Copy raw data to clipboard
Download »results.csv« as file
trial_index,arm_name,trial_status,generation_method,generation_node,ACCURACY,RUNTIME,recent_samples_size,n_samples,feature_proportion,n_clusters,confidence
0,0_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,18.000000000000000000000000000000,1961,2441,0.799423568129539519055981600104,11,0.25
1,1_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,14.000000000000000000000000000000,4268,2635,0.099351818336173888801532427806,28,0.01
2,2_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,218.000000000000000000000000000000,3464,54,0.445492655232548717680884919901,40,0.25
3,3_0,COMPLETED,Sobol,SOBOL,0.709999999999999964472863211995,9.000000000000000000000000000000,303,4857,0.655701311219483606862468150211,23,0.1
4,4_0,COMPLETED,Sobol,SOBOL,0.690000000000000057731597280508,13.000000000000000000000000000000,714,1150,0.168379319963976731289179156192,47,0.025
5,5_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,10.000000000000000000000000000000,3021,3765,0.995520461725071026393152351375,17,0.005
6,6_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,22.000000000000000000000000000000,4718,1340,0.578542165432125332635848735663,5,0.001
7,7_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,11.000000000000000000000000000000,1556,3721,0.257588700890541089094654125802,34,0.01
8,8_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,36.000000000000000000000000000000,1638,358,0.727335241559892931029196461168,35,0.025
9,9_0,COMPLETED,Sobol,SOBOL,0.709999999999999964472863211995,10.000000000000000000000000000000,4648,4538,0.436233947962522516927919014051,3,0.05
10,10_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,11.000000000000000000000000000000,2635,2111,0.018946686176583172472875915560,15,0.001
11,11_0,COMPLETED,Sobol,SOBOL,0.640000000000000013322676295502,14.000000000000000000000000000000,1114,2931,0.817453918712213623010143237479,49,0.01
12,12_0,COMPLETED,Sobol,SOBOL,0.660000000000000031086244689504,11.000000000000000000000000000000,372,1649,0.361384517535567273416319267199,22,0.001
13,13_0,COMPLETED,Sobol,SOBOL,0.680000000000000048849813083507,11.000000000000000000000000000000,3383,3408,0.537121125716715996922800968605,42,0.01
14,14_0,COMPLETED,Sobol,SOBOL,0.719999999999999973354647408996,22.000000000000000000000000000000,3869,824,0.884902215870097319516673906037,30,0.1
15,15_0,COMPLETED,Sobol,SOBOL,0.719999999999999973354647408996,9.000000000000000000000000000000,2348,4067,0.216622342748567453529773274568,9,0.025
16,16_0,COMPLETED,Sobol,SOBOL,0.690000000000000057731597280508,11.000000000000000000000000000000,2219,650,0.947823183421045545316019342863,8,0.01
17,17_0,COMPLETED,Sobol,SOBOL,0.660000000000000031086244689504,30.000000000000000000000000000000,4057,4281,0.153701626151800163633254214801,30,0.005
18,18_0,COMPLETED,Sobol,SOBOL,0.680000000000000048849813083507,13.000000000000000000000000000000,3215,1865,0.297611027030274255533726091016,44,0.025
19,19_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,9.000000000000000000000000000000,522,3231,0.600894870894029708985328852577,20,0.05
20,20_0,COMPLETED,Sobol,SOBOL,0.690000000000000057731597280508,12.000000000000000000000000000000,962,2014,0.082842002853751178781394060024,49,0.05
21,21_0,COMPLETED,Sobol,SOBOL,0.670000000000000039968028886506,10.000000000000000000000000000000,2801,3067,0.753558347363024960685606856714,14,0.001
22,22_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,32.000000000000000000000000000000,4459,496,0.664536100180819655491859521135,1,0.01
23,23_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,11.000000000000000000000000000000,1766,4439,0.499032838387414801051278345767,38,0.25
24,24_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,13.000000000000000000000000000000,1369,1554,0.516591078164055916843722116027,33,0.1
25,25_0,COMPLETED,Sobol,SOBOL,0.690000000000000057731597280508,15.000000000000000000000000000000,4848,3547,0.319539596689864979772721653717,5,0.25
26,26_0,COMPLETED,Sobol,SOBOL,0.709999999999999964472863211995,15.000000000000000000000000000000,2873,973,0.229233770921826368605067614226,19,0.01
27,27_0,COMPLETED,Sobol,SOBOL,0.660000000000000031086244689504,9.000000000000000000000000000000,883,3982,0.934665815580636216708398933406,44,0.005
28,28_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,14.000000000000000000000000000000,133,190,0.384516378102824074591836733816,24,0.01
29,29_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,10.000000000000000000000000000000,3612,4760,0.716677783535793477831532527489,39,0.005
30,30_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,88.000000000000000000000000000000,4069,162,0.538223286297583758397422570852,23,0.001
31,31_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2566,1,0.503693180046458355292315900442,27,0.01
32,32_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,37.000000000000000000000000000000,4659,425,0.561416585041630611385699012317,13,0.025
33,33_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,29.000000000000000000000000000000,4877,582,0.552066001848336762591884507856,9,0.01
34,34_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,31.000000000000000000000000000000,4532,2982,0.001000000000000000020816681712,1,0.01
35,35_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2098,1,0.505224733627193667295784962334,32,0.025
36,36_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,10.000000000000000000000000000000,4459,4695,0.998999999999999999111821580300,1,0.025
37,37_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,35.000000000000000000000000000000,3614,359,0.542030654705255132697061526414,6,0.1
38,38_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,30.000000000000000000000000000000,4509,3014,0.001000000000000000020816681712,1,0.025
39,39_0,FAILED,BoTorch,BOTORCH_MODULAR,,,392,1,0.543658526093445670923642865091,50,0.1
40,40_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,71.000000000000000000000000000000,1959,196,0.548820551417048219100536243786,50,0.005
41,41_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,27.000000000000000000000000000000,4942,677,0.607626705324803451091497663583,1,0.1
42,42_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,10.000000000000000000000000000000,3215,4645,0.998999999999999999111821580300,1,0.05
43,43_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2992,10,0.523892318223105446506338012114,12,0.025
44,44_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,37.000000000000000000000000000000,4625,424,0.613014316787836577304915408604,47,0.01
45,45_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,321.000000000000000000000000000000,1046,54,0.569711657394216586247637224005,50,0.01
46,46_0,FAILED,BoTorch,BOTORCH_MODULAR,,,195,1,0.495680528866587977177005086560,47,0.025
47,47_0,FAILED,BoTorch,BOTORCH_MODULAR,,,410,1,0.453734042657828906541794822260,6,0.1
48,48_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,37.000000000000000000000000000000,4135,399,0.539547800135057209480748952046,17,0.005
49,49_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,21.000000000000000000000000000000,4994,1097,0.590676907180823218546095176862,1,0.01
50,50_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2953,1,0.551781342289027643133181300072,50,0.001
51,51_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,40.000000000000000000000000000000,4669,355,0.538150130150292671515899201040,16,0.001
52,52_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,11.000000000000000000000000000000,5000,4686,0.998999999999999999111821580300,1,0.001
53,53_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,10.000000000000000000000000000000,3851,4249,0.998999999999999999111821580300,1,0.1
54,54_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,9.000000000000000000000000000000,2417,4562,0.998999999999999999111821580300,1,0.1
55,55_0,FAILED,BoTorch,BOTORCH_MODULAR,,,9,1,0.422521717767514293218056309343,1,0.025
56,56_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.640000000000000013322676295502,10.000000000000000000000000000000,1,4465,0.998999999999999999111821580300,1,0.05
57,57_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,117,129,0.559133380101802357486917571805,1,0.05
58,58_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,40.000000000000000000000000000000,3917,335,0.580565125057908471006840045447,1,0.001
59,59_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,74.000000000000000000000000000000,3212,109,0.545409544366371790147240972146,27,0.05
60,60_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,16.000000000000000000000000000000,4940,1328,0.681713894770362149877485080651,44,0.001
61,61_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,10.000000000000000000000000000000,1,290,0.555332843073492288255010862486,12,0.25
62,62_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,3209,1458,0.742919309298469499047712361062,30,0.05
63,63_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,13.000000000000000000000000000000,3831,2485,0.169603797764097036226971226824,50,0.05
64,64_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,17.000000000000000000000000000000,4240,1509,0.725846780598479401902523022727,38,0.05
65,65_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,21.000000000000000000000000000000,556,269,0.580104222396906843428610045521,14,0.05
66,66_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,11.000000000000000000000000000000,39,318,0.589025469896375386547049401997,12,0.005
67,67_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,31.000000000000000000000000000000,5000,1103,0.001000000000000000020816681712,45,0.01
68,68_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,1131,0.679060320131461669923567114893,44,0.1
69,69_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,4955,1124,0.690686271102797899601455355878,47,0.05
70,70_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,18.000000000000000000000000000000,162,118,0.450940656660552774415151588983,12,0.25
71,71_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,5000,1439,0.753513834909802060479933061288,46,0.001
72,72_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,4768,2428,0.135366994336186097225294133750,50,0.01
73,73_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,13.000000000000000000000000000000,4822,2562,0.180511600122179260985433302267,50,0.05
74,74_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,9.000000000000000000000000000000,2037,2476,0.164102345898254231570945194107,29,0.05
75,75_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,13.000000000000000000000000000000,3863,2466,0.244379382268582773241050176694,39,0.05
76,76_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,17.000000000000000000000000000000,4762,1381,0.728573315773403562545240674808,37,0.05
77,77_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,3929,1552,0.850815667766839700547620850557,44,0.1
78,78_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,17.000000000000000000000000000000,5000,1356,0.847187838334022225161845653929,50,0.001
79,79_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,100,316,0.594784303711658912661164322344,13,0.025
80,80_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,446,493,0.648689149772894935175315822562,16,0.05
81,81_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,16.000000000000000000000000000000,1735,1414,0.724667326176439252627403675433,24,0.05
82,82_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,19.000000000000000000000000000000,4614,1265,0.599654099729392986439791002340,38,0.05
83,83_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,15.000000000000000000000000000000,3679,2082,0.998999999999999999111821580300,50,0.005
84,84_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,18.000000000000000000000000000000,5000,1404,0.680486859622911999245786773827,50,0.05
85,85_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,11.000000000000000000000000000000,4596,5000,0.879677283554964217771043877292,26,0.1
86,86_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,11.000000000000000000000000000000,630,2532,0.236742764215118084436539902526,36,0.05
87,87_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,13.000000000000000000000000000000,4947,2551,0.125313060426798156266059436348,50,0.005
88,88_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,15.000000000000000000000000000000,3881,1493,0.697170571070443556571660792542,39,0.005
89,89_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,345,472,0.646606759029021649354262990528,14,0.001
90,90_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,3880,1101,0.599569733653343761581311355258,1,0.1
91,91_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,23.000000000000000000000000000000,3897,1025,0.599649982784605350971673942695,1,0.05
92,92_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,2186,361,0.528557177471257633172285750334,1,0.25
93,93_0,FAILED,BoTorch,BOTORCH_MODULAR,,,663,1,0.432759830255158295386763711576,11,0.05
94,94_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,20.000000000000000000000000000000,4682,1350,0.359614845395848370390723403034,19,0.005
95,95_0,FAILED,BoTorch,BOTORCH_MODULAR,,,745,1,0.434551233303763773108130408218,11,0.05
96,96_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,15.000000000000000000000000000000,1,157,0.420496044724178563711802780745,30,0.05
97,97_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,1071,805,0.626071908611396721333619552752,1,0.1
98,98_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,45.000000000000000000000000000000,5000,532,0.481253720749925062438734357784,49,0.005
99,99_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,134.000000000000000000000000000000,611,44,0.432670785422708203959984984976,10,0.05
100,100_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,17.000000000000000000000000000000,4976,1349,0.644820173629898962808226769994,18,0.05
101,101_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,48.000000000000000000000000000000,1142,165,0.538413236463440414425463131920,1,0.25
102,102_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,29.000000000000000000000000000000,2594,179,0.572902582285771733161539032153,1,0.05
103,103_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,63.000000000000000000000000000000,1792,334,0.616966329498460308577989508194,38,0.05
104,104_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,231,323,0.597774470838517202331274802418,1,0.05
105,105_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,32.000000000000000000000000000000,4491,525,0.602742586133737545672772739636,35,0.25
106,106_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,28.000000000000000000000000000000,4538,643,0.594715888761703226350618933793,50,0.001
107,107_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,14.000000000000000000000000000000,4892,2600,0.998999999999999999111821580300,1,0.005
108,108_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,10.000000000000000000000000000000,1,235,0.405428310552846005165861242858,1,0.1
109,109_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,40.000000000000000000000000000000,1328,288,0.564963059159581004742278764752,1,0.01
110,110_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,34.000000000000000000000000000000,4679,546,0.663789685343377566795197708416,1,0.25
111,111_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,21.000000000000000000000000000000,4636,1268,0.529588915974931739860664947628,47,0.25
112,112_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,2464,443,0.579053285940142714594003336970,1,0.25
113,113_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,13.000000000000000000000000000000,2746,1802,0.998999999999999999111821580300,50,0.005
114,114_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,18.000000000000000000000000000000,4944,2968,0.090768076340531453349846913170,31,0.01
115,115_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,1,163,0.503264557211447471907206363539,9,0.05
116,116_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,9.000000000000000000000000000000,99,5000,0.308203446313885853768965716881,1,0.1
117,117_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,17.000000000000000000000000000000,5000,1571,0.594848833822561928741379233543,7,0.25
118,118_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,20.000000000000000000000000000000,2606,643,0.539877646336125782688952767785,18,0.05
119,119_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,28.000000000000000000000000000000,5000,724,0.569803357698843160328294743522,50,0.05
120,120_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,23.000000000000000000000000000000,5000,913,0.487569951519168265363646241894,1,0.25
121,121_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,34.000000000000000000000000000000,2670,195,0.565826982129539635124615415407,20,0.25
122,122_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,16.000000000000000000000000000000,5000,1752,0.579868431100353687313031514350,50,0.005
123,123_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,688,911,0.297530679419881260994173999279,50,0.005
124,124_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,23.000000000000000000000000000000,5000,972,0.601653735281446500060553717049,50,0.05
125,125_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,38.000000000000000000000000000000,875,210,0.519312319928798449275575421780,17,0.25
126,126_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,28.000000000000000000000000000000,1920,694,0.222937592931043732091822562325,23,0.005
127,127_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,20.000000000000000000000000000000,5000,1256,0.398248783096766867384275201402,50,0.005
128,128_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,30.000000000000000000000000000000,4666,843,0.265758613605496074594469746444,50,0.005
129,129_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,25.000000000000000000000000000000,3424,590,0.282384555109895019064936150244,34,0.01
130,130_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,28.000000000000000000000000000000,1291,474,0.572505752279888091571535824187,1,0.005
131,131_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,28.000000000000000000000000000000,1199,450,0.672337961336425649072623400571,1,0.1
132,132_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,9.000000000000000000000000000000,1,4134,0.001000000000000000020816681712,5,0.025
133,133_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,2341,851,0.306721429488016006370543209414,1,0.005
134,134_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,10.000000000000000000000000000000,2934,4948,0.460029175741152263068300953819,1,0.025
135,135_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,3071,665,0.564338459079970711229634616757,50,0.25
136,136_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,44.000000000000000000000000000000,855,197,0.667148940816745472659476945410,15,0.05
137,137_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,17.000000000000000000000000000000,5000,1926,0.632917984415367840256294584833,50,0.005
138,138_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,31.000000000000000000000000000000,5000,786,0.497007294806093069539087991870,1,0.01
139,139_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,17.000000000000000000000000000000,5000,2779,0.629940272572822923535795780481,39,0.1
140,140_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,5000,1733,0.404247287668403010307827116776,16,0.005
141,141_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,3133,0.598109698697520286714279791340,50,0.1
142,142_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,1970,0.632990170344266300794799917639,1,0.25
143,143_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,4297,4593,0.453164293307243837283238008240,50,0.1
144,144_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,21.000000000000000000000000000000,399,212,0.001000000000000000020816681712,9,0.005
145,145_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,10.000000000000000000000000000000,1,4364,0.299315812365486266788394686955,1,0.05
146,146_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,15.000000000000000000000000000000,3254,2209,0.998999999999999999111821580300,48,0.005
147,147_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,29.000000000000000000000000000000,2862,408,0.001000000000000000020816681712,8,0.005
148,148_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,16.000000000000000000000000000000,5000,2266,0.703220446302847079778075567447,1,0.05
149,149_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,17.000000000000000000000000000000,5000,2026,0.001000000000000000020816681712,28,0.01
150,150_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,88.000000000000000000000000000000,4996,182,0.315816181749681013091191061903,1,0.005
151,151_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,56.000000000000000000000000000000,715,726,0.001000000000000000020816681712,50,0.01
152,152_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,14.000000000000000000000000000000,1,214,0.001000000000000000020816681712,10,0.01
153,153_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,14.000000000000000000000000000000,5000,3352,0.659771562176048043113496532897,1,0.1
154,154_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,22.000000000000000000000000000000,4313,1678,0.001000000000000000020816681712,50,0.01
155,155_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,37.000000000000000000000000000000,5000,570,0.230428326117830872821201637635,50,0.005
156,156_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,26.000000000000000000000000000000,2997,992,0.001000000000000000020816681712,50,0.005
157,157_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,38.000000000000000000000000000000,494,1818,0.001000000000000000020816681712,50,0.01
158,158_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,9.000000000000000000000000000000,246,3909,0.413229478264495686534729657069,7,0.25
159,159_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,13.000000000000000000000000000000,1484,3845,0.487552094430944160663443653903,50,0.025
160,160_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,4709,2159,0.001000000000000000020816681712,27,0.01
161,161_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,5000,3551,0.001000000000000000020816681712,50,0.1
162,162_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,3187,0.001000000000000000020816681712,2,0.01
163,163_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,10.000000000000000000000000000000,1,4942,0.001000000000000000020816681712,50,0.1
164,164_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,12.000000000000000000000000000000,5000,4912,0.001000000000000000020816681712,50,0.25
165,165_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,13.000000000000000000000000000000,1981,4659,0.001000000000000000020816681712,33,0.01
166,166_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,20.000000000000000000000000000000,5000,1451,0.008013663507275343989011417989,1,0.01
167,167_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,25.000000000000000000000000000000,5000,912,0.001000000000000000020816681712,18,0.05
168,168_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,21.000000000000000000000000000000,5000,1197,0.001000000000000000020816681712,1,0.05
169,169_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,13.000000000000000000000000000000,5000,4399,0.001000000000000000020816681712,1,0.1
170,170_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,88.000000000000000000000000000000,4995,233,0.575634483501170191033224909916,50,0.05
171,171_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,5000,3998,0.001000000000000000020816681712,15,0.01
172,172_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,16.000000000000000000000000000000,5000,2297,0.001000000000000000020816681712,50,0.25
173,173_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,99.000000000000000000000000000000,3950,163,0.391804240057184172130178012594,8,0.1
174,174_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,5000,3265,0.001000000000000000020816681712,50,0.1
175,175_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,5000,2508,0.001000000000000000020816681712,1,0.01
176,176_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,39.000000000000000000000000000000,5000,1314,0.001000000000000000020816681712,50,0.01
177,177_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,10.000000000000000000000000000000,2139,2759,0.001000000000000000020816681712,50,0.01
178,178_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,10.000000000000000000000000000000,1,4747,0.001000000000000000020816681712,50,0.1
179,179_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,5000,2679,0.001000000000000000020816681712,50,0.001
180,180_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,28.000000000000000000000000000000,5000,2685,0.001000000000000000020816681712,1,0.1
181,181_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,5000,1645,0.001000000000000000020816681712,50,0.05
182,182_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,10.000000000000000000000000000000,1,4620,0.001000000000000000020816681712,50,0.001
183,183_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,12.000000000000000000000000000000,5000,3965,0.001000000000000000020816681712,50,0.25
184,184_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,32.000000000000000000000000000000,4245,615,0.001000000000000000020816681712,50,0.1
185,185_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,10.000000000000000000000000000000,1,188,0.705796968494713294894893351739,1,0.05
186,186_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.619999999999999995559107901499,10.000000000000000000000000000000,1,3652,0.001000000000000000020816681712,50,0.1
187,187_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,74.000000000000000000000000000000,3451,161,0.330598568625793620689989893435,8,0.25
188,188_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,39.000000000000000000000000000000,2686,158,0.001000000000000000020816681712,10,0.05
189,189_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,2261,171,0.001000000000000000020816681712,9,0.25
190,190_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,40.000000000000000000000000000000,2627,159,0.001000000000000000020816681712,4,0.1
191,191_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,83.000000000000000000000000000000,3710,151,0.001000000000000000020816681712,4,0.005
192,192_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,24.000000000000000000000000000000,2307,162,0.127152691774409964953207463623,1,0.05
193,193_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,82.000000000000000000000000000000,4219,197,0.001000000000000000020816681712,50,0.05
194,194_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,16.000000000000000000000000000000,2128,173,0.001000000000000000020816681712,1,0.05
195,195_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,51.000000000000000000000000000000,1091,179,0.001000000000000000020816681712,1,0.05
196,196_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,21.000000000000000000000000000000,2331,170,0.001000000000000000020816681712,1,0.001
197,197_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,25.000000000000000000000000000000,3411,562,0.001000000000000000020816681712,50,0.05
198,198_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,41.000000000000000000000000000000,2730,161,0.001000000000000000020816681712,1,0.25
199,199_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,60.000000000000000000000000000000,4482,255,0.422604854457793055466652276664,1,0.01
200,200_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,39.000000000000000000000000000000,2646,156,0.001000000000000000020816681712,1,0.001
201,201_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,30.000000000000000000000000000000,2483,159,0.001000000000000000020816681712,1,0.025
202,202_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,21.000000000000000000000000000000,2282,166,0.001000000000000000020816681712,1,0.005
203,203_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,39.000000000000000000000000000000,2835,160,0.001000000000000000020816681712,1,0.05
204,204_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,20.000000000000000000000000000000,2147,166,0.001000000000000000020816681712,1,0.25
205,205_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,31.000000000000000000000000000000,1246,406,0.001000000000000000020816681712,24,0.25
206,206_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,29.000000000000000000000000000000,2404,160,0.001000000000000000020816681712,1,0.05
207,207_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,140.000000000000000000000000000000,5000,1472,0.001000000000000000020816681712,50,0.001
208,208_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,178,184,0.001000000000000000020816681712,1,0.001
209,209_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,30.000000000000000000000000000000,1632,417,0.001000000000000000020816681712,1,0.05
210,210_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,47.000000000000000000000000000000,2571,145,0.001000000000000000020816681712,1,0.005
211,211_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,45.000000000000000000000000000000,2662,130,0.001000000000000000020816681712,1,0.25
212,212_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,21.000000000000000000000000000000,3003,608,0.001000000000000000020816681712,1,0.25
213,213_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,4350,904,0.001000000000000000020816681712,1,0.1
214,214_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,17.000000000000000000000000000000,248,177,0.001000000000000000020816681712,4,0.25
215,215_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,24.000000000000000000000000000000,2860,465,0.001000000000000000020816681712,1,0.001
216,216_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,21.000000000000000000000000000000,3266,573,0.998999999999999999111821580300,50,0.25
217,217_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,30.000000000000000000000000000000,701,181,0.001000000000000000020816681712,5,0.25
218,218_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,276,184,0.001000000000000000020816681712,5,0.05
219,219_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,1472,0.998999999999999999111821580300,5,0.01
220,220_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,23.000000000000000000000000000000,5000,1414,0.998999999999999999111821580300,27,0.01
221,221_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,5000,1636,0.998999999999999999111821580300,36,0.1
222,222_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,1927,1585,0.998999999999999999111821580300,31,0.05
223,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,13.000000000000000000000000000000,5000,2558,0.998999999999999999111821580300,50,0.005
224,224_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,11.000000000000000000000000000000,277,4862,0.001000000000000000020816681712,1,0.01
225,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,11.000000000000000000000000000000,2002,645,0.998999999999999999111821580300,24,0.05
226,226_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,18.000000000000000000000000000000,646,4528,0.001000000000000000020816681712,1,0.01
227,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,9.000000000000000000000000000000,1,5000,0.001000000000000000020816681712,30,0.01
228,228_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,10.000000000000000000000000000000,703,5000,0.001000000000000000020816681712,19,0.025
229,229_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,15.000000000000000000000000000000,5000,1869,0.625012658428213629946412766003,32,0.05
230,230_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,9.000000000000000000000000000000,1,5000,0.998999999999999999111821580300,41,0.25
231,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,22.000000000000000000000000000000,4449,1236,0.998999999999999999111821580300,27,0.005
232,232_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,10.000000000000000000000000000000,1428,4724,0.001000000000000000020816681712,13,0.025
233,233_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,17.000000000000000000000000000000,5000,1747,0.001000000000000000020816681712,33,0.05
234,234_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,21.000000000000000000000000000000,5000,1642,0.001000000000000000020816681712,1,0.1
235,235_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,19.000000000000000000000000000000,5000,2357,0.001000000000000000020816681712,7,0.001
236,236_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,5000,2286,0.998999999999999999111821580300,50,0.1
237,237_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,5000,2133,0.762626266504902172727042852785,1,0.1
238,238_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,23.000000000000000000000000000000,650,955,0.001000000000000000020816681712,1,0.05
239,239_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,70.000000000000000000000000000000,2082,925,0.001000000000000000020816681712,35,0.001
240,240_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,1696,0.998999999999999999111821580300,50,0.01
241,241_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,25.000000000000000000000000000000,372,190,0.236248037442890190806821237857,7,0.05
242,242_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,3121,1,0.001000000000000000020816681712,1,0.05
243,243_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,2811,1,0.001000000000000000020816681712,1,0.001
244,244_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,62.000000000000000000000000000000,5000,1928,0.001000000000000000020816681712,1,0.001
245,245_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,22.000000000000000000000000000000,2523,1,0.001000000000000000020816681712,1,0.25
246,246_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,3221,1,0.001000000000000000020816681712,1,0.1
247,247_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,5000,1762,0.998999999999999999111821580300,1,0.05
248,248_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,42.000000000000000000000000000000,1402,631,0.154464910013801387522747177172,1,0.005
249,249_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,4256,2059,0.998999999999999999111821580300,20,0.1
250,250_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,21.000000000000000000000000000000,361,181,0.258242954875280650295366058344,6,0.001
251,251_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,24.000000000000000000000000000000,598,216,0.245490286731261109220980642931,15,0.001
252,252_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,16.000000000000000000000000000000,4998,2060,0.485434355752865309696630902181,50,0.01
253,253_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,16.000000000000000000000000000000,3475,1108,0.001000000000000000020816681712,1,0.25
254,254_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,11.000000000000000000000000000000,1,210,0.001000000000000000020816681712,26,0.25
255,255_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,15.000000000000000000000000000000,461,741,0.998999999999999999111821580300,50,0.005
256,256_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,14.000000000000000000000000000000,491,722,0.973194004702465864653504468151,21,0.25
257,257_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,12.000000000000000000000000000000,2286,602,0.001000000000000000020816681712,50,0.05
258,258_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,22.000000000000000000000000000000,873,370,0.929674126995439831233625227469,1,0.25
259,259_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,25.000000000000000000000000000000,862,352,0.998999999999999999111821580300,1,0.025
260,260_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,14.000000000000000000000000000000,4103,2725,0.998999999999999999111821580300,50,0.01
261,261_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,16.000000000000000000000000000000,5000,2416,0.001000000000000000020816681712,27,0.001
262,262_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,35.000000000000000000000000000000,3935,495,0.001000000000000000020816681712,1,0.25
263,263_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,28.000000000000000000000000000000,325,113,0.001000000000000000020816681712,1,0.005
264,264_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,11.000000000000000000000000000000,2820,4046,0.998999999999999999111821580300,3,0.001
265,265_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,3628,994,0.998999999999999999111821580300,50,0.01
266,266_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,23.000000000000000000000000000000,5000,923,0.998999999999999999111821580300,50,0.005
267,267_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,24.000000000000000000000000000000,3338,598,0.350653956870258021183417440625,1,0.005
268,268_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,13.000000000000000000000000000000,1915,4141,0.001000000000000000020816681712,1,0.05
269,269_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,2656,1410,0.998999999999999999111821580300,50,0.1
270,270_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,36.000000000000000000000000000000,1061,284,0.001000000000000000020816681712,8,0.001
271,271_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,19.000000000000000000000000000000,1094,707,0.998999999999999999111821580300,23,0.005
272,272_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,5000,3721,0.001000000000000000020816681712,50,0.1
273,273_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,15.000000000000000000000000000000,5000,1947,0.998999999999999999111821580300,19,0.05
274,274_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,47.000000000000000000000000000000,3090,202,0.998999999999999999111821580300,1,0.001
275,275_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2131,0.337213543749004862615237243517,50,0.1
276,276_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,26.000000000000000000000000000000,5000,700,0.998999999999999999111821580300,1,0.025
277,277_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,5000,2218,0.001000000000000000020816681712,1,0.005
278,278_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.619999999999999995559107901499,11.000000000000000000000000000000,1,4895,0.001000000000000000020816681712,22,0.025
279,279_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,10.000000000000000000000000000000,1,5000,0.998999999999999999111821580300,1,0.01
280,280_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,5000,3338,0.001000000000000000020816681712,10,0.05
281,281_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,52.000000000000000000000000000000,4042,1341,0.001000000000000000020816681712,1,0.05
282,282_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,12.000000000000000000000000000000,1,571,0.998999999999999999111821580300,30,0.25
283,283_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,22.000000000000000000000000000000,5000,1,0.001000000000000000020816681712,1,0.025
284,284_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,24.000000000000000000000000000000,5000,1,0.001000000000000000020816681712,1,0.005
285,285_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,68.000000000000000000000000000000,5000,245,0.998999999999999999111821580300,50,0.25
286,286_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2736,1,0.998999999999999999111821580300,1,0.005
287,287_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,27.000000000000000000000000000000,5000,863,0.998999999999999999111821580300,1,0.1
288,288_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2421,0.998999999999999999111821580300,50,0.001
289,289_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,1411,0.998999999999999999111821580300,38,0.1
290,290_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,2881,1106,0.998999999999999999111821580300,18,0.05
291,291_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,15.000000000000000000000000000000,5000,2848,0.001000000000000000020816681712,50,0.1
292,292_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2830,0.998999999999999999111821580300,1,0.05
293,293_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,20.000000000000000000000000000000,5000,1262,0.998999999999999999111821580300,50,0.25
294,294_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,20.000000000000000000000000000000,220,3669,0.001000000000000000020816681712,1,0.025
295,295_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,5000,2338,0.998999999999999999111821580300,22,0.001
296,296_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,166.000000000000000000000000000000,1,501,0.001000000000000000020816681712,50,0.005
297,297_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,14.000000000000000000000000000000,1,948,0.998999999999999999111821580300,21,0.005
298,298_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,2002,0.998999999999999999111821580300,50,0.05
299,299_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,31.000000000000000000000000000000,5000,620,0.001000000000000000020816681712,37,0.05
300,300_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,12.000000000000000000000000000000,5000,3179,0.998999999999999999111821580300,7,0.1
301,301_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,34.000000000000000000000000000000,4761,588,0.998999999999999999111821580300,50,0.05
302,302_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,5000,2079,0.998999999999999999111821580300,1,0.05
303,303_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,1771,1489,0.862143022771336808851572186541,1,0.005
304,304_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,12.000000000000000000000000000000,5000,3878,0.689881966804960167216620448016,26,0.05
305,305_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,15.000000000000000000000000000000,5000,2912,0.998999999999999999111821580300,44,0.05
306,306_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,1,575,0.998999999999999999111821580300,4,0.001
307,307_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,17.000000000000000000000000000000,5000,1859,0.998999999999999999111821580300,27,0.01
308,308_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,19.000000000000000000000000000000,2461,1183,0.998999999999999999111821580300,50,0.05
309,309_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,5000,1963,0.001000000000000000020816681712,50,0.1
310,310_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,1821,0.998999999999999999111821580300,50,0.05
311,311_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,24.000000000000000000000000000000,5000,1013,0.998999999999999999111821580300,30,0.005
312,312_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,24.000000000000000000000000000000,5000,1427,0.998999999999999999111821580300,50,0.005
313,313_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,59.000000000000000000000000000000,5000,1045,0.001000000000000000020816681712,1,0.005
314,314_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,21.000000000000000000000000000000,5000,1194,0.001000000000000000020816681712,22,0.1
315,315_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,12.000000000000000000000000000000,634,1169,0.576419989927566711607198612910,1,0.25
316,316_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,19.000000000000000000000000000000,5000,1624,0.736015017693554929323340729752,20,0.005
317,317_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,28.000000000000000000000000000000,5000,775,0.001000000000000000020816681712,1,0.05
318,318_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,14.000000000000000000000000000000,5000,2200,0.998999999999999999111821580300,27,0.05
319,319_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,5000,2535,0.998999999999999999111821580300,21,0.05
320,320_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,14.000000000000000000000000000000,1,792,0.998999999999999999111821580300,1,0.05
321,321_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,23.000000000000000000000000000000,5000,1195,0.998999999999999999111821580300,1,0.001
322,322_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,21.000000000000000000000000000000,5000,1638,0.998999999999999999111821580300,50,0.05
323,323_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,15.000000000000000000000000000000,5000,2085,0.497227837929121785354169560378,26,0.005
324,324_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,9.000000000000000000000000000000,1,1031,0.998999999999999999111821580300,1,0.05
325,325_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,11.000000000000000000000000000000,1,225,0.998999999999999999111821580300,15,0.05
326,326_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,5000,1568,0.001000000000000000020816681712,1,0.05
327,327_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,34.000000000000000000000000000000,3857,532,0.998999999999999999111821580300,25,0.05
328,328_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2442,0.998999999999999999111821580300,1,0.1
329,329_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,8.000000000000000000000000000000,2094,5000,0.552895553834521713554295274662,17,0.005
330,330_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,13.000000000000000000000000000000,211,440,0.998999999999999999111821580300,2,0.1
331,331_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,79.000000000000000000000000000000,2274,306,0.001000000000000000020816681712,1,0.005
332,332_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,42.000000000000000000000000000000,5000,3812,0.001000000000000000020816681712,1,0.001
333,333_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,9.000000000000000000000000000000,1,4785,0.998999999999999999111821580300,1,0.01
334,334_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,12.000000000000000000000000000000,5000,3449,0.001000000000000000020816681712,1,0.25
335,335_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,13.000000000000000000000000000000,1,240,0.998999999999999999111821580300,19,0.005
336,336_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,9.000000000000000000000000000000,1,4881,0.998999999999999999111821580300,50,0.01
337,337_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,5000,3670,0.998999999999999999111821580300,50,0.25
338,338_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,22.000000000000000000000000000000,3719,930,0.998999999999999999111821580300,1,0.05
339,339_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,5000,1334,0.998999999999999999111821580300,31,0.001
340,340_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,5000,3008,0.001000000000000000020816681712,50,0.005
341,341_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,5000,3263,0.998999999999999999111821580300,47,0.05
342,342_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,17.000000000000000000000000000000,541,1016,0.998999999999999999111821580300,50,0.005
343,343_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,13.000000000000000000000000000000,5000,3176,0.001000000000000000020816681712,32,0.1
344,344_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,28.000000000000000000000000000000,5000,4104,0.001000000000000000020816681712,50,0.001
345,345_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,84.000000000000000000000000000000,1085,134,0.001000000000000000020816681712,1,0.025
346,346_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,5000,1747,0.001000000000000000020816681712,50,0.1
347,347_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,36.000000000000000000000000000000,5000,629,0.998999999999999999111821580300,50,0.01
348,348_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,20.000000000000000000000000000000,5000,1543,0.998999999999999999111821580300,1,0.001
349,349_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,5000,1731,0.998999999999999999111821580300,30,0.001
350,350_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,15.000000000000000000000000000000,478,607,0.998999999999999999111821580300,6,0.25
351,351_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,5000,1,0.001000000000000000020816681712,1,0.25
352,352_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,5000,3470,0.001000000000000000020816681712,33,0.1
353,353_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,17.000000000000000000000000000000,5000,2086,0.001000000000000000020816681712,50,0.25
354,354_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,51.000000000000000000000000000000,799,5000,0.001000000000000000020816681712,1,0.005
355,355_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,5000,1312,0.998999999999999999111821580300,47,0.05
356,356_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,25.000000000000000000000000000000,5000,1061,0.998999999999999999111821580300,50,0.005
357,357_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,17.000000000000000000000000000000,5000,2632,0.998999999999999999111821580300,50,0.025
358,358_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,5000,1422,0.998999999999999999111821580300,27,0.005
359,359_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,33.000000000000000000000000000000,5000,3278,0.001000000000000000020816681712,1,0.005
360,360_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,1970,0.998999999999999999111821580300,34,0.025
361,361_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,12.000000000000000000000000000000,5000,3614,0.001000000000000000020816681712,34,0.25
362,362_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,747,1215,0.001000000000000000020816681712,33,0.05
363,363_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,14.000000000000000000000000000000,5000,2698,0.001000000000000000020816681712,30,0.005
364,364_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,5000,3054,0.998999999999999999111821580300,32,0.25
365,365_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,10.000000000000000000000000000000,1,241,0.998999999999999999111821580300,14,0.25
366,366_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,9.000000000000000000000000000000,1,427,0.998999999999999999111821580300,1,0.25
367,367_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,13.000000000000000000000000000000,5000,2722,0.998999999999999999111821580300,1,0.05
368,368_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,5000,2367,0.736866465560709449356124878250,39,0.005
369,369_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,1769,1318,0.998999999999999999111821580300,37,0.25
370,370_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,14.000000000000000000000000000000,5000,2757,0.998999999999999999111821580300,15,0.005
371,371_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,9.000000000000000000000000000000,1,4945,0.998999999999999999111821580300,27,0.01
372,372_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,10.000000000000000000000000000000,5000,4832,0.158321749748600776319662486458,1,0.25
373,373_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.640000000000000013322676295502,9.000000000000000000000000000000,1,4744,0.001000000000000000020816681712,1,0.01
374,374_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,4351,1509,0.998999999999999999111821580300,24,0.005
375,375_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,17.000000000000000000000000000000,1397,869,0.998999999999999999111821580300,1,0.025
376,376_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,16.000000000000000000000000000000,4853,3903,0.998999999999999999111821580300,50,0.1
377,377_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,14.000000000000000000000000000000,4372,2439,0.001000000000000000020816681712,1,0.1
378,378_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,24.000000000000000000000000000000,4087,824,0.998999999999999999111821580300,17,0.005
379,379_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,14.000000000000000000000000000000,5000,3479,0.998999999999999999111821580300,26,0.001
380,380_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,20.000000000000000000000000000000,1272,1617,0.015685954577708650231615550297,1,0.25
381,381_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,1292,1600,0.998999999999999999111821580300,1,0.001
382,382_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,17.000000000000000000000000000000,5000,3394,0.001000000000000000020816681712,50,0.005
383,383_0,RUNNING,BoTorch,BOTORCH_MODULAR,,,1363,1784,0.998999999999999999111821580300,15,0.25
384,384_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,1374,1759,0.998999999999999999111821580300,1,0.25
385,385_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,28.000000000000000000000000000000,1209,455,0.998999999999999999111821580300,1,0.001
386,386_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,14.000000000000000000000000000000,5000,5000,0.998999999999999999111821580300,50,0.025
387,387_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,5000,3338,0.998999999999999999111821580300,25,0.025
388,388_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,1251,1096,0.998999999999999999111821580300,1,0.1
389,389_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,17.000000000000000000000000000000,1279,2110,0.883249585386290059219049908279,1,0.05
390,390_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,2333,0.998999999999999999111821580300,1,0.005
391,391_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,909,1475,0.998999999999999999111821580300,40,0.05
392,392_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,15.000000000000000000000000000000,945,1090,0.998999999999999999111821580300,16,0.25
393,393_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,15.000000000000000000000000000000,1236,1353,0.998999999999999999111821580300,1,0.25
394,394_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,12.000000000000000000000000000000,956,5000,0.433803740558727501941405080288,50,0.25
395,395_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,15.000000000000000000000000000000,1013,1120,0.001000000000000000020816681712,1,0.01
396,396_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,5000,2840,0.555863730524958410406100028922,50,0.005
397,397_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,26.000000000000000000000000000000,1205,621,0.998999999999999999111821580300,18,0.25
398,398_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,23.000000000000000000000000000000,4472,1191,0.001000000000000000020816681712,50,0.005
399,399_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,13.000000000000000000000000000000,1320,1902,0.998999999999999999111821580300,21,0.25
400,400_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,1221,874,0.998999999999999999111821580300,50,0.05
401,401_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,14.000000000000000000000000000000,4658,2205,0.998999999999999999111821580300,1,0.025
402,402_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,1325,1162,0.617384226457470597360099873185,15,0.005
403,403_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,1165,723,0.998999999999999999111821580300,1,0.05
404,404_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,9.000000000000000000000000000000,966,4700,0.998999999999999999111821580300,35,0.1
405,405_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,12.000000000000000000000000000000,5000,3639,0.998999999999999999111821580300,37,0.025
406,406_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,10.000000000000000000000000000000,1071,4899,0.998999999999999999111821580300,1,0.25
407,407_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,21.000000000000000000000000000000,1221,827,0.998999999999999999111821580300,1,0.25
408,408_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,1269,1262,0.998999999999999999111821580300,1,0.25
409,409_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,57.000000000000000000000000000000,1025,150,0.001000000000000000020816681712,1,0.25
410,410_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,25.000000000000000000000000000000,5000,2440,0.001000000000000000020816681712,50,0.005
411,411_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,4889,2166,0.998999999999999999111821580300,50,0.001
412,412_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,1607,4408,0.998999999999999999111821580300,1,0.25
413,413_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,13.000000000000000000000000000000,5000,3114,0.001000000000000000020816681712,31,0.005
414,414_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,1312,1715,0.998999999999999999111821580300,23,0.005
415,415_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,25.000000000000000000000000000000,1127,466,0.998999999999999999111821580300,1,0.25
416,416_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,19.000000000000000000000000000000,4456,1227,0.998999999999999999111821580300,34,0.001
417,417_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2139,1,0.001000000000000000020816681712,6,0.25
418,418_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,11.000000000000000000000000000000,1090,4924,0.998999999999999999111821580300,19,0.001
419,419_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,4869,1858,0.998999999999999999111821580300,1,0.005
420,420_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,12.000000000000000000000000000000,5000,3777,0.998999999999999999111821580300,50,0.005
421,421_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,1206,651,0.998999999999999999111821580300,1,0.001
422,422_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,5000,3041,0.001000000000000000020816681712,50,0.05
423,423_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,17.000000000000000000000000000000,5000,1648,0.998999999999999999111821580300,1,0.05
424,424_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,15.000000000000000000000000000000,1246,1896,0.998999999999999999111821580300,1,0.01
425,425_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,12.000000000000000000000000000000,5000,3179,0.998999999999999999111821580300,50,0.005
426,426_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,12.000000000000000000000000000000,5000,2985,0.998999999999999999111821580300,14,0.1
427,427_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,5000,4566,0.998999999999999999111821580300,24,0.025
428,428_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,31.000000000000000000000000000000,752,214,0.001000000000000000020816681712,16,0.05
429,429_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,1011,2105,0.001000000000000000020816681712,35,0.25
430,430_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,12.000000000000000000000000000000,5000,3075,0.998999999999999999111821580300,50,0.005
431,431_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,114.000000000000000000000000000000,5000,2189,0.001000000000000000020816681712,50,0.001
432,432_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,30.000000000000000000000000000000,826,243,0.998999999999999999111821580300,10,0.25
433,433_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,23.000000000000000000000000000000,4325,1113,0.998999999999999999111821580300,50,0.001
434,434_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,32.000000000000000000000000000000,935,340,0.870837937391372718387572149368,25,0.25
435,435_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,25.000000000000000000000000000000,4126,749,0.598717670853933014996073325165,8,0.001
436,436_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,44.000000000000000000000000000000,4204,414,0.998999999999999999111821580300,50,0.005
437,437_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,20.000000000000000000000000000000,1248,779,0.998999999999999999111821580300,1,0.005
438,438_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,21.000000000000000000000000000000,1393,828,0.971523261610774957475200608314,39,0.25
439,439_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,5000,2851,0.607397544614624029790661552397,45,0.001
440,440_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,11.000000000000000000000000000000,2075,426,0.957181207638987174846079142299,1,0.25
441,441_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,5000,2367,0.308105087667469856871349520588,18,0.05
442,442_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,16.000000000000000000000000000000,4946,1572,0.998999999999999999111821580300,40,0.001
443,443_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,34.000000000000000000000000000000,4502,743,0.998999999999999999111821580300,24,0.001
444,444_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,22.000000000000000000000000000000,789,355,0.493948669742253765324591086028,22,0.25
445,445_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,62.000000000000000000000000000000,965,140,0.001000000000000000020816681712,23,0.005
446,446_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,4363,1638,0.001000000000000000020816681712,30,0.005
447,447_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,12.000000000000000000000000000000,5000,2456,0.316141750630278939304673713195,16,0.005
448,448_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,5000,1919,0.998999999999999999111821580300,37,0.005
449,449_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,1220,1744,0.097617930160954255458527484279,18,0.1
450,450_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,947,564,0.665366499225461538458148424979,9,0.05
451,451_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,1027,596,0.616443373987489273702067293925,10,0.25
452,452_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,996,1,0.001000000000000000020816681712,1,0.005
453,453_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,40.000000000000000000000000000000,2157,61,0.001000000000000000020816681712,19,0.005
454,454_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,13.000000000000000000000000000000,1149,1967,0.499404537942137405348574930031,23,0.05
455,455_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,992,1,0.001000000000000000020816681712,1,0.001
456,456_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,1206,2117,0.001000000000000000020816681712,1,0.25
457,457_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,16.000000000000000000000000000000,939,1107,0.470836799213616208348298641795,39,0.05
458,458_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,16.000000000000000000000000000000,1189,1228,0.001000000000000000020816681712,17,0.25
459,459_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,14.000000000000000000000000000000,5000,3391,0.719810596665692026263627667504,28,0.1
460,460_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,24.000000000000000000000000000000,832,359,0.998999999999999999111821580300,12,0.005
461,461_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,1211,1925,0.001000000000000000020816681712,14,0.25
462,462_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2022,0.696208027900989567804401758622,21,0.001
463,463_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,4513,1792,0.001000000000000000020816681712,1,0.005
464,464_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,20.000000000000000000000000000000,5000,2916,0.001000000000000000020816681712,50,0.001
465,465_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,3881,1134,0.228331464743312534393382406961,33,0.005
466,466_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,1231,842,0.998999999999999999111821580300,42,0.005
467,467_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2289,0.338937483132411676578499282186,18,0.025
468,468_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,22.000000000000000000000000000000,4510,1609,0.998999999999999999111821580300,17,0.001
469,469_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,14.000000000000000000000000000000,5000,2625,0.288802517819061299597649394855,19,0.001
470,470_0,FAILED,BoTorch,BOTORCH_MODULAR,,,81,1,0.706665344028530650888342279359,1,0.001
471,471_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,1315,3010,0.998999999999999999111821580300,1,0.25
472,472_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,65.000000000000000000000000000000,5000,1067,0.001000000000000000020816681712,1,0.001
473,473_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,47.000000000000000000000000000000,3112,219,0.496120247557045757069715818943,1,0.25
474,474_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,23.000000000000000000000000000000,4472,1083,0.703728524949239542252144019585,26,0.25
475,475_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,5000,4892,0.209795755640989262102991119718,33,0.1
476,476_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,11.000000000000000000000000000000,5000,4016,0.998999999999999999111821580300,16,0.05
477,477_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,3663,1,0.001000000000000000020816681712,1,0.001
478,478_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,11.000000000000000000000000000000,1913,3945,0.998999999999999999111821580300,1,0.25
479,479_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,1124,1732,0.566411052719541396882618755626,12,0.05
480,480_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,12.000000000000000000000000000000,1253,2271,0.001000000000000000020816681712,19,0.25
481,481_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,10.000000000000000000000000000000,530,5000,0.594682933026292603884144227777,32,0.25
482,482_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,11.000000000000000000000000000000,1350,4367,0.616196791523190290362776977418,15,0.25
483,483_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,10.000000000000000000000000000000,1179,4709,0.643950021181341702991574038606,1,0.25
484,484_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,13.000000000000000000000000000000,1085,2089,0.552854347752510411062587536435,21,0.25
485,485_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,1211,1583,0.599769071741309334200309422158,1,0.01
486,486_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,26.000000000000000000000000000000,3967,676,0.741252808628656612022211902513,10,0.005
487,487_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,5000,1375,0.998999999999999999111821580300,46,0.001
488,488_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,4543,1354,0.998999999999999999111821580300,40,0.001
489,489_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,23.000000000000000000000000000000,983,585,0.716816730732545592807980483485,9,0.005
490,490_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,13.000000000000000000000000000000,1493,2809,0.451392078340024760496618227990,1,0.25
491,491_0,FAILED,BoTorch,BOTORCH_MODULAR,,,976,1,0.998999999999999999111821580300,1,0.005
492,492_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,16.000000000000000000000000000000,5000,3501,0.998999999999999999111821580300,1,0.005
493,493_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,1093,911,0.578334235374765359694038124871,1,0.05
494,494_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,18.000000000000000000000000000000,1040,2379,0.186765508281399539303180290517,1,0.25
495,495_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,1564,2098,0.787102400818278202798694564990,38,0.1
496,496_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,11.000000000000000000000000000000,5000,4389,0.998999999999999999111821580300,50,0.1
497,497_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,1539,3020,0.998999999999999999111821580300,21,0.25
498,498_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,1124,931,0.998999999999999999111821580300,1,0.001
499,499_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,13.000000000000000000000000000000,5000,2489,0.001000000000000000020816681712,21,0.05
500,500_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,25.000000000000000000000000000000,1046,432,0.998999999999999999111821580300,21,0.005
501,501_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,1407,3556,0.998999999999999999111821580300,14,0.25
502,502_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,5000,2645,0.998999999999999999111821580300,32,0.025
503,503_0,FAILED,BoTorch,BOTORCH_MODULAR,,,1019,1,0.998999999999999999111821580300,1,0.005
504,504_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,13.000000000000000000000000000000,1270,4901,0.453501489125514745115452797108,10,0.25
505,505_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,28.000000000000000000000000000000,4237,720,0.001000000000000000020816681712,18,0.005
506,506_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,11.000000000000000000000000000000,5000,4793,0.797978763478446428969448334101,40,0.025
507,507_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,23.000000000000000000000000000000,4160,749,0.987219971018176933874599399132,9,0.001
508,508_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,11.000000000000000000000000000000,5000,4331,0.914341552477951902133668227179,15,0.1
509,509_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,11.000000000000000000000000000000,1467,3871,0.998999999999999999111821580300,33,0.1
510,510_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,10.000000000000000000000000000000,1144,4013,0.998999999999999999111821580300,24,0.1
511,511_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2314,0.001000000000000000020816681712,18,0.001
512,512_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,1656,3146,0.998999999999999999111821580300,16,0.25
513,513_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,13.000000000000000000000000000000,5000,3212,0.952164192579220358680913705030,27,0.05
514,514_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,1340,904,0.630547454819600061703965820925,10,0.025
515,515_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,13.000000000000000000000000000000,5000,2737,0.252208302783172688688040352645,31,0.001
516,516_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,16.000000000000000000000000000000,5000,2664,0.998999999999999999111821580300,50,0.001
517,517_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,11.000000000000000000000000000000,5000,4764,0.001000000000000000020816681712,43,0.1
518,518_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,30.000000000000000000000000000000,4181,608,0.998999999999999999111821580300,50,0.025
519,519_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,14.000000000000000000000000000000,1296,1900,0.577429254285928283962903151405,38,0.05
520,520_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,15.000000000000000000000000000000,4385,1897,0.990136387460684219696815944189,29,0.001
521,521_0,FAILED,BoTorch,BOTORCH_MODULAR,,,960,1,0.998999999999999999111821580300,1,0.005
522,522_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,17.000000000000000000000000000000,342,388,0.784883862613219518422624787490,21,0.05
523,523_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,13.000000000000000000000000000000,1704,3412,0.654952741100691127051902640233,37,0.25
524,524_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,14.000000000000000000000000000000,5000,3539,0.827535631668396054472225387144,29,0.005
525,525_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,16.000000000000000000000000000000,1428,1602,0.998999999999999999111821580300,11,0.25
526,526_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2270,1,0.790078134615081806302328004676,1,0.025
527,527_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,11.000000000000000000000000000000,5000,4653,0.634810865101015364686531938787,13,0.025
528,528_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,3192,3084,0.583329963201470125255809762166,24,0.025
529,529_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,11.000000000000000000000000000000,5000,4887,0.990313243834416323529978853912,17,0.05
530,530_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,15.000000000000000000000000000000,1692,1520,0.665169349761729034042900821078,24,0.025
531,531_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,12.000000000000000000000000000000,1675,3800,0.340589607579669495507346255181,23,0.025
532,532_0,FAILED,BoTorch,BOTORCH_MODULAR,,,1066,1,0.998999999999999999111821580300,1,0.005
533,533_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,11.000000000000000000000000000000,5000,4043,0.998999999999999999111821580300,37,0.1
534,534_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,14.000000000000000000000000000000,1647,2674,0.998999999999999999111821580300,1,0.25
535,535_0,FAILED,BoTorch,BOTORCH_MODULAR,,,3851,1,0.998999999999999999111821580300,27,0.005
536,536_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,10.000000000000000000000000000000,1120,4822,0.368903649122475196797665830672,3,0.001
537,537_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,1170,1152,0.465493178077840297213185749570,50,0.1
538,538_0,FAILED,BoTorch,BOTORCH_MODULAR,,,1137,1,0.998999999999999999111821580300,1,0.005
539,539_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,10.000000000000000000000000000000,5000,4647,0.998999999999999999111821580300,50,0.1
540,540_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,16.000000000000000000000000000000,4442,1683,0.503145068717129273494492736063,40,0.05
541,541_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,11.000000000000000000000000000000,1875,4876,0.998999999999999999111821580300,21,0.25
542,542_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,5000,3672,0.244776267673663311397191932883,17,0.025
543,543_0,FAILED,BoTorch,BOTORCH_MODULAR,,,1049,1,0.998999999999999999111821580300,1,0.005
544,544_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,26.000000000000000000000000000000,958,432,0.613010075674615628749108964257,9,0.001
545,545_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,2598,874,0.998999999999999999111821580300,1,0.005
546,546_0,FAILED,BoTorch,BOTORCH_MODULAR,,,1082,1,0.998999999999999999111821580300,1,0.005
547,547_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,33.000000000000000000000000000000,4647,637,0.001000000000000000020816681712,50,0.025
548,548_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,18.000000000000000000000000000000,1255,2186,0.543908476122150319476133972785,1,0.1
549,549_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,14.000000000000000000000000000000,1788,2888,0.528245698580714351244580484490,16,0.05
550,550_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,1783,2372,0.998999999999999999111821580300,45,0.05
551,551_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,20.000000000000000000000000000000,1888,1912,0.708161695598597762391079868394,13,0.025
552,552_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,16.000000000000000000000000000000,5000,3559,0.585242384669634518878922335716,50,0.05
553,553_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,33.000000000000000000000000000000,1560,2268,0.001000000000000000020816681712,1,0.005
554,554_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,4550,1068,0.900549167007930639883284129610,40,0.001
555,555_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,33.000000000000000000000000000000,1096,341,0.001000000000000000020816681712,22,0.25
556,556_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,13.000000000000000000000000000000,5000,3894,0.998999999999999999111821580300,28,0.01
557,557_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,22.000000000000000000000000000000,1143,1,0.001000000000000000020816681712,1,0.25
558,558_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,4398,1271,0.998999999999999999111821580300,18,0.001
559,559_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,4841,1769,0.998999999999999999111821580300,36,0.005
560,560_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,13.000000000000000000000000000000,5000,2990,0.755565509925002376512281898613,29,0.05
561,561_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,4027,952,0.998999999999999999111821580300,9,0.005
562,562_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,4449,1085,0.587561646133048620654903970717,18,0.25
563,563_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,14.000000000000000000000000000000,5000,4139,0.998999999999999999111821580300,20,0.001
564,564_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,27.000000000000000000000000000000,1110,385,0.998999999999999999111821580300,1,0.05
565,565_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,19.000000000000000000000000000000,3955,999,0.770467821798460739124436713610,50,0.005
566,566_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,12.000000000000000000000000000000,1744,3349,0.001000000000000000020816681712,24,0.25
567,567_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,11.000000000000000000000000000000,5000,3755,0.280694410259357651771239261507,40,0.025
568,568_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,11.000000000000000000000000000000,1548,4123,0.794270977753196216752940017614,1,0.25
569,569_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,11.000000000000000000000000000000,2117,786,0.851577535553902031928430460539,1,0.025
570,570_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,1712,2957,0.998999999999999999111821580300,1,0.1
571,571_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,1657,2729,0.736081228401502696279123938439,36,0.1
572,572_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,17.000000000000000000000000000000,963,1185,0.482226181719227542377126383144,42,0.025
573,573_0,RUNNING,BoTorch,BOTORCH_MODULAR,,,3745,1,0.001000000000000000020816681712,1,0.05
Copy raw data to clipboard
Download »results.csv« as file
Skipped tabs:
Job-Infos
Copy raw data to clipboard
Download »export.html« as file
<!DOCTYPE html>
<html lang='en'>
<head>
<meta charset='UTF-8'>
<meta name='viewport' content='width=device-width, initial-scale=1.0'>
<title>Exported »s4122485/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2« from OmniOpt2-Share</title>
<script src='https://code.jquery.com/jquery-3.7.1.js'></script>
<script src='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/gridjs.production.min.js'></script>
<script src='https://cdn.jsdelivr.net/npm/plotly.js-dist@3.0.1/plotly.min.js'></script>
<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/theme/mermaid.css'>
<style>
#share_path {
color: black;
}
.debug_log_pre {
min-width: 300px;
}
body.dark-mode {
background-color: #1e1e1e; color: #fff;
}
.plot-container {
margin-bottom: 2rem;
}
.spinner {
border: 4px solid #f3f3f3;
border-top: 4px solid #3498db;
border-radius: 50%;
width: 40px;
height: 40px;
animation: spin 2s linear infinite;
margin: auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.tabs {
margin-bottom: 20px;
}
.tab-content {
display: none;
}
.tab-content.active {
display: block;
}
pre {
color: #00CC00 !important;
background-color: black !important;
font-family: monospace !important;
line-break: anywhere;
}
menu[role="tablist"] {
display: flex;
flex-wrap: wrap;
gap: 4px;
max-width: 100%;
max-height: 100px;
overflow: scroll;
}
menu[role="tablist"] button {
white-space: nowrap;
min-width: 100px;
}
.container {
max-width: 100% !important;
}
.gridjs-sort {
min-width: 1px !important;
}
td.gridjs-td {
overflow: clip;
}
.title-bar-text {
font-size: 22px;
display: block ruby;
}
.title-bar {
height: fit-content;
}
.window {
width: fit-content;
min-width: 100%;
}
.top_link {
display: inline-block;
padding: 5px 5px;
background-color: #007bff; /* Blau, kannst du anpassen */
color: white;
text-decoration: none;
font-size: 16px;
font-weight: bold;
border-radius: 6px;
border: 2px solid #0056b3;
text-align: center;
transition: all 0.3s ease-in-out;
}
.top_link:hover {
background-color: #0056b3;
border-color: #004494;
}
.top_link:active {
background-color: #003366;
border-color: #002244;
}
button {
color: black;
}
.share_folder_buttons {
width: fit-content;
}
button {
background: #fcfcfe;
border-color: #919b9c;
border-top-color: rgb(145, 155, 156);
border-bottom-color: rgb(145, 155, 156);
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c;
}
button {
padding-bottom: 2px;
margin-top: -2px;
background-color: #ece9d8;
position: relative;
z-index: 8;
margin-left: -3px;
margin-bottom: 1px;
}
.window {
min-width: 1100px;
}
[role="tab"] {
padding: 10px !important;
}
[role="tabpanel"] {
min-width: fit-content;
}
select {
border: 1px solid #7f9db9;
background-image: url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 -0.5 15 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e6eefc' d='M0 0h1'/%3E%3Cpath stroke='%23d1e0fd' d='M1 0h1M0 1h1m3 0h2M2 3h1M2 4h1'/%3E%3Cpath stroke='%23cad8f9' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23c4d3f7' d='M3 0h1M0 3h1M0 4h1'/%3E%3Cpath stroke='%23bfd0f8' d='M4 0h2M0 5h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 0h1M0 6h1'/%3E%3Cpath stroke='%23baccf4' d='M7 0h1m6 2h1m-1 5h1m-1 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M8 0h1M0 7h1M0 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M9 0h2M0 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 0h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 0h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 0h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 0h1'/%3E%3Cpath stroke='%23e1eafe' d='M1 1h1'/%3E%3Cpath stroke='%23dae6fe' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23d4e1fc' d='M3 1h1M1 3h1M1 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 1h1M1 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 1h1M4 2h2'/%3E%3Cpath stroke='%23cad9fd' d='M8 1h1M6 2h1M3 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M9 1h2'/%3E%3Cpath stroke='%23c5d6fc' d='M11 1h1M2 11h4'/%3E%3Cpath stroke='%23c2d3fc' d='M12 1h1m-2 1h1M1 11h1m0 1h2m-2 1h2'/%3E%3Cpath stroke='%23bccefa' d='M13 1h1m-1 1h1m-1 1h1m-1 1h1M3 15h4'/%3E%3Cpath stroke='%23b9c9f3' d='M14 1h1M3 16h4'/%3E%3Cpath stroke='%23d8e3fc' d='M2 2h1'/%3E%3Cpath stroke='%23d1defd' d='M3 2h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 2h1M4 3h3M4 4h3M3 6h1m1 0h2M1 7h1M1 8h1'/%3E%3Cpath stroke='%23c5d5fc' d='M8 2h1m-8 8h5'/%3E%3Cpath stroke='%23c5d3fc' d='M9 2h2'/%3E%3Cpath stroke='%23bed0fc' d='M12 2h1M8 3h1M8 4h1m-8 8h1m-1 1h1m0 1h1m1 0h3'/%3E%3Cpath stroke='%23cddbfc' d='M3 3h1M3 4h1M1 6h2'/%3E%3Cpath stroke='%23c8d5fb' d='M7 3h1M7 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M9 3h4M9 4h4M8 5h1M7 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 3h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23ceddfd' d='M2 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M4 5h4M1 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M9 5h2m1 0h2M1 14h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M8 6h2m2 0h2m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%234d6185' d='M4 6h1m5 0h1M3 7h3m3 0h3M4 8h3m1 0h3M5 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1m-1 1h1'/%3E%3Cpath stroke='%23cad8fd' d='M2 7h1M2 8h2'/%3E%3Cpath stroke='%23c1d3fb' d='M6 7h2M7 8h1M4 9h1'/%3E%3Cpath stroke='%23b6cefb' d='M8 7h1m2 1h1m-2 1h3m-2 1h2'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-6 6h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b4c8f6' d='M0 10h1'/%3E%3Cpath stroke='%23bdd3fb' d='M9 10h2m-4 4h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 10h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 10h1'/%3E%3Cpath stroke='%23b1c7f6' d='M0 11h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M8 11h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M9 11h4m-2 3h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 11h1m-3 4h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 11h1m-7 5h3'/%3E%3Cpath stroke='%23adc3f6' d='M0 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c2d5fc' d='M4 12h4m-4 1h4'/%3E%3Cpath stroke='%23b7d3fc' d='M9 12h2m-2 1h2m-3 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 12h1m-1 1h1'/%3E%3Cpath stroke='%23afcdfb' d='M12 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afcbfa' d='M13 12h1m-1 1h1'/%3E%3Cpath stroke='%23b2c8f4' d='M14 12h1m-1 1h1m-4 3h1'/%3E%3Cpath stroke='%23c1d2fb' d='M3 14h1'/%3E%3Cpath stroke='%23b6d1fb' d='M9 14h2'/%3E%3Cpath stroke='%23adc9f9' d='M13 14h1m-2 1h1'/%3E%3Cpath stroke='%23b1c6f3' d='M14 14h1m-3 2h1'/%3E%3Cpath stroke='%23abc1f4' d='M0 15h1'/%3E%3Cpath stroke='%23b7cbf9' d='M1 15h1'/%3E%3Cpath stroke='%23b9cefb' d='M2 15h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 15h1'/%3E%3Cpath stroke='%23b2cdfb' d='M9 15h2'/%3E%3Cpath stroke='%23aec8f7' d='M13 15h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 15h1m-2 1h1'/%3E%3Cpath stroke='%23dbe3f8' d='M0 16h1'/%3E%3Cpath stroke='%23b7c6f1' d='M1 16h1'/%3E%3Cpath stroke='%23b8c9f2' d='M2 16h1m4 0h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 16h1'/%3E%3C/svg%3E");
background-size: 15px;
font-size: 11px;
border: none;
background-color: #fff;
box-sizing: border-box;
height: 21px;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
position: relative;
padding: 5px 32px 32px 5px;
background-position: top 50% right 2px;
background-repeat: no-repeat;
border-radius: 0;
border: 1px solid black;
}
body {
font-variant: oldstyle-nums;
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
background-color: #fafafa;
text-shadow: 0 0.05em 0.1em rgba(0,0,0,0.2);
scroll-behavior: smooth;
text-wrap: balance;
text-rendering: optimizeLegibility;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
font-feature-settings: "ss02", "liga", "onum";
}
.marked_text {
background-color: yellow;
}
.time_picker_container {
font-variant: small-caps;
width: 100%;
}
.time_picker_container > input {
width: 50px;
}
#loader {
display: grid;
justify-content: center;
align-items: center;
height: 100%;
}
.no_linebreak {
line-break: auto;
}
.dark_code_bg {
background-color: #363636;
color: white;
}
.code_bg {
background-color: #C0C0C0;
}
#commands {
line-break: anywhere;
}
.color_red {
color: red;
}
.color_orange {
color: orange;
}
table > tbody > tr:nth-child(odd) {
background-color: #fafafa;
}
table > tbody > tr:nth-child(even) {
background-color: #ddd;
}
table {
border-collapse: collapse;
margin: 0 0;
min-width: 200px;
}
th {
background-color: #4eae46;
color: #ffffff;
text-align: left;
border: 0px;
}
.error_element {
background-color: #e57373;
border-radius: 10px;
padding: 4px;
display: none;
}
button {
background-color: #4eae46;
border: 1px solid #2A8387;
border-radius: 4px;
box-shadow: rgba(0, 0, 0, 0.12) 0 1px 1px;
cursor: pointer;
display: block;
line-height: 100%;
outline: 0;
padding: 11px 15px 12px;
text-align: center;
transition: box-shadow .05s ease-in-out, opacity .05s ease-in-out;
user-select: none;
-webkit-user-select: none;
touch-action: manipulation;
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
}
button:hover {
box-shadow: rgba(255, 255, 255, 0.3) 0 0 2px inset, rgba(0, 0, 0, 0.4) 0 1px 2px;
text-decoration: none;
transition-duration: .15s, .15s;
}
button:active {
box-shadow: rgba(0, 0, 0, 0.15) 0 2px 4px inset, rgba(0, 0, 0, 0.4) 0 1px 1px;
}
button:disabled {
cursor: not-allowed;
opacity: .6;
}
button:disabled:active {
pointer-events: none;
}
button:disabled:hover {
box-shadow: none;
}
.half_width_td {
vertical-align: baseline;
width: 50%;
}
#scads_bar {
width: 100%;
margin: 0;
padding: 0;
user-select: none;
user-drag: none;
-webkit-user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-select: none;
-ms-user-select: none;
display: -webkit-box;
}
.tab {
display: inline-block;
padding: 0px;
margin: 0px;
font-size: 16px;
font-weight: bold;
text-align: center;
border-radius: 25px;
text-decoration: none !important;
transition: background-color 0.3s, color 0.3s;
color: unset !important;
}
.tooltipster-base {
border: 1px solid black;
position: absolute;
border-radius: 8px;
padding: 2px;
color: white;
background-color: #61686f;
width: 70%;
min-width: 200px;
pointer-events: none;
}
td {
padding-top: 3px;
padding-bottom: 3px;
}
.left_side {
text-align: right;
}
.right_side {
text-align: left;
}
.spinner {
border: 8px solid rgba(0, 0, 0, 0.1);
border-left: 8px solid #3498db;
border-radius: 50%;
width: 50px;
height: 50px;
animation: spin 1s linear infinite;
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
#spinner-overlay {
-webkit-text-stroke: 1px black;
white !important;
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
display: flex;
justify-content: center;
align-items: center;
z-index: 9999;
}
#spinner-container {
text-align: center;
color: #fff;
display: contents;
}
#spinner-text {
font-size: 3vw;
margin-left: 10px;
}
a, a:visited, a:active, a:hover, a:link {
color: #007bff;
text-decoration: none;
}
.copy-container {
display: inline-block;
position: relative;
cursor: pointer;
margin-left: 10px;
color: blue;
}
.copy-container:hover {
text-decoration: underline;
}
.clipboard-icon {
position: absolute;
top: 5px;
right: 5px;
font-size: 1.5em;
}
#main_tab {
overflow: scroll;
width: max-content;
}
.ui-tabs .ui-tabs-nav li {
user-select: none;
}
.stacktrace_table {
background-color: black !important;
color: white !important;
}
#breadcrumb {
user-select: none;
}
#statusBar {
user-select: none;
}
.error_line {
background-color: red !important;
color: white !important;
}
.header_table {
border: 0px !important;
padding: 0px !important;
width: revert !important;
min-width: revert !important;
}
.img_auto_width {
max-width: revert !important;
}
#main_dir_or_plot_view {
display: inline-grid;
}
#refresh_button {
width: 300px;
}
._share_link {
color: black !important;
}
#footer_element {
height: 30px;
background-color: #f8f9fa;
padding: 0px;
text-align: center;
border-top: 1px solid #dee2e6;
width: 100%;
box-sizing: border-box;
position: fixed;
bottom: 0;
z-index: 2;
margin-left: -9px;
z-index: 99;
}
.switch {
position: relative;
display: inline-block;
width: 50px;
height: 26px;
}
.switch input {
opacity: 0;
width: 0;
height: 0;
}
.slider {
position: absolute;
cursor: pointer;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #ccc;
transition: .4s;
border-radius: 26px;
}
.slider:before {
position: absolute;
content: "";
height: 20px;
width: 20px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #444;
}
input:checked + .slider:before {
transform: translateX(24px);
}
.mode-text {
position: absolute;
top: 5px;
left: 65px;
font-size: 14px;
color: black;
transition: .4s;
width: 65px;
display: block;
font-size: 0.7rem;
text-align: center;
}
input:checked + .slider .mode-text {
content: "Dark Mode";
color: white;
}
#mainContent {
height: fit-content;
min-height: 100%;
}
li {
text-align: left;
}
#share_path {
margin-bottom: 20px;
margin-top: 20px;
}
#sortForm {
margin-bottom: 20px;
}
.share_folder_buttons {
margin-top: 10px;
margin-bottom: 10px;
}
.nav_tab_button {
margin: 10px;
}
.header_table {
margin: 10px;
}
.no_border {
border: unset !important;
}
.gui_table {
padding: 5px !important;
}
.gui_parameter_row {
}
.gui_parameter_row_cell {
border: unset !important;
}
.gui_param_table {
width: 95%;
margin: unset !important;
}
table td, table tr,
.parameterRow table {
padding: 2px !important;
}
.parameterRow table {
margin: 0px;
border: unset;
}
.parameterRow > td {
border: 0px !important;
}
.parameter_config_table td, .parameter_config_table tr, #config_table th, #config_table td, #hidden_config_table th, #hidden_config_table td {
border: 0px !important;
}
.green_text {
color: green;
}
.remove_parameter {
white-space: pre;
}
select {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
background-color: #fff;
color: #222;
padding: 5px 30px 5px 5px;
border: 1px solid #555;
border-radius: 5px;
cursor: pointer;
outline: none;
transition: all 0.3s ease;
background:
url("data:image/svg+xml;charset=UTF-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 10 6'%3E%3Cpath fill='%23888' d='M0 0l5 6 5-6z'/%3E%3C/svg%3E")
no-repeat right 10px center,
linear-gradient(180deg, #fff, #ecebe5 86%, #d8d0c4);
background-size: 12px, auto;
}
select:hover {
border-color: #888;
}
select:focus {
border-color: #4caf50;
box-shadow: 0 0 5px rgba(76, 175, 80, 0.5);
}
select::-ms-expand {
display: none;
}
input, textarea {
border-radius: 5px;
}
#search {
width: 200px;
max-width: 70%;
background-image: url(images/search.svg);
background-repeat: no-repeat;
background-size: auto 40px;
height: 40px;
line-height: 40px;
padding-left: 40px;
box-sizing: border-box;
}
input[type="checkbox"] {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
width: 25px;
height: 25px;
border: 2px solid #3498db;
border-radius: 5px;
background-color: #fff;
position: relative;
cursor: pointer;
transition: all 0.3s ease;
width: 25px !important;
}
input[type="checkbox"]:checked {
background-color: #3498db;
border-color: #2980b9;
}
input[type="checkbox"]:checked::before {
content: '✔';
position: absolute;
left: 4px;
top: 2px;
color: #fff;
}
input[type="checkbox"]:hover {
border-color: #2980b9;
background-color: #3caffc;
}
.toc {
margin-bottom: 20px;
}
.toc li {
margin-bottom: 5px;
}
.toc a {
text-decoration: none;
color: #007bff;
}
.toc a:hover {
text-decoration: underline;
}
.table-container {
width: 100%;
overflow-x: auto;
}
.section-header {
background-color: #1d6f9a !important;
color: white;
}
.warning {
color: red;
}
.li_list a {
text-decoration: none;
}
.gridjs-td {
white-space: nowrap;
}
th, td {
border: 1px solid gray !important;
}
.no_border {
border: 0px !important;
}
.no_break {
}
img {
user-select: none;
pointer-events: none;
}
#config_table, #hidden_config_table {
user-select: none;
}
.copy_clipboard_button {
margin-bottom: 10px;
}
.badge_table {
background-color: unset !important;
}
.make_markable {
user-select: text;
}
.header-container {
display: flex;
flex-wrap: wrap;
align-items: center;
justify-content: space-between;
gap: 1rem;
padding: 10px;
background: var(--header-bg, #fff);
border-bottom: 1px solid #ccc;
}
.header-logo-group {
display: flex;
gap: 1rem;
align-items: center;
flex: 1 1 auto;
min-width: 200px;
}
.logo-img {
max-height: 45px;
height: auto;
width: auto;
object-fit: contain;
pointer-events: unset;
}
.header-badges {
flex-direction: column;
gap: 5px;
align-items: flex-start;
flex: 0 1 auto;
margin-top: auto;
margin-bottom: auto;
}
.badge-img {
height: auto;
max-width: 130px;
margin-top: 3px;
}
.header-tabs {
margin-top: 10px;
display: flex;
flex-wrap: wrap;
gap: 10px;
flex: 2 1 100%;
justify-content: center;
}
.nav-tab {
display: inline-block;
text-decoration: none;
padding: 8px 16px;
border-radius: 20px;
background: linear-gradient(to right, #4a90e2, #357ABD);
color: white;
font-weight: bold;
white-space: nowrap;
transition: background 0.2s ease-in-out, transform 0.2s;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
}
.nav-tab:hover {
background: linear-gradient(to right, #5aa0f2, #4a90e2);
transform: translateY(-2px);
}
.current-tag {
padding-left: 10px;
font-size: 0.9rem;
color: #666;
}
.header-theme-toggle {
flex: 1 1 auto;
align-items: center;
margin-top: 20px;
min-width: 120px;
}
.switch {
position: relative;
display: inline-block;
width: 60px;
height: 30px;
}
.switch input {
display: none;
}
.slider {
position: absolute;
top: 0; left: 0; right: 0; bottom: 0;
background-color: #ccc;
border-radius: 34px;
cursor: pointer;
}
.slider::before {
content: "";
position: absolute;
height: 24px;
width: 24px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #2196F3;
}
input:checked + .slider::before {
transform: translateX(30px);
}
@media (max-width: 768px) {
.header-logo-group,
.header-badges,
.header-theme-toggle {
justify-content: center;
flex: 1 1 100%;
text-align: center;
width: inherit;
}
.logo-img {
max-height: 50px;
pointer-events: unset;
}
.badge-img {
max-width: 100px;
}
.hide_on_mobile {
display: none;
}
.nav-tab {
font-size: 0.9rem;
padding: 6px 12px;
}
.header_button {
white-space: pre;
font-size: 2em;
}
}
.header_button {
white-space: pre;
margin-top: 20px;
margin: 5px;
}
.line_break_anywhere {
line-break: anywhere;
}
.responsive-container {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
gap: 20px;
}
.responsive-container .half {
flex: 1 1 48%;
box-sizing: border-box;
min-width: 500px;
}
.config-section table {
width: 100%;
border-collapse: collapse;
}
@media (max-width: 768px) {
.responsive-container .half {
flex: 1 1 100%;
}
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
.rotate {
animation: spin 2s linear infinite;
display: inline-block;
}
input::placeholder {
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
}
.gridjs-th-content {
overflow: visible !important;
}
.error_text {
color: red;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1em;
font-weight: bold;
color: #333;
border-left: 5px solid #ccc;
padding-left: 0.5em;
}
.no_cursive {
font-style: normal;
}
.caveat {
background-color: #fff8b3;
border: 1px solid #f2d600;
padding: 1em 1em 1em 70px;
position: relative;
font-family: sans-serif;
color: #665500;
margin: 1em 0;
border-radius: 4px;
}
.caveat h1, .caveat h2, .caveat h3, .caveat h4 {
margin-top: 0;
margin-bottom: 0.5em;
font-weight: bold;
}
.caveat::before {
content: "⚠️";
font-size: 50px;
line-height: 1;
position: absolute;
left: 10px;
top: 50%;
transform: translateY(-50%);
pointer-events: none;
user-select: none;
}
.caveat.warning::before { content: "⚠️"; }
.caveat.stop::before { content: "🛑"; }
.caveat.exclamation::before { content: "❗"; }
.caveat.alarm::before { content: "🚨"; }
.caveat.tip::before { content: "💡"; }
.tutorial_icon {
display: inline-block;
font-size: 1.3em;
line-height: 1;
vertical-align: middle;
transform: translateY(-10%);
padding: 0.2em 0;
}
.highlight {
background-color: yellow;
font-weight: bold;
}
#searchResults li {
opacity: 0;
transform: translateY(8px);
animation: fadeInUp 0.3s ease-out forwards;
animation-delay: 0.05s;
list-style: none;
margin-bottom: 5px;
}
@keyframes fadeInUp {
to {
opacity: 1;
transform: translateY(0);
}
}
.search_headline {
font-weight: bold;
margin-top: 1em;
margin-bottom: 0.3em;
color: #444;
}
.search_share_path {
color: black;
display: block ruby;
margin-top: 20px;
}
@media print {
#scads_bar {
display: none !important;
}
}
/*! XP.css v0.2.6 - https: //botoxparty.github.io/XP.css/ */
body{
color: #222
}
.surface{
background: #ece9d8
}
u{
text-decoration: none;
border-bottom: .5px solid #222
}
a{
color: #00f
}
a: focus{
outline: 1px dotted #00f
}
code,code *{
font-family: monospace
}
pre{
display: block;
padding: 12px 8px;
background-color: #000;
color: silver;
font-size: 1rem;
margin: 0;
overflow: scroll;
}
summary: focus{
outline: 1px dotted #000
}
: :-webkit-scrollbar{
width: 16px
}
: :-webkit-scrollbar: horizontal{
height: 17px
}
: :-webkit-scrollbar-track{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='2' height='2' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 0H0v1h1v1h1V1H1V0z' fill='silver'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 0H1v1H0v1h1V1h1V0z' fill='%23fff'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-color: #dfdfdf;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
: :-webkit-scrollbar-button: horizontal: end: increment,: :-webkit-scrollbar-button: horizontal: start: decrement,: :-webkit-scrollbar-button: vertical: end: increment,: :-webkit-scrollbar-button: vertical: start: decrement{
display: block
}
: :-webkit-scrollbar-button: vertical: start{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 6H7v1H6v1H5v1H4v1h7V9h-1V8H9V7H8V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 6H4v1h1v1h1v1h1v1h1V9h1V8h1V7h1V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 4H8v1H7v1H6v1H5v1h1v1h1v1h1v1h1V4z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M7 4H6v7h1v-1h1V9h1V8h1V7H9V6H8V5H7V4z' fill='%23000'/%3E%3C/svg%3E")
}
button{
border: none;
background: #ece9d8;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf;
border-radius: 0;
min-width: 75px;
min-height: 23px;
padding: 0 12px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: inset -1px -1px #fff,inset 1px 1px #0a0a0a,inset -2px -2px #dfdfdf,inset 2px 2px grey
}
button.focused,button: focus{
outline: 1px dotted #000;
outline-offset: -4px
}
label{
display: inline-flex;
align-items: center
}
textarea{
padding: 3px 4px;
border: none;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0
}
textarea: focus{
outline: none
}
select: focus option{
color: #000;
background-color: #fff
}
.vertical-bar{
width: 4px;
height: 20px;
background: silver;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
&: disabled,&: disabled+label{
color: grey;
text-shadow: 1px 1px 0 #fff
}
input[type=radio]+label{
line-height: 13px;
position: relative;
margin-left: 19px
}
input[type=radio]+label: before{
content: "";
position: absolute;
top: 0;
left: -19px;
display: inline-block;
width: 13px;
height: 13px;
margin-right: 6px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='%23fff'/%3E%3C/svg%3E")
}
input[type=radio]: active+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio]: checked+label: after{
content: "";
display: block;
width: 5px;
height: 5px;
top: 5px;
left: -14px;
position: absolute;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=radio][disabled]+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='gray'/%3E%3C/svg%3E")
}
input[type=email],input[type=password]{
padding: 3px 4px;
border: 1px solid #7f9db9;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0;
height: 21px;
line-height: 2
}
input[type=email]: focus,input[type=password]: focus{
outline: none
}
input[type=range]{
-webkit-appearance: none;
width: 100%;
background: transparent
}
input[type=range]: focus{
outline: none
}
input[type=range]: :-webkit-slider-thumb{
-webkit-appearance: none;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-webkit-slider-runnable-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range]: :-moz-range-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
.is-vertical{
display: inline-block;
width: 4px;
height: 150px;
transform: translateY(50%)
}
.is-vertical>input[type=range]{
width: 150px;
height: 4px;
margin: 0 16px 0 10px;
transform-origin: left;
transform: rotate(270deg) translateX(calc(-50% + 8px))
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-webkit-slider-thumb{
transform: translateY(-8px) scaleX(-1)
}
.is-vertical>input[type=range]: :-moz-range-thumb{
transform: translateY(2px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-webkit-slider-thumb{
transform: translateY(-10px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-moz-range-thumb{
transform: translateY(0) scaleX(-1)
}
.window{
font-size: 11px;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #dfdfdf,inset -2px -2px grey,inset 2px 2px #fff;
background: #ece9d8;
padding: 3px
}
.window fieldset{
margin-bottom: 9px
}
.title-bar{
background: #000;
padding: 3px 2px 3px 3px;
display: flex;
justify-content: space-between;
align-items: center
}
.title-bar-text{
font-weight: 700;
color: #fff;
letter-spacing: 0;
margin-right: 24px
}
.title-bar-controls button{
padding: 0;
display: block;
min-width: 16px;
min-height: 14px
}
.title-bar-controls button: focus{
outline: none
}
.window-body{
margin: 8px
}
.window-body pre{
margin: -8px
}
.status-bar{
margin: 0 1px;
display: flex;
gap: 1px
}
.status-bar-field{
box-shadow: inset -1px -1px #dfdfdf,inset 1px 1px grey;
flex-grow: 1;
padding: 2px 3px;
margin: 0
}
ul.tree-view{
display: block;
background: #fff;
padding: 6px;
margin: 0
}
ul.tree-view li{
list-style-type: none;
margin-top: 3px
}
ul.tree-view a{
text-decoration: none;
color: #000
}
ul.tree-view a: focus{
background-color: #2267cb;
color: #fff
}
ul.tree-view ul{
margin-top: 3px;
margin-left: 16px;
padding-left: 16px;
border-left: 1px dotted grey
}
ul.tree-view ul>li{
position: relative
}
ul.tree-view ul>li: before{
content: "";
display: block;
position: absolute;
left: -16px;
top: 6px;
width: 12px;
border-bottom: 1px dotted grey
}
ul.tree-view ul>li: last-child: after{
content: "";
display: block;
position: absolute;
left: -20px;
top: 7px;
bottom: 0;
width: 8px;
background: #fff
}
ul.tree-view ul details>summary: before{
margin-left: -22px;
position: relative;
z-index: 1
}
ul.tree-view details{
margin-top: 0
}
ul.tree-view details>summary: before{
text-align: center;
display: block;
float: left;
content: "+";
border: 1px solid grey;
width: 8px;
height: 9px;
line-height: 9px;
margin-right: 5px;
padding-left: 1px;
background-color: #fff
}
ul.tree-view details[open] summary{
margin-bottom: 0
}
ul.tree-view details[open]>summary: before{
content: "-"
}
fieldset{
border-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='5' height='5' fill='gray' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h5v5H0V2h2v1h1V2H0' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h4v4H0V1h1v2h2V1H0'/%3E%3C/svg%3E") 2;
padding: 10px;
padding-block-start: 8px;
margin: 0
}
legend{
background: #ece9d8
}
menu[role=tablist]{
position: relative;
margin: 0 0 -2px;
text-indent: 0;
list-style-type: none;
display: flex;
padding-left: 3px
}
menu[role=tablist] button{
z-index: 1;
display: block;
color: #222;
text-decoration: none;
min-width: unset
}
menu[role=tablist] button[aria-selected=true]{
padding-bottom: 2px;margin-top: -2px;background-color: #ece9d8;position: relative;z-index: 8;margin-left: -3px;margin-bottom: 1px
}
menu[role=tablist] button: focus{
outline: 1px dotted #222;outline-offset: -4px
}
menu[role=tablist].justified button{
flex-grow: 1;text-align: center
}
[role=tabpanel]{
padding: 14px;clear: both;background: linear-gradient(180deg,#fcfcfe,#f4f3ee);border: 1px solid #919b9c;position: relative;z-index: 2;margin-bottom: 9px
}
: :-webkit-scrollbar{
width: 17px
}
: :-webkit-scrollbar-corner{
background: #dfdfdf
}
: :-webkit-scrollbar-track: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 1' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1'/%3E%3Cpath stroke='%23f3f1ec' d='M1 0h1'/%3E%3Cpath stroke='%23f4f1ec' d='M2 0h1'/%3E%3Cpath stroke='%23f4f3ee' d='M3 0h1'/%3E%3Cpath stroke='%23f5f4ef' d='M4 0h1'/%3E%3Cpath stroke='%23f6f5f0' d='M5 0h1'/%3E%3Cpath stroke='%23f7f7f3' d='M6 0h1'/%3E%3Cpath stroke='%23f9f8f4' d='M7 0h1'/%3E%3Cpath stroke='%23f9f9f7' d='M8 0h1'/%3E%3Cpath stroke='%23fbfbf8' d='M9 0h1'/%3E%3Cpath stroke='%23fbfbf9' d='M10 0h2'/%3E%3Cpath stroke='%23fdfdfa' d='M12 0h1'/%3E%3Cpath stroke='%23fefefb' d='M13 0h3'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-track: horizontal{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 1 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1M0 16h1'/%3E%3Cpath stroke='%23f3f1ec' d='M0 1h1'/%3E%3Cpath stroke='%23f4f1ec' d='M0 2h1'/%3E%3Cpath stroke='%23f4f3ee' d='M0 3h1'/%3E%3Cpath stroke='%23f5f4ef' d='M0 4h1'/%3E%3Cpath stroke='%23f6f5f0' d='M0 5h1'/%3E%3Cpath stroke='%23f7f7f3' d='M0 6h1'/%3E%3Cpath stroke='%23f9f8f4' d='M0 7h1'/%3E%3Cpath stroke='%23f9f9f7' d='M0 8h1'/%3E%3Cpath stroke='%23fbfbf8' d='M0 9h1'/%3E%3Cpath stroke='%23fbfbf9' d='M0 10h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 12h1'/%3E%3Cpath stroke='%23fefefb' d='M0 13h1m-1 1h1m-1 1h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-position: 50%;
background-repeat: no-repeat;
background-color: #c8d6fb;
background-size: 7px;
border: 1px solid #fff;
border-radius: 2px;
box-shadow: inset -3px 0 #bad1fc,inset 1px 1px #b7caf5
}
: :-webkit-scrollbar-thumb: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 7 8' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h6M0 2h6M0 4h6M0 6h6'/%3E%3Cpath stroke='%23bad1fc' d='M6 0h1M6 2h1M6 4h1'/%3E%3Cpath stroke='%23c8d6fb' d='M0 1h1M0 3h1M0 5h1M0 7h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h6M1 3h6M1 5h6M1 7h6'/%3E%3Cpath stroke='%23bad3fc' d='M6 6h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb: horizontal{
background-size: 8px;background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 8 7' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h1m1 0h1m1 0h1m1 0h1M0 1h1m1 0h1m1 0h1m1 0h1M0 2h1m1 0h1m1 0h1m1 0h1M0 3h1m1 0h1m1 0h1m1 0h1M0 4h1m1 0h1m1 0h1m1 0h1M0 5h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23c8d6fb' d='M1 0h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h1m1 0h1m1 0h1m1 0h1M1 2h1m1 0h1m1 0h1m1 0h1M1 3h1m1 0h1m1 0h1m1 0h1M1 4h1m1 0h1m1 0h1m1 0h1M1 5h1m1 0h1m1 0h1m1 0h1M1 6h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23bad1fc' d='M0 6h1m1 0h1'/%3E%3Cpath stroke='%23bad3fc' d='M4 6h1m1 0h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: start{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h1m1 0h1'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M5 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h1m3 0h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h2M3 8h2'/%3E%3Cpath stroke='%234d6185' d='M8 5h1M7 6h3M6 7h5M5 8h3m1 0h3M4 9h3m3 0h3m-8 1h1m5 0h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1m-2 1h1m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23cad8fd' d='M4 7h2'/%3E%3Cpath stroke='%23b6cefb' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23c1d3fb' d='M8 8h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M8 9h1m-1 1h1m-3 1h2'/%3E%3Cpath stroke='%23bdd3fb' d='M9 9h1m-2 3h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M7 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h1m1 0h1m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c1d5fb' d='M8 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M6 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h3'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1M8 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h3M3 8h2'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M9 6h2m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%234d6185' d='M5 6h1m5 0h1M4 7h3m3 0h3M5 8h3m1 0h3M6 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 7h2M8 8h1'/%3E%3Cpath stroke='%23b6cefb' d='M9 7h1m2 1h1m-2 1h2'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M6 11h2'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23bdd3fb' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1M1 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 4h1M5 5h2M4 7h1M2 8h1'/%3E%3Cpath stroke='%234d6185' d='M8 4h1M7 5h3M6 6h3M5 7h3M4 8h3M5 9h3m-2 1h3m-2 1h3m-2 1h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M2 11h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M9 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23c8d6fb' d='M5 6h1M2 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1M8 7h3m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 8h2'/%3E%3Cpath stroke='%23b6cefb' d='M9 8h3M9 9h4'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 1h1m-1 4h1'/%3E%3Cpath stroke='%23bdd3fb' d='M8 9h1m-2 3h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-5 4h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%239fb5d2' d='M16 10h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M5 11h2'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%234d6185' d='M7 4h1M6 5h3M7 6h3M8 7h3M9 8h3M8 9h3m-4 1h3m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23c8d6fb' d='M8 4h1M5 6h2'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1M2 9h5'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M9 5h1m-8 6h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23c9d8fc' d='M5 5h1M4 7h3M2 8h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M7 7h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1m0 1h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h3'/%3E%3Cpath stroke='%23c1d3fb' d='M6 8h3'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 5h1'/%3E%3Cpath stroke='%23b4c8f6' d='M1 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M7 9h1m-3 2h1'/%3E%3Cpath stroke='%23b6cefb' d='M11 9h2'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23bbd3fd' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b6cdfb' d='M9 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
.window{
box-shadow: inset -1px -1px #00138c,inset 1px 1px #0831d9,inset -2px -2px #001ea0,inset 2px 2px #166aee,inset -3px -3px #003bda,inset 3px 3px #0855dd;
border-top-left-radius: 8px;
border-top-right-radius: 8px;
padding: 0 0 3px;
-webkit-font-smoothing: antialiased
}
.title-bar{
background: linear-gradient(180deg,#0997ff,#0053ee 8%,#0050ee 40%,#06f 88%,#06f 93%,#005bff 95%,#003dd7 96%,#003dd7);
padding: 3px 5px 3px 3px;
border-top: 1px solid #0831d9;
border-left: 1px solid #0831d9;
border-right: 1px solid #001ea0;
border-top-left-radius: 8px;
border-top-right-radius: 7px;
font-size: 13px;
text-shadow: 1px 1px #0f1089;
height: 21px
}
.title-bar-text{
padding-left: 3px
}
.title-bar-controls{
display: flex
}
.title-bar-controls button{
min-width: 21px;
min-height: 21px;
margin-left: 2px;
background-repeat: no-repeat;
background-position: 50%;
box-shadow: none;
background-color: #0050ee;
transition: background .1s;
border: none
}
.title-bar-controls button: active,.title-bar-controls button: focus,.title-bar-controls button: hover{
box-shadow: none!important
}
.title-bar-controls button[aria-label=Minimize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%235985f7' d='M7 5h1'/%3E%3Cpath stroke='%235381f6' d='M8 5h1M6 9h1'/%3E%3Cpath stroke='%234d7bf6' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%234677f5' d='M10 5h1'/%3E%3Cpath stroke='%234173f5' d='M11 5h1'/%3E%3Cpath stroke='%233a6ff4' d='M12 5h1'/%3E%3Cpath stroke='%23386ef4' d='M13 5h1'/%3E%3Cpath stroke='%23346cf4' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%235480f7' d='M7 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%233a6ff5' d='M11 6h1'/%3E%3Cpath stroke='%23346df4' d='M12 6h1'/%3E%3Cpath stroke='%23306bf4' d='M13 6h1'/%3E%3Cpath stroke='%232d69f4' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23507ef6' d='M7 7h1'/%3E%3Cpath stroke='%234a79f6' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236694eb' d='M19 0h1'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1m-6 6h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23427ff6' d='M9 13h1'/%3E%3Cpath stroke='%233c7ff6' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23366ef4' d='M2 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%236699f3' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23afc2ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h1'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1m-5 6h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M6 13h1'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23539fff' d='M9 13h1'/%3E%3Cpath stroke='%234fa4ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-7 7h1m-3 1h1'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m-7 7h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-1 1h1m-1 1h1M7 12h1m-2 1h1m-3 1h1m1 0h1m-3 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 5h11M5 6h11M5 7h11M5 8h1m9 0h1M5 9h1m9 0h1M5 10h1m9 0h1M5 11h1m9 0h1M5 12h1m9 0h1M5 13h1m9 0h1M5 14h1m9 0h1M5 15h11'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%23004fb4' d='M16 7h2m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1'/%3E%3Cpath stroke='%230049ae' d='M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M10 8h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 2h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h1m-6 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230051b6' d='M18 9h1m0 2h1m-1 1h1M8 14h1m10 3h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 1h1m-1 3h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h1m-4 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230049ac' d='M4 11h1m-2 1h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h1m-3 1h1m4 0h1m-7 2h1m0 3h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-1 2h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 3h1'/%3E%3Cpath stroke='%23005ec3' d='M13 13h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230060c5' d='M14 14h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23b2c3ee' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 5h1M8 5h1M6 9h1M9 5h1M8 6h1M10 5h1M11 5h1M12 5h1M13 5h1M14 5h1M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%23FFF' d='M7 6h1M8 6h1M9 6h1M10 6h1M11 6h1M12 6h1M13 6h1M14 6h1M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23FFF' d='M7 7h1'/%3E%3Cpath stroke='%234375f5' d='M8 7h1M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%23FFF' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 8h1'/%3E%3Cpath stroke='%234174f5' d='M8 8h1M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%23FFF' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%23FFF' d='M5 9h1M6 9h1M7 9h1M8 9h1M9 9h1M10 9h1M11 9h1M12 9h1M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%23FFF' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1M4 10h1'/%3E%3Cpath stroke='%23FFF' d='M5 10h1M6 10h1M7 10h1M8 10h1M9 10h1M10 10h1M11 10h1M12 10h1M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%23FFF' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%23FFF' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232673f7' d='M12 11h1'/%3E%3Cpath stroke='%23FFF' d='M13 11h1M14 11h1M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%23FFF' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232677f7' d='M12 12h1'/%3E%3Cpath stroke='%23FFF' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1M6 13h1M7 13h1'/%3E%3Cpath stroke='%23437ff6' d='M8 13h1'/%3E%3Cpath stroke='%232d7df7' d='M9 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M10 13h1M11 13h1'/%3E%3Cpath stroke='%232679f8' d='M12 13h1'/%3E%3Cpath stroke='%23FFF' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1M6 14h1'/%3E%3Cpath stroke='%232d7df7' d='M7 14h1M8 14h1M9 14h1M10 14h1M11 14h1'/%3E%3Cpath stroke='%23257af8' d='M12 14h1'/%3E%3Cpath stroke='%23FFF' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23FFF' d='M11 15h1M12 15h1M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%23FFF' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23548DFF' d='M5 13h1'/%3E%3Cpath stroke='%235991FF' d='M6 13h1'/%3E%3Cpath stroke='%235792FF' d='M7 13h1'/%3E%3Cpath stroke='%235496FF' d='M8 13h1'/%3E%3Cpath stroke='%23539CFF' d='M9 13h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 13h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23548DFF' d='M5 14h1'/%3E%3Cpath stroke='%235991FF' d='M6 14h1'/%3E%3Cpath stroke='%235792FF' d='M7 14h1'/%3E%3Cpath stroke='%235496FF' d='M8 14h1'/%3E%3Cpath stroke='%23539CFF' d='M9 14h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 14h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M12 12h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7M5 13h1'/%3E%3Cpath stroke='%23004BB0' d='M6 13h1'/%3E%3Cpath stroke='%23004DB1' d='M7 13h1'/%3E%3Cpath stroke='%23004FB4' d='M8 13h1'/%3E%3Cpath stroke='%230052B7' d='M9 13h1'/%3E%3Cpath stroke='%230055B9' d='M10 13h1'/%3E%3Cpath stroke='%230157BC' d='M11 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m1 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23004BB0' d='M6 14h1'/%3E%3Cpath stroke='%23004DB1' d='M7 14h1'/%3E%3Cpath stroke='%23004FB4' d='M8 14h1'/%3E%3Cpath stroke='%230052B7' d='M9 14h1'/%3E%3Cpath stroke='%230055B9' d='M10 14h1'/%3E%3Cpath stroke='%230157BC' d='M11 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 14h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M12 15h1M13 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1M5 14h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%2392aff9' d='M7 4h1'/%3E%3Cpath stroke='%23e1e9fd' d='M8 4h1'/%3E%3Cpath stroke='%23e0e8fd' d='M12 4h1'/%3E%3Cpath stroke='%2381a4f8' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%238eacf9' d='M6 5h1'/%3E%3Cpath stroke='%23f3f6fe' d='M7 5h1'/%3E%3Cpath stroke='%23d8e2fd' d='M9 5h1'/%3E%3Cpath stroke='%23cfdcfc' d='M10 5h1'/%3E%3Cpath stroke='%23ecf1fe' d='M11 5h1'/%3E%3Cpath stroke='%23eff4fe' d='M13 5h1'/%3E%3Cpath stroke='%23749af7' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%23d3dffd' d='M6 6h1'/%3E%3Cpath stroke='%23b2c6fb' d='M8 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%234a7bf6' d='M11 6h1'/%3E%3Cpath stroke='%23c8d7fc' d='M12 6h1'/%3E%3Cpath stroke='%23c6d6fc' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%23e6edfe' d='M6 7h1'/%3E%3Cpath stroke='%23e5ecfe' d='M7 7h1'/%3E%3Cpath stroke='%235a85f7' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%236c97f8' d='M12 7h1'/%3E%3Cpath stroke='%23cfddfd' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%2385a9f9' d='M12 8h1'/%3E%3Cpath stroke='%23cbdbfd' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235986f7' d='M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%2396b6fa' d='M11 9h1'/%3E%3Cpath stroke='%23f2f6fe' d='M12 9h1'/%3E%3Cpath stroke='%2393b6fb' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234e82f7' d='M9 10h1'/%3E%3Cpath stroke='%23cadafc' d='M10 10h1'/%3E%3Cpath stroke='%23a0c0fb' d='M13 10h1'/%3E%3Cpath stroke='%232a72f6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23bcd1fc' d='M9 11h1'/%3E%3Cpath stroke='%23dde8fd' d='M11 11h1'/%3E%3Cpath stroke='%235f97f8' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23dfe9fd' d='M9 12h1'/%3E%3Cpath stroke='%234687f7' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%235081f6' d='M5 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23d2e0fd' d='M9 13h1'/%3E%3Cpath stroke='%23edf3fe' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23467af5' d='M5 15h1'/%3E%3Cpath stroke='%23457af6' d='M6 15h1'/%3E%3Cpath stroke='%23437bf6' d='M7 15h1'/%3E%3Cpath stroke='%23417cf6' d='M8 15h1'/%3E%3Cpath stroke='%23cbdcfd' d='M9 15h1'/%3E%3Cpath stroke='%23327df7' d='M11 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%23f5f8fe' d='M9 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ee' d='M1 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b1ed' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m2 5h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2393b0ed' d='M20 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1m7 1h1'/%3E%3Cpath stroke='%239bbdff' d='M7 4h1'/%3E%3Cpath stroke='%23e3edff' d='M8 4h1'/%3E%3Cpath stroke='%23e1ebff' d='M12 4h1'/%3E%3Cpath stroke='%2387afff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1m-6 9h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%239bf' d='M6 5h1'/%3E%3Cpath stroke='%23f4f7ff' d='M7 5h1'/%3E%3Cpath stroke='%23dbe7ff' d='M9 5h1'/%3E%3Cpath stroke='%23d2e1ff' d='M10 5h1'/%3E%3Cpath stroke='%23edf3ff' d='M11 5h1'/%3E%3Cpath stroke='%23f0f5ff' d='M13 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%23548dff' d='M1 6h1m2 7h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%23d8e5ff' d='M6 6h1'/%3E%3Cpath stroke='%23b9d0ff' d='M8 6h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%23538dff' d='M11 6h1'/%3E%3Cpath stroke='%23cbdcff' d='M12 6h1'/%3E%3Cpath stroke='%23c9dbff' d='M14 6h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23e8f0ff' d='M6 7h1'/%3E%3Cpath stroke='%23e7efff' d='M7 7h1'/%3E%3Cpath stroke='%23679aff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%2374a5ff' d='M12 7h1'/%3E%3Cpath stroke='%23d1e1ff' d='M14 7h1'/%3E%3Cpath stroke='%23317aff' d='M15 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%238cb7ff' d='M12 8h1'/%3E%3Cpath stroke='%23cde0ff' d='M14 8h1'/%3E%3Cpath stroke='%232f7fff' d='M15 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%239dc5ff' d='M11 9h1'/%3E%3Cpath stroke='%23f3f8ff' d='M12 9h1'/%3E%3Cpath stroke='%239ac5ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%236297ff' d='M5 10h1'/%3E%3Cpath stroke='%235f95ff' d='M6 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235c9aff' d='M9 10h1'/%3E%3Cpath stroke='%23cee2ff' d='M10 10h1'/%3E%3Cpath stroke='%23a7d0ff' d='M13 10h1'/%3E%3Cpath stroke='%233897ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%23c2dbff' d='M9 11h1'/%3E%3Cpath stroke='%23e0efff' d='M11 11h1'/%3E%3Cpath stroke='%236eb6ff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23e2eeff' d='M9 12h1'/%3E%3Cpath stroke='%2359adff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M5 13h2'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23d6e8ff' d='M9 13h1'/%3E%3Cpath stroke='%23eef6ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528cff' d='M5 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%234d89ff' d='M6 15h1'/%3E%3Cpath stroke='%234c8cff' d='M7 15h1'/%3E%3Cpath stroke='%234d94ff' d='M8 15h1'/%3E%3Cpath stroke='%23cfe4ff' d='M9 15h1'/%3E%3Cpath stroke='%2347aaff' d='M11 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%23f6faff' d='M9 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%2393b2f1' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bdef' d='M1 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h1m5 0h9'/%3E%3Cpath stroke='%23a7bdee' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23a7bcee' d='M20 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230a4aa5' d='M7 4h1'/%3E%3Cpath stroke='%234e7ec0' d='M8 4h1'/%3E%3Cpath stroke='%23789ed1' d='M9 4h1'/%3E%3Cpath stroke='%23789ed3' d='M10 4h1'/%3E%3Cpath stroke='%23789fd4' d='M11 4h1m0 1h1'/%3E%3Cpath stroke='%235184c7' d='M12 4h1'/%3E%3Cpath stroke='%230b54b3' d='M13 4h1m0 1h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-2 1h2M7 12h1m-2 1h1m-3 1h3m-3 1h2m-2 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230949a4' d='M6 5h1'/%3E%3Cpath stroke='%23668ec8' d='M7 5h1'/%3E%3Cpath stroke='%23789dd1' d='M8 5h1M7 6h1'/%3E%3Cpath stroke='%23497cc1' d='M9 5h1'/%3E%3Cpath stroke='%234178c0' d='M10 5h1'/%3E%3Cpath stroke='%23608dcb' d='M11 5h1'/%3E%3Cpath stroke='%236693cf' d='M13 5h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230042a1' d='M5 6h1'/%3E%3Cpath stroke='%234073bb' d='M6 6h1'/%3E%3Cpath stroke='%232661b6' d='M8 6h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1'/%3E%3Cpath stroke='%230049ad' d='M10 6h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M11 6h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%234077c4' d='M12 6h1'/%3E%3Cpath stroke='%2378a1d6' d='M13 6h1'/%3E%3Cpath stroke='%234079c4' d='M14 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%235684c6' d='M6 7h1'/%3E%3Cpath stroke='%235686c8' d='M7 7h1'/%3E%3Cpath stroke='%230049ac' d='M8 7h1m-4 3h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230a53b5' d='M12 7h1'/%3E%3Cpath stroke='%2378a1d7' d='M13 7h1'/%3E%3Cpath stroke='%234881c8' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m0 1h1m0 1h1M8 12h1m-2 3h1m0 3h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230046a8' d='M5 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%23145db9' d='M12 8h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 8h1'/%3E%3Cpath stroke='%23457fc8' d='M14 8h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1M8 14h1m-1 1h1m10 2h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%230050b5' d='M16 8h2m1 2h1M8 13h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230047a8' d='M4 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1m-2 1h1'/%3E%3Cpath stroke='%231b62bd' d='M11 9h1'/%3E%3Cpath stroke='%236899d4' d='M12 9h1'/%3E%3Cpath stroke='%2378a4d9' d='M13 9h1'/%3E%3Cpath stroke='%231f68c1' d='M14 9h1'/%3E%3Cpath stroke='%230054b9' d='M15 9h1m-7 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230053b8' d='M16 9h2m0 1h1m0 4h1m-1 2h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230048ab' d='M4 10h1'/%3E%3Cpath stroke='%23407cc7' d='M10 10h1'/%3E%3Cpath stroke='%2378a3d9' d='M11 10h1m-2 1h1'/%3E%3Cpath stroke='%2378a5da' d='M12 10h1m-3 2h1'/%3E%3Cpath stroke='%23256ec4' d='M13 10h1'/%3E%3Cpath stroke='%230057bb' d='M14 10h1'/%3E%3Cpath stroke='%230057bc' d='M15 10h1m-5 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%230056bb' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%230055ba' d='M17 10h1m0 1h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%23004cb0' d='M7 11h1m-4 2h1'/%3E%3Cpath stroke='%233272c4' d='M9 11h1'/%3E%3Cpath stroke='%23538cd0' d='M11 11h1'/%3E%3Cpath stroke='%23065cbf' d='M12 11h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%230058bd' d='M17 11h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%23538ace' d='M9 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 2h1m-1 1h1'/%3E%3Cpath stroke='%234581cb' d='M9 13h1'/%3E%3Cpath stroke='%236297d5' d='M10 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230052b7' d='M19 13h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23407fca' d='M9 15h1'/%3E%3Cpath stroke='%2378a6dc' d='M10 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%236c9bd5' d='M9 16h1'/%3E%3Cpath stroke='%2378a6db' d='M10 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M4 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M5 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M6 20h1'/%3E%3Cpath stroke='%23a7bdf0' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23fae1dc' d='M1 1h1'/%3E%3Cpath stroke='%23eb8b73' d='M2 1h1'/%3E%3Cpath stroke='%23e97b60' d='M3 1h1'/%3E%3Cpath stroke='%23e77155' d='M4 1h1'/%3E%3Cpath stroke='%23e66a4d' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23e56648' d='M6 1h1'/%3E%3Cpath stroke='%23e46142' d='M7 1h1'/%3E%3Cpath stroke='%23e46344' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%23e45f3e' d='M9 1h2'/%3E%3Cpath stroke='%23e35c3b' d='M11 1h2'/%3E%3Cpath stroke='%23e25633' d='M13 1h2'/%3E%3Cpath stroke='%23e25330' d='M15 1h1'/%3E%3Cpath stroke='%23e04d28' d='M16 1h1'/%3E%3Cpath stroke='%23dc451f' d='M17 1h1'/%3E%3Cpath stroke='%23d05334' d='M18 1h1'/%3E%3Cpath stroke='%23efd8d2' d='M19 1h1'/%3E%3Cpath stroke='%23ec8d76' d='M1 2h1'/%3E%3Cpath stroke='%23efa390' d='M2 2h1'/%3E%3Cpath stroke='%23f0a694' d='M3 2h1'/%3E%3Cpath stroke='%23ee9a85' d='M4 2h1'/%3E%3Cpath stroke='%23eb8d75' d='M5 2h1'/%3E%3Cpath stroke='%23ea876e' d='M6 2h1'/%3E%3Cpath stroke='%23ea8168' d='M7 2h1'/%3E%3Cpath stroke='%23e97f66' d='M8 2h1'/%3E%3Cpath stroke='%23e97c62' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%23e8795f' d='M10 2h1'/%3E%3Cpath stroke='%23e8795e' d='M11 2h1'/%3E%3Cpath stroke='%23e87559' d='M12 2h1'/%3E%3Cpath stroke='%23e77256' d='M13 2h1'/%3E%3Cpath stroke='%23e66e50' d='M14 2h1'/%3E%3Cpath stroke='%23e56849' d='M15 2h1'/%3E%3Cpath stroke='%23e4603f' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23e05532' d='M17 2h1'/%3E%3Cpath stroke='%23d04623' d='M18 2h1'/%3E%3Cpath stroke='%23b64b30' d='M19 2h1'/%3E%3Cpath stroke='%23e97f65' d='M1 3h1'/%3E%3Cpath stroke='%23f0a997' d='M2 3h1'/%3E%3Cpath stroke='%23f1ac9a' d='M3 3h1'/%3E%3Cpath stroke='%23ee9d89' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%23ec917a' d='M5 3h1'/%3E%3Cpath stroke='%23eb8b72' d='M6 3h1'/%3E%3Cpath stroke='%23ea856d' d='M7 3h1'/%3E%3Cpath stroke='%23e98168' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23e87e65' d='M9 3h1'/%3E%3Cpath stroke='%23e97b61' d='M11 3h1'/%3E%3Cpath stroke='%23e8775d' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%23e87459' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%23e66f52' d='M14 3h1'/%3E%3Cpath stroke='%23e56a4c' d='M15 3h1'/%3E%3Cpath stroke='%23e46343' d='M16 3h1'/%3E%3Cpath stroke='%23e15937' d='M17 3h1'/%3E%3Cpath stroke='%23d24a28' d='M18 3h1'/%3E%3Cpath stroke='%23aa3315' d='M19 3h1'/%3E%3Cpath stroke='%23e87458' d='M1 4h1'/%3E%3Cpath stroke='%23efa18d' d='M3 4h1'/%3E%3Cpath stroke='%23ed957f' d='M4 4h1'/%3E%3Cpath stroke='%23eb8a71' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%23ea836a' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23e97d64' d='M7 4h1'/%3E%3Cpath stroke='%23e8785e' d='M8 4h1'/%3E%3Cpath stroke='%23e77359' d='M9 4h1'/%3E%3Cpath stroke='%23e76f54' d='M10 4h1'/%3E%3Cpath stroke='%23e66d51' d='M11 4h1'/%3E%3Cpath stroke='%23e5684b' d='M12 4h1'/%3E%3Cpath stroke='%23e5684a' d='M13 4h1'/%3E%3Cpath stroke='%23e35c3a' d='M16 4h1m-7 4h1m-8 7h1'/%3E%3Cpath stroke='%23e05634' d='M17 4h1'/%3E%3Cpath stroke='%23d24c2a' d='M18 4h1'/%3E%3Cpath stroke='%23ac3618' d='M19 4h1'/%3E%3Cpath stroke='%23e76f52' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23ec9179' d='M2 5h1'/%3E%3Cpath stroke='%23ec937c' d='M3 5h1'/%3E%3Cpath stroke='%23f7ccc2' d='M5 5h1'/%3E%3Cpath stroke='%23e77259' d='M7 5h1M5 9h1'/%3E%3Cpath stroke='%23e76d53' d='M8 5h1'/%3E%3Cpath stroke='%23e5684d' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%23e46446' d='M10 5h1'/%3E%3Cpath stroke='%23e45f41' d='M11 5h1'/%3E%3Cpath stroke='%23e35b3a' d='M12 5h1m-2 1h1'/%3E%3Cpath stroke='%23e35938' d='M13 5h1'/%3E%3Cpath stroke='%23f3bbad' d='M15 5h1'/%3E%3Cpath stroke='%23e25531' d='M16 5h1'/%3E%3Cpath stroke='%23df5330' d='M17 5h1'/%3E%3Cpath stroke='%23d34e2c' d='M18 5h1'/%3E%3Cpath stroke='%23ad3a1d' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%23eb876e' d='M2 6h1'/%3E%3Cpath stroke='%23eb8a70' d='M3 6h1'/%3E%3Cpath stroke='%23e46447' d='M9 6h1'/%3E%3Cpath stroke='%23e45f40' d='M10 6h1'/%3E%3Cpath stroke='%23e25634' d='M12 6h1'/%3E%3Cpath stroke='%23e2522d' d='M16 6h1'/%3E%3Cpath stroke='%23df522e' d='M17 6h1'/%3E%3Cpath stroke='%23d34d2c' d='M18 6h1'/%3E%3Cpath stroke='%23e56546' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23e97e65' d='M4 7h1'/%3E%3Cpath stroke='%23e8775e' d='M5 7h1'/%3E%3Cpath stroke='%23e46143' d='M9 7h1'/%3E%3Cpath stroke='%23e45d3d' d='M10 7h1'/%3E%3Cpath stroke='%23e35836' d='M11 7h1'/%3E%3Cpath stroke='%23e24e27' d='M15 7h1'/%3E%3Cpath stroke='%23e2502a' d='M16 7h1'/%3E%3Cpath stroke='%23e0512c' d='M17 7h1'/%3E%3Cpath stroke='%23d34d2a' d='M18 7h1'/%3E%3Cpath stroke='%23ad391c' d='M19 7h1'/%3E%3Cpath stroke='%23e87a60' d='M2 8h1m1 0h1'/%3E%3Cpath stroke='%23e87c62' d='M3 8h1'/%3E%3Cpath stroke='%23e8745b' d='M5 8h1'/%3E%3Cpath stroke='%23e76e54' d='M6 8h1'/%3E%3Cpath stroke='%23e24d24' d='M14 8h1'/%3E%3Cpath stroke='%23e24b22' d='M15 8h1'/%3E%3Cpath stroke='%23e24d25' d='M16 8h1'/%3E%3Cpath stroke='%23e05029' d='M17 8h1'/%3E%3Cpath stroke='%23d44c29' d='M18 8h1'/%3E%3Cpath stroke='%23ae391b' d='M19 8h1'/%3E%3Cpath stroke='%23e35d3c' d='M1 9h1'/%3E%3Cpath stroke='%23e8765d' d='M4 9h1'/%3E%3Cpath stroke='%23e66f53' d='M6 9h1'/%3E%3Cpath stroke='%23e56b4e' d='M7 9h1'/%3E%3Cpath stroke='%23e45127' d='M13 9h1'/%3E%3Cpath stroke='%23e44f23' d='M14 9h1'/%3E%3Cpath stroke='%23e34c20' d='M15 9h1'/%3E%3Cpath stroke='%23e34d22' d='M16 9h1'/%3E%3Cpath stroke='%23e14f25' d='M17 9h1'/%3E%3Cpath stroke='%23d54a25' d='M18 9h1'/%3E%3Cpath stroke='%23af3719' d='M19 9h1'/%3E%3Cpath stroke='%23e35937' d='M1 10h1'/%3E%3Cpath stroke='%23e76d51' d='M2 10h1'/%3E%3Cpath stroke='%23e87257' d='M3 10h1'/%3E%3Cpath stroke='%23e87359' d='M4 10h1'/%3E%3Cpath stroke='%23e77157' d='M5 10h1'/%3E%3Cpath stroke='%23e66e52' d='M6 10h1'/%3E%3Cpath stroke='%23e56747' d='M8 10h1'/%3E%3Cpath stroke='%23e5572c' d='M12 10h1'/%3E%3Cpath stroke='%23e55326' d='M13 10h1'/%3E%3Cpath stroke='%23e55022' d='M14 10h1'/%3E%3Cpath stroke='%23e54d1e' d='M15 10h1'/%3E%3Cpath stroke='%23e54d1f' d='M16 10h1'/%3E%3Cpath stroke='%23e24e21' d='M17 10h1'/%3E%3Cpath stroke='%23d64921' d='M18 10h1'/%3E%3Cpath stroke='%23af3516' d='M19 10h1'/%3E%3Cpath stroke='%23e25432' d='M1 11h1'/%3E%3Cpath stroke='%23e5694b' d='M2 11h1'/%3E%3Cpath stroke='%23e77054' d='M3 11h1'/%3E%3Cpath stroke='%23e77156' d='M4 11h1'/%3E%3Cpath stroke='%23e87055' d='M5 11h1'/%3E%3Cpath stroke='%23e66c4d' d='M7 11h1'/%3E%3Cpath stroke='%23e75526' d='M13 11h1'/%3E%3Cpath stroke='%23e75221' d='M14 11h1'/%3E%3Cpath stroke='%23e64e1c' d='M15 11h1'/%3E%3Cpath stroke='%23e64d1c' d='M16 11h1'/%3E%3Cpath stroke='%23e34c1c' d='M17 11h1'/%3E%3Cpath stroke='%23d6461c' d='M18 11h1'/%3E%3Cpath stroke='%23b03312' d='M19 11h1'/%3E%3Cpath stroke='%23e14f2b' d='M1 12h1'/%3E%3Cpath stroke='%23e66b4e' d='M3 12h1'/%3E%3Cpath stroke='%23e76f53' d='M5 12h1'/%3E%3Cpath stroke='%23e66e51' d='M6 12h1'/%3E%3Cpath stroke='%23e7653d' d='M10 12h1'/%3E%3Cpath stroke='%23fef5f1' d='M13 12h1'/%3E%3Cpath stroke='%23e85421' d='M14 12h1'/%3E%3Cpath stroke='%23e8501b' d='M15 12h1'/%3E%3Cpath stroke='%23e74d18' d='M16 12h1'/%3E%3Cpath stroke='%23e44a18' d='M17 12h1'/%3E%3Cpath stroke='%23d74216' d='M18 12h1'/%3E%3Cpath stroke='%23b2310f' d='M19 12h1'/%3E%3Cpath stroke='%23e04b25' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23e35e3d' d='M2 13h1'/%3E%3Cpath stroke='%23e56748' d='M3 13h1'/%3E%3Cpath stroke='%23e66c4e' d='M4 13h1'/%3E%3Cpath stroke='%23e66d50' d='M5 13h1'/%3E%3Cpath stroke='%23e76842' d='M9 13h1'/%3E%3Cpath stroke='%23e7653c' d='M10 13h1'/%3E%3Cpath stroke='%23e86236' d='M11 13h1'/%3E%3Cpath stroke='%23e95019' d='M15 13h1m-2 3h1'/%3E%3Cpath stroke='%23e84c16' d='M16 13h1'/%3E%3Cpath stroke='%23e44713' d='M17 13h1'/%3E%3Cpath stroke='%23d83f10' d='M18 13h1'/%3E%3Cpath stroke='%23b12d0a' d='M19 13h1'/%3E%3Cpath stroke='%23df451e' d='M1 14h1'/%3E%3Cpath stroke='%23e25836' d='M2 14h1'/%3E%3Cpath stroke='%23e46242' d='M3 14h1m0 1h1'/%3E%3Cpath stroke='%23e56749' d='M4 14h1'/%3E%3Cpath stroke='%23e66845' d='M8 14h1'/%3E%3Cpath stroke='%23e76741' d='M9 14h1'/%3E%3Cpath stroke='%23e7643b' d='M10 14h1'/%3E%3Cpath stroke='%23e86235' d='M11 14h1'/%3E%3Cpath stroke='%23ea5e2d' d='M12 14h1'/%3E%3Cpath stroke='%23e94a11' d='M16 14h1m-2 2h1'/%3E%3Cpath stroke='%23e6440d' d='M17 14h1'/%3E%3Cpath stroke='%23d73b0b' d='M18 14h1'/%3E%3Cpath stroke='%23b12b06' d='M19 14h1'/%3E%3Cpath stroke='%23de4018' d='M1 15h1'/%3E%3Cpath stroke='%23e1512e' d='M2 15h1'/%3E%3Cpath stroke='%23f5c1b5' d='M5 15h1'/%3E%3Cpath stroke='%23e66543' d='M7 15h1'/%3E%3Cpath stroke='%23e66541' d='M8 15h1'/%3E%3Cpath stroke='%23e6643d' d='M9 15h1'/%3E%3Cpath stroke='%23e76238' d='M10 15h1'/%3E%3Cpath stroke='%23e86032' d='M11 15h1'/%3E%3Cpath stroke='%23e95c2a' d='M12 15h1'/%3E%3Cpath stroke='%23ea5924' d='M13 15h1'/%3E%3Cpath stroke='%23f7b8a1' d='M15 15h1'/%3E%3Cpath stroke='%23e9480e' d='M16 15h1'/%3E%3Cpath stroke='%23e54009' d='M17 15h1'/%3E%3Cpath stroke='%23d73605' d='M18 15h1'/%3E%3Cpath stroke='%23b02702' d='M19 15h1'/%3E%3Cpath stroke='%23dd3c14' d='M1 16h1'/%3E%3Cpath stroke='%23e15431' d='M3 16h1'/%3E%3Cpath stroke='%23e35b39' d='M4 16h1'/%3E%3Cpath stroke='%23e45e3d' d='M5 16h1'/%3E%3Cpath stroke='%23e45f3d' d='M6 16h1'/%3E%3Cpath stroke='%23e45e3b' d='M7 16h1'/%3E%3Cpath stroke='%23e55e39' d='M8 16h1'/%3E%3Cpath stroke='%23e55e37' d='M9 16h1'/%3E%3Cpath stroke='%23e65d32' d='M10 16h1'/%3E%3Cpath stroke='%23e75b2c' d='M11 16h1'/%3E%3Cpath stroke='%23e85725' d='M12 16h1'/%3E%3Cpath stroke='%23e9541f' d='M13 16h1'/%3E%3Cpath stroke='%23e8440b' d='M16 16h1'/%3E%3Cpath stroke='%23e43d05' d='M17 16h1'/%3E%3Cpath stroke='%23d63302' d='M18 16h1'/%3E%3Cpath stroke='%23af2601' d='M19 16h1'/%3E%3Cpath stroke='%23d8370e' d='M1 17h1'/%3E%3Cpath stroke='%23db431c' d='M2 17h1'/%3E%3Cpath stroke='%23dd4c28' d='M3 17h1'/%3E%3Cpath stroke='%23de522f' d='M4 17h1'/%3E%3Cpath stroke='%23df5533' d='M5 17h1'/%3E%3Cpath stroke='%23e05734' d='M6 17h1'/%3E%3Cpath stroke='%23e05531' d='M7 17h1'/%3E%3Cpath stroke='%23e05631' d='M8 17h1'/%3E%3Cpath stroke='%23e1562e' d='M9 17h1'/%3E%3Cpath stroke='%23e2552a' d='M10 17h1'/%3E%3Cpath stroke='%23e45325' d='M11 17h1'/%3E%3Cpath stroke='%23e4501f' d='M12 17h1'/%3E%3Cpath stroke='%23e54c19' d='M13 17h1'/%3E%3Cpath stroke='%23e54813' d='M14 17h1'/%3E%3Cpath stroke='%23e5430d' d='M15 17h1'/%3E%3Cpath stroke='%23e43e07' d='M16 17h1'/%3E%3Cpath stroke='%23e03802' d='M17 17h1'/%3E%3Cpath stroke='%23d12f00' d='M18 17h1'/%3E%3Cpath stroke='%23aa2300' d='M19 17h1'/%3E%3Cpath stroke='%23cd4928' d='M1 18h1'/%3E%3Cpath stroke='%23cc3813' d='M2 18h1'/%3E%3Cpath stroke='%23cc3e1b' d='M3 18h1'/%3E%3Cpath stroke='%23cf4421' d='M4 18h1'/%3E%3Cpath stroke='%23cf4725' d='M5 18h1'/%3E%3Cpath stroke='%23cf4726' d='M6 18h1'/%3E%3Cpath stroke='%23cf4624' d='M7 18h1'/%3E%3Cpath stroke='%23d04723' d='M8 18h1'/%3E%3Cpath stroke='%23d14621' d='M9 18h1'/%3E%3Cpath stroke='%23d2451e' d='M10 18h1'/%3E%3Cpath stroke='%23d5451b' d='M11 18h1'/%3E%3Cpath stroke='%23d54216' d='M12 18h1'/%3E%3Cpath stroke='%23d64013' d='M13 18h1'/%3E%3Cpath stroke='%23d53d0e' d='M14 18h1'/%3E%3Cpath stroke='%23d63909' d='M15 18h1'/%3E%3Cpath stroke='%23d53504' d='M16 18h1'/%3E%3Cpath stroke='%23d13001' d='M17 18h1'/%3E%3Cpath stroke='%23c22a00' d='M18 18h1'/%3E%3Cpath stroke='%23ab3c1f' d='M19 18h1'/%3E%3Cpath stroke='%23eed6d0' d='M1 19h1'/%3E%3Cpath stroke='%23b54428' d='M2 19h1'/%3E%3Cpath stroke='%23a62b0d' d='M3 19h1'/%3E%3Cpath stroke='%23ac3011' d='M4 19h1'/%3E%3Cpath stroke='%23ab3112' d='M5 19h1'/%3E%3Cpath stroke='%23a93214' d='M6 19h1'/%3E%3Cpath stroke='%23a93012' d='M7 19h1'/%3E%3Cpath stroke='%23ac3213' d='M8 19h1'/%3E%3Cpath stroke='%23ad3213' d='M9 19h1'/%3E%3Cpath stroke='%23ae3110' d='M10 19h1'/%3E%3Cpath stroke='%23b1300d' d='M11 19h1'/%3E%3Cpath stroke='%23b22e0a' d='M12 19h1'/%3E%3Cpath stroke='%23b42d08' d='M13 19h1'/%3E%3Cpath stroke='%23b12a06' d='M14 19h1'/%3E%3Cpath stroke='%23b12803' d='M15 19h1'/%3E%3Cpath stroke='%23b42701' d='M16 19h1'/%3E%3Cpath stroke='%23ae2400' d='M17 19h1'/%3E%3Cpath stroke='%23ac3c1f' d='M18 19h1'/%3E%3Cpath stroke='%23ead4cf' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h3m5 0h7'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23ffe4e1' d='M1 1h1'/%3E%3Cpath stroke='%23ff9285' d='M2 1h1m4 3h1M2 7h1'/%3E%3Cpath stroke='%23ff8c7f' d='M3 1h1'/%3E%3Cpath stroke='%23ff8375' d='M4 1h1m5 3h1'/%3E%3Cpath stroke='%23ff7b6c' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23ff7868' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%23ff7362' d='M7 1h1'/%3E%3Cpath stroke='%23ff7363' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%23ff705f' d='M9 1h1M6 16h1'/%3E%3Cpath stroke='%23ff6f5f' d='M10 1h1'/%3E%3Cpath stroke='%23ff6e5d' d='M11 1h1m4 1h1m-5 3h1M2 13h1'/%3E%3Cpath stroke='%23ff6b5a' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%23f65' d='M13 1h2'/%3E%3Cpath stroke='%23ff6250' d='M15 1h1M2 15h1'/%3E%3Cpath stroke='%23ff5d4a' d='M16 1h1'/%3E%3Cpath stroke='%23fa5643' d='M17 1h1'/%3E%3Cpath stroke='%23eb6151' d='M18 1h1'/%3E%3Cpath stroke='%23f5dad7' d='M19 1h1'/%3E%3Cpath stroke='%23ff9386' d='M1 2h1'/%3E%3Cpath stroke='%23ffaea5' d='M2 2h1'/%3E%3Cpath stroke='%23ffb2a9' d='M3 2h1'/%3E%3Cpath stroke='%23ffa99f' d='M4 2h1'/%3E%3Cpath stroke='%23ff9e93' d='M5 2h1m0 1h1M5 4h1'/%3E%3Cpath stroke='%23ff998d' d='M6 2h1M4 6h1'/%3E%3Cpath stroke='%23ff9488' d='M7 2h1m0 1h1'/%3E%3Cpath stroke='%23ff9083' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%23ff8e80' d='M9 2h1'/%3E%3Cpath stroke='%23ff8b7d' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%23ff887a' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%23ff8475' d='M12 2h1M8 5h1'/%3E%3Cpath stroke='%23ff8172' d='M13 2h1M7 9h1m-3 3h1'/%3E%3Cpath stroke='%23ff7c6d' d='M14 2h1'/%3E%3Cpath stroke='%23ff7666' d='M15 2h1M1 7h1m1 6h1m0 1h1'/%3E%3Cpath stroke='%23fc6352' d='M17 2h1'/%3E%3Cpath stroke='%23e54' d='M18 2h1'/%3E%3Cpath stroke='%23d3594b' d='M19 2h1'/%3E%3Cpath stroke='%23ff8d80' d='M1 3h1'/%3E%3Cpath stroke='%23ffb3ab' d='M2 3h1'/%3E%3Cpath stroke='%23ffb8b0' d='M3 3h1'/%3E%3Cpath stroke='%23ffb0a6' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23ffa49a' d='M5 3h1'/%3E%3Cpath stroke='%23ff988d' d='M7 3h1M6 4h1'/%3E%3Cpath stroke='%23ff9184' d='M9 3h1'/%3E%3Cpath stroke='%23ff8e81' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23ff8c7e' d='M11 3h1M2 8h1'/%3E%3Cpath stroke='%23ff8576' d='M13 3h1M6 9h1m-4 1h1'/%3E%3Cpath stroke='%23ff7f70' d='M14 3h1M1 5h1m0 5h1m1 2h1'/%3E%3Cpath stroke='%23ff796a' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%23ff7161' d='M16 3h1M3 14h1'/%3E%3Cpath stroke='%23fc6857' d='M17 3h1'/%3E%3Cpath stroke='%23ed5948' d='M18 3h1M6 18h1'/%3E%3Cpath stroke='%23cb4233' d='M19 3h1'/%3E%3Cpath stroke='%23ff8577' d='M1 4h1m0 5h1'/%3E%3Cpath stroke='%23ffaaa0' d='M2 4h1'/%3E%3Cpath stroke='%23ffa89e' d='M4 4h1'/%3E%3Cpath stroke='%23ff8d7f' d='M8 4h1'/%3E%3Cpath stroke='%23ff8879' d='M9 4h1'/%3E%3Cpath stroke='%23ff8071' d='M11 4h1M8 6h1'/%3E%3Cpath stroke='%23ff7a6b' d='M12 4h1M1 6h1m7 0h1m-6 7h1'/%3E%3Cpath stroke='%23ff7969' d='M13 4h1'/%3E%3Cpath stroke='%23ff7464' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%23ff7060' d='M15 4h1'/%3E%3Cpath stroke='%23ff6c5b' d='M16 4h1m-4 1h1'/%3E%3Cpath stroke='%23fc6655' d='M17 4h1'/%3E%3Cpath stroke='%23ef5c4b' d='M18 4h1'/%3E%3Cpath stroke='%23cc4636' d='M19 4h1'/%3E%3Cpath stroke='%23ffa095' d='M2 5h1'/%3E%3Cpath stroke='%23ffa59b' d='M3 5h1'/%3E%3Cpath stroke='%23ff9f94' d='M4 5h1'/%3E%3Cpath stroke='%23ffd5d1' d='M5 5h1'/%3E%3Cpath stroke='%23ff8a7c' d='M7 5h1'/%3E%3Cpath stroke='%23ff7e6f' d='M9 5h1'/%3E%3Cpath stroke='%23ffc2bb' d='M15 5h1'/%3E%3Cpath stroke='%23ff6554' d='M16 5h1'/%3E%3Cpath stroke='%23fc6453' d='M17 5h1'/%3E%3Cpath stroke='%23ee5d4d' d='M18 5h1'/%3E%3Cpath stroke='%23cd4939' d='M19 5h1'/%3E%3Cpath stroke='%23ff998e' d='M2 6h1'/%3E%3Cpath stroke='%23ff9d92' d='M3 6h1'/%3E%3Cpath stroke='%23ff6f5e' d='M11 6h1'/%3E%3Cpath stroke='%23ff6a58' d='M12 6h1'/%3E%3Cpath stroke='%23ff6451' d='M16 6h1'/%3E%3Cpath stroke='%23fd6451' d='M17 6h1'/%3E%3Cpath stroke='%23ee5e4d' d='M18 6h1'/%3E%3Cpath stroke='%23ce4a3a' d='M19 6h1'/%3E%3Cpath stroke='%23ff968a' d='M3 7h1'/%3E%3Cpath stroke='%23ff9487' d='M4 7h1'/%3E%3Cpath stroke='%23ff8f82' d='M5 7h1'/%3E%3Cpath stroke='%23ff7968' d='M9 7h1m-3 8h1'/%3E%3Cpath stroke='%23ff7463' d='M10 7h1'/%3E%3Cpath stroke='%23ff6f5d' d='M11 7h1'/%3E%3Cpath stroke='%23ff6450' d='M15 7h1'/%3E%3Cpath stroke='%23ff6552' d='M16 7h1'/%3E%3Cpath stroke='%23fd6653' d='M17 7h1'/%3E%3Cpath stroke='%23f0604e' d='M18 7h1'/%3E%3Cpath stroke='%23ce4a3b' d='M19 7h1'/%3E%3Cpath stroke='%23ff7565' d='M1 8h1'/%3E%3Cpath stroke='%23ff8677' d='M6 8h1m-2 2h1'/%3E%3Cpath stroke='%23ff7664' d='M10 8h1'/%3E%3Cpath stroke='%23ff6a53' d='M14 8h1'/%3E%3Cpath stroke='%23ff6953' d='M15 8h1'/%3E%3Cpath stroke='%23ff6b55' d='M16 8h1'/%3E%3Cpath stroke='%23fd6b56' d='M17 8h1'/%3E%3Cpath stroke='%23f06350' d='M18 8h1'/%3E%3Cpath stroke='%23cf4c3b' d='M19 8h1'/%3E%3Cpath stroke='%23ff6d5d' d='M1 9h1'/%3E%3Cpath stroke='%23ff8b7c' d='M4 9h1'/%3E%3Cpath stroke='%23ff775d' d='M13 9h1'/%3E%3Cpath stroke='%23ff745a' d='M14 9h1'/%3E%3Cpath stroke='%23ff7359' d='M15 9h1'/%3E%3Cpath stroke='%23ff735a' d='M16 9h1'/%3E%3Cpath stroke='%23fd715a' d='M17 9h1'/%3E%3Cpath stroke='%23f16752' d='M18 9h1'/%3E%3Cpath stroke='%23d24e3c' d='M19 9h1'/%3E%3Cpath stroke='%23ff6a59' d='M1 10h1m2 6h1'/%3E%3Cpath stroke='%23ff8778' d='M4 10h1'/%3E%3Cpath stroke='%23ff8374' d='M6 10h1m-3 1h2'/%3E%3Cpath stroke='%23ff8171' d='M7 10h1m-5 1h1'/%3E%3Cpath stroke='%23ff8271' d='M8 10h1m-2 1h1'/%3E%3Cpath stroke='%23ff8369' d='M12 10h1'/%3E%3Cpath stroke='%23ff8165' d='M13 10h1'/%3E%3Cpath stroke='%23ff7e61' d='M14 10h1'/%3E%3Cpath stroke='%23ff7d5f' d='M15 10h1'/%3E%3Cpath stroke='%23ff7b5f' d='M16 10h1'/%3E%3Cpath stroke='%23fd775d' d='M17 10h1'/%3E%3Cpath stroke='%23f36a53' d='M18 10h1'/%3E%3Cpath stroke='%23d34e3c' d='M19 10h1'/%3E%3Cpath stroke='%23ff6553' d='M1 11h1'/%3E%3Cpath stroke='%23ff8273' d='M6 11h1'/%3E%3Cpath stroke='%23ff8c6c' d='M13 11h1'/%3E%3Cpath stroke='%23ff8969' d='M14 11h1'/%3E%3Cpath stroke='%23ff8665' d='M15 11h1'/%3E%3Cpath stroke='%23ff8262' d='M16 11h1'/%3E%3Cpath stroke='%23fd7c5e' d='M17 11h1'/%3E%3Cpath stroke='%23f46d54' d='M18 11h1'/%3E%3Cpath stroke='%23d64f3b' d='M19 11h1'/%3E%3Cpath stroke='%23ff5f4d' d='M1 12h1'/%3E%3Cpath stroke='%23ff8070' d='M6 12h1'/%3E%3Cpath stroke='%23ff9279' d='M10 12h1'/%3E%3Cpath stroke='%23fff8f6' d='M13 12h1'/%3E%3Cpath stroke='%23ff936f' d='M14 12h1'/%3E%3Cpath stroke='%23ff906c' d='M15 12h1'/%3E%3Cpath stroke='%23ff8967' d='M16 12h1'/%3E%3Cpath stroke='%23fe7f5f' d='M17 12h1'/%3E%3Cpath stroke='%23f56e52' d='M18 12h1'/%3E%3Cpath stroke='%23d84f39' d='M19 12h1'/%3E%3Cpath stroke='%23ff5c4a' d='M1 13h1'/%3E%3Cpath stroke='%23ff7d6e' d='M5 13h1'/%3E%3Cpath stroke='%23ff907a' d='M9 13h1'/%3E%3Cpath stroke='%23ff957c' d='M10 13h1'/%3E%3Cpath stroke='%23ff9a7e' d='M11 13h1'/%3E%3Cpath stroke='%23ff9670' d='M15 13h1'/%3E%3Cpath stroke='%23ff8e68' d='M16 13h1'/%3E%3Cpath stroke='%23fe815e' d='M17 13h1'/%3E%3Cpath stroke='%23f66c4f' d='M18 13h1'/%3E%3Cpath stroke='%23da4d36' d='M19 13h1'/%3E%3Cpath stroke='%23ff5744' d='M1 14h1'/%3E%3Cpath stroke='%23ff6857' d='M2 14h1'/%3E%3Cpath stroke='%23ff8672' d='M8 14h1'/%3E%3Cpath stroke='%23ff8f78' d='M9 14h1'/%3E%3Cpath stroke='%23ff967c' d='M10 14h1'/%3E%3Cpath stroke='%23ff9c7e' d='M11 14h1'/%3E%3Cpath stroke='%23ffa07e' d='M12 14h1'/%3E%3Cpath stroke='%23ff8e66' d='M16 14h1'/%3E%3Cpath stroke='%23fe7f5a' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%23f76a4b' d='M18 14h1'/%3E%3Cpath stroke='%23da4a33' d='M19 14h1'/%3E%3Cpath stroke='%23ff523f' d='M1 15h1'/%3E%3Cpath stroke='%23ff7160' d='M4 15h1'/%3E%3Cpath stroke='%23ffc7c1' d='M5 15h1'/%3E%3Cpath stroke='%23ff836f' d='M8 15h1'/%3E%3Cpath stroke='%23ff8b74' d='M9 15h1'/%3E%3Cpath stroke='%23ff9379' d='M10 15h1'/%3E%3Cpath stroke='%23ff9a7c' d='M11 15h1'/%3E%3Cpath stroke='%23ff9e7c' d='M12 15h1'/%3E%3Cpath stroke='%23ffa07a' d='M13 15h1'/%3E%3Cpath stroke='%23ffd5c5' d='M15 15h1'/%3E%3Cpath stroke='%23ff8b62' d='M16 15h1'/%3E%3Cpath stroke='%23fe7c56' d='M17 15h1'/%3E%3Cpath stroke='%23f76545' d='M18 15h1'/%3E%3Cpath stroke='%23db4931' d='M19 15h1'/%3E%3Cpath stroke='%23ff4f3a' d='M1 16h1'/%3E%3Cpath stroke='%23ff5c49' d='M2 16h1'/%3E%3Cpath stroke='%23ff6452' d='M3 16h1'/%3E%3Cpath stroke='%23ff6e5e' d='M5 16h1'/%3E%3Cpath stroke='%23ff7462' d='M7 16h1'/%3E%3Cpath stroke='%23ff7c68' d='M8 16h1'/%3E%3Cpath stroke='%23ff846d' d='M9 16h1'/%3E%3Cpath stroke='%23ff8b71' d='M10 16h1'/%3E%3Cpath stroke='%23ff9174' d='M11 16h1'/%3E%3Cpath stroke='%23ff9674' d='M12 16h1'/%3E%3Cpath stroke='%23ff9571' d='M13 16h1'/%3E%3Cpath stroke='%23ff946d' d='M14 16h1'/%3E%3Cpath stroke='%23ff8d66' d='M15 16h1'/%3E%3Cpath stroke='%23ff855c' d='M16 16h1'/%3E%3Cpath stroke='%23fe7650' d='M17 16h1'/%3E%3Cpath stroke='%23f66141' d='M18 16h1'/%3E%3Cpath stroke='%23da462f' d='M19 16h1'/%3E%3Cpath stroke='%23fa4935' d='M1 17h1'/%3E%3Cpath stroke='%23fb5441' d='M2 17h1'/%3E%3Cpath stroke='%23fc5c4a' d='M3 17h1'/%3E%3Cpath stroke='%23fb6150' d='M4 17h1'/%3E%3Cpath stroke='%23fc6554' d='M5 17h1'/%3E%3Cpath stroke='%23fc6756' d='M6 17h1'/%3E%3Cpath stroke='%23fc6a58' d='M7 17h1'/%3E%3Cpath stroke='%23fc715c' d='M8 17h1'/%3E%3Cpath stroke='%23fc7761' d='M9 17h1'/%3E%3Cpath stroke='%23fd7e64' d='M10 17h1'/%3E%3Cpath stroke='%23fd8367' d='M11 17h1'/%3E%3Cpath stroke='%23fe8566' d='M12 17h1'/%3E%3Cpath stroke='%23fe8664' d='M13 17h1'/%3E%3Cpath stroke='%23fe8460' d='M14 17h1'/%3E%3Cpath stroke='%23fe7651' d='M16 17h1'/%3E%3Cpath stroke='%23fc6b47' d='M17 17h1'/%3E%3Cpath stroke='%23f2573a' d='M18 17h1'/%3E%3Cpath stroke='%23d4402a' d='M19 17h1'/%3E%3Cpath stroke='%23e85848' d='M1 18h1'/%3E%3Cpath stroke='%23ed4a37' d='M2 18h1'/%3E%3Cpath stroke='%23ec4f3d' d='M3 18h1'/%3E%3Cpath stroke='%23ee5443' d='M4 18h1'/%3E%3Cpath stroke='%23ed5746' d='M5 18h1'/%3E%3Cpath stroke='%23ee5a48' d='M7 18h1'/%3E%3Cpath stroke='%23ef5e4b' d='M8 18h1'/%3E%3Cpath stroke='%23f0644e' d='M9 18h1'/%3E%3Cpath stroke='%23f16750' d='M10 18h1'/%3E%3Cpath stroke='%23f46c52' d='M11 18h1'/%3E%3Cpath stroke='%23f66d51' d='M12 18h1'/%3E%3Cpath stroke='%23f66e51' d='M13 18h1'/%3E%3Cpath stroke='%23f66c4e' d='M14 18h1'/%3E%3Cpath stroke='%23f86a4a' d='M15 18h1'/%3E%3Cpath stroke='%23f76343' d='M16 18h1'/%3E%3Cpath stroke='%23f3583a' d='M17 18h1'/%3E%3Cpath stroke='%23e54930' d='M18 18h1'/%3E%3Cpath stroke='%23cd5140' d='M19 18h1'/%3E%3Cpath stroke='%23f6d9d6' d='M1 19h1'/%3E%3Cpath stroke='%23d25344' d='M2 19h1'/%3E%3Cpath stroke='%23c93c2b' d='M3 19h1'/%3E%3Cpath stroke='%23ca3f2f' d='M4 19h1'/%3E%3Cpath stroke='%23ca4131' d='M5 19h1'/%3E%3Cpath stroke='%23ca4333' d='M6 19h1'/%3E%3Cpath stroke='%23cc4332' d='M7 19h1'/%3E%3Cpath stroke='%23cf4434' d='M8 19h1'/%3E%3Cpath stroke='%23d24936' d='M9 19h1'/%3E%3Cpath stroke='%23d34936' d='M10 19h1'/%3E%3Cpath stroke='%23d84b37' d='M11 19h1'/%3E%3Cpath stroke='%23da4c36' d='M12 19h1'/%3E%3Cpath stroke='%23dc4d36' d='M13 19h1'/%3E%3Cpath stroke='%23d94933' d='M14 19h1'/%3E%3Cpath stroke='%23de4a32' d='M15 19h1'/%3E%3Cpath stroke='%23dd482f' d='M16 19h1'/%3E%3Cpath stroke='%23d6402a' d='M17 19h1'/%3E%3Cpath stroke='%23cf5140' d='M18 19h1'/%3E%3Cpath stroke='%23f1d8d5' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M6 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M7 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M8 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bced' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7baec' d='M19 0h1m0 1h1'/%3E%3Cpath stroke='%23dad2d0' d='M1 1h1'/%3E%3Cpath stroke='%23643529' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%235a1d0d' d='M3 1h1'/%3E%3Cpath stroke='%235d1e0d' d='M4 1h1'/%3E%3Cpath stroke='%235f1e0e' d='M5 1h1'/%3E%3Cpath stroke='%2363200e' d='M6 1h1'/%3E%3Cpath stroke='%2368210f' d='M7 1h1'/%3E%3Cpath stroke='%236f2310' d='M8 1h1'/%3E%3Cpath stroke='%23732511' d='M9 1h1'/%3E%3Cpath stroke='%23752511' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%237c2712' d='M11 1h1'/%3E%3Cpath stroke='%23822912' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%23852a13' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%23892b13' d='M14 1h1'/%3E%3Cpath stroke='%238a2b14' d='M15 1h1M6 2h1'/%3E%3Cpath stroke='%238e2d14' d='M16 1h1M7 2h1'/%3E%3Cpath stroke='%238c2c14' d='M17 1h1M2 6h1'/%3E%3Cpath stroke='%239d4732' d='M18 1h1M1 18h1'/%3E%3Cpath stroke='%23ebd8d3' d='M19 1h1'/%3E%3Cpath stroke='%2369220f' d='M2 2h1'/%3E%3Cpath stroke='%23782611' d='M3 2h1'/%3E%3Cpath stroke='%237e2812' d='M4 2h1'/%3E%3Cpath stroke='%23932e15' d='M8 2h1'/%3E%3Cpath stroke='%239a3016' d='M9 2h1'/%3E%3Cpath stroke='%239c3116' d='M10 2h1'/%3E%3Cpath stroke='%23a03217' d='M11 2h1'/%3E%3Cpath stroke='%23a43418' d='M12 2h1'/%3E%3Cpath stroke='%23a73518' d='M13 2h1'/%3E%3Cpath stroke='%23aa3618' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%23ab3618' d='M15 2h1'/%3E%3Cpath stroke='%23ad3719' d='M16 2h1m1 0h1M2 16h1m-1 1h1'/%3E%3Cpath stroke='%23ac3618' d='M17 2h1'/%3E%3Cpath stroke='%23b24e35' d='M19 2h1'/%3E%3Cpath stroke='%23591c0d' d='M1 3h1M1 4h1'/%3E%3Cpath stroke='%23792711' d='M2 3h1'/%3E%3Cpath stroke='%238d2c14' d='M3 3h1'/%3E%3Cpath stroke='%23962e15' d='M4 3h1'/%3E%3Cpath stroke='%239a2f16' d='M5 3h1'/%3E%3Cpath stroke='%23a13117' d='M6 3h1'/%3E%3Cpath stroke='%23a63317' d='M7 3h1'/%3E%3Cpath stroke='%23aa3418' d='M8 3h1'/%3E%3Cpath stroke='%23af3619' d='M9 3h1'/%3E%3Cpath stroke='%23b23719' d='M10 3h1M8 4h1M4 8h1'/%3E%3Cpath stroke='%23b5391a' d='M11 3h1'/%3E%3Cpath stroke='%23b73a1b' d='M12 3h1'/%3E%3Cpath stroke='%23b93b1b' d='M13 3h1'/%3E%3Cpath stroke='%23ba3b1b' d='M14 3h2m3 0h1M3 13h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23bb3b1b' d='M16 3h3M3 15h1'/%3E%3Cpath stroke='%23802812' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23962f15' d='M3 4h1'/%3E%3Cpath stroke='%239e3016' d='M4 4h1'/%3E%3Cpath stroke='%23a43216' d='M5 4h1'/%3E%3Cpath stroke='%23aa3317' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%23ae3518' d='M7 4h1'/%3E%3Cpath stroke='%23b5381a' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%23b8391a' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%23ba3a1b' d='M11 4h1m-8 7h2'/%3E%3Cpath stroke='%23bc3b1c' d='M12 4h1m-9 8h1'/%3E%3Cpath stroke='%23bd3c1c' d='M13 4h1m-1 1h1m-2 1h1m-7 6h1m-3 1h2'/%3E%3Cpath stroke='%23be3d1c' d='M14 4h3m-1 1h1m-1 1h1M4 14h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23bf3d1c' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1M4 17h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%235b1d0d' d='M1 5h1'/%3E%3Cpath stroke='%239c3016' d='M3 5h1'/%3E%3Cpath stroke='%23a43217' d='M4 5h1'/%3E%3Cpath stroke='%23b8553e' d='M5 5h1'/%3E%3Cpath stroke='%23d59485' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%23b33619' d='M7 5h1'/%3E%3Cpath stroke='%23b53719' d='M8 5h1'/%3E%3Cpath stroke='%23b8381a' d='M9 5h1M6 8h1'/%3E%3Cpath stroke='%23b9391b' d='M10 5h1'/%3E%3Cpath stroke='%23ba391b' d='M11 5h1M6 9h1m-2 1h1'/%3E%3Cpath stroke='%23bc3b1b' d='M12 5h1m-2 1h1m-6 5h1m-2 1h1'/%3E%3Cpath stroke='%23dc9887' d='M14 5h1'/%3E%3Cpath stroke='%23c85d42' d='M15 5h1M5 15h1'/%3E%3Cpath stroke='%23611f0e' d='M1 6h1'/%3E%3Cpath stroke='%23a23217' d='M3 6h1'/%3E%3Cpath stroke='%23d79585' d='M6 6h1'/%3E%3Cpath stroke='%23d89585' d='M7 6h1'/%3E%3Cpath stroke='%23b8371a' d='M8 6h1'/%3E%3Cpath stroke='%23ba391a' d='M9 6h1'/%3E%3Cpath stroke='%23bb3a1b' d='M10 6h1m-5 4h1'/%3E%3Cpath stroke='%23dd9887' d='M13 6h3m-4 1h1m-2 1h1M9 9h1m-2 2h1m-2 1h1m-2 1h1m-2 1h2'/%3E%3Cpath stroke='%23c03e1d' d='M17 6h1m-2 1h3m0 1h1m-1 1h1M7 16h1m-2 1h2m0 1h1'/%3E%3Cpath stroke='%2365200e' d='M1 7h1'/%3E%3Cpath stroke='%23902d15' d='M2 7h1'/%3E%3Cpath stroke='%23a73418' d='M3 7h1'/%3E%3Cpath stroke='%23af3518' d='M4 7h1'/%3E%3Cpath stroke='%23b43619' d='M5 7h1'/%3E%3Cpath stroke='%23d99585' d='M6 7h1'/%3E%3Cpath stroke='%23da9686' d='M7 7h1'/%3E%3Cpath stroke='%23db9686' d='M8 7h1M7 8h1'/%3E%3Cpath stroke='%23bc3a1b' d='M9 7h1M7 9h1'/%3E%3Cpath stroke='%23bd3b1b' d='M10 7h1m-4 3h1'/%3E%3Cpath stroke='%23be3c1c' d='M11 7h1m-2 1h1m-3 2h1m-2 1h1'/%3E%3Cpath stroke='%23de9987' d='M13 7h2m-3 1h2m-4 1h2m-3 1h1m-2 2h1m-2 2h1'/%3E%3Cpath stroke='%23c03f1d' d='M15 7h1m-9 8h1'/%3E%3Cpath stroke='%236a220f' d='M1 8h1'/%3E%3Cpath stroke='%23952f15' d='M2 8h1'/%3E%3Cpath stroke='%23ac3518' d='M3 8h1'/%3E%3Cpath stroke='%23b63719' d='M5 8h1'/%3E%3Cpath stroke='%23dc9786' d='M8 8h2M8 9h1'/%3E%3Cpath stroke='%23c2401d' d='M14 8h1m2 0h1m1 3h1M8 14h1m-1 2h1m-1 1h1m0 1h1m1 1h1'/%3E%3Cpath stroke='%23c2401e' d='M15 8h2m1 1h1M8 15h1'/%3E%3Cpath stroke='%23c13f1d' d='M18 8h1m0 2h1M9 19h2'/%3E%3Cpath stroke='%23702410' d='M1 9h1'/%3E%3Cpath stroke='%239b3016' d='M2 9h1'/%3E%3Cpath stroke='%23b03619' d='M3 9h1'/%3E%3Cpath stroke='%23b9381a' d='M5 9h1'/%3E%3Cpath stroke='%23df9a88' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23c4421e' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1m-1 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h3'/%3E%3Cpath stroke='%23c5431e' d='M14 9h1'/%3E%3Cpath stroke='%23c5431f' d='M15 9h1m-4 1h1m5 1h1m-9 1h1m-2 2h1m-1 1h1m0 2h1m0 1h1m6 0h1'/%3E%3Cpath stroke='%239e3217' d='M2 10h1'/%3E%3Cpath stroke='%23b4381a' d='M3 10h1'/%3E%3Cpath stroke='%23df9a87' d='M10 10h1m-2 1h1m-2 2h1'/%3E%3Cpath stroke='%23c6441f' d='M13 10h1m3 0h1m-8 3h1m-1 3h1'/%3E%3Cpath stroke='%23c74520' d='M14 10h2m-6 4h1m-1 1h1m7 2h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23c7451f' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%237b2711' d='M1 11h1'/%3E%3Cpath stroke='%23a13217' d='M2 11h1'/%3E%3Cpath stroke='%23b7391a' d='M3 11h1'/%3E%3Cpath stroke='%23e09b88' d='M11 11h1'/%3E%3Cpath stroke='%23e29d89' d='M12 11h1'/%3E%3Cpath stroke='%23c94621' d='M13 11h1m-3 2h1'/%3E%3Cpath stroke='%23ca4721' d='M14 11h1m2 1h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%23ca4821' d='M15 11h1m1 6h1'/%3E%3Cpath stroke='%23c94620' d='M16 11h1m1 3h1m-8 2h1m6 0h1'/%3E%3Cpath stroke='%23c84620' d='M17 11h1m0 2h1'/%3E%3Cpath stroke='%23a53418' d='M2 12h1'/%3E%3Cpath stroke='%23b83a1b' d='M3 12h1'/%3E%3Cpath stroke='%23e19d89' d='M11 12h1'/%3E%3Cpath stroke='%23e39e89' d='M12 12h1'/%3E%3Cpath stroke='%23e0947c' d='M13 12h1'/%3E%3Cpath stroke='%23cc4a22' d='M14 12h1m-3 2h1m4 0h1m-6 1h1'/%3E%3Cpath stroke='%23cd4a22' d='M15 12h1m0 1h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23cb4922' d='M16 12h1m0 1h1m-5 4h1'/%3E%3Cpath stroke='%23c3411e' d='M19 12h1m-1 1h1m-1 4h1m-8 2h2m3 0h1'/%3E%3Cpath stroke='%23a93618' d='M2 13h1'/%3E%3Cpath stroke='%23dd9987' d='M7 13h1m-2 2h1'/%3E%3Cpath stroke='%23e39f8a' d='M12 13h1'/%3E%3Cpath stroke='%23e59f8b' d='M13 13h1'/%3E%3Cpath stroke='%23e5a08b' d='M14 13h1m-2 1h1'/%3E%3Cpath stroke='%23ce4c23' d='M15 13h1m0 3h1'/%3E%3Cpath stroke='%23882b13' d='M1 14h1'/%3E%3Cpath stroke='%23e6a08b' d='M14 14h1'/%3E%3Cpath stroke='%23e6a18b' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23ce4b23' d='M16 14h1m-4 1h1'/%3E%3Cpath stroke='%238b2c14' d='M1 15h1m-1 1h1'/%3E%3Cpath stroke='%23ac3619' d='M2 15h1'/%3E%3Cpath stroke='%23d76b48' d='M15 15h1'/%3E%3Cpath stroke='%23cf4c23' d='M16 15h1m-2 1h1'/%3E%3Cpath stroke='%23c94721' d='M18 15h1m-3 3h1'/%3E%3Cpath stroke='%23bb3c1b' d='M3 16h1'/%3E%3Cpath stroke='%23bf3e1d' d='M6 16h1'/%3E%3Cpath stroke='%23cb4821' d='M12 16h1'/%3E%3Cpath stroke='%23cd4b23' d='M14 16h1'/%3E%3Cpath stroke='%23cc4922' d='M17 16h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%238d2d14' d='M1 17h1'/%3E%3Cpath stroke='%23bc3c1b' d='M3 17h1m-1 1h1'/%3E%3Cpath stroke='%23c84520' d='M11 17h1m1 1h1'/%3E%3Cpath stroke='%23ae3719' d='M2 18h1'/%3E%3Cpath stroke='%23c94720' d='M14 18h1'/%3E%3Cpath stroke='%23c95839' d='M19 18h1'/%3E%3Cpath stroke='%23a7bdf0' d='M0 19h1m0 1h1'/%3E%3Cpath stroke='%23ead7d3' d='M1 19h1'/%3E%3Cpath stroke='%23b34e35' d='M2 19h1'/%3E%3Cpath stroke='%23c03e1c' d='M8 19h1'/%3E%3Cpath stroke='%23c9583a' d='M18 19h1'/%3E%3Cpath stroke='%23f3dbd4' d='M19 19h1'/%3E%3Cpath stroke='%23a7bcef' d='M20 19h1m-2 1h1'/%3E%3C/svg%3E")
}
.status-bar{
margin: 0 3px;
box-shadow: inset 0 1px 2px grey;
padding: 2px 1px;
gap: 0
}
.status-bar-field{
-webkit-font-smoothing: antialiased;
box-shadow: none;
padding: 1px 2px;
border-right: 1px solid rgba(208,206,191,.75);
border-left: 1px solid hsla(0,0%,100%,.75)
}
.status-bar-field: first-of-type{
border-left: none
}
.status-bar-field: last-of-type{
border-right: none
}
button{
-webkit-font-smoothing: antialiased;
box-sizing: border-box;
border: 1px solid #003c74;
background: linear-gradient(180deg,#fff,#ecebe5 86%,#d8d0c4);
box-shadow: none;
border-radius: 3px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: none;
background: linear-gradient(180deg,#cdcac3,#e3e3db 8%,#e5e5de 94%,#f2f2f1)
}
button: not(: disabled): hover{
box-shadow: inset -1px 1px #fff0cf,inset 1px 2px #fdd889,inset -2px 2px #fbc761,inset 2px -2px #e5a01a
}
button.focused,button: focus{
box-shadow: inset -1px 1px #cee7ff,inset 1px 2px #98b8ea,inset -2px 2px #bcd4f6,inset 1px -1px #89ade4,inset 2px -2px #89ade4
}
button: :-moz-focus-inner{
border: 0
}
input,label,option,select,textarea{
-webkit-font-smoothing: antialiased
}
input[type=radio]{
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
margin: 0;
background: 0;
position: fixed;
opacity: 0;
border: none
}
input[type=radio]+label{
line-height: 16px
}
input[type=radio]+label: before{
background: linear-gradient(135deg,#dcdcd7,#fff);
border-radius: 50%;
border: 1px solid #1d5281
}
input[type=radio]: not([disabled]): not(: active)+label: hover: before{
box-shadow: inset -2px -2px #f8b636,inset 2px 2px #fedf9c
}
input[type=radio]: active+label: before{
background: linear-gradient(135deg,#b0b0a7,#e3e1d2)
}
input[type=radio]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a9dca6' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%234dbf4a' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23a0d29e' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%2355d551' d='M1 1h1'/%3E%3Cpath stroke='%2343c33f' d='M2 1h1'/%3E%3Cpath stroke='%2329a826' d='M3 1h1'/%3E%3Cpath stroke='%239acc98' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%2342c33f' d='M1 2h1'/%3E%3Cpath stroke='%2338b935' d='M2 2h1'/%3E%3Cpath stroke='%2321a121' d='M3 2h1'/%3E%3Cpath stroke='%23269623' d='M4 2h1'/%3E%3Cpath stroke='%232aa827' d='M1 3h1'/%3E%3Cpath stroke='%2322a220' d='M2 3h1'/%3E%3Cpath stroke='%23139210' d='M3 3h1'/%3E%3Cpath stroke='%2398c897' d='M4 3h1'/%3E%3Cpath stroke='%23249624' d='M2 4h1'/%3E%3Cpath stroke='%2398c997' d='M3 4h1'/%3E%3C/svg%3E")
}
input[type=radio]: focus+label{
outline: 1px dotted #000
}
input[type=radio][disabled]+label: before{
border: 1px solid #cac8bb;
background: #fff
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e8e6da' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23d2ceb5' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23e5e3d4' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%23d7d3bd' d='M1 1h1'/%3E%3Cpath stroke='%23d0ccb2' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23c7c2a2' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%23e2dfd0' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%23cdc8ac' d='M2 2h1'/%3E%3Cpath stroke='%23c5bf9f' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%23c3bd9c' d='M4 2h1'/%3E%3Cpath stroke='%23bfb995' d='M3 3h1'/%3E%3Cpath stroke='%23e2dfcf' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23c4be9d' d='M2 4h1'/%3E%3C/svg%3E")
}
input[type=email],input[type=password],textarea: :selection{
background: #2267cb;
color: #fff
}
input[type=range]: :-webkit-slider-thumb{
height: 21px;
width: 11px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(-8px)
}
input[type=range]: :-moz-range-thumb{
height: 21px;
width: 11px;
border: 0;
border-radius: 0;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(2px)
}
input[type=range]: :-webkit-slider-runnable-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range]: :-moz-range-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(-10px)
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(0)
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
fieldset{
box-shadow: none;
background: #fff;
border: 1px solid #d0d0bf;
border-radius: 4px;
padding-top: 10px
}
legend{
background: transparent;
color: #0046d5
}
.field-row{
display: flex;
align-items: center
}
.field-row>*+*{
margin-left: 6px
}
[class^=field-row]+[class^=field-row]{
margin-top: 6px
}
.field-row-stacked{
display: flex;
flex-direction: column
}
.field-row-stacked *+*{
margin-top: 6px
}
menu[role=tablist] button{
background: linear-gradient(180deg,#fff,#fafaf9 26%,#f0f0ea 95%,#ecebe5);
margin-left: -1px;
margin-right: 2px;
border-radius: 0;
border-color: #91a7b4;
border-top-right-radius: 3px;
border-top-left-radius: 3px;
padding: 0 12px 3px
}
menu[role=tablist] button: hover{
box-shadow: unset;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]{
border-color: #919b9c;
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]: first-of-type: before{
content: "";
display: block;
position: absolute;
z-index: -1;
top: 100%;
left: -1px;
height: 2px;
width: 0;
border-left: 1px solid #919b9c
}
[role=tabpanel]{
box-shadow: inset 1px 1px #fcfcfe,inset -1px -1px #fcfcfe,1px 2px 2px 0 rgba(208,206,191,.75)
}
ul.tree-view{
-webkit-font-smoothing: auto;
border: 1px solid #7f9db9;
padding: 2px 5px
}
@keyframes sliding{
0%{
transform: translateX(-30px)
}
to{
transform: translateX(100%)
}
}
progress{
box-sizing: border-box;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
height: 14px;
border: 1px solid #686868;
border-radius: 4px;
padding: 1px 2px 1px 0;
overflow: hidden;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress,progress: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px
}
progress[value]: :-webkit-progress-bar{
background-color: transparent
}
progress[value]: :-webkit-progress-value{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress[value]: :-moz-progress-bar{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-webkit-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-webkit-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]){
position: relative
}
progress: not([value]): before{
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before,progress: not([value]): before: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): after{
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): after,progress: not([value]): after: not([value]){
animation: sliding 2s linear 0s infinite
}
progress: not([value]): after: not([value]){
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-moz-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-moz-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress:not([value])::-moz-progress-bar {
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite;
}
progress:not([value])::after {
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
}
progress:not([value])::before {
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868;
}
Element {
}
progress:not([value]) {
position: relative;
}
progress:not([value]) {
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px;
}
</style>
</head>
<body>
<script>
var log = console.log;
var theme = 'light';
var special_col_names = ["trial_index","arm_name","trial_status","generation_method","generation_node","hostname","run_time","start_time","exit_code","signal","end_time","program_string"]
var result_names = [
"ACCURACY",
"RUNTIME"
];
var result_min_max = [
"max",
"min"
];
var tab_results_headers_json = [
"trial_index",
"arm_name",
"trial_status",
"generation_method",
"generation_node",
"ACCURACY",
"RUNTIME",
"recent_samples_size",
"n_samples",
"feature_proportion",
"n_clusters",
"confidence"
];
var tab_results_csv_json = [
[
0,
"0_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.7000000000000001,
18,
1961,
2441,
0.7994235681295395,
11,
0.25
],
[
1,
"1_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
14,
4268,
2635,
0.09935181833617389,
28,
0.01
],
[
2,
"2_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
218,
3464,
54,
0.4454926552325487,
40,
0.25
],
[
3,
"3_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.71,
9,
303,
4857,
0.6557013112194836,
23,
0.1
],
[
4,
"4_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.6900000000000001,
13,
714,
1150,
0.16837931996397673,
47,
0.025
],
[
5,
"5_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.7000000000000001,
10,
3021,
3765,
0.995520461725071,
17,
0.005
],
[
6,
"6_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
22,
4718,
1340,
0.5785421654321253,
5,
0.001
],
[
7,
"7_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.7000000000000001,
11,
1556,
3721,
0.2575887008905411,
34,
0.01
],
[
8,
"8_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
36,
1638,
358,
0.7273352415598929,
35,
0.025
],
[
9,
"9_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.71,
10,
4648,
4538,
0.4362339479625225,
3,
0.05
],
[
10,
"10_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.7000000000000001,
11,
2635,
2111,
0.018946686176583172,
15,
0.001
],
[
11,
"11_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.64,
14,
1114,
2931,
0.8174539187122136,
49,
0.01
],
[
12,
"12_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.66,
11,
372,
1649,
0.3613845175355673,
22,
0.001
],
[
13,
"13_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.68,
11,
3383,
3408,
0.537121125716716,
42,
0.01
],
[
14,
"14_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.72,
22,
3869,
824,
0.8849022158700973,
30,
0.1
],
[
15,
"15_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.72,
9,
2348,
4067,
0.21662234274856745,
9,
0.025
],
[
16,
"16_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.6900000000000001,
11,
2219,
650,
0.9478231834210455,
8,
0.01
],
[
17,
"17_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.66,
30,
4057,
4281,
0.15370162615180016,
30,
0.005
],
[
18,
"18_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.68,
13,
3215,
1865,
0.29761102703027426,
44,
0.025
],
[
19,
"19_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.7000000000000001,
9,
522,
3231,
0.6008948708940297,
20,
0.05
],
[
20,
"20_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.6900000000000001,
12,
962,
2014,
0.08284200285375118,
49,
0.05
],
[
21,
"21_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.67,
10,
2801,
3067,
0.753558347363025,
14,
0.001
],
[
22,
"22_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.74,
32,
4459,
496,
0.6645361001808197,
1,
0.01
],
[
23,
"23_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.7000000000000001,
11,
1766,
4439,
0.4990328383874148,
38,
0.25
],
[
24,
"24_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.7000000000000001,
13,
1369,
1554,
0.5165910781640559,
33,
0.1
],
[
25,
"25_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.6900000000000001,
15,
4848,
3547,
0.319539596689865,
5,
0.25
],
[
26,
"26_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.71,
15,
2873,
973,
0.22923377092182637,
19,
0.01
],
[
27,
"27_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.66,
9,
883,
3982,
0.9346658155806362,
44,
0.005
],
[
28,
"28_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.73,
14,
133,
190,
0.3845163781028241,
24,
0.01
],
[
29,
"29_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.7000000000000001,
10,
3612,
4760,
0.7166777835357935,
39,
0.005
],
[
30,
"30_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
88,
4069,
162,
0.5382232862975838,
23,
0.001
],
[
31,
"31_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
2566,
1,
0.5036931800464584,
27,
0.01
],
[
32,
"32_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
37,
4659,
425,
0.5614165850416306,
13,
0.025
],
[
33,
"33_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
29,
4877,
582,
0.5520660018483368,
9,
0.01
],
[
34,
"34_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
31,
4532,
2982,
0.001,
1,
0.01
],
[
35,
"35_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
2098,
1,
0.5052247336271937,
32,
0.025
],
[
36,
"36_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
10,
4459,
4695,
0.999,
1,
0.025
],
[
37,
"37_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
35,
3614,
359,
0.5420306547052551,
6,
0.1
],
[
38,
"38_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
30,
4509,
3014,
0.001,
1,
0.025
],
[
39,
"39_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
392,
1,
0.5436585260934457,
50,
0.1
],
[
40,
"40_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
71,
1959,
196,
0.5488205514170482,
50,
0.005
],
[
41,
"41_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
27,
4942,
677,
0.6076267053248035,
1,
0.1
],
[
42,
"42_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.66,
10,
3215,
4645,
0.999,
1,
0.05
],
[
43,
"43_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
2992,
10,
0.5238923182231054,
12,
0.025
],
[
44,
"44_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
37,
4625,
424,
0.6130143167878366,
47,
0.01
],
[
45,
"45_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
321,
1046,
54,
0.5697116573942166,
50,
0.01
],
[
46,
"46_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
195,
1,
0.495680528866588,
47,
0.025
],
[
47,
"47_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
410,
1,
0.4537340426578289,
6,
0.1
],
[
48,
"48_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
37,
4135,
399,
0.5395478001350572,
17,
0.005
],
[
49,
"49_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
21,
4994,
1097,
0.5906769071808232,
1,
0.01
],
[
50,
"50_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
2953,
1,
0.5517813422890276,
50,
0.001
],
[
51,
"51_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
40,
4669,
355,
0.5381501301502927,
16,
0.001
],
[
52,
"52_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
11,
5000,
4686,
0.999,
1,
0.001
],
[
53,
"53_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
10,
3851,
4249,
0.999,
1,
0.1
],
[
54,
"54_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
9,
2417,
4562,
0.999,
1,
0.1
],
[
55,
"55_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
9,
1,
0.4225217177675143,
1,
0.025
],
[
56,
"56_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.64,
10,
1,
4465,
0.999,
1,
0.05
],
[
57,
"57_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
14,
117,
129,
0.5591333801018024,
1,
0.05
],
[
58,
"58_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
40,
3917,
335,
0.5805651250579085,
1,
0.001
],
[
59,
"59_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
74,
3212,
109,
0.5454095443663718,
27,
0.05
],
[
60,
"60_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
16,
4940,
1328,
0.6817138947703621,
44,
0.001
],
[
61,
"61_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
10,
1,
290,
0.5553328430734923,
12,
0.25
],
[
62,
"62_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
13,
3209,
1458,
0.7429193092984695,
30,
0.05
],
[
63,
"63_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
13,
3831,
2485,
0.16960379776409704,
50,
0.05
],
[
64,
"64_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
17,
4240,
1509,
0.7258467805984794,
38,
0.05
],
[
65,
"65_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
21,
556,
269,
0.5801042223969068,
14,
0.05
],
[
66,
"66_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
11,
39,
318,
0.5890254698963754,
12,
0.005
],
[
67,
"67_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
31,
5000,
1103,
0.001,
45,
0.01
],
[
68,
"68_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
18,
5000,
1131,
0.6790603201314617,
44,
0.1
],
[
69,
"69_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
18,
4955,
1124,
0.6906862711027979,
47,
0.05
],
[
70,
"70_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
18,
162,
118,
0.4509406566605528,
12,
0.25
],
[
71,
"71_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
18,
5000,
1439,
0.7535138349098021,
46,
0.001
],
[
72,
"72_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
13,
4768,
2428,
0.1353669943361861,
50,
0.01
],
[
73,
"73_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
13,
4822,
2562,
0.18051160012217926,
50,
0.05
],
[
74,
"74_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
9,
2037,
2476,
0.16410234589825423,
29,
0.05
],
[
75,
"75_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
13,
3863,
2466,
0.24437938226858277,
39,
0.05
],
[
76,
"76_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
17,
4762,
1381,
0.7285733157734036,
37,
0.05
],
[
77,
"77_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
16,
3929,
1552,
0.8508156677668397,
44,
0.1
],
[
78,
"78_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
17,
5000,
1356,
0.8471878383340222,
50,
0.001
],
[
79,
"79_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
12,
100,
316,
0.5947843037116589,
13,
0.025
],
[
80,
"80_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
14,
446,
493,
0.6486891497728949,
16,
0.05
],
[
81,
"81_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
16,
1735,
1414,
0.7246673261764393,
24,
0.05
],
[
82,
"82_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
19,
4614,
1265,
0.599654099729393,
38,
0.05
],
[
83,
"83_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
15,
3679,
2082,
0.999,
50,
0.005
],
[
84,
"84_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
18,
5000,
1404,
0.680486859622912,
50,
0.05
],
[
85,
"85_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
11,
4596,
5000,
0.8796772835549642,
26,
0.1
],
[
86,
"86_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
11,
630,
2532,
0.23674276421511808,
36,
0.05
],
[
87,
"87_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
13,
4947,
2551,
0.12531306042679816,
50,
0.005
],
[
88,
"88_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
15,
3881,
1493,
0.6971705710704436,
39,
0.005
],
[
89,
"89_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
13,
345,
472,
0.6466067590290216,
14,
0.001
],
[
90,
"90_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
19,
3880,
1101,
0.5995697336533438,
1,
0.1
],
[
91,
"91_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
23,
3897,
1025,
0.5996499827846054,
1,
0.05
],
[
92,
"92_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
14,
2186,
361,
0.5285571774712576,
1,
0.25
],
[
93,
"93_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
663,
1,
0.4327598302551583,
11,
0.05
],
[
94,
"94_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
20,
4682,
1350,
0.35961484539584837,
19,
0.005
],
[
95,
"95_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
745,
1,
0.4345512333037638,
11,
0.05
],
[
96,
"96_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
15,
1,
157,
0.42049604472417856,
30,
0.05
],
[
97,
"97_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
18,
1071,
805,
0.6260719086113967,
1,
0.1
],
[
98,
"98_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
45,
5000,
532,
0.48125372074992506,
49,
0.005
],
[
99,
"99_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
134,
611,
44,
0.4326707854227082,
10,
0.05
],
[
100,
"100_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
17,
4976,
1349,
0.644820173629899,
18,
0.05
],
[
101,
"101_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
48,
1142,
165,
0.5384132364634404,
1,
0.25
],
[
102,
"102_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
29,
2594,
179,
0.5729025822857717,
1,
0.05
],
[
103,
"103_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
63,
1792,
334,
0.6169663294984603,
38,
0.05
],
[
104,
"104_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
13,
231,
323,
0.5977744708385172,
1,
0.05
],
[
105,
"105_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
32,
4491,
525,
0.6027425861337375,
35,
0.25
],
[
106,
"106_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
28,
4538,
643,
0.5947158887617032,
50,
0.001
],
[
107,
"107_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
14,
4892,
2600,
0.999,
1,
0.005
],
[
108,
"108_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
10,
1,
235,
0.405428310552846,
1,
0.1
],
[
109,
"109_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
40,
1328,
288,
0.564963059159581,
1,
0.01
],
[
110,
"110_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
34,
4679,
546,
0.6637896853433776,
1,
0.25
],
[
111,
"111_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
21,
4636,
1268,
0.5295889159749317,
47,
0.25
],
[
112,
"112_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
16,
2464,
443,
0.5790532859401427,
1,
0.25
],
[
113,
"113_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.66,
13,
2746,
1802,
0.999,
50,
0.005
],
[
114,
"114_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
18,
4944,
2968,
0.09076807634053145,
31,
0.01
],
[
115,
"115_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
12,
1,
163,
0.5032645572114475,
9,
0.05
],
[
116,
"116_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
9,
99,
5000,
0.30820344631388585,
1,
0.1
],
[
117,
"117_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
17,
5000,
1571,
0.5948488338225619,
7,
0.25
],
[
118,
"118_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
20,
2606,
643,
0.5398776463361258,
18,
0.05
],
[
119,
"119_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
28,
5000,
724,
0.5698033576988432,
50,
0.05
],
[
120,
"120_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
23,
5000,
913,
0.48756995151916827,
1,
0.25
],
[
121,
"121_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
34,
2670,
195,
0.5658269821295396,
20,
0.25
],
[
122,
"122_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
16,
5000,
1752,
0.5798684311003537,
50,
0.005
],
[
123,
"123_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
688,
911,
0.29753067941988126,
50,
0.005
],
[
124,
"124_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
23,
5000,
972,
0.6016537352814465,
50,
0.05
],
[
125,
"125_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
38,
875,
210,
0.5193123199287984,
17,
0.25
],
[
126,
"126_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
28,
1920,
694,
0.22293759293104373,
23,
0.005
],
[
127,
"127_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
20,
5000,
1256,
0.39824878309676687,
50,
0.005
],
[
128,
"128_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
30,
4666,
843,
0.2657586136054961,
50,
0.005
],
[
129,
"129_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
25,
3424,
590,
0.282384555109895,
34,
0.01
],
[
130,
"130_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
28,
1291,
474,
0.5725057522798881,
1,
0.005
],
[
131,
"131_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
28,
1199,
450,
0.6723379613364256,
1,
0.1
],
[
132,
"132_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
9,
1,
4134,
0.001,
5,
0.025
],
[
133,
"133_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
12,
2341,
851,
0.306721429488016,
1,
0.005
],
[
134,
"134_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
10,
2934,
4948,
0.46002917574115226,
1,
0.025
],
[
135,
"135_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
19,
3071,
665,
0.5643384590799707,
50,
0.25
],
[
136,
"136_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
44,
855,
197,
0.6671489408167455,
15,
0.05
],
[
137,
"137_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
17,
5000,
1926,
0.6329179844153678,
50,
0.005
],
[
138,
"138_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
31,
5000,
786,
0.49700729480609307,
1,
0.01
],
[
139,
"139_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
17,
5000,
2779,
0.6299402725728229,
39,
0.1
],
[
140,
"140_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
19,
5000,
1733,
0.404247287668403,
16,
0.005
],
[
141,
"141_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
5000,
3133,
0.5981096986975203,
50,
0.1
],
[
142,
"142_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
18,
5000,
1970,
0.6329901703442663,
1,
0.25
],
[
143,
"143_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
12,
4297,
4593,
0.45316429330724384,
50,
0.1
],
[
144,
"144_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
21,
399,
212,
0.001,
9,
0.005
],
[
145,
"145_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
10,
1,
4364,
0.29931581236548627,
1,
0.05
],
[
146,
"146_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
15,
3254,
2209,
0.999,
48,
0.005
],
[
147,
"147_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
29,
2862,
408,
0.001,
8,
0.005
],
[
148,
"148_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
16,
5000,
2266,
0.7032204463028471,
1,
0.05
],
[
149,
"149_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
17,
5000,
2026,
0.001,
28,
0.01
],
[
150,
"150_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
88,
4996,
182,
0.315816181749681,
1,
0.005
],
[
151,
"151_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
56,
715,
726,
0.001,
50,
0.01
],
[
152,
"152_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
14,
1,
214,
0.001,
10,
0.01
],
[
153,
"153_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
14,
5000,
3352,
0.659771562176048,
1,
0.1
],
[
154,
"154_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
22,
4313,
1678,
0.001,
50,
0.01
],
[
155,
"155_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
37,
5000,
570,
0.23042832611783087,
50,
0.005
],
[
156,
"156_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
26,
2997,
992,
0.001,
50,
0.005
],
[
157,
"157_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
38,
494,
1818,
0.001,
50,
0.01
],
[
158,
"158_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
9,
246,
3909,
0.4132294782644957,
7,
0.25
],
[
159,
"159_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.65,
13,
1484,
3845,
0.48755209443094416,
50,
0.025
],
[
160,
"160_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
20,
4709,
2159,
0.001,
27,
0.01
],
[
161,
"161_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
14,
5000,
3551,
0.001,
50,
0.1
],
[
162,
"162_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
5000,
3187,
0.001,
2,
0.01
],
[
163,
"163_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
10,
1,
4942,
0.001,
50,
0.1
],
[
164,
"164_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
12,
5000,
4912,
0.001,
50,
0.25
],
[
165,
"165_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
13,
1981,
4659,
0.001,
33,
0.01
],
[
166,
"166_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
20,
5000,
1451,
0.008013663507275344,
1,
0.01
],
[
167,
"167_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
25,
5000,
912,
0.001,
18,
0.05
],
[
168,
"168_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
21,
5000,
1197,
0.001,
1,
0.05
],
[
169,
"169_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
13,
5000,
4399,
0.001,
1,
0.1
],
[
170,
"170_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
88,
4995,
233,
0.5756344835011702,
50,
0.05
],
[
171,
"171_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
12,
5000,
3998,
0.001,
15,
0.01
],
[
172,
"172_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
16,
5000,
2297,
0.001,
50,
0.25
],
[
173,
"173_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
99,
3950,
163,
0.39180424005718417,
8,
0.1
],
[
174,
"174_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
14,
5000,
3265,
0.001,
50,
0.1
],
[
175,
"175_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
18,
5000,
2508,
0.001,
1,
0.01
],
[
176,
"176_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
39,
5000,
1314,
0.001,
50,
0.01
],
[
177,
"177_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.65,
10,
2139,
2759,
0.001,
50,
0.01
],
[
178,
"178_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
10,
1,
4747,
0.001,
50,
0.1
],
[
179,
"179_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
14,
5000,
2679,
0.001,
50,
0.001
],
[
180,
"180_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
28,
5000,
2685,
0.001,
1,
0.1
],
[
181,
"181_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
18,
5000,
1645,
0.001,
50,
0.05
],
[
182,
"182_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
10,
1,
4620,
0.001,
50,
0.001
],
[
183,
"183_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
12,
5000,
3965,
0.001,
50,
0.25
],
[
184,
"184_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
32,
4245,
615,
0.001,
50,
0.1
],
[
185,
"185_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
10,
1,
188,
0.7057969684947133,
1,
0.05
],
[
186,
"186_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.62,
10,
1,
3652,
0.001,
50,
0.1
],
[
187,
"187_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
74,
3451,
161,
0.3305985686257936,
8,
0.25
],
[
188,
"188_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
39,
2686,
158,
0.001,
10,
0.05
],
[
189,
"189_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
18,
2261,
171,
0.001,
9,
0.25
],
[
190,
"190_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
40,
2627,
159,
0.001,
4,
0.1
],
[
191,
"191_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
83,
3710,
151,
0.001,
4,
0.005
],
[
192,
"192_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
24,
2307,
162,
0.12715269177440996,
1,
0.05
],
[
193,
"193_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
82,
4219,
197,
0.001,
50,
0.05
],
[
194,
"194_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
16,
2128,
173,
0.001,
1,
0.05
],
[
195,
"195_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
51,
1091,
179,
0.001,
1,
0.05
],
[
196,
"196_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
21,
2331,
170,
0.001,
1,
0.001
],
[
197,
"197_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
25,
3411,
562,
0.001,
50,
0.05
],
[
198,
"198_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
41,
2730,
161,
0.001,
1,
0.25
],
[
199,
"199_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
60,
4482,
255,
0.42260485445779306,
1,
0.01
],
[
200,
"200_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
39,
2646,
156,
0.001,
1,
0.001
],
[
201,
"201_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
30,
2483,
159,
0.001,
1,
0.025
],
[
202,
"202_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
21,
2282,
166,
0.001,
1,
0.005
],
[
203,
"203_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
39,
2835,
160,
0.001,
1,
0.05
],
[
204,
"204_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
20,
2147,
166,
0.001,
1,
0.25
],
[
205,
"205_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
31,
1246,
406,
0.001,
24,
0.25
],
[
206,
"206_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
29,
2404,
160,
0.001,
1,
0.05
],
[
207,
"207_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
140,
5000,
1472,
0.001,
50,
0.001
],
[
208,
"208_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
14,
178,
184,
0.001,
1,
0.001
],
[
209,
"209_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
30,
1632,
417,
0.001,
1,
0.05
],
[
210,
"210_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
47,
2571,
145,
0.001,
1,
0.005
],
[
211,
"211_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
45,
2662,
130,
0.001,
1,
0.25
],
[
212,
"212_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
21,
3003,
608,
0.001,
1,
0.25
],
[
213,
"213_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
22,
4350,
904,
0.001,
1,
0.1
],
[
214,
"214_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
17,
248,
177,
0.001,
4,
0.25
],
[
215,
"215_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
24,
2860,
465,
0.001,
1,
0.001
],
[
216,
"216_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
21,
3266,
573,
0.999,
50,
0.25
],
[
217,
"217_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
30,
701,
181,
0.001,
5,
0.25
],
[
218,
"218_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
18,
276,
184,
0.001,
5,
0.05
],
[
219,
"219_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
18,
5000,
1472,
0.999,
5,
0.01
],
[
220,
"220_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
23,
5000,
1414,
0.999,
27,
0.01
],
[
221,
"221_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
16,
5000,
1636,
0.999,
36,
0.1
],
[
222,
"222_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
18,
1927,
1585,
0.999,
31,
0.05
],
[
223,
"223_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
13,
5000,
2558,
0.999,
50,
0.005
],
[
224,
"224_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
11,
277,
4862,
0.001,
1,
0.01
],
[
225,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
11,
2002,
645,
0.999,
24,
0.05
],
[
226,
"226_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
18,
646,
4528,
0.001,
1,
0.01
],
[
227,
"227_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
9,
1,
5000,
0.001,
30,
0.01
],
[
228,
"228_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
10,
703,
5000,
0.001,
19,
0.025
],
[
229,
"229_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
15,
5000,
1869,
0.6250126584282136,
32,
0.05
],
[
230,
"230_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
9,
1,
5000,
0.999,
41,
0.25
],
[
231,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
22,
4449,
1236,
0.999,
27,
0.005
],
[
232,
"232_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
10,
1428,
4724,
0.001,
13,
0.025
],
[
233,
"233_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
17,
5000,
1747,
0.001,
33,
0.05
],
[
234,
"234_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
21,
5000,
1642,
0.001,
1,
0.1
],
[
235,
"235_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
19,
5000,
2357,
0.001,
7,
0.001
],
[
236,
"236_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
14,
5000,
2286,
0.999,
50,
0.1
],
[
237,
"237_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
14,
5000,
2133,
0.7626262665049022,
1,
0.1
],
[
238,
"238_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
23,
650,
955,
0.001,
1,
0.05
],
[
239,
"239_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.65,
70,
2082,
925,
0.001,
35,
0.001
],
[
240,
"240_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
18,
5000,
1696,
0.999,
50,
0.01
],
[
241,
"241_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
25,
372,
190,
0.2362480374428902,
7,
0.05
],
[
242,
"242_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
20,
3121,
1,
0.001,
1,
0.05
],
[
243,
"243_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
20,
2811,
1,
0.001,
1,
0.001
],
[
244,
"244_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
62,
5000,
1928,
0.001,
1,
0.001
],
[
245,
"245_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
22,
2523,
1,
0.001,
1,
0.25
],
[
246,
"246_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
19,
3221,
1,
0.001,
1,
0.1
],
[
247,
"247_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
20,
5000,
1762,
0.999,
1,
0.05
],
[
248,
"248_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
42,
1402,
631,
0.1544649100138014,
1,
0.005
],
[
249,
"249_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
16,
4256,
2059,
0.999,
20,
0.1
],
[
250,
"250_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
21,
361,
181,
0.25824295487528065,
6,
0.001
],
[
251,
"251_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
24,
598,
216,
0.2454902867312611,
15,
0.001
],
[
252,
"252_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
16,
4998,
2060,
0.4854343557528653,
50,
0.01
],
[
253,
"253_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
16,
3475,
1108,
0.001,
1,
0.25
],
[
254,
"254_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
11,
1,
210,
0.001,
26,
0.25
],
[
255,
"255_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
15,
461,
741,
0.999,
50,
0.005
],
[
256,
"256_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
14,
491,
722,
0.9731940047024659,
21,
0.25
],
[
257,
"257_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
12,
2286,
602,
0.001,
50,
0.05
],
[
258,
"258_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
22,
873,
370,
0.9296741269954398,
1,
0.25
],
[
259,
"259_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
25,
862,
352,
0.999,
1,
0.025
],
[
260,
"260_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
14,
4103,
2725,
0.999,
50,
0.01
],
[
261,
"261_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
16,
5000,
2416,
0.001,
27,
0.001
],
[
262,
"262_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
35,
3935,
495,
0.001,
1,
0.25
],
[
263,
"263_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
28,
325,
113,
0.001,
1,
0.005
],
[
264,
"264_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
11,
2820,
4046,
0.999,
3,
0.001
],
[
265,
"265_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
19,
3628,
994,
0.999,
50,
0.01
],
[
266,
"266_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
23,
5000,
923,
0.999,
50,
0.005
],
[
267,
"267_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
24,
3338,
598,
0.350653956870258,
1,
0.005
],
[
268,
"268_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
13,
1915,
4141,
0.001,
1,
0.05
],
[
269,
"269_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
13,
2656,
1410,
0.999,
50,
0.1
],
[
270,
"270_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
36,
1061,
284,
0.001,
8,
0.001
],
[
271,
"271_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
19,
1094,
707,
0.999,
23,
0.005
],
[
272,
"272_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
12,
5000,
3721,
0.001,
50,
0.1
],
[
273,
"273_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
15,
5000,
1947,
0.999,
19,
0.05
],
[
274,
"274_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
47,
3090,
202,
0.999,
1,
0.001
],
[
275,
"275_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
5000,
2131,
0.33721354374900486,
50,
0.1
],
[
276,
"276_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
26,
5000,
700,
0.999,
1,
0.025
],
[
277,
"277_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
19,
5000,
2218,
0.001,
1,
0.005
],
[
278,
"278_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.62,
11,
1,
4895,
0.001,
22,
0.025
],
[
279,
"279_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
10,
1,
5000,
0.999,
1,
0.01
],
[
280,
"280_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
13,
5000,
3338,
0.001,
10,
0.05
],
[
281,
"281_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
52,
4042,
1341,
0.001,
1,
0.05
],
[
282,
"282_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
12,
1,
571,
0.999,
30,
0.25
],
[
283,
"283_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
22,
5000,
1,
0.001,
1,
0.025
],
[
284,
"284_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
24,
5000,
1,
0.001,
1,
0.005
],
[
285,
"285_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
68,
5000,
245,
0.999,
50,
0.25
],
[
286,
"286_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
2736,
1,
0.999,
1,
0.005
],
[
287,
"287_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
27,
5000,
863,
0.999,
1,
0.1
],
[
288,
"288_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
5000,
2421,
0.999,
50,
0.001
],
[
289,
"289_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
18,
5000,
1411,
0.999,
38,
0.1
],
[
290,
"290_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
16,
2881,
1106,
0.999,
18,
0.05
],
[
291,
"291_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
15,
5000,
2848,
0.001,
50,
0.1
],
[
292,
"292_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
5000,
2830,
0.999,
1,
0.05
],
[
293,
"293_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
20,
5000,
1262,
0.999,
50,
0.25
],
[
294,
"294_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.66,
20,
220,
3669,
0.001,
1,
0.025
],
[
295,
"295_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
16,
5000,
2338,
0.999,
22,
0.001
],
[
296,
"296_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
166,
1,
501,
0.001,
50,
0.005
],
[
297,
"297_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
14,
1,
948,
0.999,
21,
0.005
],
[
298,
"298_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
18,
5000,
2002,
0.999,
50,
0.05
],
[
299,
"299_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
31,
5000,
620,
0.001,
37,
0.05
],
[
300,
"300_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
12,
5000,
3179,
0.999,
7,
0.1
],
[
301,
"301_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
34,
4761,
588,
0.999,
50,
0.05
],
[
302,
"302_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
16,
5000,
2079,
0.999,
1,
0.05
],
[
303,
"303_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
19,
1771,
1489,
0.8621430227713368,
1,
0.005
],
[
304,
"304_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
12,
5000,
3878,
0.6898819668049602,
26,
0.05
],
[
305,
"305_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
15,
5000,
2912,
0.999,
44,
0.05
],
[
306,
"306_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
12,
1,
575,
0.999,
4,
0.001
],
[
307,
"307_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
17,
5000,
1859,
0.999,
27,
0.01
],
[
308,
"308_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
19,
2461,
1183,
0.999,
50,
0.05
],
[
309,
"309_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
18,
5000,
1963,
0.001,
50,
0.1
],
[
310,
"310_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
18,
5000,
1821,
0.999,
50,
0.05
],
[
311,
"311_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
24,
5000,
1013,
0.999,
30,
0.005
],
[
312,
"312_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
24,
5000,
1427,
0.999,
50,
0.005
],
[
313,
"313_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
59,
5000,
1045,
0.001,
1,
0.005
],
[
314,
"314_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
21,
5000,
1194,
0.001,
22,
0.1
],
[
315,
"315_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
12,
634,
1169,
0.5764199899275667,
1,
0.25
],
[
316,
"316_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
19,
5000,
1624,
0.7360150176935549,
20,
0.005
],
[
317,
"317_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
28,
5000,
775,
0.001,
1,
0.05
],
[
318,
"318_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
14,
5000,
2200,
0.999,
27,
0.05
],
[
319,
"319_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
20,
5000,
2535,
0.999,
21,
0.05
],
[
320,
"320_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
14,
1,
792,
0.999,
1,
0.05
],
[
321,
"321_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
23,
5000,
1195,
0.999,
1,
0.001
],
[
322,
"322_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
21,
5000,
1638,
0.999,
50,
0.05
],
[
323,
"323_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
15,
5000,
2085,
0.4972278379291218,
26,
0.005
],
[
324,
"324_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
9,
1,
1031,
0.999,
1,
0.05
],
[
325,
"325_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
11,
1,
225,
0.999,
15,
0.05
],
[
326,
"326_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
22,
5000,
1568,
0.001,
1,
0.05
],
[
327,
"327_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
34,
3857,
532,
0.999,
25,
0.05
],
[
328,
"328_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
5000,
2442,
0.999,
1,
0.1
],
[
329,
"329_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
8,
2094,
5000,
0.5528955538345217,
17,
0.005
],
[
330,
"330_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
13,
211,
440,
0.999,
2,
0.1
],
[
331,
"331_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
79,
2274,
306,
0.001,
1,
0.005
],
[
332,
"332_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
42,
5000,
3812,
0.001,
1,
0.001
],
[
333,
"333_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
9,
1,
4785,
0.999,
1,
0.01
],
[
334,
"334_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
12,
5000,
3449,
0.001,
1,
0.25
],
[
335,
"335_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
13,
1,
240,
0.999,
19,
0.005
],
[
336,
"336_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.66,
9,
1,
4881,
0.999,
50,
0.01
],
[
337,
"337_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
12,
5000,
3670,
0.999,
50,
0.25
],
[
338,
"338_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
22,
3719,
930,
0.999,
1,
0.05
],
[
339,
"339_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
20,
5000,
1334,
0.999,
31,
0.001
],
[
340,
"340_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
14,
5000,
3008,
0.001,
50,
0.005
],
[
341,
"341_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
12,
5000,
3263,
0.999,
47,
0.05
],
[
342,
"342_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
17,
541,
1016,
0.999,
50,
0.005
],
[
343,
"343_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
13,
5000,
3176,
0.001,
32,
0.1
],
[
344,
"344_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
28,
5000,
4104,
0.001,
50,
0.001
],
[
345,
"345_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
84,
1085,
134,
0.001,
1,
0.025
],
[
346,
"346_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
16,
5000,
1747,
0.001,
50,
0.1
],
[
347,
"347_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
36,
5000,
629,
0.999,
50,
0.01
],
[
348,
"348_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
20,
5000,
1543,
0.999,
1,
0.001
],
[
349,
"349_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
18,
5000,
1731,
0.999,
30,
0.001
],
[
350,
"350_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
15,
478,
607,
0.999,
6,
0.25
],
[
351,
"351_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
19,
5000,
1,
0.001,
1,
0.25
],
[
352,
"352_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
13,
5000,
3470,
0.001,
33,
0.1
],
[
353,
"353_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
17,
5000,
2086,
0.001,
50,
0.25
],
[
354,
"354_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
51,
799,
5000,
0.001,
1,
0.005
],
[
355,
"355_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
20,
5000,
1312,
0.999,
47,
0.05
],
[
356,
"356_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
25,
5000,
1061,
0.999,
50,
0.005
],
[
357,
"357_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
17,
5000,
2632,
0.999,
50,
0.025
],
[
358,
"358_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
19,
5000,
1422,
0.999,
27,
0.005
],
[
359,
"359_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
33,
5000,
3278,
0.001,
1,
0.005
],
[
360,
"360_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
5000,
1970,
0.999,
34,
0.025
],
[
361,
"361_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
12,
5000,
3614,
0.001,
34,
0.25
],
[
362,
"362_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
14,
747,
1215,
0.001,
33,
0.05
],
[
363,
"363_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
14,
5000,
2698,
0.001,
30,
0.005
],
[
364,
"364_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
13,
5000,
3054,
0.999,
32,
0.25
],
[
365,
"365_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
10,
1,
241,
0.999,
14,
0.25
],
[
366,
"366_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
9,
1,
427,
0.999,
1,
0.25
],
[
367,
"367_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
13,
5000,
2722,
0.999,
1,
0.05
],
[
368,
"368_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
20,
5000,
2367,
0.7368664655607094,
39,
0.005
],
[
369,
"369_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
18,
1769,
1318,
0.999,
37,
0.25
],
[
370,
"370_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
14,
5000,
2757,
0.999,
15,
0.005
],
[
371,
"371_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
9,
1,
4945,
0.999,
27,
0.01
],
[
372,
"372_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.66,
10,
5000,
4832,
0.15832174974860078,
1,
0.25
],
[
373,
"373_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.64,
9,
1,
4744,
0.001,
1,
0.01
],
[
374,
"374_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
18,
4351,
1509,
0.999,
24,
0.005
],
[
375,
"375_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
17,
1397,
869,
0.999,
1,
0.025
],
[
376,
"376_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
16,
4853,
3903,
0.999,
50,
0.1
],
[
377,
"377_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
14,
4372,
2439,
0.001,
1,
0.1
],
[
378,
"378_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
24,
4087,
824,
0.999,
17,
0.005
],
[
379,
"379_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7000000000000001,
14,
5000,
3479,
0.999,
26,
0.001
],
[
380,
"380_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
20,
1272,
1617,
0.01568595457770865,
1,
0.25
],
[
381,
"381_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
1292,
1600,
0.999,
1,
0.001
],
[
382,
"382_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.6900000000000001,
17,
5000,
3394,
0.001,
50,
0.005
],
[
383,
"383_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1363,
1784,
0.999,
15,
0.25
],
[
384,
"384_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
14,
1374,
1759,
0.999,
1,
0.25
],
[
385,
"385_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
28,
1209,
455,
0.999,
1,
0.001
],
[
386,
"386_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
14,
5000,
5000,
0.999,
50,
0.025
],
[
387,
"387_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
12,
5000,
3338,
0.999,
25,
0.025
],
[
388,
"388_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
16,
1251,
1096,
0.999,
1,
0.1
],
[
389,
"389_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
17,
1279,
2110,
0.8832495853862901,
1,
0.05
],
[
390,
"390_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
18,
5000,
2333,
0.999,
1,
0.005
],
[
391,
"391_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
18,
909,
1475,
0.999,
40,
0.05
],
[
392,
"392_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
15,
945,
1090,
0.999,
16,
0.25
],
[
393,
"393_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
15,
1236,
1353,
0.999,
1,
0.25
],
[
394,
"394_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
12,
956,
5000,
0.4338037405587275,
50,
0.25
],
[
395,
"395_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
15,
1013,
1120,
0.001,
1,
0.01
],
[
396,
"396_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
14,
5000,
2840,
0.5558637305249584,
50,
0.005
],
[
397,
"397_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
26,
1205,
621,
0.999,
18,
0.25
],
[
398,
"398_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
23,
4472,
1191,
0.001,
50,
0.005
],
[
399,
"399_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
13,
1320,
1902,
0.999,
21,
0.25
],
[
400,
"400_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
19,
1221,
874,
0.999,
50,
0.05
],
[
401,
"401_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
14,
4658,
2205,
0.999,
1,
0.025
],
[
402,
"402_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
18,
1325,
1162,
0.6173842264574706,
15,
0.005
],
[
403,
"403_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
18,
1165,
723,
0.999,
1,
0.05
],
[
404,
"404_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
9,
966,
4700,
0.999,
35,
0.1
],
[
405,
"405_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
12,
5000,
3639,
0.999,
37,
0.025
],
[
406,
"406_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
10,
1071,
4899,
0.999,
1,
0.25
],
[
407,
"407_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
21,
1221,
827,
0.999,
1,
0.25
],
[
408,
"408_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
16,
1269,
1262,
0.999,
1,
0.25
],
[
409,
"409_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
57,
1025,
150,
0.001,
1,
0.25
],
[
410,
"410_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
25,
5000,
2440,
0.001,
50,
0.005
],
[
411,
"411_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
14,
4889,
2166,
0.999,
50,
0.001
],
[
412,
"412_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
12,
1607,
4408,
0.999,
1,
0.25
],
[
413,
"413_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
13,
5000,
3114,
0.001,
31,
0.005
],
[
414,
"414_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
13,
1312,
1715,
0.999,
23,
0.005
],
[
415,
"415_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
25,
1127,
466,
0.999,
1,
0.25
],
[
416,
"416_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
19,
4456,
1227,
0.999,
34,
0.001
],
[
417,
"417_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
2139,
1,
0.001,
6,
0.25
],
[
418,
"418_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.65,
11,
1090,
4924,
0.999,
19,
0.001
],
[
419,
"419_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
15,
4869,
1858,
0.999,
1,
0.005
],
[
420,
"420_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
12,
5000,
3777,
0.999,
50,
0.005
],
[
421,
"421_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
19,
1206,
651,
0.999,
1,
0.001
],
[
422,
"422_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
14,
5000,
3041,
0.001,
50,
0.05
],
[
423,
"423_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
17,
5000,
1648,
0.999,
1,
0.05
],
[
424,
"424_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
15,
1246,
1896,
0.999,
1,
0.01
],
[
425,
"425_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
12,
5000,
3179,
0.999,
50,
0.005
],
[
426,
"426_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
12,
5000,
2985,
0.999,
14,
0.1
],
[
427,
"427_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
13,
5000,
4566,
0.999,
24,
0.025
],
[
428,
"428_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
31,
752,
214,
0.001,
16,
0.05
],
[
429,
"429_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
12,
1011,
2105,
0.001,
35,
0.25
],
[
430,
"430_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
12,
5000,
3075,
0.999,
50,
0.005
],
[
431,
"431_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
114,
5000,
2189,
0.001,
50,
0.001
],
[
432,
"432_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
30,
826,
243,
0.999,
10,
0.25
],
[
433,
"433_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
23,
4325,
1113,
0.999,
50,
0.001
],
[
434,
"434_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
32,
935,
340,
0.8708379373913727,
25,
0.25
],
[
435,
"435_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
25,
4126,
749,
0.598717670853933,
8,
0.001
],
[
436,
"436_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
44,
4204,
414,
0.999,
50,
0.005
],
[
437,
"437_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
20,
1248,
779,
0.999,
1,
0.005
],
[
438,
"438_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
21,
1393,
828,
0.971523261610775,
39,
0.25
],
[
439,
"439_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
15,
5000,
2851,
0.607397544614624,
45,
0.001
],
[
440,
"440_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
11,
2075,
426,
0.9571812076389872,
1,
0.25
],
[
441,
"441_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
14,
5000,
2367,
0.30810508766746986,
18,
0.05
],
[
442,
"442_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
16,
4946,
1572,
0.999,
40,
0.001
],
[
443,
"443_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
34,
4502,
743,
0.999,
24,
0.001
],
[
444,
"444_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
22,
789,
355,
0.49394866974225377,
22,
0.25
],
[
445,
"445_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
62,
965,
140,
0.001,
23,
0.005
],
[
446,
"446_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
22,
4363,
1638,
0.001,
30,
0.005
],
[
447,
"447_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
12,
5000,
2456,
0.31614175063027894,
16,
0.005
],
[
448,
"448_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
15,
5000,
1919,
0.999,
37,
0.005
],
[
449,
"449_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
13,
1220,
1744,
0.09761793016095426,
18,
0.1
],
[
450,
"450_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
22,
947,
564,
0.6653664992254615,
9,
0.05
],
[
451,
"451_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
19,
1027,
596,
0.6164433739874893,
10,
0.25
],
[
452,
"452_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
19,
996,
1,
0.001,
1,
0.005
],
[
453,
"453_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
40,
2157,
61,
0.001,
19,
0.005
],
[
454,
"454_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
13,
1149,
1967,
0.4994045379421374,
23,
0.05
],
[
455,
"455_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
19,
992,
1,
0.001,
1,
0.001
],
[
456,
"456_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
14,
1206,
2117,
0.001,
1,
0.25
],
[
457,
"457_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
16,
939,
1107,
0.4708367992136162,
39,
0.05
],
[
458,
"458_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
16,
1189,
1228,
0.001,
17,
0.25
],
[
459,
"459_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
14,
5000,
3391,
0.719810596665692,
28,
0.1
],
[
460,
"460_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
24,
832,
359,
0.999,
12,
0.005
],
[
461,
"461_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
15,
1211,
1925,
0.001,
14,
0.25
],
[
462,
"462_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
5000,
2022,
0.6962080279009896,
21,
0.001
],
[
463,
"463_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
22,
4513,
1792,
0.001,
1,
0.005
],
[
464,
"464_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
20,
5000,
2916,
0.001,
50,
0.001
],
[
465,
"465_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
19,
3881,
1134,
0.22833146474331253,
33,
0.005
],
[
466,
"466_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
22,
1231,
842,
0.999,
42,
0.005
],
[
467,
"467_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
5000,
2289,
0.3389374831324117,
18,
0.025
],
[
468,
"468_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
22,
4510,
1609,
0.999,
17,
0.001
],
[
469,
"469_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
14,
5000,
2625,
0.2888025178190613,
19,
0.001
],
[
470,
"470_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
81,
1,
0.7066653440285307,
1,
0.001
],
[
471,
"471_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
13,
1315,
3010,
0.999,
1,
0.25
],
[
472,
"472_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.65,
65,
5000,
1067,
0.001,
1,
0.001
],
[
473,
"473_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
47,
3112,
219,
0.49612024755704576,
1,
0.25
],
[
474,
"474_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
23,
4472,
1083,
0.7037285249492395,
26,
0.25
],
[
475,
"475_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
15,
5000,
4892,
0.20979575564098926,
33,
0.1
],
[
476,
"476_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
11,
5000,
4016,
0.999,
16,
0.05
],
[
477,
"477_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
20,
3663,
1,
0.001,
1,
0.001
],
[
478,
"478_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
11,
1913,
3945,
0.999,
1,
0.25
],
[
479,
"479_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
12,
1124,
1732,
0.5664110527195414,
12,
0.05
],
[
480,
"480_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
12,
1253,
2271,
0.001,
19,
0.25
],
[
481,
"481_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
10,
530,
5000,
0.5946829330262926,
32,
0.25
],
[
482,
"482_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
11,
1350,
4367,
0.6161967915231903,
15,
0.25
],
[
483,
"483_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.65,
10,
1179,
4709,
0.6439500211813417,
1,
0.25
],
[
484,
"484_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
13,
1085,
2089,
0.5528543477525104,
21,
0.25
],
[
485,
"485_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
13,
1211,
1583,
0.5997690717413093,
1,
0.01
],
[
486,
"486_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
26,
3967,
676,
0.7412528086286566,
10,
0.005
],
[
487,
"487_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
19,
5000,
1375,
0.999,
46,
0.001
],
[
488,
"488_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
18,
4543,
1354,
0.999,
40,
0.001
],
[
489,
"489_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
23,
983,
585,
0.7168167307325456,
9,
0.005
],
[
490,
"490_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
13,
1493,
2809,
0.45139207834002476,
1,
0.25
],
[
491,
"491_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
976,
1,
0.999,
1,
0.005
],
[
492,
"492_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
16,
5000,
3501,
0.999,
1,
0.005
],
[
493,
"493_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
1093,
911,
0.5783342353747654,
1,
0.05
],
[
494,
"494_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
18,
1040,
2379,
0.18676550828139954,
1,
0.25
],
[
495,
"495_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
13,
1564,
2098,
0.7871024008182782,
38,
0.1
],
[
496,
"496_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
11,
5000,
4389,
0.999,
50,
0.1
],
[
497,
"497_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
12,
1539,
3020,
0.999,
21,
0.25
],
[
498,
"498_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
18,
1124,
931,
0.999,
1,
0.001
],
[
499,
"499_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
13,
5000,
2489,
0.001,
21,
0.05
],
[
500,
"500_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
25,
1046,
432,
0.999,
21,
0.005
],
[
501,
"501_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
15,
1407,
3556,
0.999,
14,
0.25
],
[
502,
"502_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
14,
5000,
2645,
0.999,
32,
0.025
],
[
503,
"503_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1019,
1,
0.999,
1,
0.005
],
[
504,
"504_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.66,
13,
1270,
4901,
0.45350148912551475,
10,
0.25
],
[
505,
"505_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
28,
4237,
720,
0.001,
18,
0.005
],
[
506,
"506_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
11,
5000,
4793,
0.7979787634784464,
40,
0.025
],
[
507,
"507_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
23,
4160,
749,
0.9872199710181769,
9,
0.001
],
[
508,
"508_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
11,
5000,
4331,
0.9143415524779519,
15,
0.1
],
[
509,
"509_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
11,
1467,
3871,
0.999,
33,
0.1
],
[
510,
"510_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
10,
1144,
4013,
0.999,
24,
0.1
],
[
511,
"511_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
5000,
2314,
0.001,
18,
0.001
],
[
512,
"512_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
14,
1656,
3146,
0.999,
16,
0.25
],
[
513,
"513_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
13,
5000,
3212,
0.9521641925792204,
27,
0.05
],
[
514,
"514_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
18,
1340,
904,
0.6305474548196001,
10,
0.025
],
[
515,
"515_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
13,
5000,
2737,
0.2522083027831727,
31,
0.001
],
[
516,
"516_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
16,
5000,
2664,
0.999,
50,
0.001
],
[
517,
"517_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
11,
5000,
4764,
0.001,
43,
0.1
],
[
518,
"518_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
30,
4181,
608,
0.999,
50,
0.025
],
[
519,
"519_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
14,
1296,
1900,
0.5774292542859283,
38,
0.05
],
[
520,
"520_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
15,
4385,
1897,
0.9901363874606842,
29,
0.001
],
[
521,
"521_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
960,
1,
0.999,
1,
0.005
],
[
522,
"522_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
17,
342,
388,
0.7848838626132195,
21,
0.05
],
[
523,
"523_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
13,
1704,
3412,
0.6549527411006911,
37,
0.25
],
[
524,
"524_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
14,
5000,
3539,
0.827535631668396,
29,
0.005
],
[
525,
"525_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
16,
1428,
1602,
0.999,
11,
0.25
],
[
526,
"526_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
2270,
1,
0.7900781346150818,
1,
0.025
],
[
527,
"527_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
11,
5000,
4653,
0.6348108651010154,
13,
0.025
],
[
528,
"528_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
12,
3192,
3084,
0.5833299632014701,
24,
0.025
],
[
529,
"529_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
11,
5000,
4887,
0.9903132438344163,
17,
0.05
],
[
530,
"530_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
15,
1692,
1520,
0.665169349761729,
24,
0.025
],
[
531,
"531_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
12,
1675,
3800,
0.3405896075796695,
23,
0.025
],
[
532,
"532_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1066,
1,
0.999,
1,
0.005
],
[
533,
"533_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.66,
11,
5000,
4043,
0.999,
37,
0.1
],
[
534,
"534_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
14,
1647,
2674,
0.999,
1,
0.25
],
[
535,
"535_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
3851,
1,
0.999,
27,
0.005
],
[
536,
"536_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
10,
1120,
4822,
0.3689036491224752,
3,
0.001
],
[
537,
"537_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
15,
1170,
1152,
0.4654931780778403,
50,
0.1
],
[
538,
"538_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1137,
1,
0.999,
1,
0.005
],
[
539,
"539_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.65,
10,
5000,
4647,
0.999,
50,
0.1
],
[
540,
"540_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
16,
4442,
1683,
0.5031450687171293,
40,
0.05
],
[
541,
"541_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
11,
1875,
4876,
0.999,
21,
0.25
],
[
542,
"542_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
12,
5000,
3672,
0.2447762676736633,
17,
0.025
],
[
543,
"543_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1049,
1,
0.999,
1,
0.005
],
[
544,
"544_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.74,
26,
958,
432,
0.6130100756746156,
9,
0.001
],
[
545,
"545_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
14,
2598,
874,
0.999,
1,
0.005
],
[
546,
"546_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1082,
1,
0.999,
1,
0.005
],
[
547,
"547_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
33,
4647,
637,
0.001,
50,
0.025
],
[
548,
"548_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
18,
1255,
2186,
0.5439084761221503,
1,
0.1
],
[
549,
"549_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
14,
1788,
2888,
0.5282456985807144,
16,
0.05
],
[
550,
"550_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
15,
1783,
2372,
0.999,
45,
0.05
],
[
551,
"551_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
20,
1888,
1912,
0.7081616955985978,
13,
0.025
],
[
552,
"552_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
16,
5000,
3559,
0.5852423846696345,
50,
0.05
],
[
553,
"553_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
33,
1560,
2268,
0.001,
1,
0.005
],
[
554,
"554_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
19,
4550,
1068,
0.9005491670079306,
40,
0.001
],
[
555,
"555_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
33,
1096,
341,
0.001,
22,
0.25
],
[
556,
"556_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
13,
5000,
3894,
0.999,
28,
0.01
],
[
557,
"557_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
22,
1143,
1,
0.001,
1,
0.25
],
[
558,
"558_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
19,
4398,
1271,
0.999,
18,
0.001
],
[
559,
"559_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
18,
4841,
1769,
0.999,
36,
0.005
],
[
560,
"560_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.68,
13,
5000,
2990,
0.7555655099250024,
29,
0.05
],
[
561,
"561_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
22,
4027,
952,
0.999,
9,
0.005
],
[
562,
"562_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.72,
19,
4449,
1085,
0.5875616461330486,
18,
0.25
],
[
563,
"563_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.65,
14,
5000,
4139,
0.999,
20,
0.001
],
[
564,
"564_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
27,
1110,
385,
0.999,
1,
0.05
],
[
565,
"565_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.73,
19,
3955,
999,
0.7704678217984607,
50,
0.005
],
[
566,
"566_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.69,
12,
1744,
3349,
0.001,
24,
0.25
],
[
567,
"567_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.7,
11,
5000,
3755,
0.28069441025935765,
40,
0.025
],
[
568,
"568_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
11,
1548,
4123,
0.7942709777531962,
1,
0.25
],
[
569,
"569_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.67,
11,
2117,
786,
0.851577535553902,
1,
0.025
],
[
570,
"570_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
12,
1712,
2957,
0.999,
1,
0.1
],
[
571,
"571_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
12,
1657,
2729,
0.7360812284015027,
36,
0.1
],
[
572,
"572_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.71,
17,
963,
1185,
0.48222618171922754,
42,
0.025
],
[
573,
"573_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
3745,
1,
0.001,
1,
0.05
]
];
var tab_job_infos_headers_json = [
"start_time",
"end_time",
"run_time",
"program_string",
"recent_samples_size",
"n_samples",
"feature_proportion",
"n_clusters",
"confidence",
"ACCURACY",
"RUNTIME",
"exit_code",
"signal",
"hostname",
"OO_Info_runtime",
"OO_Info_peak_memory",
"OO_Info_mean_memory",
"OO_Info_lpd",
"OO_Info_portion_req_label",
"OO_Info_SLURM_JOB_ID"
];
var tab_job_infos_csv_json = [
[
1746193644,
1746193670,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1374 n_samples 1759 confidence 0.25 feature_proportion 0.999 n_clusters 1",
1374,
1759,
0.999,
1,
0.25,
0.71,
14,
0,
"None",
"i7175",
14,
488.375,
485.8408203125,
-1,
0.7296361285555966,
4903364
],
[
1746195745,
1746195783,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1209 n_samples 455 confidence 0.001 feature_proportion 0.999 n_clusters 1",
1209,
455,
0.999,
1,
0.001,
0.72,
28,
0,
"None",
"i7179",
28,
495.8515625,
488.9046875,
-1,
0.9979913188031031,
4903800
],
[
1746197285,
1746197311,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 5000 confidence 0.025 feature_proportion 0.999 n_clusters 50",
5000,
5000,
0.999,
50,
0.025,
0.69,
14,
0,
"None",
"i7170",
14,
496.29296875,
489.6513671875,
-1,
0.8080901366826746,
4904087
],
[
1746198684,
1746198710,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3338 confidence 0.025 feature_proportion 0.999 n_clusters 25",
5000,
3338,
0.999,
25,
0.025,
0.71,
12,
0,
"None",
"i7167",
12,
490.33984375,
486.76171875,
-1,
0.8861285555966014,
4904349
],
[
1746200684,
1746200709,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1251 n_samples 1096 confidence 0.1 feature_proportion 0.999 n_clusters 1",
1251,
1096,
0.999,
1,
0.1,
0.72,
16,
0,
"None",
"i7179",
16,
490.375,
486.8583984375,
-1,
0.9651597709641669,
4904790
],
[
1746202366,
1746202399,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1279 n_samples 2110 confidence 0.05 feature_proportion 0.8832495853862901 n_clusters 1",
1279,
2110,
0.8832495853862901,
1,
0.05,
0.7,
17,
0,
"None",
"i7181",
17,
486.69921875,
485.1552734375,
-1,
0.5610685260435907,
4905136
],
[
1746204036,
1746204069,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2333 confidence 0.005 feature_proportion 0.999 n_clusters 1",
5000,
2333,
0.999,
1,
0.005,
0.71,
18,
0,
"None",
"i7181",
18,
491.4765625,
486.958984375,
-1,
0.9695696342814925,
4905432
],
[
1746206076,
1746206109,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 909 n_samples 1475 confidence 0.05 feature_proportion 0.999 n_clusters 40",
909,
1475,
0.999,
40,
0.05,
0.73,
18,
0,
"None",
"i7174",
18,
486.96875,
485.333984375,
-1,
0.5876431473956409,
4905843
],
[
1746208165,
1746208191,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 945 n_samples 1090 confidence 0.25 feature_proportion 0.999 n_clusters 16",
945,
1090,
0.999,
16,
0.25,
0.74,
15,
0,
"None",
"i7182",
15,
488.796875,
486.1943359375,
-1,
0.8291004802364241,
4906235
],
[
1746209486,
1746209511,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1236 n_samples 1353 confidence 0.25 feature_proportion 0.999 n_clusters 1",
1236,
1353,
0.999,
1,
0.25,
0.72,
15,
0,
"None",
"i7169",
15,
491.7109375,
487.193359375,
-1,
0.8846509050609531,
4906528
],
[
1746211287,
1746211313,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 956 n_samples 5000 confidence 0.25 feature_proportion 0.4338037405587275 n_clusters 50",
956,
5000,
0.4338037405587275,
50,
0.25,
0.7,
12,
0,
"None",
"i7185",
12,
491.6875,
487.125,
-1,
0.15450683413372737,
4906938
],
[
1746213096,
1746213122,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1013 n_samples 1120 confidence 0.01 feature_proportion 0.001 n_clusters 1",
1013,
1120,
0.001,
1,
0.01,
0.72,
15,
0,
"None",
"i7183",
15,
488.48828125,
486.0009765625,
-1,
0.8653721832286664,
4907331
],
[
1746214287,
1746214313,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2840 confidence 0.005 feature_proportion 0.5558637305249584 n_clusters 50",
5000,
2840,
0.5558637305249584,
50,
0.005,
0.72,
14,
0,
"None",
"i7179",
14,
491.6796875,
487.064453125,
-1,
0.967861100849649,
4907612
],
[
1746215927,
1746215966,
39,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1205 n_samples 621 confidence 0.25 feature_proportion 0.999 n_clusters 18",
1205,
621,
0.999,
18,
0.25,
0.73,
26,
0,
"None",
"i7186",
26,
491.69921875,
487.79140625,
-1,
0.9884558551902475,
4907992
],
[
1746217769,
1746217808,
39,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4472 n_samples 1191 confidence 0.005 feature_proportion 0.001 n_clusters 50",
4472,
1191,
0.001,
50,
0.005,
0.72,
23,
0,
"None",
"i7179",
23,
493.84765625,
488.946875,
-1,
0.9909724787587736,
4908432
],
[
1746220207,
1746220233,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1320 n_samples 1902 confidence 0.25 feature_proportion 0.999 n_clusters 21",
1320,
1902,
0.999,
21,
0.25,
0.69,
13,
0,
"None",
"i7173",
13,
491.88671875,
487.34765625,
-1,
0.6400073882526782,
4909026
],
[
1746222284,
1746222322,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1221 n_samples 874 confidence 0.05 feature_proportion 0.999 n_clusters 50",
1221,
874,
0.999,
50,
0.05,
0.71,
19,
0,
"None",
"i7183",
19,
491.87109375,
487.466796875,
-1,
0.9766115626154415,
4909514
],
[
1746224610,
1746224636,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4658 n_samples 2205 confidence 0.025 feature_proportion 0.999 n_clusters 1",
4658,
2205,
0.999,
1,
0.025,
0.7,
14,
0,
"None",
"i7175",
14,
488.7578125,
486.2216796875,
-1,
0.9672838936091614,
4910002
],
[
1746226240,
1746226272,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1325 n_samples 1162 confidence 0.005 feature_proportion 0.6173842264574706 n_clusters 15",
1325,
1162,
0.6173842264574706,
15,
0.005,
0.73,
18,
0,
"None",
"i7186",
18,
491.765625,
487.2216796875,
-1,
0.969592722571112,
4910336
],
[
1746227790,
1746227822,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1165 n_samples 723 confidence 0.05 feature_proportion 0.999 n_clusters 1",
1165,
723,
0.999,
1,
0.05,
0.73,
18,
0,
"None",
"i7180",
18,
492.95703125,
487.4404296875,
-1,
0.9783893609161434,
4910656
],
[
1746229032,
1746229052,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 966 n_samples 4700 confidence 0.1 feature_proportion 0.999 n_clusters 35",
966,
4700,
0.999,
35,
0.1,
0.69,
9,
0,
"None",
"i7183",
9,
492.984375,
486.7877604166667,
-1,
0.17842630217953453,
4910896
],
[
1746230588,
1746230608,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3639 confidence 0.025 feature_proportion 0.999 n_clusters 37",
5000,
3639,
0.999,
37,
0.025,
0.7,
12,
0,
"None",
"i7180",
12,
491.328125,
487.7294921875,
-1,
0.8716060214259328,
4911213
],
[
1746232050,
1746232069,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1071 n_samples 4899 confidence 0.25 feature_proportion 0.999 n_clusters 1",
1071,
4899,
0.999,
1,
0.25,
0.69,
10,
0,
"None",
"i7181",
10,
493.0625,
486.9674479166667,
-1,
0.17309290727742888,
4911540
],
[
1746233831,
1746233863,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1221 n_samples 827 confidence 0.25 feature_proportion 0.999 n_clusters 1",
1221,
827,
0.999,
1,
0.25,
0.73,
21,
0,
"None",
"i7184",
21,
488.78515625,
486.6671875,
-1,
0.9828915773919468,
4911934
],
[
1746234880,
1746234906,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1269 n_samples 1262 confidence 0.25 feature_proportion 0.999 n_clusters 1",
1269,
1262,
0.999,
1,
0.25,
0.72,
16,
0,
"None",
"i7175",
16,
488.5078125,
486.0107421875,
-1,
0.9616965275212412,
4912182
],
[
1746237281,
1746237351,
70,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1025 n_samples 150 confidence 0.25 feature_proportion 0.001 n_clusters 1",
1025,
150,
0.001,
1,
0.25,
0.74,
57,
0,
"None",
"i7176",
57,
510.890625,
495.96484375,
-1,
0.9974141115626154,
4912703
],
[
1746239152,
1746239191,
39,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2440 confidence 0.005 feature_proportion 0.001 n_clusters 50",
5000,
2440,
0.001,
50,
0.005,
0.7,
25,
0,
"None",
"i7186",
25,
492.05859375,
488.43359375,
-1,
0.9604959364610269,
4913121
],
[
1746240850,
1746240876,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4889 n_samples 2166 confidence 0.001 feature_proportion 0.999 n_clusters 50",
4889,
2166,
0.999,
50,
0.001,
0.72,
14,
0,
"None",
"i7180",
14,
488.58203125,
485.9580078125,
-1,
0.9501754710011082,
4913494
],
[
1746242770,
1746242796,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1607 n_samples 4408 confidence 0.25 feature_proportion 0.999 n_clusters 1",
1607,
4408,
0.999,
1,
0.25,
0.68,
12,
0,
"None",
"i7178",
12,
490.94921875,
487.3232421875,
-1,
0.2968230513483561,
4913945
],
[
1746244591,
1746244616,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3114 confidence 0.005 feature_proportion 0.001 n_clusters 31",
5000,
3114,
0.001,
31,
0.005,
0.74,
13,
0,
"None",
"i7175",
13,
488.44140625,
485.8896484375,
-1,
0.9063077207240487,
4914349
],
[
1746246731,
1746246757,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1312 n_samples 1715 confidence 0.005 feature_proportion 0.999 n_clusters 23",
1312,
1715,
0.999,
23,
0.005,
0.71,
13,
0,
"None",
"i7180",
13,
483.390625,
476.3876953125,
-1,
0.7270040635389731,
4914751
],
[
1746248311,
1746248349,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1127 n_samples 466 confidence 0.25 feature_proportion 0.999 n_clusters 1",
1127,
466,
0.999,
1,
0.25,
0.73,
25,
0,
"None",
"i7183",
25,
494.25390625,
488.68046875,
-1,
0.9898411525674178,
4915046
],
[
1746249332,
1746249364,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4456 n_samples 1227 confidence 0.001 feature_proportion 0.999 n_clusters 34",
4456,
1227,
0.999,
34,
0.001,
0.7,
19,
0,
"None",
"i7181",
19,
493.171875,
487.6201171875,
-1,
0.9915265977096417,
4915236
],
[
1746251772,
1746251785,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2139 n_samples 1 confidence 0.25 feature_proportion 0.001 n_clusters 6",
2139,
1,
0.001,
6,
0.25,
"None",
"None",
1,
"None",
"i7183",
"",
"",
"",
"",
"",
4915725
],
[
1746253014,
1746253034,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1090 n_samples 4924 confidence 0.001 feature_proportion 0.999 n_clusters 19",
1090,
4924,
0.999,
19,
0.001,
0.65,
11,
0,
"None",
"i7186",
11,
495.77734375,
489.2314453125,
-1,
0.17616364979682306,
4916010
],
[
1746254074,
1746254100,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4869 n_samples 1858 confidence 0.005 feature_proportion 0.999 n_clusters 1",
4869,
1858,
0.999,
1,
0.005,
0.7,
15,
0,
"None",
"i7185",
15,
492.04296875,
487.5400390625,
-1,
0.9866549685999261,
4916239
],
[
1746255833,
1746255859,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3777 confidence 0.005 feature_proportion 0.999 n_clusters 50",
5000,
3777,
0.999,
50,
0.005,
0.72,
12,
0,
"None",
"i7183",
12,
486.6796875,
485.01171875,
-1,
0.9002816771333579,
4916595
],
[
1746257351,
1746257383,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1206 n_samples 651 confidence 0.001 feature_proportion 0.999 n_clusters 1",
1206,
651,
0.999,
1,
0.001,
0.72,
19,
0,
"None",
"i7169",
19,
494.33203125,
488.0673828125,
-1,
0.9897949759881788,
4917412
],
[
1746259713,
1746259739,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3041 confidence 0.05 feature_proportion 0.001 n_clusters 50",
5000,
3041,
0.001,
50,
0.05,
0.71,
14,
0,
"None",
"i7182",
14,
486.55859375,
484.9482421875,
-1,
0.9579793128925009,
4917898
],
[
1746260994,
1746261020,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 1648 confidence 0.05 feature_proportion 0.999 n_clusters 1",
5000,
1648,
0.999,
1,
0.05,
0.7,
17,
0,
"None",
"i7180",
17,
489.3046875,
485.775390625,
-1,
0.9892870336165497,
4918185
],
[
1746262914,
1746262940,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1246 n_samples 1896 confidence 0.01 feature_proportion 0.999 n_clusters 1",
1246,
1896,
0.999,
1,
0.01,
0.69,
15,
0,
"None",
"i7186",
15,
489.4765625,
485.9814453125,
-1,
0.6041281861839675,
4918629
],
[
1746263974,
1746264000,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3179 confidence 0.005 feature_proportion 0.999 n_clusters 50",
5000,
3179,
0.999,
50,
0.005,
0.69,
12,
0,
"None",
"i7180",
12,
488.72265625,
486.0859375,
-1,
0.9228158478019949,
4919108
],
[
1746265555,
1746265574,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2985 confidence 0.1 feature_proportion 0.999 n_clusters 14",
5000,
2985,
0.999,
14,
0.1,
0.7,
12,
0,
"None",
"i7169",
12,
491.30078125,
486.767578125,
-1,
0.9424639822681936,
4919618
],
[
1746267017,
1746267043,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4566 confidence 0.025 feature_proportion 0.999 n_clusters 24",
5000,
4566,
0.999,
24,
0.025,
0.71,
13,
0,
"None",
"i7175",
13,
496.51953125,
489.8955078125,
-1,
0.8533893609161434,
4920025
],
[
1746268453,
1746268498,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 752 n_samples 214 confidence 0.05 feature_proportion 0.001 n_clusters 16",
752,
214,
0.001,
16,
0.05,
0.73,
31,
0,
"None",
"i7170",
31,
496.90625,
489.2395833333333,
-1,
0.9980605836719616,
4920435
],
[
1746270454,
1746270480,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1011 n_samples 2105 confidence 0.25 feature_proportion 0.001 n_clusters 35",
1011,
2105,
0.001,
35,
0.25,
0.71,
12,
0,
"None",
"i7183",
12,
491.3359375,
486.767578125,
-1,
0.4435029553010713,
4921016
],
[
1746272140,
1746272178,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3075 confidence 0.005 feature_proportion 0.999 n_clusters 50",
5000,
3075,
0.999,
50,
0.005,
0.72,
12,
0,
"None",
"i7167",
12,
491.3359375,
486.72265625,
-1,
0.967399335057259,
4921515
],
[
1746273294,
1746273421,
127,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2189 confidence 0.001 feature_proportion 0.001 n_clusters 50",
5000,
2189,
0.001,
50,
0.001,
0.71,
114,
0,
"None",
"i7182",
114,
489.75390625,
488.7056361607143,
-1,
0.9559013668267454,
4921806
],
[
1746275059,
1746275122,
63,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 826 n_samples 243 confidence 0.25 feature_proportion 0.999 n_clusters 10",
826,
243,
0.999,
10,
0.25,
0.74,
30,
0,
"None",
"i7166",
30,
499.27734375,
488.784375,
-1,
0.9986608792020687,
4922176
],
[
1746277484,
1746277517,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4325 n_samples 1113 confidence 0.001 feature_proportion 0.999 n_clusters 50",
4325,
1113,
0.999,
50,
0.001,
0.71,
23,
0,
"None",
"i7175",
23,
490.62109375,
486.8140625,
-1,
0.976496121167344,
4922696
],
[
1746280126,
1746280171,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 935 n_samples 340 confidence 0.25 feature_proportion 0.8708379373913727 n_clusters 25",
935,
340,
0.8708379373913727,
25,
0.25,
0.73,
32,
0,
"None",
"i7184",
32,
495.25,
488.9596354166667,
-1,
0.9969523457702253,
4923319
],
[
1746282756,
1746282794,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4126 n_samples 749 confidence 0.001 feature_proportion 0.598717670853933 n_clusters 8",
4126,
749,
0.598717670853933,
8,
0.001,
0.73,
25,
0,
"None",
"i7185",
25,
498.23046875,
489.815625,
-1,
0.9857083487255264,
4923958
],
[
1746285255,
1746285313,
58,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4204 n_samples 414 confidence 0.005 feature_proportion 0.999 n_clusters 50",
4204,
414,
0.999,
50,
0.005,
0.72,
44,
0,
"None",
"i7186",
44,
509.5546875,
495.36941964285717,
-1,
0.9940893978574067,
4924529
],
[
1746287556,
1746287588,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1248 n_samples 779 confidence 0.005 feature_proportion 0.999 n_clusters 1",
1248,
779,
0.999,
1,
0.005,
0.74,
20,
0,
"None",
"i7186",
20,
491.1875,
487.5484375,
-1,
0.9820603989656447,
4925015
],
[
1746290217,
1746290250,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1393 n_samples 828 confidence 0.25 feature_proportion 0.971523261610775 n_clusters 39",
1393,
828,
0.971523261610775,
39,
0.25,
0.72,
21,
0,
"None",
"i7176",
21,
489.76953125,
486.7765625,
-1,
0.9880171776874769,
4925653
],
[
1746293078,
1746293104,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2851 confidence 0.001 feature_proportion 0.607397544614624 n_clusters 45",
5000,
2851,
0.607397544614624,
45,
0.001,
0.7,
15,
0,
"None",
"i7186",
15,
491.37890625,
486.7822265625,
-1,
0.9711627262652383,
4926239
],
[
1746294937,
1746294956,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2075 n_samples 426 confidence 0.25 feature_proportion 0.9571812076389872 n_clusters 1",
2075,
426,
0.9571812076389872,
1,
0.25,
0.69,
11,
0,
"None",
"i7175",
11,
489.6640625,
486.158203125,
-1,
0.9933967491688216,
4926754
],
[
1746297258,
1746297283,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2367 confidence 0.05 feature_proportion 0.30810508766746986 n_clusters 18",
5000,
2367,
0.30810508766746986,
18,
0.05,
0.71,
14,
0,
"None",
"i7185",
14,
488.79296875,
485.1943359375,
-1,
0.9836996675286295,
4927235
],
[
1746299779,
1746299805,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4946 n_samples 1572 confidence 0.001 feature_proportion 0.999 n_clusters 40",
4946,
1572,
0.999,
40,
0.001,
0.73,
16,
0,
"None",
"i7183",
16,
488.48046875,
485.78125,
-1,
0.9799593646102697,
4927881
],
[
1746302384,
1746302430,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4502 n_samples 743 confidence 0.001 feature_proportion 0.999 n_clusters 24",
4502,
743,
0.999,
24,
0.001,
0.74,
34,
0,
"None",
"i7174",
34,
498.60546875,
490.466796875,
-1,
0.9949667528629479,
4928462
],
[
1746304979,
1746305011,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 789 n_samples 355 confidence 0.25 feature_proportion 0.49394866974225377 n_clusters 22",
789,
355,
0.49394866974225377,
22,
0.25,
0.73,
22,
0,
"None",
"i7181",
22,
496.11328125,
489.35234375,
-1,
0.999953823420761,
4928973
],
[
1746307418,
1746307494,
76,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 965 n_samples 140 confidence 0.005 feature_proportion 0.001 n_clusters 23",
965,
140,
0.001,
23,
0.005,
0.73,
62,
0,
"None",
"i7184",
62,
508.734375,
493.58116319444446,
-1,
0.999815293683044,
4929557
],
[
1746309997,
1746310030,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4363 n_samples 1638 confidence 0.005 feature_proportion 0.001 n_clusters 30",
4363,
1638,
0.001,
30,
0.005,
0.72,
22,
0,
"None",
"i7184",
22,
491.5078125,
487.83359375,
-1,
0.9873707055781308,
4930130
],
[
1746312557,
1746312576,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2456 confidence 0.005 feature_proportion 0.31614175063027894 n_clusters 16",
5000,
2456,
0.31614175063027894,
16,
0.005,
0.69,
12,
0,
"None",
"i7183",
12,
491.3984375,
486.849609375,
-1,
0.9639822681935722,
4930628
],
[
1746315467,
1746315493,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 1919 confidence 0.005 feature_proportion 0.999 n_clusters 37",
5000,
1919,
0.999,
37,
0.005,
0.7,
15,
0,
"None",
"i7175",
15,
489.82421875,
486.2216796875,
-1,
0.9747414111562616,
4931305
],
[
1746318409,
1746318435,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1220 n_samples 1744 confidence 0.1 feature_proportion 0.09761793016095426 n_clusters 18",
1220,
1744,
0.09761793016095426,
18,
0.1,
0.71,
13,
0,
"None",
"i7180",
13,
491.8671875,
487.34375,
-1,
0.6478574067233099,
4931961
],
[
1746321218,
1746321251,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 947 n_samples 564 confidence 0.05 feature_proportion 0.6653664992254615 n_clusters 9",
947,
564,
0.6653664992254615,
9,
0.05,
0.72,
22,
0,
"None",
"i7184",
22,
491.4765625,
487.48671875,
-1,
0.9854774658293314,
4932548
],
[
1746323928,
1746323959,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1027 n_samples 596 confidence 0.25 feature_proportion 0.6164433739874893 n_clusters 10",
1027,
596,
0.6164433739874893,
10,
0.25,
0.72,
19,
0,
"None",
"i7176",
19,
493.33984375,
487.4736328125,
-1,
0.9869551163649797,
4933113
],
[
1746326478,
1746326510,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 996 n_samples 1 confidence 0.005 feature_proportion 0.001 n_clusters 1",
996,
1,
0.001,
1,
0.005,
0.71,
19,
0,
"None",
"i7183",
19,
482.50390625,
482.1591796875,
-1,
0,
4933724
],
[
1746328119,
1746328171,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2157 n_samples 61 confidence 0.005 feature_proportion 0.001 n_clusters 19",
2157,
61,
0.001,
19,
0.005,
0.74,
40,
0,
"None",
"i7186",
40,
491.80078125,
486.3671875,
-1,
0.9996305873660879,
4934063
],
[
1746330919,
1746330945,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1149 n_samples 1967 confidence 0.05 feature_proportion 0.4994045379421374 n_clusters 23",
1149,
1967,
0.4994045379421374,
23,
0.05,
0.7,
13,
0,
"None",
"i7176",
13,
484.58203125,
482.984375,
-1,
0.5570973402290358,
4934627
],
[
1746333219,
1746333251,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 992 n_samples 1 confidence 0.001 feature_proportion 0.001 n_clusters 1",
992,
1,
0.001,
1,
0.001,
0.71,
19,
0,
"None",
"i7183",
19,
484.74609375,
483.3876953125,
-1,
0,
4935079
],
[
1746335659,
1746335685,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1206 n_samples 2117 confidence 0.25 feature_proportion 0.001 n_clusters 1",
1206,
2117,
0.001,
1,
0.25,
0.71,
14,
0,
"None",
"i7179",
14,
488.3671875,
485.8603515625,
-1,
0.5290450683413372,
4935579
],
[
1746338390,
1746338416,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 939 n_samples 1107 confidence 0.05 feature_proportion 0.4708367992136162 n_clusters 39",
939,
1107,
0.4708367992136162,
39,
0.05,
0.73,
16,
0,
"None",
"i7186",
16,
488,
485.3818359375,
-1,
0.8238363502031769,
4936244
],
[
1746341020,
1746341046,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1189 n_samples 1228 confidence 0.25 feature_proportion 0.001 n_clusters 17",
1189,
1228,
0.001,
17,
0.25,
0.7,
16,
0,
"None",
"i7179",
16,
491.359375,
486.798828125,
-1,
0.9333671961581086,
4936793
],
[
1746344121,
1746344147,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3391 confidence 0.1 feature_proportion 0.719810596665692 n_clusters 28",
5000,
3391,
0.719810596665692,
28,
0.1,
0.7,
14,
0,
"None",
"i7184",
14,
487.9609375,
485.41015625,
-1,
0.898365349094939,
4937411
],
[
1746347321,
1746347353,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 832 n_samples 359 confidence 0.005 feature_proportion 0.999 n_clusters 12",
832,
359,
0.999,
12,
0.005,
0.73,
24,
0,
"None",
"i7184",
24,
496.20703125,
489.31484375,
-1,
0.9946435168082749,
4938033
],
[
1746350442,
1746350468,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1211 n_samples 1925 confidence 0.25 feature_proportion 0.001 n_clusters 14",
1211,
1925,
0.001,
14,
0.25,
0.7,
15,
0,
"None",
"i7184",
15,
484.4609375,
482.9072265625,
-1,
0.5871582933136313,
4938725
],
[
1746353503,
1746353529,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2022 confidence 0.001 feature_proportion 0.6962080279009896 n_clusters 21",
5000,
2022,
0.6962080279009896,
21,
0.001,
0.71,
15,
0,
"None",
"i7181",
15,
486.7109375,
484.1201171875,
-1,
0.9803749538234208,
4939357
],
[
1746356621,
1746356653,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4513 n_samples 1792 confidence 0.005 feature_proportion 0.001 n_clusters 1",
4513,
1792,
0.001,
1,
0.005,
0.72,
22,
0,
"None",
"i7180",
22,
491.2109375,
487.6109375,
-1,
0.9621582933136313,
4939947
],
[
1746358403,
1746358435,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2916 confidence 0.001 feature_proportion 0.001 n_clusters 50",
5000,
2916,
0.001,
50,
0.001,
0.72,
20,
0,
"None",
"i7183",
20,
486.78125,
485.150390625,
-1,
0.9254710011082379,
4940759
],
[
1746361362,
1746361394,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3881 n_samples 1134 confidence 0.005 feature_proportion 0.22833146474331253 n_clusters 33",
3881,
1134,
0.22833146474331253,
33,
0.005,
0.71,
19,
0,
"None",
"i7183",
19,
488.83203125,
484.8779296875,
-1,
0.9949205762837089,
4941367
],
[
1746364403,
1746364435,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1231 n_samples 842 confidence 0.005 feature_proportion 0.999 n_clusters 42",
1231,
842,
0.999,
42,
0.005,
0.72,
22,
0,
"None",
"i7186",
22,
489.35546875,
486.70703125,
-1,
0.9809983376431474,
4941957
],
[
1746367324,
1746367350,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2289 confidence 0.025 feature_proportion 0.3389374831324117 n_clusters 18",
5000,
2289,
0.3389374831324117,
18,
0.025,
0.71,
15,
0,
"None",
"i7185",
15,
489.9921875,
486.439453125,
-1,
0.9512837089028445,
4942505
],
[
1746370739,
1746370778,
39,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4510 n_samples 1609 confidence 0.001 feature_proportion 0.999 n_clusters 17",
4510,
1609,
0.999,
17,
0.001,
0.71,
22,
0,
"None",
"i7168",
22,
485.5390625,
484.2796875,
-1,
0.9658755079423716,
4943161
],
[
1746374084,
1746374110,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2625 confidence 0.001 feature_proportion 0.2888025178190613 n_clusters 19",
5000,
2625,
0.2888025178190613,
19,
0.001,
0.7,
14,
0,
"None",
"i7181",
14,
487.8671875,
485.328125,
-1,
0.9639360916143332,
4943791
],
[
1746376644,
1746376658,
14,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 81 n_samples 1 confidence 0.001 feature_proportion 0.7066653440285307 n_clusters 1",
81,
1,
0.7066653440285307,
1,
0.001,
"None",
"None",
1,
"None",
"i7186",
"",
"",
"",
"",
"",
4944253
],
[
1746379307,
1746379333,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1315 n_samples 3010 confidence 0.25 feature_proportion 0.999 n_clusters 1",
1315,
3010,
0.999,
1,
0.25,
0.71,
13,
0,
"None",
"i7171",
13,
490.9453125,
486.4755859375,
-1,
0.39469431104543773,
4944777
],
[
1746381865,
1746381942,
77,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 1067 confidence 0.001 feature_proportion 0.001 n_clusters 1",
5000,
1067,
0.001,
1,
0.001,
0.65,
65,
0,
"None",
"i7181",
65,
489.71875,
488.16883680555554,
-1,
0.8480559660140377,
4945255
],
[
1746384025,
1746384083,
58,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3112 n_samples 219 confidence 0.25 feature_proportion 0.49612024755704576 n_clusters 1",
3112,
219,
0.49612024755704576,
1,
0.25,
0.74,
47,
0,
"None",
"i7184",
47,
506.07421875,
492.94308035714283,
-1,
0.9960980790543037,
4945638
],
[
1746387406,
1746387445,
39,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4472 n_samples 1083 confidence 0.25 feature_proportion 0.7037285249492395 n_clusters 26",
4472,
1083,
0.7037285249492395,
26,
0.25,
0.72,
23,
0,
"None",
"i7181",
23,
494.01953125,
488.35390625,
-1,
0.9751800886590322,
4946327
],
[
1746390418,
1746390444,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4892 confidence 0.1 feature_proportion 0.20979575564098926 n_clusters 33",
5000,
4892,
0.20979575564098926,
33,
0.1,
0.7,
15,
0,
"None",
"i7178",
15,
491.4609375,
486.8662109375,
-1,
0.7931289250092353,
4946899
],
[
1746393288,
1746393314,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4016 confidence 0.05 feature_proportion 0.999 n_clusters 16",
5000,
4016,
0.999,
16,
0.05,
0.71,
11,
0,
"None",
"i7183",
11,
486.75,
484.1904296875,
-1,
0.8572220169929812,
4947391
],
[
1746396777,
1746396809,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3663 n_samples 1 confidence 0.001 feature_proportion 0.001 n_clusters 1",
3663,
1,
0.001,
1,
0.001,
0.71,
20,
0,
"None",
"i7176",
20,
482.89453125,
482.529296875,
-1,
0,
4948051
],
[
1746399309,
1746399335,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1913 n_samples 3945 confidence 0.25 feature_proportion 0.999 n_clusters 1",
1913,
3945,
0.999,
1,
0.25,
0.7,
11,
0,
"None",
"i7182",
11,
489.62109375,
486.1123046875,
-1,
0.3975110823790174,
4948501
],
[
1746402528,
1746402554,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1124 n_samples 1732 confidence 0.05 feature_proportion 0.5664110527195414 n_clusters 12",
1124,
1732,
0.5664110527195414,
12,
0.05,
0.68,
12,
0,
"None",
"i7183",
12,
491.703125,
487.146484375,
-1,
0.6228297007757665,
4949073
],
[
1746406196,
1746406222,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1253 n_samples 2271 confidence 0.25 feature_proportion 0.001 n_clusters 19",
1253,
2271,
0.001,
19,
0.25,
0.69,
12,
0,
"None",
"i7176",
12,
491.14453125,
486.6044921875,
-1,
0.5207332840783154,
4949751
],
[
1746409810,
1746409829,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 530 n_samples 5000 confidence 0.25 feature_proportion 0.5946829330262926 n_clusters 32",
530,
5000,
0.5946829330262926,
32,
0.25,
0.67,
10,
0,
"None",
"i7185",
10,
489.85546875,
485.1197916666667,
-1,
0.0856575544883635,
4950436
],
[
1746413569,
1746413595,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1350 n_samples 4367 confidence 0.25 feature_proportion 0.6161967915231903 n_clusters 15",
1350,
4367,
0.6161967915231903,
15,
0.25,
0.74,
11,
0,
"None",
"i7184",
11,
489.61328125,
486.111328125,
-1,
0.24935352789065385,
4951122
],
[
1746415968,
1746415988,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1179 n_samples 4709 confidence 0.25 feature_proportion 0.6439500211813417 n_clusters 1",
1179,
4709,
0.6439500211813417,
1,
0.25,
0.65,
10,
0,
"None",
"i7185",
10,
491.046875,
485.0559895833333,
-1,
0.21776874769117105,
4951561
],
[
1746418310,
1746418336,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1085 n_samples 2089 confidence 0.25 feature_proportion 0.5528543477525104 n_clusters 21",
1085,
2089,
0.5528543477525104,
21,
0.25,
0.7,
13,
0,
"None",
"i7176",
13,
490.90625,
486.330078125,
-1,
0.4759650905060953,
4952047
],
[
1746420387,
1746420413,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1211 n_samples 1583 confidence 0.01 feature_proportion 0.5997690717413093 n_clusters 1",
1211,
1583,
0.5997690717413093,
1,
0.01,
0.72,
13,
0,
"None",
"i7185",
13,
491.16796875,
486.66015625,
-1,
0.7269578869597341,
4952441
],
[
1746423850,
1746423888,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3967 n_samples 676 confidence 0.005 feature_proportion 0.7412528086286566 n_clusters 10",
3967,
676,
0.7412528086286566,
10,
0.005,
0.73,
26,
0,
"None",
"i7185",
26,
500.4375,
490.81796875,
-1,
0.9988917620982638,
4953066
],
[
1746427319,
1746427351,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 1375 confidence 0.001 feature_proportion 0.999 n_clusters 46",
5000,
1375,
0.999,
46,
0.001,
0.72,
19,
0,
"None",
"i7182",
19,
491.08203125,
486.4833984375,
-1,
0.9841383450314001,
4953635
],
[
1746430619,
1746430645,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4543 n_samples 1354 confidence 0.001 feature_proportion 0.999 n_clusters 40",
4543,
1354,
0.999,
40,
0.001,
0.72,
18,
0,
"None",
"i7183",
18,
490.43359375,
486.3359375,
-1,
0.9691078684891024,
4954273
],
[
1746434498,
1746434537,
39,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 983 n_samples 585 confidence 0.005 feature_proportion 0.7168167307325456 n_clusters 9",
983,
585,
0.7168167307325456,
9,
0.005,
0.73,
23,
0,
"None",
"i7186",
23,
490.53515625,
486.46953125,
-1,
0.9951745474695235,
4955475
],
[
1746436981,
1746437013,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1493 n_samples 2809 confidence 0.25 feature_proportion 0.45139207834002476 n_clusters 1",
1493,
2809,
0.45139207834002476,
1,
0.25,
0.7,
13,
0,
"None",
"i7185",
13,
491.359375,
486.8583984375,
-1,
0.4825914296268932,
4956400
],
[
1746440051,
1746440076,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 976 n_samples 1 confidence 0.005 feature_proportion 0.999 n_clusters 1",
976,
1,
0.999,
1,
0.005,
"None",
"None",
1,
"None",
"i7186",
"",
"",
"",
"",
"",
4956957
],
[
1746443080,
1746443113,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3501 confidence 0.005 feature_proportion 0.999 n_clusters 1",
5000,
3501,
0.999,
1,
0.005,
0.7,
16,
0,
"None",
"i7179",
16,
486.25390625,
484.71875,
-1,
0.9237624676763946,
4957492
],
[
1746445561,
1746445587,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1093 n_samples 911 confidence 0.05 feature_proportion 0.5783342353747654 n_clusters 1",
1093,
911,
0.5783342353747654,
1,
0.05,
0.71,
15,
0,
"None",
"i7183",
15,
488.43359375,
485.9423828125,
-1,
0.9717399335057259,
4957900
],
[
1746447914,
1746447953,
39,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1040 n_samples 2379 confidence 0.25 feature_proportion 0.18676550828139954 n_clusters 1",
1040,
2379,
0.18676550828139954,
1,
0.25,
0.69,
18,
0,
"None",
"i7184",
18,
489.66015625,
486.185546875,
-1,
0.38418913926856296,
4958421
],
[
1746452113,
1746452163,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1564 n_samples 2098 confidence 0.1 feature_proportion 0.7871024008182782 n_clusters 38",
1564,
2098,
0.7871024008182782,
38,
0.1,
0.71,
13,
0,
"None",
"i7183",
13,
489.15625,
486.54296875,
-1,
0.6860916143332102,
4959235
],
[
1746455315,
1746455334,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4389 confidence 0.1 feature_proportion 0.999 n_clusters 50",
5000,
4389,
0.999,
50,
0.1,
0.71,
11,
0,
"None",
"i7183",
11,
493.01171875,
487.353515625,
-1,
0.8247829700775766,
4959962
],
[
1746458394,
1746458420,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1539 n_samples 3020 confidence 0.25 feature_proportion 0.999 n_clusters 21",
1539,
3020,
0.999,
21,
0.25,
0.71,
12,
0,
"None",
"i7181",
12,
490.16796875,
486.6064453125,
-1,
0.4619274104174363,
4960543
],
[
1746461435,
1746461467,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1124 n_samples 931 confidence 0.001 feature_proportion 0.999 n_clusters 1",
1124,
931,
0.999,
1,
0.001,
0.73,
18,
0,
"None",
"i7186",
18,
489.5234375,
486.0107421875,
-1,
0.9717399335057259,
4961144
],
[
1746464243,
1746464312,
69,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2489 confidence 0.05 feature_proportion 0.001 n_clusters 21",
5000,
2489,
0.001,
21,
0.05,
0.69,
13,
0,
"None",
"i7175",
13,
491.15234375,
486.6064453125,
-1,
0.9769347986701146,
4961636
],
[
1746467613,
1746467651,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1046 n_samples 432 confidence 0.005 feature_proportion 0.999 n_clusters 21",
1046,
432,
0.999,
21,
0.005,
0.73,
25,
0,
"None",
"i7179",
25,
493.87109375,
487.63203125,
-1,
0.9974141115626154,
4962218
],
[
1746471684,
1746471710,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1407 n_samples 3556 confidence 0.25 feature_proportion 0.999 n_clusters 14",
1407,
3556,
0.999,
14,
0.25,
0.7,
15,
0,
"None",
"i7174",
15,
491.40234375,
486.8447265625,
-1,
0.35733745844107867,
4962904
],
[
1746474804,
1746474830,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2645 confidence 0.025 feature_proportion 0.999 n_clusters 32",
5000,
2645,
0.999,
32,
0.025,
0.71,
14,
0,
"None",
"i7185",
14,
489.01953125,
485.40234375,
-1,
0.9704008127077947,
4963464
],
[
1746478524,
1746478537,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1019 n_samples 1 confidence 0.005 feature_proportion 0.999 n_clusters 1",
1019,
1,
0.999,
1,
0.005,
"None",
"None",
1,
"None",
"i7180",
"",
"",
"",
"",
"",
4964054
],
[
1746481407,
1746481464,
57,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1270 n_samples 4901 confidence 0.25 feature_proportion 0.45350148912551475 n_clusters 10",
1270,
4901,
0.45350148912551475,
10,
0.25,
0.66,
13,
0,
"None",
"i7178",
13,
491.28515625,
486.7470703125,
-1,
0.20525489471739933,
4964536
],
[
1746485029,
1746485067,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4237 n_samples 720 confidence 0.005 feature_proportion 0.001 n_clusters 18",
4237,
720,
0.001,
18,
0.005,
0.72,
28,
0,
"None",
"i7183",
28,
499.66015625,
490.13046875,
-1,
0.9853158478019949,
4965145
],
[
1746489265,
1746489284,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4793 confidence 0.025 feature_proportion 0.7979787634784464 n_clusters 40",
5000,
4793,
0.7979787634784464,
40,
0.025,
0.7,
11,
0,
"None",
"i7180",
11,
490.3125,
486.626953125,
-1,
0.8900766531215367,
4965880
],
[
1746493325,
1746493357,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4160 n_samples 749 confidence 0.001 feature_proportion 0.9872199710181769 n_clusters 9",
4160,
749,
0.9872199710181769,
9,
0.001,
0.73,
23,
0,
"None",
"i7181",
23,
498.73828125,
490.37890625,
-1,
0.9857083487255264,
4966638
],
[
1746497165,
1746497191,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4331 confidence 0.1 feature_proportion 0.9143415524779519 n_clusters 15",
5000,
4331,
0.9143415524779519,
15,
0.1,
0.71,
11,
0,
"None",
"i7180",
11,
495.3046875,
488.7958984375,
-1,
0.9154045068341338,
4967235
],
[
1746500750,
1746500776,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1467 n_samples 3871 confidence 0.1 feature_proportion 0.999 n_clusters 33",
1467,
3871,
0.999,
33,
0.1,
0.69,
11,
0,
"None",
"i7180",
11,
488.71484375,
486.125,
-1,
0.33870520871813814,
4967836
],
[
1746504336,
1746504356,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1144 n_samples 4013 confidence 0.1 feature_proportion 0.999 n_clusters 24",
1144,
4013,
0.999,
24,
0.1,
0.7,
10,
0,
"None",
"i7179",
10,
488.890625,
484.1575520833333,
-1,
0.23771702992242336,
4968391
],
[
1746508317,
1746508343,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2314 confidence 0.001 feature_proportion 0.001 n_clusters 18",
5000,
2314,
0.001,
18,
0.001,
0.71,
15,
0,
"None",
"i7180",
15,
491.5078125,
486.966796875,
-1,
0.9616734392316217,
4969063
],
[
1746512252,
1746512278,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1656 n_samples 3146 confidence 0.25 feature_proportion 0.999 n_clusters 16",
1656,
3146,
0.999,
16,
0.25,
0.72,
14,
0,
"None",
"i7186",
14,
489.80859375,
486.24609375,
-1,
0.4588104913188031,
4969745
],
[
1746515591,
1746515617,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3212 confidence 0.05 feature_proportion 0.9521641925792204 n_clusters 27",
5000,
3212,
0.9521641925792204,
27,
0.05,
0.69,
13,
0,
"None",
"i7184",
13,
491.296875,
486.677734375,
-1,
0.9311968969338751,
4970283
],
[
1746519823,
1746519867,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1340 n_samples 904 confidence 0.025 feature_proportion 0.6305474548196001 n_clusters 10",
1340,
904,
0.6305474548196001,
10,
0.025,
0.73,
18,
0,
"None",
"i7180",
18,
490.91796875,
486.9873046875,
-1,
0.9701699298115996,
4971014
],
[
1746523932,
1746523958,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2737 confidence 0.001 feature_proportion 0.2522083027831727 n_clusters 31",
5000,
2737,
0.2522083027831727,
31,
0.001,
0.69,
13,
0,
"None",
"i7183",
13,
486.375,
484.787109375,
-1,
0.9369458810491319,
4971683
],
[
1746527399,
1746527431,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2664 confidence 0.001 feature_proportion 0.999 n_clusters 50",
5000,
2664,
0.999,
50,
0.001,
0.68,
16,
0,
"None",
"i7186",
16,
487.203125,
484.591796875,
-1,
0.976542297746583,
4972287
],
[
1746531583,
1746531608,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4764 confidence 0.1 feature_proportion 0.001 n_clusters 43",
5000,
4764,
0.001,
43,
0.1,
0.7,
11,
0,
"None",
"i7181",
11,
486.26171875,
484.626953125,
-1,
0.8853897303287772,
4973172
],
[
1746534638,
1746534683,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4181 n_samples 608 confidence 0.025 feature_proportion 0.999 n_clusters 50",
4181,
608,
0.999,
50,
0.025,
0.72,
30,
0,
"None",
"i7182",
30,
496.76953125,
487.33046875,
-1,
0.9966752862947913,
4973752
],
[
1746539174,
1746539206,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1296 n_samples 1900 confidence 0.05 feature_proportion 0.5774292542859283 n_clusters 38",
1296,
1900,
0.5774292542859283,
38,
0.05,
0.68,
14,
0,
"None",
"i7175",
14,
486.90625,
484.3125,
-1,
0.6283708902844477,
4974640
],
[
1746543713,
1746543763,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4385 n_samples 1897 confidence 0.001 feature_proportion 0.9901363874606842 n_clusters 29",
4385,
1897,
0.9901363874606842,
29,
0.001,
0.72,
15,
0,
"None",
"i7176",
15,
490.05078125,
486.451171875,
-1,
0.9635666789804211,
4975389
],
[
1746547374,
1746547393,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 960 n_samples 1 confidence 0.005 feature_proportion 0.999 n_clusters 1",
960,
1,
0.999,
1,
0.005,
"None",
"None",
1,
"None",
"i7181",
"",
"",
"",
"",
"",
4975984
],
[
1746551225,
1746551270,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 342 n_samples 388 confidence 0.05 feature_proportion 0.7848838626132195 n_clusters 21",
342,
388,
0.7848838626132195,
21,
0.05,
0.73,
17,
0,
"None",
"i7184",
17,
486.44921875,
483.908203125,
-1,
0.8685814554857776,
4976569
],
[
1746555410,
1746555443,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1704 n_samples 3412 confidence 0.25 feature_proportion 0.6549527411006911 n_clusters 37",
1704,
3412,
0.6549527411006911,
37,
0.25,
0.69,
13,
0,
"None",
"i7184",
13,
489.9296875,
486.3076171875,
-1,
0.4327669006280015,
4977240
],
[
1746560115,
1746560141,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3539 confidence 0.005 feature_proportion 0.827535631668396 n_clusters 29",
5000,
3539,
0.827535631668396,
29,
0.005,
0.68,
14,
0,
"None",
"i7184",
14,
487.32421875,
484.7080078125,
-1,
0.9325360177318064,
4978006
],
[
1746564723,
1746564755,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1428 n_samples 1602 confidence 0.25 feature_proportion 0.999 n_clusters 11",
1428,
1602,
0.999,
11,
0.25,
0.71,
16,
0,
"None",
"i7180",
16,
486.078125,
484.521484375,
-1,
0.8572220169929812,
4978770
],
[
1746566307,
1746566320,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2270 n_samples 1 confidence 0.025 feature_proportion 0.7900781346150818 n_clusters 1",
2270,
1,
0.7900781346150818,
1,
0.025,
"None",
"None",
1,
"None",
"i7185",
"",
"",
"",
"",
"",
4979001
],
[
1746570309,
1746570335,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4653 confidence 0.025 feature_proportion 0.6348108651010154 n_clusters 13",
5000,
4653,
0.6348108651010154,
13,
0.025,
0.68,
11,
0,
"None",
"i7176",
11,
486.765625,
484.2158203125,
-1,
0.8674501292944219,
4979627
],
[
1746573523,
1746573549,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3192 n_samples 3084 confidence 0.025 feature_proportion 0.5833299632014701 n_clusters 24",
3192,
3084,
0.5833299632014701,
24,
0.025,
0.71,
12,
0,
"None",
"i7185",
12,
491.54296875,
486.998046875,
-1,
0.9281492427041005,
4980155
],
[
1746578204,
1746578230,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4887 confidence 0.05 feature_proportion 0.9903132438344163 n_clusters 17",
5000,
4887,
0.9903132438344163,
17,
0.05,
0.72,
11,
0,
"None",
"i7181",
11,
493.69921875,
488.1025390625,
-1,
0.7924362763206502,
4980918
],
[
1746583147,
1746583173,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1692 n_samples 1520 confidence 0.025 feature_proportion 0.665169349761729 n_clusters 24",
1692,
1520,
0.665169349761729,
24,
0.025,
0.73,
15,
0,
"None",
"i7181",
15,
489.58984375,
486.0009765625,
-1,
0.9515145917990395,
4981699
],
[
1746587854,
1746587886,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1675 n_samples 3800 confidence 0.025 feature_proportion 0.3405896075796695 n_clusters 23",
1675,
3800,
0.3405896075796695,
23,
0.025,
0.67,
12,
0,
"None",
"i7184",
12,
490.92578125,
486.37109375,
-1,
0.3867288511267085,
4982375
],
[
1746592449,
1746592462,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1066 n_samples 1 confidence 0.005 feature_proportion 0.999 n_clusters 1",
1066,
1,
0.999,
1,
0.005,
"None",
"None",
1,
"None",
"i7182",
"",
"",
"",
"",
"",
4983103
],
[
1746596775,
1746596801,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4043 confidence 0.1 feature_proportion 0.999 n_clusters 37",
5000,
4043,
0.999,
37,
0.1,
0.66,
11,
0,
"None",
"i7183",
11,
491.7265625,
487.099609375,
-1,
0.8622090875507943,
4983749
],
[
1746601340,
1746601366,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1647 n_samples 2674 confidence 0.25 feature_proportion 0.999 n_clusters 1",
1647,
2674,
0.999,
1,
0.25,
0.68,
14,
0,
"None",
"i7182",
14,
491.08203125,
486.5673828125,
-1,
0.5703961950498707,
4984458
],
[
1746605491,
1746605504,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3851 n_samples 1 confidence 0.005 feature_proportion 0.999 n_clusters 27",
3851,
1,
0.999,
27,
0.005,
"None",
"None",
1,
"None",
"i7184",
"",
"",
"",
"",
"",
4985169
],
[
1746610234,
1746610260,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1120 n_samples 4822 confidence 0.001 feature_proportion 0.3689036491224752 n_clusters 3",
1120,
4822,
0.3689036491224752,
3,
0.001,
0.69,
10,
0,
"None",
"i7180",
10,
489.75,
485.046875,
-1,
0.1810121906169191,
4985926
],
[
1746614549,
1746614575,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1170 n_samples 1152 confidence 0.1 feature_proportion 0.4654931780778403 n_clusters 50",
1170,
1152,
0.4654931780778403,
50,
0.1,
0.71,
15,
0,
"None",
"i7179",
15,
488.171875,
485.568359375,
-1,
0.9579331363132619,
4986574
],
[
1746618997,
1746619016,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1137 n_samples 1 confidence 0.005 feature_proportion 0.999 n_clusters 1",
1137,
1,
0.999,
1,
0.005,
"None",
"None",
1,
"None",
"i7180",
"",
"",
"",
"",
"",
4987346
],
[
1746622343,
1746622369,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4647 confidence 0.1 feature_proportion 0.999 n_clusters 50",
5000,
4647,
0.999,
50,
0.1,
0.65,
10,
0,
"None",
"i7176",
10,
495.7578125,
489.138671875,
-1,
0.8664804211304027,
4987835
],
[
1746626934,
1746626966,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4442 n_samples 1683 confidence 0.05 feature_proportion 0.5031450687171293 n_clusters 40",
4442,
1683,
0.5031450687171293,
40,
0.05,
0.7,
16,
0,
"None",
"i7180",
16,
490.92578125,
486.353515625,
-1,
0.9714397857406724,
4988523
],
[
1746632774,
1746632800,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1875 n_samples 4876 confidence 0.25 feature_proportion 0.999 n_clusters 21",
1875,
4876,
0.999,
21,
0.25,
0.68,
11,
0,
"None",
"i7185",
11,
490.375,
486.75,
-1,
0.30303380125600293,
4989383
],
[
1746638507,
1746638539,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3672 confidence 0.025 feature_proportion 0.2447762676736633 n_clusters 17",
5000,
3672,
0.2447762676736633,
17,
0.025,
0.68,
12,
0,
"None",
"i7181",
12,
490.92578125,
486.40234375,
-1,
0.8784632434429257,
4992827
],
[
1746645929,
1746645942,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1049 n_samples 1 confidence 0.005 feature_proportion 0.999 n_clusters 1",
1049,
1,
0.999,
1,
0.005,
"None",
"None",
1,
"None",
"i7174",
"",
"",
"",
"",
"",
4993918
],
[
1746651408,
1746651446,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 958 n_samples 432 confidence 0.001 feature_proportion 0.6130100756746156 n_clusters 9",
958,
432,
0.6130100756746156,
9,
0.001,
0.74,
26,
0,
"None",
"i7185",
26,
494.3984375,
488.28046875,
-1,
0.9974141115626154,
4994702
],
[
1746656030,
1746656056,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2598 n_samples 874 confidence 0.005 feature_proportion 0.999 n_clusters 1",
2598,
874,
0.999,
1,
0.005,
0.71,
14,
0,
"None",
"i7183",
14,
490.9765625,
486.46875,
-1,
0.9887790912449206,
4995366
],
[
1746661276,
1746661289,
13,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1082 n_samples 1 confidence 0.005 feature_proportion 0.999 n_clusters 1",
1082,
1,
0.999,
1,
0.005,
"None",
"None",
1,
"None",
"i7185",
"",
"",
"",
"",
"",
4996186
],
[
1746665098,
1746665150,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4647 n_samples 637 confidence 0.025 feature_proportion 0.001 n_clusters 50",
4647,
637,
0.001,
50,
0.025,
0.73,
33,
0,
"None",
"i7184",
33,
501.41796875,
492.0911458333333,
-1,
0.9853851126708534,
4996757
],
[
1746668255,
1746668289,
34,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1255 n_samples 2186 confidence 0.1 feature_proportion 0.5439084761221503 n_clusters 1",
1255,
2186,
0.5439084761221503,
1,
0.1,
0.7,
18,
0,
"None",
"i7180",
18,
486.42578125,
482.3828125,
-1,
0.5215644625046176,
4997182
],
[
1746673853,
1746673878,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1788 n_samples 2888 confidence 0.05 feature_proportion 0.5282456985807144 n_clusters 16",
1788,
2888,
0.5282456985807144,
16,
0.05,
0.69,
14,
0,
"None",
"i7181",
14,
488.015625,
485.4501953125,
-1,
0.536664203915774,
4997980
],
[
1746679061,
1746679087,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1783 n_samples 2372 confidence 0.05 feature_proportion 0.999 n_clusters 45",
1783,
2372,
0.999,
45,
0.05,
0.7,
15,
0,
"None",
"i7183",
15,
486.08203125,
484.4453125,
-1,
0.6998291466568156,
4998708
],
[
1746684726,
1746684759,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1888 n_samples 1912 confidence 0.025 feature_proportion 0.7081616955985978 n_clusters 13",
1888,
1912,
0.7081616955985978,
13,
0.025,
0.72,
20,
0,
"None",
"i7176",
20,
491.546875,
487.0185546875,
-1,
0.9154045068341338,
4999507
],
[
1746690345,
1746690372,
27,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3559 confidence 0.05 feature_proportion 0.5852423846696345 n_clusters 50",
5000,
3559,
0.5852423846696345,
50,
0.05,
0.7,
16,
0,
"None",
"i7179",
16,
491.2890625,
486.646484375,
-1,
0.9371536756557074,
5000237
],
[
1746695484,
1746695529,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1560 n_samples 2268 confidence 0.005 feature_proportion 0.001 n_clusters 1",
1560,
2268,
0.001,
1,
0.005,
0.72,
33,
0,
"None",
"i7182",
33,
491.66796875,
488.654296875,
-1,
0.5402659770964167,
5001011
],
[
1746700688,
1746700726,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4550 n_samples 1068 confidence 0.001 feature_proportion 0.9005491670079306 n_clusters 40",
4550,
1068,
0.9005491670079306,
40,
0.001,
0.72,
19,
0,
"None",
"i7172",
19,
492.3828125,
486.8046875,
-1,
0.9863317325452531,
5001773
],
[
1746705729,
1746705774,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1096 n_samples 341 confidence 0.25 feature_proportion 0.001 n_clusters 22",
1096,
341,
0.001,
22,
0.25,
0.73,
33,
0,
"None",
"i7183",
33,
498.88671875,
490.6438802083333,
-1,
0.9998845585519025,
5002527
],
[
1746711323,
1746711349,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3894 confidence 0.01 feature_proportion 0.999 n_clusters 28",
5000,
3894,
0.999,
28,
0.01,
0.68,
13,
0,
"None",
"i7186",
13,
489.58203125,
486.0888671875,
-1,
0.9245936461026967,
5003288
],
[
1746715975,
1746716014,
39,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1143 n_samples 1 confidence 0.25 feature_proportion 0.001 n_clusters 1",
1143,
1,
0.001,
1,
0.25,
0.71,
22,
0,
"None",
"i7184",
22,
487.125,
485.2265625,
-1,
0,
5004144
],
[
1746721671,
1746721703,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4398 n_samples 1271 confidence 0.001 feature_proportion 0.999 n_clusters 18",
4398,
1271,
0.999,
18,
0.001,
0.72,
19,
0,
"None",
"i7183",
19,
488.41015625,
485.4833984375,
-1,
0.9977373476172885,
5004998
],
[
1746726412,
1746726445,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4841 n_samples 1769 confidence 0.005 feature_proportion 0.999 n_clusters 36",
4841,
1769,
0.999,
36,
0.005,
0.71,
18,
0,
"None",
"i7184",
18,
489.87890625,
486.2431640625,
-1,
0.9802364240857038,
5005706
],
[
1746730793,
1746730819,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 2990 confidence 0.05 feature_proportion 0.7555655099250024 n_clusters 29",
5000,
2990,
0.7555655099250024,
29,
0.05,
0.68,
13,
0,
"None",
"i7182",
13,
491.16015625,
486.5478515625,
-1,
0.9438492796453639,
5006349
],
[
1746736284,
1746736316,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4027 n_samples 952 confidence 0.005 feature_proportion 0.999 n_clusters 9",
4027,
952,
0.999,
9,
0.005,
0.72,
22,
0,
"None",
"i7180",
22,
490.48828125,
486.01015625,
-1,
0.9891023272995937,
5007175
],
[
1746741357,
1746741470,
113,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4449 n_samples 1085 confidence 0.25 feature_proportion 0.5875616461330486 n_clusters 18",
4449,
1085,
0.5875616461330486,
18,
0.25,
0.72,
19,
0,
"None",
"i7178",
19,
468.50390625,
467.32421875,
-1,
0.9769809752493536,
5007924
],
[
1746747214,
1746747240,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4139 confidence 0.001 feature_proportion 0.999 n_clusters 20",
5000,
4139,
0.999,
20,
0.001,
0.65,
14,
0,
"None",
"i7186",
14,
490.6015625,
485.9921875,
-1,
0.8799408939785741,
5008728
],
[
1746752377,
1746752415,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1110 n_samples 385 confidence 0.05 feature_proportion 0.999 n_clusters 1",
1110,
385,
0.999,
1,
0.05,
0.73,
27,
0,
"None",
"i7183",
27,
498.2890625,
489.5265625,
-1,
0.995567048393055,
5009463
],
[
1746757151,
1746757177,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3955 n_samples 999 confidence 0.005 feature_proportion 0.7704678217984607 n_clusters 50",
3955,
999,
0.7704678217984607,
50,
0.005,
0.73,
19,
0,
"None",
"i7182",
19,
494.015625,
487.298828125,
-1,
0.9918036571850757,
5010105
],
[
1746762834,
1746762854,
20,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1744 n_samples 3349 confidence 0.25 feature_proportion 0.001 n_clusters 24",
1744,
3349,
0.001,
24,
0.25,
0.69,
12,
0,
"None",
"i7185",
12,
487.234375,
484.677734375,
-1,
0.44292574806058366,
5010943
],
[
1746767073,
1746767092,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 3755 confidence 0.025 feature_proportion 0.28069441025935765 n_clusters 40",
5000,
3755,
0.28069441025935765,
40,
0.025,
0.7,
11,
0,
"None",
"i7182",
11,
486.390625,
484.7939453125,
-1,
0.8957101957886959,
5011516
],
[
1746770813,
1746770832,
19,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1548 n_samples 4123 confidence 0.25 feature_proportion 0.7942709777531962 n_clusters 1",
1548,
4123,
0.7942709777531962,
1,
0.25,
0.71,
11,
0,
"None",
"i7176",
11,
486.87109375,
484.337890625,
-1,
0.32166605097894346,
5012038
],
[
1746773454,
1746773480,
26,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2117 n_samples 786 confidence 0.025 feature_proportion 0.851577535553902 n_clusters 1",
2117,
786,
0.851577535553902,
1,
0.025,
0.67,
11,
0,
"None",
"i7184",
11,
489.578125,
486.0400390625,
-1,
0.9981067602512006,
5012429
],
[
1746778074,
1746778099,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1712 n_samples 2957 confidence 0.1 feature_proportion 0.999 n_clusters 1",
1712,
2957,
0.999,
1,
0.1,
0.71,
12,
0,
"None",
"i7183",
12,
489.80859375,
486.2841796875,
-1,
0.513852973771703,
5013090
],
[
1746782220,
1746782245,
25,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1657 n_samples 2729 confidence 0.1 feature_proportion 0.7360812284015027 n_clusters 36",
1657,
2729,
0.7360812284015027,
36,
0.1,
0.71,
12,
0,
"None",
"i7182",
12,
486.6171875,
485.0126953125,
-1,
0.5356021425932767,
5013618
],
[
1746787638,
1746787670,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 963 n_samples 1185 confidence 0.025 feature_proportion 0.48222618171922754 n_clusters 42",
963,
1185,
0.48222618171922754,
42,
0.025,
0.71,
17,
0,
"None",
"i7186",
17,
488.49609375,
485.9248046875,
-1,
0.7781908016254155,
5014408
],
[
1746793779,
1746793811,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/dfki\/benchmarkdd\/main.py 1 1 0 Electricity 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3745 n_samples 1 confidence 0.05 feature_proportion 0.001 n_clusters 1",
3745,
1,
0.001,
1,
0.05,
0.71,
19,
0,
"None",
"i7176",
19,
484.828125,
483.4560546875,
-1,
0,
5015430
]
];
var tab_worker_usage_csv_json = [
[
1746192465.8102438,
20,
0,
0
],
[
1746192476.5165243,
20,
0,
0
],
[
1746193627.5936701,
20,
0,
0
],
[
1746193628.0834422,
20,
0,
0
],
[
1746193630.487884,
20,
1,
5
],
[
1746193636.6834018,
20,
1,
5
],
[
1746195725.3471775,
20,
1,
5
],
[
1746195726.2699072,
20,
1,
5
],
[
1746195728.442162,
20,
2,
10
],
[
1746195729.867518,
20,
2,
10
],
[
1746195739.3588421,
20,
1,
5
],
[
1746195739.4529502,
20,
1,
5
],
[
1746197271.6206963,
20,
1,
5
],
[
1746197272.271896,
20,
1,
5
],
[
1746197274.4877608,
20,
2,
10
],
[
1746197275.9202993,
20,
2,
10
],
[
1746197285.837781,
20,
1,
5
],
[
1746197285.950728,
20,
1,
5
],
[
1746198665.2547033,
20,
1,
5
],
[
1746198665.8177416,
20,
1,
5
],
[
1746198668.258076,
20,
2,
10
],
[
1746198669.5453312,
20,
2,
10
],
[
1746198679.388546,
20,
1,
5
],
[
1746198679.488076,
20,
1,
5
],
[
1746200677.3861625,
20,
1,
5
],
[
1746200678.1339812,
20,
1,
5
],
[
1746200680.120754,
20,
2,
10
],
[
1746200681.3385236,
20,
2,
10
],
[
1746200690.5326838,
20,
1,
5
],
[
1746200690.9058306,
20,
1,
5
],
[
1746202353.395356,
20,
1,
5
],
[
1746202354.2281184,
20,
1,
5
],
[
1746202356.2309813,
20,
2,
10
],
[
1746202357.5119016,
20,
2,
10
],
[
1746202367.0512972,
20,
1,
5
],
[
1746202367.1379914,
20,
1,
5
],
[
1746204023.0995607,
20,
1,
5
],
[
1746204023.6298227,
20,
1,
5
],
[
1746204025.3775249,
20,
2,
10
],
[
1746204026.6661108,
20,
2,
10
],
[
1746204036.0163763,
20,
1,
5
],
[
1746204036.1042497,
20,
1,
5
],
[
1746206066.578294,
20,
1,
5
],
[
1746206067.2030833,
20,
1,
5
],
[
1746206069.228916,
20,
2,
10
],
[
1746206070.4623067,
20,
2,
10
],
[
1746206080.546163,
20,
1,
5
],
[
1746206080.8969839,
20,
1,
5
],
[
1746208144.325101,
20,
1,
5
],
[
1746208145.1328847,
20,
1,
5
],
[
1746208147.1253994,
20,
2,
10
],
[
1746208148.405497,
20,
2,
10
],
[
1746208157.3632367,
20,
1,
5
],
[
1746208157.852758,
20,
1,
5
],
[
1746209479.7474296,
20,
1,
5
],
[
1746209480.2452967,
20,
1,
5
],
[
1746209482.1884043,
20,
2,
10
],
[
1746209483.3885593,
20,
2,
10
],
[
1746209492.1145208,
20,
1,
5
],
[
1746209492.314749,
20,
1,
5
],
[
1746211265.1620197,
20,
1,
5
],
[
1746211265.6435404,
20,
1,
5
],
[
1746211267.374864,
20,
2,
10
],
[
1746211268.4818282,
20,
2,
10
],
[
1746211276.2682045,
20,
1,
5
],
[
1746211276.4712763,
20,
1,
5
],
[
1746213084.7484171,
20,
1,
5
],
[
1746213085.2155156,
20,
1,
5
],
[
1746213087.1867933,
20,
2,
10
],
[
1746213088.2610688,
20,
2,
10
],
[
1746213095.829338,
20,
1,
5
],
[
1746213095.9979498,
20,
1,
5
],
[
1746214279.0317369,
20,
1,
5
],
[
1746214279.5338228,
20,
1,
5
],
[
1746214281.3266823,
20,
2,
10
],
[
1746214282.446265,
20,
2,
10
],
[
1746214290.2361193,
20,
1,
5
],
[
1746214290.4379048,
20,
1,
5
],
[
1746215914.889834,
20,
1,
5
],
[
1746215915.4054732,
20,
1,
5
],
[
1746215917.358387,
20,
2,
10
],
[
1746215918.5375178,
20,
2,
10
],
[
1746215926.0855677,
20,
1,
5
],
[
1746215926.2611642,
20,
1,
5
],
[
1746217749.4477487,
20,
1,
5
],
[
1746217750.0719657,
20,
1,
5
],
[
1746217751.7772923,
20,
2,
10
],
[
1746217752.7324505,
20,
2,
10
],
[
1746217760.1102319,
20,
1,
5
],
[
1746217760.1954072,
20,
1,
5
],
[
1746220196.8262787,
20,
1,
5
],
[
1746220197.4201307,
20,
1,
5
],
[
1746220199.4226992,
20,
2,
10
],
[
1746220200.9120932,
20,
2,
10
],
[
1746220209.402665,
20,
1,
5
],
[
1746220209.4883168,
20,
1,
5
],
[
1746222270.763338,
20,
1,
5
],
[
1746222272.3370967,
20,
1,
5
],
[
1746222274.4803061,
20,
2,
10
],
[
1746222275.5535545,
20,
2,
10
],
[
1746222284.0540257,
20,
1,
5
],
[
1746222284.158586,
20,
1,
5
],
[
1746224592.215447,
20,
1,
5
],
[
1746224592.664874,
20,
1,
5
],
[
1746224594.3453436,
20,
2,
10
],
[
1746224595.362091,
20,
2,
10
],
[
1746224603.5353267,
20,
1,
5
],
[
1746224603.6318707,
20,
1,
5
],
[
1746226223.3973808,
20,
1,
5
],
[
1746226224.1330657,
20,
1,
5
],
[
1746226225.9466796,
20,
2,
10
],
[
1746226226.8581614,
20,
2,
10
],
[
1746226234.3711226,
20,
1,
5
],
[
1746226234.4524186,
20,
1,
5
],
[
1746227781.8311343,
20,
1,
5
],
[
1746227782.2828987,
20,
1,
5
],
[
1746227784.263219,
20,
2,
10
],
[
1746227785.1135225,
20,
2,
10
],
[
1746227792.2779408,
20,
1,
5
],
[
1746227792.5533235,
20,
1,
5
],
[
1746227798.516292,
20,
1,
5
],
[
1746227807.756422,
20,
1,
5
],
[
1746227817.5251381,
20,
1,
5
],
[
1746227823.4501956,
20,
1,
5
],
[
1746227828.0761106,
20,
0,
0
],
[
1746227836.7813437,
20,
0,
0
],
[
1746229018.632434,
20,
0,
0
],
[
1746229018.863618,
20,
0,
0
],
[
1746229020.2558258,
20,
1,
5
],
[
1746229024.7716258,
20,
1,
5
],
[
1746230574.6298234,
20,
1,
5
],
[
1746230575.1313512,
20,
1,
5
],
[
1746230577.0385215,
20,
2,
10
],
[
1746230578.035906,
20,
2,
10
],
[
1746230585.4772308,
20,
1,
5
],
[
1746230585.545464,
20,
1,
5
],
[
1746232027.9004774,
20,
1,
5
],
[
1746232028.4543343,
20,
1,
5
],
[
1746232030.359611,
20,
2,
10
],
[
1746232031.5645854,
20,
2,
10
],
[
1746232039.9590359,
20,
1,
5
],
[
1746232040.0497887,
20,
1,
5
],
[
1746233813.6029775,
20,
1,
5
],
[
1746233814.2174451,
20,
1,
5
],
[
1746233816.1987083,
20,
2,
10
],
[
1746233817.442153,
20,
2,
10
],
[
1746233827.0332632,
20,
1,
5
],
[
1746233827.2202845,
20,
1,
5
],
[
1746234865.741667,
20,
1,
5
],
[
1746234866.2814217,
20,
1,
5
],
[
1746234868.388104,
20,
2,
10
],
[
1746234869.7177987,
20,
2,
10
],
[
1746234878.59858,
20,
1,
5
],
[
1746234878.6811054,
20,
1,
5
],
[
1746237269.8565962,
20,
1,
5
],
[
1746237270.4032285,
20,
1,
5
],
[
1746237272.3695512,
20,
2,
10
],
[
1746237273.603737,
20,
2,
10
],
[
1746237282.19618,
20,
1,
5
],
[
1746237282.282596,
20,
1,
5
],
[
1746239136.1831172,
20,
1,
5
],
[
1746239136.4608035,
20,
1,
5
],
[
1746239138.1491928,
20,
2,
10
],
[
1746239138.6570966,
20,
2,
10
],
[
1746239145.8681772,
20,
1,
5
],
[
1746239145.9150655,
20,
1,
5
],
[
1746240835.9324954,
20,
1,
5
],
[
1746240836.3979573,
20,
1,
5
],
[
1746240838.3408911,
20,
2,
10
],
[
1746240839.4752579,
20,
2,
10
],
[
1746240847.6675527,
20,
1,
5
],
[
1746240847.8999178,
20,
1,
5
],
[
1746242755.1177413,
20,
1,
5
],
[
1746242755.6324704,
20,
1,
5
],
[
1746242757.4654615,
20,
2,
10
],
[
1746242758.6192408,
20,
2,
10
],
[
1746242766.6940422,
20,
1,
5
],
[
1746242766.8755224,
20,
1,
5
],
[
1746244581.416245,
20,
1,
5
],
[
1746244582.190746,
20,
1,
5
],
[
1746244584.1597586,
20,
2,
10
],
[
1746244585.3597517,
20,
2,
10
],
[
1746244594.4826553,
20,
1,
5
],
[
1746244594.9055903,
20,
1,
5
],
[
1746246715.8196905,
20,
1,
5
],
[
1746246716.352012,
20,
1,
5
],
[
1746246718.5179245,
20,
2,
10
],
[
1746246719.7484632,
20,
2,
10
],
[
1746246728.7216582,
20,
1,
5
],
[
1746246728.9053173,
20,
1,
5
],
[
1746248290.0434787,
20,
1,
5
],
[
1746248290.5569174,
20,
1,
5
],
[
1746248292.3128304,
20,
2,
10
],
[
1746248293.6068275,
20,
2,
10
],
[
1746248301.6875615,
20,
1,
5
],
[
1746248301.769268,
20,
1,
5
],
[
1746249316.8859925,
20,
1,
5
],
[
1746249317.324439,
20,
1,
5
],
[
1746249319.2078564,
20,
2,
10
],
[
1746249320.095455,
20,
2,
10
],
[
1746249327.1067963,
20,
1,
5
],
[
1746249327.1610332,
20,
1,
5
],
[
1746251762.8206863,
20,
1,
5
],
[
1746251763.3246782,
20,
1,
5
],
[
1746251765.337138,
20,
2,
10
],
[
1746251766.3724568,
20,
2,
10
],
[
1746251773.8938496,
20,
1,
5
],
[
1746251774.1038077,
20,
1,
5
],
[
1746253006.449207,
20,
1,
5
],
[
1746253007.1411126,
20,
1,
5
],
[
1746253009.0452476,
20,
2,
10
],
[
1746253009.6296794,
20,
2,
10
],
[
1746253018.0487943,
20,
1,
5
],
[
1746253018.2481534,
20,
1,
5
],
[
1746254061.2707562,
20,
1,
5
],
[
1746254061.6688468,
20,
1,
5
],
[
1746254063.1935277,
20,
2,
10
],
[
1746254064.0658543,
20,
2,
10
],
[
1746254071.9926298,
20,
1,
5
],
[
1746254072.0669346,
20,
1,
5
],
[
1746255822.1359656,
20,
1,
5
],
[
1746255822.4141452,
20,
1,
5
],
[
1746255824.1624496,
20,
2,
10
],
[
1746255824.6209185,
20,
2,
10
],
[
1746255832.0149674,
20,
1,
5
],
[
1746255832.0652416,
20,
1,
5
],
[
1746257341.3379354,
20,
1,
5
],
[
1746257341.943279,
20,
1,
5
],
[
1746257343.5417209,
20,
2,
10
],
[
1746257344.3005695,
20,
2,
10
],
[
1746257352.4213147,
20,
1,
5
],
[
1746257352.5179036,
20,
1,
5
],
[
1746259700.2447877,
20,
1,
5
],
[
1746259700.5181618,
20,
1,
5
],
[
1746259702.051467,
20,
2,
10
],
[
1746259702.505069,
20,
2,
10
],
[
1746259709.2325711,
20,
1,
5
],
[
1746259709.2931397,
20,
1,
5
],
[
1746260979.0873141,
20,
1,
5
],
[
1746260979.4855301,
20,
1,
5
],
[
1746260981.2700746,
20,
2,
10
],
[
1746260981.9684842,
20,
2,
10
],
[
1746260989.344289,
20,
1,
5
],
[
1746260989.4987323,
20,
1,
5
],
[
1746260995.3940208,
20,
1,
5
],
[
1746261004.9107873,
20,
1,
5
],
[
1746261015.097446,
20,
1,
5
],
[
1746261024.757834,
20,
1,
5
],
[
1746261030.7578962,
20,
1,
5
],
[
1746261035.8635178,
20,
0,
0
],
[
1746261045.1580093,
20,
0,
0
],
[
1746262898.714289,
20,
0,
0
],
[
1746262899.0039756,
20,
0,
0
],
[
1746262900.638413,
20,
1,
5
],
[
1746262905.8729086,
20,
1,
5
],
[
1746263965.9319158,
20,
1,
5
],
[
1746263966.3032303,
20,
1,
5
],
[
1746263968.211315,
20,
2,
10
],
[
1746263969.0024543,
20,
2,
10
],
[
1746263976.1658618,
20,
1,
5
],
[
1746263976.2409365,
20,
1,
5
],
[
1746265541.6616821,
20,
1,
5
],
[
1746265541.9806614,
20,
1,
5
],
[
1746265543.5069368,
20,
2,
10
],
[
1746265543.962286,
20,
2,
10
],
[
1746265550.4105437,
20,
1,
5
],
[
1746265550.4651875,
20,
1,
5
],
[
1746267005.2185223,
20,
1,
5
],
[
1746267005.5919352,
20,
1,
5
],
[
1746267007.1933806,
20,
2,
10
],
[
1746267007.9634852,
20,
2,
10
],
[
1746267015.3522816,
20,
1,
5
],
[
1746267015.408753,
20,
1,
5
],
[
1746268439.9796524,
20,
1,
5
],
[
1746268440.3413184,
20,
1,
5
],
[
1746268442.6069987,
20,
2,
10
],
[
1746268443.3865752,
20,
2,
10
],
[
1746268451.071222,
20,
1,
5
],
[
1746268451.1470768,
20,
1,
5
],
[
1746270443.9750147,
20,
1,
5
],
[
1746270444.4060633,
20,
1,
5
],
[
1746270446.2071345,
20,
2,
10
],
[
1746270446.9782753,
20,
2,
10
],
[
1746270454.7793055,
20,
1,
5
],
[
1746270454.892721,
20,
1,
5
],
[
1746272084.1085572,
20,
1,
5
],
[
1746272084.4785557,
20,
1,
5
],
[
1746272086.1889613,
20,
2,
10
],
[
1746272086.9672542,
20,
2,
10
],
[
1746272094.7521272,
20,
1,
5
],
[
1746272094.8146074,
20,
1,
5
],
[
1746273282.46528,
20,
1,
5
],
[
1746273283.0684378,
20,
1,
5
],
[
1746273285.0828586,
20,
2,
10
],
[
1746273285.8443325,
20,
2,
10
],
[
1746273293.525446,
20,
1,
5
],
[
1746273293.6177008,
20,
1,
5
],
[
1746275046.3855944,
20,
1,
5
],
[
1746275047.061901,
20,
1,
5
],
[
1746275048.5840628,
20,
2,
10
],
[
1746275049.3999567,
20,
2,
10
],
[
1746275057.4682357,
20,
1,
5
],
[
1746275057.5587013,
20,
1,
5
],
[
1746277470.0093095,
20,
1,
5
],
[
1746277470.3914027,
20,
1,
5
],
[
1746277472.2187366,
20,
2,
10
],
[
1746277473.024613,
20,
2,
10
],
[
1746277480.7929611,
20,
1,
5
],
[
1746277480.8761861,
20,
1,
5
],
[
1746280113.375558,
20,
1,
5
],
[
1746280113.9101493,
20,
1,
5
],
[
1746280115.4164858,
20,
2,
10
],
[
1746280115.8716128,
20,
2,
10
],
[
1746280122.9223938,
20,
1,
5
],
[
1746280123.0041633,
20,
1,
5
],
[
1746282732.6209874,
20,
1,
5
],
[
1746282733.064194,
20,
1,
5
],
[
1746282734.972178,
20,
2,
10
],
[
1746282735.7720997,
20,
2,
10
],
[
1746282742.899241,
20,
1,
5
],
[
1746282743.0667279,
20,
1,
5
],
[
1746285230.8965118,
20,
1,
5
],
[
1746285231.269942,
20,
1,
5
],
[
1746285233.3251092,
20,
2,
10
],
[
1746285234.1442754,
20,
2,
10
],
[
1746285241.5473661,
20,
1,
5
],
[
1746285241.616192,
20,
1,
5
],
[
1746287538.2812653,
20,
1,
5
],
[
1746287538.7485678,
20,
1,
5
],
[
1746287540.5363395,
20,
2,
10
],
[
1746287541.366231,
20,
2,
10
],
[
1746287549.0311074,
20,
1,
5
],
[
1746287549.2101233,
20,
1,
5
],
[
1746290203.907004,
20,
1,
5
],
[
1746290204.2751844,
20,
1,
5
],
[
1746290206.4500208,
20,
2,
10
],
[
1746290207.221966,
20,
2,
10
],
[
1746290214.7141018,
20,
1,
5
],
[
1746290214.7747624,
20,
1,
5
],
[
1746293054.8153446,
20,
1,
5
],
[
1746293055.285652,
20,
1,
5
],
[
1746293057.3047144,
20,
2,
10
],
[
1746293058.1192038,
20,
2,
10
],
[
1746293065.4747324,
20,
1,
5
],
[
1746293065.5500908,
20,
1,
5
],
[
1746294924.9532838,
20,
1,
5
],
[
1746294925.3217463,
20,
1,
5
],
[
1746294927.243718,
20,
2,
10
],
[
1746294927.984803,
20,
2,
10
],
[
1746294935.6441963,
20,
1,
5
],
[
1746294935.7146287,
20,
1,
5
],
[
1746297232.0156052,
20,
1,
5
],
[
1746297232.2951522,
20,
1,
5
],
[
1746297234.0682688,
20,
2,
10
],
[
1746297234.5741565,
20,
2,
10
],
[
1746297241.465749,
20,
1,
5
],
[
1746297241.536219,
20,
1,
5
],
[
1746299763.505517,
20,
1,
5
],
[
1746299764.097455,
20,
1,
5
],
[
1746299766.0050998,
20,
2,
10
],
[
1746299766.7924373,
20,
2,
10
],
[
1746299774.4255075,
20,
1,
5
],
[
1746299774.4903357,
20,
1,
5
],
[
1746302367.1033094,
20,
1,
5
],
[
1746302367.3829985,
20,
1,
5
],
[
1746302369.1802187,
20,
2,
10
],
[
1746302369.5832212,
20,
2,
10
],
[
1746302376.8789606,
20,
1,
5
],
[
1746302377.0241308,
20,
1,
5
],
[
1746302382.690279,
20,
1,
5
],
[
1746302392.0683749,
20,
1,
5
],
[
1746302401.5123198,
20,
1,
5
],
[
1746302410.8920038,
20,
1,
5
],
[
1746302420.1977756,
20,
1,
5
],
[
1746302429.8537836,
20,
1,
5
],
[
1746302435.3009615,
20,
1,
5
],
[
1746302439.9968991,
20,
0,
0
],
[
1746302447.9583647,
20,
0,
0
],
[
1746304963.4461374,
20,
0,
0
],
[
1746304963.709862,
20,
0,
0
],
[
1746304965.3328865,
20,
1,
5
],
[
1746304970.1788292,
20,
1,
5
],
[
1746307395.9155362,
20,
1,
5
],
[
1746307396.321999,
20,
1,
5
],
[
1746307398.4432056,
20,
2,
10
],
[
1746307399.2591846,
20,
2,
10
],
[
1746307407.055062,
20,
1,
5
],
[
1746307407.1378486,
20,
1,
5
],
[
1746309983.8270419,
20,
1,
5
],
[
1746309984.3500216,
20,
1,
5
],
[
1746309986.3440597,
20,
2,
10
],
[
1746309987.1096933,
20,
2,
10
],
[
1746309994.7914987,
20,
1,
5
],
[
1746309994.8702884,
20,
1,
5
],
[
1746312549.9513412,
20,
1,
5
],
[
1746312550.3380387,
20,
1,
5
],
[
1746312552.2253408,
20,
2,
10
],
[
1746312553.0494897,
20,
2,
10
],
[
1746312561.2494392,
20,
1,
5
],
[
1746312561.321709,
20,
1,
5
],
[
1746315460.6013942,
20,
1,
5
],
[
1746315460.9649155,
20,
1,
5
],
[
1746315462.499275,
20,
2,
10
],
[
1746315463.0431688,
20,
2,
10
],
[
1746315470.176359,
20,
1,
5
],
[
1746315470.2287343,
20,
1,
5
],
[
1746318401.5026767,
20,
1,
5
],
[
1746318401.9635804,
20,
1,
5
],
[
1746318403.8027968,
20,
2,
10
],
[
1746318404.297218,
20,
2,
10
],
[
1746318411.3486688,
20,
1,
5
],
[
1746318411.4056976,
20,
1,
5
],
[
1746321195.013768,
20,
1,
5
],
[
1746321195.3931684,
20,
1,
5
],
[
1746321197.3147876,
20,
2,
10
],
[
1746321198.1025739,
20,
2,
10
],
[
1746321206.2340035,
20,
1,
5
],
[
1746321206.314097,
20,
1,
5
],
[
1746323913.799735,
20,
1,
5
],
[
1746323914.1938496,
20,
1,
5
],
[
1746323916.071878,
20,
2,
10
],
[
1746323916.8953164,
20,
2,
10
],
[
1746323924.373479,
20,
1,
5
],
[
1746323924.8438013,
20,
1,
5
],
[
1746326461.540246,
20,
1,
5
],
[
1746326462.0383232,
20,
1,
5
],
[
1746326463.6253302,
20,
2,
10
],
[
1746326464.4044828,
20,
2,
10
],
[
1746326472.5246658,
20,
1,
5
],
[
1746326472.6269221,
20,
1,
5
],
[
1746328093.9385986,
20,
1,
5
],
[
1746328094.3265321,
20,
1,
5
],
[
1746328096.258998,
20,
2,
10
],
[
1746328097.075322,
20,
2,
10
],
[
1746328105.2740884,
20,
1,
5
],
[
1746328105.479271,
20,
1,
5
],
[
1746330913.363117,
20,
1,
5
],
[
1746330914.0820632,
20,
1,
5
],
[
1746330916.0647364,
20,
2,
10
],
[
1746330916.8426101,
20,
2,
10
],
[
1746330925.1645727,
20,
1,
5
],
[
1746330925.236026,
20,
1,
5
],
[
1746333210.942151,
20,
1,
5
],
[
1746333211.2011738,
20,
1,
5
],
[
1746333212.938763,
20,
2,
10
],
[
1746333213.4054284,
20,
2,
10
],
[
1746333220.528464,
20,
1,
5
],
[
1746333220.5909386,
20,
1,
5
],
[
1746335645.0883284,
20,
1,
5
],
[
1746335645.455796,
20,
1,
5
],
[
1746335647.1990492,
20,
2,
10
],
[
1746335647.9418404,
20,
2,
10
],
[
1746335655.318872,
20,
1,
5
],
[
1746335655.3860512,
20,
1,
5
],
[
1746338382.4816818,
20,
1,
5
],
[
1746338383.0768821,
20,
1,
5
],
[
1746338386.0664513,
20,
2,
10
],
[
1746338386.8336158,
20,
2,
10
],
[
1746338394.6913695,
20,
1,
5
],
[
1746338394.8654075,
20,
1,
5
],
[
1746341002.0462186,
20,
1,
5
],
[
1746341002.4688938,
20,
1,
5
],
[
1746341004.3598695,
20,
2,
10
],
[
1746341005.144149,
20,
2,
10
],
[
1746341013.3970234,
20,
1,
5
],
[
1746341013.4526784,
20,
1,
5
],
[
1746344103.9995987,
20,
1,
5
],
[
1746344104.3879828,
20,
1,
5
],
[
1746344106.3025,
20,
2,
10
],
[
1746344107.1421835,
20,
2,
10
],
[
1746344115.3663518,
20,
1,
5
],
[
1746344115.4380577,
20,
1,
5
],
[
1746347314.9048524,
20,
1,
5
],
[
1746347315.3603754,
20,
1,
5
],
[
1746347317.3373277,
20,
2,
10
],
[
1746347318.1917303,
20,
2,
10
],
[
1746347326.024097,
20,
1,
5
],
[
1746347326.0927556,
20,
1,
5
],
[
1746350418.458043,
20,
1,
5
],
[
1746350419.102886,
20,
1,
5
],
[
1746350420.772326,
20,
2,
10
],
[
1746350421.5443132,
20,
2,
10
],
[
1746350429.6474495,
20,
1,
5
],
[
1746350429.7184453,
20,
1,
5
],
[
1746353478.0675895,
20,
1,
5
],
[
1746353478.4614282,
20,
1,
5
],
[
1746353480.4339836,
20,
2,
10
],
[
1746353481.2613113,
20,
2,
10
],
[
1746353489.4931378,
20,
1,
5
],
[
1746353489.5595973,
20,
1,
5
],
[
1746356612.641257,
20,
1,
5
],
[
1746356613.089005,
20,
1,
5
],
[
1746356615.0665345,
20,
2,
10
],
[
1746356615.7429776,
20,
2,
10
],
[
1746356623.4975119,
20,
1,
5
],
[
1746356623.7209406,
20,
1,
5
],
[
1746356630.2307336,
20,
1,
5
],
[
1746356640.3850367,
20,
1,
5
],
[
1746356650.9263122,
20,
1,
5
],
[
1746356656.610498,
20,
1,
5
],
[
1746356662.1719627,
20,
0,
0
],
[
1746356671.2219334,
20,
0,
0
],
[
1746358383.4973118,
20,
0,
0
],
[
1746358383.7978983,
20,
0,
0
],
[
1746358385.3886054,
20,
1,
5
],
[
1746358390.8426778,
20,
1,
5
],
[
1746361345.3504705,
20,
1,
5
],
[
1746361346.062953,
20,
1,
5
],
[
1746361348.0904222,
20,
2,
10
],
[
1746361348.9698186,
20,
2,
10
],
[
1746361357.1267831,
20,
1,
5
],
[
1746361357.1916566,
20,
1,
5
],
[
1746364384.2157586,
20,
1,
5
],
[
1746364384.624144,
20,
1,
5
],
[
1746364386.2662396,
20,
2,
10
],
[
1746364387.0639474,
20,
2,
10
],
[
1746364394.9057724,
20,
1,
5
],
[
1746364394.9974854,
20,
1,
5
],
[
1746367308.7362301,
20,
1,
5
],
[
1746367309.1642966,
20,
1,
5
],
[
1746367311.0774565,
20,
2,
10
],
[
1746367311.8676178,
20,
2,
10
],
[
1746367319.9493675,
20,
1,
5
],
[
1746367320.0267167,
20,
1,
5
],
[
1746370723.587625,
20,
1,
5
],
[
1746370724.00278,
20,
1,
5
],
[
1746370725.6371694,
20,
2,
10
],
[
1746370726.3798804,
20,
2,
10
],
[
1746370735.1561007,
20,
1,
5
],
[
1746370735.2349806,
20,
1,
5
],
[
1746374060.5036814,
20,
1,
5
],
[
1746374061.0001988,
20,
1,
5
],
[
1746374062.9294777,
20,
2,
10
],
[
1746374063.4459677,
20,
2,
10
],
[
1746374071.2774835,
20,
1,
5
],
[
1746374071.3452597,
20,
1,
5
],
[
1746376621.4496615,
20,
1,
5
],
[
1746376622.084898,
20,
1,
5
],
[
1746376624.0529938,
20,
2,
10
],
[
1746376624.8531275,
20,
2,
10
],
[
1746376633.2061534,
20,
1,
5
],
[
1746376633.2987387,
20,
1,
5
],
[
1746379298.5688555,
20,
1,
5
],
[
1746379299.065871,
20,
1,
5
],
[
1746379300.7521892,
20,
2,
10
],
[
1746379301.2220542,
20,
2,
10
],
[
1746379310.7659614,
20,
1,
5
],
[
1746379310.8372326,
20,
1,
5
],
[
1746381847.6140924,
20,
1,
5
],
[
1746381848.0630908,
20,
1,
5
],
[
1746381849.7870712,
20,
2,
10
],
[
1746381850.6104598,
20,
2,
10
],
[
1746381858.7938664,
20,
1,
5
],
[
1746381858.8984904,
20,
1,
5
],
[
1746384011.9553707,
20,
1,
5
],
[
1746384012.3824074,
20,
1,
5
],
[
1746384014.3748403,
20,
2,
10
],
[
1746384015.1921363,
20,
2,
10
],
[
1746384024.0177953,
20,
1,
5
],
[
1746384024.0994189,
20,
1,
5
],
[
1746387383.4358623,
20,
1,
5
],
[
1746387384.0791845,
20,
1,
5
],
[
1746387386.0859818,
20,
2,
10
],
[
1746387386.9524982,
20,
2,
10
],
[
1746387395.2959075,
20,
1,
5
],
[
1746387395.3689191,
20,
1,
5
],
[
1746390406.3351479,
20,
1,
5
],
[
1746390406.970281,
20,
1,
5
],
[
1746390408.8226027,
20,
2,
10
],
[
1746390409.6293082,
20,
2,
10
],
[
1746390419.1747446,
20,
1,
5
],
[
1746390419.2484407,
20,
1,
5
],
[
1746393280.6787105,
20,
1,
5
],
[
1746393281.1977382,
20,
1,
5
],
[
1746393283.146799,
20,
2,
10
],
[
1746393284.0035708,
20,
2,
10
],
[
1746393292.627756,
20,
1,
5
],
[
1746393292.701969,
20,
1,
5
],
[
1746396768.4124308,
20,
1,
5
],
[
1746396769.106791,
20,
1,
5
],
[
1746396772.0780048,
20,
2,
10
],
[
1746396772.927959,
20,
2,
10
],
[
1746396781.0934696,
20,
1,
5
],
[
1746396784.856544,
20,
1,
5
],
[
1746399299.556822,
20,
1,
5
],
[
1746399300.0664113,
20,
1,
5
],
[
1746399301.7317111,
20,
2,
10
],
[
1746399302.5845149,
20,
2,
10
],
[
1746399311.2202654,
20,
1,
5
],
[
1746399311.3082259,
20,
1,
5
],
[
1746402510.2147214,
20,
1,
5
],
[
1746402510.613816,
20,
1,
5
],
[
1746402512.363242,
20,
2,
10
],
[
1746402513.2428198,
20,
2,
10
],
[
1746402522.0591054,
20,
1,
5
],
[
1746402522.1701834,
20,
1,
5
],
[
1746406182.9439547,
20,
1,
5
],
[
1746406183.3900244,
20,
1,
5
],
[
1746406185.556883,
20,
2,
10
],
[
1746406186.4528866,
20,
2,
10
],
[
1746406195.4953926,
20,
1,
5
],
[
1746406195.8859324,
20,
1,
5
],
[
1746409794.4758248,
20,
1,
5
],
[
1746409795.0949879,
20,
1,
5
],
[
1746409797.117988,
20,
2,
10
],
[
1746409797.924328,
20,
2,
10
],
[
1746409806.9039242,
20,
1,
5
],
[
1746409806.9794672,
20,
1,
5
],
[
1746413545.5730395,
20,
1,
5
],
[
1746413546.09181,
20,
1,
5
],
[
1746413548.035952,
20,
2,
10
],
[
1746413548.9309747,
20,
2,
10
],
[
1746413557.3396494,
20,
1,
5
],
[
1746413557.4239695,
20,
1,
5
],
[
1746415943.969032,
20,
1,
5
],
[
1746415944.3434157,
20,
1,
5
],
[
1746415946.4088604,
20,
2,
10
],
[
1746415947.1388235,
20,
2,
10
],
[
1746415955.1500878,
20,
1,
5
],
[
1746415955.2978275,
20,
1,
5
],
[
1746415961.679157,
20,
1,
5
],
[
1746415971.8342836,
20,
1,
5
],
[
1746415982.0447714,
20,
1,
5
],
[
1746415991.7034285,
20,
1,
5
],
[
1746415997.4773624,
20,
1,
5
],
[
1746416003.0759962,
20,
0,
0
],
[
1746416011.827508,
20,
0,
0
],
[
1746418286.50096,
20,
0,
0
],
[
1746418286.7982183,
20,
0,
0
],
[
1746418288.4328141,
20,
1,
5
],
[
1746418293.8826823,
20,
1,
5
],
[
1746420369.6958907,
20,
1,
5
],
[
1746420369.9924955,
20,
1,
5
],
[
1746420371.4850132,
20,
2,
10
],
[
1746420371.947366,
20,
2,
10
],
[
1746420379.5648026,
20,
1,
5
],
[
1746420379.6679618,
20,
1,
5
],
[
1746423837.5950084,
20,
1,
5
],
[
1746423838.0085795,
20,
1,
5
],
[
1746423840.1076512,
20,
2,
10
],
[
1746423841.054881,
20,
2,
10
],
[
1746423851.4872937,
20,
1,
5
],
[
1746423851.6208613,
20,
1,
5
],
[
1746427312.199696,
20,
1,
5
],
[
1746427312.5951633,
20,
1,
5
],
[
1746427314.1708977,
20,
2,
10
],
[
1746427314.9756727,
20,
2,
10
],
[
1746427323.2752008,
20,
1,
5
],
[
1746427323.3502052,
20,
1,
5
],
[
1746430612.0341556,
20,
1,
5
],
[
1746430612.3259616,
20,
1,
5
],
[
1746430614.0811696,
20,
2,
10
],
[
1746430614.6134589,
20,
2,
10
],
[
1746430622.811699,
20,
1,
5
],
[
1746430622.8816762,
20,
1,
5
],
[
1746434477.5627792,
20,
1,
5
],
[
1746434478.137322,
20,
1,
5
],
[
1746434480.039157,
20,
2,
10
],
[
1746434480.8759048,
20,
2,
10
],
[
1746434489.2825375,
20,
1,
5
],
[
1746434489.363051,
20,
1,
5
],
[
1746436959.2283738,
20,
1,
5
],
[
1746436959.6358287,
20,
1,
5
],
[
1746436961.2893732,
20,
2,
10
],
[
1746436962.1426926,
20,
2,
10
],
[
1746436970.5529523,
20,
1,
5
],
[
1746436970.6328313,
20,
1,
5
],
[
1746440010.3788402,
20,
1,
5
],
[
1746440010.9325428,
20,
1,
5
],
[
1746440012.7029061,
20,
2,
10
],
[
1746440013.2304795,
20,
2,
10
],
[
1746440020.8765533,
20,
1,
5
],
[
1746440020.9393759,
20,
1,
5
],
[
1746443063.0164776,
20,
1,
5
],
[
1746443064.268862,
20,
1,
5
],
[
1746443066.1848538,
20,
2,
10
],
[
1746443066.6112356,
20,
2,
10
],
[
1746443076.3401246,
20,
1,
5
],
[
1746443076.4258285,
20,
1,
5
],
[
1746445552.6296773,
20,
1,
5
],
[
1746445553.0728621,
20,
1,
5
],
[
1746445554.5905812,
20,
2,
10
],
[
1746445555.3930771,
20,
2,
10
],
[
1746445564.3437836,
20,
1,
5
],
[
1746445564.4330492,
20,
1,
5
],
[
1746447872.4676595,
20,
1,
5
],
[
1746447873.046976,
20,
1,
5
],
[
1746447874.5492444,
20,
2,
10
],
[
1746447875.3409173,
20,
2,
10
],
[
1746447884.791276,
20,
1,
5
],
[
1746447884.874968,
20,
1,
5
],
[
1746452062.8923833,
20,
1,
5
],
[
1746452063.3156285,
20,
1,
5
],
[
1746452065.1561,
20,
2,
10
],
[
1746452065.7160246,
20,
2,
10
],
[
1746452074.287006,
20,
1,
5
],
[
1746452074.3592312,
20,
1,
5
],
[
1746455294.1952944,
20,
1,
5
],
[
1746455294.6069865,
20,
1,
5
],
[
1746455296.19141,
20,
2,
10
],
[
1746455297.0146914,
20,
2,
10
],
[
1746455306.0169253,
20,
1,
5
],
[
1746455306.1064253,
20,
1,
5
],
[
1746458373.3742316,
20,
1,
5
],
[
1746458374.0304742,
20,
1,
5
],
[
1746458375.5664492,
20,
2,
10
],
[
1746458376.3288486,
20,
2,
10
],
[
1746458384.800207,
20,
1,
5
],
[
1746458384.8749337,
20,
1,
5
],
[
1746461419.9258792,
20,
1,
5
],
[
1746461420.3112392,
20,
1,
5
],
[
1746461422.1783848,
20,
2,
10
],
[
1746461422.9507837,
20,
2,
10
],
[
1746461431.5674531,
20,
1,
5
],
[
1746461431.6383815,
20,
1,
5
],
[
1746464223.6914475,
20,
1,
5
],
[
1746464224.063437,
20,
1,
5
],
[
1746464225.6448655,
20,
2,
10
],
[
1746464226.4638653,
20,
2,
10
],
[
1746464236.0066667,
20,
1,
5
],
[
1746464236.0711248,
20,
1,
5
],
[
1746467598.0326593,
20,
1,
5
],
[
1746467598.4795225,
20,
1,
5
],
[
1746467600.228647,
20,
2,
10
],
[
1746467601.0320873,
20,
2,
10
],
[
1746467610.710915,
20,
1,
5
],
[
1746467610.8102431,
20,
1,
5
],
[
1746471669.5845194,
20,
1,
5
],
[
1746471670.2067287,
20,
1,
5
],
[
1746471672.11272,
20,
2,
10
],
[
1746471673.2366943,
20,
2,
10
],
[
1746471682.473338,
20,
1,
5
],
[
1746471682.5443091,
20,
1,
5
],
[
1746474779.2435796,
20,
1,
5
],
[
1746474779.6691682,
20,
1,
5
],
[
1746474781.2673876,
20,
2,
10
],
[
1746474782.0507472,
20,
2,
10
],
[
1746474791.222593,
20,
1,
5
],
[
1746474791.3336103,
20,
1,
5
],
[
1746478517.7857122,
20,
1,
5
],
[
1746478518.251312,
20,
1,
5
],
[
1746478520.3459592,
20,
2,
10
],
[
1746478521.0929651,
20,
2,
10
],
[
1746478529.8694212,
20,
1,
5
],
[
1746478530.0711973,
20,
1,
5
],
[
1746478536.6728578,
20,
1,
5
],
[
1746478542.070171,
20,
1,
5
],
[
1746478548.4447522,
20,
0,
0
],
[
1746478558.1377594,
20,
0,
0
],
[
1746481389.0584347,
20,
0,
0
],
[
1746481389.3545992,
20,
0,
0
],
[
1746481391.1521473,
20,
1,
5
],
[
1746481396.771435,
20,
1,
5
],
[
1746485013.8375137,
20,
1,
5
],
[
1746485014.28546,
20,
1,
5
],
[
1746485016.184643,
20,
2,
10
],
[
1746485017.0419364,
20,
2,
10
],
[
1746485027.0413136,
20,
1,
5
],
[
1746485027.1305091,
20,
1,
5
],
[
1746489256.7064905,
20,
1,
5
],
[
1746489257.0589364,
20,
1,
5
],
[
1746489258.567993,
20,
2,
10
],
[
1746489259.062616,
20,
2,
10
],
[
1746489268.1935828,
20,
1,
5
],
[
1746489268.254673,
20,
1,
5
],
[
1746493307.1180115,
20,
1,
5
],
[
1746493307.5920408,
20,
1,
5
],
[
1746493309.2492192,
20,
2,
10
],
[
1746493310.102704,
20,
2,
10
],
[
1746493318.9227078,
20,
1,
5
],
[
1746493319.0250013,
20,
1,
5
],
[
1746497144.898412,
20,
1,
5
],
[
1746497145.344166,
20,
1,
5
],
[
1746497147.1771455,
20,
2,
10
],
[
1746497148.0015068,
20,
2,
10
],
[
1746497156.6805038,
20,
1,
5
],
[
1746497156.7615733,
20,
1,
5
],
[
1746500731.9832973,
20,
1,
5
],
[
1746500732.261385,
20,
1,
5
],
[
1746500733.9673882,
20,
2,
10
],
[
1746500734.5255756,
20,
2,
10
],
[
1746500742.8164198,
20,
1,
5
],
[
1746500742.8754096,
20,
1,
5
],
[
1746504328.2952273,
20,
1,
5
],
[
1746504328.6726177,
20,
1,
5
],
[
1746504330.1584415,
20,
2,
10
],
[
1746504330.6980917,
20,
2,
10
],
[
1746504339.0536942,
20,
1,
5
],
[
1746504339.123438,
20,
1,
5
],
[
1746508302.5826502,
20,
1,
5
],
[
1746508303.0134492,
20,
1,
5
],
[
1746508304.478314,
20,
2,
10
],
[
1746508304.9703069,
20,
2,
10
],
[
1746508313.757886,
20,
1,
5
],
[
1746508313.8603365,
20,
1,
5
],
[
1746512235.224211,
20,
1,
5
],
[
1746512235.514659,
20,
1,
5
],
[
1746512237.0873728,
20,
2,
10
],
[
1746512237.5630329,
20,
2,
10
],
[
1746512245.8690135,
20,
1,
5
],
[
1746512245.9427915,
20,
1,
5
],
[
1746515582.0945656,
20,
1,
5
],
[
1746515582.5140603,
20,
1,
5
],
[
1746515584.1889498,
20,
2,
10
],
[
1746515584.9818573,
20,
2,
10
],
[
1746515594.1629043,
20,
1,
5
],
[
1746515594.2324154,
20,
1,
5
],
[
1746519768.2213986,
20,
1,
5
],
[
1746519768.6531162,
20,
1,
5
],
[
1746519770.2909544,
20,
2,
10
],
[
1746519771.1544025,
20,
2,
10
],
[
1746519780.5363555,
20,
1,
5
],
[
1746519780.6239035,
20,
1,
5
],
[
1746523922.4155202,
20,
1,
5
],
[
1746523923.0635438,
20,
1,
5
],
[
1746523924.6644974,
20,
2,
10
],
[
1746523925.425143,
20,
2,
10
],
[
1746523934.493617,
20,
1,
5
],
[
1746523934.564872,
20,
1,
5
],
[
1746527374.9311678,
20,
1,
5
],
[
1746527375.2183287,
20,
1,
5
],
[
1746527376.9201856,
20,
2,
10
],
[
1746527377.6939027,
20,
2,
10
],
[
1746527387.0918043,
20,
1,
5
],
[
1746527387.16082,
20,
1,
5
],
[
1746531562.0529566,
20,
1,
5
],
[
1746531562.4067209,
20,
1,
5
],
[
1746531564.1972477,
20,
2,
10
],
[
1746531565.0265117,
20,
2,
10
],
[
1746531574.0573492,
20,
1,
5
],
[
1746531574.353934,
20,
1,
5
],
[
1746534614.4113328,
20,
1,
5
],
[
1746534614.9292965,
20,
1,
5
],
[
1746534616.3474941,
20,
2,
10
],
[
1746534616.803036,
20,
2,
10
],
[
1746534624.9085295,
20,
1,
5
],
[
1746534624.9759374,
20,
1,
5
],
[
1746539149.3458073,
20,
1,
5
],
[
1746539150.0816836,
20,
1,
5
],
[
1746539152.0333977,
20,
2,
10
],
[
1746539152.9040167,
20,
2,
10
],
[
1746539162.7776577,
20,
1,
5
],
[
1746539162.8770583,
20,
1,
5
],
[
1746543633.3721035,
20,
1,
5
],
[
1746543634.0605073,
20,
1,
5
],
[
1746543635.9907746,
20,
2,
10
],
[
1746543636.5447025,
20,
2,
10
],
[
1746543646.209352,
20,
1,
5
],
[
1746543646.2670622,
20,
1,
5
],
[
1746547339.8635316,
20,
1,
5
],
[
1746547340.2508917,
20,
1,
5
],
[
1746547342.0711825,
20,
2,
10
],
[
1746547342.8570883,
20,
2,
10
],
[
1746547351.8996854,
20,
1,
5
],
[
1746547351.979461,
20,
1,
5
],
[
1746551186.276112,
20,
1,
5
],
[
1746551186.7364514,
20,
1,
5
],
[
1746551188.4204118,
20,
2,
10
],
[
1746551188.8769965,
20,
2,
10
],
[
1746551198.5775743,
20,
1,
5
],
[
1746551198.6589954,
20,
1,
5
],
[
1746555387.7892692,
20,
1,
5
],
[
1746555388.2714853,
20,
1,
5
],
[
1746555390.2221127,
20,
2,
10
],
[
1746555391.0119956,
20,
2,
10
],
[
1746555400.1799307,
20,
1,
5
],
[
1746555400.3569615,
20,
1,
5
],
[
1746555407.5255208,
20,
1,
5
],
[
1746555418.9446833,
20,
1,
5
],
[
1746555430.1928167,
20,
1,
5
],
[
1746555441.1337428,
20,
1,
5
],
[
1746555446.8352575,
20,
1,
5
],
[
1746555454.1081662,
20,
0,
0
],
[
1746555464.9266698,
20,
0,
0
],
[
1746560104.9333854,
20,
0,
0
],
[
1746560105.2401624,
20,
0,
0
],
[
1746560107.1832128,
20,
1,
5
],
[
1746560113.1193898,
20,
1,
5
],
[
1746564708.8441713,
20,
1,
5
],
[
1746564709.2883031,
20,
1,
5
],
[
1746564711.2708485,
20,
2,
10
],
[
1746564712.069794,
20,
2,
10
],
[
1746564721.3890724,
20,
1,
5
],
[
1746564721.476196,
20,
1,
5
],
[
1746566295.918618,
20,
1,
5
],
[
1746566296.2047093,
20,
1,
5
],
[
1746566297.6343057,
20,
2,
10
],
[
1746566298.1922827,
20,
2,
10
],
[
1746566306.7721286,
20,
1,
5
],
[
1746566306.8319376,
20,
1,
5
],
[
1746570290.169903,
20,
1,
5
],
[
1746570290.6001804,
20,
1,
5
],
[
1746570292.1972206,
20,
2,
10
],
[
1746570292.6491976,
20,
2,
10
],
[
1746570302.6162298,
20,
1,
5
],
[
1746570302.6883333,
20,
1,
5
],
[
1746573501.996616,
20,
1,
5
],
[
1746573502.3752596,
20,
1,
5
],
[
1746573505.2453136,
20,
2,
10
],
[
1746573506.1456866,
20,
2,
10
],
[
1746573515.0729506,
20,
1,
5
],
[
1746573515.1460142,
20,
1,
5
],
[
1746578189.9821026,
20,
1,
5
],
[
1746578190.4478145,
20,
1,
5
],
[
1746578192.2213223,
20,
2,
10
],
[
1746578193.1091475,
20,
2,
10
],
[
1746578203.620815,
20,
1,
5
],
[
1746578203.6965082,
20,
1,
5
],
[
1746583119.467085,
20,
1,
5
],
[
1746583119.9934475,
20,
1,
5
],
[
1746583121.5517612,
20,
2,
10
],
[
1746583122.1214678,
20,
2,
10
],
[
1746583131.1506052,
20,
1,
5
],
[
1746583131.2146277,
20,
1,
5
],
[
1746587817.7863662,
20,
1,
5
],
[
1746587818.2500544,
20,
1,
5
],
[
1746587820.149888,
20,
2,
10
],
[
1746587820.9743733,
20,
2,
10
],
[
1746587831.092777,
20,
1,
5
],
[
1746587831.1757085,
20,
1,
5
],
[
1746592437.823858,
20,
1,
5
],
[
1746592438.2279067,
20,
1,
5
],
[
1746592440.0776916,
20,
2,
10
],
[
1746592440.8838189,
20,
2,
10
],
[
1746592449.7408721,
20,
1,
5
],
[
1746592449.8057902,
20,
1,
5
],
[
1746596755.2433736,
20,
1,
5
],
[
1746596755.6767828,
20,
1,
5
],
[
1746596757.2873564,
20,
2,
10
],
[
1746596757.7431304,
20,
2,
10
],
[
1746596768.2037785,
20,
1,
5
],
[
1746596768.2749164,
20,
1,
5
],
[
1746601326.15501,
20,
1,
5
],
[
1746601326.613294,
20,
1,
5
],
[
1746601328.2047348,
20,
2,
10
],
[
1746601329.0411735,
20,
2,
10
],
[
1746601338.422289,
20,
1,
5
],
[
1746601338.4971356,
20,
1,
5
],
[
1746605477.9541993,
20,
1,
5
],
[
1746605478.2448094,
20,
1,
5
],
[
1746605480.0825393,
20,
2,
10
],
[
1746605480.5901089,
20,
2,
10
],
[
1746605489.9298472,
20,
1,
5
],
[
1746605489.988339,
20,
1,
5
],
[
1746610218.5750873,
20,
1,
5
],
[
1746610219.0663254,
20,
1,
5
],
[
1746610220.9721856,
20,
2,
10
],
[
1746610221.4194124,
20,
2,
10
],
[
1746610232.375301,
20,
1,
5
],
[
1746610232.4557533,
20,
1,
5
],
[
1746614536.0306528,
20,
1,
5
],
[
1746614536.4736557,
20,
1,
5
],
[
1746614538.26797,
20,
2,
10
],
[
1746614539.0998964,
20,
2,
10
],
[
1746614548.7506287,
20,
1,
5
],
[
1746614548.823629,
20,
1,
5
],
[
1746618976.7558093,
20,
1,
5
],
[
1746618977.0976183,
20,
1,
5
],
[
1746618978.9487846,
20,
2,
10
],
[
1746618979.602543,
20,
2,
10
],
[
1746618989.3698885,
20,
1,
5
],
[
1746618989.452135,
20,
1,
5
],
[
1746622323.9878886,
20,
1,
5
],
[
1746622324.3044364,
20,
1,
5
],
[
1746622326.1852987,
20,
2,
10
],
[
1746622326.4890466,
20,
2,
10
],
[
1746622336.6469946,
20,
1,
5
],
[
1746622336.7099776,
20,
1,
5
],
[
1746626910.5368204,
20,
1,
5
],
[
1746626911.281941,
20,
1,
5
],
[
1746626913.3365993,
20,
2,
10
],
[
1746626914.376245,
20,
2,
10
],
[
1746626926.3324878,
20,
1,
5
],
[
1746626926.4414074,
20,
1,
5
],
[
1746632748.1952758,
20,
1,
5
],
[
1746632748.7233639,
20,
1,
5
],
[
1746632750.3805816,
20,
2,
10
],
[
1746632751.3459067,
20,
2,
10
],
[
1746632763.927812,
20,
1,
5
],
[
1746632764.069912,
20,
1,
5
],
[
1746638497.736578,
20,
1,
5
],
[
1746638498.424777,
20,
1,
5
],
[
1746638500.4585538,
20,
2,
10
],
[
1746638501.9330266,
20,
2,
10
],
[
1746638515.4368944,
20,
1,
5
],
[
1746638515.559691,
20,
1,
5
],
[
1746645914.747814,
20,
1,
5
],
[
1746645915.243792,
20,
1,
5
],
[
1746645917.2262936,
20,
2,
10
],
[
1746645918.0506744,
20,
2,
10
],
[
1746645929.247414,
20,
1,
5
],
[
1746645929.4013646,
20,
1,
5
],
[
1746645938.1890187,
20,
1,
5
],
[
1746645943.602413,
20,
1,
5
],
[
1746645951.864549,
20,
0,
0
],
[
1746645963.0894663,
20,
0,
0
],
[
1746651383.9208035,
20,
0,
0
],
[
1746651384.2907846,
20,
0,
0
],
[
1746651386.2619019,
20,
1,
5
],
[
1746651392.8779545,
20,
1,
5
],
[
1746656009.2169204,
20,
1,
5
],
[
1746656009.6427572,
20,
1,
5
],
[
1746656011.2362747,
20,
2,
10
],
[
1746656012.114007,
20,
2,
10
],
[
1746656022.2828956,
20,
1,
5
],
[
1746656022.5467947,
20,
1,
5
],
[
1746661262.4648676,
20,
1,
5
],
[
1746661263.1509426,
20,
1,
5
],
[
1746661265.0225585,
20,
2,
10
],
[
1746661265.8620245,
20,
2,
10
],
[
1746661276.531405,
20,
1,
5
],
[
1746661276.622796,
20,
1,
5
],
[
1746665067.3107731,
20,
1,
5
],
[
1746665067.9721467,
20,
1,
5
],
[
1746665069.576054,
20,
2,
10
],
[
1746665070.049074,
20,
2,
10
],
[
1746665082.197096,
20,
1,
5
],
[
1746665082.3144238,
20,
1,
5
],
[
1746668238.8447618,
20,
1,
5
],
[
1746668239.2868907,
20,
1,
5
],
[
1746668241.166873,
20,
2,
10
],
[
1746668242.0884929,
20,
2,
10
],
[
1746668253.0145693,
20,
1,
5
],
[
1746668253.1019807,
20,
1,
5
],
[
1746673839.8797097,
20,
1,
5
],
[
1746673840.3588645,
20,
1,
5
],
[
1746673842.2378142,
20,
2,
10
],
[
1746673843.0522282,
20,
2,
10
],
[
1746673854.1210048,
20,
1,
5
],
[
1746673854.2226746,
20,
1,
5
],
[
1746679035.5064218,
20,
1,
5
],
[
1746679036.1272464,
20,
1,
5
],
[
1746679038.0349877,
20,
2,
10
],
[
1746679038.884158,
20,
2,
10
],
[
1746679048.926372,
20,
1,
5
],
[
1746679049.0100052,
20,
1,
5
],
[
1746684710.971431,
20,
1,
5
],
[
1746684711.3129776,
20,
1,
5
],
[
1746684713.1162858,
20,
2,
10
],
[
1746684713.6581752,
20,
2,
10
],
[
1746684723.5970187,
20,
1,
5
],
[
1746684723.665582,
20,
1,
5
],
[
1746690326.6024342,
20,
1,
5
],
[
1746690327.143585,
20,
1,
5
],
[
1746690328.98143,
20,
2,
10
],
[
1746690329.8491688,
20,
2,
10
],
[
1746690341.2821925,
20,
1,
5
],
[
1746690341.3741827,
20,
1,
5
],
[
1746695472.8310795,
20,
1,
5
],
[
1746695473.3202949,
20,
1,
5
],
[
1746695475.184712,
20,
2,
10
],
[
1746695476.076693,
20,
2,
10
],
[
1746695487.2479792,
20,
1,
5
],
[
1746695487.3350642,
20,
1,
5
],
[
1746700676.2002869,
20,
1,
5
],
[
1746700676.6588266,
20,
1,
5
],
[
1746700678.2323632,
20,
2,
10
],
[
1746700679.0792506,
20,
2,
10
],
[
1746700690.0060384,
20,
1,
5
],
[
1746700690.0950978,
20,
1,
5
],
[
1746705713.8628864,
20,
1,
5
],
[
1746705714.329795,
20,
1,
5
],
[
1746705716.1951718,
20,
2,
10
],
[
1746705717.0632298,
20,
2,
10
],
[
1746705726.9142978,
20,
1,
5
],
[
1746705727.1061118,
20,
1,
5
],
[
1746711313.0248275,
20,
1,
5
],
[
1746711313.462273,
20,
1,
5
],
[
1746711315.1758947,
20,
2,
10
],
[
1746711315.9417589,
20,
2,
10
],
[
1746711326.9631722,
20,
1,
5
],
[
1746711327.0423913,
20,
1,
5
],
[
1746715948.7305589,
20,
1,
5
],
[
1746715949.0865471,
20,
1,
5
],
[
1746715950.5456812,
20,
2,
10
],
[
1746715951.1573248,
20,
2,
10
],
[
1746715960.8207364,
20,
1,
5
],
[
1746715961.0055473,
20,
1,
5
],
[
1746721648.4438875,
20,
1,
5
],
[
1746721649.1725566,
20,
1,
5
],
[
1746721651.060816,
20,
2,
10
],
[
1746721651.9447515,
20,
2,
10
],
[
1746721662.1728795,
20,
1,
5
],
[
1746721662.2523296,
20,
1,
5
],
[
1746726396.7595491,
20,
1,
5
],
[
1746726397.2152736,
20,
1,
5
],
[
1746726399.0540276,
20,
2,
10
],
[
1746726399.9119785,
20,
2,
10
],
[
1746726409.379312,
20,
1,
5
],
[
1746726409.4518352,
20,
1,
5
],
[
1746730772.720787,
20,
1,
5
],
[
1746730773.153216,
20,
1,
5
],
[
1746730775.0485675,
20,
2,
10
],
[
1746730775.9462705,
20,
2,
10
],
[
1746730785.649178,
20,
1,
5
],
[
1746730785.720854,
20,
1,
5
],
[
1746736265.9258335,
20,
1,
5
],
[
1746736266.3591776,
20,
1,
5
],
[
1746736268.1304145,
20,
2,
10
],
[
1746736268.9528208,
20,
2,
10
],
[
1746736280.122871,
20,
1,
5
],
[
1746736280.2025342,
20,
1,
5
],
[
1746741350.268273,
20,
1,
5
],
[
1746741350.65405,
20,
1,
5
],
[
1746741352.123716,
20,
2,
10
],
[
1746741352.670183,
20,
2,
10
],
[
1746741362.3998134,
20,
1,
5
],
[
1746741362.846611,
20,
1,
5
],
[
1746747182.2831273,
20,
1,
5
],
[
1746747182.7991295,
20,
1,
5
],
[
1746747184.3996642,
20,
2,
10
],
[
1746747185.1707056,
20,
2,
10
],
[
1746747195.695508,
20,
1,
5
],
[
1746747195.8598654,
20,
1,
5
]
];
var tab_main_worker_cpu_ram_csv_json = [
[
1746192465,
632.30859375,
34.3
],
[
1746192465,
629.62109375,
34.4
],
[
1746192465,
629.6875,
33.6
],
[
1746192465,
629.6875,
41
],
[
1746192465,
629.6875,
29
],
[
1746192465,
629.6875,
35.5
],
[
1746192465,
629.6875,
36.8
],
[
1746227798,
896.39453125,
28.5
],
[
1746227798,
896.39453125,
14.9
],
[
1746227798,
896.39453125,
14.6
],
[
1746227798,
896.39453125,
17.1
],
[
1746260995,
862.7265625,
15.7
],
[
1746260995,
862.7265625,
13.9
],
[
1746260995,
862.7265625,
13.8
],
[
1746260995,
862.7265625,
19.4
],
[
1746302382,
918.7421875,
15.8
],
[
1746302382,
918.7421875,
15.3
],
[
1746302382,
918.7421875,
15.4
],
[
1746302382,
918.7421875,
18.4
],
[
1746356629,
944.59375,
15.7
],
[
1746356629,
944.59375,
16.7
],
[
1746356630,
944.59375,
16.7
],
[
1746356630,
944.59375,
17.1
],
[
1746415961,
975.6875,
18.4
],
[
1746415961,
975.6875,
12.8
],
[
1746415961,
975.6875,
13
],
[
1746415961,
975.6875,
16.3
],
[
1746478536,
1003.18359375,
16.1
],
[
1746478536,
1003.18359375,
13.7
],
[
1746478536,
1003.18359375,
13
],
[
1746478536,
1003.18359375,
17.5
],
[
1746555407,
1005.59375,
15.9
],
[
1746555407,
1005.59375,
14.9
],
[
1746555407,
1005.59375,
15
],
[
1746555407,
1005.59375,
15
],
[
1746645937,
1133.29296875,
18.2
],
[
1746645937,
1133.29296875,
22.2
],
[
1746645937,
1133.29296875,
21
],
[
1746645938,
1133.29296875,
27.3
],
[
1746747202,
1046.046875,
20
],
[
1746747203,
1046.046875,
16.5
],
[
1746747203,
1046.046875,
16.4
],
[
1746747203,
1046.046875,
17.6
]
];
var tab_main_worker_cpu_ram_headers_json = [
"timestamp",
"ram_usage_mb",
"cpu_usage_percent"
];
"use strict";
function add_default_layout_data (layout, no_height = 0) {
layout["width"] = get_graph_width();
if (!no_height) {
layout["height"] = get_graph_height();
}
layout["paper_bgcolor"] = 'rgba(0,0,0,0)';
layout["plot_bgcolor"] = 'rgba(0,0,0,0)';
return layout;
}
function get_marker_size() {
return 12;
}
function get_text_color() {
return theme == "dark" ? "white" : "black";
}
function get_font_size() {
return 14;
}
function get_graph_height() {
return 800;
}
function get_font_data() {
return {
size: get_font_size(),
color: get_text_color()
}
}
function get_axis_title_data(name, axis_type = "") {
if(axis_type) {
return {
text: name,
type: axis_type,
font: get_font_data()
};
}
return {
text: name,
font: get_font_data()
};
}
function get_graph_width() {
var width = document.body.clientWidth || window.innerWidth || document.documentElement.clientWidth;
return Math.max(800, Math.floor(width * 0.9));
}
function createTable(data, headers, table_name) {
if (!$("#" + table_name).length) {
console.error("#" + table_name + " not found");
return;
}
new gridjs.Grid({
columns: headers,
data: data,
search: true,
sort: true,
ellipsis: false
}).render(document.getElementById(table_name));
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
colorize_table_entries();
add_colorize_to_gridjs_table();
}
function download_as_file(id, filename) {
var text = $("#" + id).text();
var blob = new Blob([text], {
type: "text/plain"
});
var link = document.createElement("a");
link.href = URL.createObjectURL(blob);
link.download = filename;
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
}
function copy_to_clipboard_from_id (id) {
var text = $("#" + id).text();
copy_to_clipboard(text);
}
function copy_to_clipboard(text) {
if (!navigator.clipboard) {
let textarea = document.createElement("textarea");
textarea.value = text;
document.body.appendChild(textarea);
textarea.select();
try {
document.execCommand("copy");
} catch (err) {
console.error("Copy failed:", err);
}
document.body.removeChild(textarea);
return;
}
navigator.clipboard.writeText(text).then(() => {
console.log("Text copied to clipboard");
}).catch(err => {
console.error("Failed to copy text:", err);
});
}
function filterNonEmptyRows(data) {
var new_data = [];
for (var row_idx = 0; row_idx < data.length; row_idx++) {
var line = data[row_idx];
var line_has_empty_data = false;
for (var col_idx = 0; col_idx < line.length; col_idx++) {
var col_header_name = tab_results_headers_json[col_idx];
var single_data_point = line[col_idx];
if(single_data_point === "" && !special_col_names.includes(col_header_name)) {
line_has_empty_data = true;
continue;
}
}
if(!line_has_empty_data) {
new_data.push(line);
}
}
return new_data;
}
function make_text_in_parallel_plot_nicer() {
$(".parcoords g > g > text").each(function() {
if (theme == "dark") {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "white")
.css("stroke", "black")
.css("stroke-width", "2px")
.css("paint-order", "stroke fill");
} else {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "black")
.css("stroke", "unset")
.css("stroke-width", "unset")
.css("paint-order", "stroke fill");
}
});
}
function createParallelPlot(dataArray, headers, resultNames, ignoreColumns = []) {
if ($("#parallel-plot").data("loaded") == "true") {
return;
}
dataArray = filterNonEmptyRows(dataArray);
const ignoreSet = new Set(ignoreColumns);
const numericalCols = [];
const categoricalCols = [];
const categoryMappings = {};
headers.forEach((header, colIndex) => {
if (ignoreSet.has(header)) return;
const values = dataArray.map(row => row[colIndex]);
if (values.every(val => !isNaN(parseFloat(val)))) {
numericalCols.push({ name: header, index: colIndex });
} else {
categoricalCols.push({ name: header, index: colIndex });
const uniqueValues = [...new Set(values)];
categoryMappings[header] = Object.fromEntries(uniqueValues.map((val, i) => [val, i]));
}
});
const dimensions = [];
numericalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => parseFloat(row[col.index])),
range: [
Math.min(...dataArray.map(row => parseFloat(row[col.index]))),
Math.max(...dataArray.map(row => parseFloat(row[col.index])))
]
});
});
categoricalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => categoryMappings[col.name][row[col.index]]),
tickvals: Object.values(categoryMappings[col.name]),
ticktext: Object.keys(categoryMappings[col.name])
});
});
let colorScale = null;
let colorValues = null;
if (resultNames.length > 1) {
let selectBox = '<select id="result-select" style="margin-bottom: 10px;">';
selectBox += '<option value="none">No color</option>';
var k = 0;
resultNames.forEach(resultName => {
var minMax = result_min_max[k];
if(minMax === undefined) {
minMax = "min [automatically chosen]"
}
selectBox += `<option value="${resultName}">${resultName} (${minMax})</option>`;
k = k + 1;
});
selectBox += '</select>';
$("#parallel-plot").before(selectBox);
$("#result-select").change(function() {
const selectedResult = $(this).val();
if (selectedResult === "none") {
colorValues = null;
colorScale = null;
} else {
const resultCol = numericalCols.find(col => col.name.toLowerCase() === selectedResult.toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
let minResult = Math.min(...colorValues);
let maxResult = Math.max(...colorValues);
var _result_min_max_idx = result_names.indexOf(selectedResult);
let invertColor = false;
if (result_min_max.length > _result_min_max_idx) {
invertColor = result_min_max[_result_min_max_idx] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
}
updatePlot();
});
} else {
let invertColor = false;
if (Object.keys(result_min_max).length == 1) {
invertColor = result_min_max[0] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
const resultCol = numericalCols.find(col => col.name.toLowerCase() === resultNames[0].toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
}
function updatePlot() {
const trace = {
type: 'parcoords',
dimensions: dimensions,
line: colorValues ? { color: colorValues, colorscale: colorScale } : {},
unselected: {
line: {
color: get_text_color(),
opacity: 0
}
},
};
dimensions.forEach(dim => {
if (!dim.line) {
dim.line = {};
}
if (!dim.line.color) {
dim.line.color = 'rgba(169,169,169, 0.01)';
}
});
Plotly.newPlot('parallel-plot', [trace], add_default_layout_data({}));
make_text_in_parallel_plot_nicer();
}
updatePlot();
$("#parallel-plot").data("loaded", "true");
make_text_in_parallel_plot_nicer();
}
function plotWorkerUsage() {
if($("#workerUsagePlot").data("loaded") == "true") {
return;
}
var data = tab_worker_usage_csv_json;
if (!Array.isArray(data) || data.length === 0) {
console.error("Invalid or empty data provided.");
return;
}
let timestamps = [];
let desiredWorkers = [];
let realWorkers = [];
for (let i = 0; i < data.length; i++) {
let entry = data[i];
if (!Array.isArray(entry) || entry.length < 3) {
console.warn("Skipping invalid entry:", entry);
continue;
}
let unixTime = parseFloat(entry[0]);
let desired = parseInt(entry[1], 10);
let real = parseInt(entry[2], 10);
if (isNaN(unixTime) || isNaN(desired) || isNaN(real)) {
console.warn("Skipping invalid numerical values:", entry);
continue;
}
timestamps.push(new Date(unixTime * 1000).toISOString());
desiredWorkers.push(desired);
realWorkers.push(real);
}
let trace1 = {
x: timestamps,
y: desiredWorkers,
mode: 'lines+markers',
name: 'Desired Workers',
line: {
color: 'blue'
}
};
let trace2 = {
x: timestamps,
y: realWorkers,
mode: 'lines+markers',
name: 'Real Workers',
line: {
color: 'red'
}
};
let layout = {
title: "Worker Usage Over Time",
xaxis: {
title: get_axis_title_data("Time", "date")
},
yaxis: {
title: get_axis_title_data("Number of Workers")
},
legend: {
x: 0,
y: 1
}
};
Plotly.newPlot('workerUsagePlot', [trace1, trace2], add_default_layout_data(layout));
$("#workerUsagePlot").data("loaded", "true");
}
function plotCPUAndRAMUsage() {
if($("#mainWorkerCPURAM").data("loaded") == "true") {
return;
}
var timestamps = tab_main_worker_cpu_ram_csv_json.map(row => new Date(row[0] * 1000));
var ramUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[1]);
var cpuUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[2]);
var trace1 = {
x: timestamps,
y: cpuUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'CPU Usage (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: ramUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'RAM Usage (MB)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'CPU and RAM Usage Over Time',
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
overlaying: 'y',
side: 'right',
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var data = [trace1, trace2];
Plotly.newPlot('mainWorkerCPURAM', data, add_default_layout_data(layout));
$("#mainWorkerCPURAM").data("loaded", "true");
}
function plotScatter2d() {
if ($("#plotScatter2d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter2d");
var minInput = document.getElementById("minValue");
var maxInput = document.getElementById("maxValue");
if (!minInput || !maxInput) {
minInput = document.createElement("input");
minInput.id = "minValue";
minInput.type = "number";
minInput.placeholder = "Min Value";
minInput.step = "any";
maxInput = document.createElement("input");
maxInput.id = "maxValue";
maxInput.type = "number";
maxInput.placeholder = "Max Value";
maxInput.step = "any";
var inputContainer = document.createElement("div");
inputContainer.style.marginBottom = "10px";
inputContainer.appendChild(minInput);
inputContainer.appendChild(maxInput);
plotDiv.appendChild(inputContainer);
}
var resultSelect = document.getElementById("resultSelect");
if (result_names.length > 1 && !resultSelect) {
resultSelect = document.createElement("select");
resultSelect.id = "resultSelect";
resultSelect.style.marginBottom = "10px";
var sortedResults = [...result_names].sort();
sortedResults.forEach(result => {
var option = document.createElement("option");
option.value = result;
option.textContent = result;
resultSelect.appendChild(option);
});
var selectContainer = document.createElement("div");
selectContainer.style.marginBottom = "10px";
selectContainer.appendChild(resultSelect);
plotDiv.appendChild(selectContainer);
}
minInput.addEventListener("input", updatePlots);
maxInput.addEventListener("input", updatePlots);
if (resultSelect) {
resultSelect.addEventListener("change", updatePlots);
}
updatePlots();
async function updatePlots() {
var minValue = parseFloat(minInput.value);
var maxValue = parseFloat(maxInput.value);
if (isNaN(minValue)) minValue = -Infinity;
if (isNaN(maxValue)) maxValue = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var selectedResult = resultSelect ? resultSelect.value : result_names[0];
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue !== -Infinity) minResult = Math.max(minResult, minValue);
if (maxValue !== Infinity) maxResult = Math.min(maxResult, maxValue);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 2) {
console.error("Not enough columns for Scatter-Plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
showlegend: false
};
let subDiv = document.createElement("div");
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
symbol: data.map(d => d.result === null ? 'x' : 'circle'),
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter',
showlegend: false
};
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
$("#plotScatter2d").data("loaded", "true");
}
function plotScatter3d() {
if ($("#plotScatter3d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter3d");
if (!plotDiv) {
console.error("Div element with id 'plotScatter3d' not found");
return;
}
plotDiv.innerHTML = "";
var minInput3d = document.getElementById("minValue3d");
var maxInput3d = document.getElementById("maxValue3d");
if (!minInput3d || !maxInput3d) {
minInput3d = document.createElement("input");
minInput3d.id = "minValue3d";
minInput3d.type = "number";
minInput3d.placeholder = "Min Value";
minInput3d.step = "any";
maxInput3d = document.createElement("input");
maxInput3d.id = "maxValue3d";
maxInput3d.type = "number";
maxInput3d.placeholder = "Max Value";
maxInput3d.step = "any";
var inputContainer3d = document.createElement("div");
inputContainer3d.style.marginBottom = "10px";
inputContainer3d.appendChild(minInput3d);
inputContainer3d.appendChild(maxInput3d);
plotDiv.appendChild(inputContainer3d);
}
var select3d = document.getElementById("select3dScatter");
if (result_names.length > 1 && !select3d) {
if (!select3d) {
select3d = document.createElement("select");
select3d.id = "select3dScatter";
select3d.style.marginBottom = "10px";
select3d.innerHTML = result_names.map(name => `<option value="${name}">${name}</option>`).join("");
select3d.addEventListener("change", updatePlots3d);
plotDiv.appendChild(select3d);
}
}
minInput3d.addEventListener("input", updatePlots3d);
maxInput3d.addEventListener("input", updatePlots3d);
updatePlots3d();
async function updatePlots3d() {
var selectedResult = select3d ? select3d.value : result_names[0];
var minValue3d = parseFloat(minInput3d.value);
var maxValue3d = parseFloat(maxInput3d.value);
if (isNaN(minValue3d)) minValue3d = -Infinity;
if (isNaN(maxValue3d)) maxValue3d = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue3d !== -Infinity) minResult = Math.max(minResult, minValue3d);
if (maxValue3d !== Infinity) maxResult = Math.min(maxResult, maxValue3d);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 3) {
console.error("Not enough columns for 3D scatter plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
for (let k = j + 1; k < numericColumns.length; k++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let zCol = numericColumns[k];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let zIndex = tab_results_headers_json.indexOf(zCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
z: parseFloat(row[zIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y) vs ${zCol} (z), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
scene: {
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
zaxis: {
title: get_axis_title_data(zCol)
}
},
showlegend: false
};
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
z: data.map(d => d.z),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter3d',
showlegend: false
};
let subDiv = document.createElement("div");
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
}
$("#plotScatter3d").data("loaded", "true");
}
async function plot_worker_cpu_ram() {
if($("#worker_cpu_ram_pre").data("loaded") == "true") {
return;
}
const logData = $("#worker_cpu_ram_pre").text();
const regex = /^Unix-Timestamp: (\d+), Hostname: ([\w-]+), CPU: ([\d.]+)%, RAM: ([\d.]+) MB \/ ([\d.]+) MB$/;
const hostData = {};
logData.split("\n").forEach(line => {
line = line.trim();
const match = line.match(regex);
if (match) {
const timestamp = new Date(parseInt(match[1]) * 1000);
const hostname = match[2];
const cpu = parseFloat(match[3]);
const ram = parseFloat(match[4]);
if (!hostData[hostname]) {
hostData[hostname] = { timestamps: [], cpuUsage: [], ramUsage: [] };
}
hostData[hostname].timestamps.push(timestamp);
hostData[hostname].cpuUsage.push(cpu);
hostData[hostname].ramUsage.push(ram);
}
});
if (!Object.keys(hostData).length) {
console.log("No valid data found");
return;
}
const container = document.getElementById("cpuRamWorkerChartContainer");
container.innerHTML = "";
var i = 1;
Object.entries(hostData).forEach(([hostname, { timestamps, cpuUsage, ramUsage }], index) => {
const chartId = `workerChart_${index}`;
const chartDiv = document.createElement("div");
chartDiv.id = chartId;
chartDiv.style.marginBottom = "40px";
container.appendChild(chartDiv);
const cpuTrace = {
x: timestamps,
y: cpuUsage,
mode: "lines+markers",
name: "CPU Usage (%)",
yaxis: "y1",
line: {
color: "red"
}
};
const ramTrace = {
x: timestamps,
y: ramUsage,
mode: "lines+markers",
name: "RAM Usage (MB)",
yaxis: "y2",
line: {
color: "blue"
}
};
const layout = {
title: `Worker CPU and RAM Usage - ${hostname}`,
xaxis: {
title: get_axis_title_data("Timestamp", "date")
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
side: "left",
color: "red"
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
side: "right",
overlaying: "y",
color: "blue"
},
showlegend: true
};
Plotly.newPlot(chartId, [cpuTrace, ramTrace], add_default_layout_data(layout));
i++;
});
$("#plot_worker_cpu_ram_button").remove();
$("#worker_cpu_ram_pre").data("loaded", "true");
}
function load_log_file(log_nr, filename) {
var pre_id = `single_run_${log_nr}_pre`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}&filename=${filename}`;
fetch(url)
.then(response => response.json())
.then(data => {
if (data.data) {
$("#" + pre_id).html(data.data);
$("#" + pre_id).data("loaded", true);
} else {
log(`No 'data' key found in response.`);
}
$("#spinner_log_" + log_nr).remove();
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#spinner_log_" + log_nr).remove();
});
}
}
function load_debug_log () {
var pre_id = `here_debuglogs_go`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_debug_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}`;
fetch(url)
.then(response => response.json())
.then(data => {
$("#debug_log_spinner").remove();
if (data.data) {
try {
$("#" + pre_id).html(data.data);
} catch (err) {
$("#" + pre_id).text(`Error loading data: ${err}`);
}
$("#" + pre_id).data("loaded", true);
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
} else {
log(`No 'data' key found in response.`);
}
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#debug_log_spinner").remove();
});
}
}
function plotBoxplot() {
if ($("#plotBoxplot").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough numeric columns for Boxplot");
return;
}
var resultIndex = tab_results_headers_json.findIndex(function(header) {
return result_names.includes(header.toLowerCase());
});
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
var plotDiv = document.getElementById("plotBoxplot");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'box',
name: col,
boxmean: 'sd',
marker: {
color: 'rgb(0, 255, 0)'
},
};
});
let layout = {
title: 'Boxplot of Numerical Columns',
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Value")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotBoxplot").data("loaded", "true");
}
function plotHeatmap() {
if ($("#plotHeatmap").data("loaded") === "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col => {
if (special_col_names.includes(col) || result_names.includes(col)) {
return false;
}
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.every(row => {
let value = parseFloat(row[index]);
return !isNaN(value) && isFinite(value);
});
});
if (numericColumns.length < 2) {
console.error("Not enough valid numeric columns for Heatmap");
return;
}
var columnData = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.map(row => parseFloat(row[index]));
});
var dataMatrix = numericColumns.map((_, i) =>
numericColumns.map((_, j) => {
let values = columnData[i].map((val, index) => (val + columnData[j][index]) / 2);
return values.reduce((a, b) => a + b, 0) / values.length;
})
);
var trace = {
z: dataMatrix,
x: numericColumns,
y: numericColumns,
colorscale: 'Viridis',
type: 'heatmap'
};
var layout = {
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
var plotDiv = document.getElementById("plotHeatmap");
plotDiv.innerHTML = "";
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotHeatmap").data("loaded", "true");
}
function plotHistogram() {
if ($("#plotHistogram").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Histogram");
return;
}
var plotDiv = document.getElementById("plotHistogram");
plotDiv.innerHTML = "";
const colorPalette = ['#ff9999', '#66b3ff', '#99ff99', '#ffcc99', '#c2c2f0', '#ffb3e6'];
let traces = numericColumns.map((col, index) => {
let data = tab_results_csv_json.map(row => parseFloat(row[tab_results_headers_json.indexOf(col)]));
return {
x: data,
type: 'histogram',
name: col,
opacity: 0.7,
marker: {
color: colorPalette[index % colorPalette.length]
},
autobinx: true
};
});
let layout = {
title: 'Histogram of Numerical Columns',
xaxis: {
title: get_axis_title_data("Value")
},
yaxis: {
title: get_axis_title_data("Frequency")
},
showlegend: true,
barmode: 'overlay'
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotHistogram").data("loaded", "true");
}
function plotViolin() {
if ($("#plotViolin").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Violin Plot");
return;
}
var plotDiv = document.getElementById("plotViolin");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'violin',
name: col,
box: {
visible: true
},
line: {
color: 'rgb(0, 255, 0)'
},
marker: {
color: 'rgb(0, 255, 0)'
},
meanline: {
visible: true
},
};
});
let layout = {
title: 'Violin Plot of Numerical Columns',
yaxis: {
title: get_axis_title_data("Value")
},
xaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotViolin").data("loaded", "true");
}
function plotExitCodesPieChart() {
if ($("#plotExitCodesPieChart").data("loaded") == "true") {
return;
}
var exitCodes = tab_job_infos_csv_json.map(row => row[tab_job_infos_headers_json.indexOf("exit_code")]);
var exitCodeCounts = exitCodes.reduce(function(counts, exitCode) {
counts[exitCode] = (counts[exitCode] || 0) + 1;
return counts;
}, {});
var labels = Object.keys(exitCodeCounts);
var values = Object.values(exitCodeCounts);
var plotDiv = document.getElementById("plotExitCodesPieChart");
plotDiv.innerHTML = "";
var trace = {
labels: labels,
values: values,
type: 'pie',
hoverinfo: 'label+percent',
textinfo: 'label+value',
marker: {
colors: ['#ff9999','#66b3ff','#99ff99','#ffcc99','#c2c2f0']
}
};
var layout = {
title: 'Exit Code Distribution',
showlegend: true
};
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotExitCodesPieChart").data("loaded", "true");
}
function plotResultEvolution() {
if ($("#plotResultEvolution").data("loaded") == "true") {
return;
}
result_names.forEach(resultName => {
var relevantColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !col.startsWith("OO_Info") && col.toLowerCase() !== resultName.toLowerCase()
);
var xColumnIndex = tab_results_headers_json.indexOf("trial_index");
var resultIndex = tab_results_headers_json.indexOf(resultName);
let data = tab_results_csv_json.map(row => ({
x: row[xColumnIndex],
y: parseFloat(row[resultIndex])
}));
data.sort((a, b) => a.x - b.x);
let xData = data.map(item => item.x);
let yData = data.map(item => item.y);
let trace = {
x: xData,
y: yData,
mode: 'lines+markers',
name: resultName,
line: {
shape: 'linear'
},
marker: {
size: get_marker_size()
}
};
let layout = {
title: `Evolution of ${resultName} over time`,
xaxis: {
title: get_axis_title_data("Trial-Index")
},
yaxis: {
title: get_axis_title_data(resultName)
},
showlegend: true
};
let subDiv = document.createElement("div");
document.getElementById("plotResultEvolution").appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
});
$("#plotResultEvolution").data("loaded", "true");
}
function plotResultPairs() {
if ($("#plotResultPairs").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotResultPairs");
plotDiv.innerHTML = "";
for (let i = 0; i < result_names.length; i++) {
for (let j = i + 1; j < result_names.length; j++) {
let xName = result_names[i];
let yName = result_names[j];
let xIndex = tab_results_headers_json.indexOf(xName);
let yIndex = tab_results_headers_json.indexOf(yName);
let data = tab_results_csv_json
.filter(row => row[xIndex] !== "" && row[yIndex] !== "")
.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
status: row[tab_results_headers_json.indexOf("trial_status")]
}));
let colors = data.map(d => d.status === "COMPLETED" ? 'green' : (d.status === "FAILED" ? 'red' : 'gray'));
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: colors
},
text: data.map(d => `Status: ${d.status}`),
type: 'scatter',
showlegend: false
};
let layout = {
xaxis: {
title: get_axis_title_data(xName)
},
yaxis: {
title: get_axis_title_data(yName)
},
showlegend: false
};
let subDiv = document.createElement("div");
plotDiv.appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
$("#plotResultPairs").data("loaded", "true");
}
function add_up_down_arrows_for_scrolling () {
const upArrow = document.createElement('div');
const downArrow = document.createElement('div');
const style = document.createElement('style');
style.innerHTML = `
.scroll-arrow {
position: fixed;
right: 10px;
z-index: 100;
cursor: pointer;
font-size: 25px;
display: none;
background-color: green;
color: white;
padding: 5px;
outline: 2px solid white;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.5);
transition: background-color 0.3s, transform 0.3s;
}
.scroll-arrow:hover {
background-color: darkgreen;
transform: scale(1.1);
}
#up-arrow {
top: 10px;
}
#down-arrow {
bottom: 10px;
}
`;
document.head.appendChild(style);
upArrow.id = "up-arrow";
upArrow.classList.add("scroll-arrow");
upArrow.classList.add("invert_in_dark_mode");
upArrow.innerHTML = "↑";
downArrow.id = "down-arrow";
downArrow.classList.add("scroll-arrow");
downArrow.classList.add("invert_in_dark_mode");
downArrow.innerHTML = "↓";
document.body.appendChild(upArrow);
document.body.appendChild(downArrow);
function checkScrollPosition() {
const scrollPosition = window.scrollY;
const pageHeight = document.documentElement.scrollHeight;
const windowHeight = window.innerHeight;
if (scrollPosition > 0) {
upArrow.style.display = "block";
} else {
upArrow.style.display = "none";
}
if (scrollPosition + windowHeight < pageHeight) {
downArrow.style.display = "block";
} else {
downArrow.style.display = "none";
}
}
window.addEventListener("scroll", checkScrollPosition);
upArrow.addEventListener("click", function () {
window.scrollTo({ top: 0, behavior: 'smooth' });
});
downArrow.addEventListener("click", function () {
window.scrollTo({ top: document.documentElement.scrollHeight, behavior: 'smooth' });
});
checkScrollPosition();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
function plotGPUUsage() {
if ($("#tab_gpu_usage").data("loaded") === "true") {
return;
}
Object.keys(gpu_usage).forEach(node => {
const nodeData = gpu_usage[node];
var timestamps = [];
var gpuUtilizations = [];
var temperatures = [];
nodeData.forEach(entry => {
try {
var timestamp = new Date(entry[0]* 1000);
var utilization = parseFloat(entry[1]);
var temperature = parseFloat(entry[2]);
if (!isNaN(timestamp) && !isNaN(utilization) && !isNaN(temperature)) {
timestamps.push(timestamp);
gpuUtilizations.push(utilization);
temperatures.push(temperature);
} else {
console.warn("Invalid data point:", entry);
}
} catch (error) {
console.error("Error processing GPU data entry:", error, entry);
}
});
var trace1 = {
x: timestamps,
y: gpuUtilizations,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Utilization (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: temperatures,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Temperature (°C)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'GPU Usage Over Time - ' + node,
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("GPU Utilization (%)"),
overlaying: 'y',
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("GPU Temperature (°C)"),
overlaying: 'y',
side: 'right',
position: 0.85,
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var divId = 'gpu_usage_plot_' + node;
if (!document.getElementById(divId)) {
var div = document.createElement('div');
div.id = divId;
div.className = 'gpu-usage-plot';
document.getElementById('tab_gpu_usage').appendChild(div);
}
var plotData = [trace1, trace2];
Plotly.newPlot(divId, plotData, add_default_layout_data(layout));
});
$("#tab_gpu_usage").data("loaded", "true");
}
function plotResultsDistributionByGenerationMethod() {
if ("true" === $("#plotResultsDistributionByGenerationMethod").data("loaded")) {
return;
}
var res_col = result_names[0];
var gen_method_col = "generation_node";
var data = {};
tab_results_csv_json.forEach(row => {
var gen_method = row[tab_results_headers_json.indexOf(gen_method_col)];
var result = row[tab_results_headers_json.indexOf(res_col)];
if (!data[gen_method]) {
data[gen_method] = [];
}
data[gen_method].push(result);
});
var traces = Object.keys(data).map(method => {
return {
y: data[method],
type: 'box',
name: method,
boxpoints: 'outliers',
jitter: 0.5,
pointpos: 0
};
});
var layout = {
title: 'Distribution of Results by Generation Method',
yaxis: {
title: get_axis_title_data(res_col)
},
xaxis: {
title: get_axis_title_data("Generation Method")
},
boxmode: 'group'
};
Plotly.newPlot("plotResultsDistributionByGenerationMethod", traces, add_default_layout_data(layout));
$("#plotResultsDistributionByGenerationMethod").data("loaded", "true");
}
function plotJobStatusDistribution() {
if ($("#plotJobStatusDistribution").data("loaded") === "true") {
return;
}
var status_col = "trial_status";
var status_counts = {};
tab_results_csv_json.forEach(row => {
var status = row[tab_results_headers_json.indexOf(status_col)];
if (status) {
status_counts[status] = (status_counts[status] || 0) + 1;
}
});
var statuses = Object.keys(status_counts);
var counts = Object.values(status_counts);
var colors = statuses.map((status, i) =>
status === "FAILED" ? "#FF0000" : `hsl(${30 + ((i * 137) % 330)}, 70%, 50%)`
);
var trace = {
x: statuses,
y: counts,
type: 'bar',
marker: { color: colors }
};
var layout = {
title: 'Distribution of Job Status',
xaxis: { title: 'Trial Status' },
yaxis: { title: 'Nr. of jobs' }
};
Plotly.newPlot("plotJobStatusDistribution", [trace], add_default_layout_data(layout));
$("#plotJobStatusDistribution").data("loaded", "true");
}
function _colorize_table_entries_by_generation_method () {
document.querySelectorAll('[data-column-id="generation_node"]').forEach(el => {
let text = el.textContent.toLowerCase();
let color = text.includes("manual") ? "green" :
text.includes("sobol") ? "orange" :
text.includes("saasbo") ? "pink" :
text.includes("uniform") ? "lightblue" :
text.includes("legacy_gpei") ? "sienna" :
text.includes("bo_mixed") ? "aqua" :
text.includes("randomforest") ? "darkseagreen" :
text.includes("external_generator") ? "purple" :
text.includes("botorch") ? "yellow" : "";
if (color !== "") {
el.style.backgroundColor = color;
}
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_trial_status () {
document.querySelectorAll('[data-column-id="trial_status"]').forEach(el => {
let color = el.textContent.includes("COMPLETED") ? "lightgreen" :
el.textContent.includes("RUNNING") ? "orange" :
el.textContent.includes("FAILED") ? "red" :
el.textContent.includes("ABANDONED") ? "yellow" : "";
if (color) el.style.backgroundColor = color;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_run_time() {
let cells = [...document.querySelectorAll('[data-column-id="run_time"]')];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => !isNaN(v));
if (values.length === 0) return;
let min = Math.min(...values);
let max = Math.max(...values);
let range = max - min || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value)) return;
let ratio = (value - min) / range;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_results() {
result_names.forEach((name, index) => {
let minMax = result_min_max[index];
let selector_query = `[data-column-id="${name}"]`;
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => v > 0 && !isNaN(v));
if (values.length === 0) return;
let logValues = values.map(v => Math.log(v));
let logMin = Math.min(...logValues);
let logMax = Math.max(...logValues);
let logRange = logMax - logMin || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value) || value <= 0) return;
let logValue = Math.log(value);
let ratio = (logValue - logMin) / logRange;
if (minMax === "max") ratio = 1 - ratio;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
});
}
function _colorize_table_entries_by_generation_node_or_hostname() {
["hostname", "generation_node"].forEach(element => {
let selector_query = '[data-column-id="' + element + '"]:not(.gridjs-th)';
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let uniqueValues = [...new Set(cells.map(el => el.textContent.trim()))];
let colorMap = {};
uniqueValues.forEach((value, index) => {
let hue = Math.round((360 / uniqueValues.length) * index);
colorMap[value] = `hsl(${hue}, 70%, 60%)`;
});
cells.forEach(el => {
let value = el.textContent.trim();
if (colorMap[value]) {
el.style.backgroundColor = colorMap[value];
el.classList.add("invert_in_dark_mode");
}
});
});
}
function colorize_table_entries () {
setTimeout(() => {
if (typeof result_names !== "undefined" && Array.isArray(result_names) && result_names.length > 0) {
_colorize_table_entries_by_trial_status();
_colorize_table_entries_by_results();
_colorize_table_entries_by_run_time();
_colorize_table_entries_by_generation_method();
_colorize_table_entries_by_generation_node_or_hostname();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
}, 300);
}
function add_colorize_to_gridjs_table () {
let searchInput = document.querySelector(".gridjs-search-input");
if (searchInput) {
searchInput.addEventListener("input", colorize_table_entries);
}
}
function updatePreWidths() {
var width = window.innerWidth * 0.95;
var pres = document.getElementsByTagName('pre');
for (var i = 0; i < pres.length; i++) {
pres[i].style.width = width + 'px';
}
}
function demo_mode(nr_sec = 3) {
let i = 0;
let tabs = $('menu[role="tablist"] > button');
setInterval(() => {
tabs.attr('aria-selected', 'false').removeClass('active');
let tab = tabs.eq(i % tabs.length);
tab.attr('aria-selected', 'true').addClass('active');
tab.trigger('click');
i++;
}, nr_sec * 1000);
}
function resizePlotlyCharts() {
const plotlyElements = document.querySelectorAll('.js-plotly-plot');
if (plotlyElements.length) {
const windowWidth = window.innerWidth;
const windowHeight = window.innerHeight;
const newWidth = windowWidth * 0.9;
const newHeight = windowHeight * 0.9;
plotlyElements.forEach(function(element, index) {
const layout = {
width: newWidth,
height: newHeight,
plot_bgcolor: 'rgba(0, 0, 0, 0)',
paper_bgcolor: 'rgba(0, 0, 0, 0)',
};
Plotly.relayout(element, layout)
});
}
make_text_in_parallel_plot_nicer();
apply_theme_based_on_system_preferences();
}
window.addEventListener('load', updatePreWidths);
window.addEventListener('resize', updatePreWidths);
$(document).ready(function() {
colorize_table_entries();
add_up_down_arrows_for_scrolling();
add_colorize_to_gridjs_table();
});
window.addEventListener('resize', function() {
resizePlotlyCharts();
});
"use strict";
function get_row_by_index(idx) {
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
var trial_index_col_idx = tab_results_headers_json.indexOf("trial_index");
if(trial_index_col_idx == -1) {
error(`"trial_index" could not be found in tab_results_headers_json. Cannot continue`);
return null;
}
for (var i = 0; i < tab_results_csv_json.length; i++) {
var row = tab_results_csv_json[i];
var trial_index = row[trial_index_col_idx];
if (trial_index == idx) {
return row;
}
}
return null;
}
function load_pareto_graph_from_idxs () {
if (!Object.keys(window).includes("pareto_idxs")) {
error("pareto_idxs is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
if(pareto_idxs === null) {
var err_msg = "pareto_idxs is null. Cannot plot or create tables from empty data. This can be caused by a defective <tt>pareto_idxs.json</tt> file. Please try reloading, or re-calculating the pareto-front and re-submitting if this problem persists.";
$("#pareto_from_idxs_table").html(`<div class="caveat alarm">${err_msg}</div>`);
return;
}
var table = get_pareto_table_data_from_idx();
var html_tables = createParetoTablesFromData(table);
$("#pareto_from_idxs_table").html(html_tables);
renderParetoFrontPlots(table);
apply_theme_based_on_system_preferences();
}
function renderParetoFrontPlots(data) {
try {
let container = document.getElementById("pareto_front_idxs_plot_container");
if (!container) {
console.error("DIV with id 'pareto_front_idxs_plot_container' not found.");
return;
}
container.innerHTML = "";
if(data === undefined || data === null) {
var err_msg = "There was an error getting the data for Pareto-Fronts. See the developer's console to see further details.";
$("#pareto_from_idxs_table").html(`<div class="caveat alarm">${err_msg}</div>`);
return;
}
Object.keys(data).forEach((key, idx) => {
if (!key.startsWith("Pareto front for ")) return;
let label = key.replace("Pareto front for ", "");
let [xKey, yKey] = label.split("/");
if (!xKey || !yKey) {
console.warn("Could not extract two objectives from key:", key);
return;
}
let entries = data[key];
let x = [];
let y = [];
let hoverTexts = [];
entries.forEach((entry) => {
let results = entry.results || {};
let values = entry.values || {};
let xVal = (results[xKey] || [])[0];
let yVal = (results[yKey] || [])[0];
if (xVal === undefined || yVal === undefined) {
console.warn("Missing values for", xKey, yKey, "in", entry);
return;
}
x.push(xVal);
y.push(yVal);
let hoverInfo = [];
if ("trial_index" in values) {
hoverInfo.push(`<b>Trial Index:</b> ${values.trial_index[0]}`);
}
Object.keys(values)
.filter(k => k !== "trial_index")
.sort()
.forEach(k => {
hoverInfo.push(`<b>${k}:</b> ${values[k][0]}`);
});
Object.keys(results)
.sort()
.forEach(k => {
hoverInfo.push(`<b>${k}:</b> ${results[k][0]}`);
});
hoverTexts.push(hoverInfo.join("<br>"));
});
let wrapper = document.createElement("div");
wrapper.style.marginBottom = "30px";
let titleEl = document.createElement("h3");
titleEl.textContent = `Pareto Front: ${xKey} (${getMinMaxByResultName(xKey)}) vs ${yKey} (${getMinMaxByResultName(yKey)})`;
wrapper.appendChild(titleEl);
let divId = `pareto_plot_${idx}`;
let plotDiv = document.createElement("div");
plotDiv.id = divId;
plotDiv.style.width = "100%";
plotDiv.style.height = "400px";
wrapper.appendChild(plotDiv);
container.appendChild(wrapper);
let trace = {
x: x,
y: y,
text: hoverTexts,
hoverinfo: "text",
mode: "markers",
type: "scatter",
marker: {
size: 8,
color: 'rgb(31, 119, 180)',
line: {
width: 1,
color: 'black'
}
},
name: label
};
let layout = {
xaxis: { title: { text: xKey } },
yaxis: { title: { text: yKey } },
margin: { t: 10, l: 60, r: 20, b: 50 },
hovermode: "closest",
showlegend: false
};
Plotly.newPlot(divId, [trace], add_default_layout_data(layout, 1));
});
} catch (e) {
console.error("Error while rendering Pareto front plots:", e);
}
}
function createParetoTablesFromData(data) {
try {
var container = document.createElement("div");
var parsedData;
try {
parsedData = typeof data === "string" ? JSON.parse(data) : data;
} catch (e) {
console.error("JSON parsing failed:", e);
return container;
}
for (var sectionTitle in parsedData) {
if (!parsedData.hasOwnProperty(sectionTitle)) {
continue;
}
var sectionData = parsedData[sectionTitle];
var heading = document.createElement("h2");
heading.textContent = sectionTitle;
container.appendChild(heading);
var table = document.createElement("table");
table.style.borderCollapse = "collapse";
table.style.marginBottom = "2em";
table.style.width = "100%";
var thead = document.createElement("thead");
var headerRow = document.createElement("tr");
var allValueKeys = new Set();
var allResultKeys = new Set();
sectionData.forEach(entry => {
var values = entry.values || {};
var results = entry.results || {};
Object.keys(values).forEach(key => {
allValueKeys.add(key);
});
Object.keys(results).forEach(key => {
allResultKeys.add(key);
});
});
var sortedValueKeys = Array.from(allValueKeys).sort();
var sortedResultKeys = Array.from(allResultKeys).sort();
if (sortedValueKeys.includes("trial_index")) {
sortedValueKeys = sortedValueKeys.filter(k => k !== "trial_index");
sortedValueKeys.unshift("trial_index");
}
var allColumns = [...sortedValueKeys, ...sortedResultKeys];
allColumns.forEach(col => {
var th = document.createElement("th");
th.textContent = col;
th.style.border = "1px solid black";
th.style.padding = "4px";
headerRow.appendChild(th);
});
thead.appendChild(headerRow);
table.appendChild(thead);
var tbody = document.createElement("tbody");
sectionData.forEach(entry => {
var tr = document.createElement("tr");
allColumns.forEach(col => {
var td = document.createElement("td");
td.style.border = "1px solid black";
td.style.padding = "4px";
var value = null;
if (col in entry.values) {
value = entry.values[col];
} else if (col in entry.results) {
value = entry.results[col];
}
if (Array.isArray(value)) {
td.textContent = value.join(", ");
} else {
td.textContent = value !== null && value !== undefined ? value : "";
}
tr.appendChild(td);
});
tbody.appendChild(tr);
});
table.appendChild(tbody);
container.appendChild(table);
}
return container;
} catch (err) {
console.error("Unexpected error:", err);
var errorDiv = document.createElement("div");
errorDiv.textContent = "Error generating tables.";
return errorDiv;
}
}
function get_pareto_table_data_from_idx () {
if (!Object.keys(window).includes("pareto_idxs")) {
error("pareto_idxs is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
var x_keys = Object.keys(pareto_idxs);
var tables = {};
for (var i = 0; i < x_keys.length; i++) {
var x_key = x_keys[i];
var y_keys = Object.keys(pareto_idxs[x_key]);
for (var j = 0; j < y_keys.length; j++) {
var y_key = y_keys[j];
var indices = pareto_idxs[x_key][y_key];
for (var k = 0; k < indices.length; k++) {
var idx = indices[k];
var row = get_row_by_index(idx);
if(row === null) {
error(`Error getting the row for index ${idx}`);
return;
}
var row_dict = {
"results": {},
"values": {},
};
for (var l = 0; l < tab_results_headers_json.length; l++) {
var header = tab_results_headers_json[l];
if (!special_col_names.includes(header) || header == "trial_index") {
var val = row[l];
if (result_names.includes(header)) {
if (!Object.keys(row_dict["results"]).includes(header)) {
row_dict["results"][header] = [];
}
row_dict["results"][header].push(val);
} else {
if (!Object.keys(row_dict["values"]).includes(header)) {
row_dict["values"][header] = [];
}
row_dict["values"][header].push(val);
}
}
}
var table_key = `Pareto front for ${x_key}/${y_key}`;
if(!Object.keys(tables).includes(table_key)) {
tables[table_key] = [];
}
tables[table_key].push(row_dict);
}
}
}
return tables;
}
function getMinMaxByResultName(resultName) {
try {
if (typeof resultName !== "string") {
error("Parameter resultName must be a string");
return;
}
if (!Array.isArray(result_names)) {
error("Global variable result_names is not an array or undefined");
return;
}
if (!Array.isArray(result_min_max)) {
error("Global variable result_min_max is not an array or undefined");
return;
}
if (result_names.length !== result_min_max.length) {
error("Global arrays result_names and result_min_max must have the same length");
return;
}
var index = result_names.indexOf(resultName);
if (index === -1) {
error("Result name '" + resultName + "' not found in result_names");
return;
}
var minMaxValue = result_min_max[index];
if (minMaxValue !== "min" && minMaxValue !== "max") {
error("Value for result name '" + resultName + "' is invalid: expected 'min' or 'max'");
return;
}
return minMaxValue;
} catch (e) {
error("Unexpected error: " + e.message);
}
}
$(document).ready(function() {
colorize_table_entries();;
plotWorkerUsage();;
plotCPUAndRAMUsage();;
createParallelPlot(tab_results_csv_json, tab_results_headers_json, result_names, special_col_names);;
plotScatter2d();;
plotScatter3d();
plotJobStatusDistribution();;
plotBoxplot();;
plotViolin();;
plotHistogram();;
plotHeatmap();;
plotResultPairs();;
plotResultEvolution();;
plotExitCodesPieChart();
colorize_table_entries();
});
</script>
<h1> Overview</h1>
<h2>Experiment overview: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Setting</th><th>Value </th></tr></thead><tbody><tr><td> Max. nr. evaluations</td><td>50372 </td></tr><tr><td> Max. nr. evaluations (from arguments)</td><td>50000 </td></tr><tr><td> Number random steps</td><td>20 </td></tr><tr><td> Nr. of workers (parameter)</td><td>20 </td></tr><tr><td> Main process memory (GB)</td><td>8 </td></tr><tr><td> Worker memory (GB)</td><td>32 </td></tr><tr><td> Nr. imported jobs</td><td>372 </td></tr></tbody></table><h2>Experiment parameters: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Name</th><th>Type</th><th>Lower bound</th><th>Upper bound</th><th>Values</th><th>Type</th><th>Log Scale? </th></tr></thead><tbody><tr><td> recent_samples_size</td><td>int</td><td>1</td><td>5000</td><td></td><td>int</td><td>No </td></tr><tr><td> n_samples</td><td>int</td><td>1</td><td>5000</td><td></td><td>int</td><td>No </td></tr><tr><td> confidence</td><td>choice</td><td></td><td></td><td>0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.001</td><td></td><td></td></tr><tr><td> feature_proportion</td><td>float</td><td>0.001</td><td>0.999</td><td></td><td>float</td><td>No </td></tr><tr><td> n_clusters</td><td>int</td><td>1</td><td>50</td><td></td><td>int</td><td>No </td></tr></tbody></table><h2>Number of evaluations</h2>
<table>
<tbody>
<tr>
<th>Failed</th>
<th>Succeeded</th>
<th>Running</th>
<th>Total</th>
</tr>
<tr>
<td>22</td>
<td>550</td>
<td>2</td>
<td>574</td>
</tr>
</tbody>
</table>
<h2>Result names and types</h2>
<table>
<tr><th>name</th><th>min/max</th></tr>
<tr>
<td>ACCURACY</td>
<td>max</td>
</tr>
<tr>
<td>RUNTIME</td>
<td>min</td>
</tr>
</table>
<br>
<h2>Git-Version</h2>
<tt>Commit: 2223ae6553abdd3e288f4b391080b763a7a48477
</tt>
<h1> Results</h1>
<div id='tab_results_csv_table'></div>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<pre id='tab_results_csv_table_pre'>trial_index,arm_name,trial_status,generation_method,generation_node,ACCURACY,RUNTIME,recent_samples_size,n_samples,feature_proportion,n_clusters,confidence
0,0_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,18.000000000000000000000000000000,1961,2441,0.799423568129539519055981600104,11,0.25
1,1_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,14.000000000000000000000000000000,4268,2635,0.099351818336173888801532427806,28,0.01
2,2_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,218.000000000000000000000000000000,3464,54,0.445492655232548717680884919901,40,0.25
3,3_0,COMPLETED,Sobol,SOBOL,0.709999999999999964472863211995,9.000000000000000000000000000000,303,4857,0.655701311219483606862468150211,23,0.1
4,4_0,COMPLETED,Sobol,SOBOL,0.690000000000000057731597280508,13.000000000000000000000000000000,714,1150,0.168379319963976731289179156192,47,0.025
5,5_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,10.000000000000000000000000000000,3021,3765,0.995520461725071026393152351375,17,0.005
6,6_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,22.000000000000000000000000000000,4718,1340,0.578542165432125332635848735663,5,0.001
7,7_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,11.000000000000000000000000000000,1556,3721,0.257588700890541089094654125802,34,0.01
8,8_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,36.000000000000000000000000000000,1638,358,0.727335241559892931029196461168,35,0.025
9,9_0,COMPLETED,Sobol,SOBOL,0.709999999999999964472863211995,10.000000000000000000000000000000,4648,4538,0.436233947962522516927919014051,3,0.05
10,10_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,11.000000000000000000000000000000,2635,2111,0.018946686176583172472875915560,15,0.001
11,11_0,COMPLETED,Sobol,SOBOL,0.640000000000000013322676295502,14.000000000000000000000000000000,1114,2931,0.817453918712213623010143237479,49,0.01
12,12_0,COMPLETED,Sobol,SOBOL,0.660000000000000031086244689504,11.000000000000000000000000000000,372,1649,0.361384517535567273416319267199,22,0.001
13,13_0,COMPLETED,Sobol,SOBOL,0.680000000000000048849813083507,11.000000000000000000000000000000,3383,3408,0.537121125716715996922800968605,42,0.01
14,14_0,COMPLETED,Sobol,SOBOL,0.719999999999999973354647408996,22.000000000000000000000000000000,3869,824,0.884902215870097319516673906037,30,0.1
15,15_0,COMPLETED,Sobol,SOBOL,0.719999999999999973354647408996,9.000000000000000000000000000000,2348,4067,0.216622342748567453529773274568,9,0.025
16,16_0,COMPLETED,Sobol,SOBOL,0.690000000000000057731597280508,11.000000000000000000000000000000,2219,650,0.947823183421045545316019342863,8,0.01
17,17_0,COMPLETED,Sobol,SOBOL,0.660000000000000031086244689504,30.000000000000000000000000000000,4057,4281,0.153701626151800163633254214801,30,0.005
18,18_0,COMPLETED,Sobol,SOBOL,0.680000000000000048849813083507,13.000000000000000000000000000000,3215,1865,0.297611027030274255533726091016,44,0.025
19,19_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,9.000000000000000000000000000000,522,3231,0.600894870894029708985328852577,20,0.05
20,20_0,COMPLETED,Sobol,SOBOL,0.690000000000000057731597280508,12.000000000000000000000000000000,962,2014,0.082842002853751178781394060024,49,0.05
21,21_0,COMPLETED,Sobol,SOBOL,0.670000000000000039968028886506,10.000000000000000000000000000000,2801,3067,0.753558347363024960685606856714,14,0.001
22,22_0,COMPLETED,Sobol,SOBOL,0.739999999999999991118215802999,32.000000000000000000000000000000,4459,496,0.664536100180819655491859521135,1,0.01
23,23_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,11.000000000000000000000000000000,1766,4439,0.499032838387414801051278345767,38,0.25
24,24_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,13.000000000000000000000000000000,1369,1554,0.516591078164055916843722116027,33,0.1
25,25_0,COMPLETED,Sobol,SOBOL,0.690000000000000057731597280508,15.000000000000000000000000000000,4848,3547,0.319539596689864979772721653717,5,0.25
26,26_0,COMPLETED,Sobol,SOBOL,0.709999999999999964472863211995,15.000000000000000000000000000000,2873,973,0.229233770921826368605067614226,19,0.01
27,27_0,COMPLETED,Sobol,SOBOL,0.660000000000000031086244689504,9.000000000000000000000000000000,883,3982,0.934665815580636216708398933406,44,0.005
28,28_0,COMPLETED,Sobol,SOBOL,0.729999999999999982236431605997,14.000000000000000000000000000000,133,190,0.384516378102824074591836733816,24,0.01
29,29_0,COMPLETED,Sobol,SOBOL,0.700000000000000066613381477509,10.000000000000000000000000000000,3612,4760,0.716677783535793477831532527489,39,0.005
30,30_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,88.000000000000000000000000000000,4069,162,0.538223286297583758397422570852,23,0.001
31,31_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2566,1,0.503693180046458355292315900442,27,0.01
32,32_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,37.000000000000000000000000000000,4659,425,0.561416585041630611385699012317,13,0.025
33,33_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,29.000000000000000000000000000000,4877,582,0.552066001848336762591884507856,9,0.01
34,34_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,31.000000000000000000000000000000,4532,2982,0.001000000000000000020816681712,1,0.01
35,35_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2098,1,0.505224733627193667295784962334,32,0.025
36,36_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,10.000000000000000000000000000000,4459,4695,0.998999999999999999111821580300,1,0.025
37,37_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,35.000000000000000000000000000000,3614,359,0.542030654705255132697061526414,6,0.1
38,38_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,30.000000000000000000000000000000,4509,3014,0.001000000000000000020816681712,1,0.025
39,39_0,FAILED,BoTorch,BOTORCH_MODULAR,,,392,1,0.543658526093445670923642865091,50,0.1
40,40_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,71.000000000000000000000000000000,1959,196,0.548820551417048219100536243786,50,0.005
41,41_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,27.000000000000000000000000000000,4942,677,0.607626705324803451091497663583,1,0.1
42,42_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,10.000000000000000000000000000000,3215,4645,0.998999999999999999111821580300,1,0.05
43,43_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2992,10,0.523892318223105446506338012114,12,0.025
44,44_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,37.000000000000000000000000000000,4625,424,0.613014316787836577304915408604,47,0.01
45,45_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,321.000000000000000000000000000000,1046,54,0.569711657394216586247637224005,50,0.01
46,46_0,FAILED,BoTorch,BOTORCH_MODULAR,,,195,1,0.495680528866587977177005086560,47,0.025
47,47_0,FAILED,BoTorch,BOTORCH_MODULAR,,,410,1,0.453734042657828906541794822260,6,0.1
48,48_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,37.000000000000000000000000000000,4135,399,0.539547800135057209480748952046,17,0.005
49,49_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,21.000000000000000000000000000000,4994,1097,0.590676907180823218546095176862,1,0.01
50,50_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2953,1,0.551781342289027643133181300072,50,0.001
51,51_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,40.000000000000000000000000000000,4669,355,0.538150130150292671515899201040,16,0.001
52,52_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,11.000000000000000000000000000000,5000,4686,0.998999999999999999111821580300,1,0.001
53,53_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,10.000000000000000000000000000000,3851,4249,0.998999999999999999111821580300,1,0.1
54,54_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,9.000000000000000000000000000000,2417,4562,0.998999999999999999111821580300,1,0.1
55,55_0,FAILED,BoTorch,BOTORCH_MODULAR,,,9,1,0.422521717767514293218056309343,1,0.025
56,56_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.640000000000000013322676295502,10.000000000000000000000000000000,1,4465,0.998999999999999999111821580300,1,0.05
57,57_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,117,129,0.559133380101802357486917571805,1,0.05
58,58_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,40.000000000000000000000000000000,3917,335,0.580565125057908471006840045447,1,0.001
59,59_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,74.000000000000000000000000000000,3212,109,0.545409544366371790147240972146,27,0.05
60,60_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,16.000000000000000000000000000000,4940,1328,0.681713894770362149877485080651,44,0.001
61,61_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,10.000000000000000000000000000000,1,290,0.555332843073492288255010862486,12,0.25
62,62_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,3209,1458,0.742919309298469499047712361062,30,0.05
63,63_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,13.000000000000000000000000000000,3831,2485,0.169603797764097036226971226824,50,0.05
64,64_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,17.000000000000000000000000000000,4240,1509,0.725846780598479401902523022727,38,0.05
65,65_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,21.000000000000000000000000000000,556,269,0.580104222396906843428610045521,14,0.05
66,66_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,11.000000000000000000000000000000,39,318,0.589025469896375386547049401997,12,0.005
67,67_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,31.000000000000000000000000000000,5000,1103,0.001000000000000000020816681712,45,0.01
68,68_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,1131,0.679060320131461669923567114893,44,0.1
69,69_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,4955,1124,0.690686271102797899601455355878,47,0.05
70,70_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,18.000000000000000000000000000000,162,118,0.450940656660552774415151588983,12,0.25
71,71_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,5000,1439,0.753513834909802060479933061288,46,0.001
72,72_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,4768,2428,0.135366994336186097225294133750,50,0.01
73,73_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,13.000000000000000000000000000000,4822,2562,0.180511600122179260985433302267,50,0.05
74,74_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,9.000000000000000000000000000000,2037,2476,0.164102345898254231570945194107,29,0.05
75,75_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,13.000000000000000000000000000000,3863,2466,0.244379382268582773241050176694,39,0.05
76,76_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,17.000000000000000000000000000000,4762,1381,0.728573315773403562545240674808,37,0.05
77,77_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,3929,1552,0.850815667766839700547620850557,44,0.1
78,78_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,17.000000000000000000000000000000,5000,1356,0.847187838334022225161845653929,50,0.001
79,79_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,100,316,0.594784303711658912661164322344,13,0.025
80,80_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,446,493,0.648689149772894935175315822562,16,0.05
81,81_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,16.000000000000000000000000000000,1735,1414,0.724667326176439252627403675433,24,0.05
82,82_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,19.000000000000000000000000000000,4614,1265,0.599654099729392986439791002340,38,0.05
83,83_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,15.000000000000000000000000000000,3679,2082,0.998999999999999999111821580300,50,0.005
84,84_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,18.000000000000000000000000000000,5000,1404,0.680486859622911999245786773827,50,0.05
85,85_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,11.000000000000000000000000000000,4596,5000,0.879677283554964217771043877292,26,0.1
86,86_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,11.000000000000000000000000000000,630,2532,0.236742764215118084436539902526,36,0.05
87,87_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,13.000000000000000000000000000000,4947,2551,0.125313060426798156266059436348,50,0.005
88,88_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,15.000000000000000000000000000000,3881,1493,0.697170571070443556571660792542,39,0.005
89,89_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,345,472,0.646606759029021649354262990528,14,0.001
90,90_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,3880,1101,0.599569733653343761581311355258,1,0.1
91,91_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,23.000000000000000000000000000000,3897,1025,0.599649982784605350971673942695,1,0.05
92,92_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,2186,361,0.528557177471257633172285750334,1,0.25
93,93_0,FAILED,BoTorch,BOTORCH_MODULAR,,,663,1,0.432759830255158295386763711576,11,0.05
94,94_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,20.000000000000000000000000000000,4682,1350,0.359614845395848370390723403034,19,0.005
95,95_0,FAILED,BoTorch,BOTORCH_MODULAR,,,745,1,0.434551233303763773108130408218,11,0.05
96,96_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,15.000000000000000000000000000000,1,157,0.420496044724178563711802780745,30,0.05
97,97_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,1071,805,0.626071908611396721333619552752,1,0.1
98,98_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,45.000000000000000000000000000000,5000,532,0.481253720749925062438734357784,49,0.005
99,99_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,134.000000000000000000000000000000,611,44,0.432670785422708203959984984976,10,0.05
100,100_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,17.000000000000000000000000000000,4976,1349,0.644820173629898962808226769994,18,0.05
101,101_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,48.000000000000000000000000000000,1142,165,0.538413236463440414425463131920,1,0.25
102,102_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,29.000000000000000000000000000000,2594,179,0.572902582285771733161539032153,1,0.05
103,103_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,63.000000000000000000000000000000,1792,334,0.616966329498460308577989508194,38,0.05
104,104_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,231,323,0.597774470838517202331274802418,1,0.05
105,105_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,32.000000000000000000000000000000,4491,525,0.602742586133737545672772739636,35,0.25
106,106_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,28.000000000000000000000000000000,4538,643,0.594715888761703226350618933793,50,0.001
107,107_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,14.000000000000000000000000000000,4892,2600,0.998999999999999999111821580300,1,0.005
108,108_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,10.000000000000000000000000000000,1,235,0.405428310552846005165861242858,1,0.1
109,109_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,40.000000000000000000000000000000,1328,288,0.564963059159581004742278764752,1,0.01
110,110_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,34.000000000000000000000000000000,4679,546,0.663789685343377566795197708416,1,0.25
111,111_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,21.000000000000000000000000000000,4636,1268,0.529588915974931739860664947628,47,0.25
112,112_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,2464,443,0.579053285940142714594003336970,1,0.25
113,113_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,13.000000000000000000000000000000,2746,1802,0.998999999999999999111821580300,50,0.005
114,114_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,18.000000000000000000000000000000,4944,2968,0.090768076340531453349846913170,31,0.01
115,115_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,1,163,0.503264557211447471907206363539,9,0.05
116,116_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,9.000000000000000000000000000000,99,5000,0.308203446313885853768965716881,1,0.1
117,117_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,17.000000000000000000000000000000,5000,1571,0.594848833822561928741379233543,7,0.25
118,118_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,20.000000000000000000000000000000,2606,643,0.539877646336125782688952767785,18,0.05
119,119_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,28.000000000000000000000000000000,5000,724,0.569803357698843160328294743522,50,0.05
120,120_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,23.000000000000000000000000000000,5000,913,0.487569951519168265363646241894,1,0.25
121,121_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,34.000000000000000000000000000000,2670,195,0.565826982129539635124615415407,20,0.25
122,122_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,16.000000000000000000000000000000,5000,1752,0.579868431100353687313031514350,50,0.005
123,123_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,688,911,0.297530679419881260994173999279,50,0.005
124,124_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,23.000000000000000000000000000000,5000,972,0.601653735281446500060553717049,50,0.05
125,125_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,38.000000000000000000000000000000,875,210,0.519312319928798449275575421780,17,0.25
126,126_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,28.000000000000000000000000000000,1920,694,0.222937592931043732091822562325,23,0.005
127,127_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,20.000000000000000000000000000000,5000,1256,0.398248783096766867384275201402,50,0.005
128,128_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,30.000000000000000000000000000000,4666,843,0.265758613605496074594469746444,50,0.005
129,129_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,25.000000000000000000000000000000,3424,590,0.282384555109895019064936150244,34,0.01
130,130_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,28.000000000000000000000000000000,1291,474,0.572505752279888091571535824187,1,0.005
131,131_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,28.000000000000000000000000000000,1199,450,0.672337961336425649072623400571,1,0.1
132,132_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,9.000000000000000000000000000000,1,4134,0.001000000000000000020816681712,5,0.025
133,133_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,2341,851,0.306721429488016006370543209414,1,0.005
134,134_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,10.000000000000000000000000000000,2934,4948,0.460029175741152263068300953819,1,0.025
135,135_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,3071,665,0.564338459079970711229634616757,50,0.25
136,136_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,44.000000000000000000000000000000,855,197,0.667148940816745472659476945410,15,0.05
137,137_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,17.000000000000000000000000000000,5000,1926,0.632917984415367840256294584833,50,0.005
138,138_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,31.000000000000000000000000000000,5000,786,0.497007294806093069539087991870,1,0.01
139,139_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,17.000000000000000000000000000000,5000,2779,0.629940272572822923535795780481,39,0.1
140,140_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,5000,1733,0.404247287668403010307827116776,16,0.005
141,141_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,3133,0.598109698697520286714279791340,50,0.1
142,142_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,1970,0.632990170344266300794799917639,1,0.25
143,143_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,4297,4593,0.453164293307243837283238008240,50,0.1
144,144_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,21.000000000000000000000000000000,399,212,0.001000000000000000020816681712,9,0.005
145,145_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,10.000000000000000000000000000000,1,4364,0.299315812365486266788394686955,1,0.05
146,146_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,15.000000000000000000000000000000,3254,2209,0.998999999999999999111821580300,48,0.005
147,147_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,29.000000000000000000000000000000,2862,408,0.001000000000000000020816681712,8,0.005
148,148_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,16.000000000000000000000000000000,5000,2266,0.703220446302847079778075567447,1,0.05
149,149_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,17.000000000000000000000000000000,5000,2026,0.001000000000000000020816681712,28,0.01
150,150_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,88.000000000000000000000000000000,4996,182,0.315816181749681013091191061903,1,0.005
151,151_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,56.000000000000000000000000000000,715,726,0.001000000000000000020816681712,50,0.01
152,152_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,14.000000000000000000000000000000,1,214,0.001000000000000000020816681712,10,0.01
153,153_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,14.000000000000000000000000000000,5000,3352,0.659771562176048043113496532897,1,0.1
154,154_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,22.000000000000000000000000000000,4313,1678,0.001000000000000000020816681712,50,0.01
155,155_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,37.000000000000000000000000000000,5000,570,0.230428326117830872821201637635,50,0.005
156,156_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,26.000000000000000000000000000000,2997,992,0.001000000000000000020816681712,50,0.005
157,157_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,38.000000000000000000000000000000,494,1818,0.001000000000000000020816681712,50,0.01
158,158_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,9.000000000000000000000000000000,246,3909,0.413229478264495686534729657069,7,0.25
159,159_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,13.000000000000000000000000000000,1484,3845,0.487552094430944160663443653903,50,0.025
160,160_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,4709,2159,0.001000000000000000020816681712,27,0.01
161,161_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,5000,3551,0.001000000000000000020816681712,50,0.1
162,162_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,3187,0.001000000000000000020816681712,2,0.01
163,163_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,10.000000000000000000000000000000,1,4942,0.001000000000000000020816681712,50,0.1
164,164_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,12.000000000000000000000000000000,5000,4912,0.001000000000000000020816681712,50,0.25
165,165_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,13.000000000000000000000000000000,1981,4659,0.001000000000000000020816681712,33,0.01
166,166_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,20.000000000000000000000000000000,5000,1451,0.008013663507275343989011417989,1,0.01
167,167_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,25.000000000000000000000000000000,5000,912,0.001000000000000000020816681712,18,0.05
168,168_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,21.000000000000000000000000000000,5000,1197,0.001000000000000000020816681712,1,0.05
169,169_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,13.000000000000000000000000000000,5000,4399,0.001000000000000000020816681712,1,0.1
170,170_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,88.000000000000000000000000000000,4995,233,0.575634483501170191033224909916,50,0.05
171,171_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,5000,3998,0.001000000000000000020816681712,15,0.01
172,172_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,16.000000000000000000000000000000,5000,2297,0.001000000000000000020816681712,50,0.25
173,173_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,99.000000000000000000000000000000,3950,163,0.391804240057184172130178012594,8,0.1
174,174_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,5000,3265,0.001000000000000000020816681712,50,0.1
175,175_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,5000,2508,0.001000000000000000020816681712,1,0.01
176,176_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,39.000000000000000000000000000000,5000,1314,0.001000000000000000020816681712,50,0.01
177,177_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,10.000000000000000000000000000000,2139,2759,0.001000000000000000020816681712,50,0.01
178,178_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,10.000000000000000000000000000000,1,4747,0.001000000000000000020816681712,50,0.1
179,179_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,5000,2679,0.001000000000000000020816681712,50,0.001
180,180_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,28.000000000000000000000000000000,5000,2685,0.001000000000000000020816681712,1,0.1
181,181_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,5000,1645,0.001000000000000000020816681712,50,0.05
182,182_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,10.000000000000000000000000000000,1,4620,0.001000000000000000020816681712,50,0.001
183,183_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,12.000000000000000000000000000000,5000,3965,0.001000000000000000020816681712,50,0.25
184,184_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,32.000000000000000000000000000000,4245,615,0.001000000000000000020816681712,50,0.1
185,185_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,10.000000000000000000000000000000,1,188,0.705796968494713294894893351739,1,0.05
186,186_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.619999999999999995559107901499,10.000000000000000000000000000000,1,3652,0.001000000000000000020816681712,50,0.1
187,187_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,74.000000000000000000000000000000,3451,161,0.330598568625793620689989893435,8,0.25
188,188_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,39.000000000000000000000000000000,2686,158,0.001000000000000000020816681712,10,0.05
189,189_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,2261,171,0.001000000000000000020816681712,9,0.25
190,190_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,40.000000000000000000000000000000,2627,159,0.001000000000000000020816681712,4,0.1
191,191_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,83.000000000000000000000000000000,3710,151,0.001000000000000000020816681712,4,0.005
192,192_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,24.000000000000000000000000000000,2307,162,0.127152691774409964953207463623,1,0.05
193,193_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,82.000000000000000000000000000000,4219,197,0.001000000000000000020816681712,50,0.05
194,194_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,16.000000000000000000000000000000,2128,173,0.001000000000000000020816681712,1,0.05
195,195_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,51.000000000000000000000000000000,1091,179,0.001000000000000000020816681712,1,0.05
196,196_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,21.000000000000000000000000000000,2331,170,0.001000000000000000020816681712,1,0.001
197,197_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,25.000000000000000000000000000000,3411,562,0.001000000000000000020816681712,50,0.05
198,198_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,41.000000000000000000000000000000,2730,161,0.001000000000000000020816681712,1,0.25
199,199_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,60.000000000000000000000000000000,4482,255,0.422604854457793055466652276664,1,0.01
200,200_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,39.000000000000000000000000000000,2646,156,0.001000000000000000020816681712,1,0.001
201,201_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,30.000000000000000000000000000000,2483,159,0.001000000000000000020816681712,1,0.025
202,202_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,21.000000000000000000000000000000,2282,166,0.001000000000000000020816681712,1,0.005
203,203_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,39.000000000000000000000000000000,2835,160,0.001000000000000000020816681712,1,0.05
204,204_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,20.000000000000000000000000000000,2147,166,0.001000000000000000020816681712,1,0.25
205,205_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,31.000000000000000000000000000000,1246,406,0.001000000000000000020816681712,24,0.25
206,206_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,29.000000000000000000000000000000,2404,160,0.001000000000000000020816681712,1,0.05
207,207_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,140.000000000000000000000000000000,5000,1472,0.001000000000000000020816681712,50,0.001
208,208_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,14.000000000000000000000000000000,178,184,0.001000000000000000020816681712,1,0.001
209,209_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,30.000000000000000000000000000000,1632,417,0.001000000000000000020816681712,1,0.05
210,210_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,47.000000000000000000000000000000,2571,145,0.001000000000000000020816681712,1,0.005
211,211_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,45.000000000000000000000000000000,2662,130,0.001000000000000000020816681712,1,0.25
212,212_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,21.000000000000000000000000000000,3003,608,0.001000000000000000020816681712,1,0.25
213,213_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,4350,904,0.001000000000000000020816681712,1,0.1
214,214_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,17.000000000000000000000000000000,248,177,0.001000000000000000020816681712,4,0.25
215,215_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,24.000000000000000000000000000000,2860,465,0.001000000000000000020816681712,1,0.001
216,216_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,21.000000000000000000000000000000,3266,573,0.998999999999999999111821580300,50,0.25
217,217_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,30.000000000000000000000000000000,701,181,0.001000000000000000020816681712,5,0.25
218,218_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,276,184,0.001000000000000000020816681712,5,0.05
219,219_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,1472,0.998999999999999999111821580300,5,0.01
220,220_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,23.000000000000000000000000000000,5000,1414,0.998999999999999999111821580300,27,0.01
221,221_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,5000,1636,0.998999999999999999111821580300,36,0.1
222,222_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,1927,1585,0.998999999999999999111821580300,31,0.05
223,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,13.000000000000000000000000000000,5000,2558,0.998999999999999999111821580300,50,0.005
224,224_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,11.000000000000000000000000000000,277,4862,0.001000000000000000020816681712,1,0.01
225,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,11.000000000000000000000000000000,2002,645,0.998999999999999999111821580300,24,0.05
226,226_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,18.000000000000000000000000000000,646,4528,0.001000000000000000020816681712,1,0.01
227,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,9.000000000000000000000000000000,1,5000,0.001000000000000000020816681712,30,0.01
228,228_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,10.000000000000000000000000000000,703,5000,0.001000000000000000020816681712,19,0.025
229,229_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,15.000000000000000000000000000000,5000,1869,0.625012658428213629946412766003,32,0.05
230,230_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,9.000000000000000000000000000000,1,5000,0.998999999999999999111821580300,41,0.25
231,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,22.000000000000000000000000000000,4449,1236,0.998999999999999999111821580300,27,0.005
232,232_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,10.000000000000000000000000000000,1428,4724,0.001000000000000000020816681712,13,0.025
233,233_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,17.000000000000000000000000000000,5000,1747,0.001000000000000000020816681712,33,0.05
234,234_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,21.000000000000000000000000000000,5000,1642,0.001000000000000000020816681712,1,0.1
235,235_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,19.000000000000000000000000000000,5000,2357,0.001000000000000000020816681712,7,0.001
236,236_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,5000,2286,0.998999999999999999111821580300,50,0.1
237,237_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,5000,2133,0.762626266504902172727042852785,1,0.1
238,238_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,23.000000000000000000000000000000,650,955,0.001000000000000000020816681712,1,0.05
239,239_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,70.000000000000000000000000000000,2082,925,0.001000000000000000020816681712,35,0.001
240,240_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,1696,0.998999999999999999111821580300,50,0.01
241,241_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,25.000000000000000000000000000000,372,190,0.236248037442890190806821237857,7,0.05
242,242_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,3121,1,0.001000000000000000020816681712,1,0.05
243,243_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,2811,1,0.001000000000000000020816681712,1,0.001
244,244_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,62.000000000000000000000000000000,5000,1928,0.001000000000000000020816681712,1,0.001
245,245_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,22.000000000000000000000000000000,2523,1,0.001000000000000000020816681712,1,0.25
246,246_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,3221,1,0.001000000000000000020816681712,1,0.1
247,247_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,5000,1762,0.998999999999999999111821580300,1,0.05
248,248_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,42.000000000000000000000000000000,1402,631,0.154464910013801387522747177172,1,0.005
249,249_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,4256,2059,0.998999999999999999111821580300,20,0.1
250,250_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,21.000000000000000000000000000000,361,181,0.258242954875280650295366058344,6,0.001
251,251_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,24.000000000000000000000000000000,598,216,0.245490286731261109220980642931,15,0.001
252,252_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,16.000000000000000000000000000000,4998,2060,0.485434355752865309696630902181,50,0.01
253,253_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,16.000000000000000000000000000000,3475,1108,0.001000000000000000020816681712,1,0.25
254,254_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,11.000000000000000000000000000000,1,210,0.001000000000000000020816681712,26,0.25
255,255_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,15.000000000000000000000000000000,461,741,0.998999999999999999111821580300,50,0.005
256,256_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,14.000000000000000000000000000000,491,722,0.973194004702465864653504468151,21,0.25
257,257_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,12.000000000000000000000000000000,2286,602,0.001000000000000000020816681712,50,0.05
258,258_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,22.000000000000000000000000000000,873,370,0.929674126995439831233625227469,1,0.25
259,259_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,25.000000000000000000000000000000,862,352,0.998999999999999999111821580300,1,0.025
260,260_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,14.000000000000000000000000000000,4103,2725,0.998999999999999999111821580300,50,0.01
261,261_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,16.000000000000000000000000000000,5000,2416,0.001000000000000000020816681712,27,0.001
262,262_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,35.000000000000000000000000000000,3935,495,0.001000000000000000020816681712,1,0.25
263,263_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,28.000000000000000000000000000000,325,113,0.001000000000000000020816681712,1,0.005
264,264_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,11.000000000000000000000000000000,2820,4046,0.998999999999999999111821580300,3,0.001
265,265_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,3628,994,0.998999999999999999111821580300,50,0.01
266,266_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,23.000000000000000000000000000000,5000,923,0.998999999999999999111821580300,50,0.005
267,267_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,24.000000000000000000000000000000,3338,598,0.350653956870258021183417440625,1,0.005
268,268_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,13.000000000000000000000000000000,1915,4141,0.001000000000000000020816681712,1,0.05
269,269_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,2656,1410,0.998999999999999999111821580300,50,0.1
270,270_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,36.000000000000000000000000000000,1061,284,0.001000000000000000020816681712,8,0.001
271,271_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,19.000000000000000000000000000000,1094,707,0.998999999999999999111821580300,23,0.005
272,272_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,5000,3721,0.001000000000000000020816681712,50,0.1
273,273_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,15.000000000000000000000000000000,5000,1947,0.998999999999999999111821580300,19,0.05
274,274_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,47.000000000000000000000000000000,3090,202,0.998999999999999999111821580300,1,0.001
275,275_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2131,0.337213543749004862615237243517,50,0.1
276,276_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,26.000000000000000000000000000000,5000,700,0.998999999999999999111821580300,1,0.025
277,277_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,5000,2218,0.001000000000000000020816681712,1,0.005
278,278_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.619999999999999995559107901499,11.000000000000000000000000000000,1,4895,0.001000000000000000020816681712,22,0.025
279,279_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,10.000000000000000000000000000000,1,5000,0.998999999999999999111821580300,1,0.01
280,280_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,5000,3338,0.001000000000000000020816681712,10,0.05
281,281_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,52.000000000000000000000000000000,4042,1341,0.001000000000000000020816681712,1,0.05
282,282_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,12.000000000000000000000000000000,1,571,0.998999999999999999111821580300,30,0.25
283,283_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,22.000000000000000000000000000000,5000,1,0.001000000000000000020816681712,1,0.025
284,284_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,24.000000000000000000000000000000,5000,1,0.001000000000000000020816681712,1,0.005
285,285_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,68.000000000000000000000000000000,5000,245,0.998999999999999999111821580300,50,0.25
286,286_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2736,1,0.998999999999999999111821580300,1,0.005
287,287_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,27.000000000000000000000000000000,5000,863,0.998999999999999999111821580300,1,0.1
288,288_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2421,0.998999999999999999111821580300,50,0.001
289,289_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,1411,0.998999999999999999111821580300,38,0.1
290,290_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,2881,1106,0.998999999999999999111821580300,18,0.05
291,291_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,15.000000000000000000000000000000,5000,2848,0.001000000000000000020816681712,50,0.1
292,292_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2830,0.998999999999999999111821580300,1,0.05
293,293_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,20.000000000000000000000000000000,5000,1262,0.998999999999999999111821580300,50,0.25
294,294_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,20.000000000000000000000000000000,220,3669,0.001000000000000000020816681712,1,0.025
295,295_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,5000,2338,0.998999999999999999111821580300,22,0.001
296,296_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,166.000000000000000000000000000000,1,501,0.001000000000000000020816681712,50,0.005
297,297_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,14.000000000000000000000000000000,1,948,0.998999999999999999111821580300,21,0.005
298,298_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,2002,0.998999999999999999111821580300,50,0.05
299,299_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,31.000000000000000000000000000000,5000,620,0.001000000000000000020816681712,37,0.05
300,300_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,12.000000000000000000000000000000,5000,3179,0.998999999999999999111821580300,7,0.1
301,301_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,34.000000000000000000000000000000,4761,588,0.998999999999999999111821580300,50,0.05
302,302_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,5000,2079,0.998999999999999999111821580300,1,0.05
303,303_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,1771,1489,0.862143022771336808851572186541,1,0.005
304,304_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,12.000000000000000000000000000000,5000,3878,0.689881966804960167216620448016,26,0.05
305,305_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,15.000000000000000000000000000000,5000,2912,0.998999999999999999111821580300,44,0.05
306,306_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,1,575,0.998999999999999999111821580300,4,0.001
307,307_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,17.000000000000000000000000000000,5000,1859,0.998999999999999999111821580300,27,0.01
308,308_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,19.000000000000000000000000000000,2461,1183,0.998999999999999999111821580300,50,0.05
309,309_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,5000,1963,0.001000000000000000020816681712,50,0.1
310,310_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,1821,0.998999999999999999111821580300,50,0.05
311,311_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,24.000000000000000000000000000000,5000,1013,0.998999999999999999111821580300,30,0.005
312,312_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,24.000000000000000000000000000000,5000,1427,0.998999999999999999111821580300,50,0.005
313,313_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,59.000000000000000000000000000000,5000,1045,0.001000000000000000020816681712,1,0.005
314,314_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,21.000000000000000000000000000000,5000,1194,0.001000000000000000020816681712,22,0.1
315,315_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,12.000000000000000000000000000000,634,1169,0.576419989927566711607198612910,1,0.25
316,316_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,19.000000000000000000000000000000,5000,1624,0.736015017693554929323340729752,20,0.005
317,317_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,28.000000000000000000000000000000,5000,775,0.001000000000000000020816681712,1,0.05
318,318_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,14.000000000000000000000000000000,5000,2200,0.998999999999999999111821580300,27,0.05
319,319_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,5000,2535,0.998999999999999999111821580300,21,0.05
320,320_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,14.000000000000000000000000000000,1,792,0.998999999999999999111821580300,1,0.05
321,321_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,23.000000000000000000000000000000,5000,1195,0.998999999999999999111821580300,1,0.001
322,322_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,21.000000000000000000000000000000,5000,1638,0.998999999999999999111821580300,50,0.05
323,323_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,15.000000000000000000000000000000,5000,2085,0.497227837929121785354169560378,26,0.005
324,324_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,9.000000000000000000000000000000,1,1031,0.998999999999999999111821580300,1,0.05
325,325_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,11.000000000000000000000000000000,1,225,0.998999999999999999111821580300,15,0.05
326,326_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,5000,1568,0.001000000000000000020816681712,1,0.05
327,327_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,34.000000000000000000000000000000,3857,532,0.998999999999999999111821580300,25,0.05
328,328_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2442,0.998999999999999999111821580300,1,0.1
329,329_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,8.000000000000000000000000000000,2094,5000,0.552895553834521713554295274662,17,0.005
330,330_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,13.000000000000000000000000000000,211,440,0.998999999999999999111821580300,2,0.1
331,331_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,79.000000000000000000000000000000,2274,306,0.001000000000000000020816681712,1,0.005
332,332_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,42.000000000000000000000000000000,5000,3812,0.001000000000000000020816681712,1,0.001
333,333_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,9.000000000000000000000000000000,1,4785,0.998999999999999999111821580300,1,0.01
334,334_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,12.000000000000000000000000000000,5000,3449,0.001000000000000000020816681712,1,0.25
335,335_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,13.000000000000000000000000000000,1,240,0.998999999999999999111821580300,19,0.005
336,336_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,9.000000000000000000000000000000,1,4881,0.998999999999999999111821580300,50,0.01
337,337_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,5000,3670,0.998999999999999999111821580300,50,0.25
338,338_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,22.000000000000000000000000000000,3719,930,0.998999999999999999111821580300,1,0.05
339,339_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,5000,1334,0.998999999999999999111821580300,31,0.001
340,340_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,5000,3008,0.001000000000000000020816681712,50,0.005
341,341_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,5000,3263,0.998999999999999999111821580300,47,0.05
342,342_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,17.000000000000000000000000000000,541,1016,0.998999999999999999111821580300,50,0.005
343,343_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,13.000000000000000000000000000000,5000,3176,0.001000000000000000020816681712,32,0.1
344,344_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,28.000000000000000000000000000000,5000,4104,0.001000000000000000020816681712,50,0.001
345,345_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,84.000000000000000000000000000000,1085,134,0.001000000000000000020816681712,1,0.025
346,346_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,5000,1747,0.001000000000000000020816681712,50,0.1
347,347_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,36.000000000000000000000000000000,5000,629,0.998999999999999999111821580300,50,0.01
348,348_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,20.000000000000000000000000000000,5000,1543,0.998999999999999999111821580300,1,0.001
349,349_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,5000,1731,0.998999999999999999111821580300,30,0.001
350,350_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,15.000000000000000000000000000000,478,607,0.998999999999999999111821580300,6,0.25
351,351_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,5000,1,0.001000000000000000020816681712,1,0.25
352,352_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,5000,3470,0.001000000000000000020816681712,33,0.1
353,353_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,17.000000000000000000000000000000,5000,2086,0.001000000000000000020816681712,50,0.25
354,354_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,51.000000000000000000000000000000,799,5000,0.001000000000000000020816681712,1,0.005
355,355_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,5000,1312,0.998999999999999999111821580300,47,0.05
356,356_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,25.000000000000000000000000000000,5000,1061,0.998999999999999999111821580300,50,0.005
357,357_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,17.000000000000000000000000000000,5000,2632,0.998999999999999999111821580300,50,0.025
358,358_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,5000,1422,0.998999999999999999111821580300,27,0.005
359,359_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,33.000000000000000000000000000000,5000,3278,0.001000000000000000020816681712,1,0.005
360,360_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,1970,0.998999999999999999111821580300,34,0.025
361,361_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,12.000000000000000000000000000000,5000,3614,0.001000000000000000020816681712,34,0.25
362,362_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,747,1215,0.001000000000000000020816681712,33,0.05
363,363_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,14.000000000000000000000000000000,5000,2698,0.001000000000000000020816681712,30,0.005
364,364_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,5000,3054,0.998999999999999999111821580300,32,0.25
365,365_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,10.000000000000000000000000000000,1,241,0.998999999999999999111821580300,14,0.25
366,366_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,9.000000000000000000000000000000,1,427,0.998999999999999999111821580300,1,0.25
367,367_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,13.000000000000000000000000000000,5000,2722,0.998999999999999999111821580300,1,0.05
368,368_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,5000,2367,0.736866465560709449356124878250,39,0.005
369,369_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,1769,1318,0.998999999999999999111821580300,37,0.25
370,370_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,14.000000000000000000000000000000,5000,2757,0.998999999999999999111821580300,15,0.005
371,371_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,9.000000000000000000000000000000,1,4945,0.998999999999999999111821580300,27,0.01
372,372_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,10.000000000000000000000000000000,5000,4832,0.158321749748600776319662486458,1,0.25
373,373_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.640000000000000013322676295502,9.000000000000000000000000000000,1,4744,0.001000000000000000020816681712,1,0.01
374,374_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,4351,1509,0.998999999999999999111821580300,24,0.005
375,375_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,17.000000000000000000000000000000,1397,869,0.998999999999999999111821580300,1,0.025
376,376_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,16.000000000000000000000000000000,4853,3903,0.998999999999999999111821580300,50,0.1
377,377_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,14.000000000000000000000000000000,4372,2439,0.001000000000000000020816681712,1,0.1
378,378_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,24.000000000000000000000000000000,4087,824,0.998999999999999999111821580300,17,0.005
379,379_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.700000000000000066613381477509,14.000000000000000000000000000000,5000,3479,0.998999999999999999111821580300,26,0.001
380,380_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,20.000000000000000000000000000000,1272,1617,0.015685954577708650231615550297,1,0.25
381,381_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,1292,1600,0.998999999999999999111821580300,1,0.001
382,382_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.690000000000000057731597280508,17.000000000000000000000000000000,5000,3394,0.001000000000000000020816681712,50,0.005
383,383_0,RUNNING,BoTorch,BOTORCH_MODULAR,,,1363,1784,0.998999999999999999111821580300,15,0.25
384,384_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,1374,1759,0.998999999999999999111821580300,1,0.25
385,385_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,28.000000000000000000000000000000,1209,455,0.998999999999999999111821580300,1,0.001
386,386_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,14.000000000000000000000000000000,5000,5000,0.998999999999999999111821580300,50,0.025
387,387_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,5000,3338,0.998999999999999999111821580300,25,0.025
388,388_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,1251,1096,0.998999999999999999111821580300,1,0.1
389,389_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,17.000000000000000000000000000000,1279,2110,0.883249585386290059219049908279,1,0.05
390,390_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,5000,2333,0.998999999999999999111821580300,1,0.005
391,391_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,909,1475,0.998999999999999999111821580300,40,0.05
392,392_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,15.000000000000000000000000000000,945,1090,0.998999999999999999111821580300,16,0.25
393,393_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,15.000000000000000000000000000000,1236,1353,0.998999999999999999111821580300,1,0.25
394,394_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,12.000000000000000000000000000000,956,5000,0.433803740558727501941405080288,50,0.25
395,395_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,15.000000000000000000000000000000,1013,1120,0.001000000000000000020816681712,1,0.01
396,396_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,5000,2840,0.555863730524958410406100028922,50,0.005
397,397_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,26.000000000000000000000000000000,1205,621,0.998999999999999999111821580300,18,0.25
398,398_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,23.000000000000000000000000000000,4472,1191,0.001000000000000000020816681712,50,0.005
399,399_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,13.000000000000000000000000000000,1320,1902,0.998999999999999999111821580300,21,0.25
400,400_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,1221,874,0.998999999999999999111821580300,50,0.05
401,401_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,14.000000000000000000000000000000,4658,2205,0.998999999999999999111821580300,1,0.025
402,402_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,1325,1162,0.617384226457470597360099873185,15,0.005
403,403_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,1165,723,0.998999999999999999111821580300,1,0.05
404,404_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,9.000000000000000000000000000000,966,4700,0.998999999999999999111821580300,35,0.1
405,405_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,12.000000000000000000000000000000,5000,3639,0.998999999999999999111821580300,37,0.025
406,406_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,10.000000000000000000000000000000,1071,4899,0.998999999999999999111821580300,1,0.25
407,407_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,21.000000000000000000000000000000,1221,827,0.998999999999999999111821580300,1,0.25
408,408_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,16.000000000000000000000000000000,1269,1262,0.998999999999999999111821580300,1,0.25
409,409_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,57.000000000000000000000000000000,1025,150,0.001000000000000000020816681712,1,0.25
410,410_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,25.000000000000000000000000000000,5000,2440,0.001000000000000000020816681712,50,0.005
411,411_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,4889,2166,0.998999999999999999111821580300,50,0.001
412,412_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,1607,4408,0.998999999999999999111821580300,1,0.25
413,413_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,13.000000000000000000000000000000,5000,3114,0.001000000000000000020816681712,31,0.005
414,414_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,1312,1715,0.998999999999999999111821580300,23,0.005
415,415_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,25.000000000000000000000000000000,1127,466,0.998999999999999999111821580300,1,0.25
416,416_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,19.000000000000000000000000000000,4456,1227,0.998999999999999999111821580300,34,0.001
417,417_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2139,1,0.001000000000000000020816681712,6,0.25
418,418_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,11.000000000000000000000000000000,1090,4924,0.998999999999999999111821580300,19,0.001
419,419_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,4869,1858,0.998999999999999999111821580300,1,0.005
420,420_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,12.000000000000000000000000000000,5000,3777,0.998999999999999999111821580300,50,0.005
421,421_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,1206,651,0.998999999999999999111821580300,1,0.001
422,422_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,5000,3041,0.001000000000000000020816681712,50,0.05
423,423_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,17.000000000000000000000000000000,5000,1648,0.998999999999999999111821580300,1,0.05
424,424_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,15.000000000000000000000000000000,1246,1896,0.998999999999999999111821580300,1,0.01
425,425_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,12.000000000000000000000000000000,5000,3179,0.998999999999999999111821580300,50,0.005
426,426_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,12.000000000000000000000000000000,5000,2985,0.998999999999999999111821580300,14,0.1
427,427_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,5000,4566,0.998999999999999999111821580300,24,0.025
428,428_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,31.000000000000000000000000000000,752,214,0.001000000000000000020816681712,16,0.05
429,429_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,1011,2105,0.001000000000000000020816681712,35,0.25
430,430_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,12.000000000000000000000000000000,5000,3075,0.998999999999999999111821580300,50,0.005
431,431_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,114.000000000000000000000000000000,5000,2189,0.001000000000000000020816681712,50,0.001
432,432_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,30.000000000000000000000000000000,826,243,0.998999999999999999111821580300,10,0.25
433,433_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,23.000000000000000000000000000000,4325,1113,0.998999999999999999111821580300,50,0.001
434,434_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,32.000000000000000000000000000000,935,340,0.870837937391372718387572149368,25,0.25
435,435_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,25.000000000000000000000000000000,4126,749,0.598717670853933014996073325165,8,0.001
436,436_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,44.000000000000000000000000000000,4204,414,0.998999999999999999111821580300,50,0.005
437,437_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,20.000000000000000000000000000000,1248,779,0.998999999999999999111821580300,1,0.005
438,438_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,21.000000000000000000000000000000,1393,828,0.971523261610774957475200608314,39,0.25
439,439_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,5000,2851,0.607397544614624029790661552397,45,0.001
440,440_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,11.000000000000000000000000000000,2075,426,0.957181207638987174846079142299,1,0.25
441,441_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,5000,2367,0.308105087667469856871349520588,18,0.05
442,442_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,16.000000000000000000000000000000,4946,1572,0.998999999999999999111821580300,40,0.001
443,443_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,34.000000000000000000000000000000,4502,743,0.998999999999999999111821580300,24,0.001
444,444_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,22.000000000000000000000000000000,789,355,0.493948669742253765324591086028,22,0.25
445,445_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,62.000000000000000000000000000000,965,140,0.001000000000000000020816681712,23,0.005
446,446_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,4363,1638,0.001000000000000000020816681712,30,0.005
447,447_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,12.000000000000000000000000000000,5000,2456,0.316141750630278939304673713195,16,0.005
448,448_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,5000,1919,0.998999999999999999111821580300,37,0.005
449,449_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,1220,1744,0.097617930160954255458527484279,18,0.1
450,450_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,947,564,0.665366499225461538458148424979,9,0.05
451,451_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,1027,596,0.616443373987489273702067293925,10,0.25
452,452_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,996,1,0.001000000000000000020816681712,1,0.005
453,453_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,40.000000000000000000000000000000,2157,61,0.001000000000000000020816681712,19,0.005
454,454_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,13.000000000000000000000000000000,1149,1967,0.499404537942137405348574930031,23,0.05
455,455_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,992,1,0.001000000000000000020816681712,1,0.001
456,456_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,1206,2117,0.001000000000000000020816681712,1,0.25
457,457_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,16.000000000000000000000000000000,939,1107,0.470836799213616208348298641795,39,0.05
458,458_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,16.000000000000000000000000000000,1189,1228,0.001000000000000000020816681712,17,0.25
459,459_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,14.000000000000000000000000000000,5000,3391,0.719810596665692026263627667504,28,0.1
460,460_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,24.000000000000000000000000000000,832,359,0.998999999999999999111821580300,12,0.005
461,461_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,1211,1925,0.001000000000000000020816681712,14,0.25
462,462_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2022,0.696208027900989567804401758622,21,0.001
463,463_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,4513,1792,0.001000000000000000020816681712,1,0.005
464,464_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,20.000000000000000000000000000000,5000,2916,0.001000000000000000020816681712,50,0.001
465,465_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,19.000000000000000000000000000000,3881,1134,0.228331464743312534393382406961,33,0.005
466,466_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,1231,842,0.998999999999999999111821580300,42,0.005
467,467_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2289,0.338937483132411676578499282186,18,0.025
468,468_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,22.000000000000000000000000000000,4510,1609,0.998999999999999999111821580300,17,0.001
469,469_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,14.000000000000000000000000000000,5000,2625,0.288802517819061299597649394855,19,0.001
470,470_0,FAILED,BoTorch,BOTORCH_MODULAR,,,81,1,0.706665344028530650888342279359,1,0.001
471,471_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,1315,3010,0.998999999999999999111821580300,1,0.25
472,472_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,65.000000000000000000000000000000,5000,1067,0.001000000000000000020816681712,1,0.001
473,473_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,47.000000000000000000000000000000,3112,219,0.496120247557045757069715818943,1,0.25
474,474_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,23.000000000000000000000000000000,4472,1083,0.703728524949239542252144019585,26,0.25
475,475_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,5000,4892,0.209795755640989262102991119718,33,0.1
476,476_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,11.000000000000000000000000000000,5000,4016,0.998999999999999999111821580300,16,0.05
477,477_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,20.000000000000000000000000000000,3663,1,0.001000000000000000020816681712,1,0.001
478,478_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,11.000000000000000000000000000000,1913,3945,0.998999999999999999111821580300,1,0.25
479,479_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,1124,1732,0.566411052719541396882618755626,12,0.05
480,480_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,12.000000000000000000000000000000,1253,2271,0.001000000000000000020816681712,19,0.25
481,481_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,10.000000000000000000000000000000,530,5000,0.594682933026292603884144227777,32,0.25
482,482_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,11.000000000000000000000000000000,1350,4367,0.616196791523190290362776977418,15,0.25
483,483_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,10.000000000000000000000000000000,1179,4709,0.643950021181341702991574038606,1,0.25
484,484_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,13.000000000000000000000000000000,1085,2089,0.552854347752510411062587536435,21,0.25
485,485_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,13.000000000000000000000000000000,1211,1583,0.599769071741309334200309422158,1,0.01
486,486_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,26.000000000000000000000000000000,3967,676,0.741252808628656612022211902513,10,0.005
487,487_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,5000,1375,0.998999999999999999111821580300,46,0.001
488,488_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,18.000000000000000000000000000000,4543,1354,0.998999999999999999111821580300,40,0.001
489,489_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,23.000000000000000000000000000000,983,585,0.716816730732545592807980483485,9,0.005
490,490_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,13.000000000000000000000000000000,1493,2809,0.451392078340024760496618227990,1,0.25
491,491_0,FAILED,BoTorch,BOTORCH_MODULAR,,,976,1,0.998999999999999999111821580300,1,0.005
492,492_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,16.000000000000000000000000000000,5000,3501,0.998999999999999999111821580300,1,0.005
493,493_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,1093,911,0.578334235374765359694038124871,1,0.05
494,494_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,18.000000000000000000000000000000,1040,2379,0.186765508281399539303180290517,1,0.25
495,495_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,13.000000000000000000000000000000,1564,2098,0.787102400818278202798694564990,38,0.1
496,496_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,11.000000000000000000000000000000,5000,4389,0.998999999999999999111821580300,50,0.1
497,497_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,1539,3020,0.998999999999999999111821580300,21,0.25
498,498_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,1124,931,0.998999999999999999111821580300,1,0.001
499,499_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,13.000000000000000000000000000000,5000,2489,0.001000000000000000020816681712,21,0.05
500,500_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,25.000000000000000000000000000000,1046,432,0.998999999999999999111821580300,21,0.005
501,501_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,1407,3556,0.998999999999999999111821580300,14,0.25
502,502_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,5000,2645,0.998999999999999999111821580300,32,0.025
503,503_0,FAILED,BoTorch,BOTORCH_MODULAR,,,1019,1,0.998999999999999999111821580300,1,0.005
504,504_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,13.000000000000000000000000000000,1270,4901,0.453501489125514745115452797108,10,0.25
505,505_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,28.000000000000000000000000000000,4237,720,0.001000000000000000020816681712,18,0.005
506,506_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,11.000000000000000000000000000000,5000,4793,0.797978763478446428969448334101,40,0.025
507,507_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,23.000000000000000000000000000000,4160,749,0.987219971018176933874599399132,9,0.001
508,508_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,11.000000000000000000000000000000,5000,4331,0.914341552477951902133668227179,15,0.1
509,509_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,11.000000000000000000000000000000,1467,3871,0.998999999999999999111821580300,33,0.1
510,510_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,10.000000000000000000000000000000,1144,4013,0.998999999999999999111821580300,24,0.1
511,511_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,5000,2314,0.001000000000000000020816681712,18,0.001
512,512_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,14.000000000000000000000000000000,1656,3146,0.998999999999999999111821580300,16,0.25
513,513_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,13.000000000000000000000000000000,5000,3212,0.952164192579220358680913705030,27,0.05
514,514_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,18.000000000000000000000000000000,1340,904,0.630547454819600061703965820925,10,0.025
515,515_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,13.000000000000000000000000000000,5000,2737,0.252208302783172688688040352645,31,0.001
516,516_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,16.000000000000000000000000000000,5000,2664,0.998999999999999999111821580300,50,0.001
517,517_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,11.000000000000000000000000000000,5000,4764,0.001000000000000000020816681712,43,0.1
518,518_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,30.000000000000000000000000000000,4181,608,0.998999999999999999111821580300,50,0.025
519,519_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,14.000000000000000000000000000000,1296,1900,0.577429254285928283962903151405,38,0.05
520,520_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,15.000000000000000000000000000000,4385,1897,0.990136387460684219696815944189,29,0.001
521,521_0,FAILED,BoTorch,BOTORCH_MODULAR,,,960,1,0.998999999999999999111821580300,1,0.005
522,522_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,17.000000000000000000000000000000,342,388,0.784883862613219518422624787490,21,0.05
523,523_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,13.000000000000000000000000000000,1704,3412,0.654952741100691127051902640233,37,0.25
524,524_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,14.000000000000000000000000000000,5000,3539,0.827535631668396054472225387144,29,0.005
525,525_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,16.000000000000000000000000000000,1428,1602,0.998999999999999999111821580300,11,0.25
526,526_0,FAILED,BoTorch,BOTORCH_MODULAR,,,2270,1,0.790078134615081806302328004676,1,0.025
527,527_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,11.000000000000000000000000000000,5000,4653,0.634810865101015364686531938787,13,0.025
528,528_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,3192,3084,0.583329963201470125255809762166,24,0.025
529,529_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,11.000000000000000000000000000000,5000,4887,0.990313243834416323529978853912,17,0.05
530,530_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,15.000000000000000000000000000000,1692,1520,0.665169349761729034042900821078,24,0.025
531,531_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,12.000000000000000000000000000000,1675,3800,0.340589607579669495507346255181,23,0.025
532,532_0,FAILED,BoTorch,BOTORCH_MODULAR,,,1066,1,0.998999999999999999111821580300,1,0.005
533,533_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.660000000000000031086244689504,11.000000000000000000000000000000,5000,4043,0.998999999999999999111821580300,37,0.1
534,534_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,14.000000000000000000000000000000,1647,2674,0.998999999999999999111821580300,1,0.25
535,535_0,FAILED,BoTorch,BOTORCH_MODULAR,,,3851,1,0.998999999999999999111821580300,27,0.005
536,536_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,10.000000000000000000000000000000,1120,4822,0.368903649122475196797665830672,3,0.001
537,537_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,15.000000000000000000000000000000,1170,1152,0.465493178077840297213185749570,50,0.1
538,538_0,FAILED,BoTorch,BOTORCH_MODULAR,,,1137,1,0.998999999999999999111821580300,1,0.005
539,539_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,10.000000000000000000000000000000,5000,4647,0.998999999999999999111821580300,50,0.1
540,540_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,16.000000000000000000000000000000,4442,1683,0.503145068717129273494492736063,40,0.05
541,541_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,11.000000000000000000000000000000,1875,4876,0.998999999999999999111821580300,21,0.25
542,542_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,12.000000000000000000000000000000,5000,3672,0.244776267673663311397191932883,17,0.025
543,543_0,FAILED,BoTorch,BOTORCH_MODULAR,,,1049,1,0.998999999999999999111821580300,1,0.005
544,544_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.739999999999999991118215802999,26.000000000000000000000000000000,958,432,0.613010075674615628749108964257,9,0.001
545,545_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,14.000000000000000000000000000000,2598,874,0.998999999999999999111821580300,1,0.005
546,546_0,FAILED,BoTorch,BOTORCH_MODULAR,,,1082,1,0.998999999999999999111821580300,1,0.005
547,547_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,33.000000000000000000000000000000,4647,637,0.001000000000000000020816681712,50,0.025
548,548_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,18.000000000000000000000000000000,1255,2186,0.543908476122150319476133972785,1,0.1
549,549_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,14.000000000000000000000000000000,1788,2888,0.528245698580714351244580484490,16,0.05
550,550_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,15.000000000000000000000000000000,1783,2372,0.998999999999999999111821580300,45,0.05
551,551_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,20.000000000000000000000000000000,1888,1912,0.708161695598597762391079868394,13,0.025
552,552_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,16.000000000000000000000000000000,5000,3559,0.585242384669634518878922335716,50,0.05
553,553_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,33.000000000000000000000000000000,1560,2268,0.001000000000000000020816681712,1,0.005
554,554_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,4550,1068,0.900549167007930639883284129610,40,0.001
555,555_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,33.000000000000000000000000000000,1096,341,0.001000000000000000020816681712,22,0.25
556,556_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,13.000000000000000000000000000000,5000,3894,0.998999999999999999111821580300,28,0.01
557,557_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,22.000000000000000000000000000000,1143,1,0.001000000000000000020816681712,1,0.25
558,558_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,4398,1271,0.998999999999999999111821580300,18,0.001
559,559_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,18.000000000000000000000000000000,4841,1769,0.998999999999999999111821580300,36,0.005
560,560_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.680000000000000048849813083507,13.000000000000000000000000000000,5000,2990,0.755565509925002376512281898613,29,0.05
561,561_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,22.000000000000000000000000000000,4027,952,0.998999999999999999111821580300,9,0.005
562,562_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.719999999999999973354647408996,19.000000000000000000000000000000,4449,1085,0.587561646133048620654903970717,18,0.25
563,563_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.650000000000000022204460492503,14.000000000000000000000000000000,5000,4139,0.998999999999999999111821580300,20,0.001
564,564_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,27.000000000000000000000000000000,1110,385,0.998999999999999999111821580300,1,0.05
565,565_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.729999999999999982236431605997,19.000000000000000000000000000000,3955,999,0.770467821798460739124436713610,50,0.005
566,566_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.689999999999999946709294817992,12.000000000000000000000000000000,1744,3349,0.001000000000000000020816681712,24,0.25
567,567_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.699999999999999955591079014994,11.000000000000000000000000000000,5000,3755,0.280694410259357651771239261507,40,0.025
568,568_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,11.000000000000000000000000000000,1548,4123,0.794270977753196216752940017614,1,0.25
569,569_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.670000000000000039968028886506,11.000000000000000000000000000000,2117,786,0.851577535553902031928430460539,1,0.025
570,570_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,1712,2957,0.998999999999999999111821580300,1,0.1
571,571_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,12.000000000000000000000000000000,1657,2729,0.736081228401502696279123938439,36,0.1
572,572_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.709999999999999964472863211995,17.000000000000000000000000000000,963,1185,0.482226181719227542377126383144,42,0.025
573,573_0,RUNNING,BoTorch,BOTORCH_MODULAR,,,3745,1,0.001000000000000000020816681712,1,0.05
</pre>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<script>
createTable(tab_results_csv_json, tab_results_headers_json, 'tab_results_csv_table');</script>
<h1> Errors</h1>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_errors")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_errors", "oo_errors.txt")'> Download »oo_errors.txt« as file</button>
<pre id='simple_pre_tab_tab_errors'><span style="background-color: black; color: white">
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4915725/4915725_0_log.err not found
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4944253/4944253_0_log.err not found
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4956957/4956957_0_log.err not found
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4964054/4964054_0_log.err not found
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4975984/4975984_0_log.err not found
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4979001/4979001_0_log.err not found
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4983103/4983103_0_log.err not found
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4985169/4985169_0_log.err not found
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4987346/4987346_0_log.err not found
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4993918/4993918_0_log.err not found
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/2/single_runs/4996186/4996186_0_log.err not found
</span></pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_errors")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_errors", "oo_errors.txt")'> Download »oo_errors.txt« as file</button>
<h1> Args Overview</h1>
<h2>Arguments Overview: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Key</th><th>Value </th></tr></thead><tbody><tr><td> config_yaml</td><td>None </td></tr><tr><td> config_toml</td><td>None </td></tr><tr><td> config_json</td><td>None </td></tr><tr><td> num_random_steps</td><td>20 </td></tr><tr><td> max_eval</td><td>50000 </td></tr><tr><td> run_program</td><td>None </td></tr><tr><td> experiment_name</td><td>None </td></tr><tr><td> mem_gb</td><td>32 </td></tr><tr><td> parameter</td><td>None </td></tr><tr><td> continue_previous_job</td><td>/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Electricity_HoeffdingTreeClassifier_ACCURACY-RUNTIME/1/ </td></tr><tr><td> experiment_constraints</td><td>None </td></tr><tr><td> run_dir</td><td>runs </td></tr><tr><td> seed</td><td>None </td></tr><tr><td> decimalrounding</td><td>4 </td></tr><tr><td> enforce_sequential_optimization</td><td>False </td></tr><tr><td> verbose_tqdm</td><td>False </td></tr><tr><td> model</td><td>None </td></tr><tr><td> gridsearch</td><td>False </td></tr><tr><td> occ</td><td>False </td></tr><tr><td> show_sixel_scatter</td><td>False </td></tr><tr><td> show_sixel_general</td><td>False </td></tr><tr><td> show_sixel_trial_index_result</td><td>False </td></tr><tr><td> follow</td><td>False </td></tr><tr><td> send_anonymized_usage_stats</td><td>False </td></tr><tr><td> ui_url</td><td>None </td></tr><tr><td> root_venv_dir</td><td>/home/s4122485 </td></tr><tr><td> exclude</td><td>None </td></tr><tr><td> main_process_gb</td><td>8 </td></tr><tr><td> pareto_front_confidence</td><td>1 </td></tr><tr><td> max_nr_of_zero_results</td><td>10 </td></tr><tr><td> abbreviate_job_names</td><td>False </td></tr><tr><td> orchestrator_file</td><td>None </td></tr><tr><td> checkout_to_latest_tested_version</td><td>False </td></tr><tr><td> live_share</td><td>False </td></tr><tr><td> disable_tqdm</td><td>False </td></tr><tr><td> workdir</td><td>False </td></tr><tr><td> occ_type</td><td>euclid </td></tr><tr><td> result_names</td><td>['RESULT=min'] </td></tr><tr><td> minkowski_p</td><td>2 </td></tr><tr><td> signed_weighted_euclidean_weights</td><td></td></tr><tr><td> generation_strategy</td><td>None </td></tr><tr><td> generate_all_jobs_at_once</td><td>False </td></tr><tr><td> revert_to_random_when_seemingly_exhausted</td><td>True </td></tr><tr><td> load_data_from_existing_jobs</td><td>[] </td></tr><tr><td> n_estimators_randomforest</td><td>100 </td></tr><tr><td> external_generator</td><td>None </td></tr><tr><td> username</td><td>None </td></tr><tr><td> max_failed_jobs</td><td>None </td></tr><tr><td> num_parallel_jobs</td><td>20 </td></tr><tr><td> worker_timeout</td><td>120 </td></tr><tr><td> slurm_use_srun</td><td>False </td></tr><tr><td> time</td><td></td></tr><tr><td> partition</td><td></td></tr><tr><td> reservation</td><td>None </td></tr><tr><td> force_local_execution</td><td>False </td></tr><tr><td> slurm_signal_delay_s</td><td>0 </td></tr><tr><td> nodes_per_job</td><td>1 </td></tr><tr><td> cpus_per_task</td><td>1 </td></tr><tr><td> account</td><td>None </td></tr><tr><td> gpus</td><td>0 </td></tr><tr><td> run_mode</td><td>local </td></tr><tr><td> verbose</td><td>False </td></tr><tr><td> verbose_break_run_search_table</td><td>False </td></tr><tr><td> debug</td><td>False </td></tr><tr><td> no_sleep</td><td>False </td></tr><tr><td> tests</td><td>False </td></tr><tr><td> show_worker_percentage_table_at_end</td><td>False </td></tr><tr><td> auto_exclude_defective_hosts</td><td>False </td></tr><tr><td> run_tests_that_fail_on_taurus</td><td>False </td></tr><tr><td> raise_in_eval</td><td>False </td></tr><tr><td> show_ram_every_n_seconds</td><td>False </td></tr></tbody></table>
<h1> Worker-Usage</h1>
<div class='invert_in_dark_mode' id='workerUsagePlot'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_worker_usage")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_worker_usage", "worker_usage.csv")'> Download »worker_usage.csv« as file</button>
<pre id="pre_tab_worker_usage">1746192465.8102438,20,0,0
1746192476.5165243,20,0,0
1746193627.5936701,20,0,0
1746193628.0834422,20,0,0
1746193630.487884,20,1,5
1746193636.6834018,20,1,5
1746195725.3471775,20,1,5
1746195726.2699072,20,1,5
1746195728.442162,20,2,10
1746195729.867518,20,2,10
1746195739.3588421,20,1,5
1746195739.4529502,20,1,5
1746197271.6206963,20,1,5
1746197272.271896,20,1,5
1746197274.4877608,20,2,10
1746197275.9202993,20,2,10
1746197285.837781,20,1,5
1746197285.950728,20,1,5
1746198665.2547033,20,1,5
1746198665.8177416,20,1,5
1746198668.258076,20,2,10
1746198669.5453312,20,2,10
1746198679.388546,20,1,5
1746198679.488076,20,1,5
1746200677.3861625,20,1,5
1746200678.1339812,20,1,5
1746200680.120754,20,2,10
1746200681.3385236,20,2,10
1746200690.5326838,20,1,5
1746200690.9058306,20,1,5
1746202353.395356,20,1,5
1746202354.2281184,20,1,5
1746202356.2309813,20,2,10
1746202357.5119016,20,2,10
1746202367.0512972,20,1,5
1746202367.1379914,20,1,5
1746204023.0995607,20,1,5
1746204023.6298227,20,1,5
1746204025.3775249,20,2,10
1746204026.6661108,20,2,10
1746204036.0163763,20,1,5
1746204036.1042497,20,1,5
1746206066.578294,20,1,5
1746206067.2030833,20,1,5
1746206069.228916,20,2,10
1746206070.4623067,20,2,10
1746206080.546163,20,1,5
1746206080.8969839,20,1,5
1746208144.325101,20,1,5
1746208145.1328847,20,1,5
1746208147.1253994,20,2,10
1746208148.405497,20,2,10
1746208157.3632367,20,1,5
1746208157.852758,20,1,5
1746209479.7474296,20,1,5
1746209480.2452967,20,1,5
1746209482.1884043,20,2,10
1746209483.3885593,20,2,10
1746209492.1145208,20,1,5
1746209492.314749,20,1,5
1746211265.1620197,20,1,5
1746211265.6435404,20,1,5
1746211267.374864,20,2,10
1746211268.4818282,20,2,10
1746211276.2682045,20,1,5
1746211276.4712763,20,1,5
1746213084.7484171,20,1,5
1746213085.2155156,20,1,5
1746213087.1867933,20,2,10
1746213088.2610688,20,2,10
1746213095.829338,20,1,5
1746213095.9979498,20,1,5
1746214279.0317369,20,1,5
1746214279.5338228,20,1,5
1746214281.3266823,20,2,10
1746214282.446265,20,2,10
1746214290.2361193,20,1,5
1746214290.4379048,20,1,5
1746215914.889834,20,1,5
1746215915.4054732,20,1,5
1746215917.358387,20,2,10
1746215918.5375178,20,2,10
1746215926.0855677,20,1,5
1746215926.2611642,20,1,5
1746217749.4477487,20,1,5
1746217750.0719657,20,1,5
1746217751.7772923,20,2,10
1746217752.7324505,20,2,10
1746217760.1102319,20,1,5
1746217760.1954072,20,1,5
1746220196.8262787,20,1,5
1746220197.4201307,20,1,5
1746220199.4226992,20,2,10
1746220200.9120932,20,2,10
1746220209.402665,20,1,5
1746220209.4883168,20,1,5
1746222270.763338,20,1,5
1746222272.3370967,20,1,5
1746222274.4803061,20,2,10
1746222275.5535545,20,2,10
1746222284.0540257,20,1,5
1746222284.158586,20,1,5
1746224592.215447,20,1,5
1746224592.664874,20,1,5
1746224594.3453436,20,2,10
1746224595.362091,20,2,10
1746224603.5353267,20,1,5
1746224603.6318707,20,1,5
1746226223.3973808,20,1,5
1746226224.1330657,20,1,5
1746226225.9466796,20,2,10
1746226226.8581614,20,2,10
1746226234.3711226,20,1,5
1746226234.4524186,20,1,5
1746227781.8311343,20,1,5
1746227782.2828987,20,1,5
1746227784.263219,20,2,10
1746227785.1135225,20,2,10
1746227792.2779408,20,1,5
1746227792.5533235,20,1,5
1746227798.516292,20,1,5
1746227807.756422,20,1,5
1746227817.5251381,20,1,5
1746227823.4501956,20,1,5
1746227828.0761106,20,0,0
1746227836.7813437,20,0,0
1746229018.632434,20,0,0
1746229018.863618,20,0,0
1746229020.2558258,20,1,5
1746229024.7716258,20,1,5
1746230574.6298234,20,1,5
1746230575.1313512,20,1,5
1746230577.0385215,20,2,10
1746230578.035906,20,2,10
1746230585.4772308,20,1,5
1746230585.545464,20,1,5
1746232027.9004774,20,1,5
1746232028.4543343,20,1,5
1746232030.359611,20,2,10
1746232031.5645854,20,2,10
1746232039.9590359,20,1,5
1746232040.0497887,20,1,5
1746233813.6029775,20,1,5
1746233814.2174451,20,1,5
1746233816.1987083,20,2,10
1746233817.442153,20,2,10
1746233827.0332632,20,1,5
1746233827.2202845,20,1,5
1746234865.741667,20,1,5
1746234866.2814217,20,1,5
1746234868.388104,20,2,10
1746234869.7177987,20,2,10
1746234878.59858,20,1,5
1746234878.6811054,20,1,5
1746237269.8565962,20,1,5
1746237270.4032285,20,1,5
1746237272.3695512,20,2,10
1746237273.603737,20,2,10
1746237282.19618,20,1,5
1746237282.282596,20,1,5
1746239136.1831172,20,1,5
1746239136.4608035,20,1,5
1746239138.1491928,20,2,10
1746239138.6570966,20,2,10
1746239145.8681772,20,1,5
1746239145.9150655,20,1,5
1746240835.9324954,20,1,5
1746240836.3979573,20,1,5
1746240838.3408911,20,2,10
1746240839.4752579,20,2,10
1746240847.6675527,20,1,5
1746240847.8999178,20,1,5
1746242755.1177413,20,1,5
1746242755.6324704,20,1,5
1746242757.4654615,20,2,10
1746242758.6192408,20,2,10
1746242766.6940422,20,1,5
1746242766.8755224,20,1,5
1746244581.416245,20,1,5
1746244582.190746,20,1,5
1746244584.1597586,20,2,10
1746244585.3597517,20,2,10
1746244594.4826553,20,1,5
1746244594.9055903,20,1,5
1746246715.8196905,20,1,5
1746246716.352012,20,1,5
1746246718.5179245,20,2,10
1746246719.7484632,20,2,10
1746246728.7216582,20,1,5
1746246728.9053173,20,1,5
1746248290.0434787,20,1,5
1746248290.5569174,20,1,5
1746248292.3128304,20,2,10
1746248293.6068275,20,2,10
1746248301.6875615,20,1,5
1746248301.769268,20,1,5
1746249316.8859925,20,1,5
1746249317.324439,20,1,5
1746249319.2078564,20,2,10
1746249320.095455,20,2,10
1746249327.1067963,20,1,5
1746249327.1610332,20,1,5
1746251762.8206863,20,1,5
1746251763.3246782,20,1,5
1746251765.337138,20,2,10
1746251766.3724568,20,2,10
1746251773.8938496,20,1,5
1746251774.1038077,20,1,5
1746253006.449207,20,1,5
1746253007.1411126,20,1,5
1746253009.0452476,20,2,10
1746253009.6296794,20,2,10
1746253018.0487943,20,1,5
1746253018.2481534,20,1,5
1746254061.2707562,20,1,5
1746254061.6688468,20,1,5
1746254063.1935277,20,2,10
1746254064.0658543,20,2,10
1746254071.9926298,20,1,5
1746254072.0669346,20,1,5
1746255822.1359656,20,1,5
1746255822.4141452,20,1,5
1746255824.1624496,20,2,10
1746255824.6209185,20,2,10
1746255832.0149674,20,1,5
1746255832.0652416,20,1,5
1746257341.3379354,20,1,5
1746257341.943279,20,1,5
1746257343.5417209,20,2,10
1746257344.3005695,20,2,10
1746257352.4213147,20,1,5
1746257352.5179036,20,1,5
1746259700.2447877,20,1,5
1746259700.5181618,20,1,5
1746259702.051467,20,2,10
1746259702.505069,20,2,10
1746259709.2325711,20,1,5
1746259709.2931397,20,1,5
1746260979.0873141,20,1,5
1746260979.4855301,20,1,5
1746260981.2700746,20,2,10
1746260981.9684842,20,2,10
1746260989.344289,20,1,5
1746260989.4987323,20,1,5
1746260995.3940208,20,1,5
1746261004.9107873,20,1,5
1746261015.097446,20,1,5
1746261024.757834,20,1,5
1746261030.7578962,20,1,5
1746261035.8635178,20,0,0
1746261045.1580093,20,0,0
1746262898.714289,20,0,0
1746262899.0039756,20,0,0
1746262900.638413,20,1,5
1746262905.8729086,20,1,5
1746263965.9319158,20,1,5
1746263966.3032303,20,1,5
1746263968.211315,20,2,10
1746263969.0024543,20,2,10
1746263976.1658618,20,1,5
1746263976.2409365,20,1,5
1746265541.6616821,20,1,5
1746265541.9806614,20,1,5
1746265543.5069368,20,2,10
1746265543.962286,20,2,10
1746265550.4105437,20,1,5
1746265550.4651875,20,1,5
1746267005.2185223,20,1,5
1746267005.5919352,20,1,5
1746267007.1933806,20,2,10
1746267007.9634852,20,2,10
1746267015.3522816,20,1,5
1746267015.408753,20,1,5
1746268439.9796524,20,1,5
1746268440.3413184,20,1,5
1746268442.6069987,20,2,10
1746268443.3865752,20,2,10
1746268451.071222,20,1,5
1746268451.1470768,20,1,5
1746270443.9750147,20,1,5
1746270444.4060633,20,1,5
1746270446.2071345,20,2,10
1746270446.9782753,20,2,10
1746270454.7793055,20,1,5
1746270454.892721,20,1,5
1746272084.1085572,20,1,5
1746272084.4785557,20,1,5
1746272086.1889613,20,2,10
1746272086.9672542,20,2,10
1746272094.7521272,20,1,5
1746272094.8146074,20,1,5
1746273282.46528,20,1,5
1746273283.0684378,20,1,5
1746273285.0828586,20,2,10
1746273285.8443325,20,2,10
1746273293.525446,20,1,5
1746273293.6177008,20,1,5
1746275046.3855944,20,1,5
1746275047.061901,20,1,5
1746275048.5840628,20,2,10
1746275049.3999567,20,2,10
1746275057.4682357,20,1,5
1746275057.5587013,20,1,5
1746277470.0093095,20,1,5
1746277470.3914027,20,1,5
1746277472.2187366,20,2,10
1746277473.024613,20,2,10
1746277480.7929611,20,1,5
1746277480.8761861,20,1,5
1746280113.375558,20,1,5
1746280113.9101493,20,1,5
1746280115.4164858,20,2,10
1746280115.8716128,20,2,10
1746280122.9223938,20,1,5
1746280123.0041633,20,1,5
1746282732.6209874,20,1,5
1746282733.064194,20,1,5
1746282734.972178,20,2,10
1746282735.7720997,20,2,10
1746282742.899241,20,1,5
1746282743.0667279,20,1,5
1746285230.8965118,20,1,5
1746285231.269942,20,1,5
1746285233.3251092,20,2,10
1746285234.1442754,20,2,10
1746285241.5473661,20,1,5
1746285241.616192,20,1,5
1746287538.2812653,20,1,5
1746287538.7485678,20,1,5
1746287540.5363395,20,2,10
1746287541.366231,20,2,10
1746287549.0311074,20,1,5
1746287549.2101233,20,1,5
1746290203.907004,20,1,5
1746290204.2751844,20,1,5
1746290206.4500208,20,2,10
1746290207.221966,20,2,10
1746290214.7141018,20,1,5
1746290214.7747624,20,1,5
1746293054.8153446,20,1,5
1746293055.285652,20,1,5
1746293057.3047144,20,2,10
1746293058.1192038,20,2,10
1746293065.4747324,20,1,5
1746293065.5500908,20,1,5
1746294924.9532838,20,1,5
1746294925.3217463,20,1,5
1746294927.243718,20,2,10
1746294927.984803,20,2,10
1746294935.6441963,20,1,5
1746294935.7146287,20,1,5
1746297232.0156052,20,1,5
1746297232.2951522,20,1,5
1746297234.0682688,20,2,10
1746297234.5741565,20,2,10
1746297241.465749,20,1,5
1746297241.536219,20,1,5
1746299763.505517,20,1,5
1746299764.097455,20,1,5
1746299766.0050998,20,2,10
1746299766.7924373,20,2,10
1746299774.4255075,20,1,5
1746299774.4903357,20,1,5
1746302367.1033094,20,1,5
1746302367.3829985,20,1,5
1746302369.1802187,20,2,10
1746302369.5832212,20,2,10
1746302376.8789606,20,1,5
1746302377.0241308,20,1,5
1746302382.690279,20,1,5
1746302392.0683749,20,1,5
1746302401.5123198,20,1,5
1746302410.8920038,20,1,5
1746302420.1977756,20,1,5
1746302429.8537836,20,1,5
1746302435.3009615,20,1,5
1746302439.9968991,20,0,0
1746302447.9583647,20,0,0
1746304963.4461374,20,0,0
1746304963.709862,20,0,0
1746304965.3328865,20,1,5
1746304970.1788292,20,1,5
1746307395.9155362,20,1,5
1746307396.321999,20,1,5
1746307398.4432056,20,2,10
1746307399.2591846,20,2,10
1746307407.055062,20,1,5
1746307407.1378486,20,1,5
1746309983.8270419,20,1,5
1746309984.3500216,20,1,5
1746309986.3440597,20,2,10
1746309987.1096933,20,2,10
1746309994.7914987,20,1,5
1746309994.8702884,20,1,5
1746312549.9513412,20,1,5
1746312550.3380387,20,1,5
1746312552.2253408,20,2,10
1746312553.0494897,20,2,10
1746312561.2494392,20,1,5
1746312561.321709,20,1,5
1746315460.6013942,20,1,5
1746315460.9649155,20,1,5
1746315462.499275,20,2,10
1746315463.0431688,20,2,10
1746315470.176359,20,1,5
1746315470.2287343,20,1,5
1746318401.5026767,20,1,5
1746318401.9635804,20,1,5
1746318403.8027968,20,2,10
1746318404.297218,20,2,10
1746318411.3486688,20,1,5
1746318411.4056976,20,1,5
1746321195.013768,20,1,5
1746321195.3931684,20,1,5
1746321197.3147876,20,2,10
1746321198.1025739,20,2,10
1746321206.2340035,20,1,5
1746321206.314097,20,1,5
1746323913.799735,20,1,5
1746323914.1938496,20,1,5
1746323916.071878,20,2,10
1746323916.8953164,20,2,10
1746323924.373479,20,1,5
1746323924.8438013,20,1,5
1746326461.540246,20,1,5
1746326462.0383232,20,1,5
1746326463.6253302,20,2,10
1746326464.4044828,20,2,10
1746326472.5246658,20,1,5
1746326472.6269221,20,1,5
1746328093.9385986,20,1,5
1746328094.3265321,20,1,5
1746328096.258998,20,2,10
1746328097.075322,20,2,10
1746328105.2740884,20,1,5
1746328105.479271,20,1,5
1746330913.363117,20,1,5
1746330914.0820632,20,1,5
1746330916.0647364,20,2,10
1746330916.8426101,20,2,10
1746330925.1645727,20,1,5
1746330925.236026,20,1,5
1746333210.942151,20,1,5
1746333211.2011738,20,1,5
1746333212.938763,20,2,10
1746333213.4054284,20,2,10
1746333220.528464,20,1,5
1746333220.5909386,20,1,5
1746335645.0883284,20,1,5
1746335645.455796,20,1,5
1746335647.1990492,20,2,10
1746335647.9418404,20,2,10
1746335655.318872,20,1,5
1746335655.3860512,20,1,5
1746338382.4816818,20,1,5
1746338383.0768821,20,1,5
1746338386.0664513,20,2,10
1746338386.8336158,20,2,10
1746338394.6913695,20,1,5
1746338394.8654075,20,1,5
1746341002.0462186,20,1,5
1746341002.4688938,20,1,5
1746341004.3598695,20,2,10
1746341005.144149,20,2,10
1746341013.3970234,20,1,5
1746341013.4526784,20,1,5
1746344103.9995987,20,1,5
1746344104.3879828,20,1,5
1746344106.3025,20,2,10
1746344107.1421835,20,2,10
1746344115.3663518,20,1,5
1746344115.4380577,20,1,5
1746347314.9048524,20,1,5
1746347315.3603754,20,1,5
1746347317.3373277,20,2,10
1746347318.1917303,20,2,10
1746347326.024097,20,1,5
1746347326.0927556,20,1,5
1746350418.458043,20,1,5
1746350419.102886,20,1,5
1746350420.772326,20,2,10
1746350421.5443132,20,2,10
1746350429.6474495,20,1,5
1746350429.7184453,20,1,5
1746353478.0675895,20,1,5
1746353478.4614282,20,1,5
1746353480.4339836,20,2,10
1746353481.2613113,20,2,10
1746353489.4931378,20,1,5
1746353489.5595973,20,1,5
1746356612.641257,20,1,5
1746356613.089005,20,1,5
1746356615.0665345,20,2,10
1746356615.7429776,20,2,10
1746356623.4975119,20,1,5
1746356623.7209406,20,1,5
1746356630.2307336,20,1,5
1746356640.3850367,20,1,5
1746356650.9263122,20,1,5
1746356656.610498,20,1,5
1746356662.1719627,20,0,0
1746356671.2219334,20,0,0
1746358383.4973118,20,0,0
1746358383.7978983,20,0,0
1746358385.3886054,20,1,5
1746358390.8426778,20,1,5
1746361345.3504705,20,1,5
1746361346.062953,20,1,5
1746361348.0904222,20,2,10
1746361348.9698186,20,2,10
1746361357.1267831,20,1,5
1746361357.1916566,20,1,5
1746364384.2157586,20,1,5
1746364384.624144,20,1,5
1746364386.2662396,20,2,10
1746364387.0639474,20,2,10
1746364394.9057724,20,1,5
1746364394.9974854,20,1,5
1746367308.7362301,20,1,5
1746367309.1642966,20,1,5
1746367311.0774565,20,2,10
1746367311.8676178,20,2,10
1746367319.9493675,20,1,5
1746367320.0267167,20,1,5
1746370723.587625,20,1,5
1746370724.00278,20,1,5
1746370725.6371694,20,2,10
1746370726.3798804,20,2,10
1746370735.1561007,20,1,5
1746370735.2349806,20,1,5
1746374060.5036814,20,1,5
1746374061.0001988,20,1,5
1746374062.9294777,20,2,10
1746374063.4459677,20,2,10
1746374071.2774835,20,1,5
1746374071.3452597,20,1,5
1746376621.4496615,20,1,5
1746376622.084898,20,1,5
1746376624.0529938,20,2,10
1746376624.8531275,20,2,10
1746376633.2061534,20,1,5
1746376633.2987387,20,1,5
1746379298.5688555,20,1,5
1746379299.065871,20,1,5
1746379300.7521892,20,2,10
1746379301.2220542,20,2,10
1746379310.7659614,20,1,5
1746379310.8372326,20,1,5
1746381847.6140924,20,1,5
1746381848.0630908,20,1,5
1746381849.7870712,20,2,10
1746381850.6104598,20,2,10
1746381858.7938664,20,1,5
1746381858.8984904,20,1,5
1746384011.9553707,20,1,5
1746384012.3824074,20,1,5
1746384014.3748403,20,2,10
1746384015.1921363,20,2,10
1746384024.0177953,20,1,5
1746384024.0994189,20,1,5
1746387383.4358623,20,1,5
1746387384.0791845,20,1,5
1746387386.0859818,20,2,10
1746387386.9524982,20,2,10
1746387395.2959075,20,1,5
1746387395.3689191,20,1,5
1746390406.3351479,20,1,5
1746390406.970281,20,1,5
1746390408.8226027,20,2,10
1746390409.6293082,20,2,10
1746390419.1747446,20,1,5
1746390419.2484407,20,1,5
1746393280.6787105,20,1,5
1746393281.1977382,20,1,5
1746393283.146799,20,2,10
1746393284.0035708,20,2,10
1746393292.627756,20,1,5
1746393292.701969,20,1,5
1746396768.4124308,20,1,5
1746396769.106791,20,1,5
1746396772.0780048,20,2,10
1746396772.927959,20,2,10
1746396781.0934696,20,1,5
1746396784.856544,20,1,5
1746399299.556822,20,1,5
1746399300.0664113,20,1,5
1746399301.7317111,20,2,10
1746399302.5845149,20,2,10
1746399311.2202654,20,1,5
1746399311.3082259,20,1,5
1746402510.2147214,20,1,5
1746402510.613816,20,1,5
1746402512.363242,20,2,10
1746402513.2428198,20,2,10
1746402522.0591054,20,1,5
1746402522.1701834,20,1,5
1746406182.9439547,20,1,5
1746406183.3900244,20,1,5
1746406185.556883,20,2,10
1746406186.4528866,20,2,10
1746406195.4953926,20,1,5
1746406195.8859324,20,1,5
1746409794.4758248,20,1,5
1746409795.0949879,20,1,5
1746409797.117988,20,2,10
1746409797.924328,20,2,10
1746409806.9039242,20,1,5
1746409806.9794672,20,1,5
1746413545.5730395,20,1,5
1746413546.09181,20,1,5
1746413548.035952,20,2,10
1746413548.9309747,20,2,10
1746413557.3396494,20,1,5
1746413557.4239695,20,1,5
1746415943.969032,20,1,5
1746415944.3434157,20,1,5
1746415946.4088604,20,2,10
1746415947.1388235,20,2,10
1746415955.1500878,20,1,5
1746415955.2978275,20,1,5
1746415961.679157,20,1,5
1746415971.8342836,20,1,5
1746415982.0447714,20,1,5
1746415991.7034285,20,1,5
1746415997.4773624,20,1,5
1746416003.0759962,20,0,0
1746416011.827508,20,0,0
1746418286.50096,20,0,0
1746418286.7982183,20,0,0
1746418288.4328141,20,1,5
1746418293.8826823,20,1,5
1746420369.6958907,20,1,5
1746420369.9924955,20,1,5
1746420371.4850132,20,2,10
1746420371.947366,20,2,10
1746420379.5648026,20,1,5
1746420379.6679618,20,1,5
1746423837.5950084,20,1,5
1746423838.0085795,20,1,5
1746423840.1076512,20,2,10
1746423841.054881,20,2,10
1746423851.4872937,20,1,5
1746423851.6208613,20,1,5
1746427312.199696,20,1,5
1746427312.5951633,20,1,5
1746427314.1708977,20,2,10
1746427314.9756727,20,2,10
1746427323.2752008,20,1,5
1746427323.3502052,20,1,5
1746430612.0341556,20,1,5
1746430612.3259616,20,1,5
1746430614.0811696,20,2,10
1746430614.6134589,20,2,10
1746430622.811699,20,1,5
1746430622.8816762,20,1,5
1746434477.5627792,20,1,5
1746434478.137322,20,1,5
1746434480.039157,20,2,10
1746434480.8759048,20,2,10
1746434489.2825375,20,1,5
1746434489.363051,20,1,5
1746436959.2283738,20,1,5
1746436959.6358287,20,1,5
1746436961.2893732,20,2,10
1746436962.1426926,20,2,10
1746436970.5529523,20,1,5
1746436970.6328313,20,1,5
1746440010.3788402,20,1,5
1746440010.9325428,20,1,5
1746440012.7029061,20,2,10
1746440013.2304795,20,2,10
1746440020.8765533,20,1,5
1746440020.9393759,20,1,5
1746443063.0164776,20,1,5
1746443064.268862,20,1,5
1746443066.1848538,20,2,10
1746443066.6112356,20,2,10
1746443076.3401246,20,1,5
1746443076.4258285,20,1,5
1746445552.6296773,20,1,5
1746445553.0728621,20,1,5
1746445554.5905812,20,2,10
1746445555.3930771,20,2,10
1746445564.3437836,20,1,5
1746445564.4330492,20,1,5
1746447872.4676595,20,1,5
1746447873.046976,20,1,5
1746447874.5492444,20,2,10
1746447875.3409173,20,2,10
1746447884.791276,20,1,5
1746447884.874968,20,1,5
1746452062.8923833,20,1,5
1746452063.3156285,20,1,5
1746452065.1561,20,2,10
1746452065.7160246,20,2,10
1746452074.287006,20,1,5
1746452074.3592312,20,1,5
1746455294.1952944,20,1,5
1746455294.6069865,20,1,5
1746455296.19141,20,2,10
1746455297.0146914,20,2,10
1746455306.0169253,20,1,5
1746455306.1064253,20,1,5
1746458373.3742316,20,1,5
1746458374.0304742,20,1,5
1746458375.5664492,20,2,10
1746458376.3288486,20,2,10
1746458384.800207,20,1,5
1746458384.8749337,20,1,5
1746461419.9258792,20,1,5
1746461420.3112392,20,1,5
1746461422.1783848,20,2,10
1746461422.9507837,20,2,10
1746461431.5674531,20,1,5
1746461431.6383815,20,1,5
1746464223.6914475,20,1,5
1746464224.063437,20,1,5
1746464225.6448655,20,2,10
1746464226.4638653,20,2,10
1746464236.0066667,20,1,5
1746464236.0711248,20,1,5
1746467598.0326593,20,1,5
1746467598.4795225,20,1,5
1746467600.228647,20,2,10
1746467601.0320873,20,2,10
1746467610.710915,20,1,5
1746467610.8102431,20,1,5
1746471669.5845194,20,1,5
1746471670.2067287,20,1,5
1746471672.11272,20,2,10
1746471673.2366943,20,2,10
1746471682.473338,20,1,5
1746471682.5443091,20,1,5
1746474779.2435796,20,1,5
1746474779.6691682,20,1,5
1746474781.2673876,20,2,10
1746474782.0507472,20,2,10
1746474791.222593,20,1,5
1746474791.3336103,20,1,5
1746478517.7857122,20,1,5
1746478518.251312,20,1,5
1746478520.3459592,20,2,10
1746478521.0929651,20,2,10
1746478529.8694212,20,1,5
1746478530.0711973,20,1,5
1746478536.6728578,20,1,5
1746478542.070171,20,1,5
1746478548.4447522,20,0,0
1746478558.1377594,20,0,0
1746481389.0584347,20,0,0
1746481389.3545992,20,0,0
1746481391.1521473,20,1,5
1746481396.771435,20,1,5
1746485013.8375137,20,1,5
1746485014.28546,20,1,5
1746485016.184643,20,2,10
1746485017.0419364,20,2,10
1746485027.0413136,20,1,5
1746485027.1305091,20,1,5
1746489256.7064905,20,1,5
1746489257.0589364,20,1,5
1746489258.567993,20,2,10
1746489259.062616,20,2,10
1746489268.1935828,20,1,5
1746489268.254673,20,1,5
1746493307.1180115,20,1,5
1746493307.5920408,20,1,5
1746493309.2492192,20,2,10
1746493310.102704,20,2,10
1746493318.9227078,20,1,5
1746493319.0250013,20,1,5
1746497144.898412,20,1,5
1746497145.344166,20,1,5
1746497147.1771455,20,2,10
1746497148.0015068,20,2,10
1746497156.6805038,20,1,5
1746497156.7615733,20,1,5
1746500731.9832973,20,1,5
1746500732.261385,20,1,5
1746500733.9673882,20,2,10
1746500734.5255756,20,2,10
1746500742.8164198,20,1,5
1746500742.8754096,20,1,5
1746504328.2952273,20,1,5
1746504328.6726177,20,1,5
1746504330.1584415,20,2,10
1746504330.6980917,20,2,10
1746504339.0536942,20,1,5
1746504339.123438,20,1,5
1746508302.5826502,20,1,5
1746508303.0134492,20,1,5
1746508304.478314,20,2,10
1746508304.9703069,20,2,10
1746508313.757886,20,1,5
1746508313.8603365,20,1,5
1746512235.224211,20,1,5
1746512235.514659,20,1,5
1746512237.0873728,20,2,10
1746512237.5630329,20,2,10
1746512245.8690135,20,1,5
1746512245.9427915,20,1,5
1746515582.0945656,20,1,5
1746515582.5140603,20,1,5
1746515584.1889498,20,2,10
1746515584.9818573,20,2,10
1746515594.1629043,20,1,5
1746515594.2324154,20,1,5
1746519768.2213986,20,1,5
1746519768.6531162,20,1,5
1746519770.2909544,20,2,10
1746519771.1544025,20,2,10
1746519780.5363555,20,1,5
1746519780.6239035,20,1,5
1746523922.4155202,20,1,5
1746523923.0635438,20,1,5
1746523924.6644974,20,2,10
1746523925.425143,20,2,10
1746523934.493617,20,1,5
1746523934.564872,20,1,5
1746527374.9311678,20,1,5
1746527375.2183287,20,1,5
1746527376.9201856,20,2,10
1746527377.6939027,20,2,10
1746527387.0918043,20,1,5
1746527387.16082,20,1,5
1746531562.0529566,20,1,5
1746531562.4067209,20,1,5
1746531564.1972477,20,2,10
1746531565.0265117,20,2,10
1746531574.0573492,20,1,5
1746531574.353934,20,1,5
1746534614.4113328,20,1,5
1746534614.9292965,20,1,5
1746534616.3474941,20,2,10
1746534616.803036,20,2,10
1746534624.9085295,20,1,5
1746534624.9759374,20,1,5
1746539149.3458073,20,1,5
1746539150.0816836,20,1,5
1746539152.0333977,20,2,10
1746539152.9040167,20,2,10
1746539162.7776577,20,1,5
1746539162.8770583,20,1,5
1746543633.3721035,20,1,5
1746543634.0605073,20,1,5
1746543635.9907746,20,2,10
1746543636.5447025,20,2,10
1746543646.209352,20,1,5
1746543646.2670622,20,1,5
1746547339.8635316,20,1,5
1746547340.2508917,20,1,5
1746547342.0711825,20,2,10
1746547342.8570883,20,2,10
1746547351.8996854,20,1,5
1746547351.979461,20,1,5
1746551186.276112,20,1,5
1746551186.7364514,20,1,5
1746551188.4204118,20,2,10
1746551188.8769965,20,2,10
1746551198.5775743,20,1,5
1746551198.6589954,20,1,5
1746555387.7892692,20,1,5
1746555388.2714853,20,1,5
1746555390.2221127,20,2,10
1746555391.0119956,20,2,10
1746555400.1799307,20,1,5
1746555400.3569615,20,1,5
1746555407.5255208,20,1,5
1746555418.9446833,20,1,5
1746555430.1928167,20,1,5
1746555441.1337428,20,1,5
1746555446.8352575,20,1,5
1746555454.1081662,20,0,0
1746555464.9266698,20,0,0
1746560104.9333854,20,0,0
1746560105.2401624,20,0,0
1746560107.1832128,20,1,5
1746560113.1193898,20,1,5
1746564708.8441713,20,1,5
1746564709.2883031,20,1,5
1746564711.2708485,20,2,10
1746564712.069794,20,2,10
1746564721.3890724,20,1,5
1746564721.476196,20,1,5
1746566295.918618,20,1,5
1746566296.2047093,20,1,5
1746566297.6343057,20,2,10
1746566298.1922827,20,2,10
1746566306.7721286,20,1,5
1746566306.8319376,20,1,5
1746570290.169903,20,1,5
1746570290.6001804,20,1,5
1746570292.1972206,20,2,10
1746570292.6491976,20,2,10
1746570302.6162298,20,1,5
1746570302.6883333,20,1,5
1746573501.996616,20,1,5
1746573502.3752596,20,1,5
1746573505.2453136,20,2,10
1746573506.1456866,20,2,10
1746573515.0729506,20,1,5
1746573515.1460142,20,1,5
1746578189.9821026,20,1,5
1746578190.4478145,20,1,5
1746578192.2213223,20,2,10
1746578193.1091475,20,2,10
1746578203.620815,20,1,5
1746578203.6965082,20,1,5
1746583119.467085,20,1,5
1746583119.9934475,20,1,5
1746583121.5517612,20,2,10
1746583122.1214678,20,2,10
1746583131.1506052,20,1,5
1746583131.2146277,20,1,5
1746587817.7863662,20,1,5
1746587818.2500544,20,1,5
1746587820.149888,20,2,10
1746587820.9743733,20,2,10
1746587831.092777,20,1,5
1746587831.1757085,20,1,5
1746592437.823858,20,1,5
1746592438.2279067,20,1,5
1746592440.0776916,20,2,10
1746592440.8838189,20,2,10
1746592449.7408721,20,1,5
1746592449.8057902,20,1,5
1746596755.2433736,20,1,5
1746596755.6767828,20,1,5
1746596757.2873564,20,2,10
1746596757.7431304,20,2,10
1746596768.2037785,20,1,5
1746596768.2749164,20,1,5
1746601326.15501,20,1,5
1746601326.613294,20,1,5
1746601328.2047348,20,2,10
1746601329.0411735,20,2,10
1746601338.422289,20,1,5
1746601338.4971356,20,1,5
1746605477.9541993,20,1,5
1746605478.2448094,20,1,5
1746605480.0825393,20,2,10
1746605480.5901089,20,2,10
1746605489.9298472,20,1,5
1746605489.988339,20,1,5
1746610218.5750873,20,1,5
1746610219.0663254,20,1,5
1746610220.9721856,20,2,10
1746610221.4194124,20,2,10
1746610232.375301,20,1,5
1746610232.4557533,20,1,5
1746614536.0306528,20,1,5
1746614536.4736557,20,1,5
1746614538.26797,20,2,10
1746614539.0998964,20,2,10
1746614548.7506287,20,1,5
1746614548.823629,20,1,5
1746618976.7558093,20,1,5
1746618977.0976183,20,1,5
1746618978.9487846,20,2,10
1746618979.602543,20,2,10
1746618989.3698885,20,1,5
1746618989.452135,20,1,5
1746622323.9878886,20,1,5
1746622324.3044364,20,1,5
1746622326.1852987,20,2,10
1746622326.4890466,20,2,10
1746622336.6469946,20,1,5
1746622336.7099776,20,1,5
1746626910.5368204,20,1,5
1746626911.281941,20,1,5
1746626913.3365993,20,2,10
1746626914.376245,20,2,10
1746626926.3324878,20,1,5
1746626926.4414074,20,1,5
1746632748.1952758,20,1,5
1746632748.7233639,20,1,5
1746632750.3805816,20,2,10
1746632751.3459067,20,2,10
1746632763.927812,20,1,5
1746632764.069912,20,1,5
1746638497.736578,20,1,5
1746638498.424777,20,1,5
1746638500.4585538,20,2,10
1746638501.9330266,20,2,10
1746638515.4368944,20,1,5
1746638515.559691,20,1,5
1746645914.747814,20,1,5
1746645915.243792,20,1,5
1746645917.2262936,20,2,10
1746645918.0506744,20,2,10
1746645929.247414,20,1,5
1746645929.4013646,20,1,5
1746645938.1890187,20,1,5
1746645943.602413,20,1,5
1746645951.864549,20,0,0
1746645963.0894663,20,0,0
1746651383.9208035,20,0,0
1746651384.2907846,20,0,0
1746651386.2619019,20,1,5
1746651392.8779545,20,1,5
1746656009.2169204,20,1,5
1746656009.6427572,20,1,5
1746656011.2362747,20,2,10
1746656012.114007,20,2,10
1746656022.2828956,20,1,5
1746656022.5467947,20,1,5
1746661262.4648676,20,1,5
1746661263.1509426,20,1,5
1746661265.0225585,20,2,10
1746661265.8620245,20,2,10
1746661276.531405,20,1,5
1746661276.622796,20,1,5
1746665067.3107731,20,1,5
1746665067.9721467,20,1,5
1746665069.576054,20,2,10
1746665070.049074,20,2,10
1746665082.197096,20,1,5
1746665082.3144238,20,1,5
1746668238.8447618,20,1,5
1746668239.2868907,20,1,5
1746668241.166873,20,2,10
1746668242.0884929,20,2,10
1746668253.0145693,20,1,5
1746668253.1019807,20,1,5
1746673839.8797097,20,1,5
1746673840.3588645,20,1,5
1746673842.2378142,20,2,10
1746673843.0522282,20,2,10
1746673854.1210048,20,1,5
1746673854.2226746,20,1,5
1746679035.5064218,20,1,5
1746679036.1272464,20,1,5
1746679038.0349877,20,2,10
1746679038.884158,20,2,10
1746679048.926372,20,1,5
1746679049.0100052,20,1,5
1746684710.971431,20,1,5
1746684711.3129776,20,1,5
1746684713.1162858,20,2,10
1746684713.6581752,20,2,10
1746684723.5970187,20,1,5
1746684723.665582,20,1,5
1746690326.6024342,20,1,5
1746690327.143585,20,1,5
1746690328.98143,20,2,10
1746690329.8491688,20,2,10
1746690341.2821925,20,1,5
1746690341.3741827,20,1,5
1746695472.8310795,20,1,5
1746695473.3202949,20,1,5
1746695475.184712,20,2,10
1746695476.076693,20,2,10
1746695487.2479792,20,1,5
1746695487.3350642,20,1,5
1746700676.2002869,20,1,5
1746700676.6588266,20,1,5
1746700678.2323632,20,2,10
1746700679.0792506,20,2,10
1746700690.0060384,20,1,5
1746700690.0950978,20,1,5
1746705713.8628864,20,1,5
1746705714.329795,20,1,5
1746705716.1951718,20,2,10
1746705717.0632298,20,2,10
1746705726.9142978,20,1,5
1746705727.1061118,20,1,5
1746711313.0248275,20,1,5
1746711313.462273,20,1,5
1746711315.1758947,20,2,10
1746711315.9417589,20,2,10
1746711326.9631722,20,1,5
1746711327.0423913,20,1,5
1746715948.7305589,20,1,5
1746715949.0865471,20,1,5
1746715950.5456812,20,2,10
1746715951.1573248,20,2,10
1746715960.8207364,20,1,5
1746715961.0055473,20,1,5
1746721648.4438875,20,1,5
1746721649.1725566,20,1,5
1746721651.060816,20,2,10
1746721651.9447515,20,2,10
1746721662.1728795,20,1,5
1746721662.2523296,20,1,5
1746726396.7595491,20,1,5
1746726397.2152736,20,1,5
1746726399.0540276,20,2,10
1746726399.9119785,20,2,10
1746726409.379312,20,1,5
1746726409.4518352,20,1,5
1746730772.720787,20,1,5
1746730773.153216,20,1,5
1746730775.0485675,20,2,10
1746730775.9462705,20,2,10
1746730785.649178,20,1,5
1746730785.720854,20,1,5
1746736265.9258335,20,1,5
1746736266.3591776,20,1,5
1746736268.1304145,20,2,10
1746736268.9528208,20,2,10
1746736280.122871,20,1,5
1746736280.2025342,20,1,5
1746741350.268273,20,1,5
1746741350.65405,20,1,5
1746741352.123716,20,2,10
1746741352.670183,20,2,10
1746741362.3998134,20,1,5
1746741362.846611,20,1,5
1746747182.2831273,20,1,5
1746747182.7991295,20,1,5
1746747184.3996642,20,2,10
1746747185.1707056,20,2,10
1746747195.695508,20,1,5
1746747195.8598654,20,1,5
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_worker_usage")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_worker_usage", "worker_usage.csv")'> Download »worker_usage.csv« as file</button>
<h1> CPU/RAM-Usage (main)</h1>
<div class='invert_in_dark_mode' id='mainWorkerCPURAM'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<pre id="pre_tab_main_worker_cpu_ram">timestamp,ram_usage_mb,cpu_usage_percent
1746192465,632.30859375,34.3
1746192465,629.62109375,34.4
1746192465,629.6875,33.6
1746192465,629.6875,41.0
1746192465,629.6875,29.0
1746192465,629.6875,35.5
1746192465,629.6875,36.8
1746227798,896.39453125,28.5
1746227798,896.39453125,14.9
1746227798,896.39453125,14.6
1746227798,896.39453125,17.1
1746260995,862.7265625,15.7
1746260995,862.7265625,13.9
1746260995,862.7265625,13.8
1746260995,862.7265625,19.4
1746302382,918.7421875,15.8
1746302382,918.7421875,15.3
1746302382,918.7421875,15.4
1746302382,918.7421875,18.4
1746356629,944.59375,15.7
1746356629,944.59375,16.7
1746356630,944.59375,16.7
1746356630,944.59375,17.1
1746415961,975.6875,18.4
1746415961,975.6875,12.8
1746415961,975.6875,13.0
1746415961,975.6875,16.3
1746478536,1003.18359375,16.1
1746478536,1003.18359375,13.7
1746478536,1003.18359375,13.0
1746478536,1003.18359375,17.5
1746555407,1005.59375,15.9
1746555407,1005.59375,14.9
1746555407,1005.59375,15.0
1746555407,1005.59375,15.0
1746645937,1133.29296875,18.2
1746645937,1133.29296875,22.2
1746645937,1133.29296875,21.0
1746645938,1133.29296875,27.3
1746747202,1046.046875,20.0
1746747203,1046.046875,16.5
1746747203,1046.046875,16.4
1746747203,1046.046875,17.6
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<h1> Parallel Plot</h1>
<div class="invert_in_dark_mode" id="parallel-plot"></div>
<h1> Scatter-2D</h1>
<div class='invert_in_dark_mode' id='plotScatter2d'></div>
<h1> Scatter-3D</h1>
<div class='invert_in_dark_mode' id='plotScatter3d'></div>
<h1> Job Status Distribution</h1>
<div class="invert_in_dark_mode" id="plotJobStatusDistribution"></div>
<h1> Boxplots</h1>
<div class="invert_in_dark_mode" id="plotBoxplot"></div>
<h1> Violin</h1>
<div class="invert_in_dark_mode" id="plotViolin"></div>
<h1> Histogram</h1>
<div class="invert_in_dark_mode" id="plotHistogram"></div>
<h1> Heatmap</h1>
<div class="invert_in_dark_mode" id="plotHeatmap"></div><br>
<h1>Correlation Heatmap Explanation</h1>
<p>
This is a heatmap that visualizes the correlation between numerical columns in a dataset. The values represented in the heatmap show the strength and direction of relationships between different variables.
</p>
<h2>How It Works</h2>
<p>
The heatmap uses a matrix to represent correlations between each pair of numerical columns. The calculation behind this is based on the concept of "correlation," which measures how strongly two variables are related. A correlation can be positive, negative, or zero:
</p>
<ul>
<li><strong>Positive correlation</strong>: Both variables increase or decrease together (e.g., if the temperature rises, ice cream sales increase).</li>
<li><strong>Negative correlation</strong>: As one variable increases, the other decreases (e.g., as the price of a product rises, the demand for it decreases).</li>
<li><strong>Zero correlation</strong>: There is no relationship between the two variables (e.g., height and shoe size might show zero correlation in some contexts).</li>
</ul>
<h2>Color Scale: Yellow to Purple (Viridis)</h2>
<p>
The heatmap uses a color scale called "Viridis," which ranges from yellow to purple. Here's what the colors represent:
</p>
<ul>
<li><strong>Yellow (brightest)</strong>: A strong positive correlation (close to +1). This indicates that as one variable increases, the other increases in a very predictable manner.</li>
<li><strong>Green</strong>: A moderate positive correlation. Variables are still positively related, but the relationship is not as strong.</li>
<li><strong>Blue</strong>: A weak or near-zero correlation. There is a small or no discernible relationship between the variables.</li>
<li><strong>Purple (darkest)</strong>: A strong negative correlation (close to -1). This indicates that as one variable increases, the other decreases in a very predictable manner.</li>
</ul>
<h2>What the Heatmap Shows</h2>
<p>
In the heatmap, each cell represents the correlation between two numerical columns. The color of the cell is determined by the correlation coefficient: from yellow for strong positive correlations, through green and blue for weaker correlations, to purple for strong negative correlations.
</p>
<h1> Result-Pairs</h1>
<div class="invert_in_dark_mode" id="plotResultPairs"></div>
<h1> Evolution</h1>
<div class="invert_in_dark_mode" id="plotResultEvolution"></div>
<h1> Exit-Codes</h1>
<div class="invert_in_dark_mode" id="plotExitCodesPieChart"></div>
</body>
</html>
Copy raw data to clipboard
Download »export.html« as file