🗃️ Using the SQLite3 store
SQLite3 Usage in OmniOpt2
SQLite3 is an optional but always-enabled format for saving OmniOpt2 optimization results. By default, OmniOpt2 automatically writes all trial data and results into a local SQLite3 database file as an archival measure. Users who don't need it can simply ignore it without any impact on their workflow.Key Points:
- Always active but optional to use: Results are saved in SQLite3, but you can choose whether to query or analyze this data.
- Archive-focused: Primarily serves as a persistent backup of results, but users can query or analyze the data however they want.
- Automatic and transparent: No extra setup or manual export is needed; saving to SQLite3 happens seamlessly during optimization.
Benefits of Using SQLite3 for OmniOpt2 Results
Using SQLite3 to save OmniOpt2 optimization results unlocks powerful possibilities for data analysis and aggregation:1. Structured Data Storage
- Results from each trial, including hyperparameters and objective values, are stored in structured tables.
- Enables consistent, organized access to experiment data without manual file parsing.
2. Efficient Querying
- You can run complex SQL queries to filter, group, and sort trials based on specific hyperparameter values or objective metrics.
- Example: Find the best trials where learning rate is within a range or select only converged runs.
3. Aggregation and Summarization
- Use SQL aggregation functions like
AVG()
,MAX()
,MIN()
,COUNT()
,GROUP BY
to compute summary statistics. - Example: Calculate average validation loss per model architecture or maximum accuracy achieved.
4. Cross-Experiment Comparison
- Store multiple experiment runs in the same or linked SQLite files to compare different optimization settings side by side.
- Enables easier identification of trends and best hyperparameter configurations across experiments.
5. Portability and Integration
- The entire dataset is in a single file, easily transferred or shared with collaborators.
- Many tools and programming languages support SQLite3, enabling integration with Python, R, or visualization tools.
6. Post-Processing and Reporting
- Automate report generation or dashboards by querying SQLite3 and feeding results into plots or summary tables.
- Supports custom analyses without modifying the original OmniOpt2 optimization workflow.
How to access
Go to your run folder, and runsqlite3 database.db
. This allows you to use SQLite3 to view the database.
Other DB-systems than SQLite3
You can add any other system thatsqlalchemy
supports by creating it's connect-string and passing it to OmniOpt2 with --db_url
.These include, but are not limited to
postgresql://user:password@host:port/database
, mysql+pymysql://user:password@host:port/database ...
and so on.It may be possible that, for certain databases, you need to install further plugins to the venv.
Using this option disables the saving into the SQLite3 database.
Tables and Meaning of Columns
Column | Description |
---|---|
description | Textual description of the experiment |
experiment_type | Type or category of the experiment |
id | Unique experiment identifier |
is_test | Flag indicating if this is a test experiment |
name | Name of the experiment |
properties | JSON properties/configuration of the experiment |
status_quo_name | Name of the baseline or control setup |
status_quo_parameters | Parameters of the baseline/control setup |
time_created | Timestamp when the experiment was created |
default_trial_type | Default trial type associated with this experiment |
default_data_type | Default data type for trials in the experiment |
auxiliary_experiments_by_purpose | JSON mapping for auxiliary experiments grouped by purpose |
Column | Description |
---|---|
id | Unique identifier for the generation strategy |
name | Name or label of the generation strategy |
steps | Configuration or steps defining the strategy |
curr_index | Current index or step in the strategy sequence |
experiment_id | Associated experiment identifier |
nodes | Details of nodes used in the strategy (e.g. parallel generation nodes) |
curr_node_name | Name of the current node executing |
Column | Description |
---|---|
abandoned_reason | Reason why the trial was abandoned (if any) |
failed_reason | Reason why the trial failed (if any) |
deployed_name | Name of the deployed model/configuration |
experiment_id | Identifier of the experiment this trial belongs to |
id | Unique trial identifier |
index | Index or sequence number of the trial |
is_batched | Flag indicating if the trial is batched |
lifecycle_stage | Current lifecycle stage (e.g. running, completed) |
num_arms_created | Number of arms (parameter configurations) created for this trial |
ttl_seconds | Time to live for the trial, in seconds |
run_metadata | JSON metadata about the run |
stop_metadata | JSON metadata about the stop event |
status | Current status (e.g. completed, running, failed) |
status_quo_name | Name of baseline status quo configuration |
time_completed | Timestamp when the trial completed |
time_created | Timestamp when the trial was created |
time_staged | Timestamp when the trial was staged/prepared |
time_run_started | Timestamp when the trial run started |
trial_type | Type of trial (e.g. default, special) |
generation_step_index | Index of the generation step used |
properties | Additional JSON properties for the trial |
Column | Description |
---|---|
id | Unique identifier of the analysis card |
name | Name of the analysis card |
title | Title text for the card |
subtitle | Subtitle text for the card |
level | Level or hierarchy depth of the card |
dataframe_json | JSON representing data in tabular format for analysis |
blob | Binary large object, e.g. charts or serialized data |
blob_annotation | Annotation or metadata for the blob |
time_created | Timestamp when the analysis card was created |
experiment_id | ID of the experiment associated |
attributes | JSON of additional attributes or metadata |
category | Category or grouping of the analysis card |
Column | Description |
---|---|
abandoned_reason | Reason why the arm (parameter configuration) was abandoned |
id | Unique identifier of the abandoned arm |
name | Name or label of the abandoned arm |
time_abandoned | Timestamp when it was abandoned |
trial_id | Identifier of the trial this arm belonged to |
Column | Description |
---|---|
best_arm_name | Name of the best arm (parameter set) from this generation run |
best_arm_parameters | JSON of parameters of the best arm |
best_arm_predictions | JSON of predictions for the best arm |
generator_run_type | Type of the generator run (e.g. optimization algorithm) |
id | Unique identifier of the generator run |
index | Index of this generator run in the trial |
model_predictions | JSON predictions produced by the model |
time_created | Timestamp when the generator run was created |
trial_id | Trial ID associated with this generator run |
weight | Weight or importance assigned to this generator run |
fit_time | Time spent fitting the model (seconds) |
gen_time | Time spent generating arms (seconds) |
model_key | Key identifying the model used |
model_kwargs | JSON of model-specific parameters |
bridge_kwargs | JSON of parameters related to bridging strategies |
gen_metadata | JSON metadata about the generation process |
Column | Description |
---|---|
experiment_id | ID of the experiment this arm belongs to |
id | Unique identifier of the arm |
name | Name of the arm |
parameters | JSON of parameter values for this arm |
trial_id | ID of the trial associated |
time_created | Timestamp when the arm was created |
time_removed | Timestamp when the arm was removed (if any) |
properties | Additional JSON properties for the arm |
Column | Description |
---|---|
id | Unique identifier of the generation step |
generation_strategy_id | ID of the generation strategy |
index | Index/order of the generation step in the strategy |
name | Name or label of the generation step |
type | Type of generation step (e.g. initial, iterative) |
model_key | Model key used for this step |
model_kwargs | JSON of model parameters |
bridge_kwargs | JSON of bridging parameters |
use_update | Flag if this step uses update mechanisms |
minimum_trials_observed | Minimum number of trials before this step can run |
is_dedicated | Flag if step is dedicated to specific tasks |
should_save | Flag indicating if results from this step should be saved |
is_active | Flag indicating if this step is currently active |
Column | Description |
---|---|
id | Unique identifier of the data row |
data | JSON or serialized data content |
trial_id | Associated trial identifier |
arm_name | Name of the arm corresponding to this data row |
time_created | Timestamp when the data row was created |
Example data
This command was run:./omniopt \
--live_share \
--send_anonymized_usage_stats \
--partition alpha \
--experiment_name ExampleDatabase \
--mem_gb=4 \
--time 60 \
--worker_timeout=5 \
--max_eval 4 \
--num_parallel_jobs 2 \
--gpus 0 \
--run_program Li8udGVzdHMvb3B0aW1pemF0aW9uX2V4YW1wbGUgIC0taW50X3BhcmFtPSclKGludF9wYXJhbSknIC0tZmxvYXRfcGFyYW09JyUoZmxvYXRfcGFyYW0pJyAtLWNob2ljZV9wYXJhbT0nJShjaG9pY2VfcGFyYW0pJyAtLWludF9wYXJhbV90d289JyUoaW50X3BhcmFtX3R3byknIC0tbnJfcmVzdWx0cz0x \
--parameter int_param range -100 10 int \
--parameter float_param range -100 10 float \
--parameter choice_param choice 1,2,4,8,16,hallo \
--parameter int_param_two range -100 10 int \
--num_random_steps 2 \
--model BOTORCH_MODULAR \
--auto_exclude_defective_hosts \
--generate_all_jobs_at_once \
--follow \
--experiment_constraints MjAqaW50X3BhcmFtID49IDEwMAo= \
--show_generate_time_table
And resulted in this database:
abandoned_arm_v2
No rows |
analysis_card
No rows |
arm_v2
generator_run_id | id | name | parameters | weight |
---|---|---|---|---|
2 | 1 | 0_0 | {"int_param": 8, "float_param": -72.08981832489371, "int_param_two": -34, "choice_param": "8"} | 1 |
4 | 2 | 1_0 | {"int_param": 5, "float_param": -12.177476165816188, "int_param_two": -24, "choice_param": "16"} | 1 |
6 | 3 | 2_0 | {"int_param": 8, "float_param": -88.20812338130575, "int_param_two": -98, "choice_param": "8"} | 1 |
8 | 4 | 3_0 | {"int_param": 10, "float_param": -100.0, "int_param_two": -100, "choice_param": "8"} | 1 |
data_v2
id | data_json | description | experiment_id | time_created | trial_index | generation_strategy_id | structure_metadata_json |
---|---|---|---|---|---|---|---|
1 | {"trial_index":{"0":0},"arm_name":{"0":"0_0"},"metric_name":{"0":"RESULT"},"mean":{"0":-74706.1208936512},"sem":{"0":null}} | 1 | 1750248452709 | 0 | {"df": {"__type": "DataFrame", "value": "{\"trial_index\":{\"0\":0},\"arm_name\":{\"0\":\"0_0\"},\"metric_name\":{\"0\":\"RESULT\"},\"mean\":{\"0\":-74706.1208936512},\"sem\":{\"0\":null}}"}, "description": null} | ||
2 | {"trial_index":{"0":1},"arm_name":{"0":"1_0"},"metric_name":{"0":"RESULT"},"mean":{"0":-12658.7768742718},"sem":{"0":null}} | 1 | 1750248475364 | 1 | {"df": {"__type": "DataFrame", "value": "{\"trial_index\":{\"0\":1},\"arm_name\":{\"0\":\"1_0\"},\"metric_name\":{\"0\":\"RESULT\"},\"mean\":{\"0\":-12658.7768742718},\"sem\":{\"0\":null}}"}, "description": null} | ||
3 | {"trial_index":{"0":2},"arm_name":{"0":"2_0"},"metric_name":{"0":"RESULT"},"mean":{"0":-192344.062642647},"sem":{"0":null}} | 1 | 1750248508427 | 2 | {"df": {"__type": "DataFrame", "value": "{\"trial_index\":{\"0\":2},\"arm_name\":{\"0\":\"2_0\"},\"metric_name\":{\"0\":\"RESULT\"},\"mean\":{\"0\":-192344.062642647},\"sem\":{\"0\":null}}"}, "description": null} | ||
4 | {"trial_index":{"0":3},"arm_name":{"0":"3_0"},"metric_name":{"0":"RESULT"},"mean":{"0":-220010.92},"sem":{"0":null}} | 1 | 1750248551707 | 3 | {"df": {"__type": "DataFrame", "value": "{\"trial_index\":{\"0\":3},\"arm_name\":{\"0\":\"3_0\"},\"metric_name\":{\"0\":\"RESULT\"},\"mean\":{\"0\":-220010.92},\"sem\":{\"0\":null}}"}, "description": null} |
experiment_v2
description | experiment_type | id | is_test | name | properties | status_quo_name | status_quo_parameters | time_created | default_trial_type | default_data_type | auxiliary_experiments_by_purpose |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | ExampleDatabase | {"immutable_search_space_and_opt_config": true} | 1750248429 | 1 | {} |
generation_strategy
id | name | steps | curr_index | experiment_id | nodes | curr_node_name |
---|---|---|---|---|---|---|
1 | SOBOL for 2 steps+BOTORCH_MODULAR for 2 steps | [] | -1 | 1 | [{"__type": "GenerationNode", "node_name": "SOBOL", "model_specs": [{"__type": "GeneratorSpec", "model_enum": {"__type": "Generators", "name": "SOBOL"}, "model_kwargs": {}, "model_gen_kwargs": {"model_gen_options": {"optimizer_kwargs": {"num_restarts": 20, "raw_samples": 1024}}, "fallback_to_sample_polytope": true, "normalize_y": true, "transform_inputs": true, "optimizer_kwargs": {"sequential": false}, "torch_device": "cpu", "random_seed": null, "check_duplicates": true, "deduplicate_strict": true, "enforce_num_arms": true, "warm_start_refitting": true, "jit_compile": true, "refit_on_cv": false, "fit_abandoned": false, "fit_out_of_design": false}}], "best_model_selector": null, "should_deduplicate": false, "transition_criteria": [{"threshold": 2, "only_in_statuses": null, "not_in_statuses": null, "transition_to": "BOTORCH_MODULAR", "block_transition_if_unmet": true, "block_gen_if_met": false, "use_all_trials_in_exp": false, "continue_trial_generation": false, "count_only_trials_with_data": true, "__type": "MaxTrials"}], "model_spec_to_gen_from": {"__type": "GeneratorSpec", "model_enum": {"__type": "Generators", "name": "SOBOL"}, "model_kwargs": {}, "model_gen_kwargs": {"model_gen_options": {"optimizer_kwargs": {"num_restarts": 20, "raw_samples": 1024}}, "fallback_to_sample_polytope": true, "normalize_y": true, "transform_inputs": true, "optimizer_kwargs": {"sequential": false}, "torch_device": "cpu", "random_seed": null, "check_duplicates": true, "deduplicate_strict": true, "enforce_num_arms": true, "warm_start_refitting": true, "jit_compile": true, "refit_on_cv": false, "fit_abandoned": false, "fit_out_of_design": false}}, "previous_node_name": null, "trial_type": null, "input_constructors": {}}, {"__type": "GenerationNode", "node_name": "BOTORCH_MODULAR", "model_specs": [{"__type": "GeneratorSpec", "model_enum": {"__type": "Generators", "name": "BOTORCH_MODULAR"}, "model_kwargs": {}, "model_gen_kwargs": {"model_gen_options": {"optimizer_kwargs": {"num_restarts": 20, "raw_samples": 1024}}, "fallback_to_sample_polytope": true, "normalize_y": true, "transform_inputs": true, "optimizer_kwargs": {"sequential": false}, "torch_device": "cpu", "random_seed": null, "check_duplicates": true, "deduplicate_strict": true, "enforce_num_arms": true, "warm_start_refitting": true, "jit_compile": true, "refit_on_cv": false, "fit_abandoned": false, "fit_out_of_design": false}}], "best_model_selector": null, "should_deduplicate": false, "transition_criteria": [{"threshold": 2, "only_in_statuses": null, "not_in_statuses": null, "transition_to": "BOTORCH_MODULAR", "block_transition_if_unmet": true, "block_gen_if_met": false, "use_all_trials_in_exp": false, "continue_trial_generation": false, "count_only_trials_with_data": true, "__type": "MaxTrials"}], "model_spec_to_gen_from": {"__type": "GeneratorSpec", "model_enum": {"__type": "Generators", "name": "BOTORCH_MODULAR"}, "model_kwargs": {}, "model_gen_kwargs": {"model_gen_options": {"optimizer_kwargs": {"num_restarts": 20, "raw_samples": 1024}}, "fallback_to_sample_polytope": true, "normalize_y": true, "transform_inputs": true, "optimizer_kwargs": {"sequential": false}, "torch_device": "cpu", "random_seed": null, "check_duplicates": true, "deduplicate_strict": true, "enforce_num_arms": true, "warm_start_refitting": true, "jit_compile": true, "refit_on_cv": false, "fit_abandoned": false, "fit_out_of_design": false}}, "previous_node_name": "BOTORCH_MODULAR", "trial_type": null, "input_constructors": {}}] | BOTORCH_MODULAR |
generator_run_v2
best_arm_name | best_arm_parameters | best_arm_predictions | generator_run_type | id | index | model_predictions | time_created | trial_id | weight | fit_time | gen_time | model_key | model_kwargs | bridge_kwargs | gen_metadata | model_state_after_gen | generation_strategy_id | generation_step_index | candidate_metadata_by_arm_signature | generation_node_name |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 1750248438 | 1 | SOBOL | ||||||||||||||||
2 | 1750248436 | 0.0042107600602321 | 0.13509030098794 | Sobol | {"deduplicate": true, "seed": null, "init_position": 0, "scramble": true, "generated_points": null, "fallback_to_sample_polytope": false} | {"transforms": [{"__type": "Type[Transform]", "transform_type": "RemoveFixed"}, {"__type": "Type[Transform]", "transform_type": "OrderedChoiceToIntegerRange"}, {"__type": "Type[Transform]", "transform_type": "OneHot"}, {"__type": "Type[Transform]", "transform_type": "IntToFloat"}, {"__type": "Type[Transform]", "transform_type": "Log"}, {"__type": "Type[Transform]", "transform_type": "Logit"}, {"__type": "Type[Transform]", "transform_type": "UnitX"}], "transform_configs": null, "optimization_config": null, "fit_tracking_metrics": true, "fit_on_init": true, "data_loader_config": null, "fit_out_of_design": null, "fit_abandoned": null} | {"model_fit_quality": null, "model_std_quality": null, "model_fit_generalization": null, "model_std_generalization": null} | {"seed": 47048, "init_position": 8} | 1 | SOBOL | ||||||||||
3 | 0 | 1750248460 | 2 | SOBOL | ||||||||||||||||
4 | 1750248459 | 0.0094198330771178 | 0.11721514101373 | Sobol | {"deduplicate": true, "seed": 47048, "init_position": 8, "scramble": true, "generated_points": null, "fallback_to_sample_polytope": false} | {"transforms": [{"__type": "Type[Transform]", "transform_type": "RemoveFixed"}, {"__type": "Type[Transform]", "transform_type": "OrderedChoiceToIntegerRange"}, {"__type": "Type[Transform]", "transform_type": "OneHot"}, {"__type": "Type[Transform]", "transform_type": "IntToFloat"}, {"__type": "Type[Transform]", "transform_type": "Log"}, {"__type": "Type[Transform]", "transform_type": "Logit"}, {"__type": "Type[Transform]", "transform_type": "UnitX"}], "transform_configs": null, "optimization_config": null, "fit_tracking_metrics": true, "fit_on_init": true, "data_loader_config": null, "fit_out_of_design": null, "fit_abandoned": null} | {"model_fit_quality": null, "model_std_quality": null, "model_fit_generalization": null, "model_std_generalization": null} | {"seed": 47048, "init_position": 25} | 1 | SOBOL | ||||||||||
5 | 0 | 1750248493 | 3 | BOTORCH_MODULAR | ||||||||||||||||
0_0 | {"int_param": 8, "float_param": -72.08981832489371, "int_param_two": -34, "choice_param": "8"} | [{"RESULT": -74494.25151311475}, {"RESULT": {"RESULT": 12842340.085245028}}] | 6 | [{"RESULT": [-62901.523349967945]}, {"RESULT": {"RESULT": [1191651556.7625513]}}] | 1750248491 | 0.42997612396721 | 8.9819894910324 | BoTorch | {"surrogate_spec": null, "surrogate_specs": null, "surrogate": null, "acquisition_class": null, "acquisition_options": null, "botorch_acqf_class": null, "refit_on_cv": false, "warm_start_refit": true} | {"transforms": [{"__type": "Type[Transform]", "transform_type": "RemoveFixed"}, {"__type": "Type[Transform]", "transform_type": "OrderedChoiceToIntegerRange"}, {"__type": "Type[Transform]", "transform_type": "OneHot"}, {"__type": "Type[Transform]", "transform_type": "LogIntToFloat"}, {"__type": "Type[Transform]", "transform_type": "Log"}, {"__type": "Type[Transform]", "transform_type": "Logit"}, {"__type": "Type[Transform]", "transform_type": "IVW"}, {"__type": "Type[Transform]", "transform_type": "Derelativize"}, {"__type": "Type[Transform]", "transform_type": "BilogY"}, {"__type": "Type[Transform]", "transform_type": "StandardizeY"}], "transform_configs": null, "optimization_config": null, "expand_model_space": true, "fit_tracking_metrics": true, "fit_on_init": true, "default_model_gen_options": null, "torch_device": null, "data_loader_config": null, "fit_out_of_design": null, "fit_abandoned": null, "fit_only_completed_map_metrics": null} | {"expected_acquisition_value": -1.6128382490077362, "metric_to_model_config_name": {"RESULT": "default"}, "model_fit_quality": -1.9825202713510057, "model_std_quality": 2.6328766687688195e-06, "model_fit_generalization": -0.046714185559622035, "model_std_generalization": 1.381924629723967} | {} | 1 | BOTORCH_MODULAR | ||||||
7 | 0 | 1750248536 | 4 | BOTORCH_MODULAR | ||||||||||||||||
2_0 | {"int_param": 8, "float_param": -88.20812338130575, "int_param_two": -98, "choice_param": "8"} | [{"RESULT": -191602.3426462933}, {"RESULT": {"RESULT": 55566319.81362155}}] | 8 | [{"RESULT": [-191250.6763321454]}, {"RESULT": {"RESULT": [306116211.6571691]}}] | 1750248534 | 0.57311584003037 | 18.510107692971 | BoTorch | {"surrogate_spec": null, "surrogate_specs": null, "surrogate": null, "acquisition_class": null, "acquisition_options": null, "botorch_acqf_class": null, "refit_on_cv": false, "warm_start_refit": true} | {"transforms": [{"__type": "Type[Transform]", "transform_type": "RemoveFixed"}, {"__type": "Type[Transform]", "transform_type": "OrderedChoiceToIntegerRange"}, {"__type": "Type[Transform]", "transform_type": "OneHot"}, {"__type": "Type[Transform]", "transform_type": "LogIntToFloat"}, {"__type": "Type[Transform]", "transform_type": "Log"}, {"__type": "Type[Transform]", "transform_type": "Logit"}, {"__type": "Type[Transform]", "transform_type": "IVW"}, {"__type": "Type[Transform]", "transform_type": "Derelativize"}, {"__type": "Type[Transform]", "transform_type": "BilogY"}, {"__type": "Type[Transform]", "transform_type": "StandardizeY"}], "transform_configs": null, "optimization_config": null, "expand_model_space": true, "fit_tracking_metrics": true, "fit_on_init": true, "default_model_gen_options": null, "torch_device": null, "data_loader_config": null, "fit_out_of_design": null, "fit_abandoned": null, "fit_only_completed_map_metrics": null} | {"expected_acquisition_value": -2.697145778036146, "metric_to_model_config_name": {"RESULT": "default"}, "model_fit_quality": -1.5654917725281385, "model_std_quality": 1.0960946446370698e-06, "model_fit_generalization": -0.06274517616608666, "model_std_generalization": 1.1614062085206702} | {} | 1 | BOTORCH_MODULAR |
metric_v2
experiment_id | generator_run_id | id | lower_is_better | intent | metric_type | name | properties | minimize | op | bound | relative | trial_type | canonical_name | scalarized_objective_id | scalarized_objective_weight | scalarized_outcome_constraint_id | scalarized_outcome_constraint_weight |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | objective | 0 | RESULT | {"name": "RESULT", "lower_is_better": true, "properties": {}} | 1 |
parameter_constraint_v2
bound | constraint_dict | experiment_id | id | generator_run_id | type |
---|---|---|---|---|---|
-100 | {"int_param": -20.0} | 1 | 1 | 0 |
parameter_v2
domain_type | experiment_id | id | generator_run_id | name | parameter_type | is_fidelity | target_value | digits | log_scale | lower | upper | choice_values | is_ordered | is_task | dependents | fixed_value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | int_param | 1 | 0 | 0 | -100 | 10 | ||||||||
1 | 1 | 2 | float_param | 2 | 0 | 0 | -100 | 10 | ||||||||
2 | 1 | 3 | choice_param | 3 | 0 | ["1", "2", "4", "8", "16", "hallo"] | 0 | 0 | ||||||||
1 | 1 | 4 | int_param_two | 1 | 0 | 0 | -100 | 10 |
runner
No rows |
trial_v2
abandoned_reason | failed_reason | deployed_name | experiment_id | id | index | is_batched | lifecycle_stage | num_arms_created | ttl_seconds | run_metadata | stop_metadata | status | status_quo_name | time_completed | time_created | time_staged | time_run_started | trial_type | generation_step_index | properties |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 1 | {} | {} | 3 | 1750248452 | 1750248438 | 1750248438 | {} | |||||||||
1 | 2 | 1 | 0 | 1 | {} | {} | 3 | 1750248475 | 1750248460 | 1750248460 | {} | |||||||||
1 | 3 | 2 | 0 | 1 | {} | {} | 3 | 1750248508 | 1750248493 | 1750248493 | {} | |||||||||
1 | 4 | 3 | 0 | 1 | {} | {} | 3 | 1750248552 | 1750248536 | 1750248536 | {} |