Copy raw data to clipboard
Download »results.csv« as file
trial_index,arm_name,trial_status,generation_method,generation_node,ACCURACY,RUNTIME,recent_samples_size,n_samples,feature_proportion,n_clusters,confidence
0,0_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,8.000000000000000000000000000000,1805,1049,0.339940486490726445634180663546,38,0.025
1,1_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,4.000000000000000000000000000000,4327,4143,0.666193685077130837157710629981,25,0.25
2,2_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,6.000000000000000000000000000000,2644,1491,0.778249274721369177498786484648,2,0.005
3,3_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,3.000000000000000000000000000000,132,3399,0.231248476630076776894284762420,37,0.25
4,4_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,4.000000000000000000000000000000,893,2461,0.529093715840950662432362605614,9,0.01
5,5_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,4.000000000000000000000000000000,3366,3053,0.481096903273835752035125779003,29,0.05
6,6_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,88.000000000000000000000000000000,4816,81,0.090057989563792947840248359626,46,0.01
7,7_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,3.000000000000000000000000000000,2333,4486,0.915307191472500614182195022295,17,0.1
8,8_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,7.000000000000000000000000000000,1939,1672,0.173996782450005410547433370994,14,0.01
9,9_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,6.000000000000000000000000000000,4428,3519,0.812607054723426647235839936911,50,0.05
10,10_0,COMPLETED,Sobol,SOBOL,0.750000000000000000000000000000,8.000000000000000000000000000000,3603,869,0.740950158357620236593277240900,26,0.25
11,11_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,3.000000000000000000000000000000,1126,4020,0.256814059242606140820441851247,13,0.025
12,12_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,5.000000000000000000000000000000,363,583,0.990836506966501495696775236866,34,0.05
13,13_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,3.000000000000000000000000000000,2881,4932,0.007696779239922762159975544449,5,0.25
14,14_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,10.000000000000000000000000000000,3939,1957,0.423148508237674858545318556935,22,0.001
15,15_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,23.000000000000000000000000000000,1413,2610,0.562762409122660733906684527028,41,0.1
16,16_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,5.000000000000000000000000000000,1344,2142,0.440724125197157257094460192093,43,0.005
17,17_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,6.000000000000000000000000000000,3852,2738,0.549151879375800455740375127789,21,0.05
18,18_0,COMPLETED,Sobol,SOBOL,0.750000000000000000000000000000,10.000000000000000000000000000000,3125,401,0.879689359374344337361151247023,7,0.025
19,19_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,3.000000000000000000000000000000,588,4801,0.114863603912293915643161312801,33,0.1
20,20_0,COMPLETED,Sobol,SOBOL,0.750000000000000000000000000000,8.000000000000000000000000000000,1037,738,0.629810717847198220376014887734,11,0.1
21,21_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,5.000000000000000000000000000000,3536,3838,0.363988472025841447443639253834,27,0.01
22,22_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,5.000000000000000000000000000000,4652,1801,0.191579928034916524559605477407,48,0.05
23,23_0,COMPLETED,Sobol,SOBOL,0.719999999999999973354647408996,3.000000000000000000000000000000,2184,3704,0.799004172572866044887973657751,16,0.001
24,24_0,COMPLETED,Sobol,SOBOL,0.750000000000000000000000000000,7.000000000000000000000000000000,2421,267,0.041369166195392610696490720557,19,0.25
25,25_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,4.000000000000000000000000000000,4884,4612,0.960179395839571903081832715543,45,0.1
26,26_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,5.000000000000000000000000000000,3142,2272,0.608979062406346249858302144276,31,0.005
27,27_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,3.000000000000000000000000000000,649,2930,0.405043396545574085898522298521,8,0.001
28,28_0,COMPLETED,Sobol,SOBOL,0.719999999999999973354647408996,4.000000000000000000000000000000,201,1368,0.858127040611579960938115618774,35,0.005
29,29_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,10.000000000000000000000000000000,2732,3210,0.155187270255759346415658228580,3,0.025
30,30_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,73.000000000000000000000000000000,13,5000,0.219270795778068600112575836647,19,0.005
31,31_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,35.000000000000000000000000000000,1491,3631,0.124038053309826215575562002869,18,0.005
32,32_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,48.000000000000000000000000000000,1910,116,0.472059687905347358238827837340,1,0.25
33,33_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,49.000000000000000000000000000000,1973,111,0.470779725889027111929152624725,1,0.1
34,34_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,908,5000,0.618645119673674304117128031066,20,0.005
35,35_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,2775,408,0.544323860324325781157028814050,1,0.1
36,36_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,2506,4673,0.529282231145449255649282349623,19,0.005
37,37_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,296.000000000000000000000000000000,38,4426,0.007951913665264018910017185249,17,0.005
38,38_0,FAILED,BoTorch,BOTORCH_MODULAR,,,924,1,0.384949498169853299156528692038,4,0.25
39,39_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,134.000000000000000000000000000000,499,3760,0.087951256713477754534125097052,17,0.005
40,40_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,11.000000000000000000000000000000,3001,302,0.562042644774090272008493229805,1,0.05
41,41_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,134.000000000000000000000000000000,2086,2938,0.074224520385833978042278147313,18,0.005
42,42_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,1,5000,0.703240273648240932224950938689,20,0.05
43,43_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,1342,4558,0.371921780226302067795529637806,19,0.005
44,44_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,38.000000000000000000000000000000,1088,72,0.413205590776034525912763228916,1,0.1
45,45_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,3265,4945,0.484098993324376614122428463816,19,0.005
46,46_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,203.000000000000000000000000000000,3333,4583,0.140860692033182133275914793558,19,0.005
47,47_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,1016,490,0.464792331234444300314123665885,1,0.25
48,48_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2980,1,0.617510072017478983674720893760,50,0.25
49,49_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,2759,663,0.540787171616597506229595637706,1,0.25
50,50_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,86.000000000000000000000000000000,732,5000,0.001000000000000000020816681712,22,0.005
51,51_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,3357,829,0.666740460462049266965323113254,1,0.1
52,52_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,5000,2117,0.897851100800671542145892090048,9,0.05
53,53_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,26.000000000000000000000000000000,201,4901,0.001000000000000000020816681712,19,0.05
54,54_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,264.000000000000000000000000000000,1714,4194,0.001000000000000000020816681712,18,0.005
55,55_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,35.000000000000000000000000000000,2600,57,0.495745890203924288730519265300,2,0.25
56,56_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,943,5000,0.998999999999999999111821580300,20,0.005
57,57_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,17.000000000000000000000000000000,1413,4963,0.001000000000000000020816681712,21,0.005
58,58_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,10.000000000000000000000000000000,905,319,0.508346724781483016997185586661,1,0.1
59,59_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,3610,1281,0.760305930482997105457343423041,6,0.05
60,60_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,12.000000000000000000000000000000,3228,525,0.862842978409946392837071016402,16,0.1
61,61_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,12.000000000000000000000000000000,3572,602,0.819374502881191624226175918011,15,0.025
62,62_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,11.000000000000000000000000000000,3269,757,0.750853176295872559720123717852,5,0.25
63,63_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,540,4575,0.713656717328100209662977704284,50,0.005
64,64_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1393,1039,0.605071800332133480360141675192,18,0.05
65,65_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,377,588,0.707489994518357812047781862930,3,0.005
66,66_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,12.000000000000000000000000000000,1818,578,0.720248166707835646427326992125,2,0.005
67,67_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,898,1247,0.686005766078001677499287325190,5,0.05
68,68_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3725,4582,0.650308614818416841352188839664,1,0.25
69,69_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,4464,4417,0.681850953281741278821925789089,1,0.01
70,70_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,1971,802,0.688578059439778789041497475409,13,0.005
71,71_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,2358,617,0.768909417284201257558606812381,3,0.1
72,72_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,4555,1272,0.745130193713281596679109952674,2,0.05
73,73_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,90,4736,0.663577136094084418793670465675,50,0.01
74,74_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,52.000000000000000000000000000000,2611,1285,0.001000000000000000020816681712,6,0.001
75,75_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,228,3522,0.658006307716178073796697844955,48,0.05
76,76_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,6.000000000000000000000000000000,217,784,0.675765088398944446801408503234,12,0.025
77,77_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2882,5000,0.666850789096958940227466428041,50,0.001
78,78_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,2716,898,0.721885666943998027811346673843,35,0.25
79,79_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,23.000000000000000000000000000000,4825,393,0.725255270987470113119854886463,4,0.01
80,80_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,16.000000000000000000000000000000,3988,414,0.663736323286671092702704299882,4,0.005
81,81_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,3742,4618,0.698759549757274278647400933551,43,0.025
82,82_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,3201,797,0.648958693731959912476270346815,39,0.005
83,83_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1050,4648,0.711416699011969022592438705033,14,0.025
84,84_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,1384,769,0.646103906997748445029117192462,50,0.1
85,85_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,151,2017,0.669799651260231443394843608985,50,0.001
86,86_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,92.000000000000000000000000000000,3370,734,0.620118744816251288298758481687,42,0.001
87,87_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,3016,270,0.793622323737459334225263773988,27,0.025
88,88_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,23.000000000000000000000000000000,3978,320,0.894744632791682370509533939185,1,0.025
89,89_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,5000,4621,0.712159711538742024039549960435,50,0.025
90,90_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,2884,5000,0.693450921314891610691688583756,1,0.025
91,91_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,2878,922,0.590683401855301770666528682341,50,0.1
92,92_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,4335,1354,0.736561648523710976732559174707,47,0.05
93,93_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,2541,769,0.668588846071901166112638748018,46,0.005
94,94_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,4224,4613,0.750902226203021716521845974057,50,0.1
95,95_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,4550,1035,0.712181271544793270678042063082,1,0.05
96,96_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2123,4784,0.661611524851310472961074538034,50,0.025
97,97_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,4419,973,0.699568662735777557770688872552,1,0.1
98,98_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,4788,4502,0.663564923883523061221012540045,50,0.1
99,99_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,643,4435,0.643496405812430505299914784700,50,0.05
100,100_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,4957,1198,0.998999999999999999111821580300,1,0.05
101,101_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,25,4389,0.666569362562927980597748955915,50,0.025
102,102_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,54,3517,0.677503871142174807218339083192,1,0.025
103,103_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1023,4090,0.659742483343910057769221566559,1,0.05
104,104_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4738,931,0.773275501056007175115780682972,1,0.05
105,105_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,885,796,0.792397969056979567525900165492,1,0.1
106,106_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,4471,1811,0.707015312122792005666838122124,1,0.01
107,107_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,5000,4699,0.688721727564337249383186190244,50,0.1
108,108_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,147,796,0.680509839060423060708160392096,1,0.01
109,109_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2973,4571,0.314057052394787206139881163836,50,0.05
110,110_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,3253,846,0.688927920843858787591784675897,21,0.05
111,111_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,2272,794,0.001000000000000000020816681712,1,0.25
112,112_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,3553,805,0.736735184069128967720985201595,1,0.05
113,113_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,5000,4793,0.998999999999999999111821580300,50,0.25
114,114_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,4679,4724,0.918348286149616166440523556957,50,0.01
115,115_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4228,749,0.689832284684471663815941155917,39,0.05
116,116_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,5000,3467,0.657519150551500897172729764861,50,0.05
117,117_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,694,5000,0.630281618267671039923527587234,50,0.1
118,118_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,4432,832,0.780042658480544437438197746815,40,0.05
119,119_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2197,4477,0.001000000000000000020816681712,50,0.1
120,120_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,826,2297,0.681829892587176300544626883493,1,0.05
121,121_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,5000,4860,0.626343812548354139657647010608,50,0.1
122,122_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,3289,619,0.997676310220434237052700154891,47,0.05
123,123_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,4438,914,0.917564194281883960258028309909,1,0.05
124,124_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,4053,2160,0.797724139730061176933872957306,50,0.01
125,125_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,6.000000000000000000000000000000,3064,2336,0.713925111129737555160090778372,50,0.005
126,126_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,4328,4287,0.657247159691648263901697646361,50,0.025
127,127_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,164,3572,0.217149422965646154981556037455,1,0.1
128,128_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4909,851,0.738426351598907793061243864940,41,0.05
129,129_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2052,722,0.661513666539807920763394122332,49,0.05
130,130_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,4481,1873,0.700700034441276708996326760825,1,0.05
131,131_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3358,4501,0.715671524177428186597182957485,1,0.1
132,132_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,456,4672,0.630376423132175789376674401865,50,0.25
133,133_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,13.000000000000000000000000000000,4935,866,0.656016314704904957011422084179,1,0.05
134,134_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,3288,3036,0.750109837097756360080325066519,1,0.25
135,135_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1397,841,0.760314418883950904337609699724,1,0.1
136,136_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,4985,888,0.674094960435558387956689330167,46,0.05
137,137_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,10.000000000000000000000000000000,4877,1001,0.675311804176946584021834496525,50,0.05
138,138_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,5000,1582,0.284413723643648919114923501184,1,0.001
139,139_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4990,926,0.892431559924260042748755950015,48,0.05
140,140_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,725,4392,0.644299280083008407693512253900,1,0.01
141,141_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,4.000000000000000000000000000000,2059,817,0.788030997655975062876620995667,1,0.1
142,142_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,1842,734,0.760089391038542450118598026165,50,0.1
143,143_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,5000,5000,0.669397411504050854347269705613,50,0.05
144,144_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,5000,1046,0.700583825972989404640145494341,50,0.1
145,145_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,3968,5000,0.623241431998919459545049903682,50,0.025
146,146_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4831,882,0.842864695517178463823881884309,50,0.1
147,147_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,5.000000000000000000000000000000,2121,963,0.743404556438009067598216006445,50,0.05
148,148_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,5000,1288,0.664114440047672727196470532363,50,0.05
149,149_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,5000,1393,0.631409903254823157148223344848,50,0.05
150,150_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,913,0.776790679265886296889220830053,21,0.05
151,151_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,496,0.692361530283377102357178500824,50,0.05
152,152_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3897,5000,0.270565021196211008547294341042,50,0.25
153,153_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,5000,1382,0.748313226673614217965280204226,8,0.05
154,154_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,1211,0.998999999999999999111821580300,50,0.1
155,155_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,4.000000000000000000000000000000,509,5000,0.656848147269627702371508348733,50,0.05
156,156_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,5000,607,0.998999999999999999111821580300,41,0.05
157,157_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,1005,0.256339887484753614632637663817,50,0.05
158,158_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,5000,1341,0.822066307181056665775997771561,50,0.1
159,159_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,832,0.931349408966395286846307044470,50,0.1
160,160_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,824,0.892619411307316146242385457299,50,0.05
161,161_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4969,822,0.707939050056386687259646350867,45,0.1
162,162_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,665,0.716074442090067986299573021824,50,0.1
163,163_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,985,0.638786476276400616569617341156,50,0.05
164,164_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,3.000000000000000000000000000000,2402,5000,0.998999999999999999111821580300,1,0.025
165,165_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,836,0.771547582190615588437765381968,50,0.05
166,166_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,578,0.803236811665681393890281469794,35,0.1
167,167_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,2590,2291,0.621373572104775284685729275225,1,0.01
168,168_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,5000,1972,0.595929580789694712805726339866,50,0.01
169,169_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4186,983,0.660281796365938755677404969902,50,0.1
170,170_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,5000,1040,0.797978289149529507184865906311,50,0.1
171,171_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,656,0.764843294511132976154499374388,50,0.1
172,172_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,3.000000000000000000000000000000,337,4739,0.631092825876900187509477291314,1,0.25
173,173_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,19.000000000000000000000000000000,5000,352,0.733787915838006510327318210329,50,0.05
174,174_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,5000,520,0.849626579751364685577641466807,50,0.1
175,175_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,779,0.874070052593864499357323438744,1,0.05
176,176_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2817,4402,0.624481532219521073834300750605,50,0.025
177,177_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,1764,523,0.998999999999999999111821580300,50,0.1
178,178_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,5000,2406,0.777539863210893855693939258344,1,0.05
179,179_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,1713,945,0.858045172303146475023538641835,50,0.1
180,180_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,5000,4414,0.647195215592056172226875787601,50,0.05
181,181_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,5000,1089,0.818019236798636639740323062142,6,0.05
182,182_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,2154,792,0.001000000000000000020816681712,50,0.05
183,183_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,511,3596,0.836515425636122467167865579540,50,0.01
184,184_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,5000,3572,0.646862158943413589895499171689,50,0.1
185,185_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,10.000000000000000000000000000000,5000,1213,0.800198158607863363478429619136,50,0.05
186,186_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,5000,1504,0.622679761809201481881359541148,50,0.1
187,187_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,5000,1561,0.769457778827045579816967801889,36,0.1
188,188_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1,4512,0.590427821077970649277233405883,50,0.1
189,189_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,5000,1158,0.911010357423044037084025603690,50,0.05
190,190_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,923,0.826304007913409743757426895172,50,0.25
191,191_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,775,0.642013435649086638967730777949,50,0.1
192,192_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,5000,1076,0.944477599189634475784771439066,5,0.1
193,193_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,4401,1291,0.821767543801023125915605760383,50,0.1
194,194_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,5000,3991,0.612354253901608136523293524078,50,0.05
195,195_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,4750,1757,0.646440134894017193190052239515,50,0.1
196,196_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,733,0.676129726435472422352290777781,50,0.05
197,197_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,904,0.998999999999999999111821580300,50,0.25
198,198_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,5000,2183,0.806336436352385721448854383198,50,0.1
199,199_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,5000,3556,0.159119853991399023973585258318,50,0.1
200,200_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,3006,708,0.986277823980979184703699047532,50,0.25
201,201_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,5000,2112,0.972194691032594593416149564291,50,0.25
202,202_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,827,0.842035573335651821302860753349,50,0.25
203,203_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,3412,616,0.857407401595982276987228942744,50,0.05
204,204_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,882,0.998999999999999999111821580300,50,0.05
205,205_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,17.000000000000000000000000000000,4942,397,0.001000000000000000020816681712,50,0.25
206,206_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,3978,1697,0.921504049566188698783264499070,50,0.25
207,207_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,5000,2762,0.663331453999214226691094609123,50,0.05
208,208_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,5000,1536,0.835854396739428628926305009372,50,0.25
209,209_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,5000,1525,0.830652032824637731600603274273,50,0.05
210,210_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,970,0.899957407564291878010465097759,50,0.25
211,211_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,4666,1031,0.920858894663071914088448011171,50,0.25
212,212_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,568.000000000000000000000000000000,5000,4857,0.001000000000000000020816681712,50,0.005
213,213_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,3188,654,0.500367040968610843343356009427,50,0.005
214,214_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,16.000000000000000000000000000000,4499,463,0.561293445513244337874425582413,50,0.25
215,215_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,2511,875,0.812985040532476332941769214813,50,0.25
216,216_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,10.000000000000000000000000000000,4361,1049,0.537183023792320635259045502607,50,0.1
217,217_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,4702,1161,0.458377362694985912572320785330,50,0.1
218,218_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,2315,906,0.838658046371677845520764549292,50,0.25
219,219_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1215,936,0.087665481922601304343167782918,50,0.1
220,220_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,5.000000000000000000000000000000,2090,720,0.899662328533544664033172466588,50,0.05
221,221_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,1823,655,0.835417828047011479242200948647,50,0.05
222,222_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,1333,987,0.405954847641972593752512921128,50,0.005
223,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2946,3770,0.701458395658111522052990949305,3,0.01
224,224_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,4364,1069,0.875528338857528343197600406711,50,0.25
225,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,3.000000000000000000000000000000,410,5000,0.445042486964761674350654629961,50,0.05
226,226_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,2672,1242,0.814769500237110366747117495834,50,0.1
227,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,4370,1253,0.261584943433505467957900236797,50,0.05
228,228_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,1325,640,0.860235888265295622900907801522,50,0.25
229,229_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,4115,3745,0.462731729668264424315538008159,50,0.1
230,230_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2426,4434,0.822231936788205164390319623635,50,0.05
231,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,2923,1566,0.808083542776833141374481783714,50,0.05
232,232_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,171.000000000000000000000000000000,1204,853,0.057033397644436607809570460859,50,0.005
233,233_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,3154,766,0.604720862209332188363930526975,50,0.005
234,234_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4920,847,0.001000000000000000020816681712,50,0.25
235,235_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,3622,837,0.998999999999999999111821580300,50,0.005
236,236_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1034,1547,0.515491678235619699144365313259,50,0.1
237,237_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,116.000000000000000000000000000000,2917,188,0.436976784413402541407123180761,50,0.005
238,238_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,5000,2877,0.223031673536557284442949367076,50,0.1
239,239_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,3936,1281,0.784884697448535617603226910433,50,0.25
240,240_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,5000,3892,0.399726376806832983668016368028,50,0.05
241,241_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,3946,912,0.799004266632274640080879635207,50,0.005
242,242_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,1435,4584,0.396730239520824035093227166726,50,0.1
243,243_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,38.000000000000000000000000000000,2878,1061,0.088091128285536945963229982226,50,0.025
244,244_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4775,851,0.769029056891159967790372320451,50,0.005
245,245_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1648,5000,0.382347671699859281702060798125,50,0.005
246,246_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,27.000000000000000000000000000000,1674,1023,0.007279073960341602735069077568,50,0.05
247,247_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,601,4152,0.940941904114748650655997153081,50,0.25
248,248_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2208,692,0.993504507721459595437352163572,50,0.1
249,249_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,2830,950,0.916754204934457916920109710190,50,0.005
250,250_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,1604,790,0.866002937705283026836866611120,50,0.005
251,251_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,1379,3735,0.183094995963103607250488380487,50,0.1
252,252_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,888,0.615019083116143394640573660581,50,0.25
253,253_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1844,3492,0.854610259284317108630091297528,50,0.025
254,254_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,544.000000000000000000000000000000,5000,1458,0.142656131155792287312777943953,50,0.001
255,255_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,2183,723,0.857488384267570458163731927925,50,0.01
256,256_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,3217,648,0.439370777468963524814427046294,1,0.001
257,257_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,704,0.581180291923760417027722269268,1,0.005
258,258_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,796,0.951871927095502168292284750351,50,0.005
259,259_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,692,0.907934527353332909704874964518,50,0.005
260,260_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,738,0.987861307248344755471691769344,50,0.005
261,261_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,40.000000000000000000000000000000,5000,725,0.998999999999999999111821580300,50,0.005
262,262_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,746,0.895211344271998776811471998371,50,0.005
263,263_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,737,0.998999999999999999111821580300,50,0.25
264,264_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,720,0.880138351603788726684740595374,50,0.005
265,265_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,755,0.998999999999999999111821580300,36,0.25
266,266_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,632,0.943986265964539050798975949874,50,0.005
267,267_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,5000,819,0.909220590605802403416646484402,50,0.005
268,268_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,748,0.801976890897353911213940591551,27,0.005
269,269_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,4404,667,0.865411403676152768404961079796,50,0.005
270,270_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,841,0.988403246262388290865885664971,50,0.005
271,271_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,780,0.916604133210698446276865070104,12,0.25
272,272_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,844,0.931679388847070133472527686536,50,0.25
273,273_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,717,0.998999999999999999111821580300,50,0.25
274,274_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,770,0.910516806937320732906471221213,32,0.005
275,275_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,3452,713,0.823810431564999001707860770694,50,0.005
276,276_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,549,0.869997908069080061466138431570,50,0.005
277,277_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,760,0.998999999999999999111821580300,50,0.005
278,278_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,4686,765,0.869462293969304966800848433195,50,0.005
279,279_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,828,0.888175162882933189045786548377,50,0.005
280,280_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,714,0.998999999999999999111821580300,50,0.005
281,281_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,837,0.998999999999999999111821580300,50,0.005
282,282_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,747,0.932075858778956267691739867587,50,0.005
283,283_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,737,0.968974787912714297100080784730,50,0.25
284,284_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,898,0.980765352781194921227836402977,50,0.005
285,285_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,22.000000000000000000000000000000,5000,362,0.939541657729270007770594475005,50,0.005
286,286_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,4248,870,0.930612330460161674139385468152,25,0.25
287,287_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,3529,631,0.998999999999999999111821580300,50,0.005
288,288_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,3875,604,0.957409071627942309667957943020,50,0.25
289,289_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,656,0.998999999999999999111821580300,50,0.005
290,290_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,15.000000000000000000000000000000,5000,675,0.970054755969665283288350110524,50,0.005
291,291_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4157,756,0.884913443187803072653707658901,50,0.005
292,292_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,2504,615,0.932195351793931314965391266014,50,0.005
293,293_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,646,0.998999999999999999111821580300,49,0.005
294,294_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,10.000000000000000000000000000000,5000,865,0.919467866073905404356025883317,50,0.005
295,295_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,724,0.907425653420207423138776903215,50,0.25
296,296_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,645,0.859199226240712210511674129521,50,0.005
297,297_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,19.000000000000000000000000000000,5000,703,0.861960452199340809720240486058,50,0.005
298,298_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,701,0.781873657817306666473200493783,26,0.005
299,299_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,541,0.998999999999999999111821580300,50,0.005
300,300_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,11.000000000000000000000000000000,5000,606,0.959829931656139390128146260395,50,0.005
301,301_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,4062,576,0.998999999999999999111821580300,50,0.25
302,302_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,16.000000000000000000000000000000,5000,659,0.998999999999999999111821580300,50,0.05
303,303_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,13.000000000000000000000000000000,4473,704,0.930791750735157963347887744021,50,0.005
304,304_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,12.000000000000000000000000000000,5000,675,0.998999999999999999111821580300,50,0.25
305,305_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,2416,459,0.783338814304556652068356470409,50,0.005
306,306_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,5000,1476,0.937508647373535453084514301736,25,0.005
307,307_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,4801,559,0.892790183073988496964545902301,50,0.005
308,308_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,703,0.072914891408173851394813880233,50,0.25
309,309_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,709,0.907169671058133952890045748063,50,0.25
310,310_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,770,0.852964851477177932181916730769,50,0.005
311,311_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4704,707,0.998999999999999999111821580300,50,0.005
312,312_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,714,0.745136161393588181134362002922,50,0.25
313,313_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,719,0.947298559957085672955656718841,50,0.25
314,314_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,726,0.969052035749555895627338486520,50,0.005
315,315_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4648,781,0.883495540827234471237261459464,50,0.005
316,316_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,719,0.943722616589075968818178807851,50,0.005
317,317_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,17.000000000000000000000000000000,5000,757,0.902848980120487420997221761354,44,0.005
318,318_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,767,0.001000000000000000020816681712,50,0.25
319,319_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,631,0.929018237472571839496993106877,50,0.25
320,320_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,708,0.200056991286463259349659438158,50,0.25
321,321_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,4889,641,0.890314051486438384763744124939,50,0.005
322,322_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,685,0.001000000000000000020816681712,50,0.05
323,323_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,743,0.808969820473308676156420915504,26,0.25
324,324_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,771,0.960791353067550479849501243734,50,0.005
325,325_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,754,0.985908224949913147838742588647,50,0.25
326,326_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,734,0.689620902793175560852034777781,50,0.25
327,327_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,805,0.174531907063454172490679638940,50,0.25
328,328_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,713,0.859809319593180854113256827986,50,0.25
329,329_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,4644,649,0.908318378104963963792783943063,50,0.005
330,330_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,4681,668,0.003608756039881771786326236651,27,0.25
331,331_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,11.000000000000000000000000000000,5000,670,0.998999999999999999111821580300,50,0.25
332,332_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,711,0.930503788929153308195907357003,50,0.25
333,333_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,797,0.417151724384731747985455285743,50,0.25
334,334_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,2775,551,0.119302854482368617117238329683,50,0.25
335,335_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,28.000000000000000000000000000000,5000,796,0.834273494191502318351183475897,50,0.005
336,336_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,742,0.260439533231550834901923963116,50,0.25
337,337_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,843,0.252087363563203492589082088671,50,0.25
338,338_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,16.000000000000000000000000000000,4133,623,0.188274234648659222202127239143,50,0.25
339,339_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,747,0.756910806980752193240391534346,50,0.005
340,340_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,18.000000000000000000000000000000,5000,513,0.216254604216242901637556883543,50,0.25
341,341_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,15.000000000000000000000000000000,5000,670,0.853155300976478736529884372430,50,0.005
342,342_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,723,0.374560974750140773803508409401,50,0.05
343,343_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,757,0.842168634629018031390046417073,50,0.005
344,344_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,749,0.001000000000000000020816681712,50,0.05
345,345_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,869,0.146705391133078705268033559150,50,0.25
346,346_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,4599,769,0.001000000000000000020816681712,50,0.25
347,347_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,737,0.417955697099704759356342265164,50,0.05
348,348_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,42.000000000000000000000000000000,1609,312,0.598298353638116564567894783977,50,0.005
349,349_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,15.000000000000000000000000000000,5000,675,0.001000000000000000020816681712,50,0.25
350,350_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,814,0.313178382279871436733031941912,50,0.05
351,351_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,2842,802,0.998999999999999999111821580300,50,0.005
352,352_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,13.000000000000000000000000000000,5000,819,0.998999999999999999111821580300,50,0.25
353,353_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,16.000000000000000000000000000000,4358,695,0.303965675168486881840834712420,50,0.25
354,354_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,726,0.001000000000000000020816681712,50,0.1
355,355_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,12.000000000000000000000000000000,5000,935,0.779720754821281780699848695804,50,0.005
356,356_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,707,0.335713031697496944172343091850,50,0.1
357,357_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,4019,745,0.022488389315619861097417242490,50,0.25
358,358_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,729,0.539459132334821456211670920311,50,0.25
359,359_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,735,0.801301212531214557266423526016,50,0.005
360,360_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,861,0.277784621025934763682840866750,50,0.05
361,361_0,RUNNING,BoTorch,BOTORCH_MODULAR,,,5000,706,0.715097582393546482570911848597,19,0.005
362,362_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,695,0.064599628371728237685722717742,30,0.25
363,363_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,800,0.135138516023326465953502406592,50,0.25
364,364_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,2951,785,0.006812174622822167804891968501,50,0.25
365,365_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,710,0.140241304925628168520645999706,50,0.25
366,366_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,601,0.057605731580224826815506133926,50,0.25
367,367_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,796,0.081379979302275751162909500636,50,0.25
368,368_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,3147,608,0.001000000000000000020816681712,4,0.25
369,369_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,5000,953,0.120898662207141072144622739870,30,0.05
370,370_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,3751,864,0.204932297019751130662257310178,50,0.05
371,371_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,4356,965,0.123910581456199916927651827336,50,0.05
372,372_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,721,0.258537985273254056206582163213,50,0.05
373,373_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,823,0.001000000000000000020816681712,50,0.25
374,374_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4804,877,0.001000000000000000020816681712,50,0.05
375,375_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,18.000000000000000000000000000000,5000,447,0.530074836699928275685067546874,1,0.005
376,376_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,817,0.053661266206456607885666443281,50,0.25
377,377_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4253,669,0.066967007570730485710441826086,50,0.25
378,378_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,744,0.088282576773994009267099158933,50,0.25
379,379_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,731,0.041277755690881011430004576823,50,0.25
380,380_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,38.000000000000000000000000000000,1979,749,0.237613938940244157072001485176,17,0.005
381,381_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,5000,4071,0.998999999999999999111821580300,50,0.025
382,382_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,757,0.001000000000000000020816681712,44,0.05
383,383_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,690,0.001000000000000000020816681712,50,0.1
384,384_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,3187,615,0.743650807661401347381513460277,50,0.005
385,385_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,13.000000000000000000000000000000,5000,818,0.001000000000000000020816681712,50,0.05
386,386_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,684,0.085998559415221081936309133198,50,0.25
387,387_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,889,0.045499796865145845925493262030,50,0.1
388,388_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4761,723,0.001000000000000000020816681712,50,0.25
389,389_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,12.000000000000000000000000000000,4206,679,0.001000000000000000020816681712,29,0.25
390,390_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,4793,819,0.010310073992859688021828112880,50,0.25
391,391_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,716,0.001000000000000000020816681712,50,0.25
392,392_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,11.000000000000000000000000000000,5000,702,0.411911582466322978568484813877,50,0.05
393,393_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,13.000000000000000000000000000000,4677,611,0.437040267382312164201607629366,50,0.05
394,394_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,745,0.819812912817189820557928214839,50,0.005
395,395_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,750,0.093431093638057127748197672190,50,0.05
396,396_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,667,0.111757666716636061554623893244,50,0.1
397,397_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,756,0.001000000000000000020816681712,34,0.25
398,398_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,790,0.060702934149730984614290463242,50,0.1
399,399_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,899,0.065631849025169483602404341127,50,0.25
400,400_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,786,0.707019820963124878687722230097,50,0.005
401,401_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4975,787,0.125993729321409009269672196751,50,0.25
402,402_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2164,972,0.377018672168950796930175783928,17,0.005
403,403_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,16.000000000000000000000000000000,1,367,0.443950553936765135443209828736,22,0.005
404,404_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,37.000000000000000000000000000000,4549,1091,0.266605180408814645964810097212,42,0.005
405,405_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3259,3570,0.388762796914336794529276630783,11,0.025
406,406_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,16.000000000000000000000000000000,3456,1833,0.490563952216490517521663150546,1,0.001
407,407_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,3680,1460,0.998999999999999999111821580300,50,0.005
408,408_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,5000,1904,0.416624710521824925812950368709,1,0.25
409,409_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,4407,975,0.392436323176736767681660467133,32,0.005
410,410_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,1121,671,0.193855410205254985456235772290,50,0.25
411,411_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1519,1581,0.559603380026482244424812506622,38,0.005
412,412_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,3854,736,0.434256406249019288878798761289,23,0.25
413,413_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,1272,649,0.001000000000000000020816681712,23,0.25
414,414_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,4.000000000000000000000000000000,2021,1334,0.526907171135147400775622372748,15,0.25
415,415_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,3825,2242,0.445621835412223665784381410049,18,0.05
416,416_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,93.000000000000000000000000000000,4259,680,0.176080426867661649081853170173,50,0.005
417,417_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,2683,1113,0.998999999999999999111821580300,42,0.25
418,418_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1941,3529,0.428109240930045764628175675170,33,0.01
419,419_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,1649,633,0.001000000000000000020816681712,50,0.25
420,420_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,1604,1894,0.604697239004147735208505309856,21,0.01
421,421_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1,2556,0.533712194304054921012436807359,34,0.001
422,422_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,4124,2248,0.453668925593781469096654745954,16,0.001
423,423_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,5000,1394,0.477625107671685811272510591152,23,0.005
424,424_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1604,1834,0.392083879201792273594406879056,1,0.05
425,425_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,4922,1857,0.412608852917262680648491368629,1,0.001
426,426_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,5000,1512,0.001000000000000000020816681712,29,0.25
427,427_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1852,2082,0.506919170275711761242121156101,35,0.001
428,428_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,4918,1621,0.356003870917465103929089309531,26,0.05
429,429_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,2666,565,0.018428485618589250660814826688,27,0.05
430,430_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,903,607,0.998999999999999999111821580300,12,0.025
431,431_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,213,508,0.525410021387004322335201322858,4,0.1
432,432_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1,464,0.531365272759059426022076877416,1,0.025
433,433_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,998,909,0.544296568939507174889058660483,39,0.005
434,434_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,3697,757,0.477459507819400774675244747414,19,0.005
435,435_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,3825,1451,0.386401471287374287388871607618,1,0.05
436,436_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,4474,3407,0.794937912960462567113495424564,22,0.1
437,437_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,6.000000000000000000000000000000,4289,3083,0.404716077364522863746287839604,50,0.05
438,438_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,2677,1183,0.998999999999999999111821580300,31,0.005
439,439_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,16.000000000000000000000000000000,1707,321,0.001000000000000000020816681712,5,0.25
440,440_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4466,810,0.964148328783408281594802247128,4,0.005
441,441_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,4668,1864,0.732192229455304377516711156204,31,0.05
442,442_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,5000,3229,0.314176100647539646715244998632,24,0.05
443,443_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,2957,1855,0.705992859325076937970777635201,14,0.05
444,444_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,4637,3520,0.492926059613003342274595297567,32,0.1
445,445_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1675,2116,0.751948222366103702363204774883,29,0.005
446,446_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3980,4537,0.750141835777250132188953557488,38,0.001
447,447_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,1126,682,0.441920718132653267407050634574,1,0.005
448,448_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1852,3528,0.426818809435887069891890632789,21,0.005
449,449_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,2726,473,0.933036742210445635414828302601,29,0.005
450,450_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,4159,3926,0.957896660052395043649653416651,48,0.01
451,451_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,1667,3286,0.596525254643563651590909557854,24,0.025
452,452_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,3881,1711,0.284648593683260175968285921044,1,0.25
453,453_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,3474,2176,0.621091782895955124566000904451,35,0.001
454,454_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,73.000000000000000000000000000000,1890,2094,0.165851593999197077788920751118,12,0.001
455,455_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3988,4696,0.225230781022691950443714858920,17,0.1
456,456_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,135,3235,0.615624436653656181839266992029,19,0.001
457,457_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,909,4500,0.739751425343020185820819278888,35,0.001
458,458_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,3779,1900,0.722315838152073563804833611357,16,0.005
459,459_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,295,3057,0.454488982973220378980272471381,1,0.025
460,460_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,5000,2491,0.892151721187094515208571010589,30,0.05
461,461_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,1130,970,0.214048626504335010034552055913,1,0.25
462,462_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,5000,4501,0.955702682845724682536570071534,8,0.05
463,463_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,858,801,0.998999999999999999111821580300,34,0.25
464,464_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,4410,5000,0.894940669526202325911867774266,16,0.05
465,465_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,3835,2279,0.013321466062740212887849367007,19,0.25
466,466_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1707,5000,0.281682526308101588430332640201,10,0.1
467,467_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,5000,2455,0.176329281544734622899639475690,1,0.05
468,468_0,FAILED,BoTorch,BOTORCH_MODULAR,,,5000,1,0.985616855642394096292946414906,20,0.001
469,469_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,4059,1558,0.491517322466783090906261577402,50,0.005
470,470_0,FAILED,BoTorch,BOTORCH_MODULAR,,,5000,1,0.972156599630160878078299901972,22,0.001
471,471_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1949,3477,0.293145461709787891191325570617,14,0.01
472,472_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,3594,1331,0.525545605576692942406680231215,30,0.05
473,473_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,4537,3580,0.239005745928803026156828082094,33,0.1
474,474_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,3726,2394,0.217333794128108603871396553586,12,0.05
475,475_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1903,3503,0.298224772674392180071833990951,15,0.005
476,476_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,1489,4763,0.956895337138477075633602453308,49,0.001
477,477_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,1099,953,0.486079435455599895288258949222,8,0.25
478,478_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,285.000000000000000000000000000000,5000,1226,0.337523844485550339467039293595,50,0.001
479,479_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1669,5000,0.283785604556700821188286454344,8,0.005
480,480_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,326,1164,0.389718666337045327452415222069,42,0.25
481,481_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4503,1025,0.414506412437835203288472030181,1,0.05
482,482_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,52.000000000000000000000000000000,3025,3940,0.001000000000000000020816681712,1,0.01
483,483_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3382,4335,0.939200007019728166923755452444,35,0.001
484,484_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,3507,1362,0.885429064462801673762726295536,20,0.005
485,485_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,6.000000000000000000000000000000,2576,1919,0.548133703380192960352701447846,42,0.05
486,486_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,3684,1555,0.554366818838050945394968493929,32,0.005
487,487_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,820,4531,0.520613283537056825700517492805,30,0.1
488,488_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1255,1947,0.600642285926474839286015594553,50,0.025
489,489_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,19.000000000000000000000000000000,3619,2223,0.483294359148543961612887187584,30,0.001
490,490_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,5000,2318,0.243665708426591465229904542866,23,0.25
491,491_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1016,1359,0.915879732816389124927525244857,10,0.25
492,492_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1750,3841,0.736248499394575040000177068578,46,0.05
493,493_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1813,3497,0.512147687495143388858309663192,7,0.01
494,494_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,3034,3888,0.694701270667978598716274518665,50,0.001
495,495_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,10.000000000000000000000000000000,2820,613,0.204892334887466359694130346725,1,0.001
496,496_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,2002,4603,0.776548526719723630762359789514,47,0.001
497,497_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,3787,3071,0.533145226884063960781645619136,1,0.001
498,498_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,1614,812,0.485825780208454904851578248781,35,0.25
499,499_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1129,2030,0.001000000000000000020816681712,1,0.25
500,500_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1289,1567,0.450650269685266946506629892610,26,0.25
501,501_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,1474,1765,0.823468982344020217212232637394,9,0.05
502,502_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,908,655,0.635110253172258887310874797549,1,0.025
503,503_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1596,4834,0.860052668092869954108437013929,17,0.001
504,504_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,3453,1753,0.626199565018022985540824265627,30,0.001
505,505_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,3569,968,0.987116622139282418046946077084,50,0.05
506,506_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,22.000000000000000000000000000000,1594,1913,0.652835140135089475599272645923,45,0.001
507,507_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1864,3548,0.297428805478562596764646741576,44,0.005
508,508_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3857,3435,0.732698525036588610426235845807,32,0.01
509,509_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1019,3408,0.491461079843373505049441973824,1,0.001
510,510_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,4820,3511,0.839405679484290123681944351119,34,0.01
511,511_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1002,3341,0.545441437833131703705191739573,24,0.001
512,512_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,6.000000000000000000000000000000,2935,1626,0.818123348781825354691932261630,14,0.05
513,513_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,7.000000000000000000000000000000,2082,827,0.482785993263006418807492536871,35,0.005
514,514_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1884,3501,0.849848155998508714148442777514,19,0.01
515,515_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2808,2823,0.794897990920041874751689192635,3,0.001
516,516_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,872,848,0.895818505932466813135306438198,18,0.25
517,517_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,534,3511,0.400916804581421704067878408750,25,0.1
518,518_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,897,2087,0.192696101797181884585086208972,24,0.1
519,519_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1063,3470,0.919587576921961691311935283011,46,0.001
520,520_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,2680,532,0.001000000000000000020816681712,50,0.25
521,521_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,3946,3466,0.267346565172076500171982615939,41,0.1
522,522_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1890,3257,0.663641781455691859292755907518,5,0.25
523,523_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2513,2690,0.828872663610195736794139520498,13,0.01
524,524_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,1480,1464,0.377270533359544024687437513421,7,0.005
525,525_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,4737,3677,0.875177980277005773679377398366,10,0.01
526,526_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,907,831,0.404764510576581637568693849971,2,0.005
527,527_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,1638,1993,0.560445980034962043525581520953,34,0.005
528,528_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,3257,878,0.379116818048832571186324003065,1,0.05
529,529_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,3836,3429,0.911602838580895524778213712125,16,0.01
530,530_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,3020,1564,0.537465239667204941476086332841,50,0.25
531,531_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3940,4205,0.925708819867112064905256829661,24,0.05
532,532_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,970,3057,0.648732499621442415538297154853,2,0.001
533,533_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,127.000000000000000000000000000000,4381,65,0.540734928256417890501950296311,2,0.25
534,534_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,886,593,0.790713968932922228738391368097,4,0.25
535,535_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,707,1896,0.486362022039473651524588149186,50,0.25
536,536_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,2635,456,0.749286376991949998327413595689,3,0.01
537,537_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,17.000000000000000000000000000000,1965,685,0.115404995023142220578193928304,27,0.1
538,538_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,1577,751,0.176380466410206548921735247859,28,0.05
539,539_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,2771,609,0.620562632829450233629131616908,50,0.01
540,540_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,3869,2289,0.773526082604999332126283206890,17,0.05
541,541_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2776,3390,0.711166598446386855059131448797,22,0.01
542,542_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,2887,753,0.938563450648668418097031462821,38,0.25
543,543_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3305,4797,0.883073224903898057469575633149,41,0.001
544,544_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,1358,1854,0.465360421294270354408695311577,50,0.005
545,545_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,1483,1817,0.466616326340494602664676904169,50,0.01
546,546_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,3387,1983,0.553581699543684857545144950564,24,0.001
547,547_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1006,3914,0.944358813587900636221661443415,35,0.1
548,548_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,396,2208,0.001000000000000000020816681712,1,0.25
549,549_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,3754,2406,0.998142100795950448777205110673,37,0.05
550,550_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,3912,1239,0.972862857112115841928812187689,27,0.05
551,551_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,68.000000000000000000000000000000,627,3074,0.051217718722649914486755307053,9,0.01
552,552_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,23.000000000000000000000000000000,4403,836,0.518409014360055153680661987892,44,0.005
553,553_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1,3032,0.716585185876548957928378058568,11,0.025
554,554_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,1590,762,0.001000000000000000020816681712,1,0.25
555,555_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,298,2235,0.459025255893326267209175739481,50,0.001
556,556_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,3328,1934,0.579388030947756704769346924877,50,0.005
557,557_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1778,1952,0.792004972370447424268036229478,2,0.01
558,558_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,4180,4773,0.455494307325340130887525447179,26,0.025
559,559_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,1032,946,0.520349909020738188303312199423,50,0.025
560,560_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1931,3287,0.468515413684634507429649374899,1,0.25
561,561_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,1630,780,0.998999999999999999111821580300,38,0.025
562,562_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,302,1842,0.140332346920781780852394149406,5,0.25
563,563_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,160.000000000000000000000000000000,4755,3343,0.302446737387545683262146667403,40,0.001
564,564_0,RUNNING,BoTorch,BOTORCH_MODULAR,,,3898,2390,0.998999999999999999111821580300,41,0.001
Copy raw data to clipboard
Download »results.csv« as file
Skipped tabs:
Job-Infos
Copy raw data to clipboard
Download »export.html« as file
<!DOCTYPE html>
<html lang='en'>
<head>
<meta charset='UTF-8'>
<meta name='viewport' content='width=device-width, initial-scale=1.0'>
<title>Exported »s4122485/CSDDM_NOAAWeather_HoeffdingTreeClassifier_ACCURACY-RUNTIME/1« from OmniOpt2-Share</title>
<script src='https://code.jquery.com/jquery-3.7.1.js'></script>
<script src='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/gridjs.production.min.js'></script>
<script src='https://cdn.jsdelivr.net/npm/plotly.js-dist@3.0.1/plotly.min.js'></script>
<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/theme/mermaid.css'>
<style>
#share_path {
color: black;
}
.debug_log_pre {
min-width: 300px;
}
body.dark-mode {
background-color: #1e1e1e; color: #fff;
}
.plot-container {
margin-bottom: 2rem;
}
.spinner {
border: 4px solid #f3f3f3;
border-top: 4px solid #3498db;
border-radius: 50%;
width: 40px;
height: 40px;
animation: spin 2s linear infinite;
margin: auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.tabs {
margin-bottom: 20px;
}
.tab-content {
display: none;
}
.tab-content.active {
display: block;
}
pre {
color: #00CC00 !important;
background-color: black !important;
font-family: monospace !important;
line-break: anywhere;
}
menu[role="tablist"] {
display: flex;
flex-wrap: wrap;
gap: 4px;
max-width: 100%;
max-height: 100px;
overflow: scroll;
}
menu[role="tablist"] button {
white-space: nowrap;
min-width: 100px;
}
.container {
max-width: 100% !important;
}
.gridjs-sort {
min-width: 1px !important;
}
td.gridjs-td {
overflow: clip;
}
.title-bar-text {
font-size: 22px;
display: block ruby;
}
.title-bar {
height: fit-content;
}
.window {
width: fit-content;
min-width: 100%;
}
.top_link {
display: inline-block;
padding: 5px 5px;
background-color: #007bff; /* Blau, kannst du anpassen */
color: white;
text-decoration: none;
font-size: 16px;
font-weight: bold;
border-radius: 6px;
border: 2px solid #0056b3;
text-align: center;
transition: all 0.3s ease-in-out;
}
.top_link:hover {
background-color: #0056b3;
border-color: #004494;
}
.top_link:active {
background-color: #003366;
border-color: #002244;
}
button {
color: black;
}
.share_folder_buttons {
width: fit-content;
}
button {
background: #fcfcfe;
border-color: #919b9c;
border-top-color: rgb(145, 155, 156);
border-bottom-color: rgb(145, 155, 156);
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c;
}
button {
padding-bottom: 2px;
margin-top: -2px;
background-color: #ece9d8;
position: relative;
z-index: 8;
margin-left: -3px;
margin-bottom: 1px;
}
.window {
min-width: 1100px;
}
[role="tab"] {
padding: 10px !important;
}
[role="tabpanel"] {
min-width: fit-content;
}
select {
border: 1px solid #7f9db9;
background-image: url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 -0.5 15 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e6eefc' d='M0 0h1'/%3E%3Cpath stroke='%23d1e0fd' d='M1 0h1M0 1h1m3 0h2M2 3h1M2 4h1'/%3E%3Cpath stroke='%23cad8f9' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23c4d3f7' d='M3 0h1M0 3h1M0 4h1'/%3E%3Cpath stroke='%23bfd0f8' d='M4 0h2M0 5h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 0h1M0 6h1'/%3E%3Cpath stroke='%23baccf4' d='M7 0h1m6 2h1m-1 5h1m-1 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M8 0h1M0 7h1M0 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M9 0h2M0 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 0h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 0h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 0h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 0h1'/%3E%3Cpath stroke='%23e1eafe' d='M1 1h1'/%3E%3Cpath stroke='%23dae6fe' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23d4e1fc' d='M3 1h1M1 3h1M1 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 1h1M1 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 1h1M4 2h2'/%3E%3Cpath stroke='%23cad9fd' d='M8 1h1M6 2h1M3 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M9 1h2'/%3E%3Cpath stroke='%23c5d6fc' d='M11 1h1M2 11h4'/%3E%3Cpath stroke='%23c2d3fc' d='M12 1h1m-2 1h1M1 11h1m0 1h2m-2 1h2'/%3E%3Cpath stroke='%23bccefa' d='M13 1h1m-1 1h1m-1 1h1m-1 1h1M3 15h4'/%3E%3Cpath stroke='%23b9c9f3' d='M14 1h1M3 16h4'/%3E%3Cpath stroke='%23d8e3fc' d='M2 2h1'/%3E%3Cpath stroke='%23d1defd' d='M3 2h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 2h1M4 3h3M4 4h3M3 6h1m1 0h2M1 7h1M1 8h1'/%3E%3Cpath stroke='%23c5d5fc' d='M8 2h1m-8 8h5'/%3E%3Cpath stroke='%23c5d3fc' d='M9 2h2'/%3E%3Cpath stroke='%23bed0fc' d='M12 2h1M8 3h1M8 4h1m-8 8h1m-1 1h1m0 1h1m1 0h3'/%3E%3Cpath stroke='%23cddbfc' d='M3 3h1M3 4h1M1 6h2'/%3E%3Cpath stroke='%23c8d5fb' d='M7 3h1M7 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M9 3h4M9 4h4M8 5h1M7 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 3h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23ceddfd' d='M2 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M4 5h4M1 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M9 5h2m1 0h2M1 14h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M8 6h2m2 0h2m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%234d6185' d='M4 6h1m5 0h1M3 7h3m3 0h3M4 8h3m1 0h3M5 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1m-1 1h1'/%3E%3Cpath stroke='%23cad8fd' d='M2 7h1M2 8h2'/%3E%3Cpath stroke='%23c1d3fb' d='M6 7h2M7 8h1M4 9h1'/%3E%3Cpath stroke='%23b6cefb' d='M8 7h1m2 1h1m-2 1h3m-2 1h2'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-6 6h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b4c8f6' d='M0 10h1'/%3E%3Cpath stroke='%23bdd3fb' d='M9 10h2m-4 4h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 10h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 10h1'/%3E%3Cpath stroke='%23b1c7f6' d='M0 11h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M8 11h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M9 11h4m-2 3h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 11h1m-3 4h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 11h1m-7 5h3'/%3E%3Cpath stroke='%23adc3f6' d='M0 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c2d5fc' d='M4 12h4m-4 1h4'/%3E%3Cpath stroke='%23b7d3fc' d='M9 12h2m-2 1h2m-3 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 12h1m-1 1h1'/%3E%3Cpath stroke='%23afcdfb' d='M12 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afcbfa' d='M13 12h1m-1 1h1'/%3E%3Cpath stroke='%23b2c8f4' d='M14 12h1m-1 1h1m-4 3h1'/%3E%3Cpath stroke='%23c1d2fb' d='M3 14h1'/%3E%3Cpath stroke='%23b6d1fb' d='M9 14h2'/%3E%3Cpath stroke='%23adc9f9' d='M13 14h1m-2 1h1'/%3E%3Cpath stroke='%23b1c6f3' d='M14 14h1m-3 2h1'/%3E%3Cpath stroke='%23abc1f4' d='M0 15h1'/%3E%3Cpath stroke='%23b7cbf9' d='M1 15h1'/%3E%3Cpath stroke='%23b9cefb' d='M2 15h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 15h1'/%3E%3Cpath stroke='%23b2cdfb' d='M9 15h2'/%3E%3Cpath stroke='%23aec8f7' d='M13 15h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 15h1m-2 1h1'/%3E%3Cpath stroke='%23dbe3f8' d='M0 16h1'/%3E%3Cpath stroke='%23b7c6f1' d='M1 16h1'/%3E%3Cpath stroke='%23b8c9f2' d='M2 16h1m4 0h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 16h1'/%3E%3C/svg%3E");
background-size: 15px;
font-size: 11px;
border: none;
background-color: #fff;
box-sizing: border-box;
height: 21px;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
position: relative;
padding: 5px 32px 32px 5px;
background-position: top 50% right 2px;
background-repeat: no-repeat;
border-radius: 0;
border: 1px solid black;
}
body {
font-variant: oldstyle-nums;
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
background-color: #fafafa;
text-shadow: 0 0.05em 0.1em rgba(0,0,0,0.2);
scroll-behavior: smooth;
text-wrap: balance;
text-rendering: optimizeLegibility;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
font-feature-settings: "ss02", "liga", "onum";
}
.marked_text {
background-color: yellow;
}
.time_picker_container {
font-variant: small-caps;
width: 100%;
}
.time_picker_container > input {
width: 50px;
}
#loader {
display: grid;
justify-content: center;
align-items: center;
height: 100%;
}
.no_linebreak {
line-break: auto;
}
.dark_code_bg {
background-color: #363636;
color: white;
}
.code_bg {
background-color: #C0C0C0;
}
#commands {
line-break: anywhere;
}
.color_red {
color: red;
}
.color_orange {
color: orange;
}
table > tbody > tr:nth-child(odd) {
background-color: #fafafa;
}
table > tbody > tr:nth-child(even) {
background-color: #ddd;
}
table {
border-collapse: collapse;
margin: 0 0;
min-width: 200px;
}
th {
background-color: #4eae46;
color: #ffffff;
text-align: left;
border: 0px;
}
.error_element {
background-color: #e57373;
border-radius: 10px;
padding: 4px;
display: none;
}
button {
background-color: #4eae46;
border: 1px solid #2A8387;
border-radius: 4px;
box-shadow: rgba(0, 0, 0, 0.12) 0 1px 1px;
cursor: pointer;
display: block;
line-height: 100%;
outline: 0;
padding: 11px 15px 12px;
text-align: center;
transition: box-shadow .05s ease-in-out, opacity .05s ease-in-out;
user-select: none;
-webkit-user-select: none;
touch-action: manipulation;
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
}
button:hover {
box-shadow: rgba(255, 255, 255, 0.3) 0 0 2px inset, rgba(0, 0, 0, 0.4) 0 1px 2px;
text-decoration: none;
transition-duration: .15s, .15s;
}
button:active {
box-shadow: rgba(0, 0, 0, 0.15) 0 2px 4px inset, rgba(0, 0, 0, 0.4) 0 1px 1px;
}
button:disabled {
cursor: not-allowed;
opacity: .6;
}
button:disabled:active {
pointer-events: none;
}
button:disabled:hover {
box-shadow: none;
}
.half_width_td {
vertical-align: baseline;
width: 50%;
}
#scads_bar {
width: 100%;
margin: 0;
padding: 0;
user-select: none;
user-drag: none;
-webkit-user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-select: none;
-ms-user-select: none;
display: -webkit-box;
}
.tab {
display: inline-block;
padding: 0px;
margin: 0px;
font-size: 16px;
font-weight: bold;
text-align: center;
border-radius: 25px;
text-decoration: none !important;
transition: background-color 0.3s, color 0.3s;
color: unset !important;
}
.tooltipster-base {
border: 1px solid black;
position: absolute;
border-radius: 8px;
padding: 2px;
color: white;
background-color: #61686f;
width: 70%;
min-width: 200px;
pointer-events: none;
}
td {
padding-top: 3px;
padding-bottom: 3px;
}
.left_side {
text-align: right;
}
.right_side {
text-align: left;
}
.spinner {
border: 8px solid rgba(0, 0, 0, 0.1);
border-left: 8px solid #3498db;
border-radius: 50%;
width: 50px;
height: 50px;
animation: spin 1s linear infinite;
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
#spinner-overlay {
-webkit-text-stroke: 1px black;
white !important;
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
display: flex;
justify-content: center;
align-items: center;
z-index: 9999;
}
#spinner-container {
text-align: center;
color: #fff;
display: contents;
}
#spinner-text {
font-size: 3vw;
margin-left: 10px;
}
a, a:visited, a:active, a:hover, a:link {
color: #007bff;
text-decoration: none;
}
.copy-container {
display: inline-block;
position: relative;
cursor: pointer;
margin-left: 10px;
color: blue;
}
.copy-container:hover {
text-decoration: underline;
}
.clipboard-icon {
position: absolute;
top: 5px;
right: 5px;
font-size: 1.5em;
}
#main_tab {
overflow: scroll;
width: max-content;
}
.ui-tabs .ui-tabs-nav li {
user-select: none;
}
.stacktrace_table {
background-color: black !important;
color: white !important;
}
#breadcrumb {
user-select: none;
}
#statusBar {
user-select: none;
}
.error_line {
background-color: red !important;
color: white !important;
}
.header_table {
border: 0px !important;
padding: 0px !important;
width: revert !important;
min-width: revert !important;
}
.img_auto_width {
max-width: revert !important;
}
#main_dir_or_plot_view {
display: inline-grid;
}
#refresh_button {
width: 300px;
}
._share_link {
color: black !important;
}
#footer_element {
height: 30px;
background-color: #f8f9fa;
padding: 0px;
text-align: center;
border-top: 1px solid #dee2e6;
width: 100%;
box-sizing: border-box;
position: fixed;
bottom: 0;
z-index: 2;
margin-left: -9px;
z-index: 99;
}
.switch {
position: relative;
display: inline-block;
width: 50px;
height: 26px;
}
.switch input {
opacity: 0;
width: 0;
height: 0;
}
.slider {
position: absolute;
cursor: pointer;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #ccc;
transition: .4s;
border-radius: 26px;
}
.slider:before {
position: absolute;
content: "";
height: 20px;
width: 20px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #444;
}
input:checked + .slider:before {
transform: translateX(24px);
}
.mode-text {
position: absolute;
top: 5px;
left: 65px;
font-size: 14px;
color: black;
transition: .4s;
width: 65px;
display: block;
font-size: 0.7rem;
text-align: center;
}
input:checked + .slider .mode-text {
content: "Dark Mode";
color: white;
}
#mainContent {
height: fit-content;
min-height: 100%;
}
li {
text-align: left;
}
#share_path {
margin-bottom: 20px;
margin-top: 20px;
}
#sortForm {
margin-bottom: 20px;
}
.share_folder_buttons {
margin-top: 10px;
margin-bottom: 10px;
}
.nav_tab_button {
margin: 10px;
}
.header_table {
margin: 10px;
}
.no_border {
border: unset !important;
}
.gui_table {
padding: 5px !important;
}
.gui_parameter_row {
}
.gui_parameter_row_cell {
border: unset !important;
}
.gui_param_table {
width: 95%;
margin: unset !important;
}
table td, table tr,
.parameterRow table {
padding: 2px !important;
}
.parameterRow table {
margin: 0px;
border: unset;
}
.parameterRow > td {
border: 0px !important;
}
.parameter_config_table td, .parameter_config_table tr, #config_table th, #config_table td, #hidden_config_table th, #hidden_config_table td {
border: 0px !important;
}
.green_text {
color: green;
}
.remove_parameter {
white-space: pre;
}
select {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
background-color: #fff;
color: #222;
padding: 5px 30px 5px 5px;
border: 1px solid #555;
border-radius: 5px;
cursor: pointer;
outline: none;
transition: all 0.3s ease;
background:
url("data:image/svg+xml;charset=UTF-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 10 6'%3E%3Cpath fill='%23888' d='M0 0l5 6 5-6z'/%3E%3C/svg%3E")
no-repeat right 10px center,
linear-gradient(180deg, #fff, #ecebe5 86%, #d8d0c4);
background-size: 12px, auto;
}
select:hover {
border-color: #888;
}
select:focus {
border-color: #4caf50;
box-shadow: 0 0 5px rgba(76, 175, 80, 0.5);
}
select::-ms-expand {
display: none;
}
input, textarea {
border-radius: 5px;
}
#search {
width: 200px;
max-width: 70%;
background-image: url(images/search.svg);
background-repeat: no-repeat;
background-size: auto 40px;
height: 40px;
line-height: 40px;
padding-left: 40px;
box-sizing: border-box;
}
input[type="checkbox"] {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
width: 25px;
height: 25px;
border: 2px solid #3498db;
border-radius: 5px;
background-color: #fff;
position: relative;
cursor: pointer;
transition: all 0.3s ease;
width: 25px !important;
}
input[type="checkbox"]:checked {
background-color: #3498db;
border-color: #2980b9;
}
input[type="checkbox"]:checked::before {
content: '✔';
position: absolute;
left: 4px;
top: 2px;
color: #fff;
}
input[type="checkbox"]:hover {
border-color: #2980b9;
background-color: #3caffc;
}
.toc {
margin-bottom: 20px;
}
.toc li {
margin-bottom: 5px;
}
.toc a {
text-decoration: none;
color: #007bff;
}
.toc a:hover {
text-decoration: underline;
}
.table-container {
width: 100%;
overflow-x: auto;
}
.section-header {
background-color: #1d6f9a !important;
color: white;
}
.warning {
color: red;
}
.li_list a {
text-decoration: none;
}
.gridjs-td {
white-space: nowrap;
}
th, td {
border: 1px solid gray !important;
}
.no_border {
border: 0px !important;
}
.no_break {
}
img {
user-select: none;
pointer-events: none;
}
#config_table, #hidden_config_table {
user-select: none;
}
.copy_clipboard_button {
margin-bottom: 10px;
}
.badge_table {
background-color: unset !important;
}
.make_markable {
user-select: text;
}
.header-container {
display: flex;
flex-wrap: wrap;
align-items: center;
justify-content: space-between;
gap: 1rem;
padding: 10px;
background: var(--header-bg, #fff);
border-bottom: 1px solid #ccc;
}
.header-logo-group {
display: flex;
gap: 1rem;
align-items: center;
flex: 1 1 auto;
min-width: 200px;
}
.logo-img {
max-height: 45px;
height: auto;
width: auto;
object-fit: contain;
pointer-events: unset;
}
.header-badges {
flex-direction: column;
gap: 5px;
align-items: flex-start;
flex: 0 1 auto;
margin-top: auto;
margin-bottom: auto;
}
.badge-img {
height: auto;
max-width: 130px;
margin-top: 3px;
}
.header-tabs {
margin-top: 10px;
display: flex;
flex-wrap: wrap;
gap: 10px;
flex: 2 1 100%;
justify-content: center;
}
.nav-tab {
display: inline-block;
text-decoration: none;
padding: 8px 16px;
border-radius: 20px;
background: linear-gradient(to right, #4a90e2, #357ABD);
color: white;
font-weight: bold;
white-space: nowrap;
transition: background 0.2s ease-in-out, transform 0.2s;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
}
.nav-tab:hover {
background: linear-gradient(to right, #5aa0f2, #4a90e2);
transform: translateY(-2px);
}
.current-tag {
padding-left: 10px;
font-size: 0.9rem;
color: #666;
}
.header-theme-toggle {
flex: 1 1 auto;
align-items: center;
margin-top: 20px;
min-width: 120px;
}
.switch {
position: relative;
display: inline-block;
width: 60px;
height: 30px;
}
.switch input {
display: none;
}
.slider {
position: absolute;
top: 0; left: 0; right: 0; bottom: 0;
background-color: #ccc;
border-radius: 34px;
cursor: pointer;
}
.slider::before {
content: "";
position: absolute;
height: 24px;
width: 24px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #2196F3;
}
input:checked + .slider::before {
transform: translateX(30px);
}
@media (max-width: 768px) {
.header-logo-group,
.header-badges,
.header-theme-toggle {
justify-content: center;
flex: 1 1 100%;
text-align: center;
width: inherit;
}
.logo-img {
max-height: 50px;
pointer-events: unset;
}
.badge-img {
max-width: 100px;
}
.hide_on_mobile {
display: none;
}
.nav-tab {
font-size: 0.9rem;
padding: 6px 12px;
}
.header_button {
white-space: pre;
font-size: 2em;
}
}
.header_button {
white-space: pre;
margin-top: 20px;
margin: 5px;
}
.line_break_anywhere {
line-break: anywhere;
}
.responsive-container {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
gap: 20px;
}
.responsive-container .half {
flex: 1 1 48%;
box-sizing: border-box;
min-width: 500px;
}
.config-section table {
width: 100%;
border-collapse: collapse;
}
@media (max-width: 768px) {
.responsive-container .half {
flex: 1 1 100%;
}
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
.rotate {
animation: spin 2s linear infinite;
display: inline-block;
}
input::placeholder {
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
}
.gridjs-th-content {
overflow: visible !important;
}
.error_text {
color: red;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1em;
font-weight: bold;
color: #333;
border-left: 5px solid #ccc;
padding-left: 0.5em;
}
.no_cursive {
font-style: normal;
}
.caveat {
background-color: #fff8b3;
border: 1px solid #f2d600;
padding: 1em 1em 1em 70px;
position: relative;
font-family: sans-serif;
color: #665500;
margin: 1em 0;
border-radius: 4px;
}
.caveat h1, .caveat h2, .caveat h3, .caveat h4 {
margin-top: 0;
margin-bottom: 0.5em;
font-weight: bold;
}
.caveat::before {
content: "⚠️";
font-size: 50px;
line-height: 1;
position: absolute;
left: 10px;
top: 50%;
transform: translateY(-50%);
pointer-events: none;
user-select: none;
}
.caveat.warning::before { content: "⚠️"; }
.caveat.stop::before { content: "🛑"; }
.caveat.exclamation::before { content: "❗"; }
.caveat.alarm::before { content: "🚨"; }
.caveat.tip::before { content: "💡"; }
.tutorial_icon {
display: inline-block;
font-size: 1.3em;
line-height: 1;
vertical-align: middle;
transform: translateY(-10%);
padding: 0.2em 0;
}
.highlight {
background-color: yellow;
font-weight: bold;
}
#searchResults li {
opacity: 0;
transform: translateY(8px);
animation: fadeInUp 0.3s ease-out forwards;
animation-delay: 0.05s;
list-style: none;
margin-bottom: 5px;
}
@keyframes fadeInUp {
to {
opacity: 1;
transform: translateY(0);
}
}
.search_headline {
font-weight: bold;
margin-top: 1em;
margin-bottom: 0.3em;
color: #444;
}
.search_share_path {
color: black;
display: block ruby;
margin-top: 20px;
}
@media print {
#scads_bar {
display: none !important;
}
}
/*! XP.css v0.2.6 - https: //botoxparty.github.io/XP.css/ */
body{
color: #222
}
.surface{
background: #ece9d8
}
u{
text-decoration: none;
border-bottom: .5px solid #222
}
a{
color: #00f
}
a: focus{
outline: 1px dotted #00f
}
code,code *{
font-family: monospace
}
pre{
display: block;
padding: 12px 8px;
background-color: #000;
color: silver;
font-size: 1rem;
margin: 0;
overflow: scroll;
}
summary: focus{
outline: 1px dotted #000
}
: :-webkit-scrollbar{
width: 16px
}
: :-webkit-scrollbar: horizontal{
height: 17px
}
: :-webkit-scrollbar-track{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='2' height='2' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 0H0v1h1v1h1V1H1V0z' fill='silver'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 0H1v1H0v1h1V1h1V0z' fill='%23fff'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-color: #dfdfdf;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
: :-webkit-scrollbar-button: horizontal: end: increment,: :-webkit-scrollbar-button: horizontal: start: decrement,: :-webkit-scrollbar-button: vertical: end: increment,: :-webkit-scrollbar-button: vertical: start: decrement{
display: block
}
: :-webkit-scrollbar-button: vertical: start{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 6H7v1H6v1H5v1H4v1h7V9h-1V8H9V7H8V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 6H4v1h1v1h1v1h1v1h1V9h1V8h1V7h1V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 4H8v1H7v1H6v1H5v1h1v1h1v1h1v1h1V4z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M7 4H6v7h1v-1h1V9h1V8h1V7H9V6H8V5H7V4z' fill='%23000'/%3E%3C/svg%3E")
}
button{
border: none;
background: #ece9d8;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf;
border-radius: 0;
min-width: 75px;
min-height: 23px;
padding: 0 12px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: inset -1px -1px #fff,inset 1px 1px #0a0a0a,inset -2px -2px #dfdfdf,inset 2px 2px grey
}
button.focused,button: focus{
outline: 1px dotted #000;
outline-offset: -4px
}
label{
display: inline-flex;
align-items: center
}
textarea{
padding: 3px 4px;
border: none;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0
}
textarea: focus{
outline: none
}
select: focus option{
color: #000;
background-color: #fff
}
.vertical-bar{
width: 4px;
height: 20px;
background: silver;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
&: disabled,&: disabled+label{
color: grey;
text-shadow: 1px 1px 0 #fff
}
input[type=radio]+label{
line-height: 13px;
position: relative;
margin-left: 19px
}
input[type=radio]+label: before{
content: "";
position: absolute;
top: 0;
left: -19px;
display: inline-block;
width: 13px;
height: 13px;
margin-right: 6px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='%23fff'/%3E%3C/svg%3E")
}
input[type=radio]: active+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio]: checked+label: after{
content: "";
display: block;
width: 5px;
height: 5px;
top: 5px;
left: -14px;
position: absolute;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=radio][disabled]+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='gray'/%3E%3C/svg%3E")
}
input[type=email],input[type=password]{
padding: 3px 4px;
border: 1px solid #7f9db9;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0;
height: 21px;
line-height: 2
}
input[type=email]: focus,input[type=password]: focus{
outline: none
}
input[type=range]{
-webkit-appearance: none;
width: 100%;
background: transparent
}
input[type=range]: focus{
outline: none
}
input[type=range]: :-webkit-slider-thumb{
-webkit-appearance: none;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-webkit-slider-runnable-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range]: :-moz-range-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
.is-vertical{
display: inline-block;
width: 4px;
height: 150px;
transform: translateY(50%)
}
.is-vertical>input[type=range]{
width: 150px;
height: 4px;
margin: 0 16px 0 10px;
transform-origin: left;
transform: rotate(270deg) translateX(calc(-50% + 8px))
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-webkit-slider-thumb{
transform: translateY(-8px) scaleX(-1)
}
.is-vertical>input[type=range]: :-moz-range-thumb{
transform: translateY(2px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-webkit-slider-thumb{
transform: translateY(-10px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-moz-range-thumb{
transform: translateY(0) scaleX(-1)
}
.window{
font-size: 11px;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #dfdfdf,inset -2px -2px grey,inset 2px 2px #fff;
background: #ece9d8;
padding: 3px
}
.window fieldset{
margin-bottom: 9px
}
.title-bar{
background: #000;
padding: 3px 2px 3px 3px;
display: flex;
justify-content: space-between;
align-items: center
}
.title-bar-text{
font-weight: 700;
color: #fff;
letter-spacing: 0;
margin-right: 24px
}
.title-bar-controls button{
padding: 0;
display: block;
min-width: 16px;
min-height: 14px
}
.title-bar-controls button: focus{
outline: none
}
.window-body{
margin: 8px
}
.window-body pre{
margin: -8px
}
.status-bar{
margin: 0 1px;
display: flex;
gap: 1px
}
.status-bar-field{
box-shadow: inset -1px -1px #dfdfdf,inset 1px 1px grey;
flex-grow: 1;
padding: 2px 3px;
margin: 0
}
ul.tree-view{
display: block;
background: #fff;
padding: 6px;
margin: 0
}
ul.tree-view li{
list-style-type: none;
margin-top: 3px
}
ul.tree-view a{
text-decoration: none;
color: #000
}
ul.tree-view a: focus{
background-color: #2267cb;
color: #fff
}
ul.tree-view ul{
margin-top: 3px;
margin-left: 16px;
padding-left: 16px;
border-left: 1px dotted grey
}
ul.tree-view ul>li{
position: relative
}
ul.tree-view ul>li: before{
content: "";
display: block;
position: absolute;
left: -16px;
top: 6px;
width: 12px;
border-bottom: 1px dotted grey
}
ul.tree-view ul>li: last-child: after{
content: "";
display: block;
position: absolute;
left: -20px;
top: 7px;
bottom: 0;
width: 8px;
background: #fff
}
ul.tree-view ul details>summary: before{
margin-left: -22px;
position: relative;
z-index: 1
}
ul.tree-view details{
margin-top: 0
}
ul.tree-view details>summary: before{
text-align: center;
display: block;
float: left;
content: "+";
border: 1px solid grey;
width: 8px;
height: 9px;
line-height: 9px;
margin-right: 5px;
padding-left: 1px;
background-color: #fff
}
ul.tree-view details[open] summary{
margin-bottom: 0
}
ul.tree-view details[open]>summary: before{
content: "-"
}
fieldset{
border-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='5' height='5' fill='gray' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h5v5H0V2h2v1h1V2H0' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h4v4H0V1h1v2h2V1H0'/%3E%3C/svg%3E") 2;
padding: 10px;
padding-block-start: 8px;
margin: 0
}
legend{
background: #ece9d8
}
menu[role=tablist]{
position: relative;
margin: 0 0 -2px;
text-indent: 0;
list-style-type: none;
display: flex;
padding-left: 3px
}
menu[role=tablist] button{
z-index: 1;
display: block;
color: #222;
text-decoration: none;
min-width: unset
}
menu[role=tablist] button[aria-selected=true]{
padding-bottom: 2px;margin-top: -2px;background-color: #ece9d8;position: relative;z-index: 8;margin-left: -3px;margin-bottom: 1px
}
menu[role=tablist] button: focus{
outline: 1px dotted #222;outline-offset: -4px
}
menu[role=tablist].justified button{
flex-grow: 1;text-align: center
}
[role=tabpanel]{
padding: 14px;clear: both;background: linear-gradient(180deg,#fcfcfe,#f4f3ee);border: 1px solid #919b9c;position: relative;z-index: 2;margin-bottom: 9px
}
: :-webkit-scrollbar{
width: 17px
}
: :-webkit-scrollbar-corner{
background: #dfdfdf
}
: :-webkit-scrollbar-track: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 1' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1'/%3E%3Cpath stroke='%23f3f1ec' d='M1 0h1'/%3E%3Cpath stroke='%23f4f1ec' d='M2 0h1'/%3E%3Cpath stroke='%23f4f3ee' d='M3 0h1'/%3E%3Cpath stroke='%23f5f4ef' d='M4 0h1'/%3E%3Cpath stroke='%23f6f5f0' d='M5 0h1'/%3E%3Cpath stroke='%23f7f7f3' d='M6 0h1'/%3E%3Cpath stroke='%23f9f8f4' d='M7 0h1'/%3E%3Cpath stroke='%23f9f9f7' d='M8 0h1'/%3E%3Cpath stroke='%23fbfbf8' d='M9 0h1'/%3E%3Cpath stroke='%23fbfbf9' d='M10 0h2'/%3E%3Cpath stroke='%23fdfdfa' d='M12 0h1'/%3E%3Cpath stroke='%23fefefb' d='M13 0h3'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-track: horizontal{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 1 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1M0 16h1'/%3E%3Cpath stroke='%23f3f1ec' d='M0 1h1'/%3E%3Cpath stroke='%23f4f1ec' d='M0 2h1'/%3E%3Cpath stroke='%23f4f3ee' d='M0 3h1'/%3E%3Cpath stroke='%23f5f4ef' d='M0 4h1'/%3E%3Cpath stroke='%23f6f5f0' d='M0 5h1'/%3E%3Cpath stroke='%23f7f7f3' d='M0 6h1'/%3E%3Cpath stroke='%23f9f8f4' d='M0 7h1'/%3E%3Cpath stroke='%23f9f9f7' d='M0 8h1'/%3E%3Cpath stroke='%23fbfbf8' d='M0 9h1'/%3E%3Cpath stroke='%23fbfbf9' d='M0 10h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 12h1'/%3E%3Cpath stroke='%23fefefb' d='M0 13h1m-1 1h1m-1 1h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-position: 50%;
background-repeat: no-repeat;
background-color: #c8d6fb;
background-size: 7px;
border: 1px solid #fff;
border-radius: 2px;
box-shadow: inset -3px 0 #bad1fc,inset 1px 1px #b7caf5
}
: :-webkit-scrollbar-thumb: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 7 8' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h6M0 2h6M0 4h6M0 6h6'/%3E%3Cpath stroke='%23bad1fc' d='M6 0h1M6 2h1M6 4h1'/%3E%3Cpath stroke='%23c8d6fb' d='M0 1h1M0 3h1M0 5h1M0 7h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h6M1 3h6M1 5h6M1 7h6'/%3E%3Cpath stroke='%23bad3fc' d='M6 6h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb: horizontal{
background-size: 8px;background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 8 7' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h1m1 0h1m1 0h1m1 0h1M0 1h1m1 0h1m1 0h1m1 0h1M0 2h1m1 0h1m1 0h1m1 0h1M0 3h1m1 0h1m1 0h1m1 0h1M0 4h1m1 0h1m1 0h1m1 0h1M0 5h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23c8d6fb' d='M1 0h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h1m1 0h1m1 0h1m1 0h1M1 2h1m1 0h1m1 0h1m1 0h1M1 3h1m1 0h1m1 0h1m1 0h1M1 4h1m1 0h1m1 0h1m1 0h1M1 5h1m1 0h1m1 0h1m1 0h1M1 6h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23bad1fc' d='M0 6h1m1 0h1'/%3E%3Cpath stroke='%23bad3fc' d='M4 6h1m1 0h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: start{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h1m1 0h1'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M5 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h1m3 0h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h2M3 8h2'/%3E%3Cpath stroke='%234d6185' d='M8 5h1M7 6h3M6 7h5M5 8h3m1 0h3M4 9h3m3 0h3m-8 1h1m5 0h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1m-2 1h1m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23cad8fd' d='M4 7h2'/%3E%3Cpath stroke='%23b6cefb' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23c1d3fb' d='M8 8h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M8 9h1m-1 1h1m-3 1h2'/%3E%3Cpath stroke='%23bdd3fb' d='M9 9h1m-2 3h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M7 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h1m1 0h1m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c1d5fb' d='M8 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M6 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h3'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1M8 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h3M3 8h2'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M9 6h2m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%234d6185' d='M5 6h1m5 0h1M4 7h3m3 0h3M5 8h3m1 0h3M6 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 7h2M8 8h1'/%3E%3Cpath stroke='%23b6cefb' d='M9 7h1m2 1h1m-2 1h2'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M6 11h2'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23bdd3fb' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1M1 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 4h1M5 5h2M4 7h1M2 8h1'/%3E%3Cpath stroke='%234d6185' d='M8 4h1M7 5h3M6 6h3M5 7h3M4 8h3M5 9h3m-2 1h3m-2 1h3m-2 1h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M2 11h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M9 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23c8d6fb' d='M5 6h1M2 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1M8 7h3m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 8h2'/%3E%3Cpath stroke='%23b6cefb' d='M9 8h3M9 9h4'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 1h1m-1 4h1'/%3E%3Cpath stroke='%23bdd3fb' d='M8 9h1m-2 3h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-5 4h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%239fb5d2' d='M16 10h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M5 11h2'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%234d6185' d='M7 4h1M6 5h3M7 6h3M8 7h3M9 8h3M8 9h3m-4 1h3m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23c8d6fb' d='M8 4h1M5 6h2'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1M2 9h5'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M9 5h1m-8 6h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23c9d8fc' d='M5 5h1M4 7h3M2 8h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M7 7h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1m0 1h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h3'/%3E%3Cpath stroke='%23c1d3fb' d='M6 8h3'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 5h1'/%3E%3Cpath stroke='%23b4c8f6' d='M1 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M7 9h1m-3 2h1'/%3E%3Cpath stroke='%23b6cefb' d='M11 9h2'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23bbd3fd' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b6cdfb' d='M9 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
.window{
box-shadow: inset -1px -1px #00138c,inset 1px 1px #0831d9,inset -2px -2px #001ea0,inset 2px 2px #166aee,inset -3px -3px #003bda,inset 3px 3px #0855dd;
border-top-left-radius: 8px;
border-top-right-radius: 8px;
padding: 0 0 3px;
-webkit-font-smoothing: antialiased
}
.title-bar{
background: linear-gradient(180deg,#0997ff,#0053ee 8%,#0050ee 40%,#06f 88%,#06f 93%,#005bff 95%,#003dd7 96%,#003dd7);
padding: 3px 5px 3px 3px;
border-top: 1px solid #0831d9;
border-left: 1px solid #0831d9;
border-right: 1px solid #001ea0;
border-top-left-radius: 8px;
border-top-right-radius: 7px;
font-size: 13px;
text-shadow: 1px 1px #0f1089;
height: 21px
}
.title-bar-text{
padding-left: 3px
}
.title-bar-controls{
display: flex
}
.title-bar-controls button{
min-width: 21px;
min-height: 21px;
margin-left: 2px;
background-repeat: no-repeat;
background-position: 50%;
box-shadow: none;
background-color: #0050ee;
transition: background .1s;
border: none
}
.title-bar-controls button: active,.title-bar-controls button: focus,.title-bar-controls button: hover{
box-shadow: none!important
}
.title-bar-controls button[aria-label=Minimize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%235985f7' d='M7 5h1'/%3E%3Cpath stroke='%235381f6' d='M8 5h1M6 9h1'/%3E%3Cpath stroke='%234d7bf6' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%234677f5' d='M10 5h1'/%3E%3Cpath stroke='%234173f5' d='M11 5h1'/%3E%3Cpath stroke='%233a6ff4' d='M12 5h1'/%3E%3Cpath stroke='%23386ef4' d='M13 5h1'/%3E%3Cpath stroke='%23346cf4' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%235480f7' d='M7 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%233a6ff5' d='M11 6h1'/%3E%3Cpath stroke='%23346df4' d='M12 6h1'/%3E%3Cpath stroke='%23306bf4' d='M13 6h1'/%3E%3Cpath stroke='%232d69f4' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23507ef6' d='M7 7h1'/%3E%3Cpath stroke='%234a79f6' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236694eb' d='M19 0h1'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1m-6 6h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23427ff6' d='M9 13h1'/%3E%3Cpath stroke='%233c7ff6' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23366ef4' d='M2 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%236699f3' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23afc2ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h1'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1m-5 6h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M6 13h1'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23539fff' d='M9 13h1'/%3E%3Cpath stroke='%234fa4ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-7 7h1m-3 1h1'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m-7 7h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-1 1h1m-1 1h1M7 12h1m-2 1h1m-3 1h1m1 0h1m-3 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 5h11M5 6h11M5 7h11M5 8h1m9 0h1M5 9h1m9 0h1M5 10h1m9 0h1M5 11h1m9 0h1M5 12h1m9 0h1M5 13h1m9 0h1M5 14h1m9 0h1M5 15h11'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%23004fb4' d='M16 7h2m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1'/%3E%3Cpath stroke='%230049ae' d='M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M10 8h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 2h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h1m-6 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230051b6' d='M18 9h1m0 2h1m-1 1h1M8 14h1m10 3h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 1h1m-1 3h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h1m-4 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230049ac' d='M4 11h1m-2 1h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h1m-3 1h1m4 0h1m-7 2h1m0 3h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-1 2h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 3h1'/%3E%3Cpath stroke='%23005ec3' d='M13 13h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230060c5' d='M14 14h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23b2c3ee' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 5h1M8 5h1M6 9h1M9 5h1M8 6h1M10 5h1M11 5h1M12 5h1M13 5h1M14 5h1M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%23FFF' d='M7 6h1M8 6h1M9 6h1M10 6h1M11 6h1M12 6h1M13 6h1M14 6h1M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23FFF' d='M7 7h1'/%3E%3Cpath stroke='%234375f5' d='M8 7h1M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%23FFF' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 8h1'/%3E%3Cpath stroke='%234174f5' d='M8 8h1M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%23FFF' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%23FFF' d='M5 9h1M6 9h1M7 9h1M8 9h1M9 9h1M10 9h1M11 9h1M12 9h1M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%23FFF' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1M4 10h1'/%3E%3Cpath stroke='%23FFF' d='M5 10h1M6 10h1M7 10h1M8 10h1M9 10h1M10 10h1M11 10h1M12 10h1M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%23FFF' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%23FFF' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232673f7' d='M12 11h1'/%3E%3Cpath stroke='%23FFF' d='M13 11h1M14 11h1M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%23FFF' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232677f7' d='M12 12h1'/%3E%3Cpath stroke='%23FFF' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1M6 13h1M7 13h1'/%3E%3Cpath stroke='%23437ff6' d='M8 13h1'/%3E%3Cpath stroke='%232d7df7' d='M9 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M10 13h1M11 13h1'/%3E%3Cpath stroke='%232679f8' d='M12 13h1'/%3E%3Cpath stroke='%23FFF' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1M6 14h1'/%3E%3Cpath stroke='%232d7df7' d='M7 14h1M8 14h1M9 14h1M10 14h1M11 14h1'/%3E%3Cpath stroke='%23257af8' d='M12 14h1'/%3E%3Cpath stroke='%23FFF' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23FFF' d='M11 15h1M12 15h1M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%23FFF' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23548DFF' d='M5 13h1'/%3E%3Cpath stroke='%235991FF' d='M6 13h1'/%3E%3Cpath stroke='%235792FF' d='M7 13h1'/%3E%3Cpath stroke='%235496FF' d='M8 13h1'/%3E%3Cpath stroke='%23539CFF' d='M9 13h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 13h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23548DFF' d='M5 14h1'/%3E%3Cpath stroke='%235991FF' d='M6 14h1'/%3E%3Cpath stroke='%235792FF' d='M7 14h1'/%3E%3Cpath stroke='%235496FF' d='M8 14h1'/%3E%3Cpath stroke='%23539CFF' d='M9 14h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 14h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M12 12h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7M5 13h1'/%3E%3Cpath stroke='%23004BB0' d='M6 13h1'/%3E%3Cpath stroke='%23004DB1' d='M7 13h1'/%3E%3Cpath stroke='%23004FB4' d='M8 13h1'/%3E%3Cpath stroke='%230052B7' d='M9 13h1'/%3E%3Cpath stroke='%230055B9' d='M10 13h1'/%3E%3Cpath stroke='%230157BC' d='M11 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m1 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23004BB0' d='M6 14h1'/%3E%3Cpath stroke='%23004DB1' d='M7 14h1'/%3E%3Cpath stroke='%23004FB4' d='M8 14h1'/%3E%3Cpath stroke='%230052B7' d='M9 14h1'/%3E%3Cpath stroke='%230055B9' d='M10 14h1'/%3E%3Cpath stroke='%230157BC' d='M11 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 14h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M12 15h1M13 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1M5 14h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%2392aff9' d='M7 4h1'/%3E%3Cpath stroke='%23e1e9fd' d='M8 4h1'/%3E%3Cpath stroke='%23e0e8fd' d='M12 4h1'/%3E%3Cpath stroke='%2381a4f8' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%238eacf9' d='M6 5h1'/%3E%3Cpath stroke='%23f3f6fe' d='M7 5h1'/%3E%3Cpath stroke='%23d8e2fd' d='M9 5h1'/%3E%3Cpath stroke='%23cfdcfc' d='M10 5h1'/%3E%3Cpath stroke='%23ecf1fe' d='M11 5h1'/%3E%3Cpath stroke='%23eff4fe' d='M13 5h1'/%3E%3Cpath stroke='%23749af7' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%23d3dffd' d='M6 6h1'/%3E%3Cpath stroke='%23b2c6fb' d='M8 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%234a7bf6' d='M11 6h1'/%3E%3Cpath stroke='%23c8d7fc' d='M12 6h1'/%3E%3Cpath stroke='%23c6d6fc' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%23e6edfe' d='M6 7h1'/%3E%3Cpath stroke='%23e5ecfe' d='M7 7h1'/%3E%3Cpath stroke='%235a85f7' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%236c97f8' d='M12 7h1'/%3E%3Cpath stroke='%23cfddfd' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%2385a9f9' d='M12 8h1'/%3E%3Cpath stroke='%23cbdbfd' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235986f7' d='M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%2396b6fa' d='M11 9h1'/%3E%3Cpath stroke='%23f2f6fe' d='M12 9h1'/%3E%3Cpath stroke='%2393b6fb' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234e82f7' d='M9 10h1'/%3E%3Cpath stroke='%23cadafc' d='M10 10h1'/%3E%3Cpath stroke='%23a0c0fb' d='M13 10h1'/%3E%3Cpath stroke='%232a72f6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23bcd1fc' d='M9 11h1'/%3E%3Cpath stroke='%23dde8fd' d='M11 11h1'/%3E%3Cpath stroke='%235f97f8' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23dfe9fd' d='M9 12h1'/%3E%3Cpath stroke='%234687f7' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%235081f6' d='M5 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23d2e0fd' d='M9 13h1'/%3E%3Cpath stroke='%23edf3fe' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23467af5' d='M5 15h1'/%3E%3Cpath stroke='%23457af6' d='M6 15h1'/%3E%3Cpath stroke='%23437bf6' d='M7 15h1'/%3E%3Cpath stroke='%23417cf6' d='M8 15h1'/%3E%3Cpath stroke='%23cbdcfd' d='M9 15h1'/%3E%3Cpath stroke='%23327df7' d='M11 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%23f5f8fe' d='M9 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ee' d='M1 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b1ed' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m2 5h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2393b0ed' d='M20 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1m7 1h1'/%3E%3Cpath stroke='%239bbdff' d='M7 4h1'/%3E%3Cpath stroke='%23e3edff' d='M8 4h1'/%3E%3Cpath stroke='%23e1ebff' d='M12 4h1'/%3E%3Cpath stroke='%2387afff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1m-6 9h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%239bf' d='M6 5h1'/%3E%3Cpath stroke='%23f4f7ff' d='M7 5h1'/%3E%3Cpath stroke='%23dbe7ff' d='M9 5h1'/%3E%3Cpath stroke='%23d2e1ff' d='M10 5h1'/%3E%3Cpath stroke='%23edf3ff' d='M11 5h1'/%3E%3Cpath stroke='%23f0f5ff' d='M13 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%23548dff' d='M1 6h1m2 7h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%23d8e5ff' d='M6 6h1'/%3E%3Cpath stroke='%23b9d0ff' d='M8 6h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%23538dff' d='M11 6h1'/%3E%3Cpath stroke='%23cbdcff' d='M12 6h1'/%3E%3Cpath stroke='%23c9dbff' d='M14 6h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23e8f0ff' d='M6 7h1'/%3E%3Cpath stroke='%23e7efff' d='M7 7h1'/%3E%3Cpath stroke='%23679aff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%2374a5ff' d='M12 7h1'/%3E%3Cpath stroke='%23d1e1ff' d='M14 7h1'/%3E%3Cpath stroke='%23317aff' d='M15 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%238cb7ff' d='M12 8h1'/%3E%3Cpath stroke='%23cde0ff' d='M14 8h1'/%3E%3Cpath stroke='%232f7fff' d='M15 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%239dc5ff' d='M11 9h1'/%3E%3Cpath stroke='%23f3f8ff' d='M12 9h1'/%3E%3Cpath stroke='%239ac5ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%236297ff' d='M5 10h1'/%3E%3Cpath stroke='%235f95ff' d='M6 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235c9aff' d='M9 10h1'/%3E%3Cpath stroke='%23cee2ff' d='M10 10h1'/%3E%3Cpath stroke='%23a7d0ff' d='M13 10h1'/%3E%3Cpath stroke='%233897ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%23c2dbff' d='M9 11h1'/%3E%3Cpath stroke='%23e0efff' d='M11 11h1'/%3E%3Cpath stroke='%236eb6ff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23e2eeff' d='M9 12h1'/%3E%3Cpath stroke='%2359adff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M5 13h2'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23d6e8ff' d='M9 13h1'/%3E%3Cpath stroke='%23eef6ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528cff' d='M5 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%234d89ff' d='M6 15h1'/%3E%3Cpath stroke='%234c8cff' d='M7 15h1'/%3E%3Cpath stroke='%234d94ff' d='M8 15h1'/%3E%3Cpath stroke='%23cfe4ff' d='M9 15h1'/%3E%3Cpath stroke='%2347aaff' d='M11 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%23f6faff' d='M9 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%2393b2f1' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bdef' d='M1 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h1m5 0h9'/%3E%3Cpath stroke='%23a7bdee' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23a7bcee' d='M20 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230a4aa5' d='M7 4h1'/%3E%3Cpath stroke='%234e7ec0' d='M8 4h1'/%3E%3Cpath stroke='%23789ed1' d='M9 4h1'/%3E%3Cpath stroke='%23789ed3' d='M10 4h1'/%3E%3Cpath stroke='%23789fd4' d='M11 4h1m0 1h1'/%3E%3Cpath stroke='%235184c7' d='M12 4h1'/%3E%3Cpath stroke='%230b54b3' d='M13 4h1m0 1h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-2 1h2M7 12h1m-2 1h1m-3 1h3m-3 1h2m-2 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230949a4' d='M6 5h1'/%3E%3Cpath stroke='%23668ec8' d='M7 5h1'/%3E%3Cpath stroke='%23789dd1' d='M8 5h1M7 6h1'/%3E%3Cpath stroke='%23497cc1' d='M9 5h1'/%3E%3Cpath stroke='%234178c0' d='M10 5h1'/%3E%3Cpath stroke='%23608dcb' d='M11 5h1'/%3E%3Cpath stroke='%236693cf' d='M13 5h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230042a1' d='M5 6h1'/%3E%3Cpath stroke='%234073bb' d='M6 6h1'/%3E%3Cpath stroke='%232661b6' d='M8 6h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1'/%3E%3Cpath stroke='%230049ad' d='M10 6h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M11 6h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%234077c4' d='M12 6h1'/%3E%3Cpath stroke='%2378a1d6' d='M13 6h1'/%3E%3Cpath stroke='%234079c4' d='M14 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%235684c6' d='M6 7h1'/%3E%3Cpath stroke='%235686c8' d='M7 7h1'/%3E%3Cpath stroke='%230049ac' d='M8 7h1m-4 3h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230a53b5' d='M12 7h1'/%3E%3Cpath stroke='%2378a1d7' d='M13 7h1'/%3E%3Cpath stroke='%234881c8' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m0 1h1m0 1h1M8 12h1m-2 3h1m0 3h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230046a8' d='M5 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%23145db9' d='M12 8h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 8h1'/%3E%3Cpath stroke='%23457fc8' d='M14 8h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1M8 14h1m-1 1h1m10 2h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%230050b5' d='M16 8h2m1 2h1M8 13h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230047a8' d='M4 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1m-2 1h1'/%3E%3Cpath stroke='%231b62bd' d='M11 9h1'/%3E%3Cpath stroke='%236899d4' d='M12 9h1'/%3E%3Cpath stroke='%2378a4d9' d='M13 9h1'/%3E%3Cpath stroke='%231f68c1' d='M14 9h1'/%3E%3Cpath stroke='%230054b9' d='M15 9h1m-7 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230053b8' d='M16 9h2m0 1h1m0 4h1m-1 2h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230048ab' d='M4 10h1'/%3E%3Cpath stroke='%23407cc7' d='M10 10h1'/%3E%3Cpath stroke='%2378a3d9' d='M11 10h1m-2 1h1'/%3E%3Cpath stroke='%2378a5da' d='M12 10h1m-3 2h1'/%3E%3Cpath stroke='%23256ec4' d='M13 10h1'/%3E%3Cpath stroke='%230057bb' d='M14 10h1'/%3E%3Cpath stroke='%230057bc' d='M15 10h1m-5 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%230056bb' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%230055ba' d='M17 10h1m0 1h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%23004cb0' d='M7 11h1m-4 2h1'/%3E%3Cpath stroke='%233272c4' d='M9 11h1'/%3E%3Cpath stroke='%23538cd0' d='M11 11h1'/%3E%3Cpath stroke='%23065cbf' d='M12 11h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%230058bd' d='M17 11h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%23538ace' d='M9 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 2h1m-1 1h1'/%3E%3Cpath stroke='%234581cb' d='M9 13h1'/%3E%3Cpath stroke='%236297d5' d='M10 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230052b7' d='M19 13h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23407fca' d='M9 15h1'/%3E%3Cpath stroke='%2378a6dc' d='M10 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%236c9bd5' d='M9 16h1'/%3E%3Cpath stroke='%2378a6db' d='M10 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M4 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M5 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M6 20h1'/%3E%3Cpath stroke='%23a7bdf0' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23fae1dc' d='M1 1h1'/%3E%3Cpath stroke='%23eb8b73' d='M2 1h1'/%3E%3Cpath stroke='%23e97b60' d='M3 1h1'/%3E%3Cpath stroke='%23e77155' d='M4 1h1'/%3E%3Cpath stroke='%23e66a4d' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23e56648' d='M6 1h1'/%3E%3Cpath stroke='%23e46142' d='M7 1h1'/%3E%3Cpath stroke='%23e46344' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%23e45f3e' d='M9 1h2'/%3E%3Cpath stroke='%23e35c3b' d='M11 1h2'/%3E%3Cpath stroke='%23e25633' d='M13 1h2'/%3E%3Cpath stroke='%23e25330' d='M15 1h1'/%3E%3Cpath stroke='%23e04d28' d='M16 1h1'/%3E%3Cpath stroke='%23dc451f' d='M17 1h1'/%3E%3Cpath stroke='%23d05334' d='M18 1h1'/%3E%3Cpath stroke='%23efd8d2' d='M19 1h1'/%3E%3Cpath stroke='%23ec8d76' d='M1 2h1'/%3E%3Cpath stroke='%23efa390' d='M2 2h1'/%3E%3Cpath stroke='%23f0a694' d='M3 2h1'/%3E%3Cpath stroke='%23ee9a85' d='M4 2h1'/%3E%3Cpath stroke='%23eb8d75' d='M5 2h1'/%3E%3Cpath stroke='%23ea876e' d='M6 2h1'/%3E%3Cpath stroke='%23ea8168' d='M7 2h1'/%3E%3Cpath stroke='%23e97f66' d='M8 2h1'/%3E%3Cpath stroke='%23e97c62' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%23e8795f' d='M10 2h1'/%3E%3Cpath stroke='%23e8795e' d='M11 2h1'/%3E%3Cpath stroke='%23e87559' d='M12 2h1'/%3E%3Cpath stroke='%23e77256' d='M13 2h1'/%3E%3Cpath stroke='%23e66e50' d='M14 2h1'/%3E%3Cpath stroke='%23e56849' d='M15 2h1'/%3E%3Cpath stroke='%23e4603f' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23e05532' d='M17 2h1'/%3E%3Cpath stroke='%23d04623' d='M18 2h1'/%3E%3Cpath stroke='%23b64b30' d='M19 2h1'/%3E%3Cpath stroke='%23e97f65' d='M1 3h1'/%3E%3Cpath stroke='%23f0a997' d='M2 3h1'/%3E%3Cpath stroke='%23f1ac9a' d='M3 3h1'/%3E%3Cpath stroke='%23ee9d89' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%23ec917a' d='M5 3h1'/%3E%3Cpath stroke='%23eb8b72' d='M6 3h1'/%3E%3Cpath stroke='%23ea856d' d='M7 3h1'/%3E%3Cpath stroke='%23e98168' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23e87e65' d='M9 3h1'/%3E%3Cpath stroke='%23e97b61' d='M11 3h1'/%3E%3Cpath stroke='%23e8775d' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%23e87459' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%23e66f52' d='M14 3h1'/%3E%3Cpath stroke='%23e56a4c' d='M15 3h1'/%3E%3Cpath stroke='%23e46343' d='M16 3h1'/%3E%3Cpath stroke='%23e15937' d='M17 3h1'/%3E%3Cpath stroke='%23d24a28' d='M18 3h1'/%3E%3Cpath stroke='%23aa3315' d='M19 3h1'/%3E%3Cpath stroke='%23e87458' d='M1 4h1'/%3E%3Cpath stroke='%23efa18d' d='M3 4h1'/%3E%3Cpath stroke='%23ed957f' d='M4 4h1'/%3E%3Cpath stroke='%23eb8a71' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%23ea836a' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23e97d64' d='M7 4h1'/%3E%3Cpath stroke='%23e8785e' d='M8 4h1'/%3E%3Cpath stroke='%23e77359' d='M9 4h1'/%3E%3Cpath stroke='%23e76f54' d='M10 4h1'/%3E%3Cpath stroke='%23e66d51' d='M11 4h1'/%3E%3Cpath stroke='%23e5684b' d='M12 4h1'/%3E%3Cpath stroke='%23e5684a' d='M13 4h1'/%3E%3Cpath stroke='%23e35c3a' d='M16 4h1m-7 4h1m-8 7h1'/%3E%3Cpath stroke='%23e05634' d='M17 4h1'/%3E%3Cpath stroke='%23d24c2a' d='M18 4h1'/%3E%3Cpath stroke='%23ac3618' d='M19 4h1'/%3E%3Cpath stroke='%23e76f52' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23ec9179' d='M2 5h1'/%3E%3Cpath stroke='%23ec937c' d='M3 5h1'/%3E%3Cpath stroke='%23f7ccc2' d='M5 5h1'/%3E%3Cpath stroke='%23e77259' d='M7 5h1M5 9h1'/%3E%3Cpath stroke='%23e76d53' d='M8 5h1'/%3E%3Cpath stroke='%23e5684d' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%23e46446' d='M10 5h1'/%3E%3Cpath stroke='%23e45f41' d='M11 5h1'/%3E%3Cpath stroke='%23e35b3a' d='M12 5h1m-2 1h1'/%3E%3Cpath stroke='%23e35938' d='M13 5h1'/%3E%3Cpath stroke='%23f3bbad' d='M15 5h1'/%3E%3Cpath stroke='%23e25531' d='M16 5h1'/%3E%3Cpath stroke='%23df5330' d='M17 5h1'/%3E%3Cpath stroke='%23d34e2c' d='M18 5h1'/%3E%3Cpath stroke='%23ad3a1d' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%23eb876e' d='M2 6h1'/%3E%3Cpath stroke='%23eb8a70' d='M3 6h1'/%3E%3Cpath stroke='%23e46447' d='M9 6h1'/%3E%3Cpath stroke='%23e45f40' d='M10 6h1'/%3E%3Cpath stroke='%23e25634' d='M12 6h1'/%3E%3Cpath stroke='%23e2522d' d='M16 6h1'/%3E%3Cpath stroke='%23df522e' d='M17 6h1'/%3E%3Cpath stroke='%23d34d2c' d='M18 6h1'/%3E%3Cpath stroke='%23e56546' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23e97e65' d='M4 7h1'/%3E%3Cpath stroke='%23e8775e' d='M5 7h1'/%3E%3Cpath stroke='%23e46143' d='M9 7h1'/%3E%3Cpath stroke='%23e45d3d' d='M10 7h1'/%3E%3Cpath stroke='%23e35836' d='M11 7h1'/%3E%3Cpath stroke='%23e24e27' d='M15 7h1'/%3E%3Cpath stroke='%23e2502a' d='M16 7h1'/%3E%3Cpath stroke='%23e0512c' d='M17 7h1'/%3E%3Cpath stroke='%23d34d2a' d='M18 7h1'/%3E%3Cpath stroke='%23ad391c' d='M19 7h1'/%3E%3Cpath stroke='%23e87a60' d='M2 8h1m1 0h1'/%3E%3Cpath stroke='%23e87c62' d='M3 8h1'/%3E%3Cpath stroke='%23e8745b' d='M5 8h1'/%3E%3Cpath stroke='%23e76e54' d='M6 8h1'/%3E%3Cpath stroke='%23e24d24' d='M14 8h1'/%3E%3Cpath stroke='%23e24b22' d='M15 8h1'/%3E%3Cpath stroke='%23e24d25' d='M16 8h1'/%3E%3Cpath stroke='%23e05029' d='M17 8h1'/%3E%3Cpath stroke='%23d44c29' d='M18 8h1'/%3E%3Cpath stroke='%23ae391b' d='M19 8h1'/%3E%3Cpath stroke='%23e35d3c' d='M1 9h1'/%3E%3Cpath stroke='%23e8765d' d='M4 9h1'/%3E%3Cpath stroke='%23e66f53' d='M6 9h1'/%3E%3Cpath stroke='%23e56b4e' d='M7 9h1'/%3E%3Cpath stroke='%23e45127' d='M13 9h1'/%3E%3Cpath stroke='%23e44f23' d='M14 9h1'/%3E%3Cpath stroke='%23e34c20' d='M15 9h1'/%3E%3Cpath stroke='%23e34d22' d='M16 9h1'/%3E%3Cpath stroke='%23e14f25' d='M17 9h1'/%3E%3Cpath stroke='%23d54a25' d='M18 9h1'/%3E%3Cpath stroke='%23af3719' d='M19 9h1'/%3E%3Cpath stroke='%23e35937' d='M1 10h1'/%3E%3Cpath stroke='%23e76d51' d='M2 10h1'/%3E%3Cpath stroke='%23e87257' d='M3 10h1'/%3E%3Cpath stroke='%23e87359' d='M4 10h1'/%3E%3Cpath stroke='%23e77157' d='M5 10h1'/%3E%3Cpath stroke='%23e66e52' d='M6 10h1'/%3E%3Cpath stroke='%23e56747' d='M8 10h1'/%3E%3Cpath stroke='%23e5572c' d='M12 10h1'/%3E%3Cpath stroke='%23e55326' d='M13 10h1'/%3E%3Cpath stroke='%23e55022' d='M14 10h1'/%3E%3Cpath stroke='%23e54d1e' d='M15 10h1'/%3E%3Cpath stroke='%23e54d1f' d='M16 10h1'/%3E%3Cpath stroke='%23e24e21' d='M17 10h1'/%3E%3Cpath stroke='%23d64921' d='M18 10h1'/%3E%3Cpath stroke='%23af3516' d='M19 10h1'/%3E%3Cpath stroke='%23e25432' d='M1 11h1'/%3E%3Cpath stroke='%23e5694b' d='M2 11h1'/%3E%3Cpath stroke='%23e77054' d='M3 11h1'/%3E%3Cpath stroke='%23e77156' d='M4 11h1'/%3E%3Cpath stroke='%23e87055' d='M5 11h1'/%3E%3Cpath stroke='%23e66c4d' d='M7 11h1'/%3E%3Cpath stroke='%23e75526' d='M13 11h1'/%3E%3Cpath stroke='%23e75221' d='M14 11h1'/%3E%3Cpath stroke='%23e64e1c' d='M15 11h1'/%3E%3Cpath stroke='%23e64d1c' d='M16 11h1'/%3E%3Cpath stroke='%23e34c1c' d='M17 11h1'/%3E%3Cpath stroke='%23d6461c' d='M18 11h1'/%3E%3Cpath stroke='%23b03312' d='M19 11h1'/%3E%3Cpath stroke='%23e14f2b' d='M1 12h1'/%3E%3Cpath stroke='%23e66b4e' d='M3 12h1'/%3E%3Cpath stroke='%23e76f53' d='M5 12h1'/%3E%3Cpath stroke='%23e66e51' d='M6 12h1'/%3E%3Cpath stroke='%23e7653d' d='M10 12h1'/%3E%3Cpath stroke='%23fef5f1' d='M13 12h1'/%3E%3Cpath stroke='%23e85421' d='M14 12h1'/%3E%3Cpath stroke='%23e8501b' d='M15 12h1'/%3E%3Cpath stroke='%23e74d18' d='M16 12h1'/%3E%3Cpath stroke='%23e44a18' d='M17 12h1'/%3E%3Cpath stroke='%23d74216' d='M18 12h1'/%3E%3Cpath stroke='%23b2310f' d='M19 12h1'/%3E%3Cpath stroke='%23e04b25' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23e35e3d' d='M2 13h1'/%3E%3Cpath stroke='%23e56748' d='M3 13h1'/%3E%3Cpath stroke='%23e66c4e' d='M4 13h1'/%3E%3Cpath stroke='%23e66d50' d='M5 13h1'/%3E%3Cpath stroke='%23e76842' d='M9 13h1'/%3E%3Cpath stroke='%23e7653c' d='M10 13h1'/%3E%3Cpath stroke='%23e86236' d='M11 13h1'/%3E%3Cpath stroke='%23e95019' d='M15 13h1m-2 3h1'/%3E%3Cpath stroke='%23e84c16' d='M16 13h1'/%3E%3Cpath stroke='%23e44713' d='M17 13h1'/%3E%3Cpath stroke='%23d83f10' d='M18 13h1'/%3E%3Cpath stroke='%23b12d0a' d='M19 13h1'/%3E%3Cpath stroke='%23df451e' d='M1 14h1'/%3E%3Cpath stroke='%23e25836' d='M2 14h1'/%3E%3Cpath stroke='%23e46242' d='M3 14h1m0 1h1'/%3E%3Cpath stroke='%23e56749' d='M4 14h1'/%3E%3Cpath stroke='%23e66845' d='M8 14h1'/%3E%3Cpath stroke='%23e76741' d='M9 14h1'/%3E%3Cpath stroke='%23e7643b' d='M10 14h1'/%3E%3Cpath stroke='%23e86235' d='M11 14h1'/%3E%3Cpath stroke='%23ea5e2d' d='M12 14h1'/%3E%3Cpath stroke='%23e94a11' d='M16 14h1m-2 2h1'/%3E%3Cpath stroke='%23e6440d' d='M17 14h1'/%3E%3Cpath stroke='%23d73b0b' d='M18 14h1'/%3E%3Cpath stroke='%23b12b06' d='M19 14h1'/%3E%3Cpath stroke='%23de4018' d='M1 15h1'/%3E%3Cpath stroke='%23e1512e' d='M2 15h1'/%3E%3Cpath stroke='%23f5c1b5' d='M5 15h1'/%3E%3Cpath stroke='%23e66543' d='M7 15h1'/%3E%3Cpath stroke='%23e66541' d='M8 15h1'/%3E%3Cpath stroke='%23e6643d' d='M9 15h1'/%3E%3Cpath stroke='%23e76238' d='M10 15h1'/%3E%3Cpath stroke='%23e86032' d='M11 15h1'/%3E%3Cpath stroke='%23e95c2a' d='M12 15h1'/%3E%3Cpath stroke='%23ea5924' d='M13 15h1'/%3E%3Cpath stroke='%23f7b8a1' d='M15 15h1'/%3E%3Cpath stroke='%23e9480e' d='M16 15h1'/%3E%3Cpath stroke='%23e54009' d='M17 15h1'/%3E%3Cpath stroke='%23d73605' d='M18 15h1'/%3E%3Cpath stroke='%23b02702' d='M19 15h1'/%3E%3Cpath stroke='%23dd3c14' d='M1 16h1'/%3E%3Cpath stroke='%23e15431' d='M3 16h1'/%3E%3Cpath stroke='%23e35b39' d='M4 16h1'/%3E%3Cpath stroke='%23e45e3d' d='M5 16h1'/%3E%3Cpath stroke='%23e45f3d' d='M6 16h1'/%3E%3Cpath stroke='%23e45e3b' d='M7 16h1'/%3E%3Cpath stroke='%23e55e39' d='M8 16h1'/%3E%3Cpath stroke='%23e55e37' d='M9 16h1'/%3E%3Cpath stroke='%23e65d32' d='M10 16h1'/%3E%3Cpath stroke='%23e75b2c' d='M11 16h1'/%3E%3Cpath stroke='%23e85725' d='M12 16h1'/%3E%3Cpath stroke='%23e9541f' d='M13 16h1'/%3E%3Cpath stroke='%23e8440b' d='M16 16h1'/%3E%3Cpath stroke='%23e43d05' d='M17 16h1'/%3E%3Cpath stroke='%23d63302' d='M18 16h1'/%3E%3Cpath stroke='%23af2601' d='M19 16h1'/%3E%3Cpath stroke='%23d8370e' d='M1 17h1'/%3E%3Cpath stroke='%23db431c' d='M2 17h1'/%3E%3Cpath stroke='%23dd4c28' d='M3 17h1'/%3E%3Cpath stroke='%23de522f' d='M4 17h1'/%3E%3Cpath stroke='%23df5533' d='M5 17h1'/%3E%3Cpath stroke='%23e05734' d='M6 17h1'/%3E%3Cpath stroke='%23e05531' d='M7 17h1'/%3E%3Cpath stroke='%23e05631' d='M8 17h1'/%3E%3Cpath stroke='%23e1562e' d='M9 17h1'/%3E%3Cpath stroke='%23e2552a' d='M10 17h1'/%3E%3Cpath stroke='%23e45325' d='M11 17h1'/%3E%3Cpath stroke='%23e4501f' d='M12 17h1'/%3E%3Cpath stroke='%23e54c19' d='M13 17h1'/%3E%3Cpath stroke='%23e54813' d='M14 17h1'/%3E%3Cpath stroke='%23e5430d' d='M15 17h1'/%3E%3Cpath stroke='%23e43e07' d='M16 17h1'/%3E%3Cpath stroke='%23e03802' d='M17 17h1'/%3E%3Cpath stroke='%23d12f00' d='M18 17h1'/%3E%3Cpath stroke='%23aa2300' d='M19 17h1'/%3E%3Cpath stroke='%23cd4928' d='M1 18h1'/%3E%3Cpath stroke='%23cc3813' d='M2 18h1'/%3E%3Cpath stroke='%23cc3e1b' d='M3 18h1'/%3E%3Cpath stroke='%23cf4421' d='M4 18h1'/%3E%3Cpath stroke='%23cf4725' d='M5 18h1'/%3E%3Cpath stroke='%23cf4726' d='M6 18h1'/%3E%3Cpath stroke='%23cf4624' d='M7 18h1'/%3E%3Cpath stroke='%23d04723' d='M8 18h1'/%3E%3Cpath stroke='%23d14621' d='M9 18h1'/%3E%3Cpath stroke='%23d2451e' d='M10 18h1'/%3E%3Cpath stroke='%23d5451b' d='M11 18h1'/%3E%3Cpath stroke='%23d54216' d='M12 18h1'/%3E%3Cpath stroke='%23d64013' d='M13 18h1'/%3E%3Cpath stroke='%23d53d0e' d='M14 18h1'/%3E%3Cpath stroke='%23d63909' d='M15 18h1'/%3E%3Cpath stroke='%23d53504' d='M16 18h1'/%3E%3Cpath stroke='%23d13001' d='M17 18h1'/%3E%3Cpath stroke='%23c22a00' d='M18 18h1'/%3E%3Cpath stroke='%23ab3c1f' d='M19 18h1'/%3E%3Cpath stroke='%23eed6d0' d='M1 19h1'/%3E%3Cpath stroke='%23b54428' d='M2 19h1'/%3E%3Cpath stroke='%23a62b0d' d='M3 19h1'/%3E%3Cpath stroke='%23ac3011' d='M4 19h1'/%3E%3Cpath stroke='%23ab3112' d='M5 19h1'/%3E%3Cpath stroke='%23a93214' d='M6 19h1'/%3E%3Cpath stroke='%23a93012' d='M7 19h1'/%3E%3Cpath stroke='%23ac3213' d='M8 19h1'/%3E%3Cpath stroke='%23ad3213' d='M9 19h1'/%3E%3Cpath stroke='%23ae3110' d='M10 19h1'/%3E%3Cpath stroke='%23b1300d' d='M11 19h1'/%3E%3Cpath stroke='%23b22e0a' d='M12 19h1'/%3E%3Cpath stroke='%23b42d08' d='M13 19h1'/%3E%3Cpath stroke='%23b12a06' d='M14 19h1'/%3E%3Cpath stroke='%23b12803' d='M15 19h1'/%3E%3Cpath stroke='%23b42701' d='M16 19h1'/%3E%3Cpath stroke='%23ae2400' d='M17 19h1'/%3E%3Cpath stroke='%23ac3c1f' d='M18 19h1'/%3E%3Cpath stroke='%23ead4cf' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h3m5 0h7'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23ffe4e1' d='M1 1h1'/%3E%3Cpath stroke='%23ff9285' d='M2 1h1m4 3h1M2 7h1'/%3E%3Cpath stroke='%23ff8c7f' d='M3 1h1'/%3E%3Cpath stroke='%23ff8375' d='M4 1h1m5 3h1'/%3E%3Cpath stroke='%23ff7b6c' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23ff7868' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%23ff7362' d='M7 1h1'/%3E%3Cpath stroke='%23ff7363' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%23ff705f' d='M9 1h1M6 16h1'/%3E%3Cpath stroke='%23ff6f5f' d='M10 1h1'/%3E%3Cpath stroke='%23ff6e5d' d='M11 1h1m4 1h1m-5 3h1M2 13h1'/%3E%3Cpath stroke='%23ff6b5a' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%23f65' d='M13 1h2'/%3E%3Cpath stroke='%23ff6250' d='M15 1h1M2 15h1'/%3E%3Cpath stroke='%23ff5d4a' d='M16 1h1'/%3E%3Cpath stroke='%23fa5643' d='M17 1h1'/%3E%3Cpath stroke='%23eb6151' d='M18 1h1'/%3E%3Cpath stroke='%23f5dad7' d='M19 1h1'/%3E%3Cpath stroke='%23ff9386' d='M1 2h1'/%3E%3Cpath stroke='%23ffaea5' d='M2 2h1'/%3E%3Cpath stroke='%23ffb2a9' d='M3 2h1'/%3E%3Cpath stroke='%23ffa99f' d='M4 2h1'/%3E%3Cpath stroke='%23ff9e93' d='M5 2h1m0 1h1M5 4h1'/%3E%3Cpath stroke='%23ff998d' d='M6 2h1M4 6h1'/%3E%3Cpath stroke='%23ff9488' d='M7 2h1m0 1h1'/%3E%3Cpath stroke='%23ff9083' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%23ff8e80' d='M9 2h1'/%3E%3Cpath stroke='%23ff8b7d' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%23ff887a' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%23ff8475' d='M12 2h1M8 5h1'/%3E%3Cpath stroke='%23ff8172' d='M13 2h1M7 9h1m-3 3h1'/%3E%3Cpath stroke='%23ff7c6d' d='M14 2h1'/%3E%3Cpath stroke='%23ff7666' d='M15 2h1M1 7h1m1 6h1m0 1h1'/%3E%3Cpath stroke='%23fc6352' d='M17 2h1'/%3E%3Cpath stroke='%23e54' d='M18 2h1'/%3E%3Cpath stroke='%23d3594b' d='M19 2h1'/%3E%3Cpath stroke='%23ff8d80' d='M1 3h1'/%3E%3Cpath stroke='%23ffb3ab' d='M2 3h1'/%3E%3Cpath stroke='%23ffb8b0' d='M3 3h1'/%3E%3Cpath stroke='%23ffb0a6' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23ffa49a' d='M5 3h1'/%3E%3Cpath stroke='%23ff988d' d='M7 3h1M6 4h1'/%3E%3Cpath stroke='%23ff9184' d='M9 3h1'/%3E%3Cpath stroke='%23ff8e81' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23ff8c7e' d='M11 3h1M2 8h1'/%3E%3Cpath stroke='%23ff8576' d='M13 3h1M6 9h1m-4 1h1'/%3E%3Cpath stroke='%23ff7f70' d='M14 3h1M1 5h1m0 5h1m1 2h1'/%3E%3Cpath stroke='%23ff796a' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%23ff7161' d='M16 3h1M3 14h1'/%3E%3Cpath stroke='%23fc6857' d='M17 3h1'/%3E%3Cpath stroke='%23ed5948' d='M18 3h1M6 18h1'/%3E%3Cpath stroke='%23cb4233' d='M19 3h1'/%3E%3Cpath stroke='%23ff8577' d='M1 4h1m0 5h1'/%3E%3Cpath stroke='%23ffaaa0' d='M2 4h1'/%3E%3Cpath stroke='%23ffa89e' d='M4 4h1'/%3E%3Cpath stroke='%23ff8d7f' d='M8 4h1'/%3E%3Cpath stroke='%23ff8879' d='M9 4h1'/%3E%3Cpath stroke='%23ff8071' d='M11 4h1M8 6h1'/%3E%3Cpath stroke='%23ff7a6b' d='M12 4h1M1 6h1m7 0h1m-6 7h1'/%3E%3Cpath stroke='%23ff7969' d='M13 4h1'/%3E%3Cpath stroke='%23ff7464' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%23ff7060' d='M15 4h1'/%3E%3Cpath stroke='%23ff6c5b' d='M16 4h1m-4 1h1'/%3E%3Cpath stroke='%23fc6655' d='M17 4h1'/%3E%3Cpath stroke='%23ef5c4b' d='M18 4h1'/%3E%3Cpath stroke='%23cc4636' d='M19 4h1'/%3E%3Cpath stroke='%23ffa095' d='M2 5h1'/%3E%3Cpath stroke='%23ffa59b' d='M3 5h1'/%3E%3Cpath stroke='%23ff9f94' d='M4 5h1'/%3E%3Cpath stroke='%23ffd5d1' d='M5 5h1'/%3E%3Cpath stroke='%23ff8a7c' d='M7 5h1'/%3E%3Cpath stroke='%23ff7e6f' d='M9 5h1'/%3E%3Cpath stroke='%23ffc2bb' d='M15 5h1'/%3E%3Cpath stroke='%23ff6554' d='M16 5h1'/%3E%3Cpath stroke='%23fc6453' d='M17 5h1'/%3E%3Cpath stroke='%23ee5d4d' d='M18 5h1'/%3E%3Cpath stroke='%23cd4939' d='M19 5h1'/%3E%3Cpath stroke='%23ff998e' d='M2 6h1'/%3E%3Cpath stroke='%23ff9d92' d='M3 6h1'/%3E%3Cpath stroke='%23ff6f5e' d='M11 6h1'/%3E%3Cpath stroke='%23ff6a58' d='M12 6h1'/%3E%3Cpath stroke='%23ff6451' d='M16 6h1'/%3E%3Cpath stroke='%23fd6451' d='M17 6h1'/%3E%3Cpath stroke='%23ee5e4d' d='M18 6h1'/%3E%3Cpath stroke='%23ce4a3a' d='M19 6h1'/%3E%3Cpath stroke='%23ff968a' d='M3 7h1'/%3E%3Cpath stroke='%23ff9487' d='M4 7h1'/%3E%3Cpath stroke='%23ff8f82' d='M5 7h1'/%3E%3Cpath stroke='%23ff7968' d='M9 7h1m-3 8h1'/%3E%3Cpath stroke='%23ff7463' d='M10 7h1'/%3E%3Cpath stroke='%23ff6f5d' d='M11 7h1'/%3E%3Cpath stroke='%23ff6450' d='M15 7h1'/%3E%3Cpath stroke='%23ff6552' d='M16 7h1'/%3E%3Cpath stroke='%23fd6653' d='M17 7h1'/%3E%3Cpath stroke='%23f0604e' d='M18 7h1'/%3E%3Cpath stroke='%23ce4a3b' d='M19 7h1'/%3E%3Cpath stroke='%23ff7565' d='M1 8h1'/%3E%3Cpath stroke='%23ff8677' d='M6 8h1m-2 2h1'/%3E%3Cpath stroke='%23ff7664' d='M10 8h1'/%3E%3Cpath stroke='%23ff6a53' d='M14 8h1'/%3E%3Cpath stroke='%23ff6953' d='M15 8h1'/%3E%3Cpath stroke='%23ff6b55' d='M16 8h1'/%3E%3Cpath stroke='%23fd6b56' d='M17 8h1'/%3E%3Cpath stroke='%23f06350' d='M18 8h1'/%3E%3Cpath stroke='%23cf4c3b' d='M19 8h1'/%3E%3Cpath stroke='%23ff6d5d' d='M1 9h1'/%3E%3Cpath stroke='%23ff8b7c' d='M4 9h1'/%3E%3Cpath stroke='%23ff775d' d='M13 9h1'/%3E%3Cpath stroke='%23ff745a' d='M14 9h1'/%3E%3Cpath stroke='%23ff7359' d='M15 9h1'/%3E%3Cpath stroke='%23ff735a' d='M16 9h1'/%3E%3Cpath stroke='%23fd715a' d='M17 9h1'/%3E%3Cpath stroke='%23f16752' d='M18 9h1'/%3E%3Cpath stroke='%23d24e3c' d='M19 9h1'/%3E%3Cpath stroke='%23ff6a59' d='M1 10h1m2 6h1'/%3E%3Cpath stroke='%23ff8778' d='M4 10h1'/%3E%3Cpath stroke='%23ff8374' d='M6 10h1m-3 1h2'/%3E%3Cpath stroke='%23ff8171' d='M7 10h1m-5 1h1'/%3E%3Cpath stroke='%23ff8271' d='M8 10h1m-2 1h1'/%3E%3Cpath stroke='%23ff8369' d='M12 10h1'/%3E%3Cpath stroke='%23ff8165' d='M13 10h1'/%3E%3Cpath stroke='%23ff7e61' d='M14 10h1'/%3E%3Cpath stroke='%23ff7d5f' d='M15 10h1'/%3E%3Cpath stroke='%23ff7b5f' d='M16 10h1'/%3E%3Cpath stroke='%23fd775d' d='M17 10h1'/%3E%3Cpath stroke='%23f36a53' d='M18 10h1'/%3E%3Cpath stroke='%23d34e3c' d='M19 10h1'/%3E%3Cpath stroke='%23ff6553' d='M1 11h1'/%3E%3Cpath stroke='%23ff8273' d='M6 11h1'/%3E%3Cpath stroke='%23ff8c6c' d='M13 11h1'/%3E%3Cpath stroke='%23ff8969' d='M14 11h1'/%3E%3Cpath stroke='%23ff8665' d='M15 11h1'/%3E%3Cpath stroke='%23ff8262' d='M16 11h1'/%3E%3Cpath stroke='%23fd7c5e' d='M17 11h1'/%3E%3Cpath stroke='%23f46d54' d='M18 11h1'/%3E%3Cpath stroke='%23d64f3b' d='M19 11h1'/%3E%3Cpath stroke='%23ff5f4d' d='M1 12h1'/%3E%3Cpath stroke='%23ff8070' d='M6 12h1'/%3E%3Cpath stroke='%23ff9279' d='M10 12h1'/%3E%3Cpath stroke='%23fff8f6' d='M13 12h1'/%3E%3Cpath stroke='%23ff936f' d='M14 12h1'/%3E%3Cpath stroke='%23ff906c' d='M15 12h1'/%3E%3Cpath stroke='%23ff8967' d='M16 12h1'/%3E%3Cpath stroke='%23fe7f5f' d='M17 12h1'/%3E%3Cpath stroke='%23f56e52' d='M18 12h1'/%3E%3Cpath stroke='%23d84f39' d='M19 12h1'/%3E%3Cpath stroke='%23ff5c4a' d='M1 13h1'/%3E%3Cpath stroke='%23ff7d6e' d='M5 13h1'/%3E%3Cpath stroke='%23ff907a' d='M9 13h1'/%3E%3Cpath stroke='%23ff957c' d='M10 13h1'/%3E%3Cpath stroke='%23ff9a7e' d='M11 13h1'/%3E%3Cpath stroke='%23ff9670' d='M15 13h1'/%3E%3Cpath stroke='%23ff8e68' d='M16 13h1'/%3E%3Cpath stroke='%23fe815e' d='M17 13h1'/%3E%3Cpath stroke='%23f66c4f' d='M18 13h1'/%3E%3Cpath stroke='%23da4d36' d='M19 13h1'/%3E%3Cpath stroke='%23ff5744' d='M1 14h1'/%3E%3Cpath stroke='%23ff6857' d='M2 14h1'/%3E%3Cpath stroke='%23ff8672' d='M8 14h1'/%3E%3Cpath stroke='%23ff8f78' d='M9 14h1'/%3E%3Cpath stroke='%23ff967c' d='M10 14h1'/%3E%3Cpath stroke='%23ff9c7e' d='M11 14h1'/%3E%3Cpath stroke='%23ffa07e' d='M12 14h1'/%3E%3Cpath stroke='%23ff8e66' d='M16 14h1'/%3E%3Cpath stroke='%23fe7f5a' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%23f76a4b' d='M18 14h1'/%3E%3Cpath stroke='%23da4a33' d='M19 14h1'/%3E%3Cpath stroke='%23ff523f' d='M1 15h1'/%3E%3Cpath stroke='%23ff7160' d='M4 15h1'/%3E%3Cpath stroke='%23ffc7c1' d='M5 15h1'/%3E%3Cpath stroke='%23ff836f' d='M8 15h1'/%3E%3Cpath stroke='%23ff8b74' d='M9 15h1'/%3E%3Cpath stroke='%23ff9379' d='M10 15h1'/%3E%3Cpath stroke='%23ff9a7c' d='M11 15h1'/%3E%3Cpath stroke='%23ff9e7c' d='M12 15h1'/%3E%3Cpath stroke='%23ffa07a' d='M13 15h1'/%3E%3Cpath stroke='%23ffd5c5' d='M15 15h1'/%3E%3Cpath stroke='%23ff8b62' d='M16 15h1'/%3E%3Cpath stroke='%23fe7c56' d='M17 15h1'/%3E%3Cpath stroke='%23f76545' d='M18 15h1'/%3E%3Cpath stroke='%23db4931' d='M19 15h1'/%3E%3Cpath stroke='%23ff4f3a' d='M1 16h1'/%3E%3Cpath stroke='%23ff5c49' d='M2 16h1'/%3E%3Cpath stroke='%23ff6452' d='M3 16h1'/%3E%3Cpath stroke='%23ff6e5e' d='M5 16h1'/%3E%3Cpath stroke='%23ff7462' d='M7 16h1'/%3E%3Cpath stroke='%23ff7c68' d='M8 16h1'/%3E%3Cpath stroke='%23ff846d' d='M9 16h1'/%3E%3Cpath stroke='%23ff8b71' d='M10 16h1'/%3E%3Cpath stroke='%23ff9174' d='M11 16h1'/%3E%3Cpath stroke='%23ff9674' d='M12 16h1'/%3E%3Cpath stroke='%23ff9571' d='M13 16h1'/%3E%3Cpath stroke='%23ff946d' d='M14 16h1'/%3E%3Cpath stroke='%23ff8d66' d='M15 16h1'/%3E%3Cpath stroke='%23ff855c' d='M16 16h1'/%3E%3Cpath stroke='%23fe7650' d='M17 16h1'/%3E%3Cpath stroke='%23f66141' d='M18 16h1'/%3E%3Cpath stroke='%23da462f' d='M19 16h1'/%3E%3Cpath stroke='%23fa4935' d='M1 17h1'/%3E%3Cpath stroke='%23fb5441' d='M2 17h1'/%3E%3Cpath stroke='%23fc5c4a' d='M3 17h1'/%3E%3Cpath stroke='%23fb6150' d='M4 17h1'/%3E%3Cpath stroke='%23fc6554' d='M5 17h1'/%3E%3Cpath stroke='%23fc6756' d='M6 17h1'/%3E%3Cpath stroke='%23fc6a58' d='M7 17h1'/%3E%3Cpath stroke='%23fc715c' d='M8 17h1'/%3E%3Cpath stroke='%23fc7761' d='M9 17h1'/%3E%3Cpath stroke='%23fd7e64' d='M10 17h1'/%3E%3Cpath stroke='%23fd8367' d='M11 17h1'/%3E%3Cpath stroke='%23fe8566' d='M12 17h1'/%3E%3Cpath stroke='%23fe8664' d='M13 17h1'/%3E%3Cpath stroke='%23fe8460' d='M14 17h1'/%3E%3Cpath stroke='%23fe7651' d='M16 17h1'/%3E%3Cpath stroke='%23fc6b47' d='M17 17h1'/%3E%3Cpath stroke='%23f2573a' d='M18 17h1'/%3E%3Cpath stroke='%23d4402a' d='M19 17h1'/%3E%3Cpath stroke='%23e85848' d='M1 18h1'/%3E%3Cpath stroke='%23ed4a37' d='M2 18h1'/%3E%3Cpath stroke='%23ec4f3d' d='M3 18h1'/%3E%3Cpath stroke='%23ee5443' d='M4 18h1'/%3E%3Cpath stroke='%23ed5746' d='M5 18h1'/%3E%3Cpath stroke='%23ee5a48' d='M7 18h1'/%3E%3Cpath stroke='%23ef5e4b' d='M8 18h1'/%3E%3Cpath stroke='%23f0644e' d='M9 18h1'/%3E%3Cpath stroke='%23f16750' d='M10 18h1'/%3E%3Cpath stroke='%23f46c52' d='M11 18h1'/%3E%3Cpath stroke='%23f66d51' d='M12 18h1'/%3E%3Cpath stroke='%23f66e51' d='M13 18h1'/%3E%3Cpath stroke='%23f66c4e' d='M14 18h1'/%3E%3Cpath stroke='%23f86a4a' d='M15 18h1'/%3E%3Cpath stroke='%23f76343' d='M16 18h1'/%3E%3Cpath stroke='%23f3583a' d='M17 18h1'/%3E%3Cpath stroke='%23e54930' d='M18 18h1'/%3E%3Cpath stroke='%23cd5140' d='M19 18h1'/%3E%3Cpath stroke='%23f6d9d6' d='M1 19h1'/%3E%3Cpath stroke='%23d25344' d='M2 19h1'/%3E%3Cpath stroke='%23c93c2b' d='M3 19h1'/%3E%3Cpath stroke='%23ca3f2f' d='M4 19h1'/%3E%3Cpath stroke='%23ca4131' d='M5 19h1'/%3E%3Cpath stroke='%23ca4333' d='M6 19h1'/%3E%3Cpath stroke='%23cc4332' d='M7 19h1'/%3E%3Cpath stroke='%23cf4434' d='M8 19h1'/%3E%3Cpath stroke='%23d24936' d='M9 19h1'/%3E%3Cpath stroke='%23d34936' d='M10 19h1'/%3E%3Cpath stroke='%23d84b37' d='M11 19h1'/%3E%3Cpath stroke='%23da4c36' d='M12 19h1'/%3E%3Cpath stroke='%23dc4d36' d='M13 19h1'/%3E%3Cpath stroke='%23d94933' d='M14 19h1'/%3E%3Cpath stroke='%23de4a32' d='M15 19h1'/%3E%3Cpath stroke='%23dd482f' d='M16 19h1'/%3E%3Cpath stroke='%23d6402a' d='M17 19h1'/%3E%3Cpath stroke='%23cf5140' d='M18 19h1'/%3E%3Cpath stroke='%23f1d8d5' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M6 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M7 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M8 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bced' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7baec' d='M19 0h1m0 1h1'/%3E%3Cpath stroke='%23dad2d0' d='M1 1h1'/%3E%3Cpath stroke='%23643529' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%235a1d0d' d='M3 1h1'/%3E%3Cpath stroke='%235d1e0d' d='M4 1h1'/%3E%3Cpath stroke='%235f1e0e' d='M5 1h1'/%3E%3Cpath stroke='%2363200e' d='M6 1h1'/%3E%3Cpath stroke='%2368210f' d='M7 1h1'/%3E%3Cpath stroke='%236f2310' d='M8 1h1'/%3E%3Cpath stroke='%23732511' d='M9 1h1'/%3E%3Cpath stroke='%23752511' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%237c2712' d='M11 1h1'/%3E%3Cpath stroke='%23822912' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%23852a13' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%23892b13' d='M14 1h1'/%3E%3Cpath stroke='%238a2b14' d='M15 1h1M6 2h1'/%3E%3Cpath stroke='%238e2d14' d='M16 1h1M7 2h1'/%3E%3Cpath stroke='%238c2c14' d='M17 1h1M2 6h1'/%3E%3Cpath stroke='%239d4732' d='M18 1h1M1 18h1'/%3E%3Cpath stroke='%23ebd8d3' d='M19 1h1'/%3E%3Cpath stroke='%2369220f' d='M2 2h1'/%3E%3Cpath stroke='%23782611' d='M3 2h1'/%3E%3Cpath stroke='%237e2812' d='M4 2h1'/%3E%3Cpath stroke='%23932e15' d='M8 2h1'/%3E%3Cpath stroke='%239a3016' d='M9 2h1'/%3E%3Cpath stroke='%239c3116' d='M10 2h1'/%3E%3Cpath stroke='%23a03217' d='M11 2h1'/%3E%3Cpath stroke='%23a43418' d='M12 2h1'/%3E%3Cpath stroke='%23a73518' d='M13 2h1'/%3E%3Cpath stroke='%23aa3618' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%23ab3618' d='M15 2h1'/%3E%3Cpath stroke='%23ad3719' d='M16 2h1m1 0h1M2 16h1m-1 1h1'/%3E%3Cpath stroke='%23ac3618' d='M17 2h1'/%3E%3Cpath stroke='%23b24e35' d='M19 2h1'/%3E%3Cpath stroke='%23591c0d' d='M1 3h1M1 4h1'/%3E%3Cpath stroke='%23792711' d='M2 3h1'/%3E%3Cpath stroke='%238d2c14' d='M3 3h1'/%3E%3Cpath stroke='%23962e15' d='M4 3h1'/%3E%3Cpath stroke='%239a2f16' d='M5 3h1'/%3E%3Cpath stroke='%23a13117' d='M6 3h1'/%3E%3Cpath stroke='%23a63317' d='M7 3h1'/%3E%3Cpath stroke='%23aa3418' d='M8 3h1'/%3E%3Cpath stroke='%23af3619' d='M9 3h1'/%3E%3Cpath stroke='%23b23719' d='M10 3h1M8 4h1M4 8h1'/%3E%3Cpath stroke='%23b5391a' d='M11 3h1'/%3E%3Cpath stroke='%23b73a1b' d='M12 3h1'/%3E%3Cpath stroke='%23b93b1b' d='M13 3h1'/%3E%3Cpath stroke='%23ba3b1b' d='M14 3h2m3 0h1M3 13h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23bb3b1b' d='M16 3h3M3 15h1'/%3E%3Cpath stroke='%23802812' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23962f15' d='M3 4h1'/%3E%3Cpath stroke='%239e3016' d='M4 4h1'/%3E%3Cpath stroke='%23a43216' d='M5 4h1'/%3E%3Cpath stroke='%23aa3317' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%23ae3518' d='M7 4h1'/%3E%3Cpath stroke='%23b5381a' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%23b8391a' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%23ba3a1b' d='M11 4h1m-8 7h2'/%3E%3Cpath stroke='%23bc3b1c' d='M12 4h1m-9 8h1'/%3E%3Cpath stroke='%23bd3c1c' d='M13 4h1m-1 1h1m-2 1h1m-7 6h1m-3 1h2'/%3E%3Cpath stroke='%23be3d1c' d='M14 4h3m-1 1h1m-1 1h1M4 14h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23bf3d1c' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1M4 17h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%235b1d0d' d='M1 5h1'/%3E%3Cpath stroke='%239c3016' d='M3 5h1'/%3E%3Cpath stroke='%23a43217' d='M4 5h1'/%3E%3Cpath stroke='%23b8553e' d='M5 5h1'/%3E%3Cpath stroke='%23d59485' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%23b33619' d='M7 5h1'/%3E%3Cpath stroke='%23b53719' d='M8 5h1'/%3E%3Cpath stroke='%23b8381a' d='M9 5h1M6 8h1'/%3E%3Cpath stroke='%23b9391b' d='M10 5h1'/%3E%3Cpath stroke='%23ba391b' d='M11 5h1M6 9h1m-2 1h1'/%3E%3Cpath stroke='%23bc3b1b' d='M12 5h1m-2 1h1m-6 5h1m-2 1h1'/%3E%3Cpath stroke='%23dc9887' d='M14 5h1'/%3E%3Cpath stroke='%23c85d42' d='M15 5h1M5 15h1'/%3E%3Cpath stroke='%23611f0e' d='M1 6h1'/%3E%3Cpath stroke='%23a23217' d='M3 6h1'/%3E%3Cpath stroke='%23d79585' d='M6 6h1'/%3E%3Cpath stroke='%23d89585' d='M7 6h1'/%3E%3Cpath stroke='%23b8371a' d='M8 6h1'/%3E%3Cpath stroke='%23ba391a' d='M9 6h1'/%3E%3Cpath stroke='%23bb3a1b' d='M10 6h1m-5 4h1'/%3E%3Cpath stroke='%23dd9887' d='M13 6h3m-4 1h1m-2 1h1M9 9h1m-2 2h1m-2 1h1m-2 1h1m-2 1h2'/%3E%3Cpath stroke='%23c03e1d' d='M17 6h1m-2 1h3m0 1h1m-1 1h1M7 16h1m-2 1h2m0 1h1'/%3E%3Cpath stroke='%2365200e' d='M1 7h1'/%3E%3Cpath stroke='%23902d15' d='M2 7h1'/%3E%3Cpath stroke='%23a73418' d='M3 7h1'/%3E%3Cpath stroke='%23af3518' d='M4 7h1'/%3E%3Cpath stroke='%23b43619' d='M5 7h1'/%3E%3Cpath stroke='%23d99585' d='M6 7h1'/%3E%3Cpath stroke='%23da9686' d='M7 7h1'/%3E%3Cpath stroke='%23db9686' d='M8 7h1M7 8h1'/%3E%3Cpath stroke='%23bc3a1b' d='M9 7h1M7 9h1'/%3E%3Cpath stroke='%23bd3b1b' d='M10 7h1m-4 3h1'/%3E%3Cpath stroke='%23be3c1c' d='M11 7h1m-2 1h1m-3 2h1m-2 1h1'/%3E%3Cpath stroke='%23de9987' d='M13 7h2m-3 1h2m-4 1h2m-3 1h1m-2 2h1m-2 2h1'/%3E%3Cpath stroke='%23c03f1d' d='M15 7h1m-9 8h1'/%3E%3Cpath stroke='%236a220f' d='M1 8h1'/%3E%3Cpath stroke='%23952f15' d='M2 8h1'/%3E%3Cpath stroke='%23ac3518' d='M3 8h1'/%3E%3Cpath stroke='%23b63719' d='M5 8h1'/%3E%3Cpath stroke='%23dc9786' d='M8 8h2M8 9h1'/%3E%3Cpath stroke='%23c2401d' d='M14 8h1m2 0h1m1 3h1M8 14h1m-1 2h1m-1 1h1m0 1h1m1 1h1'/%3E%3Cpath stroke='%23c2401e' d='M15 8h2m1 1h1M8 15h1'/%3E%3Cpath stroke='%23c13f1d' d='M18 8h1m0 2h1M9 19h2'/%3E%3Cpath stroke='%23702410' d='M1 9h1'/%3E%3Cpath stroke='%239b3016' d='M2 9h1'/%3E%3Cpath stroke='%23b03619' d='M3 9h1'/%3E%3Cpath stroke='%23b9381a' d='M5 9h1'/%3E%3Cpath stroke='%23df9a88' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23c4421e' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1m-1 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h3'/%3E%3Cpath stroke='%23c5431e' d='M14 9h1'/%3E%3Cpath stroke='%23c5431f' d='M15 9h1m-4 1h1m5 1h1m-9 1h1m-2 2h1m-1 1h1m0 2h1m0 1h1m6 0h1'/%3E%3Cpath stroke='%239e3217' d='M2 10h1'/%3E%3Cpath stroke='%23b4381a' d='M3 10h1'/%3E%3Cpath stroke='%23df9a87' d='M10 10h1m-2 1h1m-2 2h1'/%3E%3Cpath stroke='%23c6441f' d='M13 10h1m3 0h1m-8 3h1m-1 3h1'/%3E%3Cpath stroke='%23c74520' d='M14 10h2m-6 4h1m-1 1h1m7 2h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23c7451f' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%237b2711' d='M1 11h1'/%3E%3Cpath stroke='%23a13217' d='M2 11h1'/%3E%3Cpath stroke='%23b7391a' d='M3 11h1'/%3E%3Cpath stroke='%23e09b88' d='M11 11h1'/%3E%3Cpath stroke='%23e29d89' d='M12 11h1'/%3E%3Cpath stroke='%23c94621' d='M13 11h1m-3 2h1'/%3E%3Cpath stroke='%23ca4721' d='M14 11h1m2 1h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%23ca4821' d='M15 11h1m1 6h1'/%3E%3Cpath stroke='%23c94620' d='M16 11h1m1 3h1m-8 2h1m6 0h1'/%3E%3Cpath stroke='%23c84620' d='M17 11h1m0 2h1'/%3E%3Cpath stroke='%23a53418' d='M2 12h1'/%3E%3Cpath stroke='%23b83a1b' d='M3 12h1'/%3E%3Cpath stroke='%23e19d89' d='M11 12h1'/%3E%3Cpath stroke='%23e39e89' d='M12 12h1'/%3E%3Cpath stroke='%23e0947c' d='M13 12h1'/%3E%3Cpath stroke='%23cc4a22' d='M14 12h1m-3 2h1m4 0h1m-6 1h1'/%3E%3Cpath stroke='%23cd4a22' d='M15 12h1m0 1h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23cb4922' d='M16 12h1m0 1h1m-5 4h1'/%3E%3Cpath stroke='%23c3411e' d='M19 12h1m-1 1h1m-1 4h1m-8 2h2m3 0h1'/%3E%3Cpath stroke='%23a93618' d='M2 13h1'/%3E%3Cpath stroke='%23dd9987' d='M7 13h1m-2 2h1'/%3E%3Cpath stroke='%23e39f8a' d='M12 13h1'/%3E%3Cpath stroke='%23e59f8b' d='M13 13h1'/%3E%3Cpath stroke='%23e5a08b' d='M14 13h1m-2 1h1'/%3E%3Cpath stroke='%23ce4c23' d='M15 13h1m0 3h1'/%3E%3Cpath stroke='%23882b13' d='M1 14h1'/%3E%3Cpath stroke='%23e6a08b' d='M14 14h1'/%3E%3Cpath stroke='%23e6a18b' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23ce4b23' d='M16 14h1m-4 1h1'/%3E%3Cpath stroke='%238b2c14' d='M1 15h1m-1 1h1'/%3E%3Cpath stroke='%23ac3619' d='M2 15h1'/%3E%3Cpath stroke='%23d76b48' d='M15 15h1'/%3E%3Cpath stroke='%23cf4c23' d='M16 15h1m-2 1h1'/%3E%3Cpath stroke='%23c94721' d='M18 15h1m-3 3h1'/%3E%3Cpath stroke='%23bb3c1b' d='M3 16h1'/%3E%3Cpath stroke='%23bf3e1d' d='M6 16h1'/%3E%3Cpath stroke='%23cb4821' d='M12 16h1'/%3E%3Cpath stroke='%23cd4b23' d='M14 16h1'/%3E%3Cpath stroke='%23cc4922' d='M17 16h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%238d2d14' d='M1 17h1'/%3E%3Cpath stroke='%23bc3c1b' d='M3 17h1m-1 1h1'/%3E%3Cpath stroke='%23c84520' d='M11 17h1m1 1h1'/%3E%3Cpath stroke='%23ae3719' d='M2 18h1'/%3E%3Cpath stroke='%23c94720' d='M14 18h1'/%3E%3Cpath stroke='%23c95839' d='M19 18h1'/%3E%3Cpath stroke='%23a7bdf0' d='M0 19h1m0 1h1'/%3E%3Cpath stroke='%23ead7d3' d='M1 19h1'/%3E%3Cpath stroke='%23b34e35' d='M2 19h1'/%3E%3Cpath stroke='%23c03e1c' d='M8 19h1'/%3E%3Cpath stroke='%23c9583a' d='M18 19h1'/%3E%3Cpath stroke='%23f3dbd4' d='M19 19h1'/%3E%3Cpath stroke='%23a7bcef' d='M20 19h1m-2 1h1'/%3E%3C/svg%3E")
}
.status-bar{
margin: 0 3px;
box-shadow: inset 0 1px 2px grey;
padding: 2px 1px;
gap: 0
}
.status-bar-field{
-webkit-font-smoothing: antialiased;
box-shadow: none;
padding: 1px 2px;
border-right: 1px solid rgba(208,206,191,.75);
border-left: 1px solid hsla(0,0%,100%,.75)
}
.status-bar-field: first-of-type{
border-left: none
}
.status-bar-field: last-of-type{
border-right: none
}
button{
-webkit-font-smoothing: antialiased;
box-sizing: border-box;
border: 1px solid #003c74;
background: linear-gradient(180deg,#fff,#ecebe5 86%,#d8d0c4);
box-shadow: none;
border-radius: 3px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: none;
background: linear-gradient(180deg,#cdcac3,#e3e3db 8%,#e5e5de 94%,#f2f2f1)
}
button: not(: disabled): hover{
box-shadow: inset -1px 1px #fff0cf,inset 1px 2px #fdd889,inset -2px 2px #fbc761,inset 2px -2px #e5a01a
}
button.focused,button: focus{
box-shadow: inset -1px 1px #cee7ff,inset 1px 2px #98b8ea,inset -2px 2px #bcd4f6,inset 1px -1px #89ade4,inset 2px -2px #89ade4
}
button: :-moz-focus-inner{
border: 0
}
input,label,option,select,textarea{
-webkit-font-smoothing: antialiased
}
input[type=radio]{
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
margin: 0;
background: 0;
position: fixed;
opacity: 0;
border: none
}
input[type=radio]+label{
line-height: 16px
}
input[type=radio]+label: before{
background: linear-gradient(135deg,#dcdcd7,#fff);
border-radius: 50%;
border: 1px solid #1d5281
}
input[type=radio]: not([disabled]): not(: active)+label: hover: before{
box-shadow: inset -2px -2px #f8b636,inset 2px 2px #fedf9c
}
input[type=radio]: active+label: before{
background: linear-gradient(135deg,#b0b0a7,#e3e1d2)
}
input[type=radio]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a9dca6' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%234dbf4a' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23a0d29e' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%2355d551' d='M1 1h1'/%3E%3Cpath stroke='%2343c33f' d='M2 1h1'/%3E%3Cpath stroke='%2329a826' d='M3 1h1'/%3E%3Cpath stroke='%239acc98' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%2342c33f' d='M1 2h1'/%3E%3Cpath stroke='%2338b935' d='M2 2h1'/%3E%3Cpath stroke='%2321a121' d='M3 2h1'/%3E%3Cpath stroke='%23269623' d='M4 2h1'/%3E%3Cpath stroke='%232aa827' d='M1 3h1'/%3E%3Cpath stroke='%2322a220' d='M2 3h1'/%3E%3Cpath stroke='%23139210' d='M3 3h1'/%3E%3Cpath stroke='%2398c897' d='M4 3h1'/%3E%3Cpath stroke='%23249624' d='M2 4h1'/%3E%3Cpath stroke='%2398c997' d='M3 4h1'/%3E%3C/svg%3E")
}
input[type=radio]: focus+label{
outline: 1px dotted #000
}
input[type=radio][disabled]+label: before{
border: 1px solid #cac8bb;
background: #fff
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e8e6da' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23d2ceb5' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23e5e3d4' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%23d7d3bd' d='M1 1h1'/%3E%3Cpath stroke='%23d0ccb2' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23c7c2a2' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%23e2dfd0' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%23cdc8ac' d='M2 2h1'/%3E%3Cpath stroke='%23c5bf9f' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%23c3bd9c' d='M4 2h1'/%3E%3Cpath stroke='%23bfb995' d='M3 3h1'/%3E%3Cpath stroke='%23e2dfcf' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23c4be9d' d='M2 4h1'/%3E%3C/svg%3E")
}
input[type=email],input[type=password],textarea: :selection{
background: #2267cb;
color: #fff
}
input[type=range]: :-webkit-slider-thumb{
height: 21px;
width: 11px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(-8px)
}
input[type=range]: :-moz-range-thumb{
height: 21px;
width: 11px;
border: 0;
border-radius: 0;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(2px)
}
input[type=range]: :-webkit-slider-runnable-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range]: :-moz-range-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(-10px)
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(0)
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
fieldset{
box-shadow: none;
background: #fff;
border: 1px solid #d0d0bf;
border-radius: 4px;
padding-top: 10px
}
legend{
background: transparent;
color: #0046d5
}
.field-row{
display: flex;
align-items: center
}
.field-row>*+*{
margin-left: 6px
}
[class^=field-row]+[class^=field-row]{
margin-top: 6px
}
.field-row-stacked{
display: flex;
flex-direction: column
}
.field-row-stacked *+*{
margin-top: 6px
}
menu[role=tablist] button{
background: linear-gradient(180deg,#fff,#fafaf9 26%,#f0f0ea 95%,#ecebe5);
margin-left: -1px;
margin-right: 2px;
border-radius: 0;
border-color: #91a7b4;
border-top-right-radius: 3px;
border-top-left-radius: 3px;
padding: 0 12px 3px
}
menu[role=tablist] button: hover{
box-shadow: unset;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]{
border-color: #919b9c;
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]: first-of-type: before{
content: "";
display: block;
position: absolute;
z-index: -1;
top: 100%;
left: -1px;
height: 2px;
width: 0;
border-left: 1px solid #919b9c
}
[role=tabpanel]{
box-shadow: inset 1px 1px #fcfcfe,inset -1px -1px #fcfcfe,1px 2px 2px 0 rgba(208,206,191,.75)
}
ul.tree-view{
-webkit-font-smoothing: auto;
border: 1px solid #7f9db9;
padding: 2px 5px
}
@keyframes sliding{
0%{
transform: translateX(-30px)
}
to{
transform: translateX(100%)
}
}
progress{
box-sizing: border-box;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
height: 14px;
border: 1px solid #686868;
border-radius: 4px;
padding: 1px 2px 1px 0;
overflow: hidden;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress,progress: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px
}
progress[value]: :-webkit-progress-bar{
background-color: transparent
}
progress[value]: :-webkit-progress-value{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress[value]: :-moz-progress-bar{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-webkit-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-webkit-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]){
position: relative
}
progress: not([value]): before{
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before,progress: not([value]): before: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): after{
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): after,progress: not([value]): after: not([value]){
animation: sliding 2s linear 0s infinite
}
progress: not([value]): after: not([value]){
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-moz-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-moz-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress:not([value])::-moz-progress-bar {
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite;
}
progress:not([value])::after {
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
}
progress:not([value])::before {
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868;
}
Element {
}
progress:not([value]) {
position: relative;
}
progress:not([value]) {
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px;
}
</style>
</head>
<body>
<script>
var log = console.log;
var theme = 'light';
var special_col_names = ["trial_index","arm_name","trial_status","generation_method","generation_node","hostname","run_time","start_time","exit_code","signal","end_time","program_string"]
var result_names = [
"ACCURACY",
"RUNTIME"
];
var result_min_max = [
"max",
"min"
];
var tab_results_headers_json = [
"trial_index",
"arm_name",
"trial_status",
"generation_method",
"generation_node",
"ACCURACY",
"RUNTIME",
"recent_samples_size",
"n_samples",
"feature_proportion",
"n_clusters",
"confidence"
];
var tab_results_csv_json = [
[
0,
"0_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
8,
1805,
1049,
0.33994048649072645,
38,
0.025
],
[
1,
"1_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
4,
4327,
4143,
0.6661936850771308,
25,
0.25
],
[
2,
"2_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
6,
2644,
1491,
0.7782492747213692,
2,
0.005
],
[
3,
"3_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
3,
132,
3399,
0.23124847663007678,
37,
0.25
],
[
4,
"4_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
4,
893,
2461,
0.5290937158409507,
9,
0.01
],
[
5,
"5_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
4,
3366,
3053,
0.48109690327383575,
29,
0.05
],
[
6,
"6_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
88,
4816,
81,
0.09005798956379295,
46,
0.01
],
[
7,
"7_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
3,
2333,
4486,
0.9153071914725006,
17,
0.1
],
[
8,
"8_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
7,
1939,
1672,
0.1739967824500054,
14,
0.01
],
[
9,
"9_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
6,
4428,
3519,
0.8126070547234266,
50,
0.05
],
[
10,
"10_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.75,
8,
3603,
869,
0.7409501583576202,
26,
0.25
],
[
11,
"11_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
3,
1126,
4020,
0.25681405924260614,
13,
0.025
],
[
12,
"12_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
5,
363,
583,
0.9908365069665015,
34,
0.05
],
[
13,
"13_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
3,
2881,
4932,
0.007696779239922762,
5,
0.25
],
[
14,
"14_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
10,
3939,
1957,
0.42314850823767486,
22,
0.001
],
[
15,
"15_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
23,
1413,
2610,
0.5627624091226607,
41,
0.1
],
[
16,
"16_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
5,
1344,
2142,
0.44072412519715726,
43,
0.005
],
[
17,
"17_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
6,
3852,
2738,
0.5491518793758005,
21,
0.05
],
[
18,
"18_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.75,
10,
3125,
401,
0.8796893593743443,
7,
0.025
],
[
19,
"19_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
3,
588,
4801,
0.11486360391229392,
33,
0.1
],
[
20,
"20_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.75,
8,
1037,
738,
0.6298107178471982,
11,
0.1
],
[
21,
"21_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
5,
3536,
3838,
0.36398847202584145,
27,
0.01
],
[
22,
"22_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
5,
4652,
1801,
0.19157992803491652,
48,
0.05
],
[
23,
"23_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.72,
3,
2184,
3704,
0.799004172572866,
16,
0.001
],
[
24,
"24_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.75,
7,
2421,
267,
0.04136916619539261,
19,
0.25
],
[
25,
"25_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
4,
4884,
4612,
0.9601793958395719,
45,
0.1
],
[
26,
"26_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
5,
3142,
2272,
0.6089790624063462,
31,
0.005
],
[
27,
"27_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
3,
649,
2930,
0.4050433965455741,
8,
0.001
],
[
28,
"28_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.72,
4,
201,
1368,
0.85812704061158,
35,
0.005
],
[
29,
"29_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
10,
2732,
3210,
0.15518727025575935,
3,
0.025
],
[
30,
"30_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
73,
13,
5000,
0.2192707957780686,
19,
0.005
],
[
31,
"31_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
35,
1491,
3631,
0.12403805330982622,
18,
0.005
],
[
32,
"32_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
48,
1910,
116,
0.47205968790534736,
1,
0.25
],
[
33,
"33_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
49,
1973,
111,
0.4707797258890271,
1,
0.1
],
[
34,
"34_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
908,
5000,
0.6186451196736743,
20,
0.005
],
[
35,
"35_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
2775,
408,
0.5443238603243258,
1,
0.1
],
[
36,
"36_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
2506,
4673,
0.5292822311454493,
19,
0.005
],
[
37,
"37_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
296,
38,
4426,
0.007951913665264019,
17,
0.005
],
[
38,
"38_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
924,
1,
0.3849494981698533,
4,
0.25
],
[
39,
"39_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
134,
499,
3760,
0.08795125671347775,
17,
0.005
],
[
40,
"40_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
11,
3001,
302,
0.5620426447740903,
1,
0.05
],
[
41,
"41_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
134,
2086,
2938,
0.07422452038583398,
18,
0.005
],
[
42,
"42_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
1,
5000,
0.7032402736482409,
20,
0.05
],
[
43,
"43_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
1342,
4558,
0.37192178022630207,
19,
0.005
],
[
44,
"44_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
38,
1088,
72,
0.4132055907760345,
1,
0.1
],
[
45,
"45_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
3265,
4945,
0.4840989933243766,
19,
0.005
],
[
46,
"46_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
203,
3333,
4583,
0.14086069203318213,
19,
0.005
],
[
47,
"47_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
8,
1016,
490,
0.4647923312344443,
1,
0.25
],
[
48,
"48_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
2980,
1,
0.617510072017479,
50,
0.25
],
[
49,
"49_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
6,
2759,
663,
0.5407871716165975,
1,
0.25
],
[
50,
"50_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
86,
732,
5000,
0.001,
22,
0.005
],
[
51,
"51_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
3357,
829,
0.6667404604620493,
1,
0.1
],
[
52,
"52_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
5000,
2117,
0.8978511008006715,
9,
0.05
],
[
53,
"53_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
26,
201,
4901,
0.001,
19,
0.05
],
[
54,
"54_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
264,
1714,
4194,
0.001,
18,
0.005
],
[
55,
"55_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
35,
2600,
57,
0.4957458902039243,
2,
0.25
],
[
56,
"56_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
943,
5000,
0.999,
20,
0.005
],
[
57,
"57_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
17,
1413,
4963,
0.001,
21,
0.005
],
[
58,
"58_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
10,
905,
319,
0.508346724781483,
1,
0.1
],
[
59,
"59_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
6,
3610,
1281,
0.7603059304829971,
6,
0.05
],
[
60,
"60_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
12,
3228,
525,
0.8628429784099464,
16,
0.1
],
[
61,
"61_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
12,
3572,
602,
0.8193745028811916,
15,
0.025
],
[
62,
"62_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
11,
3269,
757,
0.7508531762958726,
5,
0.25
],
[
63,
"63_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
540,
4575,
0.7136567173281002,
50,
0.005
],
[
64,
"64_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
1393,
1039,
0.6050718003321335,
18,
0.05
],
[
65,
"65_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
377,
588,
0.7074899945183578,
3,
0.005
],
[
66,
"66_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
12,
1818,
578,
0.7202481667078356,
2,
0.005
],
[
67,
"67_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
898,
1247,
0.6860057660780017,
5,
0.05
],
[
68,
"68_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
3725,
4582,
0.6503086148184168,
1,
0.25
],
[
69,
"69_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
4464,
4417,
0.6818509532817413,
1,
0.01
],
[
70,
"70_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
14,
1971,
802,
0.6885780594397788,
13,
0.005
],
[
71,
"71_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
2358,
617,
0.7689094172842013,
3,
0.1
],
[
72,
"72_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
4555,
1272,
0.7451301937132816,
2,
0.05
],
[
73,
"73_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
90,
4736,
0.6635771360940844,
50,
0.01
],
[
74,
"74_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
52,
2611,
1285,
0.001,
6,
0.001
],
[
75,
"75_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
228,
3522,
0.6580063077161781,
48,
0.05
],
[
76,
"76_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
6,
217,
784,
0.6757650883989444,
12,
0.025
],
[
77,
"77_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2882,
5000,
0.6668507890969589,
50,
0.001
],
[
78,
"78_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
2716,
898,
0.721885666943998,
35,
0.25
],
[
79,
"79_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
23,
4825,
393,
0.7252552709874701,
4,
0.01
],
[
80,
"80_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
16,
3988,
414,
0.6637363232866711,
4,
0.005
],
[
81,
"81_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
4,
3742,
4618,
0.6987595497572743,
43,
0.025
],
[
82,
"82_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
3201,
797,
0.6489586937319599,
39,
0.005
],
[
83,
"83_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1050,
4648,
0.711416699011969,
14,
0.025
],
[
84,
"84_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
1384,
769,
0.6461039069977484,
50,
0.1
],
[
85,
"85_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
151,
2017,
0.6697996512602314,
50,
0.001
],
[
86,
"86_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
92,
3370,
734,
0.6201187448162513,
42,
0.001
],
[
87,
"87_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
14,
3016,
270,
0.7936223237374593,
27,
0.025
],
[
88,
"88_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
23,
3978,
320,
0.8947446327916824,
1,
0.025
],
[
89,
"89_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
5000,
4621,
0.712159711538742,
50,
0.025
],
[
90,
"90_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
2884,
5000,
0.6934509213148916,
1,
0.025
],
[
91,
"91_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
2878,
922,
0.5906834018553018,
50,
0.1
],
[
92,
"92_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
4335,
1354,
0.736561648523711,
47,
0.05
],
[
93,
"93_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
2541,
769,
0.6685888460719012,
46,
0.005
],
[
94,
"94_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
4,
4224,
4613,
0.7509022262030217,
50,
0.1
],
[
95,
"95_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
4550,
1035,
0.7121812715447933,
1,
0.05
],
[
96,
"96_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2123,
4784,
0.6616115248513105,
50,
0.025
],
[
97,
"97_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
9,
4419,
973,
0.6995686627357776,
1,
0.1
],
[
98,
"98_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
4788,
4502,
0.6635649238835231,
50,
0.1
],
[
99,
"99_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
643,
4435,
0.6434964058124305,
50,
0.05
],
[
100,
"100_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
4957,
1198,
0.999,
1,
0.05
],
[
101,
"101_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
25,
4389,
0.666569362562928,
50,
0.025
],
[
102,
"102_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
54,
3517,
0.6775038711421748,
1,
0.025
],
[
103,
"103_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1023,
4090,
0.6597424833439101,
1,
0.05
],
[
104,
"104_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
4738,
931,
0.7732755010560072,
1,
0.05
],
[
105,
"105_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
6,
885,
796,
0.7923979690569796,
1,
0.1
],
[
106,
"106_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
4471,
1811,
0.707015312122792,
1,
0.01
],
[
107,
"107_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
5000,
4699,
0.6887217275643372,
50,
0.1
],
[
108,
"108_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
147,
796,
0.6805098390604231,
1,
0.01
],
[
109,
"109_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2973,
4571,
0.3140570523947872,
50,
0.05
],
[
110,
"110_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
3253,
846,
0.6889279208438588,
21,
0.05
],
[
111,
"111_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
2272,
794,
0.001,
1,
0.25
],
[
112,
"112_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
3553,
805,
0.736735184069129,
1,
0.05
],
[
113,
"113_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
5000,
4793,
0.999,
50,
0.25
],
[
114,
"114_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
4679,
4724,
0.9183482861496162,
50,
0.01
],
[
115,
"115_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
4228,
749,
0.6898322846844717,
39,
0.05
],
[
116,
"116_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
5000,
3467,
0.6575191505515009,
50,
0.05
],
[
117,
"117_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
694,
5000,
0.630281618267671,
50,
0.1
],
[
118,
"118_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
4432,
832,
0.7800426584805444,
40,
0.05
],
[
119,
"119_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2197,
4477,
0.001,
50,
0.1
],
[
120,
"120_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
826,
2297,
0.6818298925871763,
1,
0.05
],
[
121,
"121_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
5000,
4860,
0.6263438125483541,
50,
0.1
],
[
122,
"122_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
3289,
619,
0.9976763102204342,
47,
0.05
],
[
123,
"123_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
4438,
914,
0.917564194281884,
1,
0.05
],
[
124,
"124_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
4053,
2160,
0.7977241397300612,
50,
0.01
],
[
125,
"125_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
6,
3064,
2336,
0.7139251111297376,
50,
0.005
],
[
126,
"126_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
4328,
4287,
0.6572471596916483,
50,
0.025
],
[
127,
"127_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
164,
3572,
0.21714942296564615,
1,
0.1
],
[
128,
"128_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
4909,
851,
0.7384263515989078,
41,
0.05
],
[
129,
"129_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2052,
722,
0.6615136665398079,
49,
0.05
],
[
130,
"130_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
4481,
1873,
0.7007000344412767,
1,
0.05
],
[
131,
"131_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
3358,
4501,
0.7156715241774282,
1,
0.1
],
[
132,
"132_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
456,
4672,
0.6303764231321758,
50,
0.25
],
[
133,
"133_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
13,
4935,
866,
0.656016314704905,
1,
0.05
],
[
134,
"134_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
3288,
3036,
0.7501098370977564,
1,
0.25
],
[
135,
"135_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
1397,
841,
0.7603144188839509,
1,
0.1
],
[
136,
"136_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
4985,
888,
0.6740949604355584,
46,
0.05
],
[
137,
"137_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
10,
4877,
1001,
0.6753118041769466,
50,
0.05
],
[
138,
"138_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
5000,
1582,
0.2844137236436489,
1,
0.001
],
[
139,
"139_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
4990,
926,
0.89243155992426,
48,
0.05
],
[
140,
"140_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
725,
4392,
0.6442992800830084,
1,
0.01
],
[
141,
"141_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
4,
2059,
817,
0.7880309976559751,
1,
0.1
],
[
142,
"142_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
1842,
734,
0.7600893910385425,
50,
0.1
],
[
143,
"143_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
5000,
5000,
0.6693974115040509,
50,
0.05
],
[
144,
"144_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
8,
5000,
1046,
0.7005838259729894,
50,
0.1
],
[
145,
"145_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
3968,
5000,
0.6232414319989195,
50,
0.025
],
[
146,
"146_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
4831,
882,
0.8428646955171785,
50,
0.1
],
[
147,
"147_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
5,
2121,
963,
0.7434045564380091,
50,
0.05
],
[
148,
"148_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
5000,
1288,
0.6641144400476727,
50,
0.05
],
[
149,
"149_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
5000,
1393,
0.6314099032548232,
50,
0.05
],
[
150,
"150_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
913,
0.7767906792658863,
21,
0.05
],
[
151,
"151_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
5000,
496,
0.6923615302833771,
50,
0.05
],
[
152,
"152_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
3897,
5000,
0.270565021196211,
50,
0.25
],
[
153,
"153_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
8,
5000,
1382,
0.7483132266736142,
8,
0.05
],
[
154,
"154_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
1211,
0.999,
50,
0.1
],
[
155,
"155_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
4,
509,
5000,
0.6568481472696277,
50,
0.05
],
[
156,
"156_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
14,
5000,
607,
0.999,
41,
0.05
],
[
157,
"157_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
1005,
0.2563398874847536,
50,
0.05
],
[
158,
"158_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
8,
5000,
1341,
0.8220663071810567,
50,
0.1
],
[
159,
"159_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
832,
0.9313494089663953,
50,
0.1
],
[
160,
"160_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
824,
0.8926194113073161,
50,
0.05
],
[
161,
"161_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
4969,
822,
0.7079390500563867,
45,
0.1
],
[
162,
"162_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
665,
0.716074442090068,
50,
0.1
],
[
163,
"163_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
985,
0.6387864762764006,
50,
0.05
],
[
164,
"164_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
3,
2402,
5000,
0.999,
1,
0.025
],
[
165,
"165_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
836,
0.7715475821906156,
50,
0.05
],
[
166,
"166_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
14,
5000,
578,
0.8032368116656814,
35,
0.1
],
[
167,
"167_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
2590,
2291,
0.6213735721047753,
1,
0.01
],
[
168,
"168_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
5000,
1972,
0.5959295807896947,
50,
0.01
],
[
169,
"169_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
4186,
983,
0.6602817963659388,
50,
0.1
],
[
170,
"170_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
9,
5000,
1040,
0.7979782891495295,
50,
0.1
],
[
171,
"171_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
656,
0.764843294511133,
50,
0.1
],
[
172,
"172_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
3,
337,
4739,
0.6310928258769002,
1,
0.25
],
[
173,
"173_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
19,
5000,
352,
0.7337879158380065,
50,
0.05
],
[
174,
"174_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
14,
5000,
520,
0.8496265797513647,
50,
0.1
],
[
175,
"175_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
779,
0.8740700525938645,
1,
0.05
],
[
176,
"176_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2817,
4402,
0.6244815322195211,
50,
0.025
],
[
177,
"177_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
14,
1764,
523,
0.999,
50,
0.1
],
[
178,
"178_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
5000,
2406,
0.7775398632108939,
1,
0.05
],
[
179,
"179_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
8,
1713,
945,
0.8580451723031465,
50,
0.1
],
[
180,
"180_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
4,
5000,
4414,
0.6471952155920562,
50,
0.05
],
[
181,
"181_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
8,
5000,
1089,
0.8180192367986366,
6,
0.05
],
[
182,
"182_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
2154,
792,
0.001,
50,
0.05
],
[
183,
"183_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
511,
3596,
0.8365154256361225,
50,
0.01
],
[
184,
"184_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
5000,
3572,
0.6468621589434136,
50,
0.1
],
[
185,
"185_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
10,
5000,
1213,
0.8001981586078634,
50,
0.05
],
[
186,
"186_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
6,
5000,
1504,
0.6226797618092015,
50,
0.1
],
[
187,
"187_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
5000,
1561,
0.7694577788270456,
36,
0.1
],
[
188,
"188_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1,
4512,
0.5904278210779706,
50,
0.1
],
[
189,
"189_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
5000,
1158,
0.911010357423044,
50,
0.05
],
[
190,
"190_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
923,
0.8263040079134097,
50,
0.25
],
[
191,
"191_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
775,
0.6420134356490866,
50,
0.1
],
[
192,
"192_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
8,
5000,
1076,
0.9444775991896345,
5,
0.1
],
[
193,
"193_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
4401,
1291,
0.8217675438010231,
50,
0.1
],
[
194,
"194_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
5000,
3991,
0.6123542539016081,
50,
0.05
],
[
195,
"195_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
4750,
1757,
0.6464401348940172,
50,
0.1
],
[
196,
"196_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
733,
0.6761297264354724,
50,
0.05
],
[
197,
"197_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
904,
0.999,
50,
0.25
],
[
198,
"198_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
5000,
2183,
0.8063364363523857,
50,
0.1
],
[
199,
"199_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
5000,
3556,
0.15911985399139902,
50,
0.1
],
[
200,
"200_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
3006,
708,
0.9862778239809792,
50,
0.25
],
[
201,
"201_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
5000,
2112,
0.9721946910325946,
50,
0.25
],
[
202,
"202_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
827,
0.8420355733356518,
50,
0.25
],
[
203,
"203_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
3412,
616,
0.8574074015959823,
50,
0.05
],
[
204,
"204_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
882,
0.999,
50,
0.05
],
[
205,
"205_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
17,
4942,
397,
0.001,
50,
0.25
],
[
206,
"206_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
3978,
1697,
0.9215040495661887,
50,
0.25
],
[
207,
"207_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
5000,
2762,
0.6633314539992142,
50,
0.05
],
[
208,
"208_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
5000,
1536,
0.8358543967394286,
50,
0.25
],
[
209,
"209_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
5000,
1525,
0.8306520328246377,
50,
0.05
],
[
210,
"210_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
970,
0.8999574075642919,
50,
0.25
],
[
211,
"211_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
4666,
1031,
0.9208588946630719,
50,
0.25
],
[
212,
"212_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
568,
5000,
4857,
0.001,
50,
0.005
],
[
213,
"213_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
3188,
654,
0.5003670409686108,
50,
0.005
],
[
214,
"214_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
16,
4499,
463,
0.5612934455132443,
50,
0.25
],
[
215,
"215_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
2511,
875,
0.8129850405324763,
50,
0.25
],
[
216,
"216_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
10,
4361,
1049,
0.5371830237923206,
50,
0.1
],
[
217,
"217_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
4702,
1161,
0.4583773626949859,
50,
0.1
],
[
218,
"218_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
2315,
906,
0.8386580463716778,
50,
0.25
],
[
219,
"219_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
1215,
936,
0.0876654819226013,
50,
0.1
],
[
220,
"220_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
5,
2090,
720,
0.8996623285335447,
50,
0.05
],
[
221,
"221_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
1823,
655,
0.8354178280470115,
50,
0.05
],
[
222,
"222_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
1333,
987,
0.4059548476419726,
50,
0.005
],
[
223,
"223_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2946,
3770,
0.7014583956581115,
3,
0.01
],
[
224,
"224_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
9,
4364,
1069,
0.8755283388575283,
50,
0.25
],
[
225,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
3,
410,
5000,
0.4450424869647617,
50,
0.05
],
[
226,
"226_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
2672,
1242,
0.8147695002371104,
50,
0.1
],
[
227,
"227_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
4370,
1253,
0.26158494343350547,
50,
0.05
],
[
228,
"228_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
13,
1325,
640,
0.8602358882652956,
50,
0.25
],
[
229,
"229_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
4115,
3745,
0.4627317296682644,
50,
0.1
],
[
230,
"230_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2426,
4434,
0.8222319367882052,
50,
0.05
],
[
231,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
2923,
1566,
0.8080835427768331,
50,
0.05
],
[
232,
"232_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
171,
1204,
853,
0.05703339764443661,
50,
0.005
],
[
233,
"233_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
3154,
766,
0.6047208622093322,
50,
0.005
],
[
234,
"234_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
4920,
847,
0.001,
50,
0.25
],
[
235,
"235_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
3622,
837,
0.999,
50,
0.005
],
[
236,
"236_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
1034,
1547,
0.5154916782356197,
50,
0.1
],
[
237,
"237_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
116,
2917,
188,
0.43697678441340254,
50,
0.005
],
[
238,
"238_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
5000,
2877,
0.22303167353655728,
50,
0.1
],
[
239,
"239_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
3936,
1281,
0.7848846974485356,
50,
0.25
],
[
240,
"240_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
5000,
3892,
0.399726376806833,
50,
0.05
],
[
241,
"241_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
14,
3946,
912,
0.7990042666322746,
50,
0.005
],
[
242,
"242_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
1435,
4584,
0.39673023952082404,
50,
0.1
],
[
243,
"243_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
38,
2878,
1061,
0.08809112828553695,
50,
0.025
],
[
244,
"244_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
4775,
851,
0.76902905689116,
50,
0.005
],
[
245,
"245_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1648,
5000,
0.3823476716998593,
50,
0.005
],
[
246,
"246_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
27,
1674,
1023,
0.007279073960341603,
50,
0.05
],
[
247,
"247_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
601,
4152,
0.9409419041147487,
50,
0.25
],
[
248,
"248_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2208,
692,
0.9935045077214596,
50,
0.1
],
[
249,
"249_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
2830,
950,
0.9167542049344579,
50,
0.005
],
[
250,
"250_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
1604,
790,
0.866002937705283,
50,
0.005
],
[
251,
"251_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
1379,
3735,
0.1830949959631036,
50,
0.1
],
[
252,
"252_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
888,
0.6150190831161434,
50,
0.25
],
[
253,
"253_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
1844,
3492,
0.8546102592843171,
50,
0.025
],
[
254,
"254_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
544,
5000,
1458,
0.1426561311557923,
50,
0.001
],
[
255,
"255_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
2183,
723,
0.8574883842675705,
50,
0.01
],
[
256,
"256_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
3217,
648,
0.4393707774689635,
1,
0.001
],
[
257,
"257_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
704,
0.5811802919237604,
1,
0.005
],
[
258,
"258_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
796,
0.9518719270955022,
50,
0.005
],
[
259,
"259_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
13,
5000,
692,
0.9079345273533329,
50,
0.005
],
[
260,
"260_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
738,
0.9878613072483448,
50,
0.005
],
[
261,
"261_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
40,
5000,
725,
0.999,
50,
0.005
],
[
262,
"262_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
746,
0.8952113442719988,
50,
0.005
],
[
263,
"263_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
737,
0.999,
50,
0.25
],
[
264,
"264_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
720,
0.8801383516037887,
50,
0.005
],
[
265,
"265_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
755,
0.999,
36,
0.25
],
[
266,
"266_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
632,
0.943986265964539,
50,
0.005
],
[
267,
"267_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
9,
5000,
819,
0.9092205906058024,
50,
0.005
],
[
268,
"268_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
748,
0.8019768908973539,
27,
0.005
],
[
269,
"269_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
4404,
667,
0.8654114036761528,
50,
0.005
],
[
270,
"270_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
841,
0.9884032462623883,
50,
0.005
],
[
271,
"271_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
780,
0.9166041332106984,
12,
0.25
],
[
272,
"272_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
844,
0.9316793888470701,
50,
0.25
],
[
273,
"273_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
717,
0.999,
50,
0.25
],
[
274,
"274_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
770,
0.9105168069373207,
32,
0.005
],
[
275,
"275_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
14,
3452,
713,
0.823810431564999,
50,
0.005
],
[
276,
"276_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
13,
5000,
549,
0.8699979080690801,
50,
0.005
],
[
277,
"277_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
760,
0.999,
50,
0.005
],
[
278,
"278_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
4686,
765,
0.869462293969305,
50,
0.005
],
[
279,
"279_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
828,
0.8881751628829332,
50,
0.005
],
[
280,
"280_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
14,
5000,
714,
0.999,
50,
0.005
],
[
281,
"281_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
837,
0.999,
50,
0.005
],
[
282,
"282_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
747,
0.9320758587789563,
50,
0.005
],
[
283,
"283_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
737,
0.9689747879127143,
50,
0.25
],
[
284,
"284_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
898,
0.9807653527811949,
50,
0.005
],
[
285,
"285_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
22,
5000,
362,
0.93954165772927,
50,
0.005
],
[
286,
"286_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
9,
4248,
870,
0.9306123304601617,
25,
0.25
],
[
287,
"287_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
3529,
631,
0.999,
50,
0.005
],
[
288,
"288_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
3875,
604,
0.9574090716279423,
50,
0.25
],
[
289,
"289_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
14,
5000,
656,
0.999,
50,
0.005
],
[
290,
"290_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
15,
5000,
675,
0.9700547559696653,
50,
0.005
],
[
291,
"291_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
4157,
756,
0.8849134431878031,
50,
0.005
],
[
292,
"292_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
2504,
615,
0.9321953517939313,
50,
0.005
],
[
293,
"293_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
14,
5000,
646,
0.999,
49,
0.005
],
[
294,
"294_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
10,
5000,
865,
0.9194678660739054,
50,
0.005
],
[
295,
"295_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
724,
0.9074256534202074,
50,
0.25
],
[
296,
"296_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
13,
5000,
645,
0.8591992262407122,
50,
0.005
],
[
297,
"297_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
19,
5000,
703,
0.8619604521993408,
50,
0.005
],
[
298,
"298_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
701,
0.7818736578173067,
26,
0.005
],
[
299,
"299_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
13,
5000,
541,
0.999,
50,
0.005
],
[
300,
"300_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
11,
5000,
606,
0.9598299316561394,
50,
0.005
],
[
301,
"301_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
4062,
576,
0.999,
50,
0.25
],
[
302,
"302_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
16,
5000,
659,
0.999,
50,
0.05
],
[
303,
"303_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
13,
4473,
704,
0.930791750735158,
50,
0.005
],
[
304,
"304_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
12,
5000,
675,
0.999,
50,
0.25
],
[
305,
"305_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
2416,
459,
0.7833388143045567,
50,
0.005
],
[
306,
"306_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
5000,
1476,
0.9375086473735355,
25,
0.005
],
[
307,
"307_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
14,
4801,
559,
0.8927901830739885,
50,
0.005
],
[
308,
"308_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
703,
0.07291489140817385,
50,
0.25
],
[
309,
"309_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
709,
0.907169671058134,
50,
0.25
],
[
310,
"310_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
770,
0.8529648514771779,
50,
0.005
],
[
311,
"311_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
4704,
707,
0.999,
50,
0.005
],
[
312,
"312_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
714,
0.7451361613935882,
50,
0.25
],
[
313,
"313_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
719,
0.9472985599570857,
50,
0.25
],
[
314,
"314_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
726,
0.9690520357495559,
50,
0.005
],
[
315,
"315_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
4648,
781,
0.8834955408272345,
50,
0.005
],
[
316,
"316_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
719,
0.943722616589076,
50,
0.005
],
[
317,
"317_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
17,
5000,
757,
0.9028489801204874,
44,
0.005
],
[
318,
"318_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
767,
0.001,
50,
0.25
],
[
319,
"319_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
13,
5000,
631,
0.9290182374725718,
50,
0.25
],
[
320,
"320_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
708,
0.20005699128646326,
50,
0.25
],
[
321,
"321_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
14,
4889,
641,
0.8903140514864384,
50,
0.005
],
[
322,
"322_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
5000,
685,
0.001,
50,
0.05
],
[
323,
"323_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
5000,
743,
0.8089698204733087,
26,
0.25
],
[
324,
"324_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
771,
0.9607913530675505,
50,
0.005
],
[
325,
"325_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
754,
0.9859082249499131,
50,
0.25
],
[
326,
"326_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
734,
0.6896209027931756,
50,
0.25
],
[
327,
"327_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
805,
0.17453190706345417,
50,
0.25
],
[
328,
"328_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
713,
0.8598093195931809,
50,
0.25
],
[
329,
"329_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
4644,
649,
0.908318378104964,
50,
0.005
],
[
330,
"330_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
4681,
668,
0.003608756039881772,
27,
0.25
],
[
331,
"331_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
11,
5000,
670,
0.999,
50,
0.25
],
[
332,
"332_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
711,
0.9305037889291533,
50,
0.25
],
[
333,
"333_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
797,
0.41715172438473175,
50,
0.25
],
[
334,
"334_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
2775,
551,
0.11930285448236862,
50,
0.25
],
[
335,
"335_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
28,
5000,
796,
0.8342734941915023,
50,
0.005
],
[
336,
"336_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
742,
0.26043953323155083,
50,
0.25
],
[
337,
"337_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
843,
0.2520873635632035,
50,
0.25
],
[
338,
"338_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
16,
4133,
623,
0.18827423464865922,
50,
0.25
],
[
339,
"339_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
14,
5000,
747,
0.7569108069807522,
50,
0.005
],
[
340,
"340_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
18,
5000,
513,
0.2162546042162429,
50,
0.25
],
[
341,
"341_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
15,
5000,
670,
0.8531553009764787,
50,
0.005
],
[
342,
"342_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
723,
0.3745609747501408,
50,
0.05
],
[
343,
"343_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
757,
0.842168634629018,
50,
0.005
],
[
344,
"344_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
5000,
749,
0.001,
50,
0.05
],
[
345,
"345_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
869,
0.1467053911330787,
50,
0.25
],
[
346,
"346_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
4599,
769,
0.001,
50,
0.25
],
[
347,
"347_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
737,
0.41795569709970476,
50,
0.05
],
[
348,
"348_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
42,
1609,
312,
0.5982983536381166,
50,
0.005
],
[
349,
"349_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
15,
5000,
675,
0.001,
50,
0.25
],
[
350,
"350_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
13,
5000,
814,
0.31317838227987144,
50,
0.05
],
[
351,
"351_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
6,
2842,
802,
0.999,
50,
0.005
],
[
352,
"352_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
13,
5000,
819,
0.999,
50,
0.25
],
[
353,
"353_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
16,
4358,
695,
0.3039656751684869,
50,
0.25
],
[
354,
"354_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
726,
0.001,
50,
0.1
],
[
355,
"355_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
12,
5000,
935,
0.7797207548212818,
50,
0.005
],
[
356,
"356_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
14,
5000,
707,
0.33571303169749694,
50,
0.1
],
[
357,
"357_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
4019,
745,
0.02248838931561986,
50,
0.25
],
[
358,
"358_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
14,
5000,
729,
0.5394591323348215,
50,
0.25
],
[
359,
"359_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
5000,
735,
0.8013012125312146,
50,
0.005
],
[
360,
"360_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
861,
0.27778462102593476,
50,
0.05
],
[
361,
"361_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
5000,
706,
0.7150975823935465,
19,
0.005
],
[
362,
"362_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
695,
0.06459962837172824,
30,
0.25
],
[
363,
"363_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
800,
0.13513851602332647,
50,
0.25
],
[
364,
"364_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
2951,
785,
0.006812174622822168,
50,
0.25
],
[
365,
"365_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
710,
0.14024130492562817,
50,
0.25
],
[
366,
"366_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
601,
0.05760573158022483,
50,
0.25
],
[
367,
"367_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
796,
0.08137997930227575,
50,
0.25
],
[
368,
"368_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
9,
3147,
608,
0.001,
4,
0.25
],
[
369,
"369_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
5000,
953,
0.12089866220714107,
30,
0.05
],
[
370,
"370_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
3751,
864,
0.20493229701975113,
50,
0.05
],
[
371,
"371_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
4356,
965,
0.12391058145619992,
50,
0.05
],
[
372,
"372_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
5000,
721,
0.25853798527325406,
50,
0.05
],
[
373,
"373_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
823,
0.001,
50,
0.25
],
[
374,
"374_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
4804,
877,
0.001,
50,
0.05
],
[
375,
"375_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
18,
5000,
447,
0.5300748366999283,
1,
0.005
],
[
376,
"376_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
817,
0.05366126620645661,
50,
0.25
],
[
377,
"377_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
4253,
669,
0.06696700757073049,
50,
0.25
],
[
378,
"378_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
744,
0.08828257677399401,
50,
0.25
],
[
379,
"379_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
731,
0.04127775569088101,
50,
0.25
],
[
380,
"380_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
38,
1979,
749,
0.23761393894024416,
17,
0.005
],
[
381,
"381_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
5000,
4071,
0.999,
50,
0.025
],
[
382,
"382_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
757,
0.001,
44,
0.05
],
[
383,
"383_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
5000,
690,
0.001,
50,
0.1
],
[
384,
"384_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
3187,
615,
0.7436508076614013,
50,
0.005
],
[
385,
"385_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
13,
5000,
818,
0.001,
50,
0.05
],
[
386,
"386_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
5000,
684,
0.08599855941522108,
50,
0.25
],
[
387,
"387_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
889,
0.045499796865145846,
50,
0.1
],
[
388,
"388_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
4761,
723,
0.001,
50,
0.25
],
[
389,
"389_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
12,
4206,
679,
0.001,
29,
0.25
],
[
390,
"390_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
9,
4793,
819,
0.010310073992859688,
50,
0.25
],
[
391,
"391_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
5000,
716,
0.001,
50,
0.25
],
[
392,
"392_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
11,
5000,
702,
0.411911582466323,
50,
0.05
],
[
393,
"393_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
13,
4677,
611,
0.43704026738231216,
50,
0.05
],
[
394,
"394_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
745,
0.8198129128171898,
50,
0.005
],
[
395,
"395_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
13,
5000,
750,
0.09343109363805713,
50,
0.05
],
[
396,
"396_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
12,
5000,
667,
0.11175766671663606,
50,
0.1
],
[
397,
"397_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
756,
0.001,
34,
0.25
],
[
398,
"398_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
5000,
790,
0.060702934149730985,
50,
0.1
],
[
399,
"399_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
899,
0.06563184902516948,
50,
0.25
],
[
400,
"400_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
5000,
786,
0.7070198209631249,
50,
0.005
],
[
401,
"401_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
4975,
787,
0.125993729321409,
50,
0.25
],
[
402,
"402_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2164,
972,
0.3770186721689508,
17,
0.005
],
[
403,
"403_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
16,
1,
367,
0.44395055393676514,
22,
0.005
],
[
404,
"404_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
37,
4549,
1091,
0.26660518040881465,
42,
0.005
],
[
405,
"405_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
3259,
3570,
0.3887627969143368,
11,
0.025
],
[
406,
"406_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
16,
3456,
1833,
0.4905639522164905,
1,
0.001
],
[
407,
"407_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
3680,
1460,
0.999,
50,
0.005
],
[
408,
"408_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
5000,
1904,
0.4166247105218249,
1,
0.25
],
[
409,
"409_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
4407,
975,
0.39243632317673677,
32,
0.005
],
[
410,
"410_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
1121,
671,
0.19385541020525499,
50,
0.25
],
[
411,
"411_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
1519,
1581,
0.5596033800264822,
38,
0.005
],
[
412,
"412_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
9,
3854,
736,
0.4342564062490193,
23,
0.25
],
[
413,
"413_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
1272,
649,
0.001,
23,
0.25
],
[
414,
"414_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
4,
2021,
1334,
0.5269071711351474,
15,
0.25
],
[
415,
"415_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
3825,
2242,
0.44562183541222367,
18,
0.05
],
[
416,
"416_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
93,
4259,
680,
0.17608042686766165,
50,
0.005
],
[
417,
"417_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
2683,
1113,
0.999,
42,
0.25
],
[
418,
"418_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
1941,
3529,
0.42810924093004576,
33,
0.01
],
[
419,
"419_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
11,
1649,
633,
0.001,
50,
0.25
],
[
420,
"420_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
1604,
1894,
0.6046972390041477,
21,
0.01
],
[
421,
"421_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1,
2556,
0.5337121943040549,
34,
0.001
],
[
422,
"422_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
4124,
2248,
0.45366892559378147,
16,
0.001
],
[
423,
"423_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
14,
5000,
1394,
0.4776251076716858,
23,
0.005
],
[
424,
"424_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
1604,
1834,
0.3920838792017923,
1,
0.05
],
[
425,
"425_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
14,
4922,
1857,
0.4126088529172627,
1,
0.001
],
[
426,
"426_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
5000,
1512,
0.001,
29,
0.25
],
[
427,
"427_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
1852,
2082,
0.5069191702757118,
35,
0.001
],
[
428,
"428_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
6,
4918,
1621,
0.3560038709174651,
26,
0.05
],
[
429,
"429_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
2666,
565,
0.01842848561858925,
27,
0.05
],
[
430,
"430_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
903,
607,
0.999,
12,
0.025
],
[
431,
"431_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
213,
508,
0.5254100213870043,
4,
0.1
],
[
432,
"432_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1,
464,
0.5313652727590594,
1,
0.025
],
[
433,
"433_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
6,
998,
909,
0.5442965689395072,
39,
0.005
],
[
434,
"434_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
15,
3697,
757,
0.4774595078194008,
19,
0.005
],
[
435,
"435_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
3825,
1451,
0.3864014712873743,
1,
0.05
],
[
436,
"436_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
4,
4474,
3407,
0.7949379129604626,
22,
0.1
],
[
437,
"437_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
6,
4289,
3083,
0.40471607736452286,
50,
0.05
],
[
438,
"438_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
2677,
1183,
0.999,
31,
0.005
],
[
439,
"439_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
16,
1707,
321,
0.001,
5,
0.25
],
[
440,
"440_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
4466,
810,
0.9641483287834083,
4,
0.005
],
[
441,
"441_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
4668,
1864,
0.7321922294553044,
31,
0.05
],
[
442,
"442_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
5000,
3229,
0.31417610064753965,
24,
0.05
],
[
443,
"443_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
2957,
1855,
0.7059928593250769,
14,
0.05
],
[
444,
"444_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
4637,
3520,
0.49292605961300334,
32,
0.1
],
[
445,
"445_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
1675,
2116,
0.7519482223661037,
29,
0.005
],
[
446,
"446_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
3980,
4537,
0.7501418357772501,
38,
0.001
],
[
447,
"447_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
1126,
682,
0.44192071813265327,
1,
0.005
],
[
448,
"448_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
4,
1852,
3528,
0.42681880943588707,
21,
0.005
],
[
449,
"449_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
2726,
473,
0.9330367422104456,
29,
0.005
],
[
450,
"450_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
4159,
3926,
0.957896660052395,
48,
0.01
],
[
451,
"451_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
1667,
3286,
0.5965252546435637,
24,
0.025
],
[
452,
"452_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
3881,
1711,
0.2846485936832602,
1,
0.25
],
[
453,
"453_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
3474,
2176,
0.6210917828959551,
35,
0.001
],
[
454,
"454_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
73,
1890,
2094,
0.16585159399919708,
12,
0.001
],
[
455,
"455_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
3988,
4696,
0.22523078102269195,
17,
0.1
],
[
456,
"456_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
135,
3235,
0.6156244366536562,
19,
0.001
],
[
457,
"457_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
909,
4500,
0.7397514253430202,
35,
0.001
],
[
458,
"458_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
8,
3779,
1900,
0.7223158381520736,
16,
0.005
],
[
459,
"459_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
295,
3057,
0.4544889829732204,
1,
0.025
],
[
460,
"460_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
5000,
2491,
0.8921517211870945,
30,
0.05
],
[
461,
"461_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
1130,
970,
0.214048626504335,
1,
0.25
],
[
462,
"462_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
5000,
4501,
0.9557026828457247,
8,
0.05
],
[
463,
"463_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
858,
801,
0.999,
34,
0.25
],
[
464,
"464_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
4410,
5000,
0.8949406695262023,
16,
0.05
],
[
465,
"465_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
3835,
2279,
0.013321466062740213,
19,
0.25
],
[
466,
"466_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1707,
5000,
0.2816825263081016,
10,
0.1
],
[
467,
"467_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
5000,
2455,
0.17632928154473462,
1,
0.05
],
[
468,
"468_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
5000,
1,
0.9856168556423941,
20,
0.001
],
[
469,
"469_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
4059,
1558,
0.4915173224667831,
50,
0.005
],
[
470,
"470_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
5000,
1,
0.9721565996301609,
22,
0.001
],
[
471,
"471_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
4,
1949,
3477,
0.2931454617097879,
14,
0.01
],
[
472,
"472_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
3594,
1331,
0.5255456055766929,
30,
0.05
],
[
473,
"473_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
4537,
3580,
0.23900574592880303,
33,
0.1
],
[
474,
"474_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
3726,
2394,
0.2173337941281086,
12,
0.05
],
[
475,
"475_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
4,
1903,
3503,
0.2982247726743922,
15,
0.005
],
[
476,
"476_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
1489,
4763,
0.9568953371384771,
49,
0.001
],
[
477,
"477_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
1099,
953,
0.4860794354555999,
8,
0.25
],
[
478,
"478_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
285,
5000,
1226,
0.33752384448555034,
50,
0.001
],
[
479,
"479_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1669,
5000,
0.2837856045567008,
8,
0.005
],
[
480,
"480_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
326,
1164,
0.3897186663370453,
42,
0.25
],
[
481,
"481_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
4503,
1025,
0.4145064124378352,
1,
0.05
],
[
482,
"482_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
52,
3025,
3940,
0.001,
1,
0.01
],
[
483,
"483_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
3382,
4335,
0.9392000070197282,
35,
0.001
],
[
484,
"484_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
8,
3507,
1362,
0.8854290644628017,
20,
0.005
],
[
485,
"485_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
6,
2576,
1919,
0.548133703380193,
42,
0.05
],
[
486,
"486_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
8,
3684,
1555,
0.554366818838051,
32,
0.005
],
[
487,
"487_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
820,
4531,
0.5206132835370568,
30,
0.1
],
[
488,
"488_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
1255,
1947,
0.6006422859264748,
50,
0.025
],
[
489,
"489_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
19,
3619,
2223,
0.48329435914854396,
30,
0.001
],
[
490,
"490_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
5000,
2318,
0.24366570842659147,
23,
0.25
],
[
491,
"491_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
1016,
1359,
0.9158797328163891,
10,
0.25
],
[
492,
"492_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1750,
3841,
0.736248499394575,
46,
0.05
],
[
493,
"493_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
4,
1813,
3497,
0.5121476874951434,
7,
0.01
],
[
494,
"494_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
3034,
3888,
0.6947012706679786,
50,
0.001
],
[
495,
"495_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
10,
2820,
613,
0.20489233488746636,
1,
0.001
],
[
496,
"496_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
3,
2002,
4603,
0.7765485267197236,
47,
0.001
],
[
497,
"497_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
3787,
3071,
0.533145226884064,
1,
0.001
],
[
498,
"498_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
1614,
812,
0.4858257802084549,
35,
0.25
],
[
499,
"499_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
1129,
2030,
0.001,
1,
0.25
],
[
500,
"500_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
1289,
1567,
0.45065026968526695,
26,
0.25
],
[
501,
"501_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
1474,
1765,
0.8234689823440202,
9,
0.05
],
[
502,
"502_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
908,
655,
0.6351102531722589,
1,
0.025
],
[
503,
"503_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1596,
4834,
0.86005266809287,
17,
0.001
],
[
504,
"504_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
3453,
1753,
0.626199565018023,
30,
0.001
],
[
505,
"505_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
3569,
968,
0.9871166221392824,
50,
0.05
],
[
506,
"506_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
22,
1594,
1913,
0.6528351401350895,
45,
0.001
],
[
507,
"507_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
1864,
3548,
0.2974288054785626,
44,
0.005
],
[
508,
"508_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
3857,
3435,
0.7326985250365886,
32,
0.01
],
[
509,
"509_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
4,
1019,
3408,
0.4914610798433735,
1,
0.001
],
[
510,
"510_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
4820,
3511,
0.8394056794842901,
34,
0.01
],
[
511,
"511_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1002,
3341,
0.5454414378331317,
24,
0.001
],
[
512,
"512_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
6,
2935,
1626,
0.8181233487818254,
14,
0.05
],
[
513,
"513_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
7,
2082,
827,
0.4827859932630064,
35,
0.005
],
[
514,
"514_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
4,
1884,
3501,
0.8498481559985087,
19,
0.01
],
[
515,
"515_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2808,
2823,
0.7948979909200419,
3,
0.001
],
[
516,
"516_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
6,
872,
848,
0.8958185059324668,
18,
0.25
],
[
517,
"517_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
534,
3511,
0.4009168045814217,
25,
0.1
],
[
518,
"518_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
897,
2087,
0.19269610179718188,
24,
0.1
],
[
519,
"519_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1063,
3470,
0.9195875769219617,
46,
0.001
],
[
520,
"520_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
2680,
532,
0.001,
50,
0.25
],
[
521,
"521_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
3946,
3466,
0.2673465651720765,
41,
0.1
],
[
522,
"522_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
4,
1890,
3257,
0.6636417814556919,
5,
0.25
],
[
523,
"523_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2513,
2690,
0.8288726636101957,
13,
0.01
],
[
524,
"524_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
1480,
1464,
0.377270533359544,
7,
0.005
],
[
525,
"525_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
4737,
3677,
0.8751779802770058,
10,
0.01
],
[
526,
"526_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
907,
831,
0.40476451057658164,
2,
0.005
],
[
527,
"527_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
1638,
1993,
0.560445980034962,
34,
0.005
],
[
528,
"528_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
3257,
878,
0.37911681804883257,
1,
0.05
],
[
529,
"529_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
4,
3836,
3429,
0.9116028385808955,
16,
0.01
],
[
530,
"530_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
3020,
1564,
0.5374652396672049,
50,
0.25
],
[
531,
"531_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
3940,
4205,
0.9257088198671121,
24,
0.05
],
[
532,
"532_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
970,
3057,
0.6487324996214424,
2,
0.001
],
[
533,
"533_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
127,
4381,
65,
0.5407349282564179,
2,
0.25
],
[
534,
"534_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
886,
593,
0.7907139689329222,
4,
0.25
],
[
535,
"535_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
707,
1896,
0.48636202203947365,
50,
0.25
],
[
536,
"536_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
2635,
456,
0.74928637699195,
3,
0.01
],
[
537,
"537_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
17,
1965,
685,
0.11540499502314222,
27,
0.1
],
[
538,
"538_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
1577,
751,
0.17638046641020655,
28,
0.05
],
[
539,
"539_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
2771,
609,
0.6205626328294502,
50,
0.01
],
[
540,
"540_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
3869,
2289,
0.7735260826049993,
17,
0.05
],
[
541,
"541_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
2776,
3390,
0.7111665984463869,
22,
0.01
],
[
542,
"542_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
7,
2887,
753,
0.9385634506486684,
38,
0.25
],
[
543,
"543_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
3305,
4797,
0.8830732249038981,
41,
0.001
],
[
544,
"544_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
1358,
1854,
0.46536042129427035,
50,
0.005
],
[
545,
"545_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
6,
1483,
1817,
0.4666163263404946,
50,
0.01
],
[
546,
"546_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
3387,
1983,
0.5535816995436849,
24,
0.001
],
[
547,
"547_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1006,
3914,
0.9443588135879006,
35,
0.1
],
[
548,
"548_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
396,
2208,
0.001,
1,
0.25
],
[
549,
"549_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
3754,
2406,
0.9981421007959504,
37,
0.05
],
[
550,
"550_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
9,
3912,
1239,
0.9728628571121158,
27,
0.05
],
[
551,
"551_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
68,
627,
3074,
0.051217718722649914,
9,
0.01
],
[
552,
"552_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
23,
4403,
836,
0.5184090143600552,
44,
0.005
],
[
553,
"553_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1,
3032,
0.716585185876549,
11,
0.025
],
[
554,
"554_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
10,
1590,
762,
0.001,
1,
0.25
],
[
555,
"555_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
298,
2235,
0.45902525589332627,
50,
0.001
],
[
556,
"556_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
5,
3328,
1934,
0.5793880309477567,
50,
0.005
],
[
557,
"557_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
7,
1778,
1952,
0.7920049723704474,
2,
0.01
],
[
558,
"558_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
5,
4180,
4773,
0.45549430732534013,
26,
0.025
],
[
559,
"559_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
6,
1032,
946,
0.5203499090207382,
50,
0.025
],
[
560,
"560_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
1931,
3287,
0.4685154136846345,
1,
0.25
],
[
561,
"561_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.75,
8,
1630,
780,
0.999,
38,
0.025
],
[
562,
"562_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
4,
302,
1842,
0.14033234692078178,
5,
0.25
],
[
563,
"563_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
160,
4755,
3343,
0.3024467373875457,
40,
0.001
],
[
564,
"564_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
3898,
2390,
0.999,
41,
0.001
]
];
var tab_job_infos_headers_json = [
"start_time",
"end_time",
"run_time",
"program_string",
"recent_samples_size",
"n_samples",
"feature_proportion",
"n_clusters",
"confidence",
"ACCURACY",
"RUNTIME",
"exit_code",
"signal",
"hostname",
"OO_Info_runtime",
"OO_Info_peak_memory",
"OO_Info_mean_memory",
"OO_Info_lpd",
"OO_Info_portion_req_label",
"OO_Info_SLURM_JOB_ID"
];
var tab_job_infos_csv_json = [
[
1746193884,
1746193903,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 695 confidence 0.25 feature_proportion 0.06459962837172824 n_clusters 30",
5000,
695,
0.06459962837172824,
30,
0.25,
0.75,
10,
0,
"None",
"i7173",
10,
531.7890625,
528.271484375,
-1,
0.989232006931122,
4903422
],
[
1746194883,
1746194902,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 800 confidence 0.25 feature_proportion 0.13513851602332647 n_clusters 50",
5000,
800,
0.13513851602332647,
50,
0.25,
0.75,
10,
0,
"None",
"i7171",
10,
533.64453125,
529.0361328125,
-1,
0.9901602821956804,
4903631
],
[
1746195644,
1746195664,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2951 n_samples 785 confidence 0.25 feature_proportion 0.006812174622822168 n_clusters 50",
2951,
785,
0.006812174622822168,
50,
0.25,
0.75,
7,
0,
"None",
"i7179",
7,
529.78515625,
526.4270833333334,
-1,
0.9715947769045115,
4903783
],
[
1746196504,
1746196531,
27,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 710 confidence 0.25 feature_proportion 0.14024130492562817 n_clusters 50",
5000,
710,
0.14024130492562817,
50,
0.25,
0.75,
12,
0,
"None",
"i7179",
12,
530.03125,
527.4482421875,
-1,
0.966643975493533,
4903945
],
[
1746197074,
1746197093,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 601 confidence 0.25 feature_proportion 0.05760573158022483 n_clusters 50",
5000,
601,
0.05760573158022483,
50,
0.25,
0.75,
10,
0,
"None",
"i7167",
10,
529.76171875,
527.259765625,
-1,
0.9670152855993563,
4904053
],
[
1746197603,
1746197623,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 796 confidence 0.25 feature_proportion 0.08137997930227575 n_clusters 50",
5000,
796,
0.08137997930227575,
50,
0.25,
0.75,
10,
0,
"None",
"i7167",
10,
532.12109375,
527.36328125,
-1,
0.985209480784702,
4904153
],
[
1746198664,
1746198683,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3147 n_samples 608 confidence 0.25 feature_proportion 0.001 n_clusters 4",
3147,
608,
0.001,
4,
0.25,
0.74,
9,
0,
"None",
"i7167",
9,
533.69921875,
527.6419270833334,
-1,
0.9907791323720527,
4904345
],
[
1746199774,
1746199793,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 953 confidence 0.05 feature_proportion 0.12089866220714107 n_clusters 30",
5000,
953,
0.12089866220714107,
30,
0.05,
0.75,
8,
0,
"None",
"i7166",
8,
533.13671875,
527.1354166666666,
-1,
0.9441178290735813,
4904577
],
[
1746200495,
1746200521,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3751 n_samples 864 confidence 0.05 feature_proportion 0.20493229701975113 n_clusters 50",
3751,
864,
0.20493229701975113,
50,
0.05,
0.75,
11,
0,
"None",
"i7178",
11,
533.359375,
528.732421875,
-1,
0.9624357942942013,
4904743
],
[
1746201144,
1746201163,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4356 n_samples 965 confidence 0.05 feature_proportion 0.12391058145619992 n_clusters 50",
4356,
965,
0.12391058145619992,
50,
0.05,
0.75,
9,
0,
"None",
"i7186",
9,
532.21875,
527.3984375,
-1,
0.9563710625657529,
4904897
],
[
1746201765,
1746201791,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 721 confidence 0.05 feature_proportion 0.25853798527325406 n_clusters 50",
5000,
721,
0.25853798527325406,
50,
0.05,
0.75,
15,
0,
"None",
"i7178",
15,
530.93359375,
527.2802734375,
-1,
0.9816201497617427,
4905024
],
[
1746202350,
1746202375,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 823 confidence 0.25 feature_proportion 0.001 n_clusters 50",
5000,
823,
0.001,
50,
0.25,
0.75,
10,
0,
"None",
"i7176",
10,
533.36328125,
527.22265625,
-1,
0.9676960207933659,
4905135
],
[
1746203046,
1746203066,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4804 n_samples 877 confidence 0.05 feature_proportion 0.001 n_clusters 50",
4804,
877,
0.001,
50,
0.05,
0.75,
10,
0,
"None",
"i7176",
10,
533.375,
527.2903645833334,
-1,
0.9769168884213132,
4905248
],
[
1746204247,
1746204279,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 447 confidence 0.005 feature_proportion 0.5300748366999283 n_clusters 1",
5000,
447,
0.5300748366999283,
1,
0.005,
0.75,
18,
0,
"None",
"i7174",
18,
528.48828125,
526.01171875,
-1,
0.9959155888359428,
4905474
],
[
1746204925,
1746204944,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 817 confidence 0.25 feature_proportion 0.05366126620645661 n_clusters 50",
5000,
817,
0.05366126620645661,
50,
0.25,
0.75,
10,
0,
"None",
"i7172",
10,
533.4296875,
527.2890625,
-1,
0.9606411287827217,
4905610
],
[
1746205606,
1746205625,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4253 n_samples 669 confidence 0.25 feature_proportion 0.06696700757073049 n_clusters 50",
4253,
669,
0.06696700757073049,
50,
0.25,
0.75,
11,
0,
"None",
"i7171",
11,
528.84375,
526.2451171875,
-1,
0.9936258431833653,
4905754
],
[
1746206305,
1746206324,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 744 confidence 0.25 feature_proportion 0.08828257677399401 n_clusters 50",
5000,
744,
0.08828257677399401,
50,
0.25,
0.75,
10,
0,
"None",
"i7171",
10,
531.42578125,
525.4244791666666,
-1,
0.9668915155640819,
4905883
],
[
1746207165,
1746207191,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 731 confidence 0.25 feature_proportion 0.04127775569088101 n_clusters 50",
5000,
731,
0.04127775569088101,
50,
0.25,
0.75,
11,
0,
"None",
"i7171",
11,
531.5546875,
527,
-1,
0.9952348536419333,
4906051
],
[
1746210006,
1746210056,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1979 n_samples 749 confidence 0.005 feature_proportion 0.23761393894024416 n_clusters 17",
1979,
749,
0.23761393894024416,
17,
0.005,
0.75,
38,
0,
"None",
"i7176",
38,
533.6875,
530.6536458333334,
-1,
0.9692431462342966,
4906654
],
[
1746211447,
1746211467,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4071 confidence 0.025 feature_proportion 0.999 n_clusters 50",
5000,
4071,
0.999,
50,
0.025,
0.73,
5,
0,
"None",
"i7185",
5,
530.51953125,
527.1067708333334,
-1,
0.5613589949873136,
4906976
],
[
1746212808,
1746212834,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 757 confidence 0.05 feature_proportion 0.001 n_clusters 44",
5000,
757,
0.001,
44,
0.05,
0.75,
12,
0,
"None",
"i7183",
12,
531.8671875,
528.3037109375,
-1,
0.9861377560492605,
4907271
],
[
1746213688,
1746213714,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 690 confidence 0.1 feature_proportion 0.001 n_clusters 50",
5000,
690,
0.001,
50,
0.1,
0.75,
15,
0,
"None",
"i7186",
15,
531.9453125,
528.314453125,
-1,
0.9821152299028405,
4907464
],
[
1746214747,
1746214773,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3187 n_samples 615 confidence 0.005 feature_proportion 0.7436508076614013 n_clusters 50",
3187,
615,
0.7436508076614013,
50,
0.005,
0.75,
11,
0,
"None",
"i7179",
11,
533.46484375,
528.9521484375,
-1,
0.9907791323720527,
4907720
],
[
1746215107,
1746215133,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 818 confidence 0.05 feature_proportion 0.001 n_clusters 50",
5000,
818,
0.001,
50,
0.05,
0.74,
13,
0,
"None",
"i7179",
13,
530.51171875,
527.9541015625,
-1,
0.9672628256699053,
4907805
],
[
1746216069,
1746216102,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 684 confidence 0.25 feature_proportion 0.08599855941522108 n_clusters 50",
5000,
684,
0.08599855941522108,
50,
0.25,
0.75,
15,
0,
"None",
"i7186",
15,
533.65625,
529.0517578125,
-1,
0.9735750974689028,
4908026
],
[
1746217080,
1746217105,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 889 confidence 0.1 feature_proportion 0.045499796865145846 n_clusters 50",
5000,
889,
0.045499796865145846,
50,
0.1,
0.75,
9,
0,
"None",
"i7183",
9,
532.53125,
527.7239583333334,
-1,
0.9902840522309548,
4908264
],
[
1746217959,
1746217984,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4761 n_samples 723 confidence 0.25 feature_proportion 0.001 n_clusters 50",
4761,
723,
0.001,
50,
0.25,
0.75,
11,
0,
"None",
"i7183",
11,
532.046875,
528.4423828125,
-1,
0.9843430905377808,
4908466
],
[
1746218387,
1746218413,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4206 n_samples 679 confidence 0.25 feature_proportion 0.001 n_clusters 29",
4206,
679,
0.001,
29,
0.25,
0.74,
12,
0,
"None",
"i7184",
12,
533.55859375,
529.0634765625,
-1,
0.9664583204406213,
4908574
],
[
1746219389,
1746219408,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4793 n_samples 819 confidence 0.25 feature_proportion 0.010310073992859688 n_clusters 50",
4793,
819,
0.010310073992859688,
50,
0.25,
0.74,
9,
0,
"None",
"i7173",
9,
530.08203125,
526.74609375,
-1,
0.9629927594529365,
4908825
],
[
1746219928,
1746219948,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 716 confidence 0.25 feature_proportion 0.001 n_clusters 50",
5000,
716,
0.001,
50,
0.25,
0.75,
10,
0,
"None",
"i7173",
10,
533.65625,
529.103515625,
-1,
0.9748127978216474,
4908959
],
[
1746220468,
1746220494,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 702 confidence 0.05 feature_proportion 0.411911582466323 n_clusters 50",
5000,
702,
0.411911582466323,
50,
0.05,
0.74,
11,
0,
"None",
"i7173",
11,
532.51953125,
528.955078125,
-1,
0.999195494770716,
4909090
],
[
1746221188,
1746221214,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4677 n_samples 611 confidence 0.05 feature_proportion 0.43704026738231216 n_clusters 50",
4677,
611,
0.43704026738231216,
50,
0.05,
0.74,
13,
0,
"None",
"i7183",
13,
528.8515625,
526.3134765625,
-1,
0.9831053901850362,
4909261
],
[
1746221854,
1746221880,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 745 confidence 0.005 feature_proportion 0.8198129128171898 n_clusters 50",
5000,
745,
0.8198129128171898,
50,
0.005,
0.75,
12,
0,
"None",
"i7183",
12,
533.32421875,
528.7353515625,
-1,
0.9681911009344638,
4909418
],
[
1746222569,
1746222595,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 750 confidence 0.05 feature_proportion 0.09343109363805713 n_clusters 50",
5000,
750,
0.09343109363805713,
50,
0.05,
0.75,
13,
0,
"None",
"i7180",
13,
533.203125,
528.6591796875,
-1,
0.9813107246735565,
4909571
],
[
1746223810,
1746223836,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 667 confidence 0.1 feature_proportion 0.11175766671663606 n_clusters 50",
5000,
667,
0.11175766671663606,
50,
0.1,
0.75,
12,
0,
"None",
"i7185",
12,
530.35546875,
527.8408203125,
-1,
0.9906553623367783,
4909837
],
[
1746224755,
1746224781,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 756 confidence 0.25 feature_proportion 0.001 n_clusters 34",
5000,
756,
0.001,
34,
0.25,
0.75,
9,
0,
"None",
"i7176",
9,
531.25,
525.23828125,
-1,
0.9824865400086639,
4910029
],
[
1746225829,
1746225848,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 790 confidence 0.1 feature_proportion 0.060702934149730985 n_clusters 50",
5000,
790,
0.060702934149730985,
50,
0.1,
0.75,
9,
0,
"None",
"i7176",
9,
533.14453125,
527.0598958333334,
-1,
0.9777832786682344,
4910255
],
[
1746227272,
1746227298,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 899 confidence 0.25 feature_proportion 0.06563184902516948 n_clusters 50",
5000,
899,
0.06563184902516948,
50,
0.25,
0.75,
11,
0,
"None",
"i7174",
11,
530.796875,
527.224609375,
-1,
0.9457887245497865,
4910561
],
[
1746228549,
1746228575,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 786 confidence 0.005 feature_proportion 0.7070198209631249 n_clusters 50",
5000,
786,
0.7070198209631249,
50,
0.005,
0.75,
11,
0,
"None",
"i7184",
11,
533.18359375,
528.6083984375,
-1,
0.972832477257256,
4910803
],
[
1746229729,
1746229749,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4975 n_samples 787 confidence 0.25 feature_proportion 0.125993729321409 n_clusters 50",
4975,
787,
0.125993729321409,
50,
0.25,
0.75,
10,
0,
"None",
"i7180",
10,
532.84765625,
526.8177083333334,
-1,
0.9740701776100006,
4911042
],
[
1746232529,
1746232542,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2164 n_samples 972 confidence 0.005 feature_proportion 0.3770186721689508 n_clusters 17",
2164,
972,
0.3770186721689508,
17,
0.005,
0.73,
4,
0,
"None",
"i7185",
4,
533.0078125,
526.95703125,
-1,
0.9624357942942013,
4911645
],
[
1746234390,
1746234415,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 367 confidence 0.005 feature_proportion 0.44395055393676514 n_clusters 22",
1,
367,
0.44395055393676514,
22,
0.005,
0.73,
16,
0,
"None",
"i7175",
16,
530.73046875,
528.2177734375,
-1,
0.002537285723126431,
4912063
],
[
1746237629,
1746237680,
51,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4549 n_samples 1091 confidence 0.005 feature_proportion 0.26660518040881465 n_clusters 42",
4549,
1091,
0.26660518040881465,
42,
0.005,
0.75,
37,
0,
"None",
"i7180",
37,
533.734375,
530.6920572916666,
-1,
0.9888606968252986,
4912772
],
[
1746240750,
1746240764,
14,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3259 n_samples 3570 confidence 0.025 feature_proportion 0.3887627969143368 n_clusters 11",
3259,
3570,
0.3887627969143368,
11,
0.025,
0.73,
4,
0,
"None",
"i7183",
4,
528.88671875,
526.8411458333334,
-1,
0.605049817439198,
4913471
],
[
1746243531,
1746243557,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3456 n_samples 1833 confidence 0.001 feature_proportion 0.4905639522164905 n_clusters 1",
3456,
1833,
0.4905639522164905,
1,
0.001,
0.74,
16,
0,
"None",
"i7178",
16,
533.203125,
528.666015625,
-1,
0.9571136827773996,
4914120
],
[
1746245233,
1746245253,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3680 n_samples 1460 confidence 0.005 feature_proportion 0.999 n_clusters 50",
3680,
1460,
0.999,
50,
0.005,
0.75,
7,
0,
"None",
"i7176",
7,
531.66796875,
526.8684895833334,
-1,
0.9938733832539143,
4914470
],
[
1746248032,
1746248051,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 1904 confidence 0.25 feature_proportion 0.4166247105218249 n_clusters 1",
5000,
1904,
0.4166247105218249,
1,
0.25,
0.74,
6,
0,
"None",
"i7172",
6,
532.0703125,
527.3424479166666,
-1,
0.9426325886502878,
4915000
],
[
1746251333,
1746251352,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4407 n_samples 975 confidence 0.005 feature_proportion 0.39243632317673677 n_clusters 32",
4407,
975,
0.39243632317673677,
32,
0.005,
0.75,
9,
0,
"None",
"i7186",
9,
534.8125,
527.3307291666666,
-1,
0.9654062751407884,
4915621
],
[
1746253300,
1746253320,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1121 n_samples 671 confidence 0.25 feature_proportion 0.19385541020525499 n_clusters 50",
1121,
671,
0.19385541020525499,
50,
0.25,
0.75,
8,
0,
"None",
"i7180",
8,
529.921875,
526.50390625,
-1,
0.9829197351321245,
4916076
],
[
1746255514,
1746255534,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1519 n_samples 1581 confidence 0.005 feature_proportion 0.5596033800264822 n_clusters 38",
1519,
1581,
0.5596033800264822,
38,
0.005,
0.74,
7,
0,
"None",
"i7178",
7,
533.31640625,
527.27734375,
-1,
0.8460300761185717,
4916530
],
[
1746258701,
1746258720,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3854 n_samples 736 confidence 0.25 feature_proportion 0.4342564062490193 n_clusters 23",
3854,
736,
0.4342564062490193,
23,
0.25,
0.74,
9,
0,
"None",
"i7167",
9,
533.15625,
527.1354166666666,
-1,
0.9564948326010273,
4917694
],
[
1746261913,
1746261932,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1272 n_samples 649 confidence 0.25 feature_proportion 0.001 n_clusters 23",
1272,
649,
0.001,
23,
0.25,
0.75,
9,
0,
"None",
"i7185",
9,
533.6171875,
527.6236979166666,
-1,
0.9623120242589269,
4918387
],
[
1746264633,
1746264647,
14,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2021 n_samples 1334 confidence 0.25 feature_proportion 0.5269071711351474 n_clusters 15",
2021,
1334,
0.5269071711351474,
15,
0.25,
0.72,
4,
0,
"None",
"i7183",
4,
532.8046875,
528.1080729166666,
-1,
0.9506157559254904,
4919312
],
[
1746267525,
1746267545,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3825 n_samples 2242 confidence 0.05 feature_proportion 0.44562183541222367 n_clusters 18",
3825,
2242,
0.44562183541222367,
18,
0.05,
0.74,
6,
0,
"None",
"i7181",
6,
532.96875,
526.8736979166666,
-1,
0.9304412401757535,
4920200
],
[
1746270275,
1746270377,
102,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4259 n_samples 680 confidence 0.005 feature_proportion 0.17608042686766165 n_clusters 50",
4259,
680,
0.17608042686766165,
50,
0.005,
0.75,
93,
0,
"None",
"i7186",
93,
531.4765625,
530.2874348958334,
-1,
0.9724611671514326,
4920943
],
[
1746273493,
1746273506,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2683 n_samples 1113 confidence 0.25 feature_proportion 0.999 n_clusters 42",
2683,
1113,
0.999,
42,
0.25,
0.73,
5,
0,
"None",
"i7169",
5,
530.49609375,
525.73046875,
-1,
0.9642923448233183,
4921841
],
[
1746276044,
1746276064,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1941 n_samples 3529 confidence 0.01 feature_proportion 0.42810924093004576 n_clusters 33",
1941,
3529,
0.42810924093004576,
33,
0.01,
0.74,
5,
0,
"None",
"i7180",
5,
530.22265625,
525.4947916666666,
-1,
0.36035645770159047,
4922373
],
[
1746277724,
1746277744,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1649 n_samples 633 confidence 0.25 feature_proportion 0.001 n_clusters 50",
1649,
633,
0.001,
50,
0.25,
0.75,
11,
0,
"None",
"i7183",
11,
529.6171875,
527.078125,
-1,
0.9793304041091652,
4922745
],
[
1746279764,
1746279784,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1604 n_samples 1894 confidence 0.01 feature_proportion 0.6046972390041477 n_clusters 21",
1604,
1894,
0.6046972390041477,
21,
0.01,
0.74,
6,
0,
"None",
"i7179",
6,
531.4609375,
526.7278645833334,
-1,
0.6948449780308188,
4923244
],
[
1746281915,
1746281928,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 2556 confidence 0.001 feature_proportion 0.5337121943040549 n_clusters 34",
1,
2556,
0.5337121943040549,
34,
0.001,
0.73,
4,
0,
"None",
"i7184",
4,
532.8671875,
526.8203125,
-1,
0.0003094250881861501,
4923785
],
[
1746285095,
1746285115,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4124 n_samples 2248 confidence 0.001 feature_proportion 0.45366892559378147 n_clusters 16",
4124,
2248,
0.45366892559378147,
16,
0.001,
0.74,
7,
0,
"None",
"i7181",
7,
532.37109375,
526.30078125,
-1,
0.9527817315427934,
4924503
],
[
1746288075,
1746288100,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 1394 confidence 0.005 feature_proportion 0.4776251076716858 n_clusters 23",
5000,
1394,
0.4776251076716858,
23,
0.005,
0.74,
14,
0,
"None",
"i7179",
14,
530.5234375,
526.904296875,
-1,
0.9611362089238196,
4925123
],
[
1746291338,
1746291358,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1604 n_samples 1834 confidence 0.05 feature_proportion 0.3920838792017923 n_clusters 1",
1604,
1834,
0.3920838792017923,
1,
0.05,
0.74,
5,
0,
"None",
"i7182",
5,
529.94921875,
525.2513020833334,
-1,
0.6948449780308188,
4925888
],
[
1746294480,
1746294506,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4922 n_samples 1857 confidence 0.001 feature_proportion 0.4126088529172627 n_clusters 1",
4922,
1857,
0.4126088529172627,
1,
0.001,
0.74,
14,
0,
"None",
"i7179",
14,
532.984375,
528.5068359375,
-1,
0.9764836932978526,
4926627
],
[
1746297542,
1746297561,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 1512 confidence 0.25 feature_proportion 0.001 n_clusters 29",
5000,
1512,
0.001,
29,
0.25,
0.75,
7,
0,
"None",
"i7179",
7,
531.46875,
526.7395833333334,
-1,
0.935701466674918,
4927297
],
[
1746299457,
1746299477,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1852 n_samples 2082 confidence 0.001 feature_proportion 0.5069191702757118 n_clusters 35",
1852,
2082,
0.5069191702757118,
35,
0.001,
0.74,
5,
0,
"None",
"i7176",
5,
530.078125,
525.3684895833334,
-1,
0.6876663159849,
4927756
],
[
1746302403,
1746302422,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4918 n_samples 1621 confidence 0.05 feature_proportion 0.3560038709174651 n_clusters 26",
4918,
1621,
0.3560038709174651,
26,
0.05,
0.75,
6,
0,
"None",
"i7183",
6,
533.06640625,
526.9765625,
-1,
0.9028405223095488,
4928464
],
[
1746305245,
1746305264,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2666 n_samples 565 confidence 0.05 feature_proportion 0.01842848561858925 n_clusters 27",
2666,
565,
0.01842848561858925,
27,
0.05,
0.75,
7,
0,
"None",
"i7181",
7,
532.9921875,
526.94140625,
-1,
0.9826103100439384,
4929032
],
[
1746307397,
1746307416,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 903 n_samples 607 confidence 0.025 feature_proportion 0.999 n_clusters 12",
903,
607,
0.999,
12,
0.025,
0.75,
8,
0,
"None",
"i7183",
8,
531.40234375,
526.6875,
-1,
0.9574231078655857,
4929550
],
[
1746311438,
1746311457,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 213 n_samples 508 confidence 0.1 feature_proportion 0.5254100213870043 n_clusters 4",
213,
508,
0.5254100213870043,
4,
0.1,
0.73,
5,
0,
"None",
"i7185",
5,
531.68359375,
526.9244791666666,
-1,
0.3954452627018999,
4930409
],
[
1746314498,
1746314511,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 464 confidence 0.025 feature_proportion 0.5313652727590594 n_clusters 1",
1,
464,
0.5313652727590594,
1,
0.025,
0.73,
4,
0,
"None",
"i7181",
4,
530.90234375,
526.2278645833334,
-1,
0.0020422055820285907,
4931081
],
[
1746317627,
1746317640,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 998 n_samples 909 confidence 0.005 feature_proportion 0.5442965689395072 n_clusters 39",
998,
909,
0.5442965689395072,
39,
0.005,
0.75,
6,
0,
"None",
"i7169",
6,
532.66015625,
526.6223958333334,
-1,
0.905563463085587,
4931799
],
[
1746320978,
1746321004,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3697 n_samples 757 confidence 0.005 feature_proportion 0.4774595078194008 n_clusters 19",
3697,
757,
0.4774595078194008,
19,
0.005,
0.75,
15,
0,
"None",
"i7184",
15,
528.13671875,
525.5732421875,
-1,
0.9961631289064917,
4932502
],
[
1746322819,
1746322838,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3825 n_samples 1451 confidence 0.05 feature_proportion 0.3864014712873743 n_clusters 1",
3825,
1451,
0.3864014712873743,
1,
0.05,
0.75,
7,
0,
"None",
"i7180",
7,
530.12109375,
525.40625,
-1,
0.9877467665078284,
4932879
],
[
1746324738,
1746324752,
14,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4474 n_samples 3407 confidence 0.1 feature_proportion 0.7949379129604626 n_clusters 22",
4474,
3407,
0.7949379129604626,
22,
0.1,
0.74,
4,
0,
"None",
"i7183",
4,
526.21875,
524.0885416666666,
-1,
0.6985580790890525,
4933272
],
[
1746326799,
1746326819,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4289 n_samples 3083 confidence 0.05 feature_proportion 0.40471607736452286 n_clusters 50",
4289,
3083,
0.40471607736452286,
50,
0.05,
0.73,
6,
0,
"None",
"i7179",
6,
533.0703125,
527.0221354166666,
-1,
0.8377993687728201,
4933788
],
[
1746330039,
1746330052,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2677 n_samples 1183 confidence 0.005 feature_proportion 0.999 n_clusters 31",
2677,
1183,
0.999,
31,
0.005,
0.74,
5,
0,
"None",
"i7183",
5,
531.5546875,
526.7578125,
-1,
0.9517296862429606,
4934427
],
[
1746333529,
1746333554,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1707 n_samples 321 confidence 0.25 feature_proportion 0.001 n_clusters 5",
1707,
321,
0.001,
5,
0.25,
0.74,
16,
0,
"None",
"i7180",
16,
530.5859375,
527.0830078125,
-1,
0.9943065783773748,
4935151
],
[
1746336680,
1746336700,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4466 n_samples 810 confidence 0.005 feature_proportion 0.9641483287834083 n_clusters 4",
4466,
810,
0.9641483287834083,
4,
0.005,
0.75,
10,
0,
"None",
"i7185",
10,
533.26171875,
528.701171875,
-1,
0.9524104214369701,
4935871
],
[
1746339980,
1746340000,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4668 n_samples 1864 confidence 0.05 feature_proportion 0.7321922294553044 n_clusters 31",
4668,
1864,
0.7321922294553044,
31,
0.05,
0.74,
7,
0,
"None",
"i7179",
7,
531.125,
526.37890625,
-1,
0.9228293830063742,
4936563
],
[
1746343370,
1746343390,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3229 confidence 0.05 feature_proportion 0.31417610064753965 n_clusters 24",
5000,
3229,
0.31417610064753965,
24,
0.05,
0.73,
5,
0,
"None",
"i7181",
5,
528.625,
525.2317708333334,
-1,
0.9089052540379974,
4937271
],
[
1746346541,
1746346554,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2957 n_samples 1855 confidence 0.05 feature_proportion 0.7059928593250769 n_clusters 14",
2957,
1855,
0.7059928593250769,
14,
0.05,
0.74,
5,
0,
"None",
"i7176",
5,
530.546875,
525.83203125,
-1,
0.8717742434556593,
4937897
],
[
1746348702,
1746348722,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4637 n_samples 3520 confidence 0.1 feature_proportion 0.49292605961300334 n_clusters 32",
4637,
3520,
0.49292605961300334,
32,
0.1,
0.74,
5,
0,
"None",
"i7181",
5,
530.453125,
525.7565104166666,
-1,
0.722631350949935,
4938332
],
[
1746351021,
1746351034,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1675 n_samples 2116 confidence 0.005 feature_proportion 0.7519482223661037 n_clusters 29",
1675,
2116,
0.7519482223661037,
29,
0.005,
0.74,
5,
0,
"None",
"i7175",
5,
530.6328125,
525.89453125,
-1,
0.6219444272541618,
4938872
],
[
1746353322,
1746353335,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3980 n_samples 4537 confidence 0.001 feature_proportion 0.7501418357772501 n_clusters 38",
3980,
4537,
0.7501418357772501,
38,
0.001,
0.73,
4,
0,
"None",
"i7184",
4,
531.17578125,
526.3919270833334,
-1,
0.492604740392351,
4939327
],
[
1746355342,
1746355362,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1126 n_samples 682 confidence 0.005 feature_proportion 0.44192071813265327 n_clusters 1",
1126,
682,
0.44192071813265327,
1,
0.005,
0.75,
9,
0,
"None",
"i7183",
9,
531.5078125,
526.8372395833334,
-1,
0.9718423169750603,
4939690
],
[
1746357291,
1746357305,
14,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1852 n_samples 3528 confidence 0.005 feature_proportion 0.42681880943588707 n_clusters 21",
1852,
3528,
0.42681880943588707,
21,
0.005,
0.74,
4,
0,
"None",
"i7176",
4,
533.125,
527.0364583333334,
-1,
0.34383315799245,
4940142
],
[
1746359403,
1746359423,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2726 n_samples 473 confidence 0.005 feature_proportion 0.9330367422104456 n_clusters 29",
2726,
473,
0.9330367422104456,
29,
0.005,
0.75,
9,
0,
"None",
"i7183",
9,
531.5546875,
526.7942708333334,
-1,
0.9952348536419333,
4940940
],
[
1746362842,
1746362862,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4159 n_samples 3926 confidence 0.01 feature_proportion 0.957896660052395 n_clusters 48",
4159,
3926,
0.957896660052395,
48,
0.01,
0.74,
6,
0,
"None",
"i7186",
6,
528.00390625,
525.9205729166666,
-1,
0.7433009468407699,
4941641
],
[
1746364944,
1746364957,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1667 n_samples 3286 confidence 0.025 feature_proportion 0.5965252546435637 n_clusters 24",
1667,
3286,
0.5965252546435637,
24,
0.025,
0.73,
5,
0,
"None",
"i7179",
5,
533.12109375,
527.0859375,
-1,
0.3094869732037874,
4942060
],
[
1746367102,
1746367122,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3881 n_samples 1711 confidence 0.25 feature_proportion 0.2846485936832602 n_clusters 1",
3881,
1711,
0.2846485936832602,
1,
0.25,
0.74,
6,
0,
"None",
"i7175",
6,
532.69140625,
526.6979166666666,
-1,
0.9529673865957052,
4942469
],
[
1746369444,
1746369464,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3474 n_samples 2176 confidence 0.001 feature_proportion 0.6210917828959551 n_clusters 35",
3474,
2176,
0.6210917828959551,
35,
0.001,
0.74,
7,
0,
"None",
"i7186",
7,
529.9765625,
526.56640625,
-1,
0.8882975431647998,
4942904
],
[
1746371605,
1746371694,
89,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1890 n_samples 2094 confidence 0.001 feature_proportion 0.16585159399919708 n_clusters 12",
1890,
2094,
0.16585159399919708,
12,
0.001,
0.74,
73,
0,
"None",
"i7180",
73,
532.890625,
531.063671875,
-1,
0.5848134166718237,
4943362
],
[
1746374025,
1746374045,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3988 n_samples 4696 confidence 0.1 feature_proportion 0.22523078102269195 n_clusters 17",
3988,
4696,
0.22523078102269195,
17,
0.1,
0.73,
4,
0,
"None",
"i7180",
4,
529.73828125,
526.3190104166666,
-1,
0.4935949006745467,
4943778
],
[
1746376245,
1746376258,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 135 n_samples 3235 confidence 0.001 feature_proportion 0.6156244366536562 n_clusters 19",
135,
3235,
0.6156244366536562,
19,
0.001,
0.73,
3,
0,
"None",
"i7183",
3,
533.0859375,
527.0846354166666,
-1,
0.02506343214307816,
4944184
],
[
1746378474,
1746378487,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 909 n_samples 4500 confidence 0.001 feature_proportion 0.7397514253430202 n_clusters 35",
909,
4500,
0.7397514253430202,
35,
0.001,
0.73,
4,
0,
"None",
"i7183",
4,
530.6875,
525.9140625,
-1,
0.11250696206448418,
4944593
],
[
1746382246,
1746382266,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3779 n_samples 1900 confidence 0.005 feature_proportion 0.7223158381520736 n_clusters 16",
3779,
1900,
0.7223158381520736,
16,
0.005,
0.74,
8,
0,
"None",
"i7186",
8,
532.87890625,
526.8802083333334,
-1,
0.9393526827155145,
4945325
],
[
1746384586,
1746384599,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 295 n_samples 3057 confidence 0.025 feature_proportion 0.4544889829732204 n_clusters 1",
295,
3057,
0.4544889829732204,
1,
0.025,
0.73,
3,
0,
"None",
"i7170",
3,
531.296875,
526.6119791666666,
-1,
0.07302432081193143,
4945757
],
[
1746386965,
1746386985,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2491 confidence 0.05 feature_proportion 0.8921517211870945 n_clusters 30",
5000,
2491,
0.8921517211870945,
30,
0.05,
0.74,
6,
0,
"None",
"i7183",
6,
532.9765625,
526.9309895833334,
-1,
0.92493347360604,
4946250
],
[
1746389636,
1746389663,
27,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1130 n_samples 970 confidence 0.25 feature_proportion 0.214048626504335 n_clusters 1",
1130,
970,
0.214048626504335,
1,
0.25,
0.75,
9,
0,
"None",
"i7178",
9,
531.96484375,
527.2643229166666,
-1,
0.9103286094436537,
4946772
],
[
1746392126,
1746392139,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4501 confidence 0.05 feature_proportion 0.9557026828457247 n_clusters 8",
5000,
4501,
0.9557026828457247,
8,
0.05,
0.73,
4,
0,
"None",
"i7185",
4,
530.23046875,
525.3802083333334,
-1,
0.5879695525713224,
4947193
],
[
1746394106,
1746394138,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 858 n_samples 801 confidence 0.25 feature_proportion 0.999 n_clusters 34",
858,
801,
0.999,
34,
0.25,
0.74,
6,
0,
"None",
"i7170",
6,
530,
525.3190104166666,
-1,
0.9453555294263258,
4947562
],
[
1746396289,
1746396309,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4410 n_samples 5000 confidence 0.05 feature_proportion 0.8949406695262023 n_clusters 16",
4410,
5000,
0.8949406695262023,
16,
0.05,
0.73,
4,
0,
"None",
"i7180",
4,
534.8828125,
526.1653645833334,
-1,
0.5458258555603689,
4947963
],
[
1746399847,
1746399866,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3835 n_samples 2279 confidence 0.25 feature_proportion 0.013321466062740213 n_clusters 19",
3835,
2279,
0.013321466062740213,
19,
0.25,
0.74,
5,
0,
"None",
"i7181",
5,
527.9765625,
525.8645833333334,
-1,
0.9425088186150133,
4948626
],
[
1746402268,
1746402288,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1707 n_samples 5000 confidence 0.1 feature_proportion 0.2816825263081016 n_clusters 10",
1707,
5000,
0.2816825263081016,
10,
0.1,
0.73,
4,
0,
"None",
"i7184",
4,
528.06640625,
525.9752604166666,
-1,
0.2112754502135033,
4949032
],
[
1746406406,
1746406420,
14,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2455 confidence 0.05 feature_proportion 0.17632928154473462 n_clusters 1",
5000,
2455,
0.17632928154473462,
1,
0.05,
0.74,
5,
0,
"None",
"i7183",
5,
530.046875,
525.3489583333334,
-1,
0.9115663097963983,
4949788
],
[
1746408668,
1746408681,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 1 confidence 0.001 feature_proportion 0.9856168556423941 n_clusters 20",
5000,
1,
0.9856168556423941,
20,
0.001,
"None",
"None",
1,
"None",
"i7175",
"",
"",
"",
"",
"",
4950223
],
[
1746410090,
1746410109,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4059 n_samples 1558 confidence 0.005 feature_proportion 0.4915173224667831 n_clusters 50",
4059,
1558,
0.4915173224667831,
50,
0.005,
0.74,
6,
0,
"None",
"i7185",
6,
532.08203125,
526.046875,
-1,
0.9641685747880439,
4950484
],
[
1746410728,
1746410741,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 1 confidence 0.001 feature_proportion 0.9721565996301609 n_clusters 22",
5000,
1,
0.9721565996301609,
22,
0.001,
"None",
"None",
1,
"None",
"i7184",
"",
"",
"",
"",
"",
4950596
],
[
1746413367,
1746413387,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1949 n_samples 3477 confidence 0.01 feature_proportion 0.2931454617097879 n_clusters 14",
1949,
3477,
0.2931454617097879,
14,
0.01,
0.74,
4,
0,
"None",
"i7179",
4,
531.7265625,
526.9752604166666,
-1,
0.361841698124884,
4951087
],
[
1746415827,
1746415847,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3594 n_samples 1331 confidence 0.05 feature_proportion 0.5255456055766929 n_clusters 30",
3594,
1331,
0.5255456055766929,
30,
0.05,
0.74,
7,
0,
"None",
"i7181",
7,
532.1015625,
526.1080729166666,
-1,
0.988427501701838,
4951533
],
[
1746418549,
1746418568,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4537 n_samples 3580 confidence 0.1 feature_proportion 0.23900574592880303 n_clusters 33",
4537,
3580,
0.23900574592880303,
33,
0.1,
0.74,
5,
0,
"None",
"i7175",
5,
528.328125,
524.95703125,
-1,
0.7238690513026796,
4952117
],
[
1746421048,
1746421061,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3726 n_samples 2394 confidence 0.05 feature_proportion 0.2173337941281086 n_clusters 12",
3726,
2394,
0.2173337941281086,
12,
0.05,
0.74,
5,
0,
"None",
"i7180",
5,
530.65625,
525.9466145833334,
-1,
0.8231945046104339,
4952561
],
[
1746423710,
1746423723,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1903 n_samples 3503 confidence 0.005 feature_proportion 0.2982247726743922 n_clusters 15",
1903,
3503,
0.2982247726743922,
15,
0.005,
0.74,
4,
0,
"None",
"i7183",
4,
533.00390625,
526.9296875,
-1,
0.35330156569094623,
4953035
],
[
1746426611,
1746426624,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1489 n_samples 4763 confidence 0.001 feature_proportion 0.9568953371384771 n_clusters 49",
1489,
4763,
0.9568953371384771,
49,
0.001,
0.73,
3,
0,
"None",
"i7176",
3,
537.41015625,
528.6341145833334,
-1,
0.184293582523671,
4953516
],
[
1746429772,
1746429791,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1099 n_samples 953 confidence 0.25 feature_proportion 0.4860794354555999 n_clusters 8",
1099,
953,
0.4860794354555999,
8,
0.25,
0.75,
7,
0,
"None",
"i7181",
7,
532.75,
526.71875,
-1,
0.8936815396992388,
4954134
],
[
1746433590,
1746433886,
296,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 1226 confidence 0.001 feature_proportion 0.33752384448555034 n_clusters 50",
5000,
1226,
0.33752384448555034,
50,
0.001,
0.74,
285,
0,
"None",
"i7176",
285,
532.703125,
532.1086189516129,
-1,
0.8979516059162077,
4955313
],
[
1746436353,
1746436372,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1669 n_samples 5000 confidence 0.005 feature_proportion 0.2837856045567008 n_clusters 8",
1669,
5000,
0.2837856045567008,
8,
0.005,
0.73,
4,
0,
"None",
"i7181",
4,
532.97265625,
526.9401041666666,
-1,
0.20657218887307383,
4956292
],
[
1746440680,
1746440706,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 326 n_samples 1164 confidence 0.25 feature_proportion 0.3897186663370453 n_clusters 42",
326,
1164,
0.3897186663370453,
42,
0.25,
0.74,
6,
0,
"None",
"i7184",
6,
531.421875,
526.6588541666666,
-1,
0.24209418899684387,
4957090
],
[
1746443696,
1746443722,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4503 n_samples 1025 confidence 0.05 feature_proportion 0.4145064124378352 n_clusters 1",
4503,
1025,
0.4145064124378352,
1,
0.05,
0.75,
10,
0,
"None",
"i7182",
10,
532.44140625,
527.9482421875,
-1,
0.9514821461724117,
4957596
],
[
1746447255,
1746447325,
70,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3025 n_samples 3940 confidence 0.01 feature_proportion 0.001 n_clusters 1",
3025,
3940,
0.001,
1,
0.01,
0.73,
52,
0,
"None",
"i7180",
52,
528.05078125,
526.7900390625,
-1,
0.18720217835262082,
4958318
],
[
1746450608,
1746450628,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3382 n_samples 4335 confidence 0.001 feature_proportion 0.9392000070197282 n_clusters 35",
3382,
4335,
0.9392000070197282,
35,
0.001,
0.73,
4,
0,
"None",
"i7179",
4,
535.625,
528.2174479166666,
-1,
0.4185902592982239,
4958991
],
[
1746454657,
1746454683,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3507 n_samples 1362 confidence 0.005 feature_proportion 0.8854290644628017 n_clusters 20",
3507,
1362,
0.8854290644628017,
20,
0.005,
0.74,
8,
0,
"None",
"i7182",
8,
528.71875,
525.2955729166666,
-1,
0.9271613342409802,
4959858
],
[
1746461103,
1746461123,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2576 n_samples 1919 confidence 0.05 feature_proportion 0.548133703380193 n_clusters 42",
2576,
1919,
0.548133703380193,
42,
0.05,
0.72,
6,
0,
"None",
"i7184",
6,
530.26953125,
525.5130208333334,
-1,
0.871959898508571,
4961093
],
[
1746464424,
1746464450,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3684 n_samples 1555 confidence 0.005 feature_proportion 0.554366818838051 n_clusters 32",
3684,
1555,
0.554366818838051,
32,
0.005,
0.74,
8,
0,
"None",
"i7186",
8,
530.18359375,
525.4739583333334,
-1,
0.9623120242589269,
4961673
],
[
1746467603,
1746467622,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 820 n_samples 4531 confidence 0.1 feature_proportion 0.5206132835370568 n_clusters 30",
820,
4531,
0.5206132835370568,
30,
0.1,
0.73,
4,
0,
"None",
"i7180",
4,
532.78515625,
526.67578125,
-1,
0.10149142892505725,
4962217
],
[
1746470423,
1746470443,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1255 n_samples 1947 confidence 0.025 feature_proportion 0.6006422859264748 n_clusters 50",
1255,
1947,
0.6006422859264748,
50,
0.025,
0.74,
5,
0,
"None",
"i7181",
5,
532.65625,
526.609375,
-1,
0.5436598799430657,
4962667
],
[
1746473664,
1746473696,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3619 n_samples 2223 confidence 0.001 feature_proportion 0.48329435914854396 n_clusters 30",
3619,
2223,
0.48329435914854396,
30,
0.001,
0.74,
19,
0,
"None",
"i7186",
19,
529.93359375,
527.3173828125,
-1,
0.9251810136765889,
4963235
],
[
1746476744,
1746476763,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2318 confidence 0.25 feature_proportion 0.24366570842659147 n_clusters 23",
5000,
2318,
0.24366570842659147,
23,
0.25,
0.74,
5,
0,
"None",
"i7183",
5,
532.78515625,
526.6901041666666,
-1,
0.8606968252985953,
4963774
],
[
1746479963,
1746479983,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1016 n_samples 1359 confidence 0.25 feature_proportion 0.9158797328163891 n_clusters 10",
1016,
1359,
0.9158797328163891,
10,
0.25,
0.74,
7,
0,
"None",
"i7182",
7,
530.11328125,
526.6979166666666,
-1,
0.6287517791942571,
4964303
],
[
1746483515,
1746483534,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1750 n_samples 3841 confidence 0.05 feature_proportion 0.736248499394575 n_clusters 46",
1750,
3841,
0.736248499394575,
46,
0.05,
0.73,
4,
0,
"None",
"i7185",
4,
531.66796875,
526.9375,
-1,
0.32489634259545763,
4964893
],
[
1746486805,
1746486824,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1813 n_samples 3497 confidence 0.01 feature_proportion 0.5121476874951434 n_clusters 7",
1813,
3497,
0.5121476874951434,
7,
0.01,
0.74,
4,
0,
"None",
"i7183",
4,
528.05078125,
525.9895833333334,
-1,
0.3365926109288941,
4965467
],
[
1746489755,
1746489774,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3034 n_samples 3888 confidence 0.001 feature_proportion 0.6947012706679786 n_clusters 50",
3034,
3888,
0.6947012706679786,
50,
0.001,
0.73,
5,
0,
"None",
"i7178",
5,
528.29296875,
524.8815104166666,
-1,
0.5632774305340676,
4965965
],
[
1746493386,
1746493405,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2820 n_samples 613 confidence 0.001 feature_proportion 0.20489233488746636 n_clusters 1",
2820,
613,
0.20489233488746636,
1,
0.001,
0.74,
10,
0,
"None",
"i7185",
10,
532.55078125,
526.5091145833334,
-1,
0.9972151742063247,
4966645
],
[
1746497225,
1746497238,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2002 n_samples 4603 confidence 0.001 feature_proportion 0.7765485267197236 n_clusters 47",
2002,
4603,
0.7765485267197236,
47,
0.001,
0.73,
3,
0,
"None",
"i7183",
3,
532.6328125,
526.6002604166666,
-1,
0.24778761061946902,
4967241
],
[
1746501127,
1746501146,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3787 n_samples 3071 confidence 0.001 feature_proportion 0.533145226884064 n_clusters 1",
3787,
3071,
0.533145226884064,
1,
0.001,
0.73,
5,
0,
"None",
"i7182",
5,
527.58203125,
525.5859375,
-1,
0.8045052292839904,
4967893
],
[
1746504350,
1746504370,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1614 n_samples 812 confidence 0.25 feature_proportion 0.4858257802084549 n_clusters 35",
1614,
812,
0.4858257802084549,
35,
0.25,
0.75,
8,
0,
"None",
"i7179",
8,
531.921875,
527.1171875,
-1,
0.9541432019308126,
4968393
],
[
1746509672,
1746509691,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1129 n_samples 2030 confidence 0.25 feature_proportion 0.001 n_clusters 1",
1129,
2030,
0.001,
1,
0.25,
0.74,
5,
0,
"None",
"i7186",
5,
526.390625,
524.4049479166666,
-1,
0.4192091094745962,
4969322
],
[
1746512911,
1746512931,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1289 n_samples 1567 confidence 0.25 feature_proportion 0.45065026968526695 n_clusters 26",
1289,
1567,
0.45065026968526695,
26,
0.25,
0.74,
5,
0,
"None",
"i7183",
5,
528.0078125,
524.6471354166666,
-1,
0.7179280896095055,
4969857
],
[
1746515794,
1746515813,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1474 n_samples 1765 confidence 0.05 feature_proportion 0.8234689823440202 n_clusters 9",
1474,
1765,
0.8234689823440202,
9,
0.05,
0.74,
6,
0,
"None",
"i7185",
6,
532.7421875,
526.6497395833334,
-1,
0.7297481279782164,
4970311
],
[
1746518857,
1746518883,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 908 n_samples 655 confidence 0.025 feature_proportion 0.6351102531722589 n_clusters 1",
908,
655,
0.6351102531722589,
1,
0.025,
0.75,
9,
0,
"None",
"i7186",
9,
530.0859375,
525.43359375,
-1,
0.9479547001670895,
4970875
],
[
1746521687,
1746521713,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1596 n_samples 4834 confidence 0.001 feature_proportion 0.86005266809287 n_clusters 17",
1596,
4834,
0.86005266809287,
17,
0.001,
0.73,
4,
0,
"None",
"i7179",
4,
536.2109375,
528.1380208333334,
-1,
0.19753697629803824,
4971306
],
[
1746524880,
1746524899,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3453 n_samples 1753 confidence 0.001 feature_proportion 0.626199565018023 n_clusters 30",
3453,
1753,
0.626199565018023,
30,
0.001,
0.74,
6,
0,
"None",
"i7181",
6,
532.97265625,
526.8841145833334,
-1,
0.9730800173278049,
4971856
],
[
1746528381,
1746528406,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3569 n_samples 968 confidence 0.05 feature_proportion 0.9871166221392824 n_clusters 50",
3569,
968,
0.9871166221392824,
50,
0.05,
0.75,
8,
0,
"None",
"i7184",
8,
532.71484375,
526.6171875,
-1,
0.9584751531654186,
4972451
],
[
1746531733,
1746531771,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1594 n_samples 1913 confidence 0.001 feature_proportion 0.6528351401350895 n_clusters 45",
1594,
1913,
0.6528351401350895,
45,
0.001,
0.74,
22,
0,
"None",
"i7184",
22,
532.859375,
529.16953125,
-1,
0.6905130267962126,
4973198
],
[
1746534914,
1746534933,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1864 n_samples 3548 confidence 0.005 feature_proportion 0.2974288054785626 n_clusters 44",
1864,
3548,
0.2974288054785626,
44,
0.005,
0.74,
5,
0,
"None",
"i7185",
5,
532.6015625,
526.5377604166666,
-1,
0.3460610186273903,
4973807
],
[
1746539813,
1746539832,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3857 n_samples 3435 confidence 0.01 feature_proportion 0.7326985250365886 n_clusters 32",
3857,
3435,
0.7326985250365886,
32,
0.01,
0.73,
4,
0,
"None",
"i7181",
4,
528.56640625,
525.1731770833334,
-1,
0.6638405841945665,
4974768
],
[
1746543091,
1746543111,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1019 n_samples 3408 confidence 0.001 feature_proportion 0.4914610798433735 n_clusters 1",
1019,
3408,
0.4914610798433735,
1,
0.001,
0.74,
4,
0,
"None",
"i7183",
4,
532.6640625,
526.6106770833334,
-1,
0.1891824989170122,
4975305
],
[
1746547975,
1746548001,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4820 n_samples 3511 confidence 0.01 feature_proportion 0.8394056794842901 n_clusters 34",
4820,
3511,
0.8394056794842901,
34,
0.01,
0.74,
5,
0,
"None",
"i7186",
5,
532.78515625,
526.75,
-1,
0.732842378860078,
4976073
],
[
1746551391,
1746551411,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1002 n_samples 3341 confidence 0.001 feature_proportion 0.5454414378331317 n_clusters 24",
1002,
3341,
0.5454414378331317,
24,
0.001,
0.73,
4,
0,
"None",
"i7185",
4,
531.11328125,
526.390625,
-1,
0.18602636301751346,
4976599
],
[
1746557345,
1746557364,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2935 n_samples 1626 confidence 0.05 feature_proportion 0.8181233487818254 n_clusters 14",
2935,
1626,
0.8181233487818254,
14,
0.05,
0.73,
6,
0,
"None",
"i7180",
6,
531.19921875,
526.41015625,
-1,
0.8860077975122223,
4977557
],
[
1746561963,
1746561982,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2082 n_samples 827 confidence 0.005 feature_proportion 0.4827859932630064 n_clusters 35",
2082,
827,
0.4827859932630064,
35,
0.005,
0.73,
7,
0,
"None",
"i7180",
7,
532.96484375,
526.8450520833334,
-1,
0.9771644284918621,
4978359
],
[
1746565393,
1746565413,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1884 n_samples 3501 confidence 0.01 feature_proportion 0.8498481559985087 n_clusters 19",
1884,
3501,
0.8498481559985087,
19,
0.01,
0.74,
4,
0,
"None",
"i7180",
4,
531.48828125,
526.7578125,
-1,
0.3497741196856241,
4978865
],
[
1746569823,
1746569843,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2808 n_samples 2823 confidence 0.001 feature_proportion 0.7948979909200419 n_clusters 3",
2808,
2823,
0.7948979909200419,
3,
0.001,
0.73,
4,
0,
"None",
"i7182",
4,
531.39453125,
526.6341145833334,
-1,
0.6950925181013676,
4979522
],
[
1746573764,
1746573784,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 872 n_samples 848 confidence 0.25 feature_proportion 0.8958185059324668 n_clusters 18",
872,
848,
0.8958185059324668,
18,
0.25,
0.75,
6,
0,
"None",
"i7185",
6,
528.0859375,
524.6640625,
-1,
0.9460981496379727,
4980194
],
[
1746578748,
1746578768,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 534 n_samples 3511 confidence 0.1 feature_proportion 0.4009168045814217 n_clusters 25",
534,
3511,
0.4009168045814217,
25,
0.1,
0.73,
4,
0,
"None",
"i7185",
4,
530.3125,
525.5950520833334,
-1,
0.09913979825484251,
4981004
],
[
1746583626,
1746583646,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 897 n_samples 2087 confidence 0.1 feature_proportion 0.19269610179718188 n_clusters 24",
897,
2087,
0.19269610179718188,
24,
0.1,
0.73,
4,
0,
"None",
"i7180",
4,
528.2109375,
524.77734375,
-1,
0.333065164923572,
4981770
],
[
1746586804,
1746586835,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1063 n_samples 3470 confidence 0.001 feature_proportion 0.9195875769219617 n_clusters 46",
1063,
3470,
0.9195875769219617,
46,
0.001,
0.73,
4,
0,
"None",
"i7184",
4,
533.0546875,
526.98828125,
-1,
0.19735132124512655,
4982211
],
[
1746590389,
1746590409,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2680 n_samples 532 confidence 0.25 feature_proportion 0.001 n_clusters 50",
2680,
532,
0.001,
50,
0.25,
0.75,
7,
0,
"None",
"i7182",
7,
531.35546875,
526.703125,
-1,
0.9876848814901912,
4982796
],
[
1746596454,
1746596474,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3946 n_samples 3466 confidence 0.1 feature_proportion 0.2673465651720765 n_clusters 41",
3946,
3466,
0.2673465651720765,
41,
0.1,
0.73,
5,
0,
"None",
"i7185",
5,
530.87109375,
524.76953125,
-1,
0.6731852218577882,
4983705
],
[
1746599744,
1746599757,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1890 n_samples 3257 confidence 0.25 feature_proportion 0.6636417814556919 n_clusters 5",
1890,
3257,
0.6636417814556919,
5,
0.25,
0.74,
4,
0,
"None",
"i7182",
4,
528.28125,
524.8411458333334,
-1,
0.35088805000309425,
4984213
],
[
1746603084,
1746603104,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2513 n_samples 2690 confidence 0.01 feature_proportion 0.8288726636101957 n_clusters 13",
2513,
2690,
0.8288726636101957,
13,
0.01,
0.73,
4,
0,
"None",
"i7181",
4,
532.5703125,
526.46875,
-1,
0.7775852466117953,
4984753
],
[
1746606272,
1746606291,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1480 n_samples 1464 confidence 0.005 feature_proportion 0.377270533359544 n_clusters 7",
1480,
1464,
0.377270533359544,
7,
0.005,
0.74,
6,
0,
"None",
"i7180",
6,
532.25,
526.21875,
-1,
0.9069868184912433,
4985283
],
[
1746609803,
1746609829,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4737 n_samples 3677 confidence 0.01 feature_proportion 0.8751779802770058 n_clusters 10",
4737,
3677,
0.8751779802770058,
10,
0.01,
0.73,
4,
0,
"None",
"i7181",
4,
528.14453125,
524.7434895833334,
-1,
0.7482517482517482,
4985856
],
[
1746613412,
1746613450,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 907 n_samples 831 confidence 0.005 feature_proportion 0.40476451057658164 n_clusters 2",
907,
831,
0.40476451057658164,
2,
0.005,
0.75,
7,
0,
"None",
"i7184",
7,
531.296875,
526.6106770833334,
-1,
0.9350826164985457,
4986412
],
[
1746616930,
1746616949,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1638 n_samples 1993 confidence 0.005 feature_proportion 0.560445980034962 n_clusters 34",
1638,
1993,
0.560445980034962,
34,
0.005,
0.74,
6,
0,
"None",
"i7183",
6,
528.25390625,
524.8697916666666,
-1,
0.7095736122284795,
4987036
],
[
1746620631,
1746620650,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3257 n_samples 878 confidence 0.05 feature_proportion 0.37911681804883257 n_clusters 1",
3257,
878,
0.37911681804883257,
1,
0.05,
0.75,
7,
0,
"None",
"i7180",
7,
532.53125,
526.5377604166666,
-1,
0.9780308187387834,
4987586
],
[
1746627129,
1746627155,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3836 n_samples 3429 confidence 0.01 feature_proportion 0.9116028385808955 n_clusters 16",
3836,
3429,
0.9116028385808955,
16,
0.01,
0.74,
4,
0,
"None",
"i7180",
4,
531.34765625,
526.5859375,
-1,
0.6617983786125379,
4988547
],
[
1746632448,
1746632467,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3020 n_samples 1564 confidence 0.25 feature_proportion 0.5374652396672049 n_clusters 50",
3020,
1564,
0.5374652396672049,
50,
0.25,
0.74,
6,
0,
"None",
"i7185",
6,
532.08203125,
526.01953125,
-1,
0.9611980939414567,
4989335
],
[
1746635897,
1746635916,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3940 n_samples 4205 confidence 0.05 feature_proportion 0.9257088198671121 n_clusters 24",
3940,
4205,
0.9257088198671121,
24,
0.05,
0.73,
4,
0,
"None",
"i7183",
4,
537.0078125,
528.2838541666666,
-1,
0.4876539389813726,
4991252
],
[
1746639881,
1746639901,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 970 n_samples 3057 confidence 0.001 feature_proportion 0.6487324996214424 n_clusters 2",
970,
3057,
0.6487324996214424,
2,
0.001,
0.73,
4,
0,
"None",
"i7181",
4,
531.2109375,
526.5143229166666,
-1,
0.2401138684324525,
4993027
],
[
1746645117,
1746645266,
149,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4381 n_samples 65 confidence 0.25 feature_proportion 0.5407349282564179 n_clusters 2",
4381,
65,
0.5407349282564179,
2,
0.25,
0.71,
127,
0,
"None",
"i7180",
127,
556.5703125,
540.1369791666667,
-1,
0.997586484312148,
4993804
],
[
1746651790,
1746651816,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 886 n_samples 593 confidence 0.25 feature_proportion 0.7907139689329222 n_clusters 4",
886,
593,
0.7907139689329222,
4,
0.25,
0.75,
10,
0,
"None",
"i7179",
10,
531.49609375,
526.7291666666666,
-1,
0.9722755120985209,
4994761
],
[
1746657273,
1746657293,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 707 n_samples 1896 confidence 0.25 feature_proportion 0.48636202203947365 n_clusters 50",
707,
1896,
0.48636202203947365,
50,
0.25,
0.73,
5,
0,
"None",
"i7181",
5,
528.421875,
524.9817708333334,
-1,
0.3062689522866514,
4995571
],
[
1746660934,
1746660954,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2635 n_samples 456 confidence 0.01 feature_proportion 0.74928637699195 n_clusters 3",
2635,
456,
0.74928637699195,
3,
0.01,
0.75,
10,
0,
"None",
"i7176",
10,
530.52734375,
525.76953125,
-1,
0.9876848814901912,
4996108
],
[
1746667349,
1746667388,
39,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1965 n_samples 685 confidence 0.1 feature_proportion 0.11540499502314222 n_clusters 27",
1965,
685,
0.11540499502314222,
27,
0.1,
0.75,
17,
0,
"None",
"i7178",
17,
528.0859375,
525.576171875,
-1,
0.9782783588093322,
4997058
],
[
1746671263,
1746671282,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1577 n_samples 751 confidence 0.05 feature_proportion 0.17638046641020655 n_clusters 28",
1577,
751,
0.17638046641020655,
28,
0.05,
0.75,
9,
0,
"None",
"i7172",
9,
531.015625,
526.2526041666666,
-1,
0.9759886131567548,
4997643
],
[
1746675383,
1746675427,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2771 n_samples 609 confidence 0.01 feature_proportion 0.6205626328294502 n_clusters 50",
2771,
609,
0.6205626328294502,
50,
0.01,
0.75,
10,
0,
"None",
"i7175",
10,
532.87890625,
526.1341145833334,
-1,
0.9827959650968501,
4998189
],
[
1746679554,
1746679574,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3869 n_samples 2289 confidence 0.05 feature_proportion 0.7735260826049993 n_clusters 17",
3869,
2289,
0.7735260826049993,
17,
0.05,
0.74,
6,
0,
"None",
"i7185",
6,
532.7265625,
526.6354166666666,
-1,
0.9477071600965407,
4998772
],
[
1746685244,
1746685257,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2776 n_samples 3390 confidence 0.01 feature_proportion 0.7111665984463869 n_clusters 22",
2776,
3390,
0.7111665984463869,
22,
0.01,
0.73,
4,
0,
"None",
"i7181",
4,
530.97265625,
526.2122395833334,
-1,
0.5153784268828516,
4999573
],
[
1746691969,
1746691989,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2887 n_samples 753 confidence 0.25 feature_proportion 0.9385634506486684 n_clusters 38",
2887,
753,
0.9385634506486684,
38,
0.25,
0.75,
7,
0,
"None",
"i7183",
7,
531.23046875,
526.4505208333334,
-1,
0.9785877838975184,
5000448
],
[
1746697708,
1746697721,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3305 n_samples 4797 confidence 0.001 feature_proportion 0.8830732249038981 n_clusters 41",
3305,
4797,
0.8830732249038981,
41,
0.001,
0.73,
4,
0,
"None",
"i7186",
4,
532.1875,
527.3645833333334,
-1,
0.4090599665820905,
5001337
],
[
1746701211,
1746701230,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1358 n_samples 1854 confidence 0.005 feature_proportion 0.46536042129427035 n_clusters 50",
1358,
1854,
0.46536042129427035,
50,
0.005,
0.74,
6,
0,
"None",
"i7183",
6,
531.37109375,
526.6666666666666,
-1,
0.5882789776595087,
5001845
],
[
1746705368,
1746705388,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1483 n_samples 1817 confidence 0.01 feature_proportion 0.4666163263404946 n_clusters 50",
1483,
1817,
0.4666163263404946,
50,
0.01,
0.74,
6,
0,
"None",
"i7185",
6,
532.41796875,
526.4036458333334,
-1,
0.6424283680920849,
5002474
],
[
1746709316,
1746709336,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3387 n_samples 1983 confidence 0.001 feature_proportion 0.5535816995436849 n_clusters 24",
3387,
1983,
0.5535816995436849,
24,
0.001,
0.74,
7,
0,
"None",
"i7185",
7,
531.48828125,
526.8177083333334,
-1,
0.9470264249025311,
5003023
],
[
1746713272,
1746713285,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1006 n_samples 3914 confidence 0.1 feature_proportion 0.9443588135879006 n_clusters 35",
1006,
3914,
0.9443588135879006,
35,
0.1,
0.73,
4,
0,
"None",
"i7183",
4,
532.78125,
526.7252604166666,
-1,
0.18676898322916022,
5003543
],
[
1746717375,
1746717395,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 396 n_samples 2208 confidence 0.25 feature_proportion 0.001 n_clusters 1",
396,
2208,
0.001,
1,
0.25,
0.73,
5,
0,
"None",
"i7186",
5,
530.23828125,
525.5729166666666,
-1,
0.14703880190605853,
5004337
],
[
1746722011,
1746722025,
14,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3754 n_samples 2406 confidence 0.05 feature_proportion 0.9981421007959504 n_clusters 37",
3754,
2406,
0.9981421007959504,
37,
0.05,
0.74,
5,
0,
"None",
"i7183",
5,
528.21875,
526.0755208333334,
-1,
0.8278977659508633,
5005049
],
[
1746726322,
1746726348,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3912 n_samples 1239 confidence 0.05 feature_proportion 0.9728628571121158 n_clusters 27",
3912,
1239,
0.9728628571121158,
27,
0.05,
0.75,
9,
0,
"None",
"i7184",
9,
531.01953125,
526.6471354166666,
-1,
0.996781979082864,
5005698
],
[
1746732395,
1746732477,
82,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 627 n_samples 3074 confidence 0.01 feature_proportion 0.051217718722649914 n_clusters 9",
627,
3074,
0.051217718722649914,
9,
0.01,
0.72,
68,
0,
"None",
"i7186",
68,
531.3984375,
529.7981770833334,
-1,
0.07760381211708646,
5006574
],
[
1746737603,
1746737635,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4403 n_samples 836 confidence 0.005 feature_proportion 0.5184090143600552 n_clusters 44",
4403,
836,
0.5184090143600552,
44,
0.005,
0.75,
23,
0,
"None",
"i7178",
23,
512.42578125,
511.91875,
-1,
0.997029519153413,
5007384
],
[
1746741748,
1746741768,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 3032 confidence 0.025 feature_proportion 0.716585185876549 n_clusters 11",
1,
3032,
0.716585185876549,
11,
0.025,
0.73,
4,
0,
"None",
"i7186",
4,
531.2734375,
526.5716145833334,
-1,
0.0002475400705489201,
5007967
],
[
1746745802,
1746745827,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1590 n_samples 762 confidence 0.25 feature_proportion 0.001 n_clusters 1",
1590,
762,
0.001,
1,
0.25,
0.75,
10,
0,
"None",
"i7184",
10,
531.375,
526.6901041666666,
-1,
0.9619407141531036,
5008540
],
[
1746750126,
1746750145,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 298 n_samples 2235 confidence 0.001 feature_proportion 0.45902525589332627 n_clusters 50",
298,
2235,
0.45902525589332627,
50,
0.001,
0.73,
5,
0,
"None",
"i7179",
5,
533.0546875,
527.0013020833334,
-1,
0.11065041153536728,
5009135
],
[
1746755200,
1746755219,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3328 n_samples 1934 confidence 0.005 feature_proportion 0.5793880309477567 n_clusters 50",
3328,
1934,
0.5793880309477567,
50,
0.005,
0.74,
5,
0,
"None",
"i7180",
5,
530.28515625,
525.50390625,
-1,
0.9240670833591188,
5009858
],
[
1746759344,
1746759364,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1778 n_samples 1952 confidence 0.01 feature_proportion 0.7920049723704474 n_clusters 2",
1778,
1952,
0.7920049723704474,
2,
0.01,
0.74,
7,
0,
"None",
"i7186",
7,
533.02734375,
526.9283854166666,
-1,
0.770220929512965,
5010392
],
[
1746763275,
1746763295,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4180 n_samples 4773 confidence 0.025 feature_proportion 0.45549430732534013 n_clusters 26",
4180,
4773,
0.45549430732534013,
26,
0.025,
0.73,
5,
0,
"None",
"i7184",
5,
533.0234375,
527.0013020833334,
-1,
0.517358747447243,
5010997
],
[
1746767502,
1746767515,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1032 n_samples 946 confidence 0.025 feature_proportion 0.5203499090207382 n_clusters 50",
1032,
946,
0.5203499090207382,
50,
0.025,
0.75,
6,
0,
"None",
"i7176",
6,
530.6484375,
525.95703125,
-1,
0.9420137384739155,
5011578
],
[
1746771103,
1746771116,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1931 n_samples 3287 confidence 0.25 feature_proportion 0.4685154136846345 n_clusters 1",
1931,
3287,
0.4685154136846345,
1,
0.25,
0.73,
4,
0,
"None",
"i7182",
4,
531.1171875,
526.43359375,
-1,
0.35849990717247354,
5012084
],
[
1746775246,
1746775328,
82,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1630 n_samples 780 confidence 0.025 feature_proportion 0.999 n_clusters 38",
1630,
780,
0.999,
38,
0.025,
0.75,
8,
0,
"None",
"i7176",
8,
533.09765625,
527.015625,
-1,
0.9654062751407884,
5012683
],
[
1746782625,
1746782638,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 302 n_samples 1842 confidence 0.25 feature_proportion 0.14033234692078178 n_clusters 5",
302,
1842,
0.14033234692078178,
5,
0.25,
0.73,
4,
0,
"None",
"i7181",
4,
532.0625,
526.0559895833334,
-1,
0.13082492728510428,
5013667
],
[
1746789227,
1746789398,
171,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4755 n_samples 3343 confidence 0.001 feature_proportion 0.3024467373875457 n_clusters 40",
4755,
3343,
0.3024467373875457,
40,
0.001,
0.74,
160,
0,
"None",
"i7183",
160,
528.46484375,
527.8758680555555,
-1,
0.7760381211708646,
5014686
],
[
1746793599,
1746793618,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 NOAAWeather 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3898 n_samples 2390 confidence 0.001 feature_proportion 0.999 n_clusters 41",
3898,
2390,
0.999,
41,
0.001,
0.74,
5,
0,
"None",
"i7183",
5,
528.28515625,
524.81640625,
-1,
0.8328485673618417,
5015405
]
];
var tab_worker_usage_csv_json = [
[
1746192507.224396,
20,
0,
0
],
[
1746192517.8440135,
20,
0,
0
],
[
1746193868.4362466,
20,
0,
0
],
[
1746193868.860269,
20,
0,
0
],
[
1746193871.1975267,
20,
1,
5
],
[
1746193876.911582,
20,
1,
5
],
[
1746194870.5556102,
20,
1,
5
],
[
1746194871.1782653,
20,
1,
5
],
[
1746194873.1646285,
20,
2,
10
],
[
1746194874.3395486,
20,
2,
10
],
[
1746194883.1635904,
20,
1,
5
],
[
1746194883.3583899,
20,
1,
5
],
[
1746195634.333498,
20,
1,
5
],
[
1746195635.148318,
20,
1,
5
],
[
1746195637.1548226,
20,
2,
10
],
[
1746195638.411766,
20,
2,
10
],
[
1746195647.1718488,
20,
1,
5
],
[
1746195647.3696475,
20,
1,
5
],
[
1746196485.3383093,
20,
1,
5
],
[
1746196486.1475306,
20,
1,
5
],
[
1746196488.2068799,
20,
2,
10
],
[
1746196489.4834294,
20,
2,
10
],
[
1746196498.684418,
20,
1,
5
],
[
1746196498.8883996,
20,
1,
5
],
[
1746197063.3342223,
20,
1,
5
],
[
1746197064.1148157,
20,
1,
5
],
[
1746197066.0027392,
20,
2,
10
],
[
1746197067.1818962,
20,
2,
10
],
[
1746197076.06695,
20,
1,
5
],
[
1746197076.1459932,
20,
1,
5
],
[
1746197587.3335319,
20,
1,
5
],
[
1746197588.1084092,
20,
1,
5
],
[
1746197590.15186,
20,
2,
10
],
[
1746197591.395994,
20,
2,
10
],
[
1746197600.0545368,
20,
1,
5
],
[
1746197600.2601423,
20,
1,
5
],
[
1746198645.0568242,
20,
1,
5
],
[
1746198645.591257,
20,
1,
5
],
[
1746198647.3703036,
20,
2,
10
],
[
1746198648.63158,
20,
2,
10
],
[
1746198657.8391418,
20,
1,
5
],
[
1746198657.9457407,
20,
1,
5
],
[
1746199761.7854292,
20,
1,
5
],
[
1746199762.3125067,
20,
1,
5
],
[
1746199764.3614225,
20,
2,
10
],
[
1746199765.5177166,
20,
2,
10
],
[
1746199774.5663629,
20,
1,
5
],
[
1746199774.69914,
20,
1,
5
],
[
1746200488.9561255,
20,
1,
5
],
[
1746200489.3508267,
20,
1,
5
],
[
1746200491.1715124,
20,
2,
10
],
[
1746200491.9743853,
20,
2,
10
],
[
1746200500.6160715,
20,
1,
5
],
[
1746200500.7122211,
20,
1,
5
],
[
1746201125.0158226,
20,
1,
5
],
[
1746201125.469784,
20,
1,
5
],
[
1746201127.2967675,
20,
2,
10
],
[
1746201128.3856235,
20,
2,
10
],
[
1746201137.4119103,
20,
1,
5
],
[
1746201137.518028,
20,
1,
5
],
[
1746201750.1733735,
20,
1,
5
],
[
1746201750.6603248,
20,
1,
5
],
[
1746201752.3765924,
20,
2,
10
],
[
1746201753.4037943,
20,
2,
10
],
[
1746201762.2450464,
20,
1,
5
],
[
1746201762.3222082,
20,
1,
5
],
[
1746202337.3267848,
20,
1,
5
],
[
1746202338.070914,
20,
1,
5
],
[
1746202340.0930457,
20,
2,
10
],
[
1746202341.149513,
20,
2,
10
],
[
1746202350.081771,
20,
1,
5
],
[
1746202350.1602452,
20,
1,
5
],
[
1746203035.292854,
20,
1,
5
],
[
1746203035.8433788,
20,
1,
5
],
[
1746203037.5608404,
20,
2,
10
],
[
1746203038.6405282,
20,
2,
10
],
[
1746203047.3311825,
20,
1,
5
],
[
1746203047.4162936,
20,
1,
5
],
[
1746204219.355896,
20,
1,
5
],
[
1746204220.144918,
20,
1,
5
],
[
1746204222.126294,
20,
2,
10
],
[
1746204223.3002741,
20,
2,
10
],
[
1746204232.4556422,
20,
1,
5
],
[
1746204232.5365083,
20,
1,
5
],
[
1746204910.103688,
20,
1,
5
],
[
1746204910.562312,
20,
1,
5
],
[
1746204912.2881742,
20,
2,
10
],
[
1746204913.3387449,
20,
2,
10
],
[
1746204922.151204,
20,
1,
5
],
[
1746204922.2327049,
20,
1,
5
],
[
1746205597.8321483,
20,
1,
5
],
[
1746205598.316367,
20,
1,
5
],
[
1746205600.3264422,
20,
2,
10
],
[
1746205601.3524745,
20,
2,
10
],
[
1746205610.2483704,
20,
1,
5
],
[
1746205610.368014,
20,
1,
5
],
[
1746206283.9932177,
20,
1,
5
],
[
1746206284.4899812,
20,
1,
5
],
[
1746206286.2864628,
20,
2,
10
],
[
1746206287.3544898,
20,
2,
10
],
[
1746206296.14918,
20,
1,
5
],
[
1746206296.2467878,
20,
1,
5
],
[
1746207155.7837324,
20,
1,
5
],
[
1746207156.2875204,
20,
1,
5
],
[
1746207158.4085083,
20,
2,
10
],
[
1746207159.55298,
20,
2,
10
],
[
1746207168.1389134,
20,
1,
5
],
[
1746207168.234761,
20,
1,
5
],
[
1746209998.9785879,
20,
1,
5
],
[
1746209999.4236116,
20,
1,
5
],
[
1746210001.3334603,
20,
2,
10
],
[
1746210002.3491726,
20,
2,
10
],
[
1746210011.0118656,
20,
1,
5
],
[
1746210011.0835319,
20,
1,
5
],
[
1746211424.7873988,
20,
1,
5
],
[
1746211425.2990458,
20,
1,
5
],
[
1746211427.309261,
20,
2,
10
],
[
1746211428.4208994,
20,
2,
10
],
[
1746211437.3847756,
20,
1,
5
],
[
1746211437.575367,
20,
1,
5
],
[
1746211444.5586429,
20,
1,
5
],
[
1746211454.8330908,
20,
1,
5
],
[
1746211465.0407486,
20,
1,
5
],
[
1746211470.9827292,
20,
1,
5
],
[
1746211476.902102,
20,
0,
0
],
[
1746211487.1275566,
20,
0,
0
],
[
1746212792.793279,
20,
0,
0
],
[
1746212793.0760996,
20,
0,
0
],
[
1746212796.1437376,
20,
1,
5
],
[
1746212803.112108,
20,
1,
5
],
[
1746213662.0684803,
20,
1,
5
],
[
1746213662.508352,
20,
1,
5
],
[
1746213664.2442012,
20,
2,
10
],
[
1746213665.2278368,
20,
2,
10
],
[
1746213673.3486974,
20,
1,
5
],
[
1746213673.4210627,
20,
1,
5
],
[
1746214722.3335423,
20,
1,
5
],
[
1746214723.0548646,
20,
1,
5
],
[
1746214724.6810691,
20,
2,
10
],
[
1746214725.6956878,
20,
2,
10
],
[
1746214733.5269887,
20,
1,
5
],
[
1746214733.6137707,
20,
1,
5
],
[
1746215089.6213133,
20,
1,
5
],
[
1746215090.1307507,
20,
1,
5
],
[
1746215092.0460403,
20,
2,
10
],
[
1746215092.9610658,
20,
2,
10
],
[
1746215100.847458,
20,
1,
5
],
[
1746215100.9244819,
20,
1,
5
],
[
1746216044.1457028,
20,
1,
5
],
[
1746216044.5090609,
20,
1,
5
],
[
1746216046.2126086,
20,
2,
10
],
[
1746216047.0692468,
20,
2,
10
],
[
1746216054.809788,
20,
1,
5
],
[
1746216054.8955443,
20,
1,
5
],
[
1746217053.1195762,
20,
1,
5
],
[
1746217053.4907274,
20,
1,
5
],
[
1746217055.2955234,
20,
2,
10
],
[
1746217056.2725945,
20,
2,
10
],
[
1746217063.5969546,
20,
1,
5
],
[
1746217063.8667276,
20,
1,
5
],
[
1746217949.2690928,
20,
1,
5
],
[
1746217949.6626687,
20,
1,
5
],
[
1746217951.3348935,
20,
2,
10
],
[
1746217952.1638649,
20,
2,
10
],
[
1746217958.8435585,
20,
1,
5
],
[
1746217959.0414674,
20,
1,
5
],
[
1746218377.922329,
20,
1,
5
],
[
1746218378.3506331,
20,
1,
5
],
[
1746218380.2414033,
20,
2,
10
],
[
1746218381.1680748,
20,
2,
10
],
[
1746218388.2723365,
20,
1,
5
],
[
1746218388.3351943,
20,
1,
5
],
[
1746219378.3275597,
20,
1,
5
],
[
1746219378.9908698,
20,
1,
5
],
[
1746219380.4944308,
20,
2,
10
],
[
1746219381.288359,
20,
2,
10
],
[
1746219388.1107936,
20,
1,
5
],
[
1746219388.1646872,
20,
1,
5
],
[
1746219916.4278758,
20,
1,
5
],
[
1746219917.0910501,
20,
1,
5
],
[
1746219918.7828135,
20,
2,
10
],
[
1746219919.7492979,
20,
2,
10
],
[
1746219926.9333158,
20,
1,
5
],
[
1746219926.9941604,
20,
1,
5
],
[
1746220445.008517,
20,
1,
5
],
[
1746220445.4297879,
20,
1,
5
],
[
1746220447.2248979,
20,
2,
10
],
[
1746220448.190821,
20,
2,
10
],
[
1746220455.2243264,
20,
1,
5
],
[
1746220455.4261284,
20,
1,
5
],
[
1746221168.7700775,
20,
1,
5
],
[
1746221169.1886935,
20,
1,
5
],
[
1746221171.0596535,
20,
2,
10
],
[
1746221171.989725,
20,
2,
10
],
[
1746221179.1888845,
20,
1,
5
],
[
1746221179.2845786,
20,
1,
5
],
[
1746221824.8646157,
20,
1,
5
],
[
1746221825.1422665,
20,
1,
5
],
[
1746221826.8994918,
20,
2,
10
],
[
1746221827.5250819,
20,
2,
10
],
[
1746221834.8207705,
20,
1,
5
],
[
1746221834.8809793,
20,
1,
5
],
[
1746222544.2280135,
20,
1,
5
],
[
1746222544.7029016,
20,
1,
5
],
[
1746222546.3710783,
20,
2,
10
],
[
1746222547.3542843,
20,
2,
10
],
[
1746222555.1847794,
20,
1,
5
],
[
1746222555.2700942,
20,
1,
5
],
[
1746223783.3106961,
20,
1,
5
],
[
1746223783.688296,
20,
1,
5
],
[
1746223785.1619918,
20,
2,
10
],
[
1746223785.6424806,
20,
2,
10
],
[
1746223792.7535415,
20,
1,
5
],
[
1746223792.799963,
20,
1,
5
],
[
1746224741.2207778,
20,
1,
5
],
[
1746224741.5679133,
20,
1,
5
],
[
1746224743.1127512,
20,
2,
10
],
[
1746224743.665033,
20,
2,
10
],
[
1746224750.7824883,
20,
1,
5
],
[
1746224750.8587406,
20,
1,
5
],
[
1746225820.4642284,
20,
1,
5
],
[
1746225820.984623,
20,
1,
5
],
[
1746225822.4997838,
20,
2,
10
],
[
1746225823.0780451,
20,
2,
10
],
[
1746225830.218226,
20,
1,
5
],
[
1746225830.2767339,
20,
1,
5
],
[
1746227261.146915,
20,
1,
5
],
[
1746227261.4722059,
20,
1,
5
],
[
1746227263.1848164,
20,
2,
10
],
[
1746227263.7808232,
20,
2,
10
],
[
1746227271.0851514,
20,
1,
5
],
[
1746227271.2487931,
20,
1,
5
],
[
1746228534.8675427,
20,
1,
5
],
[
1746228535.263029,
20,
1,
5
],
[
1746228537.2300186,
20,
2,
10
],
[
1746228538.125473,
20,
2,
10
],
[
1746228545.37131,
20,
1,
5
],
[
1746228545.4336503,
20,
1,
5
],
[
1746229720.5202124,
20,
1,
5
],
[
1746229721.0053184,
20,
1,
5
],
[
1746229722.722027,
20,
2,
10
],
[
1746229723.3141956,
20,
2,
10
],
[
1746229730.3819351,
20,
1,
5
],
[
1746229730.6493325,
20,
1,
5
],
[
1746229737.2762644,
20,
1,
5
],
[
1746229746.960643,
20,
1,
5
],
[
1746229753.3569863,
20,
1,
5
],
[
1746229758.0071874,
20,
0,
0
],
[
1746229766.632306,
20,
0,
0
],
[
1746232505.2102857,
20,
0,
0
],
[
1746232505.435915,
20,
0,
0
],
[
1746232507.2100952,
20,
1,
5
],
[
1746232511.8460143,
20,
1,
5
],
[
1746234372.9001048,
20,
1,
5
],
[
1746234373.2130063,
20,
1,
5
],
[
1746234375.0163617,
20,
2,
10
],
[
1746234375.6880748,
20,
2,
10
],
[
1746234382.7194679,
20,
1,
5
],
[
1746234382.774772,
20,
1,
5
],
[
1746237607.3718054,
20,
1,
5
],
[
1746237607.9431052,
20,
1,
5
],
[
1746237609.46976,
20,
2,
10
],
[
1746237609.9911833,
20,
2,
10
],
[
1746237617.7429922,
20,
1,
5
],
[
1746237617.7932417,
20,
1,
5
],
[
1746240730.619149,
20,
1,
5
],
[
1746240730.9989371,
20,
1,
5
],
[
1746240732.4971666,
20,
2,
10
],
[
1746240733.0140598,
20,
2,
10
],
[
1746240740.8709695,
20,
1,
5
],
[
1746240740.93836,
20,
1,
5
],
[
1746243516.7032,
20,
1,
5
],
[
1746243517.0622594,
20,
1,
5
],
[
1746243518.7171962,
20,
2,
10
],
[
1746243519.3444605,
20,
2,
10
],
[
1746243526.3038678,
20,
1,
5
],
[
1746243526.3602352,
20,
1,
5
],
[
1746245217.4233975,
20,
1,
5
],
[
1746245218.9796314,
20,
1,
5
],
[
1746245220.4719422,
20,
2,
10
],
[
1746245221.1019168,
20,
2,
10
],
[
1746245228.5391073,
20,
1,
5
],
[
1746245228.5960925,
20,
1,
5
],
[
1746248024.8816862,
20,
1,
5
],
[
1746248025.2253864,
20,
1,
5
],
[
1746248027.0087638,
20,
2,
10
],
[
1746248027.6299715,
20,
2,
10
],
[
1746248034.8713024,
20,
1,
5
],
[
1746248034.9435444,
20,
1,
5
],
[
1746251315.6995242,
20,
1,
5
],
[
1746251316.1458611,
20,
1,
5
],
[
1746251318.1282058,
20,
2,
10
],
[
1746251319.2227445,
20,
2,
10
],
[
1746251327.2734075,
20,
1,
5
],
[
1746251327.3722634,
20,
1,
5
],
[
1746253290.5082493,
20,
1,
5
],
[
1746253291.1891499,
20,
1,
5
],
[
1746253293.1649158,
20,
2,
10
],
[
1746253294.3129869,
20,
2,
10
],
[
1746253302.5188236,
20,
1,
5
],
[
1746253302.8546064,
20,
1,
5
],
[
1746255493.0575075,
20,
1,
5
],
[
1746255493.5258584,
20,
1,
5
],
[
1746255495.5118647,
20,
2,
10
],
[
1746255496.598882,
20,
2,
10
],
[
1746255504.2373686,
20,
1,
5
],
[
1746255504.4532142,
20,
1,
5
],
[
1746258693.6584144,
20,
1,
5
],
[
1746258694.1865878,
20,
1,
5
],
[
1746258696.1838553,
20,
2,
10
],
[
1746258697.3655133,
20,
2,
10
],
[
1746258705.8436506,
20,
1,
5
],
[
1746258706.0186214,
20,
1,
5
],
[
1746261888.3033454,
20,
1,
5
],
[
1746261888.9240448,
20,
1,
5
],
[
1746261891.1140177,
20,
2,
10
],
[
1746261892.3059835,
20,
2,
10
],
[
1746261900.0055592,
20,
1,
5
],
[
1746261900.1989188,
20,
1,
5
],
[
1746264615.4181032,
20,
1,
5
],
[
1746264616.035087,
20,
1,
5
],
[
1746264617.9645267,
20,
2,
10
],
[
1746264618.5529418,
20,
2,
10
],
[
1746264626.34327,
20,
1,
5
],
[
1746264626.394013,
20,
1,
5
],
[
1746267508.9583368,
20,
1,
5
],
[
1746267509.41276,
20,
1,
5
],
[
1746267511.3101108,
20,
2,
10
],
[
1746267512.2824795,
20,
2,
10
],
[
1746267520.125163,
20,
1,
5
],
[
1746267520.1883538,
20,
1,
5
],
[
1746270250.2242978,
20,
1,
5
],
[
1746270250.6950653,
20,
1,
5
],
[
1746270252.3764691,
20,
2,
10
],
[
1746270253.398297,
20,
2,
10
],
[
1746270261.4524584,
20,
1,
5
],
[
1746270261.5410025,
20,
1,
5
],
[
1746273475.7541344,
20,
1,
5
],
[
1746273476.2335536,
20,
1,
5
],
[
1746273478.2810051,
20,
2,
10
],
[
1746273479.4375298,
20,
2,
10
],
[
1746273488.0082905,
20,
1,
5
],
[
1746273488.1083384,
20,
1,
5
],
[
1746276031.0986605,
20,
1,
5
],
[
1746276031.624152,
20,
1,
5
],
[
1746276033.2779467,
20,
2,
10
],
[
1746276034.097546,
20,
2,
10
],
[
1746276042.457245,
20,
1,
5
],
[
1746276042.5139985,
20,
1,
5
],
[
1746277710.8410132,
20,
1,
5
],
[
1746277711.2450602,
20,
1,
5
],
[
1746277713.0746374,
20,
2,
10
],
[
1746277714.0479887,
20,
2,
10
],
[
1746277721.3775368,
20,
1,
5
],
[
1746277721.8400123,
20,
1,
5
],
[
1746279758.6722665,
20,
1,
5
],
[
1746279758.9850163,
20,
1,
5
],
[
1746279760.6050274,
20,
2,
10
],
[
1746279761.1285765,
20,
2,
10
],
[
1746279768.7464852,
20,
1,
5
],
[
1746279768.9269826,
20,
1,
5
],
[
1746281896.4947724,
20,
1,
5
],
[
1746281896.9965844,
20,
1,
5
],
[
1746281898.8369985,
20,
2,
10
],
[
1746281899.2741745,
20,
2,
10
],
[
1746281906.5454488,
20,
1,
5
],
[
1746281906.643671,
20,
1,
5
],
[
1746281913.090848,
20,
1,
5
],
[
1746281923.2630084,
20,
1,
5
],
[
1746281933.3957126,
20,
1,
5
],
[
1746281938.8958516,
20,
1,
5
],
[
1746281944.4777145,
20,
0,
0
],
[
1746281953.518391,
20,
0,
0
],
[
1746285088.855784,
20,
0,
0
],
[
1746285089.024517,
20,
0,
0
],
[
1746285090.6073618,
20,
1,
5
],
[
1746285095.8147926,
20,
1,
5
],
[
1746288068.7848167,
20,
1,
5
],
[
1746288069.077432,
20,
1,
5
],
[
1746288070.5822406,
20,
2,
10
],
[
1746288071.1290908,
20,
2,
10
],
[
1746288079.4514832,
20,
1,
5
],
[
1746288079.5188577,
20,
1,
5
],
[
1746291311.0764287,
20,
1,
5
],
[
1746291311.5964968,
20,
1,
5
],
[
1746291313.4709117,
20,
2,
10
],
[
1746291314.6914856,
20,
2,
10
],
[
1746291323.012612,
20,
1,
5
],
[
1746291323.2267394,
20,
1,
5
],
[
1746294468.2835102,
20,
1,
5
],
[
1746294468.8063662,
20,
1,
5
],
[
1746294470.6342065,
20,
2,
10
],
[
1746294471.4637973,
20,
2,
10
],
[
1746294480.3708544,
20,
1,
5
],
[
1746294480.4682217,
20,
1,
5
],
[
1746297522.159586,
20,
1,
5
],
[
1746297522.665287,
20,
1,
5
],
[
1746297524.4587567,
20,
2,
10
],
[
1746297525.6276777,
20,
2,
10
],
[
1746297534.373369,
20,
1,
5
],
[
1746297534.4403183,
20,
1,
5
],
[
1746299450.2839634,
20,
1,
5
],
[
1746299450.8292,
20,
1,
5
],
[
1746299452.5360467,
20,
2,
10
],
[
1746299453.5579097,
20,
2,
10
],
[
1746299460.984256,
20,
1,
5
],
[
1746299461.1837947,
20,
1,
5
],
[
1746302382.45959,
20,
1,
5
],
[
1746302383.0614002,
20,
1,
5
],
[
1746302385.03519,
20,
2,
10
],
[
1746302385.9432828,
20,
2,
10
],
[
1746302393.9922652,
20,
1,
5
],
[
1746302394.0666537,
20,
1,
5
],
[
1746305227.6247427,
20,
1,
5
],
[
1746305227.9843957,
20,
1,
5
],
[
1746305229.9384441,
20,
2,
10
],
[
1746305230.4971075,
20,
2,
10
],
[
1746305237.6867213,
20,
1,
5
],
[
1746305237.7417865,
20,
1,
5
],
[
1746307376.9067967,
20,
1,
5
],
[
1746307377.40884,
20,
1,
5
],
[
1746307379.3316329,
20,
2,
10
],
[
1746307380.5417292,
20,
2,
10
],
[
1746307389.8203442,
20,
1,
5
],
[
1746307389.993776,
20,
1,
5
],
[
1746311426.4819157,
20,
1,
5
],
[
1746311427.3064709,
20,
1,
5
],
[
1746311429.5882473,
20,
2,
10
],
[
1746311430.9392347,
20,
2,
10
],
[
1746311440.2157314,
20,
1,
5
],
[
1746311440.373732,
20,
1,
5
],
[
1746314489.1175835,
20,
1,
5
],
[
1746314489.4073775,
20,
1,
5
],
[
1746314491.0662858,
20,
2,
10
],
[
1746314491.5914764,
20,
2,
10
],
[
1746314499.2183425,
20,
1,
5
],
[
1746314499.2751374,
20,
1,
5
],
[
1746317616.3677888,
20,
1,
5
],
[
1746317616.908251,
20,
1,
5
],
[
1746317618.486048,
20,
2,
10
],
[
1746317619.1406796,
20,
2,
10
],
[
1746317627.4182334,
20,
1,
5
],
[
1746317627.4970846,
20,
1,
5
],
[
1746320967.968703,
20,
1,
5
],
[
1746320968.2842827,
20,
1,
5
],
[
1746320970.2122965,
20,
2,
10
],
[
1746320970.8374794,
20,
2,
10
],
[
1746320979.3402874,
20,
1,
5
],
[
1746320979.4014032,
20,
1,
5
],
[
1746322808.113242,
20,
1,
5
],
[
1746322808.6115112,
20,
1,
5
],
[
1746322810.3373632,
20,
2,
10
],
[
1746322811.51145,
20,
2,
10
],
[
1746322820.7335942,
20,
1,
5
],
[
1746322820.844488,
20,
1,
5
],
[
1746324728.4112773,
20,
1,
5
],
[
1746324728.8289392,
20,
1,
5
],
[
1746324730.4109678,
20,
2,
10
],
[
1746324731.210289,
20,
2,
10
],
[
1746324739.0604875,
20,
1,
5
],
[
1746324739.1199124,
20,
1,
5
],
[
1746326786.4734924,
20,
1,
5
],
[
1746326787.1185007,
20,
1,
5
],
[
1746326789.1262004,
20,
2,
10
],
[
1746326790.1285794,
20,
2,
10
],
[
1746326797.625939,
20,
1,
5
],
[
1746326797.8443916,
20,
1,
5
],
[
1746330028.7180212,
20,
1,
5
],
[
1746330029.1823761,
20,
1,
5
],
[
1746330030.9815967,
20,
2,
10
],
[
1746330031.5880752,
20,
2,
10
],
[
1746330039.790692,
20,
1,
5
],
[
1746330039.8715384,
20,
1,
5
],
[
1746333523.3214476,
20,
1,
5
],
[
1746333523.8645084,
20,
1,
5
],
[
1746333525.3376346,
20,
2,
10
],
[
1746333525.8938196,
20,
2,
10
],
[
1746333533.7523203,
20,
1,
5
],
[
1746333533.9042218,
20,
1,
5
],
[
1746336654.8875735,
20,
1,
5
],
[
1746336655.2685344,
20,
1,
5
],
[
1746336657.3630178,
20,
2,
10
],
[
1746336658.3296084,
20,
2,
10
],
[
1746336666.3743346,
20,
1,
5
],
[
1746336666.8087435,
20,
1,
5
],
[
1746339970.4943373,
20,
1,
5
],
[
1746339971.167163,
20,
1,
5
],
[
1746339973.129437,
20,
2,
10
],
[
1746339974.1265435,
20,
2,
10
],
[
1746339981.7667592,
20,
1,
5
],
[
1746339982.1516166,
20,
1,
5
],
[
1746339988.3856106,
20,
1,
5
],
[
1746339998.8037603,
20,
1,
5
],
[
1746340004.861896,
20,
1,
5
],
[
1746340010.2559164,
20,
0,
0
],
[
1746340019.1642344,
20,
0,
0
],
[
1746343358.3498516,
20,
0,
0
],
[
1746343358.689229,
20,
0,
0
],
[
1746343360.3760455,
20,
1,
5
],
[
1746343364.9484577,
20,
1,
5
],
[
1746346532.7182486,
20,
1,
5
],
[
1746346533.2243614,
20,
1,
5
],
[
1746346535.1819859,
20,
2,
10
],
[
1746346536.2693236,
20,
2,
10
],
[
1746346544.4168005,
20,
1,
5
],
[
1746346544.8556252,
20,
1,
5
],
[
1746348689.5008144,
20,
1,
5
],
[
1746348690.149858,
20,
1,
5
],
[
1746348692.1314905,
20,
2,
10
],
[
1746348693.2929375,
20,
2,
10
],
[
1746348702.2938454,
20,
1,
5
],
[
1746348702.3707602,
20,
1,
5
],
[
1746351015.4995668,
20,
1,
5
],
[
1746351016.2243216,
20,
1,
5
],
[
1746351018.1508043,
20,
2,
10
],
[
1746351019.3194335,
20,
2,
10
],
[
1746351028.015998,
20,
1,
5
],
[
1746351028.0832322,
20,
1,
5
],
[
1746353298.9394841,
20,
1,
5
],
[
1746353299.2592292,
20,
1,
5
],
[
1746353301.0100372,
20,
2,
10
],
[
1746353301.642785,
20,
2,
10
],
[
1746353309.686546,
20,
1,
5
],
[
1746353309.7418149,
20,
1,
5
],
[
1746355333.7191563,
20,
1,
5
],
[
1746355333.987856,
20,
1,
5
],
[
1746355335.4727235,
20,
2,
10
],
[
1746355335.9409015,
20,
2,
10
],
[
1746355344.107899,
20,
1,
5
],
[
1746355344.165213,
20,
1,
5
],
[
1746357274.6531823,
20,
1,
5
],
[
1746357275.0047863,
20,
1,
5
],
[
1746357277.542892,
20,
2,
10
],
[
1746357278.2382183,
20,
2,
10
],
[
1746357286.2450933,
20,
1,
5
],
[
1746357286.3086936,
20,
1,
5
],
[
1746359387.1400228,
20,
1,
5
],
[
1746359387.4912558,
20,
1,
5
],
[
1746359389.2236145,
20,
2,
10
],
[
1746359389.8685708,
20,
2,
10
],
[
1746359397.775198,
20,
1,
5
],
[
1746359397.8360507,
20,
1,
5
],
[
1746362819.3471446,
20,
1,
5
],
[
1746362819.985512,
20,
1,
5
],
[
1746362822.0490744,
20,
2,
10
],
[
1746362823.029968,
20,
2,
10
],
[
1746362831.1879444,
20,
1,
5
],
[
1746362831.2509525,
20,
1,
5
],
[
1746364927.216855,
20,
1,
5
],
[
1746364927.6606088,
20,
1,
5
],
[
1746364929.2577927,
20,
2,
10
],
[
1746364930.257848,
20,
2,
10
],
[
1746364938.502487,
20,
1,
5
],
[
1746364938.5668728,
20,
1,
5
],
[
1746367088.8579879,
20,
1,
5
],
[
1746367089.2398698,
20,
1,
5
],
[
1746367091.249845,
20,
2,
10
],
[
1746367092.1281912,
20,
2,
10
],
[
1746367100.362672,
20,
1,
5
],
[
1746367100.4327931,
20,
1,
5
],
[
1746369423.3087149,
20,
1,
5
],
[
1746369423.772105,
20,
1,
5
],
[
1746369425.2491498,
20,
2,
10
],
[
1746369425.7399788,
20,
2,
10
],
[
1746369433.8474069,
20,
1,
5
],
[
1746369433.9992473,
20,
1,
5
],
[
1746371586.1784437,
20,
1,
5
],
[
1746371586.7635765,
20,
1,
5
],
[
1746371588.4424746,
20,
2,
10
],
[
1746371589.0479174,
20,
2,
10
],
[
1746371597.3558908,
20,
1,
5
],
[
1746371597.8456829,
20,
1,
5
],
[
1746374003.7292888,
20,
1,
5
],
[
1746374004.0513492,
20,
1,
5
],
[
1746374005.8379874,
20,
2,
10
],
[
1746374006.3969147,
20,
2,
10
],
[
1746374015.3636713,
20,
1,
5
],
[
1746374015.4313228,
20,
1,
5
],
[
1746376226.9551191,
20,
1,
5
],
[
1746376227.249714,
20,
1,
5
],
[
1746376229.0730555,
20,
2,
10
],
[
1746376229.5924432,
20,
2,
10
],
[
1746376237.6992106,
20,
1,
5
],
[
1746376237.7738752,
20,
1,
5
],
[
1746378461.766397,
20,
1,
5
],
[
1746378462.1657593,
20,
1,
5
],
[
1746378464.0176847,
20,
2,
10
],
[
1746378464.7222545,
20,
2,
10
],
[
1746378473.1999996,
20,
1,
5
],
[
1746378473.2864258,
20,
1,
5
],
[
1746382219.9102352,
20,
1,
5
],
[
1746382220.2943492,
20,
1,
5
],
[
1746382222.253409,
20,
2,
10
],
[
1746382223.1772032,
20,
2,
10
],
[
1746382232.6453176,
20,
1,
5
],
[
1746382232.7083116,
20,
1,
5
],
[
1746384570.8547735,
20,
1,
5
],
[
1746384571.279197,
20,
1,
5
],
[
1746384573.3305945,
20,
2,
10
],
[
1746384574.0405033,
20,
2,
10
],
[
1746384582.3054388,
20,
1,
5
],
[
1746384582.3705602,
20,
1,
5
],
[
1746386952.5151267,
20,
1,
5
],
[
1746386953.0088677,
20,
1,
5
],
[
1746386954.6159987,
20,
2,
10
],
[
1746386955.331652,
20,
2,
10
],
[
1746386963.9118166,
20,
1,
5
],
[
1746386963.985037,
20,
1,
5
],
[
1746389626.3991373,
20,
1,
5
],
[
1746389627.133045,
20,
1,
5
],
[
1746389629.154581,
20,
2,
10
],
[
1746389630.1850429,
20,
2,
10
],
[
1746389639.6635802,
20,
1,
5
],
[
1746389640.0267997,
20,
1,
5
],
[
1746389647.3202782,
20,
1,
5
],
[
1746389657.3627977,
20,
1,
5
],
[
1746389668.3696818,
20,
1,
5
],
[
1746389674.3720417,
20,
1,
5
],
[
1746389680.8121054,
20,
0,
0
],
[
1746389691.1549478,
20,
0,
0
],
[
1746392108.9164844,
20,
0,
0
],
[
1746392109.224938,
20,
0,
0
],
[
1746392111.0689845,
20,
1,
5
],
[
1746392117.0186243,
20,
1,
5
],
[
1746394098.582012,
20,
1,
5
],
[
1746394098.9843326,
20,
1,
5
],
[
1746394101.8696332,
20,
2,
10
],
[
1746394102.37776,
20,
2,
10
],
[
1746394110.6627724,
20,
1,
5
],
[
1746394110.726436,
20,
1,
5
],
[
1746396272.0473485,
20,
1,
5
],
[
1746396272.336711,
20,
1,
5
],
[
1746396274.253094,
20,
2,
10
],
[
1746396274.8446953,
20,
2,
10
],
[
1746396282.8689606,
20,
1,
5
],
[
1746396282.932593,
20,
1,
5
],
[
1746399837.5648537,
20,
1,
5
],
[
1746399838.1464467,
20,
1,
5
],
[
1746399840.1464384,
20,
2,
10
],
[
1746399841.217317,
20,
2,
10
],
[
1746399850.4584916,
20,
1,
5
],
[
1746399850.5345588,
20,
1,
5
],
[
1746402255.9713767,
20,
1,
5
],
[
1746402256.2393744,
20,
1,
5
],
[
1746402260.9615884,
20,
2,
10
],
[
1746402261.5366967,
20,
2,
10
],
[
1746402270.5209732,
20,
1,
5
],
[
1746402270.6018794,
20,
1,
5
],
[
1746406388.855325,
20,
1,
5
],
[
1746406389.2571356,
20,
1,
5
],
[
1746406391.3183742,
20,
2,
10
],
[
1746406391.974074,
20,
2,
10
],
[
1746406400.75286,
20,
1,
5
],
[
1746406400.9295619,
20,
1,
5
],
[
1746408659.9121945,
20,
1,
5
],
[
1746408660.2118049,
20,
1,
5
],
[
1746408661.980262,
20,
2,
10
],
[
1746408662.539006,
20,
2,
10
],
[
1746408671.141676,
20,
1,
5
],
[
1746408671.2053342,
20,
1,
5
],
[
1746410079.0632157,
20,
1,
5
],
[
1746410079.3966641,
20,
1,
5
],
[
1746410081.1522799,
20,
2,
10
],
[
1746410081.4823134,
20,
2,
10
],
[
1746410091.368242,
20,
1,
5
],
[
1746410091.8499093,
20,
1,
5
],
[
1746410706.0093594,
20,
1,
5
],
[
1746410706.4533236,
20,
1,
5
],
[
1746410708.3964155,
20,
2,
10
],
[
1746410709.455334,
20,
2,
10
],
[
1746410717.9140193,
20,
1,
5
],
[
1746410718.1087458,
20,
1,
5
],
[
1746413354.462577,
20,
1,
5
],
[
1746413355.0912738,
20,
1,
5
],
[
1746413356.9188302,
20,
2,
10
],
[
1746413357.2842982,
20,
2,
10
],
[
1746413366.4561915,
20,
1,
5
],
[
1746413366.5357926,
20,
1,
5
],
[
1746415810.1055124,
20,
1,
5
],
[
1746415810.4386578,
20,
1,
5
],
[
1746415812.3583772,
20,
2,
10
],
[
1746415813.6411817,
20,
2,
10
],
[
1746415822.7783532,
20,
1,
5
],
[
1746415822.9069054,
20,
1,
5
],
[
1746418541.7326405,
20,
1,
5
],
[
1746418542.2319424,
20,
1,
5
],
[
1746418544.1730828,
20,
2,
10
],
[
1746418545.1124322,
20,
2,
10
],
[
1746418553.7129765,
20,
1,
5
],
[
1746418553.7993655,
20,
1,
5
],
[
1746421027.607026,
20,
1,
5
],
[
1746421027.9982593,
20,
1,
5
],
[
1746421029.9843261,
20,
2,
10
],
[
1746421030.5892336,
20,
2,
10
],
[
1746421038.850414,
20,
1,
5
],
[
1746421038.927084,
20,
1,
5
],
[
1746423704.741725,
20,
1,
5
],
[
1746423705.024622,
20,
1,
5
],
[
1746423706.4945197,
20,
2,
10
],
[
1746423706.9865932,
20,
2,
10
],
[
1746423715.2350762,
20,
1,
5
],
[
1746423715.4099586,
20,
1,
5
],
[
1746426596.5523026,
20,
1,
5
],
[
1746426597.1813548,
20,
1,
5
],
[
1746426599.027004,
20,
2,
10
],
[
1746426600.138414,
20,
2,
10
],
[
1746426609.0004573,
20,
1,
5
],
[
1746426609.0921435,
20,
1,
5
],
[
1746429765.1960356,
20,
1,
5
],
[
1746429765.6550744,
20,
1,
5
],
[
1746429767.2128859,
20,
2,
10
],
[
1746429768.0860279,
20,
2,
10
],
[
1746429777.9281008,
20,
1,
5
],
[
1746429778.0265708,
20,
1,
5
],
[
1746433579.8037014,
20,
1,
5
],
[
1746433580.1220336,
20,
1,
5
],
[
1746433581.864467,
20,
2,
10
],
[
1746433582.5403948,
20,
2,
10
],
[
1746433591.2286277,
20,
1,
5
],
[
1746433591.3042562,
20,
1,
5
],
[
1746436333.3975346,
20,
1,
5
],
[
1746436334.0771565,
20,
1,
5
],
[
1746436335.755429,
20,
2,
10
],
[
1746436336.6129177,
20,
2,
10
],
[
1746436347.0819783,
20,
1,
5
],
[
1746436347.1840172,
20,
1,
5
],
[
1746440660.0661914,
20,
1,
5
],
[
1746440660.4507866,
20,
1,
5
],
[
1746440662.2503257,
20,
2,
10
],
[
1746440662.8787503,
20,
2,
10
],
[
1746440672.772135,
20,
1,
5
],
[
1746440672.849976,
20,
1,
5
],
[
1746443674.1557932,
20,
1,
5
],
[
1746443674.6007113,
20,
1,
5
],
[
1746443676.1940756,
20,
2,
10
],
[
1746443676.9680917,
20,
2,
10
],
[
1746443687.1129057,
20,
1,
5
],
[
1746443687.2731783,
20,
1,
5
],
[
1746443695.0039215,
20,
1,
5
],
[
1746443705.9224777,
20,
1,
5
],
[
1746443717.092947,
20,
1,
5
],
[
1746443727.9673324,
20,
1,
5
],
[
1746443734.0217447,
20,
1,
5
],
[
1746443741.1790154,
20,
0,
0
],
[
1746443753.0171223,
20,
0,
0
],
[
1746447233.4996867,
20,
0,
0
],
[
1746447233.9379594,
20,
0,
0
],
[
1746447235.7195706,
20,
1,
5
],
[
1746447243.255343,
20,
1,
5
],
[
1746450580.1110804,
20,
1,
5
],
[
1746450580.4926612,
20,
1,
5
],
[
1746450582.3120623,
20,
2,
10
],
[
1746450583.0692205,
20,
2,
10
],
[
1746450594.5571306,
20,
1,
5
],
[
1746450594.6575987,
20,
1,
5
],
[
1746454641.6172018,
20,
1,
5
],
[
1746454642.4471076,
20,
1,
5
],
[
1746454644.5396042,
20,
2,
10
],
[
1746454646.2874823,
20,
2,
10
],
[
1746454658.7140586,
20,
1,
5
],
[
1746454658.8419085,
20,
1,
5
],
[
1746461087.468343,
20,
1,
5
],
[
1746461088.1877773,
20,
1,
5
],
[
1746461090.018167,
20,
2,
10
],
[
1746461090.8560524,
20,
2,
10
],
[
1746461101.636074,
20,
1,
5
],
[
1746461101.722313,
20,
1,
5
],
[
1746464398.888214,
20,
1,
5
],
[
1746464399.5376692,
20,
1,
5
],
[
1746464401.3883853,
20,
2,
10
],
[
1746464402.8641598,
20,
2,
10
],
[
1746464413.9394941,
20,
1,
5
],
[
1746464414.0434477,
20,
1,
5
],
[
1746467581.0893164,
20,
1,
5
],
[
1746467581.6281362,
20,
1,
5
],
[
1746467583.304811,
20,
2,
10
],
[
1746467584.493565,
20,
2,
10
],
[
1746467595.2318628,
20,
1,
5
],
[
1746467595.3201993,
20,
1,
5
],
[
1746470409.6307125,
20,
1,
5
],
[
1746470410.2482498,
20,
1,
5
],
[
1746470412.194347,
20,
2,
10
],
[
1746470413.4024045,
20,
2,
10
],
[
1746470424.5866969,
20,
1,
5
],
[
1746470424.7031434,
20,
1,
5
],
[
1746473640.231447,
20,
1,
5
],
[
1746473640.755553,
20,
1,
5
],
[
1746473642.3691678,
20,
2,
10
],
[
1746473643.493124,
20,
2,
10
],
[
1746473654.3152983,
20,
1,
5
],
[
1746473654.413991,
20,
1,
5
],
[
1746476735.254853,
20,
1,
5
],
[
1746476735.7810807,
20,
1,
5
],
[
1746476737.324791,
20,
2,
10
],
[
1746476738.2262156,
20,
2,
10
],
[
1746476748.846147,
20,
1,
5
],
[
1746476748.9356637,
20,
1,
5
],
[
1746479950.0432582,
20,
1,
5
],
[
1746479950.5931413,
20,
1,
5
],
[
1746479952.275402,
20,
2,
10
],
[
1746479953.4184103,
20,
2,
10
],
[
1746479964.3949113,
20,
1,
5
],
[
1746479964.5054781,
20,
1,
5
],
[
1746483502.7321715,
20,
1,
5
],
[
1746483503.1954823,
20,
1,
5
],
[
1746483505.140964,
20,
2,
10
],
[
1746483506.6032035,
20,
2,
10
],
[
1746483517.4182818,
20,
1,
5
],
[
1746483517.5200555,
20,
1,
5
],
[
1746486790.4050217,
20,
1,
5
],
[
1746486791.1422362,
20,
1,
5
],
[
1746486793.0689988,
20,
2,
10
],
[
1746486794.1141121,
20,
2,
10
],
[
1746486804.4504976,
20,
1,
5
],
[
1746486804.5404835,
20,
1,
5
],
[
1746489748.8403838,
20,
1,
5
],
[
1746489749.3391027,
20,
1,
5
],
[
1746489751.2911527,
20,
2,
10
],
[
1746489752.4796865,
20,
2,
10
],
[
1746489763.2912543,
20,
1,
5
],
[
1746489763.400402,
20,
1,
5
],
[
1746493364.9071813,
20,
1,
5
],
[
1746493365.528432,
20,
1,
5
],
[
1746493367.38659,
20,
2,
10
],
[
1746493368.7721016,
20,
2,
10
],
[
1746493380.3572164,
20,
1,
5
],
[
1746493380.4636362,
20,
1,
5
],
[
1746497210.6986794,
20,
1,
5
],
[
1746497211.2807086,
20,
1,
5
],
[
1746497213.412953,
20,
2,
10
],
[
1746497214.8220575,
20,
2,
10
],
[
1746497226.8859162,
20,
1,
5
],
[
1746497227.0101235,
20,
1,
5
],
[
1746501112.728942,
20,
1,
5
],
[
1746501113.0836704,
20,
1,
5
],
[
1746501114.6576364,
20,
2,
10
],
[
1746501115.3349812,
20,
2,
10
],
[
1746501125.909035,
20,
1,
5
],
[
1746501125.988373,
20,
1,
5
],
[
1746504338.19633,
20,
1,
5
],
[
1746504338.5470383,
20,
1,
5
],
[
1746504340.111867,
20,
2,
10
],
[
1746504340.735026,
20,
2,
10
],
[
1746504352.0718489,
20,
1,
5
],
[
1746504352.2625515,
20,
1,
5
],
[
1746509654.887032,
20,
1,
5
],
[
1746509655.4629445,
20,
1,
5
],
[
1746509657.3205845,
20,
2,
10
],
[
1746509658.5539148,
20,
2,
10
],
[
1746509669.3751202,
20,
1,
5
],
[
1746509669.4633934,
20,
1,
5
],
[
1746512900.5900998,
20,
1,
5
],
[
1746512900.9967585,
20,
1,
5
],
[
1746512902.4280226,
20,
2,
10
],
[
1746512902.991948,
20,
2,
10
],
[
1746512912.0440874,
20,
1,
5
],
[
1746512912.1314518,
20,
1,
5
],
[
1746515780.445497,
20,
1,
5
],
[
1746515780.9271307,
20,
1,
5
],
[
1746515782.3831184,
20,
2,
10
],
[
1746515783.0223074,
20,
2,
10
],
[
1746515791.7630658,
20,
1,
5
],
[
1746515791.8906536,
20,
1,
5
],
[
1746515799.0227838,
20,
1,
5
],
[
1746515809.625542,
20,
1,
5
],
[
1746515815.6363204,
20,
1,
5
],
[
1746515822.353331,
20,
0,
0
],
[
1746515832.1175787,
20,
0,
0
],
[
1746518828.9780393,
20,
0,
0
],
[
1746518829.266354,
20,
0,
0
],
[
1746518831.1552324,
20,
1,
5
],
[
1746518837.5679915,
20,
1,
5
],
[
1746521670.510744,
20,
1,
5
],
[
1746521671.1598663,
20,
1,
5
],
[
1746521673.3671556,
20,
2,
10
],
[
1746521674.5295386,
20,
2,
10
],
[
1746521684.883678,
20,
1,
5
],
[
1746521685.0841773,
20,
1,
5
],
[
1746524864.74149,
20,
1,
5
],
[
1746524865.27209,
20,
1,
5
],
[
1746524867.2484465,
20,
2,
10
],
[
1746524868.4938717,
20,
2,
10
],
[
1746524879.2405527,
20,
1,
5
],
[
1746524879.4491644,
20,
1,
5
],
[
1746528354.8020916,
20,
1,
5
],
[
1746528355.2138338,
20,
1,
5
],
[
1746528356.970781,
20,
2,
10
],
[
1746528357.6854897,
20,
2,
10
],
[
1746528368.2635062,
20,
1,
5
],
[
1746528368.474368,
20,
1,
5
],
[
1746531721.8522022,
20,
1,
5
],
[
1746531722.1913526,
20,
1,
5
],
[
1746531724.006357,
20,
2,
10
],
[
1746531724.7015064,
20,
2,
10
],
[
1746531734.8226776,
20,
1,
5
],
[
1746531734.911217,
20,
1,
5
],
[
1746534895.5576527,
20,
1,
5
],
[
1746534895.9927828,
20,
1,
5
],
[
1746534897.401686,
20,
2,
10
],
[
1746534898.0133142,
20,
2,
10
],
[
1746534907.9371707,
20,
1,
5
],
[
1746534908.0071547,
20,
1,
5
],
[
1746539775.7836177,
20,
1,
5
],
[
1746539776.1675382,
20,
1,
5
],
[
1746539778.0796669,
20,
2,
10
],
[
1746539779.1859481,
20,
2,
10
],
[
1746539788.8327112,
20,
1,
5
],
[
1746539788.928993,
20,
1,
5
],
[
1746543062.0156534,
20,
1,
5
],
[
1746543062.3339162,
20,
1,
5
],
[
1746543064.0976229,
20,
2,
10
],
[
1746543064.6409423,
20,
2,
10
],
[
1746543077.2283404,
20,
1,
5
],
[
1746543077.2920012,
20,
1,
5
],
[
1746547942.0873313,
20,
1,
5
],
[
1746547942.4437265,
20,
1,
5
],
[
1746547944.1239517,
20,
2,
10
],
[
1746547944.718672,
20,
2,
10
],
[
1746547954.2338068,
20,
1,
5
],
[
1746547954.311422,
20,
1,
5
],
[
1746551361.7372005,
20,
1,
5
],
[
1746551362.089456,
20,
1,
5
],
[
1746551363.884033,
20,
2,
10
],
[
1746551364.4150267,
20,
2,
10
],
[
1746551374.4819987,
20,
1,
5
],
[
1746551374.884816,
20,
1,
5
],
[
1746557325.422053,
20,
1,
5
],
[
1746557326.3208385,
20,
1,
5
],
[
1746557328.586556,
20,
2,
10
],
[
1746557329.9931452,
20,
2,
10
],
[
1746557340.7953238,
20,
1,
5
],
[
1746557340.9260614,
20,
1,
5
],
[
1746561937.542571,
20,
1,
5
],
[
1746561938.2193904,
20,
1,
5
],
[
1746561940.388378,
20,
2,
10
],
[
1746561941.296812,
20,
2,
10
],
[
1746561951.600277,
20,
1,
5
],
[
1746561951.694062,
20,
1,
5
],
[
1746565377.1203237,
20,
1,
5
],
[
1746565377.4230494,
20,
1,
5
],
[
1746565379.2093968,
20,
2,
10
],
[
1746565379.7668827,
20,
2,
10
],
[
1746565389.4454696,
20,
1,
5
],
[
1746565389.5138736,
20,
1,
5
],
[
1746569800.466281,
20,
1,
5
],
[
1746569801.3561392,
20,
1,
5
],
[
1746569803.458339,
20,
2,
10
],
[
1746569804.6770453,
20,
2,
10
],
[
1746569816.2394793,
20,
1,
5
],
[
1746569816.3445039,
20,
1,
5
],
[
1746573749.93175,
20,
1,
5
],
[
1746573750.2582202,
20,
1,
5
],
[
1746573752.1199837,
20,
2,
10
],
[
1746573752.7239883,
20,
2,
10
],
[
1746573762.7773054,
20,
1,
5
],
[
1746573762.9153712,
20,
1,
5
],
[
1746578727.2771313,
20,
1,
5
],
[
1746578727.8911097,
20,
1,
5
],
[
1746578729.963163,
20,
2,
10
],
[
1746578731.0290494,
20,
2,
10
],
[
1746578740.4726133,
20,
1,
5
],
[
1746578740.5587683,
20,
1,
5
],
[
1746583612.9171946,
20,
1,
5
],
[
1746583613.4284265,
20,
1,
5
],
[
1746583615.3531964,
20,
2,
10
],
[
1746583616.366689,
20,
2,
10
],
[
1746583625.75264,
20,
1,
5
],
[
1746583625.830762,
20,
1,
5
],
[
1746586760.643168,
20,
1,
5
],
[
1746586760.9891837,
20,
1,
5
],
[
1746586762.450717,
20,
2,
10
],
[
1746586763.0218637,
20,
2,
10
],
[
1746586772.1767817,
20,
1,
5
],
[
1746586772.352567,
20,
1,
5
],
[
1746590378.18009,
20,
1,
5
],
[
1746590378.5995326,
20,
1,
5
],
[
1746590380.2064054,
20,
2,
10
],
[
1746590380.9765975,
20,
2,
10
],
[
1746590391.4914777,
20,
1,
5
],
[
1746590391.5826962,
20,
1,
5
],
[
1746596438.9428856,
20,
1,
5
],
[
1746596439.622286,
20,
1,
5
],
[
1746596441.43683,
20,
2,
10
],
[
1746596442.556551,
20,
2,
10
],
[
1746596454.40003,
20,
1,
5
],
[
1746596454.6284308,
20,
1,
5
],
[
1746596463.1298392,
20,
1,
5
],
[
1746596475.6321568,
20,
1,
5
],
[
1746596481.279953,
20,
1,
5
],
[
1746596488.6032014,
20,
0,
0
],
[
1746596500.376769,
20,
0,
0
],
[
1746599736.7954717,
20,
0,
0
],
[
1746599737.1428838,
20,
0,
0
],
[
1746599738.9769456,
20,
1,
5
],
[
1746599745.1751342,
20,
1,
5
],
[
1746603068.4002934,
20,
1,
5
],
[
1746603069.0243328,
20,
1,
5
],
[
1746603070.548203,
20,
2,
10
],
[
1746603071.2880487,
20,
2,
10
],
[
1746603080.8850021,
20,
1,
5
],
[
1746603080.9673243,
20,
1,
5
],
[
1746606261.7843084,
20,
1,
5
],
[
1746606262.0618072,
20,
1,
5
],
[
1746606263.470419,
20,
2,
10
],
[
1746606263.9980047,
20,
2,
10
],
[
1746606273.1137357,
20,
1,
5
],
[
1746606273.3136122,
20,
1,
5
],
[
1746609763.5201588,
20,
1,
5
],
[
1746609764.0006237,
20,
1,
5
],
[
1746609765.8673067,
20,
2,
10
],
[
1746609766.3654718,
20,
2,
10
],
[
1746609775.615666,
20,
1,
5
],
[
1746609775.6815274,
20,
1,
5
],
[
1746613370.1193094,
20,
1,
5
],
[
1746613370.5085602,
20,
1,
5
],
[
1746613372.150324,
20,
2,
10
],
[
1746613372.7891288,
20,
2,
10
],
[
1746613382.4973826,
20,
1,
5
],
[
1746613382.5765767,
20,
1,
5
],
[
1746616909.594915,
20,
1,
5
],
[
1746616910.0630426,
20,
1,
5
],
[
1746616911.712958,
20,
2,
10
],
[
1746616912.3266478,
20,
2,
10
],
[
1746616921.2394376,
20,
1,
5
],
[
1746616921.3208783,
20,
1,
5
],
[
1746620617.9341547,
20,
1,
5
],
[
1746620619.0639565,
20,
1,
5
],
[
1746620620.9628792,
20,
2,
10
],
[
1746620621.571889,
20,
2,
10
],
[
1746620631.9007485,
20,
1,
5
],
[
1746620632.090559,
20,
1,
5
],
[
1746627100.2851665,
20,
1,
5
],
[
1746627100.7458823,
20,
1,
5
],
[
1746627102.3332753,
20,
2,
10
],
[
1746627103.0672064,
20,
2,
10
],
[
1746627112.7007964,
20,
1,
5
],
[
1746627112.7768416,
20,
1,
5
],
[
1746632433.657036,
20,
1,
5
],
[
1746632434.1453655,
20,
1,
5
],
[
1746632436.0246627,
20,
2,
10
],
[
1746632436.7461107,
20,
2,
10
],
[
1746632446.5336127,
20,
1,
5
],
[
1746632446.6109962,
20,
1,
5
],
[
1746635873.0740101,
20,
1,
5
],
[
1746635873.6211984,
20,
1,
5
],
[
1746635875.2516725,
20,
2,
10
],
[
1746635876.2343187,
20,
2,
10
],
[
1746635887.1499133,
20,
1,
5
],
[
1746635887.2376268,
20,
1,
5
],
[
1746639862.3904245,
20,
1,
5
],
[
1746639863.053323,
20,
1,
5
],
[
1746639864.6704025,
20,
2,
10
],
[
1746639865.3798869,
20,
2,
10
],
[
1746639876.484141,
20,
1,
5
],
[
1746639876.5755944,
20,
1,
5
],
[
1746645097.805534,
20,
1,
5
],
[
1746645098.4710286,
20,
1,
5
],
[
1746645100.4922042,
20,
2,
10
],
[
1746645101.9604053,
20,
2,
10
],
[
1746645114.1447914,
20,
1,
5
],
[
1746645114.251311,
20,
1,
5
],
[
1746651779.5866675,
20,
1,
5
],
[
1746651780.238443,
20,
1,
5
],
[
1746651782.2947438,
20,
2,
10
],
[
1746651783.4657762,
20,
2,
10
],
[
1746651793.725363,
20,
1,
5
],
[
1746651793.8187547,
20,
1,
5
],
[
1746657257.4535553,
20,
1,
5
],
[
1746657258.1648715,
20,
1,
5
],
[
1746657260.0329473,
20,
2,
10
],
[
1746657260.8287566,
20,
2,
10
],
[
1746657270.959895,
20,
1,
5
],
[
1746657271.040313,
20,
1,
5
],
[
1746660919.4835596,
20,
1,
5
],
[
1746660919.96769,
20,
1,
5
],
[
1746660921.6536052,
20,
2,
10
],
[
1746660922.2132661,
20,
2,
10
],
[
1746660933.2102175,
20,
1,
5
],
[
1746660933.2850745,
20,
1,
5
],
[
1746667317.7180285,
20,
1,
5
],
[
1746667318.3203104,
20,
1,
5
],
[
1746667320.4305007,
20,
2,
10
],
[
1746667321.7071037,
20,
2,
10
],
[
1746667332.4078124,
20,
1,
5
],
[
1746667332.5038266,
20,
1,
5
],
[
1746671237.8264365,
20,
1,
5
],
[
1746671238.459622,
20,
1,
5
],
[
1746671240.4423661,
20,
2,
10
],
[
1746671241.9761617,
20,
2,
10
],
[
1746671255.136981,
20,
1,
5
],
[
1746671255.2495072,
20,
1,
5
],
[
1746675330.300328,
20,
1,
5
],
[
1746675330.8481045,
20,
1,
5
],
[
1746675332.4646516,
20,
2,
10
],
[
1746675333.0442588,
20,
2,
10
],
[
1746675343.4543781,
20,
1,
5
],
[
1746675343.8854272,
20,
1,
5
],
[
1746679537.8854172,
20,
1,
5
],
[
1746679538.3575299,
20,
1,
5
],
[
1746679540.334758,
20,
2,
10
],
[
1746679541.5662766,
20,
2,
10
],
[
1746679552.795361,
20,
1,
5
],
[
1746679552.8845603,
20,
1,
5
],
[
1746685221.2008672,
20,
1,
5
],
[
1746685221.7525582,
20,
1,
5
],
[
1746685223.4436896,
20,
2,
10
],
[
1746685224.612066,
20,
2,
10
],
[
1746685236.409752,
20,
1,
5
],
[
1746685236.6135669,
20,
1,
5
],
[
1746685244.7217617,
20,
1,
5
],
[
1746685256.4722574,
20,
1,
5
],
[
1746685262.44628,
20,
1,
5
],
[
1746685269.7527063,
20,
0,
0
],
[
1746685281.919938,
20,
0,
0
],
[
1746691943.1870918,
20,
0,
0
],
[
1746691943.6728888,
20,
0,
0
],
[
1746691945.3984435,
20,
1,
5
],
[
1746691952.2631307,
20,
1,
5
],
[
1746697696.5473871,
20,
1,
5
],
[
1746697697.2910995,
20,
1,
5
],
[
1746697699.3295798,
20,
2,
10
],
[
1746697700.652912,
20,
2,
10
],
[
1746697711.5943155,
20,
1,
5
],
[
1746697711.6784952,
20,
1,
5
],
[
1746701204.2950304,
20,
1,
5
],
[
1746701204.723111,
20,
1,
5
],
[
1746701206.1465347,
20,
2,
10
],
[
1746701206.7171202,
20,
2,
10
],
[
1746701216.3495607,
20,
1,
5
],
[
1746701216.8112633,
20,
1,
5
],
[
1746705356.2891877,
20,
1,
5
],
[
1746705356.9208734,
20,
1,
5
],
[
1746705358.5999215,
20,
2,
10
],
[
1746705359.5118759,
20,
2,
10
],
[
1746705370.3250473,
20,
1,
5
],
[
1746705370.4068542,
20,
1,
5
],
[
1746709288.359974,
20,
1,
5
],
[
1746709289.033659,
20,
1,
5
],
[
1746709290.6437895,
20,
2,
10
],
[
1746709291.3872197,
20,
2,
10
],
[
1746709301.1307101,
20,
1,
5
],
[
1746709301.3062053,
20,
1,
5
],
[
1746713264.1538498,
20,
1,
5
],
[
1746713264.6799793,
20,
1,
5
],
[
1746713266.3179133,
20,
2,
10
],
[
1746713267.2115574,
20,
2,
10
],
[
1746713277.6049867,
20,
1,
5
],
[
1746713277.862795,
20,
1,
5
],
[
1746717349.8381145,
20,
1,
5
],
[
1746717350.4750612,
20,
1,
5
],
[
1746717352.356786,
20,
2,
10
],
[
1746717353.7286043,
20,
2,
10
],
[
1746717365.6898155,
20,
1,
5
],
[
1746717365.7879212,
20,
1,
5
],
[
1746722003.2825325,
20,
1,
5
],
[
1746722004.0451388,
20,
1,
5
],
[
1746722005.754429,
20,
2,
10
],
[
1746722007.1614037,
20,
2,
10
],
[
1746722019.7682037,
20,
1,
5
],
[
1746722019.8723226,
20,
1,
5
],
[
1746726309.989634,
20,
1,
5
],
[
1746726310.6137643,
20,
1,
5
],
[
1746726312.389427,
20,
2,
10
],
[
1746726313.7413845,
20,
2,
10
],
[
1746726324.7098036,
20,
1,
5
],
[
1746726324.7981734,
20,
1,
5
],
[
1746732382.0383987,
20,
1,
5
],
[
1746732382.7755222,
20,
1,
5
],
[
1746732384.6689916,
20,
2,
10
],
[
1746732386.2651324,
20,
2,
10
],
[
1746732398.0683477,
20,
1,
5
],
[
1746732398.1862762,
20,
1,
5
],
[
1746737574.7539158,
20,
1,
5
],
[
1746737575.230699,
20,
1,
5
],
[
1746737577.9739525,
20,
2,
10
],
[
1746737578.8781643,
20,
2,
10
],
[
1746737589.2993243,
20,
1,
5
],
[
1746737589.3842683,
20,
1,
5
],
[
1746741712.508334,
20,
1,
5
],
[
1746741713.2052073,
20,
1,
5
],
[
1746741715.1501088,
20,
2,
10
],
[
1746741716.2659404,
20,
2,
10
],
[
1746741727.5009074,
20,
1,
5
],
[
1746741727.5805042,
20,
1,
5
],
[
1746745768.4887106,
20,
1,
5
],
[
1746745769.0985456,
20,
1,
5
],
[
1746745770.7302911,
20,
2,
10
],
[
1746745771.3163865,
20,
2,
10
],
[
1746745781.3498893,
20,
1,
5
],
[
1746745781.7930667,
20,
1,
5
],
[
1746750117.510269,
20,
1,
5
],
[
1746750118.3794386,
20,
1,
5
],
[
1746750120.418814,
20,
2,
10
],
[
1746750121.9174018,
20,
2,
10
],
[
1746750136.0475862,
20,
1,
5
],
[
1746750136.151664,
20,
1,
5
],
[
1746755184.7458024,
20,
1,
5
],
[
1746755185.372629,
20,
1,
5
],
[
1746755187.3441534,
20,
2,
10
],
[
1746755188.659961,
20,
2,
10
],
[
1746755199.5512016,
20,
1,
5
],
[
1746755199.6527991,
20,
1,
5
],
[
1746759320.6472747,
20,
1,
5
],
[
1746759321.2312272,
20,
1,
5
],
[
1746759323.1469018,
20,
2,
10
],
[
1746759324.2276564,
20,
2,
10
],
[
1746759335.2265592,
20,
1,
5
],
[
1746759335.303439,
20,
1,
5
],
[
1746763250.802533,
20,
1,
5
],
[
1746763251.1555555,
20,
1,
5
],
[
1746763252.976147,
20,
2,
10
],
[
1746763253.6596265,
20,
2,
10
],
[
1746763264.8697836,
20,
1,
5
],
[
1746763264.9391522,
20,
1,
5
],
[
1746767489.8216183,
20,
1,
5
],
[
1746767490.1990395,
20,
1,
5
],
[
1746767491.917522,
20,
2,
10
],
[
1746767492.5349884,
20,
2,
10
],
[
1746767502.3678534,
20,
1,
5
],
[
1746767502.8095589,
20,
1,
5
],
[
1746771094.6373131,
20,
1,
5
],
[
1746771095.023444,
20,
1,
5
],
[
1746771096.4958909,
20,
2,
10
],
[
1746771097.1339095,
20,
2,
10
],
[
1746771106.6730556,
20,
1,
5
],
[
1746771106.8580103,
20,
1,
5
],
[
1746775236.6193624,
20,
1,
5
],
[
1746775237.0194988,
20,
1,
5
],
[
1746775238.560284,
20,
2,
10
],
[
1746775239.067593,
20,
2,
10
],
[
1746775249.4447358,
20,
1,
5
],
[
1746775249.6177304,
20,
1,
5
]
];
var tab_main_worker_cpu_ram_csv_json = [
[
1746192507,
633.76953125,
32.9
],
[
1746192507,
633.76953125,
36.2
],
[
1746192507,
633.76953125,
33.7
],
[
1746192507,
633.76953125,
34.7
],
[
1746192507,
633.76953125,
35.6
],
[
1746192507,
633.76953125,
36.1
],
[
1746192507,
633.76953125,
37
],
[
1746211444,
814.4921875,
38.1
],
[
1746211444,
814.4921875,
31
],
[
1746211444,
814.4921875,
31.2
],
[
1746211444,
814.4921875,
31.3
],
[
1746229737,
850.1796875,
19
],
[
1746229737,
850.1796875,
14.8
],
[
1746229737,
850.1796875,
15
],
[
1746229737,
850.1796875,
16.2
],
[
1746281912,
926.44921875,
15.5
],
[
1746281912,
926.44921875,
15.1
],
[
1746281912,
926.44921875,
15.2
],
[
1746281912,
926.44921875,
12.1
],
[
1746339988,
935.5703125,
15.9
],
[
1746339988,
935.5703125,
14.3
],
[
1746339988,
935.5703125,
14.6
],
[
1746339988,
935.5703125,
10.3
],
[
1746389647,
974.265625,
17.1
],
[
1746389647,
974.265625,
17.5
],
[
1746389647,
974.265625,
17.2
],
[
1746389647,
974.265625,
16.9
],
[
1746443694,
1025.27734375,
17.8
],
[
1746443694,
1025.27734375,
25.7
],
[
1746443694,
1025.27734375,
24.9
],
[
1746443694,
1025.27734375,
21.4
],
[
1746515798,
1027.40625,
23.7
],
[
1746515798,
1027.40625,
14.8
],
[
1746515798,
1027.40625,
14.4
],
[
1746515798,
1027.40625,
16.7
],
[
1746596462,
1075.80859375,
16.2
],
[
1746596462,
1075.80859375,
15.7
],
[
1746596462,
1075.80859375,
15.6
],
[
1746596462,
1075.80859375,
16.1
],
[
1746685244,
1127.19140625,
17.4
],
[
1746685244,
1127.19140625,
17.7
],
[
1746685244,
1127.19140625,
17.6
],
[
1746685244,
1127.19140625,
22
],
[
1746775256,
1141.20703125,
16.6
],
[
1746775256,
1141.20703125,
16.5
],
[
1746775256,
1141.20703125,
16.9
],
[
1746775256,
1141.20703125,
20.5
]
];
var tab_main_worker_cpu_ram_headers_json = [
"timestamp",
"ram_usage_mb",
"cpu_usage_percent"
];
"use strict";
function add_default_layout_data (layout, no_height = 0) {
layout["width"] = get_graph_width();
if (!no_height) {
layout["height"] = get_graph_height();
}
layout["paper_bgcolor"] = 'rgba(0,0,0,0)';
layout["plot_bgcolor"] = 'rgba(0,0,0,0)';
return layout;
}
function get_marker_size() {
return 12;
}
function get_text_color() {
return theme == "dark" ? "white" : "black";
}
function get_font_size() {
return 14;
}
function get_graph_height() {
return 800;
}
function get_font_data() {
return {
size: get_font_size(),
color: get_text_color()
}
}
function get_axis_title_data(name, axis_type = "") {
if(axis_type) {
return {
text: name,
type: axis_type,
font: get_font_data()
};
}
return {
text: name,
font: get_font_data()
};
}
function get_graph_width() {
var width = document.body.clientWidth || window.innerWidth || document.documentElement.clientWidth;
return Math.max(800, Math.floor(width * 0.9));
}
function createTable(data, headers, table_name) {
if (!$("#" + table_name).length) {
console.error("#" + table_name + " not found");
return;
}
new gridjs.Grid({
columns: headers,
data: data,
search: true,
sort: true,
ellipsis: false
}).render(document.getElementById(table_name));
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
colorize_table_entries();
add_colorize_to_gridjs_table();
}
function download_as_file(id, filename) {
var text = $("#" + id).text();
var blob = new Blob([text], {
type: "text/plain"
});
var link = document.createElement("a");
link.href = URL.createObjectURL(blob);
link.download = filename;
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
}
function copy_to_clipboard_from_id (id) {
var text = $("#" + id).text();
copy_to_clipboard(text);
}
function copy_to_clipboard(text) {
if (!navigator.clipboard) {
let textarea = document.createElement("textarea");
textarea.value = text;
document.body.appendChild(textarea);
textarea.select();
try {
document.execCommand("copy");
} catch (err) {
console.error("Copy failed:", err);
}
document.body.removeChild(textarea);
return;
}
navigator.clipboard.writeText(text).then(() => {
console.log("Text copied to clipboard");
}).catch(err => {
console.error("Failed to copy text:", err);
});
}
function filterNonEmptyRows(data) {
var new_data = [];
for (var row_idx = 0; row_idx < data.length; row_idx++) {
var line = data[row_idx];
var line_has_empty_data = false;
for (var col_idx = 0; col_idx < line.length; col_idx++) {
var col_header_name = tab_results_headers_json[col_idx];
var single_data_point = line[col_idx];
if(single_data_point === "" && !special_col_names.includes(col_header_name)) {
line_has_empty_data = true;
continue;
}
}
if(!line_has_empty_data) {
new_data.push(line);
}
}
return new_data;
}
function make_text_in_parallel_plot_nicer() {
$(".parcoords g > g > text").each(function() {
if (theme == "dark") {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "white")
.css("stroke", "black")
.css("stroke-width", "2px")
.css("paint-order", "stroke fill");
} else {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "black")
.css("stroke", "unset")
.css("stroke-width", "unset")
.css("paint-order", "stroke fill");
}
});
}
function createParallelPlot(dataArray, headers, resultNames, ignoreColumns = []) {
if ($("#parallel-plot").data("loaded") == "true") {
return;
}
dataArray = filterNonEmptyRows(dataArray);
const ignoreSet = new Set(ignoreColumns);
const numericalCols = [];
const categoricalCols = [];
const categoryMappings = {};
headers.forEach((header, colIndex) => {
if (ignoreSet.has(header)) return;
const values = dataArray.map(row => row[colIndex]);
if (values.every(val => !isNaN(parseFloat(val)))) {
numericalCols.push({ name: header, index: colIndex });
} else {
categoricalCols.push({ name: header, index: colIndex });
const uniqueValues = [...new Set(values)];
categoryMappings[header] = Object.fromEntries(uniqueValues.map((val, i) => [val, i]));
}
});
const dimensions = [];
numericalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => parseFloat(row[col.index])),
range: [
Math.min(...dataArray.map(row => parseFloat(row[col.index]))),
Math.max(...dataArray.map(row => parseFloat(row[col.index])))
]
});
});
categoricalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => categoryMappings[col.name][row[col.index]]),
tickvals: Object.values(categoryMappings[col.name]),
ticktext: Object.keys(categoryMappings[col.name])
});
});
let colorScale = null;
let colorValues = null;
if (resultNames.length > 1) {
let selectBox = '<select id="result-select" style="margin-bottom: 10px;">';
selectBox += '<option value="none">No color</option>';
var k = 0;
resultNames.forEach(resultName => {
var minMax = result_min_max[k];
if(minMax === undefined) {
minMax = "min [automatically chosen]"
}
selectBox += `<option value="${resultName}">${resultName} (${minMax})</option>`;
k = k + 1;
});
selectBox += '</select>';
$("#parallel-plot").before(selectBox);
$("#result-select").change(function() {
const selectedResult = $(this).val();
if (selectedResult === "none") {
colorValues = null;
colorScale = null;
} else {
const resultCol = numericalCols.find(col => col.name.toLowerCase() === selectedResult.toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
let minResult = Math.min(...colorValues);
let maxResult = Math.max(...colorValues);
var _result_min_max_idx = result_names.indexOf(selectedResult);
let invertColor = false;
if (result_min_max.length > _result_min_max_idx) {
invertColor = result_min_max[_result_min_max_idx] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
}
updatePlot();
});
} else {
let invertColor = false;
if (Object.keys(result_min_max).length == 1) {
invertColor = result_min_max[0] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
const resultCol = numericalCols.find(col => col.name.toLowerCase() === resultNames[0].toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
}
function updatePlot() {
const trace = {
type: 'parcoords',
dimensions: dimensions,
line: colorValues ? { color: colorValues, colorscale: colorScale } : {},
unselected: {
line: {
color: get_text_color(),
opacity: 0
}
},
};
dimensions.forEach(dim => {
if (!dim.line) {
dim.line = {};
}
if (!dim.line.color) {
dim.line.color = 'rgba(169,169,169, 0.01)';
}
});
Plotly.newPlot('parallel-plot', [trace], add_default_layout_data({}));
make_text_in_parallel_plot_nicer();
}
updatePlot();
$("#parallel-plot").data("loaded", "true");
make_text_in_parallel_plot_nicer();
}
function plotWorkerUsage() {
if($("#workerUsagePlot").data("loaded") == "true") {
return;
}
var data = tab_worker_usage_csv_json;
if (!Array.isArray(data) || data.length === 0) {
console.error("Invalid or empty data provided.");
return;
}
let timestamps = [];
let desiredWorkers = [];
let realWorkers = [];
for (let i = 0; i < data.length; i++) {
let entry = data[i];
if (!Array.isArray(entry) || entry.length < 3) {
console.warn("Skipping invalid entry:", entry);
continue;
}
let unixTime = parseFloat(entry[0]);
let desired = parseInt(entry[1], 10);
let real = parseInt(entry[2], 10);
if (isNaN(unixTime) || isNaN(desired) || isNaN(real)) {
console.warn("Skipping invalid numerical values:", entry);
continue;
}
timestamps.push(new Date(unixTime * 1000).toISOString());
desiredWorkers.push(desired);
realWorkers.push(real);
}
let trace1 = {
x: timestamps,
y: desiredWorkers,
mode: 'lines+markers',
name: 'Desired Workers',
line: {
color: 'blue'
}
};
let trace2 = {
x: timestamps,
y: realWorkers,
mode: 'lines+markers',
name: 'Real Workers',
line: {
color: 'red'
}
};
let layout = {
title: "Worker Usage Over Time",
xaxis: {
title: get_axis_title_data("Time", "date")
},
yaxis: {
title: get_axis_title_data("Number of Workers")
},
legend: {
x: 0,
y: 1
}
};
Plotly.newPlot('workerUsagePlot', [trace1, trace2], add_default_layout_data(layout));
$("#workerUsagePlot").data("loaded", "true");
}
function plotCPUAndRAMUsage() {
if($("#mainWorkerCPURAM").data("loaded") == "true") {
return;
}
var timestamps = tab_main_worker_cpu_ram_csv_json.map(row => new Date(row[0] * 1000));
var ramUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[1]);
var cpuUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[2]);
var trace1 = {
x: timestamps,
y: cpuUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'CPU Usage (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: ramUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'RAM Usage (MB)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'CPU and RAM Usage Over Time',
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
overlaying: 'y',
side: 'right',
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var data = [trace1, trace2];
Plotly.newPlot('mainWorkerCPURAM', data, add_default_layout_data(layout));
$("#mainWorkerCPURAM").data("loaded", "true");
}
function plotScatter2d() {
if ($("#plotScatter2d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter2d");
var minInput = document.getElementById("minValue");
var maxInput = document.getElementById("maxValue");
if (!minInput || !maxInput) {
minInput = document.createElement("input");
minInput.id = "minValue";
minInput.type = "number";
minInput.placeholder = "Min Value";
minInput.step = "any";
maxInput = document.createElement("input");
maxInput.id = "maxValue";
maxInput.type = "number";
maxInput.placeholder = "Max Value";
maxInput.step = "any";
var inputContainer = document.createElement("div");
inputContainer.style.marginBottom = "10px";
inputContainer.appendChild(minInput);
inputContainer.appendChild(maxInput);
plotDiv.appendChild(inputContainer);
}
var resultSelect = document.getElementById("resultSelect");
if (result_names.length > 1 && !resultSelect) {
resultSelect = document.createElement("select");
resultSelect.id = "resultSelect";
resultSelect.style.marginBottom = "10px";
var sortedResults = [...result_names].sort();
sortedResults.forEach(result => {
var option = document.createElement("option");
option.value = result;
option.textContent = result;
resultSelect.appendChild(option);
});
var selectContainer = document.createElement("div");
selectContainer.style.marginBottom = "10px";
selectContainer.appendChild(resultSelect);
plotDiv.appendChild(selectContainer);
}
minInput.addEventListener("input", updatePlots);
maxInput.addEventListener("input", updatePlots);
if (resultSelect) {
resultSelect.addEventListener("change", updatePlots);
}
updatePlots();
async function updatePlots() {
var minValue = parseFloat(minInput.value);
var maxValue = parseFloat(maxInput.value);
if (isNaN(minValue)) minValue = -Infinity;
if (isNaN(maxValue)) maxValue = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var selectedResult = resultSelect ? resultSelect.value : result_names[0];
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue !== -Infinity) minResult = Math.max(minResult, minValue);
if (maxValue !== Infinity) maxResult = Math.min(maxResult, maxValue);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 2) {
console.error("Not enough columns for Scatter-Plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
showlegend: false
};
let subDiv = document.createElement("div");
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
symbol: data.map(d => d.result === null ? 'x' : 'circle'),
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter',
showlegend: false
};
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
$("#plotScatter2d").data("loaded", "true");
}
function plotScatter3d() {
if ($("#plotScatter3d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter3d");
if (!plotDiv) {
console.error("Div element with id 'plotScatter3d' not found");
return;
}
plotDiv.innerHTML = "";
var minInput3d = document.getElementById("minValue3d");
var maxInput3d = document.getElementById("maxValue3d");
if (!minInput3d || !maxInput3d) {
minInput3d = document.createElement("input");
minInput3d.id = "minValue3d";
minInput3d.type = "number";
minInput3d.placeholder = "Min Value";
minInput3d.step = "any";
maxInput3d = document.createElement("input");
maxInput3d.id = "maxValue3d";
maxInput3d.type = "number";
maxInput3d.placeholder = "Max Value";
maxInput3d.step = "any";
var inputContainer3d = document.createElement("div");
inputContainer3d.style.marginBottom = "10px";
inputContainer3d.appendChild(minInput3d);
inputContainer3d.appendChild(maxInput3d);
plotDiv.appendChild(inputContainer3d);
}
var select3d = document.getElementById("select3dScatter");
if (result_names.length > 1 && !select3d) {
if (!select3d) {
select3d = document.createElement("select");
select3d.id = "select3dScatter";
select3d.style.marginBottom = "10px";
select3d.innerHTML = result_names.map(name => `<option value="${name}">${name}</option>`).join("");
select3d.addEventListener("change", updatePlots3d);
plotDiv.appendChild(select3d);
}
}
minInput3d.addEventListener("input", updatePlots3d);
maxInput3d.addEventListener("input", updatePlots3d);
updatePlots3d();
async function updatePlots3d() {
var selectedResult = select3d ? select3d.value : result_names[0];
var minValue3d = parseFloat(minInput3d.value);
var maxValue3d = parseFloat(maxInput3d.value);
if (isNaN(minValue3d)) minValue3d = -Infinity;
if (isNaN(maxValue3d)) maxValue3d = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue3d !== -Infinity) minResult = Math.max(minResult, minValue3d);
if (maxValue3d !== Infinity) maxResult = Math.min(maxResult, maxValue3d);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 3) {
console.error("Not enough columns for 3D scatter plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
for (let k = j + 1; k < numericColumns.length; k++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let zCol = numericColumns[k];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let zIndex = tab_results_headers_json.indexOf(zCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
z: parseFloat(row[zIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y) vs ${zCol} (z), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
scene: {
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
zaxis: {
title: get_axis_title_data(zCol)
}
},
showlegend: false
};
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
z: data.map(d => d.z),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter3d',
showlegend: false
};
let subDiv = document.createElement("div");
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
}
$("#plotScatter3d").data("loaded", "true");
}
async function plot_worker_cpu_ram() {
if($("#worker_cpu_ram_pre").data("loaded") == "true") {
return;
}
const logData = $("#worker_cpu_ram_pre").text();
const regex = /^Unix-Timestamp: (\d+), Hostname: ([\w-]+), CPU: ([\d.]+)%, RAM: ([\d.]+) MB \/ ([\d.]+) MB$/;
const hostData = {};
logData.split("\n").forEach(line => {
line = line.trim();
const match = line.match(regex);
if (match) {
const timestamp = new Date(parseInt(match[1]) * 1000);
const hostname = match[2];
const cpu = parseFloat(match[3]);
const ram = parseFloat(match[4]);
if (!hostData[hostname]) {
hostData[hostname] = { timestamps: [], cpuUsage: [], ramUsage: [] };
}
hostData[hostname].timestamps.push(timestamp);
hostData[hostname].cpuUsage.push(cpu);
hostData[hostname].ramUsage.push(ram);
}
});
if (!Object.keys(hostData).length) {
console.log("No valid data found");
return;
}
const container = document.getElementById("cpuRamWorkerChartContainer");
container.innerHTML = "";
var i = 1;
Object.entries(hostData).forEach(([hostname, { timestamps, cpuUsage, ramUsage }], index) => {
const chartId = `workerChart_${index}`;
const chartDiv = document.createElement("div");
chartDiv.id = chartId;
chartDiv.style.marginBottom = "40px";
container.appendChild(chartDiv);
const cpuTrace = {
x: timestamps,
y: cpuUsage,
mode: "lines+markers",
name: "CPU Usage (%)",
yaxis: "y1",
line: {
color: "red"
}
};
const ramTrace = {
x: timestamps,
y: ramUsage,
mode: "lines+markers",
name: "RAM Usage (MB)",
yaxis: "y2",
line: {
color: "blue"
}
};
const layout = {
title: `Worker CPU and RAM Usage - ${hostname}`,
xaxis: {
title: get_axis_title_data("Timestamp", "date")
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
side: "left",
color: "red"
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
side: "right",
overlaying: "y",
color: "blue"
},
showlegend: true
};
Plotly.newPlot(chartId, [cpuTrace, ramTrace], add_default_layout_data(layout));
i++;
});
$("#plot_worker_cpu_ram_button").remove();
$("#worker_cpu_ram_pre").data("loaded", "true");
}
function load_log_file(log_nr, filename) {
var pre_id = `single_run_${log_nr}_pre`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}&filename=${filename}`;
fetch(url)
.then(response => response.json())
.then(data => {
if (data.data) {
$("#" + pre_id).html(data.data);
$("#" + pre_id).data("loaded", true);
} else {
log(`No 'data' key found in response.`);
}
$("#spinner_log_" + log_nr).remove();
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#spinner_log_" + log_nr).remove();
});
}
}
function load_debug_log () {
var pre_id = `here_debuglogs_go`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_debug_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}`;
fetch(url)
.then(response => response.json())
.then(data => {
$("#debug_log_spinner").remove();
if (data.data) {
try {
$("#" + pre_id).html(data.data);
} catch (err) {
$("#" + pre_id).text(`Error loading data: ${err}`);
}
$("#" + pre_id).data("loaded", true);
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
} else {
log(`No 'data' key found in response.`);
}
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#debug_log_spinner").remove();
});
}
}
function plotBoxplot() {
if ($("#plotBoxplot").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough numeric columns for Boxplot");
return;
}
var resultIndex = tab_results_headers_json.findIndex(function(header) {
return result_names.includes(header.toLowerCase());
});
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
var plotDiv = document.getElementById("plotBoxplot");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'box',
name: col,
boxmean: 'sd',
marker: {
color: 'rgb(0, 255, 0)'
},
};
});
let layout = {
title: 'Boxplot of Numerical Columns',
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Value")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotBoxplot").data("loaded", "true");
}
function plotHeatmap() {
if ($("#plotHeatmap").data("loaded") === "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col => {
if (special_col_names.includes(col) || result_names.includes(col)) {
return false;
}
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.every(row => {
let value = parseFloat(row[index]);
return !isNaN(value) && isFinite(value);
});
});
if (numericColumns.length < 2) {
console.error("Not enough valid numeric columns for Heatmap");
return;
}
var columnData = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.map(row => parseFloat(row[index]));
});
var dataMatrix = numericColumns.map((_, i) =>
numericColumns.map((_, j) => {
let values = columnData[i].map((val, index) => (val + columnData[j][index]) / 2);
return values.reduce((a, b) => a + b, 0) / values.length;
})
);
var trace = {
z: dataMatrix,
x: numericColumns,
y: numericColumns,
colorscale: 'Viridis',
type: 'heatmap'
};
var layout = {
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
var plotDiv = document.getElementById("plotHeatmap");
plotDiv.innerHTML = "";
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotHeatmap").data("loaded", "true");
}
function plotHistogram() {
if ($("#plotHistogram").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Histogram");
return;
}
var plotDiv = document.getElementById("plotHistogram");
plotDiv.innerHTML = "";
const colorPalette = ['#ff9999', '#66b3ff', '#99ff99', '#ffcc99', '#c2c2f0', '#ffb3e6'];
let traces = numericColumns.map((col, index) => {
let data = tab_results_csv_json.map(row => parseFloat(row[tab_results_headers_json.indexOf(col)]));
return {
x: data,
type: 'histogram',
name: col,
opacity: 0.7,
marker: {
color: colorPalette[index % colorPalette.length]
},
autobinx: true
};
});
let layout = {
title: 'Histogram of Numerical Columns',
xaxis: {
title: get_axis_title_data("Value")
},
yaxis: {
title: get_axis_title_data("Frequency")
},
showlegend: true,
barmode: 'overlay'
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotHistogram").data("loaded", "true");
}
function plotViolin() {
if ($("#plotViolin").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Violin Plot");
return;
}
var plotDiv = document.getElementById("plotViolin");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'violin',
name: col,
box: {
visible: true
},
line: {
color: 'rgb(0, 255, 0)'
},
marker: {
color: 'rgb(0, 255, 0)'
},
meanline: {
visible: true
},
};
});
let layout = {
title: 'Violin Plot of Numerical Columns',
yaxis: {
title: get_axis_title_data("Value")
},
xaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotViolin").data("loaded", "true");
}
function plotExitCodesPieChart() {
if ($("#plotExitCodesPieChart").data("loaded") == "true") {
return;
}
var exitCodes = tab_job_infos_csv_json.map(row => row[tab_job_infos_headers_json.indexOf("exit_code")]);
var exitCodeCounts = exitCodes.reduce(function(counts, exitCode) {
counts[exitCode] = (counts[exitCode] || 0) + 1;
return counts;
}, {});
var labels = Object.keys(exitCodeCounts);
var values = Object.values(exitCodeCounts);
var plotDiv = document.getElementById("plotExitCodesPieChart");
plotDiv.innerHTML = "";
var trace = {
labels: labels,
values: values,
type: 'pie',
hoverinfo: 'label+percent',
textinfo: 'label+value',
marker: {
colors: ['#ff9999','#66b3ff','#99ff99','#ffcc99','#c2c2f0']
}
};
var layout = {
title: 'Exit Code Distribution',
showlegend: true
};
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotExitCodesPieChart").data("loaded", "true");
}
function plotResultEvolution() {
if ($("#plotResultEvolution").data("loaded") == "true") {
return;
}
result_names.forEach(resultName => {
var relevantColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !col.startsWith("OO_Info") && col.toLowerCase() !== resultName.toLowerCase()
);
var xColumnIndex = tab_results_headers_json.indexOf("trial_index");
var resultIndex = tab_results_headers_json.indexOf(resultName);
let data = tab_results_csv_json.map(row => ({
x: row[xColumnIndex],
y: parseFloat(row[resultIndex])
}));
data.sort((a, b) => a.x - b.x);
let xData = data.map(item => item.x);
let yData = data.map(item => item.y);
let trace = {
x: xData,
y: yData,
mode: 'lines+markers',
name: resultName,
line: {
shape: 'linear'
},
marker: {
size: get_marker_size()
}
};
let layout = {
title: `Evolution of ${resultName} over time`,
xaxis: {
title: get_axis_title_data("Trial-Index")
},
yaxis: {
title: get_axis_title_data(resultName)
},
showlegend: true
};
let subDiv = document.createElement("div");
document.getElementById("plotResultEvolution").appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
});
$("#plotResultEvolution").data("loaded", "true");
}
function plotResultPairs() {
if ($("#plotResultPairs").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotResultPairs");
plotDiv.innerHTML = "";
for (let i = 0; i < result_names.length; i++) {
for (let j = i + 1; j < result_names.length; j++) {
let xName = result_names[i];
let yName = result_names[j];
let xIndex = tab_results_headers_json.indexOf(xName);
let yIndex = tab_results_headers_json.indexOf(yName);
let data = tab_results_csv_json
.filter(row => row[xIndex] !== "" && row[yIndex] !== "")
.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
status: row[tab_results_headers_json.indexOf("trial_status")]
}));
let colors = data.map(d => d.status === "COMPLETED" ? 'green' : (d.status === "FAILED" ? 'red' : 'gray'));
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: colors
},
text: data.map(d => `Status: ${d.status}`),
type: 'scatter',
showlegend: false
};
let layout = {
xaxis: {
title: get_axis_title_data(xName)
},
yaxis: {
title: get_axis_title_data(yName)
},
showlegend: false
};
let subDiv = document.createElement("div");
plotDiv.appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
$("#plotResultPairs").data("loaded", "true");
}
function add_up_down_arrows_for_scrolling () {
const upArrow = document.createElement('div');
const downArrow = document.createElement('div');
const style = document.createElement('style');
style.innerHTML = `
.scroll-arrow {
position: fixed;
right: 10px;
z-index: 100;
cursor: pointer;
font-size: 25px;
display: none;
background-color: green;
color: white;
padding: 5px;
outline: 2px solid white;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.5);
transition: background-color 0.3s, transform 0.3s;
}
.scroll-arrow:hover {
background-color: darkgreen;
transform: scale(1.1);
}
#up-arrow {
top: 10px;
}
#down-arrow {
bottom: 10px;
}
`;
document.head.appendChild(style);
upArrow.id = "up-arrow";
upArrow.classList.add("scroll-arrow");
upArrow.classList.add("invert_in_dark_mode");
upArrow.innerHTML = "↑";
downArrow.id = "down-arrow";
downArrow.classList.add("scroll-arrow");
downArrow.classList.add("invert_in_dark_mode");
downArrow.innerHTML = "↓";
document.body.appendChild(upArrow);
document.body.appendChild(downArrow);
function checkScrollPosition() {
const scrollPosition = window.scrollY;
const pageHeight = document.documentElement.scrollHeight;
const windowHeight = window.innerHeight;
if (scrollPosition > 0) {
upArrow.style.display = "block";
} else {
upArrow.style.display = "none";
}
if (scrollPosition + windowHeight < pageHeight) {
downArrow.style.display = "block";
} else {
downArrow.style.display = "none";
}
}
window.addEventListener("scroll", checkScrollPosition);
upArrow.addEventListener("click", function () {
window.scrollTo({ top: 0, behavior: 'smooth' });
});
downArrow.addEventListener("click", function () {
window.scrollTo({ top: document.documentElement.scrollHeight, behavior: 'smooth' });
});
checkScrollPosition();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
function plotGPUUsage() {
if ($("#tab_gpu_usage").data("loaded") === "true") {
return;
}
Object.keys(gpu_usage).forEach(node => {
const nodeData = gpu_usage[node];
var timestamps = [];
var gpuUtilizations = [];
var temperatures = [];
nodeData.forEach(entry => {
try {
var timestamp = new Date(entry[0]* 1000);
var utilization = parseFloat(entry[1]);
var temperature = parseFloat(entry[2]);
if (!isNaN(timestamp) && !isNaN(utilization) && !isNaN(temperature)) {
timestamps.push(timestamp);
gpuUtilizations.push(utilization);
temperatures.push(temperature);
} else {
console.warn("Invalid data point:", entry);
}
} catch (error) {
console.error("Error processing GPU data entry:", error, entry);
}
});
var trace1 = {
x: timestamps,
y: gpuUtilizations,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Utilization (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: temperatures,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Temperature (°C)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'GPU Usage Over Time - ' + node,
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("GPU Utilization (%)"),
overlaying: 'y',
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("GPU Temperature (°C)"),
overlaying: 'y',
side: 'right',
position: 0.85,
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var divId = 'gpu_usage_plot_' + node;
if (!document.getElementById(divId)) {
var div = document.createElement('div');
div.id = divId;
div.className = 'gpu-usage-plot';
document.getElementById('tab_gpu_usage').appendChild(div);
}
var plotData = [trace1, trace2];
Plotly.newPlot(divId, plotData, add_default_layout_data(layout));
});
$("#tab_gpu_usage").data("loaded", "true");
}
function plotResultsDistributionByGenerationMethod() {
if ("true" === $("#plotResultsDistributionByGenerationMethod").data("loaded")) {
return;
}
var res_col = result_names[0];
var gen_method_col = "generation_node";
var data = {};
tab_results_csv_json.forEach(row => {
var gen_method = row[tab_results_headers_json.indexOf(gen_method_col)];
var result = row[tab_results_headers_json.indexOf(res_col)];
if (!data[gen_method]) {
data[gen_method] = [];
}
data[gen_method].push(result);
});
var traces = Object.keys(data).map(method => {
return {
y: data[method],
type: 'box',
name: method,
boxpoints: 'outliers',
jitter: 0.5,
pointpos: 0
};
});
var layout = {
title: 'Distribution of Results by Generation Method',
yaxis: {
title: get_axis_title_data(res_col)
},
xaxis: {
title: get_axis_title_data("Generation Method")
},
boxmode: 'group'
};
Plotly.newPlot("plotResultsDistributionByGenerationMethod", traces, add_default_layout_data(layout));
$("#plotResultsDistributionByGenerationMethod").data("loaded", "true");
}
function plotJobStatusDistribution() {
if ($("#plotJobStatusDistribution").data("loaded") === "true") {
return;
}
var status_col = "trial_status";
var status_counts = {};
tab_results_csv_json.forEach(row => {
var status = row[tab_results_headers_json.indexOf(status_col)];
if (status) {
status_counts[status] = (status_counts[status] || 0) + 1;
}
});
var statuses = Object.keys(status_counts);
var counts = Object.values(status_counts);
var colors = statuses.map((status, i) =>
status === "FAILED" ? "#FF0000" : `hsl(${30 + ((i * 137) % 330)}, 70%, 50%)`
);
var trace = {
x: statuses,
y: counts,
type: 'bar',
marker: { color: colors }
};
var layout = {
title: 'Distribution of Job Status',
xaxis: { title: 'Trial Status' },
yaxis: { title: 'Nr. of jobs' }
};
Plotly.newPlot("plotJobStatusDistribution", [trace], add_default_layout_data(layout));
$("#plotJobStatusDistribution").data("loaded", "true");
}
function _colorize_table_entries_by_generation_method () {
document.querySelectorAll('[data-column-id="generation_node"]').forEach(el => {
let text = el.textContent.toLowerCase();
let color = text.includes("manual") ? "green" :
text.includes("sobol") ? "orange" :
text.includes("saasbo") ? "pink" :
text.includes("uniform") ? "lightblue" :
text.includes("legacy_gpei") ? "sienna" :
text.includes("bo_mixed") ? "aqua" :
text.includes("randomforest") ? "darkseagreen" :
text.includes("external_generator") ? "purple" :
text.includes("botorch") ? "yellow" : "";
if (color !== "") {
el.style.backgroundColor = color;
}
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_trial_status () {
document.querySelectorAll('[data-column-id="trial_status"]').forEach(el => {
let color = el.textContent.includes("COMPLETED") ? "lightgreen" :
el.textContent.includes("RUNNING") ? "orange" :
el.textContent.includes("FAILED") ? "red" :
el.textContent.includes("ABANDONED") ? "yellow" : "";
if (color) el.style.backgroundColor = color;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_run_time() {
let cells = [...document.querySelectorAll('[data-column-id="run_time"]')];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => !isNaN(v));
if (values.length === 0) return;
let min = Math.min(...values);
let max = Math.max(...values);
let range = max - min || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value)) return;
let ratio = (value - min) / range;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_results() {
result_names.forEach((name, index) => {
let minMax = result_min_max[index];
let selector_query = `[data-column-id="${name}"]`;
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => v > 0 && !isNaN(v));
if (values.length === 0) return;
let logValues = values.map(v => Math.log(v));
let logMin = Math.min(...logValues);
let logMax = Math.max(...logValues);
let logRange = logMax - logMin || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value) || value <= 0) return;
let logValue = Math.log(value);
let ratio = (logValue - logMin) / logRange;
if (minMax === "max") ratio = 1 - ratio;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
});
}
function _colorize_table_entries_by_generation_node_or_hostname() {
["hostname", "generation_node"].forEach(element => {
let selector_query = '[data-column-id="' + element + '"]:not(.gridjs-th)';
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let uniqueValues = [...new Set(cells.map(el => el.textContent.trim()))];
let colorMap = {};
uniqueValues.forEach((value, index) => {
let hue = Math.round((360 / uniqueValues.length) * index);
colorMap[value] = `hsl(${hue}, 70%, 60%)`;
});
cells.forEach(el => {
let value = el.textContent.trim();
if (colorMap[value]) {
el.style.backgroundColor = colorMap[value];
el.classList.add("invert_in_dark_mode");
}
});
});
}
function colorize_table_entries () {
setTimeout(() => {
if (typeof result_names !== "undefined" && Array.isArray(result_names) && result_names.length > 0) {
_colorize_table_entries_by_trial_status();
_colorize_table_entries_by_results();
_colorize_table_entries_by_run_time();
_colorize_table_entries_by_generation_method();
_colorize_table_entries_by_generation_node_or_hostname();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
}, 300);
}
function add_colorize_to_gridjs_table () {
let searchInput = document.querySelector(".gridjs-search-input");
if (searchInput) {
searchInput.addEventListener("input", colorize_table_entries);
}
}
function updatePreWidths() {
var width = window.innerWidth * 0.95;
var pres = document.getElementsByTagName('pre');
for (var i = 0; i < pres.length; i++) {
pres[i].style.width = width + 'px';
}
}
function demo_mode(nr_sec = 3) {
let i = 0;
let tabs = $('menu[role="tablist"] > button');
setInterval(() => {
tabs.attr('aria-selected', 'false').removeClass('active');
let tab = tabs.eq(i % tabs.length);
tab.attr('aria-selected', 'true').addClass('active');
tab.trigger('click');
i++;
}, nr_sec * 1000);
}
function resizePlotlyCharts() {
const plotlyElements = document.querySelectorAll('.js-plotly-plot');
if (plotlyElements.length) {
const windowWidth = window.innerWidth;
const windowHeight = window.innerHeight;
const newWidth = windowWidth * 0.9;
const newHeight = windowHeight * 0.9;
plotlyElements.forEach(function(element, index) {
const layout = {
width: newWidth,
height: newHeight,
plot_bgcolor: 'rgba(0, 0, 0, 0)',
paper_bgcolor: 'rgba(0, 0, 0, 0)',
};
Plotly.relayout(element, layout)
});
}
make_text_in_parallel_plot_nicer();
apply_theme_based_on_system_preferences();
}
window.addEventListener('load', updatePreWidths);
window.addEventListener('resize', updatePreWidths);
$(document).ready(function() {
colorize_table_entries();
add_up_down_arrows_for_scrolling();
add_colorize_to_gridjs_table();
});
window.addEventListener('resize', function() {
resizePlotlyCharts();
});
"use strict";
function get_row_by_index(idx) {
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
var trial_index_col_idx = tab_results_headers_json.indexOf("trial_index");
if(trial_index_col_idx == -1) {
error(`"trial_index" could not be found in tab_results_headers_json. Cannot continue`);
return null;
}
for (var i = 0; i < tab_results_csv_json.length; i++) {
var row = tab_results_csv_json[i];
var trial_index = row[trial_index_col_idx];
if (trial_index == idx) {
return row;
}
}
return null;
}
function load_pareto_graph_from_idxs () {
if (!Object.keys(window).includes("pareto_idxs")) {
error("pareto_idxs is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
if(pareto_idxs === null) {
var err_msg = "pareto_idxs is null. Cannot plot or create tables from empty data. This can be caused by a defective <tt>pareto_idxs.json</tt> file. Please try reloading, or re-calculating the pareto-front and re-submitting if this problem persists.";
$("#pareto_from_idxs_table").html(`<div class="caveat alarm">${err_msg}</div>`);
return;
}
var table = get_pareto_table_data_from_idx();
var html_tables = createParetoTablesFromData(table);
$("#pareto_from_idxs_table").html(html_tables);
renderParetoFrontPlots(table);
apply_theme_based_on_system_preferences();
}
function renderParetoFrontPlots(data) {
try {
let container = document.getElementById("pareto_front_idxs_plot_container");
if (!container) {
console.error("DIV with id 'pareto_front_idxs_plot_container' not found.");
return;
}
container.innerHTML = "";
if(data === undefined || data === null) {
var err_msg = "There was an error getting the data for Pareto-Fronts. See the developer's console to see further details.";
$("#pareto_from_idxs_table").html(`<div class="caveat alarm">${err_msg}</div>`);
return;
}
Object.keys(data).forEach((key, idx) => {
if (!key.startsWith("Pareto front for ")) return;
let label = key.replace("Pareto front for ", "");
let [xKey, yKey] = label.split("/");
if (!xKey || !yKey) {
console.warn("Could not extract two objectives from key:", key);
return;
}
let entries = data[key];
let x = [];
let y = [];
let hoverTexts = [];
entries.forEach((entry) => {
let results = entry.results || {};
let values = entry.values || {};
let xVal = (results[xKey] || [])[0];
let yVal = (results[yKey] || [])[0];
if (xVal === undefined || yVal === undefined) {
console.warn("Missing values for", xKey, yKey, "in", entry);
return;
}
x.push(xVal);
y.push(yVal);
let hoverInfo = [];
if ("trial_index" in values) {
hoverInfo.push(`<b>Trial Index:</b> ${values.trial_index[0]}`);
}
Object.keys(values)
.filter(k => k !== "trial_index")
.sort()
.forEach(k => {
hoverInfo.push(`<b>${k}:</b> ${values[k][0]}`);
});
Object.keys(results)
.sort()
.forEach(k => {
hoverInfo.push(`<b>${k}:</b> ${results[k][0]}`);
});
hoverTexts.push(hoverInfo.join("<br>"));
});
let wrapper = document.createElement("div");
wrapper.style.marginBottom = "30px";
let titleEl = document.createElement("h3");
titleEl.textContent = `Pareto Front: ${xKey} (${getMinMaxByResultName(xKey)}) vs ${yKey} (${getMinMaxByResultName(yKey)})`;
wrapper.appendChild(titleEl);
let divId = `pareto_plot_${idx}`;
let plotDiv = document.createElement("div");
plotDiv.id = divId;
plotDiv.style.width = "100%";
plotDiv.style.height = "400px";
wrapper.appendChild(plotDiv);
container.appendChild(wrapper);
let trace = {
x: x,
y: y,
text: hoverTexts,
hoverinfo: "text",
mode: "markers",
type: "scatter",
marker: {
size: 8,
color: 'rgb(31, 119, 180)',
line: {
width: 1,
color: 'black'
}
},
name: label
};
let layout = {
xaxis: { title: { text: xKey } },
yaxis: { title: { text: yKey } },
margin: { t: 10, l: 60, r: 20, b: 50 },
hovermode: "closest",
showlegend: false
};
Plotly.newPlot(divId, [trace], add_default_layout_data(layout, 1));
});
} catch (e) {
console.error("Error while rendering Pareto front plots:", e);
}
}
function createParetoTablesFromData(data) {
try {
var container = document.createElement("div");
var parsedData;
try {
parsedData = typeof data === "string" ? JSON.parse(data) : data;
} catch (e) {
console.error("JSON parsing failed:", e);
return container;
}
for (var sectionTitle in parsedData) {
if (!parsedData.hasOwnProperty(sectionTitle)) {
continue;
}
var sectionData = parsedData[sectionTitle];
var heading = document.createElement("h2");
heading.textContent = sectionTitle;
container.appendChild(heading);
var table = document.createElement("table");
table.style.borderCollapse = "collapse";
table.style.marginBottom = "2em";
table.style.width = "100%";
var thead = document.createElement("thead");
var headerRow = document.createElement("tr");
var allValueKeys = new Set();
var allResultKeys = new Set();
sectionData.forEach(entry => {
var values = entry.values || {};
var results = entry.results || {};
Object.keys(values).forEach(key => {
allValueKeys.add(key);
});
Object.keys(results).forEach(key => {
allResultKeys.add(key);
});
});
var sortedValueKeys = Array.from(allValueKeys).sort();
var sortedResultKeys = Array.from(allResultKeys).sort();
if (sortedValueKeys.includes("trial_index")) {
sortedValueKeys = sortedValueKeys.filter(k => k !== "trial_index");
sortedValueKeys.unshift("trial_index");
}
var allColumns = [...sortedValueKeys, ...sortedResultKeys];
allColumns.forEach(col => {
var th = document.createElement("th");
th.textContent = col;
th.style.border = "1px solid black";
th.style.padding = "4px";
headerRow.appendChild(th);
});
thead.appendChild(headerRow);
table.appendChild(thead);
var tbody = document.createElement("tbody");
sectionData.forEach(entry => {
var tr = document.createElement("tr");
allColumns.forEach(col => {
var td = document.createElement("td");
td.style.border = "1px solid black";
td.style.padding = "4px";
var value = null;
if (col in entry.values) {
value = entry.values[col];
} else if (col in entry.results) {
value = entry.results[col];
}
if (Array.isArray(value)) {
td.textContent = value.join(", ");
} else {
td.textContent = value !== null && value !== undefined ? value : "";
}
tr.appendChild(td);
});
tbody.appendChild(tr);
});
table.appendChild(tbody);
container.appendChild(table);
}
return container;
} catch (err) {
console.error("Unexpected error:", err);
var errorDiv = document.createElement("div");
errorDiv.textContent = "Error generating tables.";
return errorDiv;
}
}
function get_pareto_table_data_from_idx () {
if (!Object.keys(window).includes("pareto_idxs")) {
error("pareto_idxs is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
var x_keys = Object.keys(pareto_idxs);
var tables = {};
for (var i = 0; i < x_keys.length; i++) {
var x_key = x_keys[i];
var y_keys = Object.keys(pareto_idxs[x_key]);
for (var j = 0; j < y_keys.length; j++) {
var y_key = y_keys[j];
var indices = pareto_idxs[x_key][y_key];
for (var k = 0; k < indices.length; k++) {
var idx = indices[k];
var row = get_row_by_index(idx);
if(row === null) {
error(`Error getting the row for index ${idx}`);
return;
}
var row_dict = {
"results": {},
"values": {},
};
for (var l = 0; l < tab_results_headers_json.length; l++) {
var header = tab_results_headers_json[l];
if (!special_col_names.includes(header) || header == "trial_index") {
var val = row[l];
if (result_names.includes(header)) {
if (!Object.keys(row_dict["results"]).includes(header)) {
row_dict["results"][header] = [];
}
row_dict["results"][header].push(val);
} else {
if (!Object.keys(row_dict["values"]).includes(header)) {
row_dict["values"][header] = [];
}
row_dict["values"][header].push(val);
}
}
}
var table_key = `Pareto front for ${x_key}/${y_key}`;
if(!Object.keys(tables).includes(table_key)) {
tables[table_key] = [];
}
tables[table_key].push(row_dict);
}
}
}
return tables;
}
function getMinMaxByResultName(resultName) {
try {
if (typeof resultName !== "string") {
error("Parameter resultName must be a string");
return;
}
if (!Array.isArray(result_names)) {
error("Global variable result_names is not an array or undefined");
return;
}
if (!Array.isArray(result_min_max)) {
error("Global variable result_min_max is not an array or undefined");
return;
}
if (result_names.length !== result_min_max.length) {
error("Global arrays result_names and result_min_max must have the same length");
return;
}
var index = result_names.indexOf(resultName);
if (index === -1) {
error("Result name '" + resultName + "' not found in result_names");
return;
}
var minMaxValue = result_min_max[index];
if (minMaxValue !== "min" && minMaxValue !== "max") {
error("Value for result name '" + resultName + "' is invalid: expected 'min' or 'max'");
return;
}
return minMaxValue;
} catch (e) {
error("Unexpected error: " + e.message);
}
}
$(document).ready(function() {
colorize_table_entries();;
plotWorkerUsage();;
plotCPUAndRAMUsage();;
createParallelPlot(tab_results_csv_json, tab_results_headers_json, result_names, special_col_names);;
plotScatter2d();;
plotScatter3d();
plotJobStatusDistribution();;
plotBoxplot();;
plotViolin();;
plotHistogram();;
plotHeatmap();;
plotResultPairs();;
plotResultEvolution();;
plotExitCodesPieChart();
colorize_table_entries();
});
</script>
<h1> Overview</h1>
<h2>Experiment overview: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Setting</th><th>Value </th></tr></thead><tbody><tr><td> Max. nr. evaluations</td><td>50359 </td></tr><tr><td> Max. nr. evaluations (from arguments)</td><td>50000 </td></tr><tr><td> Number random steps</td><td>20 </td></tr><tr><td> Nr. of workers (parameter)</td><td>20 </td></tr><tr><td> Main process memory (GB)</td><td>8 </td></tr><tr><td> Worker memory (GB)</td><td>32 </td></tr><tr><td> Nr. imported jobs</td><td>359 </td></tr></tbody></table><h2>Experiment parameters: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Name</th><th>Type</th><th>Lower bound</th><th>Upper bound</th><th>Values</th><th>Type</th><th>Log Scale? </th></tr></thead><tbody><tr><td> recent_samples_size</td><td>int</td><td>1</td><td>5000</td><td></td><td>int</td><td>No </td></tr><tr><td> n_samples</td><td>int</td><td>1</td><td>5000</td><td></td><td>int</td><td>No </td></tr><tr><td> confidence</td><td>choice</td><td></td><td></td><td>0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.001</td><td></td><td></td></tr><tr><td> feature_proportion</td><td>float</td><td>0.001</td><td>0.999</td><td></td><td>float</td><td>No </td></tr><tr><td> n_clusters</td><td>int</td><td>1</td><td>50</td><td></td><td>int</td><td>No </td></tr></tbody></table><h2>Number of evaluations</h2>
<table>
<tbody>
<tr>
<th>Failed</th>
<th>Succeeded</th>
<th>Running</th>
<th>Total</th>
</tr>
<tr>
<td>4</td>
<td>559</td>
<td>2</td>
<td>565</td>
</tr>
</tbody>
</table>
<h2>Result names and types</h2>
<table>
<tr><th>name</th><th>min/max</th></tr>
<tr>
<td>ACCURACY</td>
<td>max</td>
</tr>
<tr>
<td>RUNTIME</td>
<td>min</td>
</tr>
</table>
<br>
<h2>Git-Version</h2>
<tt>Commit: 2223ae6553abdd3e288f4b391080b763a7a48477
</tt>
<h1> Results</h1>
<div id='tab_results_csv_table'></div>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<pre id='tab_results_csv_table_pre'>trial_index,arm_name,trial_status,generation_method,generation_node,ACCURACY,RUNTIME,recent_samples_size,n_samples,feature_proportion,n_clusters,confidence
0,0_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,8.000000000000000000000000000000,1805,1049,0.339940486490726445634180663546,38,0.025
1,1_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,4.000000000000000000000000000000,4327,4143,0.666193685077130837157710629981,25,0.25
2,2_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,6.000000000000000000000000000000,2644,1491,0.778249274721369177498786484648,2,0.005
3,3_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,3.000000000000000000000000000000,132,3399,0.231248476630076776894284762420,37,0.25
4,4_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,4.000000000000000000000000000000,893,2461,0.529093715840950662432362605614,9,0.01
5,5_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,4.000000000000000000000000000000,3366,3053,0.481096903273835752035125779003,29,0.05
6,6_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,88.000000000000000000000000000000,4816,81,0.090057989563792947840248359626,46,0.01
7,7_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,3.000000000000000000000000000000,2333,4486,0.915307191472500614182195022295,17,0.1
8,8_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,7.000000000000000000000000000000,1939,1672,0.173996782450005410547433370994,14,0.01
9,9_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,6.000000000000000000000000000000,4428,3519,0.812607054723426647235839936911,50,0.05
10,10_0,COMPLETED,Sobol,SOBOL,0.750000000000000000000000000000,8.000000000000000000000000000000,3603,869,0.740950158357620236593277240900,26,0.25
11,11_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,3.000000000000000000000000000000,1126,4020,0.256814059242606140820441851247,13,0.025
12,12_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,5.000000000000000000000000000000,363,583,0.990836506966501495696775236866,34,0.05
13,13_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,3.000000000000000000000000000000,2881,4932,0.007696779239922762159975544449,5,0.25
14,14_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,10.000000000000000000000000000000,3939,1957,0.423148508237674858545318556935,22,0.001
15,15_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,23.000000000000000000000000000000,1413,2610,0.562762409122660733906684527028,41,0.1
16,16_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,5.000000000000000000000000000000,1344,2142,0.440724125197157257094460192093,43,0.005
17,17_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,6.000000000000000000000000000000,3852,2738,0.549151879375800455740375127789,21,0.05
18,18_0,COMPLETED,Sobol,SOBOL,0.750000000000000000000000000000,10.000000000000000000000000000000,3125,401,0.879689359374344337361151247023,7,0.025
19,19_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,3.000000000000000000000000000000,588,4801,0.114863603912293915643161312801,33,0.1
20,20_0,COMPLETED,Sobol,SOBOL,0.750000000000000000000000000000,8.000000000000000000000000000000,1037,738,0.629810717847198220376014887734,11,0.1
21,21_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,5.000000000000000000000000000000,3536,3838,0.363988472025841447443639253834,27,0.01
22,22_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,5.000000000000000000000000000000,4652,1801,0.191579928034916524559605477407,48,0.05
23,23_0,COMPLETED,Sobol,SOBOL,0.719999999999999973354647408996,3.000000000000000000000000000000,2184,3704,0.799004172572866044887973657751,16,0.001
24,24_0,COMPLETED,Sobol,SOBOL,0.750000000000000000000000000000,7.000000000000000000000000000000,2421,267,0.041369166195392610696490720557,19,0.25
25,25_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,4.000000000000000000000000000000,4884,4612,0.960179395839571903081832715543,45,0.1
26,26_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,5.000000000000000000000000000000,3142,2272,0.608979062406346249858302144276,31,0.005
27,27_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,3.000000000000000000000000000000,649,2930,0.405043396545574085898522298521,8,0.001
28,28_0,COMPLETED,Sobol,SOBOL,0.719999999999999973354647408996,4.000000000000000000000000000000,201,1368,0.858127040611579960938115618774,35,0.005
29,29_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,10.000000000000000000000000000000,2732,3210,0.155187270255759346415658228580,3,0.025
30,30_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,73.000000000000000000000000000000,13,5000,0.219270795778068600112575836647,19,0.005
31,31_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,35.000000000000000000000000000000,1491,3631,0.124038053309826215575562002869,18,0.005
32,32_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,48.000000000000000000000000000000,1910,116,0.472059687905347358238827837340,1,0.25
33,33_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,49.000000000000000000000000000000,1973,111,0.470779725889027111929152624725,1,0.1
34,34_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,908,5000,0.618645119673674304117128031066,20,0.005
35,35_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,2775,408,0.544323860324325781157028814050,1,0.1
36,36_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,2506,4673,0.529282231145449255649282349623,19,0.005
37,37_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,296.000000000000000000000000000000,38,4426,0.007951913665264018910017185249,17,0.005
38,38_0,FAILED,BoTorch,BOTORCH_MODULAR,,,924,1,0.384949498169853299156528692038,4,0.25
39,39_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,134.000000000000000000000000000000,499,3760,0.087951256713477754534125097052,17,0.005
40,40_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,11.000000000000000000000000000000,3001,302,0.562042644774090272008493229805,1,0.05
41,41_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,134.000000000000000000000000000000,2086,2938,0.074224520385833978042278147313,18,0.005
42,42_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,1,5000,0.703240273648240932224950938689,20,0.05
43,43_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,1342,4558,0.371921780226302067795529637806,19,0.005
44,44_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,38.000000000000000000000000000000,1088,72,0.413205590776034525912763228916,1,0.1
45,45_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,3265,4945,0.484098993324376614122428463816,19,0.005
46,46_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,203.000000000000000000000000000000,3333,4583,0.140860692033182133275914793558,19,0.005
47,47_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,1016,490,0.464792331234444300314123665885,1,0.25
48,48_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2980,1,0.617510072017478983674720893760,50,0.25
49,49_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,2759,663,0.540787171616597506229595637706,1,0.25
50,50_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,86.000000000000000000000000000000,732,5000,0.001000000000000000020816681712,22,0.005
51,51_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,3357,829,0.666740460462049266965323113254,1,0.1
52,52_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,5000,2117,0.897851100800671542145892090048,9,0.05
53,53_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,26.000000000000000000000000000000,201,4901,0.001000000000000000020816681712,19,0.05
54,54_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,264.000000000000000000000000000000,1714,4194,0.001000000000000000020816681712,18,0.005
55,55_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,35.000000000000000000000000000000,2600,57,0.495745890203924288730519265300,2,0.25
56,56_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,943,5000,0.998999999999999999111821580300,20,0.005
57,57_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,17.000000000000000000000000000000,1413,4963,0.001000000000000000020816681712,21,0.005
58,58_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,10.000000000000000000000000000000,905,319,0.508346724781483016997185586661,1,0.1
59,59_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,3610,1281,0.760305930482997105457343423041,6,0.05
60,60_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,12.000000000000000000000000000000,3228,525,0.862842978409946392837071016402,16,0.1
61,61_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,12.000000000000000000000000000000,3572,602,0.819374502881191624226175918011,15,0.025
62,62_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,11.000000000000000000000000000000,3269,757,0.750853176295872559720123717852,5,0.25
63,63_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,540,4575,0.713656717328100209662977704284,50,0.005
64,64_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1393,1039,0.605071800332133480360141675192,18,0.05
65,65_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,377,588,0.707489994518357812047781862930,3,0.005
66,66_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,12.000000000000000000000000000000,1818,578,0.720248166707835646427326992125,2,0.005
67,67_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,898,1247,0.686005766078001677499287325190,5,0.05
68,68_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3725,4582,0.650308614818416841352188839664,1,0.25
69,69_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,4464,4417,0.681850953281741278821925789089,1,0.01
70,70_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,1971,802,0.688578059439778789041497475409,13,0.005
71,71_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,2358,617,0.768909417284201257558606812381,3,0.1
72,72_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,4555,1272,0.745130193713281596679109952674,2,0.05
73,73_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,90,4736,0.663577136094084418793670465675,50,0.01
74,74_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,52.000000000000000000000000000000,2611,1285,0.001000000000000000020816681712,6,0.001
75,75_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,228,3522,0.658006307716178073796697844955,48,0.05
76,76_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,6.000000000000000000000000000000,217,784,0.675765088398944446801408503234,12,0.025
77,77_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2882,5000,0.666850789096958940227466428041,50,0.001
78,78_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,2716,898,0.721885666943998027811346673843,35,0.25
79,79_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,23.000000000000000000000000000000,4825,393,0.725255270987470113119854886463,4,0.01
80,80_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,16.000000000000000000000000000000,3988,414,0.663736323286671092702704299882,4,0.005
81,81_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,3742,4618,0.698759549757274278647400933551,43,0.025
82,82_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,3201,797,0.648958693731959912476270346815,39,0.005
83,83_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1050,4648,0.711416699011969022592438705033,14,0.025
84,84_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,1384,769,0.646103906997748445029117192462,50,0.1
85,85_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,151,2017,0.669799651260231443394843608985,50,0.001
86,86_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,92.000000000000000000000000000000,3370,734,0.620118744816251288298758481687,42,0.001
87,87_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,3016,270,0.793622323737459334225263773988,27,0.025
88,88_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,23.000000000000000000000000000000,3978,320,0.894744632791682370509533939185,1,0.025
89,89_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,5000,4621,0.712159711538742024039549960435,50,0.025
90,90_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,2884,5000,0.693450921314891610691688583756,1,0.025
91,91_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,2878,922,0.590683401855301770666528682341,50,0.1
92,92_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,4335,1354,0.736561648523710976732559174707,47,0.05
93,93_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,2541,769,0.668588846071901166112638748018,46,0.005
94,94_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,4224,4613,0.750902226203021716521845974057,50,0.1
95,95_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,4550,1035,0.712181271544793270678042063082,1,0.05
96,96_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2123,4784,0.661611524851310472961074538034,50,0.025
97,97_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,4419,973,0.699568662735777557770688872552,1,0.1
98,98_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,4788,4502,0.663564923883523061221012540045,50,0.1
99,99_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,643,4435,0.643496405812430505299914784700,50,0.05
100,100_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,4957,1198,0.998999999999999999111821580300,1,0.05
101,101_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,25,4389,0.666569362562927980597748955915,50,0.025
102,102_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,54,3517,0.677503871142174807218339083192,1,0.025
103,103_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1023,4090,0.659742483343910057769221566559,1,0.05
104,104_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4738,931,0.773275501056007175115780682972,1,0.05
105,105_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,885,796,0.792397969056979567525900165492,1,0.1
106,106_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,4471,1811,0.707015312122792005666838122124,1,0.01
107,107_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,5000,4699,0.688721727564337249383186190244,50,0.1
108,108_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,147,796,0.680509839060423060708160392096,1,0.01
109,109_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2973,4571,0.314057052394787206139881163836,50,0.05
110,110_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,3253,846,0.688927920843858787591784675897,21,0.05
111,111_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,2272,794,0.001000000000000000020816681712,1,0.25
112,112_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,3553,805,0.736735184069128967720985201595,1,0.05
113,113_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,5000,4793,0.998999999999999999111821580300,50,0.25
114,114_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,4679,4724,0.918348286149616166440523556957,50,0.01
115,115_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4228,749,0.689832284684471663815941155917,39,0.05
116,116_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,5000,3467,0.657519150551500897172729764861,50,0.05
117,117_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,694,5000,0.630281618267671039923527587234,50,0.1
118,118_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,4432,832,0.780042658480544437438197746815,40,0.05
119,119_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2197,4477,0.001000000000000000020816681712,50,0.1
120,120_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,826,2297,0.681829892587176300544626883493,1,0.05
121,121_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,5000,4860,0.626343812548354139657647010608,50,0.1
122,122_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,3289,619,0.997676310220434237052700154891,47,0.05
123,123_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,4438,914,0.917564194281883960258028309909,1,0.05
124,124_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,4053,2160,0.797724139730061176933872957306,50,0.01
125,125_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,6.000000000000000000000000000000,3064,2336,0.713925111129737555160090778372,50,0.005
126,126_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,4328,4287,0.657247159691648263901697646361,50,0.025
127,127_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,164,3572,0.217149422965646154981556037455,1,0.1
128,128_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4909,851,0.738426351598907793061243864940,41,0.05
129,129_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2052,722,0.661513666539807920763394122332,49,0.05
130,130_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,4481,1873,0.700700034441276708996326760825,1,0.05
131,131_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3358,4501,0.715671524177428186597182957485,1,0.1
132,132_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,456,4672,0.630376423132175789376674401865,50,0.25
133,133_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,13.000000000000000000000000000000,4935,866,0.656016314704904957011422084179,1,0.05
134,134_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,3288,3036,0.750109837097756360080325066519,1,0.25
135,135_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1397,841,0.760314418883950904337609699724,1,0.1
136,136_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,4985,888,0.674094960435558387956689330167,46,0.05
137,137_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,10.000000000000000000000000000000,4877,1001,0.675311804176946584021834496525,50,0.05
138,138_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,5000,1582,0.284413723643648919114923501184,1,0.001
139,139_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4990,926,0.892431559924260042748755950015,48,0.05
140,140_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,725,4392,0.644299280083008407693512253900,1,0.01
141,141_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,4.000000000000000000000000000000,2059,817,0.788030997655975062876620995667,1,0.1
142,142_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,1842,734,0.760089391038542450118598026165,50,0.1
143,143_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,5000,5000,0.669397411504050854347269705613,50,0.05
144,144_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,5000,1046,0.700583825972989404640145494341,50,0.1
145,145_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,3968,5000,0.623241431998919459545049903682,50,0.025
146,146_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4831,882,0.842864695517178463823881884309,50,0.1
147,147_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,5.000000000000000000000000000000,2121,963,0.743404556438009067598216006445,50,0.05
148,148_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,5000,1288,0.664114440047672727196470532363,50,0.05
149,149_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,5000,1393,0.631409903254823157148223344848,50,0.05
150,150_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,913,0.776790679265886296889220830053,21,0.05
151,151_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,496,0.692361530283377102357178500824,50,0.05
152,152_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3897,5000,0.270565021196211008547294341042,50,0.25
153,153_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,5000,1382,0.748313226673614217965280204226,8,0.05
154,154_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,1211,0.998999999999999999111821580300,50,0.1
155,155_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,4.000000000000000000000000000000,509,5000,0.656848147269627702371508348733,50,0.05
156,156_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,5000,607,0.998999999999999999111821580300,41,0.05
157,157_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,1005,0.256339887484753614632637663817,50,0.05
158,158_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,5000,1341,0.822066307181056665775997771561,50,0.1
159,159_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,832,0.931349408966395286846307044470,50,0.1
160,160_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,824,0.892619411307316146242385457299,50,0.05
161,161_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4969,822,0.707939050056386687259646350867,45,0.1
162,162_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,665,0.716074442090067986299573021824,50,0.1
163,163_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,985,0.638786476276400616569617341156,50,0.05
164,164_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,3.000000000000000000000000000000,2402,5000,0.998999999999999999111821580300,1,0.025
165,165_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,836,0.771547582190615588437765381968,50,0.05
166,166_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,578,0.803236811665681393890281469794,35,0.1
167,167_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,2590,2291,0.621373572104775284685729275225,1,0.01
168,168_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,5000,1972,0.595929580789694712805726339866,50,0.01
169,169_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4186,983,0.660281796365938755677404969902,50,0.1
170,170_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,5000,1040,0.797978289149529507184865906311,50,0.1
171,171_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,656,0.764843294511132976154499374388,50,0.1
172,172_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,3.000000000000000000000000000000,337,4739,0.631092825876900187509477291314,1,0.25
173,173_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,19.000000000000000000000000000000,5000,352,0.733787915838006510327318210329,50,0.05
174,174_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,5000,520,0.849626579751364685577641466807,50,0.1
175,175_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,779,0.874070052593864499357323438744,1,0.05
176,176_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2817,4402,0.624481532219521073834300750605,50,0.025
177,177_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,1764,523,0.998999999999999999111821580300,50,0.1
178,178_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,5000,2406,0.777539863210893855693939258344,1,0.05
179,179_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,1713,945,0.858045172303146475023538641835,50,0.1
180,180_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,5000,4414,0.647195215592056172226875787601,50,0.05
181,181_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,5000,1089,0.818019236798636639740323062142,6,0.05
182,182_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,2154,792,0.001000000000000000020816681712,50,0.05
183,183_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,511,3596,0.836515425636122467167865579540,50,0.01
184,184_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,5000,3572,0.646862158943413589895499171689,50,0.1
185,185_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,10.000000000000000000000000000000,5000,1213,0.800198158607863363478429619136,50,0.05
186,186_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,5000,1504,0.622679761809201481881359541148,50,0.1
187,187_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,5000,1561,0.769457778827045579816967801889,36,0.1
188,188_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1,4512,0.590427821077970649277233405883,50,0.1
189,189_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,5000,1158,0.911010357423044037084025603690,50,0.05
190,190_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,923,0.826304007913409743757426895172,50,0.25
191,191_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,775,0.642013435649086638967730777949,50,0.1
192,192_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,5000,1076,0.944477599189634475784771439066,5,0.1
193,193_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,4401,1291,0.821767543801023125915605760383,50,0.1
194,194_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,5000,3991,0.612354253901608136523293524078,50,0.05
195,195_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,4750,1757,0.646440134894017193190052239515,50,0.1
196,196_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,733,0.676129726435472422352290777781,50,0.05
197,197_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,904,0.998999999999999999111821580300,50,0.25
198,198_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,5000,2183,0.806336436352385721448854383198,50,0.1
199,199_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,5000,3556,0.159119853991399023973585258318,50,0.1
200,200_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,3006,708,0.986277823980979184703699047532,50,0.25
201,201_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,5000,2112,0.972194691032594593416149564291,50,0.25
202,202_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,827,0.842035573335651821302860753349,50,0.25
203,203_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,3412,616,0.857407401595982276987228942744,50,0.05
204,204_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,882,0.998999999999999999111821580300,50,0.05
205,205_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,17.000000000000000000000000000000,4942,397,0.001000000000000000020816681712,50,0.25
206,206_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,3978,1697,0.921504049566188698783264499070,50,0.25
207,207_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,5000,2762,0.663331453999214226691094609123,50,0.05
208,208_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,5000,1536,0.835854396739428628926305009372,50,0.25
209,209_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,5000,1525,0.830652032824637731600603274273,50,0.05
210,210_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,970,0.899957407564291878010465097759,50,0.25
211,211_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,4666,1031,0.920858894663071914088448011171,50,0.25
212,212_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,568.000000000000000000000000000000,5000,4857,0.001000000000000000020816681712,50,0.005
213,213_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,3188,654,0.500367040968610843343356009427,50,0.005
214,214_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,16.000000000000000000000000000000,4499,463,0.561293445513244337874425582413,50,0.25
215,215_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,2511,875,0.812985040532476332941769214813,50,0.25
216,216_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,10.000000000000000000000000000000,4361,1049,0.537183023792320635259045502607,50,0.1
217,217_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,4702,1161,0.458377362694985912572320785330,50,0.1
218,218_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,2315,906,0.838658046371677845520764549292,50,0.25
219,219_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1215,936,0.087665481922601304343167782918,50,0.1
220,220_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,5.000000000000000000000000000000,2090,720,0.899662328533544664033172466588,50,0.05
221,221_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,1823,655,0.835417828047011479242200948647,50,0.05
222,222_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,1333,987,0.405954847641972593752512921128,50,0.005
223,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2946,3770,0.701458395658111522052990949305,3,0.01
224,224_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,4364,1069,0.875528338857528343197600406711,50,0.25
225,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,3.000000000000000000000000000000,410,5000,0.445042486964761674350654629961,50,0.05
226,226_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,2672,1242,0.814769500237110366747117495834,50,0.1
227,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,4370,1253,0.261584943433505467957900236797,50,0.05
228,228_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,1325,640,0.860235888265295622900907801522,50,0.25
229,229_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,4115,3745,0.462731729668264424315538008159,50,0.1
230,230_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2426,4434,0.822231936788205164390319623635,50,0.05
231,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,2923,1566,0.808083542776833141374481783714,50,0.05
232,232_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,171.000000000000000000000000000000,1204,853,0.057033397644436607809570460859,50,0.005
233,233_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,3154,766,0.604720862209332188363930526975,50,0.005
234,234_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4920,847,0.001000000000000000020816681712,50,0.25
235,235_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,3622,837,0.998999999999999999111821580300,50,0.005
236,236_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1034,1547,0.515491678235619699144365313259,50,0.1
237,237_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,116.000000000000000000000000000000,2917,188,0.436976784413402541407123180761,50,0.005
238,238_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,5000,2877,0.223031673536557284442949367076,50,0.1
239,239_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,3936,1281,0.784884697448535617603226910433,50,0.25
240,240_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,5000,3892,0.399726376806832983668016368028,50,0.05
241,241_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,3946,912,0.799004266632274640080879635207,50,0.005
242,242_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,1435,4584,0.396730239520824035093227166726,50,0.1
243,243_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,38.000000000000000000000000000000,2878,1061,0.088091128285536945963229982226,50,0.025
244,244_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4775,851,0.769029056891159967790372320451,50,0.005
245,245_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1648,5000,0.382347671699859281702060798125,50,0.005
246,246_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,27.000000000000000000000000000000,1674,1023,0.007279073960341602735069077568,50,0.05
247,247_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,601,4152,0.940941904114748650655997153081,50,0.25
248,248_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2208,692,0.993504507721459595437352163572,50,0.1
249,249_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,2830,950,0.916754204934457916920109710190,50,0.005
250,250_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,1604,790,0.866002937705283026836866611120,50,0.005
251,251_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,1379,3735,0.183094995963103607250488380487,50,0.1
252,252_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,888,0.615019083116143394640573660581,50,0.25
253,253_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1844,3492,0.854610259284317108630091297528,50,0.025
254,254_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,544.000000000000000000000000000000,5000,1458,0.142656131155792287312777943953,50,0.001
255,255_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,2183,723,0.857488384267570458163731927925,50,0.01
256,256_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,3217,648,0.439370777468963524814427046294,1,0.001
257,257_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,704,0.581180291923760417027722269268,1,0.005
258,258_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,796,0.951871927095502168292284750351,50,0.005
259,259_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,692,0.907934527353332909704874964518,50,0.005
260,260_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,738,0.987861307248344755471691769344,50,0.005
261,261_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,40.000000000000000000000000000000,5000,725,0.998999999999999999111821580300,50,0.005
262,262_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,746,0.895211344271998776811471998371,50,0.005
263,263_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,737,0.998999999999999999111821580300,50,0.25
264,264_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,720,0.880138351603788726684740595374,50,0.005
265,265_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,755,0.998999999999999999111821580300,36,0.25
266,266_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,632,0.943986265964539050798975949874,50,0.005
267,267_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,5000,819,0.909220590605802403416646484402,50,0.005
268,268_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,748,0.801976890897353911213940591551,27,0.005
269,269_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,4404,667,0.865411403676152768404961079796,50,0.005
270,270_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,841,0.988403246262388290865885664971,50,0.005
271,271_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,780,0.916604133210698446276865070104,12,0.25
272,272_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,844,0.931679388847070133472527686536,50,0.25
273,273_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,717,0.998999999999999999111821580300,50,0.25
274,274_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,770,0.910516806937320732906471221213,32,0.005
275,275_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,3452,713,0.823810431564999001707860770694,50,0.005
276,276_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,549,0.869997908069080061466138431570,50,0.005
277,277_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,760,0.998999999999999999111821580300,50,0.005
278,278_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,4686,765,0.869462293969304966800848433195,50,0.005
279,279_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,828,0.888175162882933189045786548377,50,0.005
280,280_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,714,0.998999999999999999111821580300,50,0.005
281,281_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,837,0.998999999999999999111821580300,50,0.005
282,282_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,747,0.932075858778956267691739867587,50,0.005
283,283_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,737,0.968974787912714297100080784730,50,0.25
284,284_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,898,0.980765352781194921227836402977,50,0.005
285,285_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,22.000000000000000000000000000000,5000,362,0.939541657729270007770594475005,50,0.005
286,286_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,4248,870,0.930612330460161674139385468152,25,0.25
287,287_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,3529,631,0.998999999999999999111821580300,50,0.005
288,288_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,3875,604,0.957409071627942309667957943020,50,0.25
289,289_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,656,0.998999999999999999111821580300,50,0.005
290,290_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,15.000000000000000000000000000000,5000,675,0.970054755969665283288350110524,50,0.005
291,291_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4157,756,0.884913443187803072653707658901,50,0.005
292,292_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,2504,615,0.932195351793931314965391266014,50,0.005
293,293_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,646,0.998999999999999999111821580300,49,0.005
294,294_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,10.000000000000000000000000000000,5000,865,0.919467866073905404356025883317,50,0.005
295,295_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,724,0.907425653420207423138776903215,50,0.25
296,296_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,645,0.859199226240712210511674129521,50,0.005
297,297_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,19.000000000000000000000000000000,5000,703,0.861960452199340809720240486058,50,0.005
298,298_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,701,0.781873657817306666473200493783,26,0.005
299,299_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,541,0.998999999999999999111821580300,50,0.005
300,300_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,11.000000000000000000000000000000,5000,606,0.959829931656139390128146260395,50,0.005
301,301_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,4062,576,0.998999999999999999111821580300,50,0.25
302,302_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,16.000000000000000000000000000000,5000,659,0.998999999999999999111821580300,50,0.05
303,303_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,13.000000000000000000000000000000,4473,704,0.930791750735157963347887744021,50,0.005
304,304_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,12.000000000000000000000000000000,5000,675,0.998999999999999999111821580300,50,0.25
305,305_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,2416,459,0.783338814304556652068356470409,50,0.005
306,306_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,5000,1476,0.937508647373535453084514301736,25,0.005
307,307_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,4801,559,0.892790183073988496964545902301,50,0.005
308,308_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,703,0.072914891408173851394813880233,50,0.25
309,309_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,709,0.907169671058133952890045748063,50,0.25
310,310_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,770,0.852964851477177932181916730769,50,0.005
311,311_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4704,707,0.998999999999999999111821580300,50,0.005
312,312_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,714,0.745136161393588181134362002922,50,0.25
313,313_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,719,0.947298559957085672955656718841,50,0.25
314,314_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,726,0.969052035749555895627338486520,50,0.005
315,315_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4648,781,0.883495540827234471237261459464,50,0.005
316,316_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,719,0.943722616589075968818178807851,50,0.005
317,317_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,17.000000000000000000000000000000,5000,757,0.902848980120487420997221761354,44,0.005
318,318_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,767,0.001000000000000000020816681712,50,0.25
319,319_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,631,0.929018237472571839496993106877,50,0.25
320,320_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,708,0.200056991286463259349659438158,50,0.25
321,321_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,4889,641,0.890314051486438384763744124939,50,0.005
322,322_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,685,0.001000000000000000020816681712,50,0.05
323,323_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,743,0.808969820473308676156420915504,26,0.25
324,324_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,771,0.960791353067550479849501243734,50,0.005
325,325_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,754,0.985908224949913147838742588647,50,0.25
326,326_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,734,0.689620902793175560852034777781,50,0.25
327,327_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,805,0.174531907063454172490679638940,50,0.25
328,328_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,713,0.859809319593180854113256827986,50,0.25
329,329_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,4644,649,0.908318378104963963792783943063,50,0.005
330,330_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,4681,668,0.003608756039881771786326236651,27,0.25
331,331_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,11.000000000000000000000000000000,5000,670,0.998999999999999999111821580300,50,0.25
332,332_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,711,0.930503788929153308195907357003,50,0.25
333,333_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,797,0.417151724384731747985455285743,50,0.25
334,334_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,2775,551,0.119302854482368617117238329683,50,0.25
335,335_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,28.000000000000000000000000000000,5000,796,0.834273494191502318351183475897,50,0.005
336,336_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,742,0.260439533231550834901923963116,50,0.25
337,337_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,843,0.252087363563203492589082088671,50,0.25
338,338_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,16.000000000000000000000000000000,4133,623,0.188274234648659222202127239143,50,0.25
339,339_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,747,0.756910806980752193240391534346,50,0.005
340,340_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,18.000000000000000000000000000000,5000,513,0.216254604216242901637556883543,50,0.25
341,341_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,15.000000000000000000000000000000,5000,670,0.853155300976478736529884372430,50,0.005
342,342_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,723,0.374560974750140773803508409401,50,0.05
343,343_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,757,0.842168634629018031390046417073,50,0.005
344,344_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,749,0.001000000000000000020816681712,50,0.05
345,345_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,869,0.146705391133078705268033559150,50,0.25
346,346_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,4599,769,0.001000000000000000020816681712,50,0.25
347,347_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,737,0.417955697099704759356342265164,50,0.05
348,348_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,42.000000000000000000000000000000,1609,312,0.598298353638116564567894783977,50,0.005
349,349_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,15.000000000000000000000000000000,5000,675,0.001000000000000000020816681712,50,0.25
350,350_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,814,0.313178382279871436733031941912,50,0.05
351,351_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,2842,802,0.998999999999999999111821580300,50,0.005
352,352_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,13.000000000000000000000000000000,5000,819,0.998999999999999999111821580300,50,0.25
353,353_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,16.000000000000000000000000000000,4358,695,0.303965675168486881840834712420,50,0.25
354,354_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,726,0.001000000000000000020816681712,50,0.1
355,355_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,12.000000000000000000000000000000,5000,935,0.779720754821281780699848695804,50,0.005
356,356_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,707,0.335713031697496944172343091850,50,0.1
357,357_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,4019,745,0.022488389315619861097417242490,50,0.25
358,358_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,14.000000000000000000000000000000,5000,729,0.539459132334821456211670920311,50,0.25
359,359_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,735,0.801301212531214557266423526016,50,0.005
360,360_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,861,0.277784621025934763682840866750,50,0.05
361,361_0,RUNNING,BoTorch,BOTORCH_MODULAR,,,5000,706,0.715097582393546482570911848597,19,0.005
362,362_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,695,0.064599628371728237685722717742,30,0.25
363,363_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,800,0.135138516023326465953502406592,50,0.25
364,364_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,2951,785,0.006812174622822167804891968501,50,0.25
365,365_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,710,0.140241304925628168520645999706,50,0.25
366,366_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,601,0.057605731580224826815506133926,50,0.25
367,367_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,796,0.081379979302275751162909500636,50,0.25
368,368_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,3147,608,0.001000000000000000020816681712,4,0.25
369,369_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,5000,953,0.120898662207141072144622739870,30,0.05
370,370_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,3751,864,0.204932297019751130662257310178,50,0.05
371,371_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,4356,965,0.123910581456199916927651827336,50,0.05
372,372_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,721,0.258537985273254056206582163213,50,0.05
373,373_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,823,0.001000000000000000020816681712,50,0.25
374,374_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4804,877,0.001000000000000000020816681712,50,0.05
375,375_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,18.000000000000000000000000000000,5000,447,0.530074836699928275685067546874,1,0.005
376,376_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,817,0.053661266206456607885666443281,50,0.25
377,377_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4253,669,0.066967007570730485710441826086,50,0.25
378,378_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,744,0.088282576773994009267099158933,50,0.25
379,379_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,731,0.041277755690881011430004576823,50,0.25
380,380_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,38.000000000000000000000000000000,1979,749,0.237613938940244157072001485176,17,0.005
381,381_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,5000,4071,0.998999999999999999111821580300,50,0.025
382,382_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,757,0.001000000000000000020816681712,44,0.05
383,383_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,690,0.001000000000000000020816681712,50,0.1
384,384_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,3187,615,0.743650807661401347381513460277,50,0.005
385,385_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,13.000000000000000000000000000000,5000,818,0.001000000000000000020816681712,50,0.05
386,386_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,5000,684,0.085998559415221081936309133198,50,0.25
387,387_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,889,0.045499796865145845925493262030,50,0.1
388,388_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,4761,723,0.001000000000000000020816681712,50,0.25
389,389_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,12.000000000000000000000000000000,4206,679,0.001000000000000000020816681712,29,0.25
390,390_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,4793,819,0.010310073992859688021828112880,50,0.25
391,391_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,5000,716,0.001000000000000000020816681712,50,0.25
392,392_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,11.000000000000000000000000000000,5000,702,0.411911582466322978568484813877,50,0.05
393,393_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,13.000000000000000000000000000000,4677,611,0.437040267382312164201607629366,50,0.05
394,394_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,745,0.819812912817189820557928214839,50,0.005
395,395_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,13.000000000000000000000000000000,5000,750,0.093431093638057127748197672190,50,0.05
396,396_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,12.000000000000000000000000000000,5000,667,0.111757666716636061554623893244,50,0.1
397,397_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,756,0.001000000000000000020816681712,34,0.25
398,398_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,5000,790,0.060702934149730984614290463242,50,0.1
399,399_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,899,0.065631849025169483602404341127,50,0.25
400,400_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,5000,786,0.707019820963124878687722230097,50,0.005
401,401_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4975,787,0.125993729321409009269672196751,50,0.25
402,402_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2164,972,0.377018672168950796930175783928,17,0.005
403,403_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,16.000000000000000000000000000000,1,367,0.443950553936765135443209828736,22,0.005
404,404_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,37.000000000000000000000000000000,4549,1091,0.266605180408814645964810097212,42,0.005
405,405_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3259,3570,0.388762796914336794529276630783,11,0.025
406,406_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,16.000000000000000000000000000000,3456,1833,0.490563952216490517521663150546,1,0.001
407,407_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,3680,1460,0.998999999999999999111821580300,50,0.005
408,408_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,5000,1904,0.416624710521824925812950368709,1,0.25
409,409_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,4407,975,0.392436323176736767681660467133,32,0.005
410,410_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,1121,671,0.193855410205254985456235772290,50,0.25
411,411_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1519,1581,0.559603380026482244424812506622,38,0.005
412,412_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,9.000000000000000000000000000000,3854,736,0.434256406249019288878798761289,23,0.25
413,413_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,1272,649,0.001000000000000000020816681712,23,0.25
414,414_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,4.000000000000000000000000000000,2021,1334,0.526907171135147400775622372748,15,0.25
415,415_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,3825,2242,0.445621835412223665784381410049,18,0.05
416,416_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,93.000000000000000000000000000000,4259,680,0.176080426867661649081853170173,50,0.005
417,417_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,2683,1113,0.998999999999999999111821580300,42,0.25
418,418_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1941,3529,0.428109240930045764628175675170,33,0.01
419,419_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,11.000000000000000000000000000000,1649,633,0.001000000000000000020816681712,50,0.25
420,420_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,1604,1894,0.604697239004147735208505309856,21,0.01
421,421_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1,2556,0.533712194304054921012436807359,34,0.001
422,422_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,4124,2248,0.453668925593781469096654745954,16,0.001
423,423_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,5000,1394,0.477625107671685811272510591152,23,0.005
424,424_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1604,1834,0.392083879201792273594406879056,1,0.05
425,425_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,4922,1857,0.412608852917262680648491368629,1,0.001
426,426_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,5000,1512,0.001000000000000000020816681712,29,0.25
427,427_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1852,2082,0.506919170275711761242121156101,35,0.001
428,428_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,4918,1621,0.356003870917465103929089309531,26,0.05
429,429_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,2666,565,0.018428485618589250660814826688,27,0.05
430,430_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,903,607,0.998999999999999999111821580300,12,0.025
431,431_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,213,508,0.525410021387004322335201322858,4,0.1
432,432_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1,464,0.531365272759059426022076877416,1,0.025
433,433_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,998,909,0.544296568939507174889058660483,39,0.005
434,434_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,15.000000000000000000000000000000,3697,757,0.477459507819400774675244747414,19,0.005
435,435_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,3825,1451,0.386401471287374287388871607618,1,0.05
436,436_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,4474,3407,0.794937912960462567113495424564,22,0.1
437,437_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,6.000000000000000000000000000000,4289,3083,0.404716077364522863746287839604,50,0.05
438,438_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,2677,1183,0.998999999999999999111821580300,31,0.005
439,439_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,16.000000000000000000000000000000,1707,321,0.001000000000000000020816681712,5,0.25
440,440_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4466,810,0.964148328783408281594802247128,4,0.005
441,441_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,4668,1864,0.732192229455304377516711156204,31,0.05
442,442_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,5000,3229,0.314176100647539646715244998632,24,0.05
443,443_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,2957,1855,0.705992859325076937970777635201,14,0.05
444,444_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,4637,3520,0.492926059613003342274595297567,32,0.1
445,445_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1675,2116,0.751948222366103702363204774883,29,0.005
446,446_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3980,4537,0.750141835777250132188953557488,38,0.001
447,447_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,1126,682,0.441920718132653267407050634574,1,0.005
448,448_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1852,3528,0.426818809435887069891890632789,21,0.005
449,449_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,2726,473,0.933036742210445635414828302601,29,0.005
450,450_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,4159,3926,0.957896660052395043649653416651,48,0.01
451,451_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,1667,3286,0.596525254643563651590909557854,24,0.025
452,452_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,3881,1711,0.284648593683260175968285921044,1,0.25
453,453_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,3474,2176,0.621091782895955124566000904451,35,0.001
454,454_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,73.000000000000000000000000000000,1890,2094,0.165851593999197077788920751118,12,0.001
455,455_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3988,4696,0.225230781022691950443714858920,17,0.1
456,456_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,135,3235,0.615624436653656181839266992029,19,0.001
457,457_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,909,4500,0.739751425343020185820819278888,35,0.001
458,458_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,3779,1900,0.722315838152073563804833611357,16,0.005
459,459_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,295,3057,0.454488982973220378980272471381,1,0.025
460,460_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,5000,2491,0.892151721187094515208571010589,30,0.05
461,461_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,1130,970,0.214048626504335010034552055913,1,0.25
462,462_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,5000,4501,0.955702682845724682536570071534,8,0.05
463,463_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,858,801,0.998999999999999999111821580300,34,0.25
464,464_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,4410,5000,0.894940669526202325911867774266,16,0.05
465,465_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,3835,2279,0.013321466062740212887849367007,19,0.25
466,466_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1707,5000,0.281682526308101588430332640201,10,0.1
467,467_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,5000,2455,0.176329281544734622899639475690,1,0.05
468,468_0,FAILED,BoTorch,BOTORCH_MODULAR,,,5000,1,0.985616855642394096292946414906,20,0.001
469,469_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,4059,1558,0.491517322466783090906261577402,50,0.005
470,470_0,FAILED,BoTorch,BOTORCH_MODULAR,,,5000,1,0.972156599630160878078299901972,22,0.001
471,471_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1949,3477,0.293145461709787891191325570617,14,0.01
472,472_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,3594,1331,0.525545605576692942406680231215,30,0.05
473,473_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,4537,3580,0.239005745928803026156828082094,33,0.1
474,474_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,3726,2394,0.217333794128108603871396553586,12,0.05
475,475_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1903,3503,0.298224772674392180071833990951,15,0.005
476,476_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,1489,4763,0.956895337138477075633602453308,49,0.001
477,477_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,1099,953,0.486079435455599895288258949222,8,0.25
478,478_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,285.000000000000000000000000000000,5000,1226,0.337523844485550339467039293595,50,0.001
479,479_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1669,5000,0.283785604556700821188286454344,8,0.005
480,480_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,326,1164,0.389718666337045327452415222069,42,0.25
481,481_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,4503,1025,0.414506412437835203288472030181,1,0.05
482,482_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,52.000000000000000000000000000000,3025,3940,0.001000000000000000020816681712,1,0.01
483,483_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3382,4335,0.939200007019728166923755452444,35,0.001
484,484_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,3507,1362,0.885429064462801673762726295536,20,0.005
485,485_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,6.000000000000000000000000000000,2576,1919,0.548133703380192960352701447846,42,0.05
486,486_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,8.000000000000000000000000000000,3684,1555,0.554366818838050945394968493929,32,0.005
487,487_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,820,4531,0.520613283537056825700517492805,30,0.1
488,488_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1255,1947,0.600642285926474839286015594553,50,0.025
489,489_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,19.000000000000000000000000000000,3619,2223,0.483294359148543961612887187584,30,0.001
490,490_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,5000,2318,0.243665708426591465229904542866,23,0.25
491,491_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1016,1359,0.915879732816389124927525244857,10,0.25
492,492_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1750,3841,0.736248499394575040000177068578,46,0.05
493,493_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1813,3497,0.512147687495143388858309663192,7,0.01
494,494_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,3034,3888,0.694701270667978598716274518665,50,0.001
495,495_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,10.000000000000000000000000000000,2820,613,0.204892334887466359694130346725,1,0.001
496,496_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,3.000000000000000000000000000000,2002,4603,0.776548526719723630762359789514,47,0.001
497,497_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,3787,3071,0.533145226884063960781645619136,1,0.001
498,498_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,1614,812,0.485825780208454904851578248781,35,0.25
499,499_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1129,2030,0.001000000000000000020816681712,1,0.25
500,500_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1289,1567,0.450650269685266946506629892610,26,0.25
501,501_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,1474,1765,0.823468982344020217212232637394,9,0.05
502,502_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,908,655,0.635110253172258887310874797549,1,0.025
503,503_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1596,4834,0.860052668092869954108437013929,17,0.001
504,504_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,3453,1753,0.626199565018022985540824265627,30,0.001
505,505_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,3569,968,0.987116622139282418046946077084,50,0.05
506,506_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,22.000000000000000000000000000000,1594,1913,0.652835140135089475599272645923,45,0.001
507,507_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,1864,3548,0.297428805478562596764646741576,44,0.005
508,508_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3857,3435,0.732698525036588610426235845807,32,0.01
509,509_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1019,3408,0.491461079843373505049441973824,1,0.001
510,510_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,4820,3511,0.839405679484290123681944351119,34,0.01
511,511_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1002,3341,0.545441437833131703705191739573,24,0.001
512,512_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,6.000000000000000000000000000000,2935,1626,0.818123348781825354691932261630,14,0.05
513,513_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,7.000000000000000000000000000000,2082,827,0.482785993263006418807492536871,35,0.005
514,514_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1884,3501,0.849848155998508714148442777514,19,0.01
515,515_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2808,2823,0.794897990920041874751689192635,3,0.001
516,516_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,872,848,0.895818505932466813135306438198,18,0.25
517,517_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,534,3511,0.400916804581421704067878408750,25,0.1
518,518_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,897,2087,0.192696101797181884585086208972,24,0.1
519,519_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1063,3470,0.919587576921961691311935283011,46,0.001
520,520_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,2680,532,0.001000000000000000020816681712,50,0.25
521,521_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,3946,3466,0.267346565172076500171982615939,41,0.1
522,522_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,1890,3257,0.663641781455691859292755907518,5,0.25
523,523_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2513,2690,0.828872663610195736794139520498,13,0.01
524,524_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,1480,1464,0.377270533359544024687437513421,7,0.005
525,525_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,4737,3677,0.875177980277005773679377398366,10,0.01
526,526_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,907,831,0.404764510576581637568693849971,2,0.005
527,527_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,1638,1993,0.560445980034962043525581520953,34,0.005
528,528_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,3257,878,0.379116818048832571186324003065,1,0.05
529,529_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,4.000000000000000000000000000000,3836,3429,0.911602838580895524778213712125,16,0.01
530,530_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,3020,1564,0.537465239667204941476086332841,50,0.25
531,531_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3940,4205,0.925708819867112064905256829661,24,0.05
532,532_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,970,3057,0.648732499621442415538297154853,2,0.001
533,533_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,127.000000000000000000000000000000,4381,65,0.540734928256417890501950296311,2,0.25
534,534_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,886,593,0.790713968932922228738391368097,4,0.25
535,535_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,707,1896,0.486362022039473651524588149186,50,0.25
536,536_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,2635,456,0.749286376991949998327413595689,3,0.01
537,537_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,17.000000000000000000000000000000,1965,685,0.115404995023142220578193928304,27,0.1
538,538_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,1577,751,0.176380466410206548921735247859,28,0.05
539,539_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,2771,609,0.620562632829450233629131616908,50,0.01
540,540_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,3869,2289,0.773526082604999332126283206890,17,0.05
541,541_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,2776,3390,0.711166598446386855059131448797,22,0.01
542,542_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,7.000000000000000000000000000000,2887,753,0.938563450648668418097031462821,38,0.25
543,543_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,3305,4797,0.883073224903898057469575633149,41,0.001
544,544_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,1358,1854,0.465360421294270354408695311577,50,0.005
545,545_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,6.000000000000000000000000000000,1483,1817,0.466616326340494602664676904169,50,0.01
546,546_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,3387,1983,0.553581699543684857545144950564,24,0.001
547,547_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1006,3914,0.944358813587900636221661443415,35,0.1
548,548_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,396,2208,0.001000000000000000020816681712,1,0.25
549,549_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,3754,2406,0.998142100795950448777205110673,37,0.05
550,550_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,9.000000000000000000000000000000,3912,1239,0.972862857112115841928812187689,27,0.05
551,551_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,68.000000000000000000000000000000,627,3074,0.051217718722649914486755307053,9,0.01
552,552_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,23.000000000000000000000000000000,4403,836,0.518409014360055153680661987892,44,0.005
553,553_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1,3032,0.716585185876548957928378058568,11,0.025
554,554_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,10.000000000000000000000000000000,1590,762,0.001000000000000000020816681712,1,0.25
555,555_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,298,2235,0.459025255893326267209175739481,50,0.001
556,556_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,5.000000000000000000000000000000,3328,1934,0.579388030947756704769346924877,50,0.005
557,557_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,7.000000000000000000000000000000,1778,1952,0.792004972370447424268036229478,2,0.01
558,558_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,5.000000000000000000000000000000,4180,4773,0.455494307325340130887525447179,26,0.025
559,559_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,6.000000000000000000000000000000,1032,946,0.520349909020738188303312199423,50,0.025
560,560_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,1931,3287,0.468515413684634507429649374899,1,0.25
561,561_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.750000000000000000000000000000,8.000000000000000000000000000000,1630,780,0.998999999999999999111821580300,38,0.025
562,562_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,4.000000000000000000000000000000,302,1842,0.140332346920781780852394149406,5,0.25
563,563_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,160.000000000000000000000000000000,4755,3343,0.302446737387545683262146667403,40,0.001
564,564_0,RUNNING,BoTorch,BOTORCH_MODULAR,,,3898,2390,0.998999999999999999111821580300,41,0.001
</pre>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<script>
createTable(tab_results_csv_json, tab_results_headers_json, 'tab_results_csv_table');</script>
<h1> Errors</h1>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_errors")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_errors", "oo_errors.txt")'> Download »oo_errors.txt« as file</button>
<pre id='simple_pre_tab_tab_errors'><span style="background-color: black; color: white">
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_NOAAWeather_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4950223/4950223_0_log.err not found
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_NOAAWeather_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4950596/4950596_0_log.err not found
</span></pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_errors")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_errors", "oo_errors.txt")'> Download »oo_errors.txt« as file</button>
<h1> Args Overview</h1>
<h2>Arguments Overview: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Key</th><th>Value </th></tr></thead><tbody><tr><td> config_yaml</td><td>None </td></tr><tr><td> config_toml</td><td>None </td></tr><tr><td> config_json</td><td>None </td></tr><tr><td> num_random_steps</td><td>20 </td></tr><tr><td> max_eval</td><td>50000 </td></tr><tr><td> run_program</td><td>None </td></tr><tr><td> experiment_name</td><td>None </td></tr><tr><td> mem_gb</td><td>32 </td></tr><tr><td> parameter</td><td>None </td></tr><tr><td> continue_previous_job</td><td>/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_NOAAWeather_HoeffdingTreeClassifier_ACCURACY-RUNTIME/1/ </td></tr><tr><td> experiment_constraints</td><td>None </td></tr><tr><td> run_dir</td><td>runs </td></tr><tr><td> seed</td><td>None </td></tr><tr><td> decimalrounding</td><td>4 </td></tr><tr><td> enforce_sequential_optimization</td><td>False </td></tr><tr><td> verbose_tqdm</td><td>False </td></tr><tr><td> model</td><td>None </td></tr><tr><td> gridsearch</td><td>False </td></tr><tr><td> occ</td><td>False </td></tr><tr><td> show_sixel_scatter</td><td>False </td></tr><tr><td> show_sixel_general</td><td>False </td></tr><tr><td> show_sixel_trial_index_result</td><td>False </td></tr><tr><td> follow</td><td>False </td></tr><tr><td> send_anonymized_usage_stats</td><td>False </td></tr><tr><td> ui_url</td><td>None </td></tr><tr><td> root_venv_dir</td><td>/home/s4122485 </td></tr><tr><td> exclude</td><td>None </td></tr><tr><td> main_process_gb</td><td>8 </td></tr><tr><td> pareto_front_confidence</td><td>1 </td></tr><tr><td> max_nr_of_zero_results</td><td>10 </td></tr><tr><td> abbreviate_job_names</td><td>False </td></tr><tr><td> orchestrator_file</td><td>None </td></tr><tr><td> checkout_to_latest_tested_version</td><td>False </td></tr><tr><td> live_share</td><td>False </td></tr><tr><td> disable_tqdm</td><td>False </td></tr><tr><td> workdir</td><td>False </td></tr><tr><td> occ_type</td><td>euclid </td></tr><tr><td> result_names</td><td>['RESULT=min'] </td></tr><tr><td> minkowski_p</td><td>2 </td></tr><tr><td> signed_weighted_euclidean_weights</td><td></td></tr><tr><td> generation_strategy</td><td>None </td></tr><tr><td> generate_all_jobs_at_once</td><td>False </td></tr><tr><td> revert_to_random_when_seemingly_exhausted</td><td>True </td></tr><tr><td> load_data_from_existing_jobs</td><td>[] </td></tr><tr><td> n_estimators_randomforest</td><td>100 </td></tr><tr><td> external_generator</td><td>None </td></tr><tr><td> username</td><td>None </td></tr><tr><td> max_failed_jobs</td><td>None </td></tr><tr><td> num_parallel_jobs</td><td>20 </td></tr><tr><td> worker_timeout</td><td>120 </td></tr><tr><td> slurm_use_srun</td><td>False </td></tr><tr><td> time</td><td></td></tr><tr><td> partition</td><td></td></tr><tr><td> reservation</td><td>None </td></tr><tr><td> force_local_execution</td><td>False </td></tr><tr><td> slurm_signal_delay_s</td><td>0 </td></tr><tr><td> nodes_per_job</td><td>1 </td></tr><tr><td> cpus_per_task</td><td>1 </td></tr><tr><td> account</td><td>None </td></tr><tr><td> gpus</td><td>0 </td></tr><tr><td> run_mode</td><td>local </td></tr><tr><td> verbose</td><td>False </td></tr><tr><td> verbose_break_run_search_table</td><td>False </td></tr><tr><td> debug</td><td>False </td></tr><tr><td> no_sleep</td><td>False </td></tr><tr><td> tests</td><td>False </td></tr><tr><td> show_worker_percentage_table_at_end</td><td>False </td></tr><tr><td> auto_exclude_defective_hosts</td><td>False </td></tr><tr><td> run_tests_that_fail_on_taurus</td><td>False </td></tr><tr><td> raise_in_eval</td><td>False </td></tr><tr><td> show_ram_every_n_seconds</td><td>False </td></tr></tbody></table>
<h1> Worker-Usage</h1>
<div class='invert_in_dark_mode' id='workerUsagePlot'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_worker_usage")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_worker_usage", "worker_usage.csv")'> Download »worker_usage.csv« as file</button>
<pre id="pre_tab_worker_usage">1746192507.224396,20,0,0
1746192517.8440135,20,0,0
1746193868.4362466,20,0,0
1746193868.860269,20,0,0
1746193871.1975267,20,1,5
1746193876.911582,20,1,5
1746194870.5556102,20,1,5
1746194871.1782653,20,1,5
1746194873.1646285,20,2,10
1746194874.3395486,20,2,10
1746194883.1635904,20,1,5
1746194883.3583899,20,1,5
1746195634.333498,20,1,5
1746195635.148318,20,1,5
1746195637.1548226,20,2,10
1746195638.411766,20,2,10
1746195647.1718488,20,1,5
1746195647.3696475,20,1,5
1746196485.3383093,20,1,5
1746196486.1475306,20,1,5
1746196488.2068799,20,2,10
1746196489.4834294,20,2,10
1746196498.684418,20,1,5
1746196498.8883996,20,1,5
1746197063.3342223,20,1,5
1746197064.1148157,20,1,5
1746197066.0027392,20,2,10
1746197067.1818962,20,2,10
1746197076.06695,20,1,5
1746197076.1459932,20,1,5
1746197587.3335319,20,1,5
1746197588.1084092,20,1,5
1746197590.15186,20,2,10
1746197591.395994,20,2,10
1746197600.0545368,20,1,5
1746197600.2601423,20,1,5
1746198645.0568242,20,1,5
1746198645.591257,20,1,5
1746198647.3703036,20,2,10
1746198648.63158,20,2,10
1746198657.8391418,20,1,5
1746198657.9457407,20,1,5
1746199761.7854292,20,1,5
1746199762.3125067,20,1,5
1746199764.3614225,20,2,10
1746199765.5177166,20,2,10
1746199774.5663629,20,1,5
1746199774.69914,20,1,5
1746200488.9561255,20,1,5
1746200489.3508267,20,1,5
1746200491.1715124,20,2,10
1746200491.9743853,20,2,10
1746200500.6160715,20,1,5
1746200500.7122211,20,1,5
1746201125.0158226,20,1,5
1746201125.469784,20,1,5
1746201127.2967675,20,2,10
1746201128.3856235,20,2,10
1746201137.4119103,20,1,5
1746201137.518028,20,1,5
1746201750.1733735,20,1,5
1746201750.6603248,20,1,5
1746201752.3765924,20,2,10
1746201753.4037943,20,2,10
1746201762.2450464,20,1,5
1746201762.3222082,20,1,5
1746202337.3267848,20,1,5
1746202338.070914,20,1,5
1746202340.0930457,20,2,10
1746202341.149513,20,2,10
1746202350.081771,20,1,5
1746202350.1602452,20,1,5
1746203035.292854,20,1,5
1746203035.8433788,20,1,5
1746203037.5608404,20,2,10
1746203038.6405282,20,2,10
1746203047.3311825,20,1,5
1746203047.4162936,20,1,5
1746204219.355896,20,1,5
1746204220.144918,20,1,5
1746204222.126294,20,2,10
1746204223.3002741,20,2,10
1746204232.4556422,20,1,5
1746204232.5365083,20,1,5
1746204910.103688,20,1,5
1746204910.562312,20,1,5
1746204912.2881742,20,2,10
1746204913.3387449,20,2,10
1746204922.151204,20,1,5
1746204922.2327049,20,1,5
1746205597.8321483,20,1,5
1746205598.316367,20,1,5
1746205600.3264422,20,2,10
1746205601.3524745,20,2,10
1746205610.2483704,20,1,5
1746205610.368014,20,1,5
1746206283.9932177,20,1,5
1746206284.4899812,20,1,5
1746206286.2864628,20,2,10
1746206287.3544898,20,2,10
1746206296.14918,20,1,5
1746206296.2467878,20,1,5
1746207155.7837324,20,1,5
1746207156.2875204,20,1,5
1746207158.4085083,20,2,10
1746207159.55298,20,2,10
1746207168.1389134,20,1,5
1746207168.234761,20,1,5
1746209998.9785879,20,1,5
1746209999.4236116,20,1,5
1746210001.3334603,20,2,10
1746210002.3491726,20,2,10
1746210011.0118656,20,1,5
1746210011.0835319,20,1,5
1746211424.7873988,20,1,5
1746211425.2990458,20,1,5
1746211427.309261,20,2,10
1746211428.4208994,20,2,10
1746211437.3847756,20,1,5
1746211437.575367,20,1,5
1746211444.5586429,20,1,5
1746211454.8330908,20,1,5
1746211465.0407486,20,1,5
1746211470.9827292,20,1,5
1746211476.902102,20,0,0
1746211487.1275566,20,0,0
1746212792.793279,20,0,0
1746212793.0760996,20,0,0
1746212796.1437376,20,1,5
1746212803.112108,20,1,5
1746213662.0684803,20,1,5
1746213662.508352,20,1,5
1746213664.2442012,20,2,10
1746213665.2278368,20,2,10
1746213673.3486974,20,1,5
1746213673.4210627,20,1,5
1746214722.3335423,20,1,5
1746214723.0548646,20,1,5
1746214724.6810691,20,2,10
1746214725.6956878,20,2,10
1746214733.5269887,20,1,5
1746214733.6137707,20,1,5
1746215089.6213133,20,1,5
1746215090.1307507,20,1,5
1746215092.0460403,20,2,10
1746215092.9610658,20,2,10
1746215100.847458,20,1,5
1746215100.9244819,20,1,5
1746216044.1457028,20,1,5
1746216044.5090609,20,1,5
1746216046.2126086,20,2,10
1746216047.0692468,20,2,10
1746216054.809788,20,1,5
1746216054.8955443,20,1,5
1746217053.1195762,20,1,5
1746217053.4907274,20,1,5
1746217055.2955234,20,2,10
1746217056.2725945,20,2,10
1746217063.5969546,20,1,5
1746217063.8667276,20,1,5
1746217949.2690928,20,1,5
1746217949.6626687,20,1,5
1746217951.3348935,20,2,10
1746217952.1638649,20,2,10
1746217958.8435585,20,1,5
1746217959.0414674,20,1,5
1746218377.922329,20,1,5
1746218378.3506331,20,1,5
1746218380.2414033,20,2,10
1746218381.1680748,20,2,10
1746218388.2723365,20,1,5
1746218388.3351943,20,1,5
1746219378.3275597,20,1,5
1746219378.9908698,20,1,5
1746219380.4944308,20,2,10
1746219381.288359,20,2,10
1746219388.1107936,20,1,5
1746219388.1646872,20,1,5
1746219916.4278758,20,1,5
1746219917.0910501,20,1,5
1746219918.7828135,20,2,10
1746219919.7492979,20,2,10
1746219926.9333158,20,1,5
1746219926.9941604,20,1,5
1746220445.008517,20,1,5
1746220445.4297879,20,1,5
1746220447.2248979,20,2,10
1746220448.190821,20,2,10
1746220455.2243264,20,1,5
1746220455.4261284,20,1,5
1746221168.7700775,20,1,5
1746221169.1886935,20,1,5
1746221171.0596535,20,2,10
1746221171.989725,20,2,10
1746221179.1888845,20,1,5
1746221179.2845786,20,1,5
1746221824.8646157,20,1,5
1746221825.1422665,20,1,5
1746221826.8994918,20,2,10
1746221827.5250819,20,2,10
1746221834.8207705,20,1,5
1746221834.8809793,20,1,5
1746222544.2280135,20,1,5
1746222544.7029016,20,1,5
1746222546.3710783,20,2,10
1746222547.3542843,20,2,10
1746222555.1847794,20,1,5
1746222555.2700942,20,1,5
1746223783.3106961,20,1,5
1746223783.688296,20,1,5
1746223785.1619918,20,2,10
1746223785.6424806,20,2,10
1746223792.7535415,20,1,5
1746223792.799963,20,1,5
1746224741.2207778,20,1,5
1746224741.5679133,20,1,5
1746224743.1127512,20,2,10
1746224743.665033,20,2,10
1746224750.7824883,20,1,5
1746224750.8587406,20,1,5
1746225820.4642284,20,1,5
1746225820.984623,20,1,5
1746225822.4997838,20,2,10
1746225823.0780451,20,2,10
1746225830.218226,20,1,5
1746225830.2767339,20,1,5
1746227261.146915,20,1,5
1746227261.4722059,20,1,5
1746227263.1848164,20,2,10
1746227263.7808232,20,2,10
1746227271.0851514,20,1,5
1746227271.2487931,20,1,5
1746228534.8675427,20,1,5
1746228535.263029,20,1,5
1746228537.2300186,20,2,10
1746228538.125473,20,2,10
1746228545.37131,20,1,5
1746228545.4336503,20,1,5
1746229720.5202124,20,1,5
1746229721.0053184,20,1,5
1746229722.722027,20,2,10
1746229723.3141956,20,2,10
1746229730.3819351,20,1,5
1746229730.6493325,20,1,5
1746229737.2762644,20,1,5
1746229746.960643,20,1,5
1746229753.3569863,20,1,5
1746229758.0071874,20,0,0
1746229766.632306,20,0,0
1746232505.2102857,20,0,0
1746232505.435915,20,0,0
1746232507.2100952,20,1,5
1746232511.8460143,20,1,5
1746234372.9001048,20,1,5
1746234373.2130063,20,1,5
1746234375.0163617,20,2,10
1746234375.6880748,20,2,10
1746234382.7194679,20,1,5
1746234382.774772,20,1,5
1746237607.3718054,20,1,5
1746237607.9431052,20,1,5
1746237609.46976,20,2,10
1746237609.9911833,20,2,10
1746237617.7429922,20,1,5
1746237617.7932417,20,1,5
1746240730.619149,20,1,5
1746240730.9989371,20,1,5
1746240732.4971666,20,2,10
1746240733.0140598,20,2,10
1746240740.8709695,20,1,5
1746240740.93836,20,1,5
1746243516.7032,20,1,5
1746243517.0622594,20,1,5
1746243518.7171962,20,2,10
1746243519.3444605,20,2,10
1746243526.3038678,20,1,5
1746243526.3602352,20,1,5
1746245217.4233975,20,1,5
1746245218.9796314,20,1,5
1746245220.4719422,20,2,10
1746245221.1019168,20,2,10
1746245228.5391073,20,1,5
1746245228.5960925,20,1,5
1746248024.8816862,20,1,5
1746248025.2253864,20,1,5
1746248027.0087638,20,2,10
1746248027.6299715,20,2,10
1746248034.8713024,20,1,5
1746248034.9435444,20,1,5
1746251315.6995242,20,1,5
1746251316.1458611,20,1,5
1746251318.1282058,20,2,10
1746251319.2227445,20,2,10
1746251327.2734075,20,1,5
1746251327.3722634,20,1,5
1746253290.5082493,20,1,5
1746253291.1891499,20,1,5
1746253293.1649158,20,2,10
1746253294.3129869,20,2,10
1746253302.5188236,20,1,5
1746253302.8546064,20,1,5
1746255493.0575075,20,1,5
1746255493.5258584,20,1,5
1746255495.5118647,20,2,10
1746255496.598882,20,2,10
1746255504.2373686,20,1,5
1746255504.4532142,20,1,5
1746258693.6584144,20,1,5
1746258694.1865878,20,1,5
1746258696.1838553,20,2,10
1746258697.3655133,20,2,10
1746258705.8436506,20,1,5
1746258706.0186214,20,1,5
1746261888.3033454,20,1,5
1746261888.9240448,20,1,5
1746261891.1140177,20,2,10
1746261892.3059835,20,2,10
1746261900.0055592,20,1,5
1746261900.1989188,20,1,5
1746264615.4181032,20,1,5
1746264616.035087,20,1,5
1746264617.9645267,20,2,10
1746264618.5529418,20,2,10
1746264626.34327,20,1,5
1746264626.394013,20,1,5
1746267508.9583368,20,1,5
1746267509.41276,20,1,5
1746267511.3101108,20,2,10
1746267512.2824795,20,2,10
1746267520.125163,20,1,5
1746267520.1883538,20,1,5
1746270250.2242978,20,1,5
1746270250.6950653,20,1,5
1746270252.3764691,20,2,10
1746270253.398297,20,2,10
1746270261.4524584,20,1,5
1746270261.5410025,20,1,5
1746273475.7541344,20,1,5
1746273476.2335536,20,1,5
1746273478.2810051,20,2,10
1746273479.4375298,20,2,10
1746273488.0082905,20,1,5
1746273488.1083384,20,1,5
1746276031.0986605,20,1,5
1746276031.624152,20,1,5
1746276033.2779467,20,2,10
1746276034.097546,20,2,10
1746276042.457245,20,1,5
1746276042.5139985,20,1,5
1746277710.8410132,20,1,5
1746277711.2450602,20,1,5
1746277713.0746374,20,2,10
1746277714.0479887,20,2,10
1746277721.3775368,20,1,5
1746277721.8400123,20,1,5
1746279758.6722665,20,1,5
1746279758.9850163,20,1,5
1746279760.6050274,20,2,10
1746279761.1285765,20,2,10
1746279768.7464852,20,1,5
1746279768.9269826,20,1,5
1746281896.4947724,20,1,5
1746281896.9965844,20,1,5
1746281898.8369985,20,2,10
1746281899.2741745,20,2,10
1746281906.5454488,20,1,5
1746281906.643671,20,1,5
1746281913.090848,20,1,5
1746281923.2630084,20,1,5
1746281933.3957126,20,1,5
1746281938.8958516,20,1,5
1746281944.4777145,20,0,0
1746281953.518391,20,0,0
1746285088.855784,20,0,0
1746285089.024517,20,0,0
1746285090.6073618,20,1,5
1746285095.8147926,20,1,5
1746288068.7848167,20,1,5
1746288069.077432,20,1,5
1746288070.5822406,20,2,10
1746288071.1290908,20,2,10
1746288079.4514832,20,1,5
1746288079.5188577,20,1,5
1746291311.0764287,20,1,5
1746291311.5964968,20,1,5
1746291313.4709117,20,2,10
1746291314.6914856,20,2,10
1746291323.012612,20,1,5
1746291323.2267394,20,1,5
1746294468.2835102,20,1,5
1746294468.8063662,20,1,5
1746294470.6342065,20,2,10
1746294471.4637973,20,2,10
1746294480.3708544,20,1,5
1746294480.4682217,20,1,5
1746297522.159586,20,1,5
1746297522.665287,20,1,5
1746297524.4587567,20,2,10
1746297525.6276777,20,2,10
1746297534.373369,20,1,5
1746297534.4403183,20,1,5
1746299450.2839634,20,1,5
1746299450.8292,20,1,5
1746299452.5360467,20,2,10
1746299453.5579097,20,2,10
1746299460.984256,20,1,5
1746299461.1837947,20,1,5
1746302382.45959,20,1,5
1746302383.0614002,20,1,5
1746302385.03519,20,2,10
1746302385.9432828,20,2,10
1746302393.9922652,20,1,5
1746302394.0666537,20,1,5
1746305227.6247427,20,1,5
1746305227.9843957,20,1,5
1746305229.9384441,20,2,10
1746305230.4971075,20,2,10
1746305237.6867213,20,1,5
1746305237.7417865,20,1,5
1746307376.9067967,20,1,5
1746307377.40884,20,1,5
1746307379.3316329,20,2,10
1746307380.5417292,20,2,10
1746307389.8203442,20,1,5
1746307389.993776,20,1,5
1746311426.4819157,20,1,5
1746311427.3064709,20,1,5
1746311429.5882473,20,2,10
1746311430.9392347,20,2,10
1746311440.2157314,20,1,5
1746311440.373732,20,1,5
1746314489.1175835,20,1,5
1746314489.4073775,20,1,5
1746314491.0662858,20,2,10
1746314491.5914764,20,2,10
1746314499.2183425,20,1,5
1746314499.2751374,20,1,5
1746317616.3677888,20,1,5
1746317616.908251,20,1,5
1746317618.486048,20,2,10
1746317619.1406796,20,2,10
1746317627.4182334,20,1,5
1746317627.4970846,20,1,5
1746320967.968703,20,1,5
1746320968.2842827,20,1,5
1746320970.2122965,20,2,10
1746320970.8374794,20,2,10
1746320979.3402874,20,1,5
1746320979.4014032,20,1,5
1746322808.113242,20,1,5
1746322808.6115112,20,1,5
1746322810.3373632,20,2,10
1746322811.51145,20,2,10
1746322820.7335942,20,1,5
1746322820.844488,20,1,5
1746324728.4112773,20,1,5
1746324728.8289392,20,1,5
1746324730.4109678,20,2,10
1746324731.210289,20,2,10
1746324739.0604875,20,1,5
1746324739.1199124,20,1,5
1746326786.4734924,20,1,5
1746326787.1185007,20,1,5
1746326789.1262004,20,2,10
1746326790.1285794,20,2,10
1746326797.625939,20,1,5
1746326797.8443916,20,1,5
1746330028.7180212,20,1,5
1746330029.1823761,20,1,5
1746330030.9815967,20,2,10
1746330031.5880752,20,2,10
1746330039.790692,20,1,5
1746330039.8715384,20,1,5
1746333523.3214476,20,1,5
1746333523.8645084,20,1,5
1746333525.3376346,20,2,10
1746333525.8938196,20,2,10
1746333533.7523203,20,1,5
1746333533.9042218,20,1,5
1746336654.8875735,20,1,5
1746336655.2685344,20,1,5
1746336657.3630178,20,2,10
1746336658.3296084,20,2,10
1746336666.3743346,20,1,5
1746336666.8087435,20,1,5
1746339970.4943373,20,1,5
1746339971.167163,20,1,5
1746339973.129437,20,2,10
1746339974.1265435,20,2,10
1746339981.7667592,20,1,5
1746339982.1516166,20,1,5
1746339988.3856106,20,1,5
1746339998.8037603,20,1,5
1746340004.861896,20,1,5
1746340010.2559164,20,0,0
1746340019.1642344,20,0,0
1746343358.3498516,20,0,0
1746343358.689229,20,0,0
1746343360.3760455,20,1,5
1746343364.9484577,20,1,5
1746346532.7182486,20,1,5
1746346533.2243614,20,1,5
1746346535.1819859,20,2,10
1746346536.2693236,20,2,10
1746346544.4168005,20,1,5
1746346544.8556252,20,1,5
1746348689.5008144,20,1,5
1746348690.149858,20,1,5
1746348692.1314905,20,2,10
1746348693.2929375,20,2,10
1746348702.2938454,20,1,5
1746348702.3707602,20,1,5
1746351015.4995668,20,1,5
1746351016.2243216,20,1,5
1746351018.1508043,20,2,10
1746351019.3194335,20,2,10
1746351028.015998,20,1,5
1746351028.0832322,20,1,5
1746353298.9394841,20,1,5
1746353299.2592292,20,1,5
1746353301.0100372,20,2,10
1746353301.642785,20,2,10
1746353309.686546,20,1,5
1746353309.7418149,20,1,5
1746355333.7191563,20,1,5
1746355333.987856,20,1,5
1746355335.4727235,20,2,10
1746355335.9409015,20,2,10
1746355344.107899,20,1,5
1746355344.165213,20,1,5
1746357274.6531823,20,1,5
1746357275.0047863,20,1,5
1746357277.542892,20,2,10
1746357278.2382183,20,2,10
1746357286.2450933,20,1,5
1746357286.3086936,20,1,5
1746359387.1400228,20,1,5
1746359387.4912558,20,1,5
1746359389.2236145,20,2,10
1746359389.8685708,20,2,10
1746359397.775198,20,1,5
1746359397.8360507,20,1,5
1746362819.3471446,20,1,5
1746362819.985512,20,1,5
1746362822.0490744,20,2,10
1746362823.029968,20,2,10
1746362831.1879444,20,1,5
1746362831.2509525,20,1,5
1746364927.216855,20,1,5
1746364927.6606088,20,1,5
1746364929.2577927,20,2,10
1746364930.257848,20,2,10
1746364938.502487,20,1,5
1746364938.5668728,20,1,5
1746367088.8579879,20,1,5
1746367089.2398698,20,1,5
1746367091.249845,20,2,10
1746367092.1281912,20,2,10
1746367100.362672,20,1,5
1746367100.4327931,20,1,5
1746369423.3087149,20,1,5
1746369423.772105,20,1,5
1746369425.2491498,20,2,10
1746369425.7399788,20,2,10
1746369433.8474069,20,1,5
1746369433.9992473,20,1,5
1746371586.1784437,20,1,5
1746371586.7635765,20,1,5
1746371588.4424746,20,2,10
1746371589.0479174,20,2,10
1746371597.3558908,20,1,5
1746371597.8456829,20,1,5
1746374003.7292888,20,1,5
1746374004.0513492,20,1,5
1746374005.8379874,20,2,10
1746374006.3969147,20,2,10
1746374015.3636713,20,1,5
1746374015.4313228,20,1,5
1746376226.9551191,20,1,5
1746376227.249714,20,1,5
1746376229.0730555,20,2,10
1746376229.5924432,20,2,10
1746376237.6992106,20,1,5
1746376237.7738752,20,1,5
1746378461.766397,20,1,5
1746378462.1657593,20,1,5
1746378464.0176847,20,2,10
1746378464.7222545,20,2,10
1746378473.1999996,20,1,5
1746378473.2864258,20,1,5
1746382219.9102352,20,1,5
1746382220.2943492,20,1,5
1746382222.253409,20,2,10
1746382223.1772032,20,2,10
1746382232.6453176,20,1,5
1746382232.7083116,20,1,5
1746384570.8547735,20,1,5
1746384571.279197,20,1,5
1746384573.3305945,20,2,10
1746384574.0405033,20,2,10
1746384582.3054388,20,1,5
1746384582.3705602,20,1,5
1746386952.5151267,20,1,5
1746386953.0088677,20,1,5
1746386954.6159987,20,2,10
1746386955.331652,20,2,10
1746386963.9118166,20,1,5
1746386963.985037,20,1,5
1746389626.3991373,20,1,5
1746389627.133045,20,1,5
1746389629.154581,20,2,10
1746389630.1850429,20,2,10
1746389639.6635802,20,1,5
1746389640.0267997,20,1,5
1746389647.3202782,20,1,5
1746389657.3627977,20,1,5
1746389668.3696818,20,1,5
1746389674.3720417,20,1,5
1746389680.8121054,20,0,0
1746389691.1549478,20,0,0
1746392108.9164844,20,0,0
1746392109.224938,20,0,0
1746392111.0689845,20,1,5
1746392117.0186243,20,1,5
1746394098.582012,20,1,5
1746394098.9843326,20,1,5
1746394101.8696332,20,2,10
1746394102.37776,20,2,10
1746394110.6627724,20,1,5
1746394110.726436,20,1,5
1746396272.0473485,20,1,5
1746396272.336711,20,1,5
1746396274.253094,20,2,10
1746396274.8446953,20,2,10
1746396282.8689606,20,1,5
1746396282.932593,20,1,5
1746399837.5648537,20,1,5
1746399838.1464467,20,1,5
1746399840.1464384,20,2,10
1746399841.217317,20,2,10
1746399850.4584916,20,1,5
1746399850.5345588,20,1,5
1746402255.9713767,20,1,5
1746402256.2393744,20,1,5
1746402260.9615884,20,2,10
1746402261.5366967,20,2,10
1746402270.5209732,20,1,5
1746402270.6018794,20,1,5
1746406388.855325,20,1,5
1746406389.2571356,20,1,5
1746406391.3183742,20,2,10
1746406391.974074,20,2,10
1746406400.75286,20,1,5
1746406400.9295619,20,1,5
1746408659.9121945,20,1,5
1746408660.2118049,20,1,5
1746408661.980262,20,2,10
1746408662.539006,20,2,10
1746408671.141676,20,1,5
1746408671.2053342,20,1,5
1746410079.0632157,20,1,5
1746410079.3966641,20,1,5
1746410081.1522799,20,2,10
1746410081.4823134,20,2,10
1746410091.368242,20,1,5
1746410091.8499093,20,1,5
1746410706.0093594,20,1,5
1746410706.4533236,20,1,5
1746410708.3964155,20,2,10
1746410709.455334,20,2,10
1746410717.9140193,20,1,5
1746410718.1087458,20,1,5
1746413354.462577,20,1,5
1746413355.0912738,20,1,5
1746413356.9188302,20,2,10
1746413357.2842982,20,2,10
1746413366.4561915,20,1,5
1746413366.5357926,20,1,5
1746415810.1055124,20,1,5
1746415810.4386578,20,1,5
1746415812.3583772,20,2,10
1746415813.6411817,20,2,10
1746415822.7783532,20,1,5
1746415822.9069054,20,1,5
1746418541.7326405,20,1,5
1746418542.2319424,20,1,5
1746418544.1730828,20,2,10
1746418545.1124322,20,2,10
1746418553.7129765,20,1,5
1746418553.7993655,20,1,5
1746421027.607026,20,1,5
1746421027.9982593,20,1,5
1746421029.9843261,20,2,10
1746421030.5892336,20,2,10
1746421038.850414,20,1,5
1746421038.927084,20,1,5
1746423704.741725,20,1,5
1746423705.024622,20,1,5
1746423706.4945197,20,2,10
1746423706.9865932,20,2,10
1746423715.2350762,20,1,5
1746423715.4099586,20,1,5
1746426596.5523026,20,1,5
1746426597.1813548,20,1,5
1746426599.027004,20,2,10
1746426600.138414,20,2,10
1746426609.0004573,20,1,5
1746426609.0921435,20,1,5
1746429765.1960356,20,1,5
1746429765.6550744,20,1,5
1746429767.2128859,20,2,10
1746429768.0860279,20,2,10
1746429777.9281008,20,1,5
1746429778.0265708,20,1,5
1746433579.8037014,20,1,5
1746433580.1220336,20,1,5
1746433581.864467,20,2,10
1746433582.5403948,20,2,10
1746433591.2286277,20,1,5
1746433591.3042562,20,1,5
1746436333.3975346,20,1,5
1746436334.0771565,20,1,5
1746436335.755429,20,2,10
1746436336.6129177,20,2,10
1746436347.0819783,20,1,5
1746436347.1840172,20,1,5
1746440660.0661914,20,1,5
1746440660.4507866,20,1,5
1746440662.2503257,20,2,10
1746440662.8787503,20,2,10
1746440672.772135,20,1,5
1746440672.849976,20,1,5
1746443674.1557932,20,1,5
1746443674.6007113,20,1,5
1746443676.1940756,20,2,10
1746443676.9680917,20,2,10
1746443687.1129057,20,1,5
1746443687.2731783,20,1,5
1746443695.0039215,20,1,5
1746443705.9224777,20,1,5
1746443717.092947,20,1,5
1746443727.9673324,20,1,5
1746443734.0217447,20,1,5
1746443741.1790154,20,0,0
1746443753.0171223,20,0,0
1746447233.4996867,20,0,0
1746447233.9379594,20,0,0
1746447235.7195706,20,1,5
1746447243.255343,20,1,5
1746450580.1110804,20,1,5
1746450580.4926612,20,1,5
1746450582.3120623,20,2,10
1746450583.0692205,20,2,10
1746450594.5571306,20,1,5
1746450594.6575987,20,1,5
1746454641.6172018,20,1,5
1746454642.4471076,20,1,5
1746454644.5396042,20,2,10
1746454646.2874823,20,2,10
1746454658.7140586,20,1,5
1746454658.8419085,20,1,5
1746461087.468343,20,1,5
1746461088.1877773,20,1,5
1746461090.018167,20,2,10
1746461090.8560524,20,2,10
1746461101.636074,20,1,5
1746461101.722313,20,1,5
1746464398.888214,20,1,5
1746464399.5376692,20,1,5
1746464401.3883853,20,2,10
1746464402.8641598,20,2,10
1746464413.9394941,20,1,5
1746464414.0434477,20,1,5
1746467581.0893164,20,1,5
1746467581.6281362,20,1,5
1746467583.304811,20,2,10
1746467584.493565,20,2,10
1746467595.2318628,20,1,5
1746467595.3201993,20,1,5
1746470409.6307125,20,1,5
1746470410.2482498,20,1,5
1746470412.194347,20,2,10
1746470413.4024045,20,2,10
1746470424.5866969,20,1,5
1746470424.7031434,20,1,5
1746473640.231447,20,1,5
1746473640.755553,20,1,5
1746473642.3691678,20,2,10
1746473643.493124,20,2,10
1746473654.3152983,20,1,5
1746473654.413991,20,1,5
1746476735.254853,20,1,5
1746476735.7810807,20,1,5
1746476737.324791,20,2,10
1746476738.2262156,20,2,10
1746476748.846147,20,1,5
1746476748.9356637,20,1,5
1746479950.0432582,20,1,5
1746479950.5931413,20,1,5
1746479952.275402,20,2,10
1746479953.4184103,20,2,10
1746479964.3949113,20,1,5
1746479964.5054781,20,1,5
1746483502.7321715,20,1,5
1746483503.1954823,20,1,5
1746483505.140964,20,2,10
1746483506.6032035,20,2,10
1746483517.4182818,20,1,5
1746483517.5200555,20,1,5
1746486790.4050217,20,1,5
1746486791.1422362,20,1,5
1746486793.0689988,20,2,10
1746486794.1141121,20,2,10
1746486804.4504976,20,1,5
1746486804.5404835,20,1,5
1746489748.8403838,20,1,5
1746489749.3391027,20,1,5
1746489751.2911527,20,2,10
1746489752.4796865,20,2,10
1746489763.2912543,20,1,5
1746489763.400402,20,1,5
1746493364.9071813,20,1,5
1746493365.528432,20,1,5
1746493367.38659,20,2,10
1746493368.7721016,20,2,10
1746493380.3572164,20,1,5
1746493380.4636362,20,1,5
1746497210.6986794,20,1,5
1746497211.2807086,20,1,5
1746497213.412953,20,2,10
1746497214.8220575,20,2,10
1746497226.8859162,20,1,5
1746497227.0101235,20,1,5
1746501112.728942,20,1,5
1746501113.0836704,20,1,5
1746501114.6576364,20,2,10
1746501115.3349812,20,2,10
1746501125.909035,20,1,5
1746501125.988373,20,1,5
1746504338.19633,20,1,5
1746504338.5470383,20,1,5
1746504340.111867,20,2,10
1746504340.735026,20,2,10
1746504352.0718489,20,1,5
1746504352.2625515,20,1,5
1746509654.887032,20,1,5
1746509655.4629445,20,1,5
1746509657.3205845,20,2,10
1746509658.5539148,20,2,10
1746509669.3751202,20,1,5
1746509669.4633934,20,1,5
1746512900.5900998,20,1,5
1746512900.9967585,20,1,5
1746512902.4280226,20,2,10
1746512902.991948,20,2,10
1746512912.0440874,20,1,5
1746512912.1314518,20,1,5
1746515780.445497,20,1,5
1746515780.9271307,20,1,5
1746515782.3831184,20,2,10
1746515783.0223074,20,2,10
1746515791.7630658,20,1,5
1746515791.8906536,20,1,5
1746515799.0227838,20,1,5
1746515809.625542,20,1,5
1746515815.6363204,20,1,5
1746515822.353331,20,0,0
1746515832.1175787,20,0,0
1746518828.9780393,20,0,0
1746518829.266354,20,0,0
1746518831.1552324,20,1,5
1746518837.5679915,20,1,5
1746521670.510744,20,1,5
1746521671.1598663,20,1,5
1746521673.3671556,20,2,10
1746521674.5295386,20,2,10
1746521684.883678,20,1,5
1746521685.0841773,20,1,5
1746524864.74149,20,1,5
1746524865.27209,20,1,5
1746524867.2484465,20,2,10
1746524868.4938717,20,2,10
1746524879.2405527,20,1,5
1746524879.4491644,20,1,5
1746528354.8020916,20,1,5
1746528355.2138338,20,1,5
1746528356.970781,20,2,10
1746528357.6854897,20,2,10
1746528368.2635062,20,1,5
1746528368.474368,20,1,5
1746531721.8522022,20,1,5
1746531722.1913526,20,1,5
1746531724.006357,20,2,10
1746531724.7015064,20,2,10
1746531734.8226776,20,1,5
1746531734.911217,20,1,5
1746534895.5576527,20,1,5
1746534895.9927828,20,1,5
1746534897.401686,20,2,10
1746534898.0133142,20,2,10
1746534907.9371707,20,1,5
1746534908.0071547,20,1,5
1746539775.7836177,20,1,5
1746539776.1675382,20,1,5
1746539778.0796669,20,2,10
1746539779.1859481,20,2,10
1746539788.8327112,20,1,5
1746539788.928993,20,1,5
1746543062.0156534,20,1,5
1746543062.3339162,20,1,5
1746543064.0976229,20,2,10
1746543064.6409423,20,2,10
1746543077.2283404,20,1,5
1746543077.2920012,20,1,5
1746547942.0873313,20,1,5
1746547942.4437265,20,1,5
1746547944.1239517,20,2,10
1746547944.718672,20,2,10
1746547954.2338068,20,1,5
1746547954.311422,20,1,5
1746551361.7372005,20,1,5
1746551362.089456,20,1,5
1746551363.884033,20,2,10
1746551364.4150267,20,2,10
1746551374.4819987,20,1,5
1746551374.884816,20,1,5
1746557325.422053,20,1,5
1746557326.3208385,20,1,5
1746557328.586556,20,2,10
1746557329.9931452,20,2,10
1746557340.7953238,20,1,5
1746557340.9260614,20,1,5
1746561937.542571,20,1,5
1746561938.2193904,20,1,5
1746561940.388378,20,2,10
1746561941.296812,20,2,10
1746561951.600277,20,1,5
1746561951.694062,20,1,5
1746565377.1203237,20,1,5
1746565377.4230494,20,1,5
1746565379.2093968,20,2,10
1746565379.7668827,20,2,10
1746565389.4454696,20,1,5
1746565389.5138736,20,1,5
1746569800.466281,20,1,5
1746569801.3561392,20,1,5
1746569803.458339,20,2,10
1746569804.6770453,20,2,10
1746569816.2394793,20,1,5
1746569816.3445039,20,1,5
1746573749.93175,20,1,5
1746573750.2582202,20,1,5
1746573752.1199837,20,2,10
1746573752.7239883,20,2,10
1746573762.7773054,20,1,5
1746573762.9153712,20,1,5
1746578727.2771313,20,1,5
1746578727.8911097,20,1,5
1746578729.963163,20,2,10
1746578731.0290494,20,2,10
1746578740.4726133,20,1,5
1746578740.5587683,20,1,5
1746583612.9171946,20,1,5
1746583613.4284265,20,1,5
1746583615.3531964,20,2,10
1746583616.366689,20,2,10
1746583625.75264,20,1,5
1746583625.830762,20,1,5
1746586760.643168,20,1,5
1746586760.9891837,20,1,5
1746586762.450717,20,2,10
1746586763.0218637,20,2,10
1746586772.1767817,20,1,5
1746586772.352567,20,1,5
1746590378.18009,20,1,5
1746590378.5995326,20,1,5
1746590380.2064054,20,2,10
1746590380.9765975,20,2,10
1746590391.4914777,20,1,5
1746590391.5826962,20,1,5
1746596438.9428856,20,1,5
1746596439.622286,20,1,5
1746596441.43683,20,2,10
1746596442.556551,20,2,10
1746596454.40003,20,1,5
1746596454.6284308,20,1,5
1746596463.1298392,20,1,5
1746596475.6321568,20,1,5
1746596481.279953,20,1,5
1746596488.6032014,20,0,0
1746596500.376769,20,0,0
1746599736.7954717,20,0,0
1746599737.1428838,20,0,0
1746599738.9769456,20,1,5
1746599745.1751342,20,1,5
1746603068.4002934,20,1,5
1746603069.0243328,20,1,5
1746603070.548203,20,2,10
1746603071.2880487,20,2,10
1746603080.8850021,20,1,5
1746603080.9673243,20,1,5
1746606261.7843084,20,1,5
1746606262.0618072,20,1,5
1746606263.470419,20,2,10
1746606263.9980047,20,2,10
1746606273.1137357,20,1,5
1746606273.3136122,20,1,5
1746609763.5201588,20,1,5
1746609764.0006237,20,1,5
1746609765.8673067,20,2,10
1746609766.3654718,20,2,10
1746609775.615666,20,1,5
1746609775.6815274,20,1,5
1746613370.1193094,20,1,5
1746613370.5085602,20,1,5
1746613372.150324,20,2,10
1746613372.7891288,20,2,10
1746613382.4973826,20,1,5
1746613382.5765767,20,1,5
1746616909.594915,20,1,5
1746616910.0630426,20,1,5
1746616911.712958,20,2,10
1746616912.3266478,20,2,10
1746616921.2394376,20,1,5
1746616921.3208783,20,1,5
1746620617.9341547,20,1,5
1746620619.0639565,20,1,5
1746620620.9628792,20,2,10
1746620621.571889,20,2,10
1746620631.9007485,20,1,5
1746620632.090559,20,1,5
1746627100.2851665,20,1,5
1746627100.7458823,20,1,5
1746627102.3332753,20,2,10
1746627103.0672064,20,2,10
1746627112.7007964,20,1,5
1746627112.7768416,20,1,5
1746632433.657036,20,1,5
1746632434.1453655,20,1,5
1746632436.0246627,20,2,10
1746632436.7461107,20,2,10
1746632446.5336127,20,1,5
1746632446.6109962,20,1,5
1746635873.0740101,20,1,5
1746635873.6211984,20,1,5
1746635875.2516725,20,2,10
1746635876.2343187,20,2,10
1746635887.1499133,20,1,5
1746635887.2376268,20,1,5
1746639862.3904245,20,1,5
1746639863.053323,20,1,5
1746639864.6704025,20,2,10
1746639865.3798869,20,2,10
1746639876.484141,20,1,5
1746639876.5755944,20,1,5
1746645097.805534,20,1,5
1746645098.4710286,20,1,5
1746645100.4922042,20,2,10
1746645101.9604053,20,2,10
1746645114.1447914,20,1,5
1746645114.251311,20,1,5
1746651779.5866675,20,1,5
1746651780.238443,20,1,5
1746651782.2947438,20,2,10
1746651783.4657762,20,2,10
1746651793.725363,20,1,5
1746651793.8187547,20,1,5
1746657257.4535553,20,1,5
1746657258.1648715,20,1,5
1746657260.0329473,20,2,10
1746657260.8287566,20,2,10
1746657270.959895,20,1,5
1746657271.040313,20,1,5
1746660919.4835596,20,1,5
1746660919.96769,20,1,5
1746660921.6536052,20,2,10
1746660922.2132661,20,2,10
1746660933.2102175,20,1,5
1746660933.2850745,20,1,5
1746667317.7180285,20,1,5
1746667318.3203104,20,1,5
1746667320.4305007,20,2,10
1746667321.7071037,20,2,10
1746667332.4078124,20,1,5
1746667332.5038266,20,1,5
1746671237.8264365,20,1,5
1746671238.459622,20,1,5
1746671240.4423661,20,2,10
1746671241.9761617,20,2,10
1746671255.136981,20,1,5
1746671255.2495072,20,1,5
1746675330.300328,20,1,5
1746675330.8481045,20,1,5
1746675332.4646516,20,2,10
1746675333.0442588,20,2,10
1746675343.4543781,20,1,5
1746675343.8854272,20,1,5
1746679537.8854172,20,1,5
1746679538.3575299,20,1,5
1746679540.334758,20,2,10
1746679541.5662766,20,2,10
1746679552.795361,20,1,5
1746679552.8845603,20,1,5
1746685221.2008672,20,1,5
1746685221.7525582,20,1,5
1746685223.4436896,20,2,10
1746685224.612066,20,2,10
1746685236.409752,20,1,5
1746685236.6135669,20,1,5
1746685244.7217617,20,1,5
1746685256.4722574,20,1,5
1746685262.44628,20,1,5
1746685269.7527063,20,0,0
1746685281.919938,20,0,0
1746691943.1870918,20,0,0
1746691943.6728888,20,0,0
1746691945.3984435,20,1,5
1746691952.2631307,20,1,5
1746697696.5473871,20,1,5
1746697697.2910995,20,1,5
1746697699.3295798,20,2,10
1746697700.652912,20,2,10
1746697711.5943155,20,1,5
1746697711.6784952,20,1,5
1746701204.2950304,20,1,5
1746701204.723111,20,1,5
1746701206.1465347,20,2,10
1746701206.7171202,20,2,10
1746701216.3495607,20,1,5
1746701216.8112633,20,1,5
1746705356.2891877,20,1,5
1746705356.9208734,20,1,5
1746705358.5999215,20,2,10
1746705359.5118759,20,2,10
1746705370.3250473,20,1,5
1746705370.4068542,20,1,5
1746709288.359974,20,1,5
1746709289.033659,20,1,5
1746709290.6437895,20,2,10
1746709291.3872197,20,2,10
1746709301.1307101,20,1,5
1746709301.3062053,20,1,5
1746713264.1538498,20,1,5
1746713264.6799793,20,1,5
1746713266.3179133,20,2,10
1746713267.2115574,20,2,10
1746713277.6049867,20,1,5
1746713277.862795,20,1,5
1746717349.8381145,20,1,5
1746717350.4750612,20,1,5
1746717352.356786,20,2,10
1746717353.7286043,20,2,10
1746717365.6898155,20,1,5
1746717365.7879212,20,1,5
1746722003.2825325,20,1,5
1746722004.0451388,20,1,5
1746722005.754429,20,2,10
1746722007.1614037,20,2,10
1746722019.7682037,20,1,5
1746722019.8723226,20,1,5
1746726309.989634,20,1,5
1746726310.6137643,20,1,5
1746726312.389427,20,2,10
1746726313.7413845,20,2,10
1746726324.7098036,20,1,5
1746726324.7981734,20,1,5
1746732382.0383987,20,1,5
1746732382.7755222,20,1,5
1746732384.6689916,20,2,10
1746732386.2651324,20,2,10
1746732398.0683477,20,1,5
1746732398.1862762,20,1,5
1746737574.7539158,20,1,5
1746737575.230699,20,1,5
1746737577.9739525,20,2,10
1746737578.8781643,20,2,10
1746737589.2993243,20,1,5
1746737589.3842683,20,1,5
1746741712.508334,20,1,5
1746741713.2052073,20,1,5
1746741715.1501088,20,2,10
1746741716.2659404,20,2,10
1746741727.5009074,20,1,5
1746741727.5805042,20,1,5
1746745768.4887106,20,1,5
1746745769.0985456,20,1,5
1746745770.7302911,20,2,10
1746745771.3163865,20,2,10
1746745781.3498893,20,1,5
1746745781.7930667,20,1,5
1746750117.510269,20,1,5
1746750118.3794386,20,1,5
1746750120.418814,20,2,10
1746750121.9174018,20,2,10
1746750136.0475862,20,1,5
1746750136.151664,20,1,5
1746755184.7458024,20,1,5
1746755185.372629,20,1,5
1746755187.3441534,20,2,10
1746755188.659961,20,2,10
1746755199.5512016,20,1,5
1746755199.6527991,20,1,5
1746759320.6472747,20,1,5
1746759321.2312272,20,1,5
1746759323.1469018,20,2,10
1746759324.2276564,20,2,10
1746759335.2265592,20,1,5
1746759335.303439,20,1,5
1746763250.802533,20,1,5
1746763251.1555555,20,1,5
1746763252.976147,20,2,10
1746763253.6596265,20,2,10
1746763264.8697836,20,1,5
1746763264.9391522,20,1,5
1746767489.8216183,20,1,5
1746767490.1990395,20,1,5
1746767491.917522,20,2,10
1746767492.5349884,20,2,10
1746767502.3678534,20,1,5
1746767502.8095589,20,1,5
1746771094.6373131,20,1,5
1746771095.023444,20,1,5
1746771096.4958909,20,2,10
1746771097.1339095,20,2,10
1746771106.6730556,20,1,5
1746771106.8580103,20,1,5
1746775236.6193624,20,1,5
1746775237.0194988,20,1,5
1746775238.560284,20,2,10
1746775239.067593,20,2,10
1746775249.4447358,20,1,5
1746775249.6177304,20,1,5
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_worker_usage")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_worker_usage", "worker_usage.csv")'> Download »worker_usage.csv« as file</button>
<h1> CPU/RAM-Usage (main)</h1>
<div class='invert_in_dark_mode' id='mainWorkerCPURAM'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<pre id="pre_tab_main_worker_cpu_ram">timestamp,ram_usage_mb,cpu_usage_percent
1746192507,633.76953125,32.9
1746192507,633.76953125,36.2
1746192507,633.76953125,33.7
1746192507,633.76953125,34.7
1746192507,633.76953125,35.6
1746192507,633.76953125,36.1
1746192507,633.76953125,37.0
1746211444,814.4921875,38.1
1746211444,814.4921875,31.0
1746211444,814.4921875,31.2
1746211444,814.4921875,31.3
1746229737,850.1796875,19.0
1746229737,850.1796875,14.8
1746229737,850.1796875,15.0
1746229737,850.1796875,16.2
1746281912,926.44921875,15.5
1746281912,926.44921875,15.1
1746281912,926.44921875,15.2
1746281912,926.44921875,12.1
1746339988,935.5703125,15.9
1746339988,935.5703125,14.3
1746339988,935.5703125,14.6
1746339988,935.5703125,10.3
1746389647,974.265625,17.1
1746389647,974.265625,17.5
1746389647,974.265625,17.2
1746389647,974.265625,16.9
1746443694,1025.27734375,17.8
1746443694,1025.27734375,25.7
1746443694,1025.27734375,24.9
1746443694,1025.27734375,21.4
1746515798,1027.40625,23.7
1746515798,1027.40625,14.8
1746515798,1027.40625,14.4
1746515798,1027.40625,16.7
1746596462,1075.80859375,16.2
1746596462,1075.80859375,15.7
1746596462,1075.80859375,15.6
1746596462,1075.80859375,16.1
1746685244,1127.19140625,17.4
1746685244,1127.19140625,17.7
1746685244,1127.19140625,17.6
1746685244,1127.19140625,22.0
1746775256,1141.20703125,16.6
1746775256,1141.20703125,16.5
1746775256,1141.20703125,16.9
1746775256,1141.20703125,20.5
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<h1> Parallel Plot</h1>
<div class="invert_in_dark_mode" id="parallel-plot"></div>
<h1> Scatter-2D</h1>
<div class='invert_in_dark_mode' id='plotScatter2d'></div>
<h1> Scatter-3D</h1>
<div class='invert_in_dark_mode' id='plotScatter3d'></div>
<h1> Job Status Distribution</h1>
<div class="invert_in_dark_mode" id="plotJobStatusDistribution"></div>
<h1> Boxplots</h1>
<div class="invert_in_dark_mode" id="plotBoxplot"></div>
<h1> Violin</h1>
<div class="invert_in_dark_mode" id="plotViolin"></div>
<h1> Histogram</h1>
<div class="invert_in_dark_mode" id="plotHistogram"></div>
<h1> Heatmap</h1>
<div class="invert_in_dark_mode" id="plotHeatmap"></div><br>
<h1>Correlation Heatmap Explanation</h1>
<p>
This is a heatmap that visualizes the correlation between numerical columns in a dataset. The values represented in the heatmap show the strength and direction of relationships between different variables.
</p>
<h2>How It Works</h2>
<p>
The heatmap uses a matrix to represent correlations between each pair of numerical columns. The calculation behind this is based on the concept of "correlation," which measures how strongly two variables are related. A correlation can be positive, negative, or zero:
</p>
<ul>
<li><strong>Positive correlation</strong>: Both variables increase or decrease together (e.g., if the temperature rises, ice cream sales increase).</li>
<li><strong>Negative correlation</strong>: As one variable increases, the other decreases (e.g., as the price of a product rises, the demand for it decreases).</li>
<li><strong>Zero correlation</strong>: There is no relationship between the two variables (e.g., height and shoe size might show zero correlation in some contexts).</li>
</ul>
<h2>Color Scale: Yellow to Purple (Viridis)</h2>
<p>
The heatmap uses a color scale called "Viridis," which ranges from yellow to purple. Here's what the colors represent:
</p>
<ul>
<li><strong>Yellow (brightest)</strong>: A strong positive correlation (close to +1). This indicates that as one variable increases, the other increases in a very predictable manner.</li>
<li><strong>Green</strong>: A moderate positive correlation. Variables are still positively related, but the relationship is not as strong.</li>
<li><strong>Blue</strong>: A weak or near-zero correlation. There is a small or no discernible relationship between the variables.</li>
<li><strong>Purple (darkest)</strong>: A strong negative correlation (close to -1). This indicates that as one variable increases, the other decreases in a very predictable manner.</li>
</ul>
<h2>What the Heatmap Shows</h2>
<p>
In the heatmap, each cell represents the correlation between two numerical columns. The color of the cell is determined by the correlation coefficient: from yellow for strong positive correlations, through green and blue for weaker correlations, to purple for strong negative correlations.
</p>
<h1> Result-Pairs</h1>
<div class="invert_in_dark_mode" id="plotResultPairs"></div>
<h1> Evolution</h1>
<div class="invert_in_dark_mode" id="plotResultEvolution"></div>
<h1> Exit-Codes</h1>
<div class="invert_in_dark_mode" id="plotExitCodesPieChart"></div>
</body>
</html>
Copy raw data to clipboard
Download »export.html« as file