│ 445 │ 66.441 │ 1 │ 66.441 │
│ 446 │ 68.141 │ 1 │ 68.141 │
│ 447 │ 65.852 │ 1 │ 65.852 │
│ 448 │ 71.106 │ 1 │ 71.106 │
│ 449 │ 73.991 │ 1 │ 73.991 │
│ 450 │ 73.947 │ 1 │ 73.947 │
│ 451 │ 65.433 │ 1 │ 65.433 │
│ 452 │ 65.081 │ 1 │ 65.081 │
│ 453 │ 66.347 │ 1 │ 66.347 │
│ 454 │ 63.549 │ 1 │ 63.549 │
│ 455 │ 80.296 │ 1 │ 80.296 │
│ 456 │ 64.198 │ 1 │ 64.198 │
│ 457 │ 66.066 │ 1 │ 66.066 │
│ 458 │ 64.859 │ 1 │ 64.859 │
│ 459 │ 96.726 │ 1 │ 96.726 │
│ 460 │ 70.837 │ 1 │ 70.837 │
│ 461 │ 66.151 │ 1 │ 66.151 │
│ 462 │ 64.717 │ 1 │ 64.717 │
│ 463 │ 64.813 │ 1 │ 64.813 │
│ 464 │ 64.732 │ 1 │ 64.732 │
│ 465 │ 65.684 │ 1 │ 65.684 │
│ 466 │ 65.742 │ 1 │ 65.742 │
│ 467 │ 67.942 │ 1 │ 67.942 │
│ 468 │ 66.286 │ 1 │ 66.286 │
│ 469 │ 65.994 │ 1 │ 65.994 │
│ 470 │ 70.655 │ 1 │ 70.655 │
│ 471 │ 68.495 │ 1 │ 68.495 │
│ 472 │ 67.350 │ 1 │ 67.350 │
│ 473 │ 67.320 │ 1 │ 67.320 │
│ 474 │ 66.091 │ 1 │ 66.091 │
│ 475 │ 73.280 │ 1 │ 73.280 │
│ 476 │ 66.838 │ 1 │ 66.838 │
│ 477 │ 67.760 │ 1 │ 67.760 │
│ 478 │ 67.462 │ 1 │ 67.462 │
│ 479 │ 69.507 │ 1 │ 69.507 │
│ 480 │ 66.926 │ 1 │ 66.926 │
│ 481 │ 68.552 │ 1 │ 68.552 │
│ 482 │ 67.022 │ 1 │ 67.022 │
│ 483 │ 68.288 │ 1 │ 68.288 │
│ 484 │ 80.278 │ 1 │ 80.278 │
│ 485 │ 80.953 │ 1 │ 80.953 │
│ 486 │ 68.686 │ 1 │ 68.686 │
│ 487 │ 71.597 │ 1 │ 71.597 │
│ 488 │ 69.737 │ 1 │ 69.737 │
│ 489 │ 79.296 │ 1 │ 79.296 │
│ 490 │ 71.032 │ 1 │ 71.032 │
│ 491 │ 72.642 │ 1 │ 72.642 │
│ 492 │ 68.672 │ 1 │ 68.672 │
│ 493 │ 100.256 │ 1 │ 100.256 │
│ 494 │ 72.495 │ 1 │ 72.495 │
│ 495 │ 69.777 │ 1 │ 69.777 │
│ 496 │ 71.863 │ 1 │ 71.863 │
│ 497 │ 69.602 │ 1 │ 69.602 │
│ 498 │ 68.516 │ 1 │ 68.516 │
│ 499 │ 68.791 │ 1 │ 68.791 │
│ 500 │ 70.621 │ 1 │ 70.621 │
├───────────┼───────────┼──────┼──────────────┤
│ Average │ 44.105 │ │ │
│ Median │ 43.377 │ │ │
│ Total │ 22052.270 │ │ │
│ Max │ 100.256 │ │ │
│ Min │ 8.613 │ │ │
└───────────┴───────────┴──────┴──────────────┘
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_job_generation_times")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_job_generation_times", "generation_times.txt")'><img src='i/download.svg' style='height: 1em'> Download »generation_times.txt« as file</button>
<h1><img class='invert_icon' src='i/table.svg' style='height: 1em' /> Args Overview</h1>
<h2>Arguments Overview </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Key</th><th>Value </th></tr></thead><tbody><tr><td> config_yaml</td><td>None </td></tr><tr><td> config_toml</td><td>None </td></tr><tr><td> config_json</td><td>None </td></tr><tr><td> num_random_steps</td><td>20 </td></tr><tr><td> max_eval</td><td>500 </td></tr><tr><td> run_program</td><td>[['cHl0aG9uMyAudGVzdHMvbW5pc3QvdHJhaW4gLS1lcG9jaHMgJWVwb2NocyAtLWxlYXJuaW5nX3JhdGUgJWxyIC0tYmF0Y2hfc2l6ZSAlYmF0Y2hfc2l6ZSAtLWhpZGRlbl9zaXplICVoaWRkZW5f… </td></tr><tr><td> experiment_name</td><td>mnist_gpu_noall </td></tr><tr><td> mem_gb</td><td>10 </td></tr><tr><td> parameter</td><td>[['epochs', 'range', '10', '200', 'int', 'false'], ['lr', 'range', '0.00001', '0.1', 'float', 'false'], ['batch_size', 'range', '8', '2048', 'int', </td></tr><tr><td></td><td>'false'], ['hidden_size', 'range', '8', '2048', 'int', 'false'], ['dropout', 'range', '0', '0.5', 'float', 'false'], ['activation', 'fixed', </td></tr><tr><td></td><td>'leaky_relu'], ['num_dense_layers', 'range', '1', '4', 'int', 'false'], ['init', 'fixed', 'normal'], ['weight_decay', 'range', '0', '1', 'float', </td></tr><tr><td></td><td>'false']] </td></tr><tr><td> continue_previous_job</td><td>None </td></tr><tr><td> experiment_constraints</td><td>None </td></tr><tr><td> run_dir</td><td>runs </td></tr><tr><td> seed</td><td>None </td></tr><tr><td> verbose_tqdm</td><td>False </td></tr><tr><td> model</td><td>BOTORCH_MODULAR </td></tr><tr><td> gridsearch</td><td>False </td></tr><tr><td> occ</td><td>False </td></tr><tr><td> show_sixel_scatter</td><td>False </td></tr><tr><td> show_sixel_general</td><td>False </td></tr><tr><td> show_sixel_trial_index_result</td><td>False </td></tr><tr><td> follow</td><td>True </td></tr><tr><td> send_anonymized_usage_stats</td><td>True </td></tr><tr><td> ui_url</td><td>aHR0cHM6Ly9pbWFnZXNlZy5zY2Fkcy5kZS9vbW5pYXgvZ3VpP3BhcnRpdGlvbj1hbHBoYSZleHBlcmltZW50X25hbWU9bW5pc3RfZ3B1X25vYWxsJnJlc2VydmF0aW9uPSZhY2NvdW50PSZtZW1fZ2I… </td></tr><tr><td> root_venv_dir</td><td>/home/s3811141 </td></tr><tr><td> exclude</td><td>None </td></tr><tr><td> main_process_gb</td><td>8 </td></tr><tr><td> max_nr_of_zero_results</td><td>50 </td></tr><tr><td> abbreviate_job_names</td><td>False </td></tr><tr><td> orchestrator_file</td><td>None </td></tr><tr><td> checkout_to_latest_tested_version</td><td>False </td></tr><tr><td> live_share</td><td>True </td></tr><tr><td> disable_tqdm</td><td>False </td></tr><tr><td> disable_previous_job_constraint</td><td>False </td></tr><tr><td> workdir</td><td></td></tr><tr><td> occ_type</td><td>euclid </td></tr><tr><td> result_names</td><td>['VAL_ACC=max'] </td></tr><tr><td> minkowski_p</td><td>2 </td></tr><tr><td> signed_weighted_euclidean_weights</td><td></td></tr><tr><td> generation_strategy</td><td>None </td></tr><tr><td> generate_all_jobs_at_once</td><td>False </td></tr><tr><td> revert_to_random_when_seemingly_exhausted</td><td>True </td></tr><tr><td> load_data_from_existing_jobs</td><td>[] </td></tr><tr><td> n_estimators_randomforest</td><td>100 </td></tr><tr><td> max_attempts_for_generation</td><td>20 </td></tr><tr><td> external_generator</td><td>None </td></tr><tr><td> username</td><td>None </td></tr><tr><td> max_failed_jobs</td><td>0 </td></tr><tr><td> num_cpus_main_job</td><td>None </td></tr><tr><td> calculate_pareto_front_of_job</td><td>[] </td></tr><tr><td> show_generate_time_table</td><td>False </td></tr><tr><td> force_choice_for_ranges</td><td>False </td></tr><tr><td> max_abandoned_retrial</td><td>20 </td></tr><tr><td> share_password</td><td>None </td></tr><tr><td> dryrun</td><td>False </td></tr><tr><td> db_url</td><td>None </td></tr><tr><td> run_program_once</td><td>None </td></tr><tr><td> dont_warm_start_refitting</td><td>False </td></tr><tr><td> refit_on_cv</td><td>False </td></tr><tr><td> fit_out_of_design</td><td>False </td></tr><tr><td> fit_abandoned</td><td>False </td></tr><tr><td> dont_jit_compile</td><td>False </td></tr><tr><td> num_restarts</td><td>20 </td></tr><tr><td> raw_samples</td><td>1024 </td></tr><tr><td> max_num_of_parallel_sruns</td><td>16 </td></tr><tr><td> no_transform_inputs</td><td>False </td></tr><tr><td> no_normalize_y</td><td>False </td></tr><tr><td> transforms</td><td>[] </td></tr><tr><td> num_parallel_jobs</td><td>20 </td></tr><tr><td> worker_timeout</td><td>120 </td></tr><tr><td> slurm_use_srun</td><td>False </td></tr><tr><td> time</td><td>2880 </td></tr><tr><td> partition</td><td>alpha </td></tr><tr><td> reservation</td><td>None </td></tr><tr><td> force_local_execution</td><td>False </td></tr><tr><td> slurm_signal_delay_s</td><td>0 </td></tr><tr><td> nodes_per_job</td><td>1 </td></tr><tr><td> cpus_per_task</td><td>1 </td></tr><tr><td> account</td><td>None </td></tr><tr><td> gpus</td><td>1 </td></tr><tr><td> run_mode</td><td>local </td></tr><tr><td> verbose</td><td>False </td></tr><tr><td> verbose_break_run_search_table</td><td>False </td></tr><tr><td> debug</td><td>False </td></tr><tr><td> flame_graph</td><td>False </td></tr><tr><td> no_sleep</td><td>False </td></tr><tr><td> tests</td><td>False </td></tr><tr><td> show_worker_percentage_table_at_end</td><td>False </td></tr><tr><td> auto_exclude_defective_hosts</td><td>False </td></tr><tr><td> run_tests_that_fail_on_taurus</td><td>False </td></tr><tr><td> raise_in_eval</td><td>False </td></tr><tr><td> show_ram_every_n_seconds</td><td>0 </td></tr><tr><td> show_generation_and_submission_sixel</td><td>False </td></tr><tr><td> just_return_defaults</td><td>False </td></tr><tr><td> prettyprint</td><td>False </td></tr></tbody></table>
<h1><img class='invert_icon' src='i/plot.svg' style='height: 1em' /> Worker-Usage</h1>
<div class='invert_in_dark_mode' id='workerUsagePlot'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_worker_usage")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_worker_usage", "worker_usage.csv")'><img src='i/download.svg' style='height: 1em'> Download »worker_usage.csv« as file</button>
<pre id="pre_tab_worker_usage">1753975660.7213888,20,0,0
1753975664.2572968,20,0,0
1753975664.7256398,20,0,0
1753975682.7106574,20,0,0
1753975704.7390018,20,0,0
1753975708.7118025,20,0,0
1753975712.7173173,20,0,0
1753975717.8706498,20,1,5
1753975722.777351,20,1,5
1753975730.7213576,20,1,5
1753975734.788594,20,1,5
1753975738.8905435,20,1,5
1753975744.0599673,20,2,10
1753975753.7484632,20,1,5
1753975764.70179,20,1,5
1753975773.727281,20,0,0
1753975798.2488492,20,0,0
1753975803.0904803,20,0,0
1753975807.7102814,20,0,0
1753975813.0989776,20,1,5
1753975817.7256682,20,1,5
1753975827.3120852,20,0,0
1753975851.739522,20,0,0
1753975860.921493,20,0,0
1753975865.201668,20,0,0
1753975870.7276278,20,0,0
1753975876.176713,20,1,5
1753975880.967898,20,1,5
1753975889.705698,20,1,5
1753975894.32155,20,1,5
1753975903.1276894,20,1,5
1753975907.715219,20,1,5
1753975912.7186255,20,1,5
1753975918.2422955,20,1,5
1753975927.1360736,20,1,5
1753975935.806762,20,1,5
1753975940.7192688,20,1,5
1753975949.7101526,20,0,0
1753975954.1588318,20,0,0
1753975979.7303784,20,0,0
1753975985.732642,20,1,5
1753975990.7148182,20,1,5
1753975999.7105076,20,1,5
1753976009.9544659,20,0,0
1753976018.8641138,20,0,0
1753976024.7076685,20,0,0
1753976029.3354669,20,0,0
1753976035.9483006,20,1,5
1753976056.7228334,20,1,5
1753976066.7230253,20,1,5
1753976075.9871304,20,0,0
1753976085.1952202,20,0,0
1753976089.8400397,20,0,0
1753976094.7302701,20,0,0
1753976102.7201483,20,1,5
1753976107.9523144,20,1,5
1753976118.7165308,20,1,5
1753976138.2224753,20,1,5
1753976147.715413,20,0,0
1753976152.7107697,20,0,0
1753976162.1316266,20,0,0
1753976168.927755,20,1,5
1753976184.71523,20,1,5
1753976184.7190044,20,1,5
1753976198.910127,20,0,0
1753976204.2772145,20,0,0
1753976213.2787147,20,0,0
1753976217.7987943,20,0,0
1753976232.0422492,20,0,0
1753976238.9303033,20,1,5
1753976244.7230177,20,1,5
1753976267.9477139,20,1,5
1753976272.9670372,20,1,5
1753976283.182911,20,0,0
1753976288.9154956,20,1,5
1753976297.7195106,20,1,5
1753976308.023022,20,0,0
1753976317.7098954,20,0,0
1753976326.919813,20,0,0
1753976331.7186012,20,0,0
1753976336.7203681,20,0,0
1753976352.9168494,20,1,5
1753976364.0032732,20,1,5
1753976374.1654303,20,0,0
1753976379.7107418,20,0,0
1753976389.1262188,20,0,0
1753976393.8052053,20,0,0
1753976398.7226226,20,0,0
1753976408.035928,20,1,5
1753976417.3247724,20,1,5
1753976433.0561795,20,1,5
1753976443.7234793,20,0,0
1753976452.9772785,20,0,0
1753976457.910643,20,0,0
1753976462.866395,20,0,0
1753976469.9872372,20,1,5
1753976475.1719003,20,1,5
1753976484.887164,20,1,5
1753976494.73123,20,0,0
1753976517.7202296,20,0,0
1753976523.2073674,20,0,0
1753976528.216844,20,0,0
1753976534.147389,20,1,5
1753976539.701184,20,1,5
1753976549.9197938,20,0,0
1753976555.7111504,20,0,0
1753976565.7182696,20,0,0
1753976570.737345,20,0,0
1753976576.9437582,20,0,0
1753976583.0531456,20,1,5
1753976589.7073371,20,1,5
1753976600.0734863,20,1,5
1753976605.717743,20,1,5
1753976615.708901,20,0,0
1753976621.8336573,20,0,0
1753976627.10855,20,0,0
1753976633.3508534,20,1,5
1753976639.0670376,20,1,5
1753976649.2356374,20,1,5
1753976655.1368282,20,1,5
1753976666.714662,20,0,0
1753976672.0046308,20,0,0
1753976696.7171075,20,0,0
1753976702.9449995,20,1,5
1753976708.7105145,20,1,5
1753976719.7232244,20,1,5
1753976731.712015,20,0,0
1753976742.7491975,20,0,0
1753976747.9010248,20,0,0
1753976754.2920778,20,0,0
1753976774.7066398,20,1,5
1753976797.0704925,20,0,0
1753976797.0834544,20,0,0
1753976811.926273,20,0,0
1753976817.710334,20,0,0
1753976827.9339874,20,0,0
1753976833.7651992,20,0,0
1753976839.7096364,20,0,0
1753976862.731416,20,1,5
1753976870.1545613,20,1,5
1753976870.254973,20,1,5
1753976870.720678,20,1,5
1753976881.00972,20,0,0
1753976892.051651,20,0,0
1753976898.7060204,20,0,0
1753976920.8248277,20,0,0
1753976926.7294703,20,0,0
1753976932.2169237,20,0,0
1753976938.9170918,20,1,5
1753976946.997945,20,1,5
1753976957.7168984,20,1,5
1753976963.722444,20,1,5
1753976987.7123806,20,0,0
1753976994.9266205,20,1,5
1753977000.958479,20,1,5
1753977011.766509,20,1,5
1753977019.078646,20,1,5
1753977039.2155647,20,0,0
1753977046.7174356,20,0,0
1753977052.714539,20,0,0
1753977059.0076647,20,1,5
1753977080.7262387,20,1,5
1753977103.085638,20,0,0
1753977109.7410586,20,0,0
1753977121.7063072,20,0,0
1753977127.0413816,20,0,0
1753977133.1253288,20,0,0
1753977140.725925,20,1,5
1753977155.9997063,20,1,5
1753977179.710041,20,1,5
1753977185.748702,20,1,5
1753977196.7299724,20,0,0
1753977201.9966717,20,0,0
1753977217.901249,20,0,0
1753977225.9078712,20,1,5
1753977231.9811976,20,1,5
1753977243.7158713,20,0,0
1753977249.8513007,20,0,0
1753977260.7221842,20,0,0
1753977266.1084964,20,0,0
1753977272.2842035,20,0,0
1753977278.9894087,20,1,5
1753977296.0009897,20,1,5
1753977308.7162938,20,0,0
1753977316.726365,20,0,0
1753977330.0933528,20,0,0
1753977353.9444344,20,0,0
1753977360.0537167,20,0,0
1753977366.9640803,20,1,5
1753977373.717646,20,1,5
1753977387.7056236,20,0,0
1753977399.7918057,20,0,0
1753977410.8469813,20,0,0
1753977432.1222935,20,0,0
1753977438.7074106,20,0,0
1753977445.7700062,20,1,5
1753977452.1876988,20,1,5
1753977471.0522196,20,1,5
1753977483.7223175,20,0,0
1753977512.7070882,20,0,0
1753977519.1864533,20,0,0
1753977524.9706032,20,0,0
1753977531.960313,20,1,5
1753977541.7367542,20,1,5
1753977553.7537005,20,1,5
1753977559.944934,20,1,5
1753977583.215869,20,0,0
1753977590.9650633,20,0,0
1753977597.714304,20,0,0
1753977615.9938028,20,1,5
1753977635.0691469,20,0,0
1753977635.075998,20,0,0
1753977663.1964333,20,0,0
1753977671.8254118,20,0,0
1753977696.7661898,20,0,0
1753977707.0027797,20,0,0
1753977713.7437491,20,0,0
1753977720.920262,20,1,5
1753977729.1657689,20,1,5
1753977764.0177953,20,1,5
1753977770.7417672,20,0,0
1753977782.7971895,20,0,0
1753977789.9354708,20,1,5
1753977796.7205493,20,1,5
1753977809.0984814,20,0,0
1753977822.779651,20,0,0
1753977838.025001,20,0,0
1753977857.8818266,20,0,0
1753977871.7125657,20,0,0
1753977882.9022274,20,1,5
1753977889.9925528,20,1,5
1753977903.0302787,20,0,0
1753977909.7175817,20,0,0
1753977921.9178731,20,0,0
1753977941.719116,20,0,0
1753977949.7484376,20,0,0
1753977957.7846048,20,1,5
1753977964.2718399,20,1,5
1753977977.7103817,20,1,5
1753977984.7223566,20,1,5
1753978006.7043514,20,0,0
1753978013.252502,20,0,0
1753978037.718232,20,0,0
1753978045.7209344,20,1,5
1753978061.9716222,20,1,5
1753978076.7273095,20,1,5
1753978090.7508175,20,0,0
1753978126.7415001,20,0,0
1753978133.0947435,20,0,0
1753978139.7289348,20,0,0
1753978149.9257295,20,1,5
1753978156.9538932,20,1,5
1753978199.7051878,20,0,0
1753978208.829209,20,0,0
1753978226.7076,20,0,0
1753978245.7273033,20,0,0
1753978265.1401095,20,0,0
1753978277.1241899,20,1,5
1753978288.0637448,20,1,5
1753978301.7386787,20,1,5
1753978309.8969164,20,1,5
1753978323.281271,20,0,0
1753978331.713776,20,0,0
1753978345.2972074,20,0,0
1753978352.9135273,20,1,5
1753978361.0154843,20,1,5
1753978374.1921537,20,1,5
1753978388.8476737,20,0,0
1753978403.908606,20,0,0
1753978421.3091116,20,0,0
1753978441.3010786,20,0,0
1753978456.288791,20,1,5
1753978463.0959127,20,1,5
1753978488.0617225,20,0,0
1753978495.2316551,20,0,0
1753978520.8919828,20,0,0
1753978527.7323077,20,0,0
1753978534.7172332,20,0,0
1753978543.0074883,20,1,5
1753978549.983953,20,1,5
1753978584.7198248,20,0,0
1753978592.0298264,20,0,0
1753978638.7486336,20,0,0
1753978648.7513003,20,0,0
1753978648.850684,20,0,0
1753978651.2642276,20,0,0
1753978670.724561,20,0,0
1753978678.1913397,20,0,0
1753978685.2246246,20,0,0
1753978693.9995556,20,1,5
1753978702.7701232,20,1,5
1753978715.8987424,20,0,0
1753978722.7112854,20,0,0
1753978729.7272027,20,0,0
1753978737.712408,20,1,5
1753978745.7135808,20,1,5
1753978759.712294,20,1,5
1753978773.785658,20,0,0
1753978798.7073736,20,0,0
1753978805.713386,20,0,0
1753978812.7104418,20,0,0
1753978820.413532,20,1,5
1753978827.9599593,20,1,5
1753978844.28848,20,1,5
1753978853.1740098,20,1,5
1753978869.1526074,20,0,0
1753978885.715073,20,0,0
1753978892.7127867,20,0,0
1753978900.7039123,20,1,5
1753978907.9859116,20,1,5
1753978921.769208,20,0,0
1753978935.712648,20,0,0
1753978949.71248,20,0,0
1753978956.7159433,20,0,0
1753978980.7266812,20,0,0
1753978989.7053995,20,1,5
1753978996.9994977,20,1,5
1753979010.7197852,20,0,0
1753979024.710016,20,0,0
1753979037.9820576,20,0,0
1753979053.7279527,20,0,0
1753979061.7116284,20,0,0
1753979070.2461665,20,1,5
1753979077.7111657,20,1,5
1753979092.7199402,20,1,5
1753979142.298911,20,0,0
1753979170.957058,20,0,0
1753979178.0800545,20,0,0
1753979187.9030128,20,0,0
1753979195.91815,20,1,5
1753979203.7160978,20,1,5
1753979224.7095222,20,0,0
1753979270.8943763,20,0,0
1753979295.1582766,20,0,0
1753979302.741292,20,0,0
1753979310.0512357,20,0,0
1753979318.2247257,20,1,5
1753979325.7491455,20,1,5
1753979355.1966872,20,0,0
1753979369.3019137,20,0,0
1753979399.711179,20,0,0
1753979411.9387038,20,0,0
1753979420.7235458,20,0,0
1753979429.1157064,20,1,5
1753979437.0572298,20,1,5
1753979451.7446432,20,1,5
1753979466.7147732,20,0,0
1753979481.0816298,20,0,0
1753979488.7120514,20,0,0
1753979496.7269228,20,0,0
1753979505.9095619,20,1,5
1753979533.980536,20,1,5
1753979553.2843912,20,0,0
1753979561.866457,20,0,0
1753979577.7362766,20,0,0
1753979586.7168841,20,0,0
1753979610.731303,20,0,0
1753979619.2505662,20,1,5
1753979627.7110298,20,1,5
1753979658.7112453,20,0,0
1753979692.8120193,20,0,0
1753979707.9114656,20,0,0
1753979715.7294922,20,0,0
1753979723.1493213,20,0,0
1753979731.709843,20,1,5
1753979740.2105887,20,1,5
1753979755.2863536,20,1,5
1753979801.7566092,20,0,0
1753979829.7105134,20,0,0
1753979837.0467482,20,0,0
1753979845.1837294,20,0,0
1753979853.7094824,20,1,5
1753979861.6600716,20,1,5
1753979877.2299469,20,0,0
1753979894.230642,20,0,0
1753979916.0054207,20,0,0
1753979928.7217646,20,0,0
1753979936.9008968,20,0,0
1753979945.9859052,20,1,5
1753979953.7157235,20,1,5
1753979969.2894077,20,0,0
1753979985.749278,20,0,0
1753980001.7377586,20,0,0
1753980048.7093968,20,0,0
1753980071.741971,20,0,0
1753980091.04286,20,1,5
1753980101.1854296,20,1,5
1753980116.7280762,20,1,5
1753980132.0253801,20,0,0
1753980146.8294683,20,0,0
1753980154.1401305,20,0,0
1753980161.8092134,20,0,0
1753980171.1631684,20,1,5
1753980181.0081618,20,1,5
1753980196.82953,20,1,5
1753980204.9759233,20,1,5
1753980244.2071528,20,0,0
1753980264.7232718,20,0,0
1753980273.0461378,20,0,0
1753980286.719492,20,1,5
1753980295.1572242,20,1,5
1753980325.0525699,20,0,0
1753980333.7228122,20,0,0
1753980361.0842528,20,0,0
1753980384.7801578,20,0,0
1753980396.9427118,20,0,0
1753980406.114394,20,1,5
1753980414.09139,20,1,5
1753980429.8968,20,0,0
1753980438.713694,20,0,0
1753980454.9224856,20,0,0
1753980463.0625002,20,0,0
1753980471.9195347,20,0,0
1753980490.9124472,20,1,5
1753980503.9926014,20,1,5
1753980526.9216173,20,0,0
1753980535.0839813,20,0,0
1753980550.1781845,20,0,0
1753980558.7691462,20,0,0
1753980567.0446732,20,0,0
1753980575.9184005,20,1,5
1753980584.0032053,20,1,5
1753980624.2165403,20,0,0
1753980639.9147327,20,0,0
1753980688.772154,20,0,0
1753980699.3455613,20,0,0
1753980699.7926009,20,0,0
1753980701.7200143,20,0,0
1753980719.7088146,20,0,0
1753980727.2074184,20,0,0
1753980735.723238,20,0,0
1753980745.043478,20,1,5
1753980755.0704858,20,1,5
1753980772.9194865,20,1,5
1753980780.9320261,20,0,0
1753980799.0020068,20,0,0
1753980808.261613,20,1,5
1753980816.9859843,20,1,5
1753980833.716704,20,1,5
1753980842.740218,20,1,5
1753980859.9921489,20,0,0
1753980867.748255,20,0,0
1753980876.0429094,20,0,0
1753980884.9503222,20,1,5
1753980894.0241053,20,1,5
1753980914.7031496,20,0,0
1753980942.7286851,20,0,0
1753980958.7271352,20,0,0
1753980971.0866225,20,0,0
1753980979.3113453,20,0,0
1753980988.912719,20,1,5
1753981002.9401312,20,1,5
1753981020.9947796,20,0,0
1753981037.6918218,20,0,0
1753981055.6808574,20,0,0
1753981063.7355223,20,0,0
1753981072.976524,20,0,0
1753981083.0948737,20,1,5
1753981092.6218498,20,1,5
1753981109.7101746,20,1,5
1753981127.1937664,20,0,0
1753981143.7259693,20,0,0
1753981152.0491214,20,0,0
1753981160.717464,20,0,0
1753981169.907899,20,1,5
1753981179.0530372,20,1,5
1753981200.7457635,20,1,5
1753981231.0848415,20,0,0
1753981247.721742,20,0,0
1753981256.8675866,20,0,0
1753981265.2648304,20,0,0
1753981274.9128888,20,1,5
1753981284.711269,20,1,5
1753981301.7057884,20,0,0
1753981310.937904,20,0,0
1753981327.8797824,20,0,0
1753981336.7186856,20,0,0
1753981346.9647017,20,0,0
1753981356.9908364,20,1,5
1753981366.0675812,20,1,5
1753981383.7050612,20,0,0
1753981410.731663,20,0,0
1753981428.7345366,20,0,0
1753981437.0089443,20,0,0
1753981445.7212121,20,0,0
1753981454.988609,20,1,5
1753981463.9797275,20,1,5
1753981491.71923,20,0,0
1753981501.7212493,20,0,0
1753981518.2772768,20,0,0
1753981526.9160168,20,0,0
1753981535.826744,20,0,0
1753981566.1061456,20,1,5
1753981574.9675546,20,1,5
1753981602.1416702,20,0,0
1753981612.72007,20,0,0
1753981629.0099154,20,0,0
1753981643.7445624,20,0,0
1753981652.823488,20,0,0
1753981662.9088337,20,1,5
1753981671.928711,20,1,5
1753981689.1227603,20,0,0
1753981701.0315497,20,0,0
1753981728.093989,20,0,0
1753981746.7974086,20,0,0
1753981759.7102306,20,0,0
1753981769.7081876,20,1,5
1753981778.9046953,20,1,5
1753981797.0303104,20,1,5
1753981815.207625,20,0,0
1753981832.9011264,20,0,0
1753981850.713345,20,0,0
1753981859.851836,20,0,0
1753981869.927438,20,1,5
1753981879.19499,20,1,5
1753981896.723791,20,0,0
1753981915.7407007,20,0,0
1753981939.0596583,20,0,0
1753981963.9419856,20,0,0
1753981977.7033947,20,0,0
1753981988.952766,20,1,5
1753981999.2881906,20,1,5
1753982035.2917163,20,0,0
1753982053.725155,20,0,0
1753982071.1640604,20,0,0
1753982080.0985765,20,0,0
1753982089.141745,20,0,0
1753982098.7304165,20,1,5
1753982109.6947849,20,1,5
1753982126.856756,20,1,5
1753982146.8186145,20,0,0
1753982190.7586186,20,0,0
1753982200.0088842,20,0,0
1753982208.751019,20,0,0
1753982218.9161122,20,1,5
1753982227.9934359,20,1,5
1753982246.055239,20,1,5
1753982264.7190893,20,0,0
1753982291.9536731,20,0,0
1753982321.7354536,20,0,0
1753982332.067271,20,0,0
1753982342.9326556,20,1,5
1753982352.984186,20,1,5
1753982371.7091613,20,0,0
1753982400.7201345,20,0,0
1753982442.7164974,20,0,0
1753982451.7879257,20,0,0
1753982464.1860583,20,0,0
1753982474.9105482,20,1,5
1753982485.009475,20,1,5
1753982532.7112246,20,0,0
1753982556.2606933,20,0,0
1753982601.7223592,20,0,0
1753982616.1648464,20,0,0
1753982625.197054,20,0,0
1753982635.9132967,20,1,5
1753982646.7088804,20,1,5
1753982675.723007,20,1,5
1753982705.7608738,20,0,0
1753982746.128165,20,0,0
1753982757.0322962,20,0,0
1753982781.7139308,20,0,0
1753982792.718968,20,1,5
1753982803.017795,20,1,5
1753982821.2093916,20,0,0
1753982831.6687248,20,0,0
1753982888.9700434,20,0,0
1753982912.0056794,20,0,0
1753982912.1193297,20,0,0
1753982914.1308389,20,0,0
1753982931.7114394,20,0,0
1753982944.7016635,20,0,0
1753982954.7127903,20,0,0
1753982964.9262824,20,1,5
1753982987.706248,20,1,5
1753983025.7193904,20,1,5
1753983034.883105,20,0,0
1753983060.950673,20,0,0
1753983071.2871432,20,1,5
1753983081.283162,20,1,5
1753983120.8290493,20,0,0
1753983139.7053616,20,0,0
1753983159.710564,20,0,0
1753983191.052654,20,0,0
1753983223.288262,20,0,0
1753983235.9339848,20,1,5
1753983246.98487,20,1,5
1753983266.8082502,20,1,5
1753983287.2052815,20,0,0
1753983306.7139218,20,0,0
1753983315.7181666,20,0,0
1753983325.205722,20,0,0
1753983350.9835536,20,1,5
1753983367.1518886,20,1,5
1753983407.840091,20,0,0
1753983418.7806482,20,0,0
1753983437.727402,20,0,0
1753983465.276386,20,0,0
1753983492.1944907,20,0,0
1753983512.9315317,20,1,5
1753983528.7060423,20,1,5
1753983557.7819242,20,0,0
1753983577.7052047,20,0,0
1753983613.8898003,20,0,0
1753983633.7110393,20,0,0
1753983643.2182264,20,0,0
1753983662.9949446,20,1,5
1753983682.9956489,20,1,5
1753983703.0046475,20,0,0
1753983713.893349,20,0,0
1753983733.007078,20,0,0
1753983742.711991,20,0,0
1753983768.7430418,20,0,0
1753983781.7192163,20,1,5
1753983791.7392852,20,1,5
1753983824.7121902,20,0,0
1753983839.3417394,20,0,0
1753983872.7347906,20,0,0
1753983882.064276,20,0,0
1753983891.8744848,20,0,0
1753983902.3007302,20,1,5
1753983912.7906094,20,1,5
1753983933.070496,20,0,0
1753983955.7310576,20,0,0
1753983974.7302852,20,0,0
1753983985.787147,20,0,0
1753983995.7708938,20,0,0
1753984006.1768417,20,1,5
1753984019.107448,20,1,5
1753984048.7427769,20,0,0
1753984062.1276026,20,0,0
1753984099.922278,20,0,0
1753984110.9722683,20,0,0
1753984121.267703,20,0,0
1753984131.9216979,20,1,5
1753984142.7061338,20,1,5
1753984173.8632898,20,1,5
1753984193.975023,20,0,0
1753984215.2151964,20,0,0
1753984225.0823212,20,0,0
1753984235.6970575,20,0,0
1753984246.7304618,20,1,5
1753984273.8851464,20,1,5
1753984293.76487,20,0,0
1753984316.7398717,20,0,0
1753984340.1628933,20,0,0
1753984349.8169923,20,0,0
1753984359.8436646,20,0,0
1753984371.742539,20,1,5
1753984382.0744991,20,0,0
1753984382.0806127,20,0,0
1753984416.951097,20,0,0
1753984427.7308757,20,0,0
1753984458.0910878,20,0,0
1753984467.7783718,20,0,0
1753984477.7045822,20,0,0
1753984488.0922103,20,1,5
1753984499.7153456,20,1,5
1753984519.7119439,20,0,0
1753984529.140187,20,0,0
1753984539.2157295,20,0,0
1753984560.9228928,20,1,5
1753984571.7097497,20,1,5
1753984602.9575717,20,0,0
1753984637.7181532,20,0,0
1753984668.711311,20,0,0
1753984678.250403,20,0,0
1753984688.2614815,20,0,0
1753984698.920535,20,1,5
1753984709.2510633,20,1,5
1753984728.8933685,20,0,0
1753984739.7188914,20,0,0
1753984759.0561182,20,0,0
1753984768.7897885,20,0,0
1753984779.218824,20,0,0
1753984789.9349027,20,1,5
1753984823.7180312,20,0,0
1753984823.7671301,20,0,0
1753984862.1115708,20,0,0
1753984872.7013853,20,0,0
1753984892.1109176,20,0,0
1753984901.7284975,20,0,0
1753984911.8293316,20,0,0
1753984922.9249663,20,1,5
1753984948.7041113,20,1,5
1753984971.7553165,20,0,0
1753984981.7077327,20,0,0
1753985005.7313294,20,0,0
1753985017.1487527,20,1,5
1753985035.9825127,20,1,5
1753985059.7420197,20,0,0
1753985080.7127123,20,0,0
1753985101.7768793,20,0,0
1753985123.8524299,20,0,0
1753985134.8309443,20,0,0
1753985146.0999477,20,1,5
1753985157.9978397,20,1,5
1753985178.7124865,20,0,0
1753985200.7324207,20,0,0
1753985227.7164304,20,0,0
1753985237.8650298,20,0,0
1753985248.7100003,20,0,0
1753985259.9078555,20,1,5
1753985271.1295881,20,1,5
1753985297.7371192,20,0,0
1753985311.0381885,20,0,0
1753985336.7088645,20,0,0
1753985347.8120804,20,0,0
1753985347.9085064,20,0,0
1753985350.227075,20,0,0
1753985373.9604657,20,0,0
1753985384.7036974,20,0,0
1753985409.188902,20,0,0
1753985421.7423043,20,1,5
1753985456.7172124,20,0,0
1753985477.7003465,20,0,0
1753985488.7177758,20,0,0
1753985508.7192798,20,0,0
1753985519.8040946,20,0,0
1753985530.676872,20,0,0
1753985543.7177987,20,1,5
1753985556.7218783,20,1,5
1753985589.9906557,20,1,5
1753985610.7285314,20,0,0
1753985631.774464,20,0,0
1753985643.7194552,20,1,5
1753985667.97369,20,1,5
1753985690.8875258,20,0,0
1753985712.1346035,20,0,0
1753985734.0411932,20,0,0
1753985757.1741033,20,0,0
1753985767.7082603,20,0,0
1753985785.7271047,20,1,5
1753985796.7196755,20,1,5
1753985817.7119818,20,1,5
1753985853.7173736,20,0,0
1753985875.1975594,20,0,0
1753985890.719689,20,0,0
1753985901.2517152,20,0,0
1753985917.9662142,20,1,5
1753985934.225645,20,1,5
1753985955.7213812,20,0,0
1753985980.7263563,20,0,0
1753986016.9996414,20,0,0
1753986028.035746,20,0,0
1753986039.790963,20,0,0
1753986052.0244765,20,1,5
1753986074.7077618,20,0,0
1753986074.7117412,20,0,0
1753986131.133188,20,0,0
1753986143.7082305,20,0,0
1753986164.0834851,20,0,0
1753986174.1375346,20,0,0
1753986185.007795,20,0,0
1753986196.297499,20,1,5
1753986208.9805129,20,1,5
1753986229.7616706,20,0,0
1753986240.1878777,20,0,0
1753986250.975339,20,0,0
1753986279.0039508,20,1,5
1753986292.0233471,20,1,5
1753986313.7045212,20,0,0
1753986325.030295,20,0,0
1753986370.9783556,20,0,0
1753986381.2875614,20,0,0
1753986392.3013277,20,0,0
1753986404.919925,20,1,5
1753986417.0850754,20,1,5
1753986463.7418585,20,0,0
1753986475.0550978,20,0,0
1753986496.0372756,20,0,0
1753986506.710714,20,0,0
1753986517.708062,20,0,0
1753986529.126431,20,1,5
1753986540.2719302,20,1,5
1753986561.9336574,20,0,0
1753986573.2125533,20,0,0
1753986611.8511703,20,0,0
1753986622.2000117,20,0,0
1753986633.0576324,20,0,0
1753986644.9129426,20,1,5
1753986656.2932777,20,1,5
1753986692.100475,20,0,0
1753986707.7200606,20,0,0
1753986729.692921,20,0,0
1753986740.2481267,20,0,0
1753986751.77547,20,0,0
1753986763.161731,20,1,5
1753986785.0177062,20,1,5
1753986814.2220163,20,0,0
1753986826.1480083,20,0,0
1753986847.7094345,20,0,0
1753986858.2506626,20,0,0
1753986873.9116757,20,0,0
1753986885.9107563,20,1,5
1753986897.315309,20,1,5
1753986919.7432795,20,0,0
1753986931.7081301,20,0,0
1753986976.7149005,20,0,0
1753986990.9737303,20,0,0
1753987003.2599375,20,0,0
1753987014.9879918,20,1,5
1753987027.0198183,20,1,5
1753987075.0222454,20,0,0
1753987086.7184622,20,0,0
1753987109.8703642,20,0,0
1753987134.2540011,20,0,0
1753987150.7321088,20,0,0
1753987165.2494662,20,1,5
1753987177.9771705,20,1,5
1753987200.1306446,20,1,5
1753987222.7510974,20,0,0
1753987244.71472,20,0,0
1753987255.750852,20,0,0
1753987267.696396,20,0,0
1753987298.0414782,20,1,5
1753987311.970265,20,1,5
1753987334.9285681,20,0,0
1753987357.3107498,20,0,0
1753987393.8673594,20,0,0
1753987408.2836142,20,0,0
1753987419.7113252,20,0,0
1753987431.9152448,20,1,5
1753987454.7109237,20,0,0
1753987454.7407162,20,0,0
1753987507.8424075,20,0,0
1753987519.7142944,20,0,0
1753987542.7199283,20,0,0
1753987553.7191076,20,0,0
1753987565.277141,20,0,0
1753987577.2993388,20,1,5
1753987590.7882705,20,1,5
1753987614.0238683,20,0,0
1753987624.9099088,20,0,0
1753987636.7200513,20,0,0
1753987648.9318502,20,1,5
1753987661.983422,20,1,5
1753987688.764556,20,0,0
1753987711.7031555,20,0,0
1753987736.7501822,20,0,0
1753987747.71796,20,0,0
1753987759.948323,20,0,0
1753987771.9359455,20,1,5
1753987787.7143872,20,1,5
1753987810.7304115,20,0,0
1753987821.975137,20,0,0
1753987846.7566397,20,0,0
1753987858.8066378,20,0,0
1753987858.9027581,20,0,0
1753987861.7245874,20,0,0
1753987883.9457717,20,0,0
1753987894.8073676,20,0,0
1753987906.716627,20,0,0
1753987918.9271986,20,1,5
1753987934.965852,20,1,5
1753987957.8661811,20,0,0
1753987968.8838675,20,0,0
1753987995.7169974,20,0,0
1753988007.9257827,20,1,5
1753988021.04957,20,1,5
1753988044.0974228,20,1,5
1753988067.2610288,20,0,0
1753988089.706617,20,0,0
1753988100.9750009,20,0,0
1753988115.039892,20,0,0
1753988127.7054324,20,1,5
1753988139.706027,20,1,5
1753988162.927548,20,1,5
1753988188.0786667,20,0,0
1753988210.7031083,20,0,0
1753988221.9203405,20,0,0
1753988233.8137095,20,0,0
1753988247.0127842,20,1,5
1753988260.0660481,20,1,5
1753988287.275939,20,0,0
1753988310.6563425,20,0,0
1753988333.8201451,20,0,0
1753988344.9156888,20,0,0
1753988357.7423258,20,0,0
1753988369.9998112,20,1,5
1753988387.101341,20,1,5
1753988415.0512874,20,0,0
1753988440.291935,20,0,0
1753988463.7117338,20,0,0
1753988474.8440065,20,0,0
1753988486.8341606,20,0,0
1753988499.1660345,20,1,5
1753988512.1376483,20,1,5
1753988536.7297153,20,0,0
1753988549.103518,20,0,0
1753988571.7859216,20,0,0
1753988583.0687518,20,0,0
1753988596.0766413,20,0,0
1753988613.1364236,20,1,5
1753988625.7221308,20,1,5
1753988650.236393,20,0,0
1753988674.7089982,20,0,0
1753988697.835803,20,0,0
1753988709.1287036,20,0,0
1753988726.1747727,20,0,0
1753988738.8852882,20,1,5
1753988751.073762,20,1,5
1753988774.7889318,20,0,0
1753988798.704474,20,0,0
1753988821.8647544,20,0,0
1753988834.2982728,20,0,0
1753988847.2817178,20,0,0
1753988860.911113,20,1,5
1753988873.2206602,20,1,5
1753988897.718911,20,1,5
1753988922.851096,20,0,0
1753988945.9760008,20,0,0
1753988957.7365282,20,0,0
1753988969.95666,20,0,0
1753988982.7048812,20,1,5
1753988996.0289993,20,1,5
1753989019.9504375,20,0,0
1753989032.7266054,20,0,0
1753989056.206548,20,0,0
1753989067.7321448,20,0,0
1753989079.7193575,20,0,0
1753989092.2925227,20,1,5
1753989109.086895,20,1,5
1753989132.9153473,20,0,0
1753989156.7170703,20,0,0
1753989183.7059274,20,0,0
1753989195.1428957,20,0,0
1753989207.7113104,20,0,0
1753989220.7193758,20,1,5
1753989234.7071323,20,1,5
1753989258.7378325,20,0,0
1753989271.7138717,20,0,0
1753989298.8508852,20,0,0
1753989310.7261918,20,0,0
1753989323.7061324,20,0,0
1753989337.9957066,20,1,5
1753989351.971147,20,1,5
1753989377.7225106,20,0,0
1753989402.3014133,20,0,0
1753989458.7344067,20,0,0
1753989470.7386315,20,0,0
1753989486.8867984,20,0,0
1753989500.9738252,20,1,5
1753989514.0118108,20,1,5
1753989539.0112004,20,0,0
1753989551.8439953,20,0,0
1753989575.9235446,20,0,0
1753989587.9329093,20,0,0
1753989600.7344878,20,0,0
1753989613.9087927,20,1,5
1753989626.999251,20,1,5
1753989651.9308224,20,0,0
1753989666.1925688,20,0,0
1753989690.2910726,20,0,0
1753989701.960792,20,0,0
1753989714.2714818,20,0,0
1753989727.1714263,20,1,5
1753989739.989839,20,1,5
1753989765.742292,20,0,0
1753989790.7102413,20,0,0
1753989815.0514362,20,0,0
1753989827.7608545,20,0,0
1753989840.280017,20,0,0
1753989853.8930883,20,1,5
1753989866.9835632,20,1,5
1753989893.10374,20,0,0
1753989906.2163103,20,0,0
1753989930.7096124,20,0,0
1753989942.712317,20,0,0
1753989955.7092066,20,0,0
1753989968.934889,20,1,5
1753989983.022232,20,1,5
1753990008.1722612,20,0,0
1753990033.23888,20,0,0
1753990057.8653545,20,0,0
1753990070.9831445,20,0,0
1753990083.7336555,20,0,0
1753990096.97322,20,1,5
1753990109.9916813,20,1,5
1753990134.8442144,20,0,0
1753990148.7198644,20,0,0
1753990173.2831914,20,0,0
1753990185.2825732,20,0,0
1753990198.1296115,20,0,0
1753990211.7226026,20,1,5
1753990225.134042,20,1,5
1753990249.74135,20,0,0
1753990261.9135697,20,0,0
1753990286.9207606,20,0,0
1753990299.720741,20,0,0
1753990299.819441,20,0,0
1753990302.7239408,20,0,0
1753990327.7336292,20,0,0
1753990339.797204,20,0,0
1753990352.7121613,20,0,0
1753990365.9118016,20,1,5
1753990380.7436934,20,1,5
1753990405.283395,20,0,0
1753990417.7714987,20,0,0
1753990430.721136,20,0,0
1753990443.9151714,20,1,5
1753990457.240513,20,1,5
1753990482.1149335,20,0,0
1753990507.9979262,20,0,0
1753990533.7499373,20,0,0
1753990545.9392753,20,0,0
1753990559.9307659,20,0,0
1753990573.1213906,20,1,5
1753990586.1180289,20,1,5
1753990610.9066997,20,0,0
1753990624.7176356,20,0,0
1753990649.0912004,20,0,0
1753990661.1813188,20,0,0
1753990674.136555,20,0,0
1753990687.7089443,20,1,5
1753990701.016172,20,1,5
1753990726.7371917,20,0,0
1753990754.1573536,20,0,0
1753990779.7045078,20,0,0
1753990791.7649188,20,0,0
1753990815.9179711,20,0,0
1753990831.9300015,20,1,5
1753990845.720633,20,1,5
1753990872.0720234,20,0,0
1753990900.9780838,20,0,0
1753990926.1232405,20,0,0
1753990938.7145286,20,0,0
1753990951.8784997,20,0,0
1753990966.967128,20,1,5
1753990981.2304642,20,1,5
1753991007.0434508,20,0,0
1753991020.71362,20,0,0
1753991045.941386,20,0,0
1753991058.717806,20,0,0
1753991071.932697,20,0,0
1753991085.7143784,20,1,5
1753991100.3274274,20,1,5
1753991126.2301095,20,0,0
1753991140.162612,20,0,0
1753991166.7085676,20,0,0
1753991179.8894377,20,0,0
1753991192.982238,20,0,0
1753991206.7984576,20,1,5
1753991220.1853752,20,1,5
1753991246.2040486,20,0,0
1753991260.2343526,20,0,0
1753991285.7372816,20,0,0
1753991299.7058992,20,0,0
1753991313.0325956,20,0,0
1753991327.8972526,20,1,5
1753991341.715773,20,1,5
1753991367.728875,20,0,0
1753991382.7141094,20,0,0
1753991409.2154999,20,0,0
1753991421.708131,20,0,0
1753991435.2905107,20,0,0
1753991449.3017926,20,1,5
1753991464.178839,20,1,5
1753991490.1294944,20,0,0
1753991503.8103495,20,0,0
1753991529.710939,20,0,0
1753991542.2527068,20,0,0
1753991559.788509,20,0,0
1753991573.915318,20,1,5
1753991588.0448518,20,0,0
1753991588.0522075,20,0,0
1753991626.092232,20,0,0
1753991641.0235102,20,0,0
1753991671.7272325,20,0,0
1753991684.7312942,20,0,0
1753991698.0235522,20,0,0
1753991712.986014,20,1,5
1753991728.7143414,20,1,5
1753991754.3247144,20,0,0
1753991767.7219675,20,0,0
1753991781.706188,20,0,0
1753991795.928217,20,1,5
1753991809.707769,20,1,5
1753991835.9237547,20,1,5
1753991863.9826014,20,0,0
1753991891.7432523,20,0,0
1753991904.6981978,20,0,0
1753991918.1224084,20,0,0
1753991932.0255165,20,1,5
1753991945.9379053,20,1,5
1753991973.8160472,20,0,0
1753991987.8086817,20,0,0
1753992014.082683,20,0,0
1753992027.1009765,20,0,0
1753992040.7167628,20,0,0
1753992057.914014,20,1,5
1753992072.077155,20,1,5
1753992100.7174501,20,0,0
1753992127.7107265,20,0,0
1753992153.7124822,20,0,0
1753992166.7164605,20,0,0
1753992180.7078302,20,0,0
1753992194.9179535,20,1,5
1753992209.0060105,20,1,5
1753992235.72058,20,0,0
1753992249.7896934,20,0,0
1753992276.3098102,20,0,0
1753992289.7118359,20,0,0
1753992303.7306864,20,0,0
1753992319.1632397,20,1,5
1753992333.0297468,20,1,5
1753992361.264571,20,0,0
1753992375.9493353,20,0,0
1753992406.7969666,20,0,0
1753992419.9503412,20,0,0
1753992433.806076,20,0,0
1753992448.2321947,20,1,5
1753992462.2464678,20,1,5
1753992489.699229,20,0,0
1753992517.6984942,20,0,0
1753992544.320982,20,0,0
1753992558.7091012,20,0,0
1753992572.8448508,20,0,0
1753992587.718151,20,1,5
1753992602.7090054,20,1,5
1753992629.9645631,20,0,0
1753992644.7099261,20,0,0
1753992671.7882175,20,0,0
1753992684.8845193,20,0,0
1753992699.8985996,20,0,0
1753992714.1171424,20,1,5
1753992728.7163844,20,1,5
1753992758.3848937,20,0,0
1753992772.4529371,20,0,0
1753992801.119272,20,0,0
1753992816.2791674,20,0,0
1753992816.7068849,20,0,0
1753992819.8484652,20,0,0
1753992846.9391725,20,0,0
1753992860.0377395,20,0,0
1753992874.23267,20,0,0
1753992888.7088568,20,1,5
1753992905.1002202,20,1,5
1753992931.9870334,20,0,0
1753992945.715164,20,0,0
1753992959.8399475,20,0,0
1753992974.8640482,20,1,5
1753992989.1140566,20,1,5
1753993017.7124429,20,0,0
1753993037.9756594,20,0,0
1753993064.9060116,20,0,0
1753993078.072311,20,0,0
1753993092.2349012,20,0,0
1753993108.9179301,20,1,5
1753993123.701669,20,1,5
1753993151.076349,20,0,0
1753993181.7326047,20,0,0
1753993209.963404,20,0,0
1753993224.723632,20,0,0
1753993238.8432035,20,0,0
1753993256.1589224,20,1,5
1753993284.0880675,20,0,0
1753993285.1062715,20,0,0
1753993320.7117343,20,0,0
1753993335.2526178,20,0,0
1753993362.7098258,20,0,0
1753993376.0679197,20,0,0
1753993390.6968558,20,0,0
1753993405.4784193,20,1,5
1753993435.825741,20,0,0
1753993464.3077815,20,0,0
1753993478.707057,20,0,0
1753993494.1322827,20,0,0
1753993508.935355,20,1,5
1753993523.7134545,20,1,5
1753993552.316193,20,0,0
1753993581.9910529,20,0,0
1753993609.7217338,20,0,0
1753993623.1153207,20,0,0
1753993637.7153366,20,0,0
1753993653.3231962,20,1,5
1753993668.592471,20,1,5
1753993696.7109923,20,0,0
1753993725.7176392,20,0,0
1753993753.5562532,20,0,0
1753993767.0081499,20,0,0
1753993781.2335057,20,0,0
1753993795.9258914,20,1,5
1753993811.1377995,20,0,0
1753993811.1439676,20,0,0
1753993847.6992104,20,0,0
1753993863.7097955,20,0,0
1753993891.8161616,20,0,0
1753993905.2983336,20,0,0
1753993919.9291258,20,0,0
1753993935.2935958,20,1,5
1753993952.8739278,20,1,5
1753993980.975845,20,0,0
1753993994.7029269,20,0,0
1753994009.7148707,20,0,0
1753994024.9207501,20,1,5
1753994039.987585,20,1,5
1753994068.7261126,20,0,0
1753994083.718736,20,0,0
1753994113.1977677,20,0,0
1753994126.9418836,20,0,0
1753994142.7211816,20,0,0
1753994157.7154708,20,1,5
1753994187.031818,20,0,0
1753994187.0354598,20,0,0
1753994223.9176607,20,0,0
1753994238.7594535,20,0,0
1753994266.7218618,20,0,0
1753994280.7122056,20,0,0
1753994295.2364848,20,0,0
1753994310.1024015,20,1,5
1753994327.0232112,20,1,5
1753994354.9257224,20,0,0
1753994368.7430215,20,0,0
1753994397.708716,20,0,0
1753994413.1967483,20,1,5
1753994428.027227,20,1,5
1753994456.709531,20,0,0
1753994471.797283,20,0,0
1753994499.8379018,20,0,0
1753994513.7150445,20,0,0
1753994528.7678037,20,0,0
1753994543.922983,20,1,5
1753994559.0755622,20,1,5
1753994587.9759145,20,0,0
1753994604.7092707,20,0,0
1753994633.1725643,20,0,0
1753994647.7215993,20,0,0
1753994662.726823,20,0,0
1753994678.0262897,20,1,5
1753994693.2259104,20,1,5
1753994722.7139108,20,0,0
1753994752.699775,20,0,0
1753994781.1818867,20,0,0
1753994796.186021,20,0,0
1753994810.8493865,20,0,0
1753994825.9431212,20,1,5
1753994840.9793568,20,1,5
1753994873.2401903,20,0,0
1753994904.0658846,20,0,0
1753994932.9133391,20,0,0
1753994946.9815192,20,0,0
1753994961.8445408,20,0,0
1753994978.9350457,20,1,5
1753994998.7113862,20,1,5
1753995027.7750015,20,0,0
1753995043.8864586,20,0,0
1753995072.709387,20,0,0
1753995088.7094607,20,0,0
1753995104.7085125,20,0,0
1753995120.0525243,20,1,5
1753995149.2872732,20,0,0
1753995149.2925515,20,0,0
1753995187.2888188,20,0,0
1753995202.7161462,20,0,0
1753995231.7637687,20,0,0
1753995246.0812552,20,0,0
1753995261.6392763,20,0,0
1753995277.9089253,20,1,5
1753995295.7404163,20,1,5
1753995331.72637,20,0,0
1753995346.0065272,20,0,0
1753995361.1698718,20,0,0
1753995376.922503,20,1,5
1753995392.7181528,20,1,5
1753995422.7107866,20,0,0
1753995437.2363017,20,0,0
1753995467.1740432,20,0,0
1753995485.1522322,20,0,0
1753995485.2468536,20,0,0
1753995488.7442713,20,0,0
1753995522.0507088,20,0,0
1753995536.2649057,20,0,0
1753995553.85481,20,0,0
1753995570.989326,20,1,5
1753995600.8865469,20,0,0
1753995630.8914201,20,0,0
1753995648.7214491,20,0,0
1753995678.7163217,20,0,0
1753995693.0432112,20,0,0
1753995708.7137475,20,0,0
1753995724.1783977,20,1,5
1753995742.1124787,20,1,5
1753995775.9346943,20,0,0
1753995793.7091835,20,0,0
1753995823.1456718,20,0,0
1753995838.9201045,20,1,5
1753995871.7030516,20,0,0
1753995871.712734,20,0,0
1753995910.7104402,20,0,0
1753995926.7116816,20,0,0
1753995956.705876,20,0,0
1753995972.2068942,20,0,0
1753995988.983296,20,0,0
1753996005.8866503,20,1,5
1753996024.7082698,20,1,5
1753996054.783746,20,0,0
1753996069.71209,20,0,0
1753996086.189621,20,0,0
1753996101.9294417,20,1,5
1753996117.7096875,20,1,5
1753996151.2708755,20,0,0
1753996167.2428918,20,0,0
1753996197.8447857,20,0,0
1753996212.715667,20,0,0
1753996228.7105062,20,0,0
1753996244.7043543,20,1,5
1753996260.6397128,20,1,5
1753996294.705883,20,0,0
1753996310.7026193,20,0,0
1753996340.7209365,20,0,0
1753996355.7028255,20,0,0
1753996371.736084,20,0,0
1753996387.9120395,20,1,5
1753996403.9864438,20,1,5
1753996439.814911,20,0,0
1753996471.7315185,20,0,0
1753996501.734825,20,0,0
1753996517.1991582,20,0,0
1753996533.7176545,20,0,0
1753996550.1238356,20,1,5
1753996566.7233863,20,1,5
1753996597.7070444,20,0,0
1753996613.9186935,20,0,0
1753996644.2042508,20,0,0
1753996659.1744266,20,0,0
1753996674.7973008,20,0,0
1753996691.8367085,20,1,5
1753996708.993709,20,1,5
1753996739.694924,20,0,0
1753996755.9275339,20,0,0
1753996786.3029783,20,0,0
1753996801.0323322,20,0,0
1753996816.9068923,20,0,0
1753996832.9140565,20,1,5
1753996850.1511369,20,1,5
1753996880.8421862,20,0,0
1753996913.2074616,20,0,0
1753996943.8882198,20,0,0
1753996958.8462038,20,0,0
1753996976.140462,20,0,0
1753996992.241723,20,1,5
1753997008.705392,20,1,5
1753997039.7682495,20,0,0
1753997056.0691638,20,0,0
1753997087.8260467,20,0,0
1753997102.7646596,20,0,0
1753997118.793652,20,0,0
1753997134.9495316,20,1,5
1753997151.9760947,20,1,5
1753997183.8578103,20,0,0
1753997215.762424,20,0,0
1753997246.732967,20,0,0
1753997267.0519524,20,0,0
1753997283.3028576,20,0,0
1753997299.9525416,20,1,5
1753997316.268019,20,1,5
1753997348.8550918,20,0,0
1753997366.2211905,20,0,0
1753997399.8016038,20,0,0
1753997414.8568802,20,0,0
1753997431.111323,20,0,0
1753997447.7320948,20,1,5
1753997464.1452308,20,1,5
1753997496.0407436,20,0,0
1753997513.773281,20,0,0
1753997544.728048,20,0,0
1753997559.9255278,20,0,0
1753997576.025944,20,0,0
1753997593.1907406,20,1,5
1753997610.7331553,20,1,5
1753997643.235354,20,0,0
1753997660.0475607,20,0,0
1753997690.9763615,20,0,0
1753997706.0308568,20,0,0
1753997723.1184714,20,0,0
1753997739.9676673,20,1,5
1753997756.7452714,20,1,5
1753997788.1347132,20,0,0
1753997804.8038266,20,0,0
1753997836.1323698,20,0,0
1753997852.757912,20,0,0
1753997868.8175921,20,0,0
1753997885.7198567,20,1,5
1753997902.2197855,20,1,5
1753997933.8239465,20,0,0
1753997950.7775412,20,0,0
1753997983.746833,20,0,0
1753997999.1774688,20,0,0
1753998015.7589176,20,0,0
1753998032.8718674,20,1,5
1753998070.74491,20,0,0
1753998070.7666528,20,0,0
1753998112.1436784,20,0,0
1753998129.0986104,20,0,0
1753998162.2334204,20,0,0
1753998177.8009014,20,0,0
1753998226.1911051,20,0,0
1753998243.9568903,20,1,5
1753998263.0073442,20,1,5
1753998294.1085074,20,0,0
1753998311.9627557,20,0,0
1753998343.764126,20,0,0
1753998360.2191534,20,1,5
1753998392.734927,20,0,0
1753998392.7385976,20,0,0
1753998434.723226,20,0,0
1753998452.9242427,20,0,0
1753998453.0175798,20,0,0
1753998456.8748488,20,0,0
1753998488.7372453,20,0,0
1753998504.0616553,20,0,0
1753998524.2453187,20,0,0
1753998542.2306967,20,1,5
1753998574.0744302,20,0,0
1753998607.7657027,20,0,0
1753998624.7824552,20,0,0
1753998657.0038335,20,0,0
1753998672.7434292,20,0,0
1753998689.7310703,20,0,0
1753998706.7578413,20,1,5
1753998726.750682,20,1,5
1753998760.9312885,20,0,0
1753998778.747795,20,0,0
1753998795.7507432,20,0,0
1753998814.0353503,20,1,5
1753998846.7583015,20,0,0
1753998846.7617445,20,0,0
1753998889.0947506,20,0,0
1753998907.1921878,20,0,0
1753998939.7331727,20,0,0
1753998955.747189,20,0,0
1753998972.2571867,20,0,0
1753998990.9581418,20,1,5
1753999024.142359,20,0,0
1753999056.795527,20,0,0
1753999073.8299134,20,0,0
1753999107.2817287,20,0,0
1753999122.8979297,20,0,0
1753999139.799424,20,0,0
1753999156.9389777,20,1,5
1753999177.7600534,20,1,5
1753999222.7391706,20,0,0
1753999238.802402,20,0,0
1753999255.8127275,20,0,0
1753999272.972422,20,1,5
1753999290.2255614,20,1,5
1753999324.762681,20,0,0
1753999342.0184767,20,0,0
1753999374.7691753,20,0,0
1753999391.756161,20,0,0
1753999409.7404141,20,0,0
1753999428.3029234,20,1,5
1753999446.0781655,20,1,5
1753999481.7373173,20,0,0
1753999500.1638734,20,0,0
1753999534.2082171,20,0,0
1753999550.7657673,20,0,0
1753999568.7303321,20,0,0
1753999586.035928,20,1,5
1753999604.0439434,20,0,0
1753999604.0494928,20,0,0
1753999651.7595391,20,0,0
1753999669.7668705,20,0,0
1753999705.9911926,20,0,0
1753999722.9838986,20,0,0
1753999740.1199007,20,0,0
1753999757.2284062,20,1,5
1753999777.728111,20,1,5
1753999811.7412658,20,0,0
1753999828.7244499,20,0,0
1753999846.9560566,20,0,0
1753999864.0797014,20,1,5
1753999898.1000772,20,0,0
1753999898.107648,20,0,0
1753999942.73977,20,0,0
1753999960.9306178,20,0,0
1753999995.165129,20,0,0
1754000012.931153,20,0,0
1754000031.749629,20,0,0
1754000049.9595776,20,1,5
1754000072.7289932,20,1,5
1754000106.7345073,20,0,0
1754000122.8818002,20,0,0
1754000141.7310317,20,0,0
1754000159.9464724,20,1,5
1754000194.061753,20,0,0
1754000194.0705378,20,0,0
1754000238.730022,20,0,0
1754000256.8101938,20,0,0
1754000290.7395809,20,0,0
1754000306.9994855,20,0,0
1754000324.0467098,20,0,0
1754000341.9373307,20,1,5
1754000375.258039,20,0,0
1754000408.7342758,20,0,0
1754000426.140941,20,0,0
1754000459.2386866,20,0,0
1754000475.282342,20,0,0
1754000492.728713,20,0,0
1754000510.0927434,20,1,5
1754000530.7798574,20,1,5
1754000564.1702662,20,0,0
1754000580.823831,20,0,0
1754000598.959799,20,0,0
1754000616.7218673,20,1,5
1754000634.0456638,20,1,5
1754000670.0789988,20,0,0
1754000687.723214,20,0,0
1754000721.753377,20,0,0
1754000739.046994,20,0,0
1754000756.7319193,20,0,0
1754000774.918252,20,1,5
1754000794.0404065,20,1,5
1754000829.1194289,20,0,0
1754000847.223656,20,0,0
1754000882.9898887,20,0,0
1754000899.7658951,20,0,0
1754000917.7267704,20,0,0
1754000936.9671998,20,1,5
1754000972.0961084,20,0,0
1754000972.1009438,20,0,0
1754001021.7451205,20,0,0
1754001039.7406678,20,0,0
1754001075.7406032,20,0,0
1754001097.3610594,20,0,0
1754001114.9782789,20,0,0
1754001132.734591,20,1,5
1754001153.7317386,20,1,5
1754001193.7707589,20,0,0
1754001211.733297,20,0,0
1754001229.7560477,20,0,0
1754001247.949163,20,1,5
1754001266.0177228,20,1,5
1754001307.2440155,20,0,0
1754001342.037432,20,0,0
1754001376.165677,20,0,0
1754001396.7418666,20,0,0
1754001414.7465618,20,0,0
1754001432.952531,20,1,5
1754001456.9973726,20,1,5
1754001491.7349992,20,0,0
1754001508.91093,20,0,0
1754001545.0888252,20,0,0
1754001563.708579,20,0,0
1754001563.805677,20,0,0
1754001567.9280186,20,0,0
1754001609.7160661,20,0,0
1754001628.0240066,20,0,0
1754001645.908454,20,0,0
1754001663.9489746,20,1,5
1754001698.7313004,20,0,0
1754001739.717793,20,0,0
1754001758.8901932,20,0,0
1754001792.983218,20,0,0
1754001809.9244773,20,0,0
1754001827.8079886,20,0,0
1754001845.9176795,20,1,5
1754001866.7457502,20,1,5
1754001905.7651684,20,0,0
1754001922.7195406,20,0,0
1754001940.7287414,20,0,0
1754001965.921761,20,1,5
1754001985.9738038,20,1,5
1754002021.769087,20,0,0
1754002056.9841285,20,0,0
1754002098.886063,20,0,0
1754002116.034585,20,0,0
1754002134.2985184,20,0,0
1754002152.2534034,20,1,5
1754002170.970767,20,1,5
1754002218.0211656,20,0,0
1754002238.7215474,20,0,0
1754002274.9287107,20,0,0
1754002292.6979454,20,0,0
1754002310.7314982,20,0,0
1754002329.934563,20,1,5
1754002348.7099414,20,1,5
1754002384.7100904,20,0,0
1754002403.7119217,20,0,0
1754002451.7128491,20,0,0
1754002469.0028903,20,0,0
1754002487.076539,20,0,0
1754002505.9094396,20,1,5
1754002543.066808,20,0,0
1754002543.073,20,0,0
1754002595.074806,20,0,0
1754002613.8459141,20,0,0
1754002649.259474,20,0,0
1754002666.9806237,20,0,0
1754002688.1231306,20,0,0
1754002713.895796,20,1,5
1754002753.9977791,20,0,0
1754002790.8653011,20,0,0
1754002810.2633483,20,0,0
1754002846.7656744,20,0,0
1754002864.2180603,20,0,0
1754002883.7191522,20,0,0
1754002902.0163538,20,1,5
1754002941.9740474,20,1,5
1754002987.7154334,20,0,0
1754003007.1940691,20,0,0
1754003043.2618759,20,0,0
1754003065.1165786,20,0,0
1754003083.8878198,20,0,0
1754003103.1776388,20,1,5
1754003145.7335813,20,0,0
1754003185.7215118,20,0,0
1754003204.7382963,20,0,0
1754003240.9720004,20,0,0
1754003258.9474757,20,0,0
1754003277.6999762,20,0,0
1754003296.1400416,20,1,5
1754003318.2733746,20,1,5
1754003368.7066343,20,0,0
1754003388.706066,20,0,0
1754003407.9048328,20,0,0
1754003427.1874714,20,1,5
1754003446.1166244,20,1,5
1754003482.779707,20,0,0
1754003505.7073474,20,0,0
1754003540.9453735,20,0,0
1754003558.7097747,20,0,0
1754003577.2588367,20,0,0
1754003597.1331668,20,1,5
1754003616.7279675,20,1,5
1754003660.7587976,20,0,0
1754003679.9564662,20,0,0
1754003715.725984,20,0,0
1754003732.9394858,20,0,0
1754003751.7324288,20,0,0
1754003770.72694,20,1,5
1754003790.292793,20,1,5
1754003829.2336972,20,0,0
1754003849.8382409,20,0,0
1754003892.0027218,20,0,0
1754003909.2579024,20,0,0
1754003927.9826622,20,0,0
1754003951.7081654,20,1,5
1754003970.9795191,20,1,5
1754004007.8695247,20,0,0
1754004026.859207,20,0,0
1754004069.166918,20,0,0
1754004086.814374,20,0,0
1754004105.7301204,20,0,0
1754004125.0815344,20,1,5
1754004162.1110866,20,0,0
1754004162.117004,20,0,0
1754004210.8264077,20,0,0
1754004230.2446625,20,0,0
1754004268.7496717,20,0,0
1754004286.7620912,20,0,0
1754004315.7166176,20,0,0
1754004335.148383,20,1,5
1754004378.2499034,20,0,0
1754004416.1183915,20,0,0
1754004435.7166533,20,0,0
1754004472.837624,20,0,0
1754004490.7807064,20,0,0
1754004511.0856273,20,0,0
1754004540.7244647,20,1,5
1754004579.1253147,20,0,0
1754004616.723989,20,0,0
1754004636.2481246,20,0,0
1754004673.7102256,20,0,0
1754004691.7117014,20,0,0
1754004711.7152636,20,0,0
1754004730.9286697,20,1,5
1754004759.721413,20,1,5
1754004801.7164261,20,0,0
1754004820.1390295,20,0,0
1754004839.704775,20,0,0
1754004859.7029486,20,1,5
1754004881.7163713,20,1,5
1754004937.914255,20,0,0
1754004957.7070436,20,0,0
1754004995.3046775,20,0,0
1754005024.8921812,20,0,0
1754005047.7064204,20,0,0
1754005069.0312352,20,1,5
1754005088.281922,20,1,5
1754005131.2741568,20,0,0
1754005149.9333935,20,0,0
1754005198.7488236,20,0,0
1754005221.355702,20,0,0
1754005221.774515,20,0,0
1754005226.2091365,20,0,0
1754005265.1181238,20,0,0
1754005283.0494933,20,0,0
1754005304.2462246,20,0,0
1754005340.7143946,20,1,5
1754005362.9553814,20,1,5
1754005399.8838918,20,0,0
1754005418.0745454,20,0,0
1754005438.1986094,20,0,0
1754005481.2446694,20,1,5
1754005501.9924912,20,1,5
1754005544.7376037,20,0,0
1754005564.710225,20,0,0
1754005601.8070817,20,0,0
1754005620.1150675,20,0,0
1754005639.802161,20,0,0
1754005659.1628675,20,1,5
1754005678.9913857,20,1,5
1754005720.194841,20,0,0
1754005739.727262,20,0,0
1754005777.010372,20,0,0
1754005795.7220013,20,0,0
1754005815.0560777,20,0,0
1754005834.6971264,20,1,5
1754005872.3476121,20,0,0
1754005872.6784313,20,0,0
1754005924.7180965,20,0,0
1754005945.1253486,20,0,0
1754005983.708072,20,0,0
1754006001.718141,20,0,0
1754006021.111538,20,0,0
1754006040.899048,20,1,5
1754006079.7210135,20,0,0
1754006117.9352689,20,0,0
1754006138.709453,20,0,0
1754006178.7072768,20,0,0
1754006196.7708008,20,0,0
1754006216.7396688,20,0,0
1754006235.9071016,20,1,5
1754006258.7046423,20,1,5
1754006296.0346763,20,0,0
1754006314.3131428,20,0,0
1754006334.2115252,20,0,0
1754006353.93303,20,1,5
1754006374.0234616,20,1,5
1754006411.983839,20,0,0
1754006431.8363435,20,0,0
1754006470.7123597,20,0,0
1754006489.9303818,20,0,0
1754006509.7043986,20,0,0
1754006530.9378002,20,1,5
1754006550.8509648,20,1,5
1754006589.2840104,20,0,0
1754006609.7099516,20,0,0
1754006648.7040653,20,0,0
1754006667.1404665,20,0,0
1754006686.8868847,20,0,0
1754006706.7183084,20,1,5
1754006744.771338,20,0,0
1754006744.7769632,20,0,0
1754006796.8854246,20,0,0
1754006816.7171183,20,0,0
1754006858.7258055,20,0,0
1754006877.3320634,20,0,0
1754006897.2925925,20,0,0
1754006917.060531,20,1,5
1754006957.0019724,20,0,0
1754006995.1511433,20,0,0
1754007016.7499154,20,0,0
1754007055.0627892,20,0,0
1754007075.1595345,20,0,0
1754007095.0412114,20,0,0
1754007117.9438224,20,1,5
1754007159.98758,20,0,0
1754007201.7164114,20,0,0
1754007220.7146988,20,0,0
1754007240.7259457,20,0,0
1754007260.9227915,20,1,5
1754007281.9789047,20,1,5
1754007323.8816617,20,0,0
1754007345.2956135,20,0,0
1754007387.3244576,20,0,0
1754007406.7167132,20,0,0
1754007427.0525146,20,0,0
1754007447.057652,20,1,5
1754007467.704601,20,1,5
1754007506.8297071,20,0,0
1754007527.7022152,20,0,0
1754007567.713794,20,0,0
1754007586.7282374,20,0,0
1754007607.0727255,20,0,0
1754007628.1258073,20,1,5
1754007674.2013607,20,0,0
1754007674.2090182,20,0,0
1754007728.906067,20,0,0
1754007752.8781438,20,0,0
1754007792.7092638,20,0,0
1754007811.726702,20,0,0
1754007832.0637202,20,0,0
1754007852.0744486,20,1,5
1754007875.9555051,20,1,5
1754007915.983149,20,0,0
1754007934.820522,20,0,0
1754007954.8908074,20,0,0
1754007974.9185052,20,1,5
1754007997.0145888,20,1,5
1754008036.7158353,20,0,0
1754008057.9998136,20,0,0
1754008097.7971246,20,0,0
1754008117.732964,20,0,0
1754008138.03374,20,0,0
1754008162.7078266,20,1,5
1754008187.0630634,20,1,5
1754008227.9592361,20,0,0
1754008249.7810907,20,0,0
1754008290.149478,20,0,0
1754008309.1210825,20,0,0
1754008329.9082286,20,0,0
1754008350.3018832,20,1,5
1754008371.100379,20,1,5
1754008415.1978786,20,0,0
1754008435.7640924,20,0,0
1754008477.2500315,20,0,0
1754008496.6988494,20,0,0
1754008517.0462265,20,0,0
1754008537.713889,20,1,5
1754008577.2830396,20,0,0
1754008578.4317586,20,0,0
1754008633.078477,20,0,0
1754008654.7083032,20,0,0
1754008693.8584452,20,0,0
1754008713.7091565,20,0,0
1754008733.9987183,20,0,0
1754008753.993738,20,1,5
1754008778.7213268,20,1,5
1754008778.7775943,20,1,5
1754008778.9412806,20,1,5
1754008803.0045376,20,0,0
1754008842.8878436,20,0,0
1754008867.039505,20,0,0
1754008907.730009,20,0,0
1754008927.2671158,20,0,0
1754008947.851744,20,0,0
1754008968.3293285,20,1,5
1754008994.0588536,20,1,5
1754009033.8717086,20,0,0
1754009053.703085,20,0,0
1754009075.8019202,20,0,0
1754009096.9258144,20,1,5
1754009119.127253,20,1,5
1754009158.9160411,20,0,0
1754009179.704274,20,0,0
1754009219.8807077,20,0,0
1754009239.195572,20,0,0
1754009259.941903,20,0,0
1754009280.7095191,20,1,5
1754009303.1280189,20,0,0
1754009303.1342585,20,0,0
1754009355.9747066,20,0,0
1754009378.7037928,20,0,0
1754009418.7399306,20,0,0
1754009438.7040777,20,0,0
1754009459.1891813,20,0,0
1754009480.9423566,20,1,5
1754009506.2222228,20,1,5
1754009549.159547,20,0,0
1754009568.7001302,20,0,0
1754009589.7087433,20,0,0
1754009611.7433975,20,1,5
1754009652.050267,20,0,0
1754009652.0559163,20,0,0
1754009709.7071931,20,0,0
1754009731.0906835,20,0,0
1754009771.7163844,20,0,0
1754009795.9952366,20,0,0
1754009816.7126303,20,0,0
1754009841.107614,20,1,5
1754009864.9731617,20,1,5
1754009904.6890192,20,0,0
1754009924.694362,20,0,0
1754009945.7087579,20,0,0
1754009966.1579113,20,1,5
1754009987.289095,20,1,5
1754010029.7445383,20,0,0
1754010050.9745831,20,0,0
1754010090.761077,20,0,0
1754010110.2332466,20,0,0
1754010131.034872,20,0,0
1754010151.7128232,20,1,5
1754010193.10018,20,0,0
1754010193.1049688,20,0,0
1754010247.6998239,20,0,0
1754010268.760875,20,0,0
1754010308.7045465,20,0,0
1754010328.7047944,20,0,0
1754010349.6952922,20,0,0
1754010371.2301824,20,1,5
1754010411.7230737,20,0,0
1754010457.2835286,20,0,0
1754010478.7172441,20,0,0
1754010521.7275472,20,0,0
1754010541.3198662,20,0,0
1754010562.075327,20,0,0
1754010582.9266477,20,1,5
1754010607.1816642,20,1,5
1754010648.022248,20,0,0
1754010667.9143772,20,0,0
1754010689.3138483,20,0,0
1754010710.7034688,20,1,5
1754010731.9748266,20,1,5
1754010776.722003,20,0,0
1754010798.2853115,20,0,0
1754010839.7306895,20,0,0
1754010859.7054744,20,0,0
1754010880.7829697,20,0,0
1754010901.7095013,20,1,5
1754010923.0684724,20,0,0
1754010923.0735638,20,0,0
1754010976.7059782,20,0,0
1754010999.7076495,20,0,0
1754011040.2612407,20,0,0
1754011059.8115983,20,0,0
1754011080.717578,20,0,0
1754011101.7199173,20,1,5
1754011127.7261624,20,1,5
1754011168.7086444,20,0,0
1754011188.7103167,20,0,0
1754011210.7162235,20,0,0
1754011235.9233868,20,1,5
1754011277.010184,20,0,0
1754011277.017889,20,0,0
1754011331.7339888,20,0,0
1754011354.0519986,20,0,0
1754011394.2682285,20,0,0
1754011414.7133589,20,0,0
1754011436.195259,20,0,0
1754011463.2315328,20,1,5
1754011488.7084742,20,1,5
1754011529.7152605,20,0,0
1754011550.198755,20,0,0
1754011571.821058,20,0,0
1754011593.9033709,20,1,5
1754011634.7213705,20,0,0
1754011634.7249255,20,0,0
1754011690.121724,20,0,0
1754011711.7140706,20,0,0
1754011752.7028391,20,0,0
1754011772.7013276,20,0,0
1754011793.883377,20,0,0
1754011814.916975,20,1,5
1754011839.713621,20,1,5
1754011880.7250617,20,0,0
1754011902.1499271,20,0,0
1754011923.7574794,20,0,0
1754011946.690179,20,1,5
1754011968.7085278,20,1,5
1754012011.2462265,20,0,0
1754012033.7143307,20,0,0
1754012074.7198887,20,0,0
1754012094.7101693,20,0,0
1754012117.019161,20,0,0
1754012141.2028344,20,1,5
1754012183.7455106,20,0,0
1754012183.941052,20,0,0
1754012238.7054923,20,0,0
1754012260.721063,20,0,0
1754012301.8001509,20,0,0
1754012321.8083754,20,0,0
1754012344.7073405,20,0,0
1754012368.6997633,20,1,5
1754012394.72488,20,0,0
1754012394.8598063,20,0,0
1754012395.0663984,20,0,0
1754012421.7114866,20,0,0
1754012463.2892277,20,0,0
1754012490.187412,20,0,0
1754012531.707342,20,0,0
1754012552.7045844,20,0,0
1754012575.7885778,20,0,0
1754012600.7064683,20,1,5
1754012629.7177868,20,1,5
1754012674.0885313,20,0,0
1754012694.809802,20,0,0
1754012716.7212,20,0,0
1754012738.1424568,20,1,5
1754012781.0795321,20,0,0
1754012781.0885496,20,0,0
1754012837.700403,20,0,0
1754012859.9800527,20,0,0
1754012902.7068853,20,0,0
1754012923.029273,20,0,0
1754012945.9022014,20,0,0
1754012967.1996572,20,1,5
1754012993.7583535,20,1,5
1754013035.7240238,20,0,0
1754013057.70868,20,0,0
1754013080.0592723,20,0,0
1754013101.9268458,20,1,5
1754013145.061562,20,0,0
1754013145.0674703,20,0,0
1754013201.9473767,20,0,0
1754013224.7352068,20,0,0
1754013266.1568801,20,0,0
1754013287.897431,20,0,0
1754013310.702007,20,0,0
1754013332.9603848,20,1,5
1754013377.0833435,20,0,0
1754013418.9934173,20,0,0
1754013441.1350017,20,0,0
1754013482.8291306,20,0,0
1754013503.1614237,20,0,0
1754013527.0854669,20,0,0
1754013549.2754445,20,1,5
1754013591.274643,20,0,0
1754013633.716252,20,0,0
1754013661.2827418,20,0,0
1754013704.6988876,20,0,0
1754013725.0035586,20,0,0
1754013748.7131565,20,0,0
1754013770.1692219,20,1,5
1754013795.7218826,20,1,5
1754013838.957508,20,0,0
1754013859.7814562,20,0,0
1754013881.7556698,20,0,0
1754013904.7123413,20,1,5
1754013949.7032285,20,0,0
1754013949.7069657,20,0,0
1754014010.8166502,20,0,0
1754014033.3457582,20,0,0
1754014075.2776465,20,0,0
1754014099.7618735,20,0,0
1754014121.8514423,20,0,0
1754014144.9469018,20,1,5
1754014188.0025415,20,0,0
1754014230.936253,20,0,0
1754014253.0898297,20,0,0
1754014295.715126,20,0,0
1754014315.9548178,20,0,0
1754014337.7163973,20,0,0
1754014359.9186285,20,1,5
1754014404.9909003,20,0,0
1754014447.8228438,20,0,0
1754014470.2568426,20,0,0
1754014512.7172642,20,0,0
1754014532.892636,20,0,0
1754014554.9059362,20,0,0
1754014577.693827,20,1,5
1754014603.7110448,20,1,5
1754014645.7318463,20,0,0
1754014667.217944,20,0,0
1754014689.7009826,20,0,0
1754014711.7122989,20,1,5
1754014734.087021,20,0,0
1754014734.0989065,20,0,0
1754014791.0856125,20,0,0
1754014813.7109108,20,0,0
1754014856.0066729,20,0,0
1754014876.7331514,20,0,0
1754014899.1737351,20,0,0
1754014920.9680572,20,1,5
1754014967.707053,20,0,0
1754015009.8867218,20,0,0
1754015030.6986942,20,0,0
1754015052.7153962,20,0,0
1754015074.716768,20,1,5
1754015119.3048806,20,0,0
1754015119.3092837,20,0,0
1754015176.1150064,20,0,0
1754015198.7122788,20,0,0
1754015240.974992,20,0,0
1754015261.7656975,20,0,0
1754015284.8943124,20,0,0
1754015306.9496515,20,1,5
1754015332.8995852,20,1,5
1754015377.7106607,20,0,0
1754015399.0737612,20,0,0
1754015422.7659664,20,0,0
1754015444.9348328,20,1,5
1754015488.0609481,20,0,0
1754015488.0678434,20,0,0
1754015545.2202835,20,0,0
1754015567.7025943,20,0,0
1754015611.7113261,20,0,0
1754015632.7193394,20,0,0
1754015656.3020566,20,0,0
1754015678.3053493,20,1,5
1754015722.701317,20,0,0
1754015766.5669265,20,0,0
1754015789.709724,20,0,0
1754015834.707951,20,0,0
1754015855.8465664,20,0,0
1754015878.7264624,20,0,0
1754015900.9088678,20,1,5
1754015927.7069433,20,1,5
1754015971.7275877,20,0,0
1754015993.169598,20,0,0
1754016015.7207594,20,0,0
1754016040.7198937,20,1,5
1754016084.7044542,20,0,0
1754016084.708086,20,0,0
1754016142.7123601,20,0,0
1754016165.9335687,20,0,0
1754016210.7204204,20,0,0
1754016231.9201422,20,0,0
1754016254.7025099,20,0,0
1754016277.70206,20,1,5
1754016321.150618,20,0,0
1754016364.859461,20,0,0
1754016388.8285904,20,0,0
1754016388.9303577,20,0,0
1754016394.7096822,20,0,0
1754016437.7202814,20,0,0
1754016458.7059152,20,0,0
1754016481.712594,20,0,0
1754016507.9319427,20,1,5
1754016534.7307463,20,1,5
1754016578.705596,20,0,0
1754016600.7074509,20,0,0
1754016624.7098842,20,0,0
1754016647.0050783,20,1,5
1754016670.1623688,20,1,5
1754016715.1874409,20,0,0
1754016738.716413,20,0,0
1754016782.7180948,20,0,0
1754016803.8825684,20,0,0
1754016827.0189302,20,0,0
1754016849.7221994,20,1,5
1754016894.102587,20,0,0
1754016894.1089375,20,0,0
1754016955.8749957,20,0,0
1754016978.710641,20,0,0
1754017021.871427,20,0,0
1754017042.9028485,20,0,0
1754017066.3217964,20,0,0
1754017088.711797,20,1,5
1754017137.053934,20,0,0
1754017181.755191,20,0,0
1754017206.0774763,20,0,0
1754017250.178181,20,0,0
1754017272.0968604,20,0,0
1754017294.9607122,20,0,0
1754017317.8987825,20,1,5
1754017344.7157907,20,1,5
1754017388.8548973,20,0,0
1754017411.7183032,20,0,0
1754017438.0830357,20,0,0
1754017460.9259214,20,1,5
1754017484.0794713,20,1,5
1754017529.2044797,20,0,0
1754017553.7750483,20,0,0
1754017605.7424254,20,0,0
1754017627.719838,20,0,0
1754017654.7230039,20,0,0
1754017677.9446354,20,1,5
1754017701.7147996,20,1,5
1754017746.973962,20,0,0
1754017770.7091668,20,0,0
1754017819.7840464,20,0,0
1754017842.7107189,20,0,0
1754017866.7154505,20,0,0
1754017889.7021875,20,1,5
1754017913.0501928,20,1,5
1754017956.9823415,20,0,0
1754017980.0822597,20,0,0
1754018025.9290898,20,0,0
1754018047.7046576,20,0,0
1754018070.7067707,20,0,0
1754018094.0863624,20,1,5
1754018118.0116792,20,1,5
1754018163.8344724,20,0,0
1754018187.7263753,20,0,0
1754018234.0252905,20,0,0
1754018255.7801383,20,0,0
1754018279.7258077,20,0,0
1754018302.926272,20,1,5
1754018326.1517084,20,1,5
1754018374.7966745,20,0,0
1754018399.695097,20,0,0
1754018444.722128,20,0,0
1754018466.7290761,20,0,0
1754018490.1244116,20,0,0
1754018512.9262645,20,1,5
1754018536.175693,20,1,5
1754018583.70473,20,0,0
1754018608.4023101,20,0,0
1754018653.714614,20,0,0
1754018675.2787137,20,0,0
1754018698.815249,20,0,0
1754018721.708641,20,1,5
1754018745.9859378,20,1,5
1754018791.842913,20,0,0
1754018815.7193327,20,0,0
1754018860.7082858,20,0,0
1754018882.7429187,20,0,0
1754018906.1913812,20,0,0
1754018928.9473877,20,1,5
1754018975.0183258,20,0,0
1754018976.0541391,20,0,0
1754019034.7065413,20,0,0
1754019058.7085652,20,0,0
1754019104.3113558,20,0,0
1754019126.199614,20,0,0
1754019149.7034981,20,0,0
1754019172.7158177,20,1,5
1754019199.7676277,20,1,5
1754019244.706882,20,0,0
1754019298.7088592,20,0,0
1754019323.185772,20,0,0
1754019346.1912143,20,1,5
1754019391.2172751,20,0,0
1754019391.2241344,20,0,0
1754019450.9544196,20,0,0
1754019474.7092311,20,0,0
1754019521.9637115,20,0,0
1754019543.812876,20,0,0
1754019567.0289857,20,0,0
1754019589.9146974,20,1,5
1754019617.720054,20,1,5
1754019663.0925436,20,0,0
1754019684.8333926,20,0,0
1754019709.6982918,20,0,0
1754019732.926816,20,1,5
1754019778.0923412,20,0,0
1754019778.0980854,20,0,0
1754019838.735503,20,0,0
1754019862.258569,20,0,0
1754019907.809809,20,0,0
1754019929.8459096,20,0,0
1754019954.263551,20,0,0
1754019977.2981157,20,1,5
1754020026.0793216,20,0,0
1754020071.9902933,20,0,0
1754020096.193134,20,0,0
1754020141.2232943,20,0,0
1754020163.8128994,20,0,0
1754020188.7249894,20,0,0
1754020211.706284,20,1,5
1754020257.0338724,20,0,0
1754020302.1426568,20,0,0
1754020325.8146782,20,0,0
1754020370.728801,20,0,0
1754020393.2610211,20,0,0
1754020416.7527578,20,0,0
1754020439.8898017,20,1,5
1754020467.8144858,20,1,5
1754020467.8949244,20,1,5
1754020468.0598478,20,1,5
1754020494.9830287,20,0,0
1754020540.7203596,20,0,0
1754020568.232422,20,0,0
1754020616.0397174,20,0,0
1754020638.703882,20,0,0
1754020662.1604052,20,0,0
1754020685.700874,20,1,5
1754020710.0113692,20,0,0
1754020756.6785433,20,0,0
1754020780.724916,20,0,0
1754020826.7180543,20,0,0
1754020848.9440274,20,0,0
1754020877.707218,20,0,0
1754020900.9527762,20,1,5
1754020947.0102527,20,0,0
1754020992.9384987,20,0,0
1754021017.0865602,20,0,0
1754021062.779158,20,0,0
1754021085.6996908,20,0,0
1754021109.704206,20,0,0
1754021133.152168,20,1,5
1754021183.2427993,20,0,0
1754021229.7014678,20,0,0
1754021252.169809,20,0,0
1754021276.2298234,20,0,0
1754021299.72076,20,1,5
1754021351.1051936,20,0,0
1754021351.1123247,20,0,0
1754021412.9857156,20,0,0
1754021439.0341613,20,0,0
1754021485.015125,20,0,0
1754021507.2166603,20,0,0
1754021532.7091713,20,0,0
1754021557.1760573,20,1,5
1754021603.96381,20,0,0
1754021650.7181132,20,0,0
1754021675.1467803,20,0,0
1754021721.855463,20,0,0
1754021744.2450378,20,0,0
1754021768.7112792,20,0,0
1754021792.2953017,20,1,5
1754021843.8155198,20,0,0
1754021889.7161198,20,0,0
1754021912.7726505,20,0,0
1754021936.8349304,20,0,0
1754021960.7207704,20,1,5
1754022008.2447104,20,0,0
1754022008.2499917,20,0,0
1754022070.7065995,20,0,0
1754022094.8563657,20,0,0
1754022140.8971915,20,0,0
1754022163.22139,20,0,0
1754022187.2032993,20,0,0
1754022210.716733,20,1,5
1754022259.7041364,20,0,0
1754022306.8313947,20,0,0
1754022359.803509,20,0,0
1754022452.1416495,20,0,0
1754022492.8186028,20,0,0
1754022536.7187932,20,0,0
1754022579.0905032,20,1,5
1754022663.7147338,20,0,0
1754022747.6996174,20,0,0
1754022790.8574185,20,0,0
1754022861.0314744,20,0,0
1754022894.6996617,20,0,0
1754022926.459599,20,0,0
1754022954.170231,20,1,5
1754022984.8613856,20,1,5
1754023034.7495177,20,0,0
1754023060.7126937,20,0,0
1754023087.786804,20,0,0
1754023113.9600732,20,1,5
1754023169.319711,20,0,0
1754023169.6269786,20,0,0
1754023232.6939044,20,0,0
1754023258.055506,20,0,0
1754023306.714457,20,0,0
1754023329.7243552,20,0,0
1754023356.3766582,20,0,0
1754023383.1096666,20,1,5
1754023411.8206494,20,1,5
1754023460.0804782,20,0,0
1754023482.7070467,20,0,0
1754023508.8045506,20,0,0
1754023532.917342,20,1,5
1754023557.7083495,20,1,5
1754023606.7339466,20,0,0
1754023632.7483459,20,0,0
1754023678.801317,20,0,0
1754023705.7087123,20,0,0
1754023731.1887484,20,0,0
1754023756.933926,20,1,5
1754023806.0784643,20,0,0
1754023806.0832136,20,0,0
1754023868.871218,20,0,0
1754023897.116625,20,0,0
1754023946.7024357,20,0,0
1754023969.7237415,20,0,0
1754023994.700909,20,0,0
1754024018.9081252,20,1,5
1754024068.0238752,20,0,0
1754024116.7093909,20,0,0
1754024141.705949,20,0,0
1754024188.7093742,20,0,0
1754024214.7155666,20,0,0
1754024240.2256546,20,0,0
1754024265.2968075,20,1,5
1754024315.0100183,20,0,0
1754024362.205081,20,0,0
1754024388.0565262,20,0,0
1754024437.7048109,20,0,0
1754024460.7120085,20,0,0
1754024485.7137957,20,0,0
1754024510.7093475,20,1,5
1754024570.2117445,20,0,0
1754024618.8697855,20,0,0
1754024645.7904112,20,0,0
1754024694.1734064,20,0,0
1754024721.7948828,20,0,0
1754024749.8618872,20,0,0
1754024779.9827373,20,1,5
1754024827.9836311,20,0,0
1754024880.7089722,20,0,0
1754024905.700837,20,0,0
1754024954.7037783,20,0,0
1754024977.7934377,20,0,0
1754025006.741815,20,0,0
1754025033.2088592,20,1,5
1754025062.7184083,20,0,0
1754025111.736548,20,0,0
1754025134.8940685,20,0,0
1754025163.9532404,20,0,0
1754025188.9268813,20,1,5
1754025241.0323367,20,0,0
1754025241.0376773,20,0,0
1754025308.1225138,20,0,0
1754025333.8924932,20,0,0
1754025334.009235,20,0,0
1754025339.9385428,20,0,0
1754025391.7179284,20,0,0
1754025416.721434,20,0,0
1754025442.9666114,20,0,0
1754025468.2695282,20,1,5
1754025516.3055687,20,0,0
1754025566.7151413,20,0,0
1754025591.7138739,20,0,0
1754025638.8418825,20,0,0
1754025661.9397223,20,0,0
1754025687.8544462,20,0,0
1754025711.9997637,20,1,5
1754025760.988086,20,0,0
1754025811.2272897,20,0,0
1754025838.9665995,20,0,0
1754025886.7414,20,0,0
1754025910.9279923,20,0,0
1754025936.9002793,20,0,0
1754025961.6943533,20,1,5
1754025990.8730233,20,1,5
1754026043.7092838,20,0,0
1754026066.963752,20,0,0
1754026092.2631037,20,0,0
1754026117.9289303,20,1,5
1754026143.7061844,20,0,0
1754026148.6972046,20,0,0
1754026208.7067542,20,0,0
1754026234.7622125,20,0,0
1754026282.1998386,20,0,0
1754026305.043494,20,0,0
1754026329.814788,20,0,0
1754026354.0548928,20,1,5
1754026383.9158874,20,0,0
1754026439.7059095,20,0,0
1754026462.9529524,20,0,0
1754026487.7579174,20,0,0
1754026513.7024586,20,1,5
1754026562.0811977,20,0,0
1754026562.0875704,20,0,0
1754026627.70672,20,0,0
1754026653.7132764,20,0,0
1754026703.0698824,20,0,0
1754026726.7147818,20,0,0
1754026753.7077656,20,0,0
1754026778.9213138,20,1,5
1754026805.134648,20,0,0
1754026857.702437,20,0,0
1754026883.936702,20,0,0
1754026933.2751527,20,0,0
1754026956.8286328,20,0,0
1754026983.0692532,20,0,0
1754027007.927251,20,1,5
1754027040.036712,20,1,5
1754027089.7102382,20,0,0
1754027114.6942914,20,0,0
1754027144.1019273,20,0,0
1754027168.9125314,20,1,5
1754027196.063494,20,0,0
1754027196.0694203,20,0,0
1754027261.7058523,20,0,0
1754027289.612018,20,0,0
1754027339.399224,20,0,0
1754027363.949006,20,0,0
1754027389.7042987,20,0,0
1754027414.700448,20,1,5
1754027464.8192174,20,0,0
1754027515.8995135,20,0,0
1754027541.7121577,20,0,0
1754027590.7166853,20,0,0
1754027614.1172826,20,0,0
1754027639.8153067,20,0,0
1754027669.933379,20,1,5
1754027700.0208848,20,1,5
1754027753.8094385,20,0,0
1754027777.7140257,20,0,0
1754027803.1733804,20,0,0
1754027828.129222,20,1,5
1754027853.9898305,20,1,5
1754027903.9214828,20,0,0
1754027929.9221394,20,0,0
1754027980.7019215,20,0,0
1754028005.113258,20,0,0
1754028030.9801588,20,0,0
1754028055.895037,20,1,5
1754028108.0669227,20,0,0
1754028108.0751503,20,0,0
1754028173.7010949,20,0,0
1754028200.7116222,20,0,0
1754028250.7226067,20,0,0
1754028276.715047,20,0,0
1754028303.219407,20,0,0
1754028330.710877,20,1,5
1754028368.1008728,20,1,5
1754028420.2249305,20,0,0
1754028445.977575,20,0,0
1754028471.9833136,20,0,0
1754028500.9079397,20,1,5
1754028558.9860559,20,0,0
1754028558.9916875,20,0,0
1754028625.758166,20,0,0
1754028652.7052007,20,0,0
1754028703.8258,20,0,0
1754028727.7101092,20,0,0
1754028753.280952,20,0,0
1754028779.9434478,20,1,5
1754028810.0511234,20,1,5
1754028864.6956966,20,0,0
1754028889.907802,20,0,0
1754028916.8220232,20,0,0
1754028942.1245496,20,1,5
1754028994.0682232,20,0,0
1754028994.0768237,20,0,0
1754029059.8114672,20,0,0
1754029086.0809407,20,0,0
1754029141.0498152,20,0,0
1754029169.9007866,20,0,0
1754029195.7337132,20,0,0
1754029221.9306436,20,1,5
1754029271.9721005,20,0,0
1754029327.8816578,20,0,0
1754029355.1474402,20,0,0
1754029408.7089608,20,0,0
1754029432.7020953,20,0,0
1754029458.6947024,20,0,0
1754029483.9092448,20,1,5
1754029533.7126305,20,0,0
1754029586.7324405,20,0,0
1754029612.7242384,20,0,0
1754029663.2159052,20,0,0
1754029687.0258043,20,0,0
1754029714.1871855,20,0,0
1754029739.2973864,20,1,5
1754029774.7138374,20,1,5
1754029774.7795055,20,1,5
1754029774.9368627,20,1,5
1754029804.6988144,20,0,0
1754029856.156571,20,0,0
1754029886.7053542,20,0,0
1754029940.2797859,20,0,0
1754029964.9763734,20,0,0
1754029990.9069486,20,0,0
1754030016.9280417,20,1,5
1754030048.7065015,20,1,5
1754030101.706833,20,0,0
1754030126.7152529,20,0,0
1754030152.7277143,20,0,0
1754030178.0608804,20,1,5
1754030228.6998482,20,0,0
1754030228.7057462,20,0,0
1754030296.7062805,20,0,0
1754030323.352529,20,0,0
1754030378.1747677,20,0,0
1754030402.707087,20,0,0
1754030429.7048235,20,0,0
1754030457.9535112,20,1,5
1754030511.9853852,20,0,0
1754030562.9722676,20,0,0
1754030589.8309216,20,0,0
1754030645.2309475,20,0,0
1754030669.7760317,20,0,0
1754030696.7045543,20,0,0
1754030724.2529073,20,1,5
1754030775.9900463,20,0,0
1754030826.7077672,20,0,0
1754030853.7050233,20,0,0
1754030905.7221932,20,0,0
1754030930.7229156,20,0,0
1754030959.7063453,20,0,0
1754030985.7528489,20,1,5
1754031039.9925935,20,0,0
1754031091.1225476,20,0,0
1754031117.9089153,20,0,0
1754031174.1493437,20,0,0
1754031200.7135253,20,0,0
1754031227.033324,20,0,0
1754031254.044338,20,1,5
1754031306.7125728,20,0,0
1754031358.2160091,20,0,0
1754031388.0200157,20,0,0
1754031440.1343844,20,0,0
1754031466.8781319,20,0,0
1754031493.9094539,20,0,0
1754031519.9228847,20,1,5
1754031550.69876,20,0,0
1754031604.8213265,20,0,0
1754031629.7131166,20,0,0
1754031656.7310908,20,0,0
1754031683.9421577,20,1,5
1754031740.10314,20,0,0
1754031741.100668,20,0,0
1754031810.727065,20,0,0
1754031838.1346416,20,0,0
1754031891.8182218,20,0,0
1754031916.7179964,20,0,0
1754031943.7090483,20,0,0
1754031969.314166,20,1,5
1754032028.7096817,20,0,0
1754032081.1508198,20,0,0
1754032108.1708584,20,0,0
1754032136.5414727,20,0,0
1754032165.954757,20,1,5
1754032223.707535,20,0,0
1754032223.7110229,20,0,0
1754032297.2020464,20,0,0
1754032324.8358145,20,0,0
1754032377.1234455,20,0,0
1754032401.9567363,20,0,0
1754032430.1217618,20,0,0
1754032460.9127352,20,1,5
1754032512.9827065,20,0,0
1754032565.7324176,20,0,0
1754032595.7134778,20,0,0
1754032647.8025286,20,0,0
1754032673.0848806,20,0,0
1754032700.705976,20,0,0
1754032726.938642,20,1,5
1754032781.9842649,20,0,0
1754032838.7035718,20,0,0
1754032867.7276406,20,0,0
1754032924.8087156,20,0,0
1754032954.1789389,20,0,0
1754032980.73037,20,0,0
1754033007.1190946,20,1,5
1754033059.0023744,20,0,0
1754033114.236987,20,0,0
1754033141.7198074,20,0,0
1754033194.708521,20,0,0
1754033219.791583,20,0,0
1754033247.307504,20,0,0
1754033275.1489077,20,1,5
1754033326.9890234,20,0,0
1754033383.7110972,20,0,0
1754033410.8099132,20,0,0
1754033465.8698652,20,0,0
1754033490.960905,20,0,0
1754033519.869454,20,0,0
1754033546.1238897,20,1,5
1754033598.205463,20,0,0
1754033655.840511,20,0,0
1754033686.266279,20,0,0
1754033741.7068648,20,0,0
1754033767.7030063,20,0,0
1754033795.712531,20,0,0
1754033824.9448888,20,1,5
1754033857.1376097,20,1,5
1754033910.7732904,20,0,0
1754033939.6978,20,0,0
1754033971.7134368,20,0,0
1754034001.7108054,20,1,5
1754034063.7063468,20,0,0
1754034063.7099817,20,0,0
1754034134.762319,20,0,0
1754034164.7113066,20,0,0
1754034219.7152371,20,0,0
1754034247.7195637,20,0,0
1754034275.803012,20,0,0
1754034303.2358735,20,1,5
1754034356.0099897,20,0,0
1754034410.7141454,20,0,0
1754034438.1162503,20,0,0
1754034493.1389732,20,0,0
1754034518.2705555,20,0,0
1754034545.732269,20,0,0
1754034575.1580136,20,1,5
1754034606.7145498,20,1,5
1754034664.1143947,20,0,0
1754034691.7019818,20,0,0
1754034729.9333415,20,0,0
1754034766.9361203,20,1,5
1754034799.0976872,20,0,0
1754034799.1056523,20,0,0
1754034882.0159898,20,0,0
1754034912.7046442,20,0,0
1754034913.8380997,20,0,0
1754034920.7223368,20,0,0
1754034976.0479693,20,0,0
1754035001.8600724,20,0,0
1754035029.7214172,20,0,0
1754035056.9494207,20,1,5
1754035090.258983,20,1,5
1754035144.133714,20,0,0
1754035171.8661208,20,0,0
1754035199.6983244,20,0,0
1754035234.7058566,20,1,5
1754035306.7137544,20,0,0
1754035306.717412,20,0,0
1754035386.9405098,20,0,0
1754035420.6998968,20,0,0
1754035477.0072124,20,0,0
1754035506.7333558,20,0,0
1754035536.0447083,20,0,0
1754035563.13614,20,1,5
1754035617.9822197,20,0,0
1754035672.713633,20,0,0
1754035701.3005707,20,0,0
1754035754.7271686,20,0,0
1754035780.8107927,20,0,0
1754035810.7234476,20,0,0
1754035837.7028883,20,1,5
1754035871.0711057,20,1,5
1754035924.7141583,20,0,0
1754035950.7979977,20,0,0
1754035978.7172697,20,0,0
1754036006.926723,20,1,5
1754036036.0467906,20,1,5
1754036092.3366604,20,0,0
1754036120.9352143,20,0,0
1754036174.705655,20,0,0
1754036200.7141905,20,0,0
1754036229.9727376,20,0,0
1754036258.0326848,20,1,5
1754036286.1187222,20,1,5
1754036341.952974,20,0,0
1754036372.0647874,20,0,0
1754036425.3058822,20,0,0
1754036451.7146626,20,0,0
1754036479.3007257,20,0,0
1754036506.9297488,20,1,5
1754036534.9830801,20,1,5
1754036589.7278683,20,0,0
1754036619.7190785,20,0,0
1754036672.8314898,20,0,0
1754036699.7183223,20,0,0
1754036728.724728,20,0,0
1754036755.930539,20,1,5
1754036783.9893749,20,1,5
1754036839.9551983,20,0,0
1754036869.2870336,20,0,0
1754036923.0668318,20,0,0
1754036952.9413931,20,0,0
1754036980.878808,20,0,0
1754037009.1715055,20,1,5
1754037086.0788255,20,0,0
1754037086.1098654,20,0,0
1754037163.7076795,20,0,0
1754037194.1118436,20,0,0
1754037247.7068555,20,0,0
1754037277.701803,20,0,0
1754037307.7144184,20,0,0
1754037335.234632,20,1,5
1754037389.9827394,20,0,0
1754037443.9779215,20,0,0
1754037472.1802607,20,0,0
1754037526.705471,20,0,0
1754037553.7196798,20,0,0
1754037586.7123902,20,0,0
1754037613.9180846,20,1,5
1754037646.7240531,20,1,5
1754037702.8761933,20,0,0
1754037728.820711,20,0,0
1754037756.7142696,20,0,0
1754037784.0947835,20,1,5
1754037842.077733,20,0,0
1754037842.0882354,20,0,0
1754037914.9856822,20,0,0
1754037943.7105553,20,0,0
1754037998.7051964,20,0,0
1754038024.9442878,20,0,0
1754038054.7524123,20,0,0
1754038083.7590904,20,1,5
1754038139.717383,20,0,0
1754038194.705139,20,0,0
1754038223.7114584,20,0,0
1754038277.7234175,20,0,0
1754038303.843577,20,0,0
1754038332.0119314,20,0,0
1754038359.8951426,20,1,5
1754038393.7295008,20,1,5
1754038450.7089334,20,0,0
1754038477.7097318,20,0,0
1754038507.871157,20,0,0
1754038535.921648,20,1,5
1754038593.0147166,20,0,0
1754038593.019881,20,0,0
1754038673.9627416,20,0,0
1754038705.7742915,20,0,0
1754038760.745376,20,0,0
1754038787.7181695,20,0,0
1754038819.72252,20,0,0
1754038847.9305067,20,1,5
1754038912.181725,20,0,0
1754038967.1269083,20,0,0
1754038994.0025272,20,0,0
1754039024.2671447,20,0,0
1754039052.2870514,20,1,5
1754039082.2434516,20,1,5
1754039139.6998377,20,0,0
1754039170.2647169,20,0,0
1754039233.7097795,20,0,0
1754039262.708524,20,0,0
1754039292.877171,20,0,0
1754039321.7171247,20,1,5
1754039352.7141402,20,1,5
1754039414.733286,20,0,0
1754039445.7224267,20,0,0
1754039502.7411442,20,0,0
1754039530.7118719,20,0,0
1754039561.0093656,20,0,0
1754039589.0265949,20,1,5
1754039645.0478299,20,0,0
1754039645.0552278,20,0,0
1754039724.2114663,20,0,0
1754039753.7070355,20,0,0
1754039812.036661,20,0,0
1754039838.718908,20,0,0
1754039868.0286796,20,0,0
1754039899.2438912,20,1,5
1754039930.7287498,20,0,0
1754039988.7109334,20,0,0
1754040017.144818,20,0,0
1754040017.2440557,20,0,0
1754040024.700197,20,0,0
1754040079.042405,20,0,0
1754040105.7468083,20,0,0
1754040138.709714,20,0,0
1754040169.9334316,20,1,5
1754040231.2965064,20,0,0
1754040286.1069374,20,0,0
1754040313.2452238,20,0,0
1754040341.7734551,20,0,0
1754040370.0991857,20,1,5
1754040399.1914184,20,1,5
1754040459.1713908,20,0,0
1754040487.9704092,20,0,0
1754040542.7146702,20,0,0
1754040569.9996712,20,0,0
1754040599.1828108,20,0,0
1754040627.2323663,20,1,5
1754040685.0872612,20,0,0
1754040685.0932598,20,0,0
1754040760.0457182,20,0,0
1754040789.308828,20,0,0
1754040845.7114499,20,0,0
1754040873.797568,20,0,0
1754040902.7802627,20,0,0
1754040930.707,20,1,5
1754040992.112554,20,0,0
1754041048.075754,20,0,0
1754041075.7588592,20,0,0
1754041104.6968548,20,0,0
1754041132.236838,20,1,5
1754041161.1728945,20,1,5
1754041161.1798158,20,1,5
1754041239.2859945,20,0,0
1754041268.7141268,20,0,0
1754041325.7175915,20,0,0
1754041353.7934837,20,0,0
1754041382.7089045,20,0,0
1754041411.89936,20,1,5
1754041467.977215,20,0,0
1754041524.7208223,20,0,0
1754041554.2293391,20,0,0
1754041612.7105772,20,0,0
1754041642.7215173,20,0,0
1754041671.7093291,20,0,0
1754041699.6948602,20,1,5
1754041761.1682186,20,0,0
1754041820.9858131,20,0,0
1754041855.1534863,20,0,0
1754041884.2070096,20,0,0
1754041912.7058883,20,1,5
1754041941.9332073,20,1,5
1754041999.0289123,20,0,0
1754042030.0850215,20,0,0
1754042085.2168295,20,0,0
1754042112.0925026,20,0,0
1754042141.3259766,20,0,0
1754042170.9750443,20,1,5
1754042202.0936408,20,1,5
1754042260.770159,20,0,0
1754042291.0130942,20,0,0
1754042346.7858548,20,0,0
1754042374.0199316,20,0,0
1754042404.7386732,20,0,0
1754042434.0939808,20,1,5
1754042464.702996,20,1,5
1754042536.1928368,20,0,0
1754042569.2156992,20,0,0
1754042630.7253363,20,0,0
1754042659.255115,20,0,0
1754042695.217511,20,0,0
1754042726.1996434,20,1,5
1754042757.9982898,20,1,5
1754042816.9101698,20,0,0
1754042846.7802386,20,0,0
1754042903.9851909,20,0,0
1754042933.74362,20,0,0
1754042962.975723,20,0,0
1754042993.9258156,20,1,5
1754043024.9574792,20,1,5
1754043082.7170248,20,0,0
1754043112.7383726,20,0,0
1754043168.7318788,20,0,0
1754043195.8711073,20,0,0
1754043227.0719824,20,0,0
1754043258.9911013,20,1,5
1754043289.0840898,20,1,5
1754043346.7218258,20,0,0
1754043376.8995435,20,0,0
1754043434.257635,20,0,0
1754043462.7180793,20,0,0
1754043495.7906463,20,0,0
1754043525.1672635,20,1,5
1754043583.184067,20,0,0
1754043583.1891181,20,0,0
1754043658.7065492,20,0,0
1754043688.8076918,20,0,0
1754043744.7110865,20,0,0
1754043777.719774,20,0,0
1754043807.7121542,20,0,0
1754043836.2996664,20,1,5
1754043870.8606057,20,1,5
1754043927.7615306,20,0,0
1754043955.708147,20,0,0
1754043985.7076395,20,0,0
1754044014.9216433,20,1,5
1754044045.0703628,20,1,5
1754044105.736555,20,0,0
1754044135.8697195,20,0,0
1754044192.923973,20,0,0
1754044222.1179245,20,0,0
1754044255.7413614,20,0,0
1754044285.1350074,20,1,5
1754044315.9495406,20,1,5
1754044376.2615795,20,0,0
1754044408.716515,20,0,0
1754044470.0113251,20,0,0
1754044497.7737446,20,0,0
1754044535.2251475,20,0,0
1754044568.9185317,20,1,5
1754044601.9880881,20,1,5
1754044663.132789,20,0,0
1754044693.7205572,20,0,0
1754044751.7725947,20,0,0
1754044779.9523518,20,0,0
1754044811.7041438,20,0,0
1754044841.0905728,20,1,5
1754044900.0868363,20,0,0
1754044900.0929468,20,0,0
1754044977.7114058,20,0,0
1754045008.717303,20,0,0
1754045069.7179284,20,0,0
1754045097.7167482,20,0,0
1754045127.7961264,20,0,0
1754045156.9396038,20,1,5
1754045193.1764753,20,1,5
1754045193.2473683,20,1,5
1754045194.7008767,20,1,5
1754045229.2018545,20,0,0
1754045289.2540193,20,0,0
1754045324.7008464,20,0,0
1754045383.707114,20,0,0
1754045412.0408432,20,0,0
1754045442.7211483,20,0,0
1754045482.024805,20,1,5
1754045517.9594932,20,1,5
1754045576.2909286,20,0,0
1754045605.2470794,20,0,0
1754045638.703285,20,0,0
1754045668.207422,20,1,5
1754045699.1088402,20,1,5
1754045760.2410352,20,0,0
1754045796.0561376,20,0,0
1754045860.1989825,20,0,0
1754045894.7346532,20,0,0
1754045927.665879,20,0,0
1754045965.105004,20,1,5
1754046000.725923,20,1,5
1754046064.1859002,20,0,0
1754046099.7146332,20,0,0
1754046173.135777,20,0,0
1754046201.7315116,20,0,0
1754046232.263292,20,0,0
1754046262.7462504,20,1,5
1754046321.7118514,20,0,0
1754046321.7159486,20,0,0
1754046408.127372,20,0,0
1754046438.7104821,20,0,0
1754046497.6818624,20,0,0
1754046525.732312,20,0,0
1754046556.707622,20,0,0
1754046589.2946935,20,1,5
1754046648.9804628,20,0,0
1754046709.3087673,20,0,0
1754046739.9498887,20,0,0
1754046797.9046264,20,0,0
1754046825.7638805,20,0,0
1754046856.0849202,20,0,0
1754046885.7064846,20,1,5
1754046945.167936,20,0,0
1754047007.87595,20,0,0
1754047039.7202945,20,0,0
1754047101.7066276,20,0,0
1754047130.722443,20,0,0
1754047161.7138875,20,0,0
1754047192.7154658,20,1,5
1754047251.9871254,20,0,0
1754047311.8074028,20,0,0
1754047343.7073894,20,0,0
1754047401.9536633,20,0,0
1754047430.7206364,20,0,0
1754047465.7128668,20,0,0
1754047496.2981932,20,1,5
1754047532.7273958,20,1,5
1754047593.7130933,20,0,0
1754047623.7257738,20,0,0
1754047659.706552,20,0,0
1754047689.9223177,20,1,5
1754047720.991554,20,1,5
1754047812.7078223,20,0,0
1754047843.8702085,20,0,0
1754047902.7121975,20,0,0
1754047935.7186484,20,0,0
1754047970.1623726,20,0,0
1754047999.921567,20,1,5
1754048059.706333,20,0,0
1754048059.7101386,20,0,0
1754048138.7127507,20,0,0
1754048170.9880989,20,0,0
1754048234.1013453,20,0,0
1754048264.706789,20,0,0
1754048295.2563424,20,0,0
1754048332.7191706,20,1,5
1754048404.7130058,20,0,0
1754048471.7266047,20,0,0
1754048506.7119856,20,0,0
1754048570.802903,20,0,0
1754048601.7151654,20,0,0
1754048632.704276,20,0,0
1754048662.9412374,20,1,5
1754048725.006197,20,0,0
1754048785.236311,20,0,0
1754048816.2510514,20,0,0
1754048875.9226604,20,0,0
1754048904.7081292,20,0,0
1754048940.7354803,20,0,0
1754048970.715302,20,1,5
1754049031.892771,20,0,0
1754049095.1342602,20,0,0
1754049128.7197058,20,0,0
1754049189.29812,20,0,0
1754049218.7975588,20,0,0
1754049250.8613348,20,0,0
1754049282.9403446,20,1,5
1754049342.7221634,20,0,0
1754049404.0803041,20,0,0
1754049435.2926698,20,0,0
1754049494.7060144,20,0,0
1754049523.7045302,20,0,0
1754049555.7992032,20,0,0
1754049585.9283679,20,1,5
1754049647.2017705,20,0,0
1754049707.1985052,20,0,0
1754049738.7167776,20,0,0
1754049798.715297,20,0,0
1754049827.7025397,20,0,0
1754049866.2585516,20,0,0
1754049896.3198137,20,1,5
1754049956.2877939,20,0,0
1754050015.9041872,20,0,0
1754050046.983367,20,0,0
1754050107.8851125,20,0,0
1754050136.2838106,20,0,0
1754050167.2854965,20,0,0
1754050207.0111752,20,1,5
1754050242.7101,20,1,5
1754050305.1372304,20,0,0
1754050338.2211688,20,0,0
1754050398.9377427,20,0,0
1754050429.7031562,20,0,0
1754050460.7888515,20,0,0
1754050492.1718545,20,1,5
1754050555.0031204,20,0,0
1754050618.7022219,20,0,0
1754050650.2234406,20,0,0
1754050709.9269185,20,0,0
1754050739.0706937,20,0,0
1754050772.2657163,20,0,0
1754050802.719197,20,1,5
1754050863.9793763,20,0,0
1754050927.203907,20,0,0
1754050960.0072339,20,0,0
1754051019.8972995,20,0,0
1754051048.880504,20,0,0
1754051080.0025966,20,0,0
1754051110.0068417,20,1,5
1754051170.991868,20,0,0
1754051233.954716,20,0,0
1754051266.7096806,20,0,0
1754051266.803455,20,0,0
1754051274.7028782,20,0,0
1754051336.108561,20,0,0
1754051366.7076082,20,0,0
1754051397.7144222,20,0,0
1754051428.9808986,20,1,5
1754051492.1023302,20,0,0
1754051554.0367815,20,0,0
1754051586.2080483,20,0,0
1754051648.9479716,20,0,0
1754051683.7105052,20,0,0
1754051716.017937,20,0,0
1754051746.9425156,20,1,5
1754051812.719719,20,0,0
1754051877.8264503,20,0,0
1754051909.9361703,20,0,0
1754051970.860717,20,0,0
1754052000.71848,20,0,0
1754052036.7064428,20,0,0
1754052071.7163239,20,1,5
1754052133.701669,20,0,0
1754052197.82836,20,0,0
1754052229.7200532,20,0,0
1754052296.7173908,20,0,0
1754052326.7236388,20,0,0
1754052358.2865808,20,0,0
1754052391.0442095,20,1,5
1754052452.9681158,20,0,0
1754052513.7186723,20,0,0
1754052545.7630076,20,0,0
1754052609.7125862,20,0,0
1754052641.7135575,20,0,0
1754052676.2980814,20,0,0
1754052706.7138875,20,1,5
1754052767.1901963,20,0,0
1754052830.7053084,20,0,0
1754052865.1127555,20,0,0
1754052930.8445747,20,0,0
1754052960.7129207,20,0,0
1754052992.0509033,20,0,0
1754053023.071929,20,1,5
1754053059.700837,20,1,5
1754053122.7146387,20,0,0
1754053152.6876569,20,0,0
1754053190.7167575,20,0,0
1754053223.1966069,20,1,5
1754053286.7108681,20,0,0
1754053286.714489,20,0,0
1754053369.7403433,20,0,0
1754053402.7023003,20,0,0
1754053470.900741,20,0,0
1754053500.7151117,20,0,0
1754053534.7051575,20,0,0
1754053567.2461467,20,1,5
1754053628.9383798,20,0,0
1754053690.9662278,20,0,0
1754053723.7348166,20,0,0
1754053795.1019907,20,0,0
1754053824.7144952,20,0,0
1754053858.2077665,20,0,0
1754053889.2934632,20,1,5
1754053956.7129483,20,0,0
1754054021.7229967,20,0,0
1754054054.7189765,20,0,0
1754054125.773271,20,0,0
1754054156.2610273,20,0,0
1754054188.234615,20,0,0
1754054221.1015499,20,1,5
1754054291.030754,20,0,0
1754054353.8702123,20,0,0
1754054387.0659955,20,0,0
1754054449.73174,20,0,0
1754054479.705808,20,0,0
1754054512.1456296,20,0,0
1754054542.918986,20,1,5
1754054605.0743444,20,0,0
1754054668.1157854,20,0,0
1754054700.2804718,20,0,0
1754054762.7573566,20,0,0
1754054792.259018,20,0,0
1754054824.7077668,20,0,0
1754054855.9184072,20,1,5
1754054893.9715033,20,1,5
1754054957.7348473,20,0,0
1754054987.739454,20,0,0
1754055019.8990986,20,0,0
1754055051.2930186,20,1,5
1754055120.7151773,20,0,0
1754055120.7185395,20,0,0
1754055207.7128682,20,0,0
1754055239.7864182,20,0,0
1754055300.7824292,20,0,0
1754055331.2437487,20,0,0
1754055363.161897,20,0,0
1754055394.5625885,20,1,5
1754055456.706024,20,0,0
1754055518.713298,20,0,0
1754055551.7150767,20,0,0
1754055630.7046525,20,0,0
1754055660.8936164,20,0,0
1754055693.7108507,20,0,0
1754055726.2921648,20,1,5
1754055796.9640598,20,0,0
1754055863.1690884,20,0,0
1754055895.752704,20,0,0
1754055957.222508,20,0,0
1754055987.709156,20,0,0
1754056020.699438,20,0,0
1754056052.7086132,20,1,5
1754056115.719668,20,0,0
1754056179.6999695,20,0,0
1754056212.6029184,20,0,0
1754056275.9031267,20,0,0
1754056310.7043788,20,0,0
1754056342.8767653,20,0,0
1754056374.9597573,20,1,5
1754056437.7094085,20,0,0
1754056499.7099185,20,0,0
1754056532.7721503,20,0,0
1754056594.8589234,20,0,0
1754056624.8363545,20,0,0
1754056657.7120256,20,0,0
1754056688.920917,20,1,5
1754056758.8850825,20,0,0
1754056820.7068539,20,0,0
1754056850.71351,20,0,0
1754056883.280187,20,0,0
1754056914.958719,20,1,5
1754056979.694893,20,0,0
1754056979.6982648,20,0,0
1754057067.70595,20,0,0
1754057101.7162018,20,0,0
1754057169.7819407,20,0,0
1754057200.8276627,20,0,0
1754057233.1408112,20,0,0
1754057264.911944,20,1,5
1754057332.7120962,20,0,0
1754057403.7448034,20,0,0
1754057440.1372647,20,0,0
1754057440.234886,20,0,0
1754057448.0966005,20,0,0
1754057511.7034495,20,0,0
1754057542.1786005,20,0,0
1754057578.272405,20,0,0
1754057612.713417,20,1,5
1754057677.7310061,20,0,0
1754057740.715057,20,0,0
1754057773.9256835,20,0,0
1754057835.8451612,20,0,0
1754057868.728966,20,0,0
1754057902.7112055,20,0,0
1754057933.910784,20,1,5
1754057972.072924,20,1,5
1754058034.3141885,20,0,0
1754058064.7448106,20,0,0
1754058097.7050166,20,0,0
1754058131.7108357,20,1,5
1754058194.7126215,20,0,0
1754058194.7164156,20,0,0
1754058278.7062938,20,0,0
1754058311.2907763,20,0,0
1754058373.2857132,20,0,0
1754058403.7929485,20,0,0
1754058438.8299239,20,0,0
1754058470.91968,20,1,5
1754058533.1575184,20,0,0
1754058597.714896,20,0,0
1754058630.713472,20,0,0
1754058693.7090988,20,0,0
1754058723.7849443,20,0,0
1754058757.7043722,20,0,0
1754058788.849163,20,1,5
1754058828.7083685,20,1,5
1754058891.7123616,20,0,0
1754058923.4623296,20,0,0
1754058960.2823348,20,0,0
1754058992.9415262,20,1,5
1754059058.1122267,20,0,0
1754059058.115541,20,0,0
1754059142.7064505,20,0,0
1754059175.7153897,20,0,0
1754059240.9508128,20,0,0
1754059272.7899659,20,0,0
1754059305.7146,20,0,0
1754059337.7215633,20,1,5
1754059401.1733365,20,0,0
1754059466.720779,20,0,0
1754059499.97695,20,0,0
1754059563.7178833,20,0,0
1754059594.1250904,20,0,0
1754059627.1064649,20,0,0
1754059673.1737998,20,1,5
1754059742.9924266,20,0,0
1754059808.711129,20,0,0
1754059841.9001956,20,0,0
1754059905.1924548,20,0,0
1754059936.1401968,20,0,0
1754059972.7116551,20,0,0
1754060004.6971347,20,1,5
1754060068.2302682,20,0,0
1754060132.7140176,20,0,0
1754060169.1040506,20,0,0
1754060237.119296,20,0,0
1754060269.7152262,20,0,0
1754060305.279356,20,0,0
1754060339.3119922,20,1,5
1754060378.700383,20,1,5
1754060444.213011,20,0,0
1754060476.0751493,20,0,0
1754060509.6984122,20,0,0
1754060543.2671537,20,1,5
1754060576.7107985,20,1,5
1754060641.8194149,20,1,5
1754060676.3110497,20,1,5
1754060740.8274534,20,1,5
1754060771.968114,20,1,5
1754060836.7299976,20,0,0
1754060868.7126315,20,1,5
1754060902.2691107,20,1,5
1754060967.2508903,20,0,0
1754061002.7106655,20,0,0
1754061066.9019837,20,0,0
1754061098.7330747,20,0,0
1754061131.716898,20,0,0
1754061163.83228,20,1,5
1754061229.1647794,20,0,0
1754061229.1717658,20,0,0
1754061316.7585697,20,0,0
1754061351.7171044,20,0,0
1754061415.074482,20,0,0
1754061445.7206113,20,0,0
1754061478.8899777,20,0,0
1754061524.0961292,20,1,5
1754061565.8422165,20,1,5
1754061636.7057612,20,0,0
1754061667.8101528,20,0,0
1754061700.9512548,20,0,0
1754061732.922935,20,1,5
1754061798.08755,20,0,0
1754061798.092133,20,0,0
1754061883.7084146,20,0,0
1754061918.1298928,20,0,0
1754061982.2601767,20,0,0
1754062014.7096448,20,0,0
1754062048.7274199,20,0,0
1754062080.9261487,20,1,5
1754062145.7192104,20,0,0
1754062210.2540822,20,0,0
1754062243.9126945,20,0,0
1754062308.811714,20,0,0
1754062340.2887936,20,0,0
1754062373.7126093,20,0,0
1754062405.946871,20,1,5
1754062470.0824077,20,0,0
1754062550.7215974,20,0,0
1754062585.7657034,20,0,0
1754062650.721393,20,0,0
1754062682.7210073,20,0,0
1754062716.3086205,20,0,0
1754062749.9365525,20,1,5
1754062816.162768,20,0,0
1754062881.8111908,20,0,0
1754062916.7329738,20,0,0
1754062983.7127297,20,0,0
1754063014.7791212,20,0,0
1754063049.2444243,20,0,0
1754063082.2982554,20,1,5
1754063148.2400723,20,0,0
1754063215.050431,20,0,0
1754063249.1583538,20,0,0
1754063313.7061112,20,0,0
1754063345.7191372,20,0,0
1754063380.2392688,20,0,0
1754063414.9385052,20,1,5
1754063479.9789438,20,0,0
1754063545.7139666,20,0,0
1754063580.7017722,20,0,0
1754063580.8190856,20,0,0
1754063589.121436,20,0,0
1754063654.9492395,20,0,0
1754063687.2618809,20,0,0
1754063721.1757376,20,0,0
1754063753.706094,20,1,5
1754063819.0867064,20,0,0
1754063885.2214293,20,0,0
1754063918.9941332,20,0,0
1754063983.3049192,20,0,0
1754064014.7312262,20,0,0
1754064048.687652,20,0,0
1754064082.9322624,20,1,5
1754064149.220404,20,0,0
1754064214.8677177,20,0,0
1754064249.039925,20,0,0
1754064314.7129014,20,0,0
1754064346.3127754,20,0,0
1754064380.1566176,20,0,0
1754064412.928946,20,1,5
1754064481.0163531,20,0,0
1754064547.2170122,20,0,0
1754064585.717877,20,0,0
1754064663.0678833,20,0,0
1754064696.9628327,20,0,0
1754064732.261103,20,0,0
1754064766.965195,20,1,5
1754064836.707537,20,0,0
1754064912.7798212,20,0,0
1754064952.6987188,20,0,0
1754065030.7196295,20,0,0
1754065062.7148724,20,0,0
1754065097.9307477,20,0,0
1754065131.1593657,20,1,5
1754065202.9852386,20,0,0
1754065270.7224066,20,0,0
1754065305.7234507,20,0,0
1754065371.1874483,20,0,0
1754065403.2478445,20,0,0
1754065437.7231607,20,0,0
1754065470.7214034,20,1,5
1754065538.9828534,20,0,0
1754065605.0405266,20,0,0
1754065640.7498178,20,0,0
1754065708.7083726,20,0,0
1754065740.7824345,20,0,0
1754065775.1426606,20,0,0
1754065808.0280375,20,1,5
1754065873.7045355,20,0,0
1754065943.0996075,20,0,0
1754065977.8303065,20,0,0
1754066044.7770736,20,0,0
1754066078.037122,20,0,0
1754066113.2108228,20,0,0
1754066155.2867477,20,1,5
1754066196.7237968,20,1,5
1754066272.9752028,20,0,0
1754066307.3007689,20,0,0
1754066342.7243304,20,0,0
1754066382.1935234,20,1,5
1754066461.089663,20,0,0
1754066461.0935032,20,0,0
1754066557.3031418,20,0,0
1754066593.08072,20,0,0
1754066661.7149727,20,0,0
1754066695.7295544,20,0,0
1754066737.703032,20,0,0
1754066775.7080112,20,1,5
1754066823.870736,20,1,5
1754066893.7051432,20,0,0
1754066925.7145927,20,0,0
1754066960.1179352,20,0,0
1754066992.9721553,20,1,5
1754067059.7064438,20,0,0
1754067059.7099023,20,0,0
1754067148.7052023,20,0,0
1754067183.7087638,20,0,0
1754067249.3020427,20,0,0
1754067281.0358152,20,0,0
1754067316.7141228,20,0,0
1754067349.9291556,20,1,5
1754067422.1426284,20,0,0
1754067487.9513776,20,0,0
1754067520.7070665,20,0,0
1754067556.714928,20,0,0
1754067589.948298,20,1,5
1754067658.6981041,20,0,0
1754067658.7017422,20,0,0
1754067748.7121398,20,0,0
1754067785.8603678,20,0,0
1754067855.7154665,20,0,0
1754067888.7029884,20,0,0
1754067923.8832695,20,0,0
1754067958.9336646,20,1,5
1754068026.7100484,20,0,0
1754068095.127985,20,0,0
1754068130.733996,20,0,0
1754068197.1686766,20,0,0
1754068229.9687557,20,0,0
1754068264.7137778,20,0,0
1754068298.9400415,20,1,5
1754068365.2023242,20,0,0
1754068432.7224805,20,0,0
1754068468.123554,20,0,0
1754068537.2019718,20,0,0
1754068569.7010555,20,0,0
1754068604.7081757,20,0,0
1754068639.0225544,20,1,5
1754068708.0786512,20,0,0
1754068778.7047298,20,0,0
1754068814.1007805,20,0,0
1754068880.7247941,20,0,0
1754068913.7053344,20,0,0
1754068948.7093737,20,0,0
1754068982.9895606,20,1,5
1754069049.69906,20,0,0
1754069116.9725683,20,0,0
1754069151.7253256,20,0,0
1754069217.7158763,20,0,0
1754069249.7219162,20,0,0
1754069283.886101,20,0,0
1754069317.2210767,20,1,5
1754069385.9888227,20,0,0
1754069453.9369943,20,0,0
1754069488.7679174,20,0,0
1754069554.7559807,20,0,0
1754069587.8970635,20,0,0
1754069624.694735,20,0,0
1754069658.3038101,20,1,5
1754069725.720971,20,0,0
1754069792.9105368,20,0,0
1754069828.9500256,20,0,0
1754069896.7106903,20,0,0
1754069930.7083385,20,0,0
1754069979.0486915,20,0,0
1754070015.9509225,20,1,5
1754070090.142214,20,0,0
1754070157.1127462,20,0,0
1754070193.6965373,20,0,0
1754070193.7901711,20,0,0
1754070196.716394,20,0,0
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_worker_usage")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_worker_usage", "worker_usage.csv")'><img src='i/download.svg' style='height: 1em'> Download »worker_usage.csv« as file</button>
<h1><img class='invert_icon' src='i/cpu.svg' style='height: 1em' /> CPU/RAM-Usage (main)</h1>
<div class='invert_in_dark_mode' id='mainWorkerCPURAM'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'><img src='i/download.svg' style='height: 1em'> Download »cpu_ram_usage.csv« as file</button>
<pre id="pre_tab_main_worker_cpu_ram">timestamp,ram_usage_mb,cpu_usage_percent
1753975656,714.78125,7.2
1753975660,715.28125,5.7
1753975664,715.28125,10.2
1753975664,715.28125,23.1
1753975664,715.28125,16.6
1753975664,715.78125,14.9
1753975664,715.78125,23.5
1753976870,733.5234375,8.0
1753976870,733.5234375,8.3
1753976870,733.5234375,6.1
1753976870,733.5234375,8.3
1753978648,735.5234375,6.6
1753978648,735.5234375,7.7
1753978648,735.5234375,5.8
1753978648,735.5234375,7.7
1753980699,737.5234375,4.1
1753980699,737.5234375,7.7
1753980699,737.5234375,2.5
1753980699,737.5234375,7.7
1753982912,740.0234375,6.5
1753982912,740.0234375,17.6
1753982912,740.0234375,7.0
1753982912,740.0234375,5.8
1753985347,744.0234375,6.7
1753985347,744.0234375,8.3
1753985347,744.0234375,7.3
1753985347,744.0234375,8.3
1753987858,748.0078125,6.8
1753987858,748.0078125,8.3
1753987858,748.0078125,8.0
1753987858,748.0078125,9.1
1753990299,750.0078125,7.2
1753990299,750.0078125,15.4
1753990299,750.0078125,6.8
1753990299,750.0078125,9.1
1753992816,752.0078125,7.3
1753992816,752.0078125,15.4
1753992816,752.0078125,5.8
1753992816,752.0078125,7.1
1753995485,755.0078125,6.6
1753995485,755.0078125,8.3
1753995485,755.0078125,5.4
1753995485,755.0078125,15.4
1753998452,757.5078125,5.9
1753998452,757.5078125,14.3
1753998453,757.5078125,5.7
1753998453,757.5078125,5.9
1754001563,762.640625,5.9
1754001563,762.640625,8.3
1754001563,762.640625,6.7
1754001563,762.640625,15.4
1754005221,764.140625,11.1
1754005221,764.140625,33.3
1754005221,764.140625,16.5
1754005221,764.140625,21.4
1754008778,765.640625,12.3
1754008778,765.640625,23.1
1754008778,765.640625,17.4
1754008778,765.640625,21.4
1754012394,768.21875,12.9
1754012394,768.21875,13.3
1754012394,768.21875,7.8
1754012394,768.21875,8.3
1754016388,766.328125,7.6
1754016388,766.328125,7.7
1754016388,766.328125,5.3
1754016388,766.328125,8.3
1754020467,766.9453125,6.1
1754020467,766.9453125,15.4
1754020467,766.9453125,5.6
1754020467,766.9453125,8.3
1754025333,763.14453125,5.9
1754025333,763.14453125,15.4
1754025334,763.14453125,6.7
1754025334,763.14453125,13.3
1754029774,771.8671875,6.1
1754029774,771.8671875,8.3
1754029774,771.8671875,5.2
1754029774,771.8671875,9.1
1754034912,759.015625,6.4
1754034912,759.015625,16.7
1754034913,759.015625,9.3
1754034913,759.015625,20.0
1754040017,764.890625,8.5
1754040017,764.890625,7.1
1754040017,764.890625,7.7
1754040017,764.890625,8.3
1754045193,769.2578125,7.7
1754045193,769.2578125,8.3
1754045193,769.2578125,6.7
1754045193,769.2578125,7.7
1754051266,769.3515625,7.6
1754051266,769.3515625,21.4
1754051266,769.3515625,7.7
1754051266,769.3515625,15.4
1754057440,768.296875,7.6
1754057440,768.296875,21.4
1754057440,768.296875,6.6
1754057440,768.296875,9.1
1754063580,767.00390625,7.7
1754063580,767.00390625,7.7
1754063580,767.00390625,6.9
1754070193,768.5625,7.7
1754070193,768.5625,15.4
1754070193,768.5625,7.2
1754070193,768.5625,8.3
1754070196,764.06640625,8.8
1754070196,764.06640625,14.3
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'><img src='i/clipboard.svg' style='height: 1em'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'><img src='i/download.svg' style='height: 1em'> Download »cpu_ram_usage.csv« as file</button>
<h1><img class='invert_icon' src='i/plot.svg' style='height: 1em' /> Param-Distrib by Status</h1>
<div class='invert_in_dark_mode' id='parameter_by_status_distribution'></div>
<h1><img class='invert_icon' src='i/plot.svg' style='height: 1em' /> Timeline</h1>
<div class="invert_in_dark_mode" id="plot_timeline"></div>
</body>
</html>