Copy raw data to clipboard
Download »results.csv« as file
trial_index,submit_time,queue_time,worker_generator_uuid,start_time,end_time,run_time,program_string,exit_code,signal,hostname,OO_Info_int_param,OO_Info_int_param_two,OO_Info_float_param,OO_Info_choice_param,arm_name,trial_status,generation_node,RESULT,int_param,float_param,int_param_two,choice_param
0,,,,,,,,,,,,,,,0_0,COMPLETED,SOBOL,-2339.48668460660019263741560280323,4,-1.4200209081172943115234375,10,16
1,1757918696,2,b0693e39-936c-4f3b-bcd0-83f19439217f,1757918698,1757918704,6,./.tests/optimization_example --random_sem --int_param='3' --float_param='-99.4450943908110502889' --choice_param='8' --int_param_two='3' --nr_results=1,0,,runnervmyfcvg,3,3,-99.445094390811036078048346098512,8,1_0,COMPLETED,BOTORCH_MODULAR,-109555.097423054001410491764545440674,3,-99.445094390811050288903061300516,3,8
Copy raw data to clipboard
Download »results.csv« as file
Copy raw data to clipboard
Download »outfile« as file
========================================================================
Current git-hash: a17cdc74a5f4b5d17ea9ec860ad235c247507acf (last fully tested stable version 1 commit ago [2b02fa5524c54c7cc6326e70ebc2509aff10bf69, 8596])
Using coverage run -p because $RUN_WITH_COVERAGE is set
[WARNING 09-15 06:44:49] ax.service.utils.with_db_settings_base: Ax currently requires a sqlalchemy version below 2.0. This will be addressed in a future release. Disabling SQL storage in Ax for now, if you would like to use SQL storage please install Ax with mysql extras via `pip install ax-platform[mysql]`.
Using old run's --time: 60
Using old run's --gpus: 0
Using old run's --max_eval: 1
Run-UUID: 555f7d6d-ff70-4199-97d6-564c656bce5a
.d88888b. d8b .d88888b. 888 .d8888b.
d88P" "Y88b Y8Pd88P" "Y88b 888 d88P Y88b
888 888 888 888 888 888
888 88888888b.d88b. 88888b. 888888 88888888b. 888888 .d88P
888 888888 "888 "88b888 "88b888888 888888 "88b888 .od888P"
888 888888 888 888888 888888888 888888 888888 d88P"
Y88b. .d88P888 888 888888 888888Y88b. .d88P888 d88PY88b. 888"
"Y88888P" 888 888 888888 888888 "Y88888P" 88888P" "Y888888888888
888
888
888
omniopt --continue runs/test_continued_constraint/0 --live_share
Run-folder : /home/runner/work/OmniOpt/OmniOpt/runs/test_continued_constraint/ 1
Continuation from runs/test_continued_constraint/0
You have less --max_eval 1 than --num_random_steps 20. Switched both.
See https://imageseg.scads.de/omniax/share?user_id=runner&experiment_name=test_continued_constraint&run_nr=101 for live-results.
You have 4 CPUs available for the main process. No CUDA devices found.
Generation strategy: BOTORCH_MODULAR for 2 steps.
Run-Program: ./.tests/optimization_example --random_sem --int_param='%(int_param)' --float_param='%(float_param)' --choice_param='%(choice_param)' --int_param_two='%(int_param_two)' --nr_results=1
Experiment parameters
โโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโณโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโณโโโโโโโโโโโโโ
โ Name โ Type โ Lower bound โ Upper bound โ Values โ Type โ Log Scale? โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ int_param โ rangeparameter โ -100 โ 10 โ โ int โ No โ
โ float_param โ rangeparameter โ -100 โ 10 โ โ float โ No โ
โ choice_param โ choiceparameter โ โ โ 1, 2, 4, 8, 16, hallo โ โ โ
โ int_param_two โ rangeparameter โ -100 โ 10 โ โ int โ No โ
โโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโดโโโโโโโโโโโโโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Constraints โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ int_param + 2*int_param_two >= 0 โ
โ 2*int_param_two >= 0 โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Result-Names
โโโโโโโโโโโโโโโณโโโโโโโโโโโโโโ
โ Result-Name โ Min or max? โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ RESULT โ min โ
โโโโโโโโโโโโโโโดโโโโโโโโโโโโโโ
Failed Jobs parameters
โโโโโโโโโโณโโโโโโโโโณโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ param1 โ param2 โ param3 โ error_description โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ value1 โ value2 โ value3 โ Some error occurred during execution (this is not a real error!). โ
โโโโโโโโโโดโโโโโโโโโดโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Best RESULT, min (total: 1 + inserted jobs: 1)
โโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโ
โ OO_Info_int_param โ OO_Info_int_param_two โ OO_Info_float_param โ OO_Info_choice_param โ int_param โ float_param โ int_param_two โ choice_param โ RESULT โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ 3.0 โ 3.0 โ -99.44509439081104 โ 8.0 โ 3 โ -99.44509439081105 โ 3 โ 8 โ -109555.097423054 โ
โโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโ
Not printing sixel graphics in CI
Runtime Infos
โโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโณโโโโโโโโโโโโณโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโ
โ Number of evaluations โ Min time โ Max time โ Average time โ Median time โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ 1 โ 6.00 sec โ 6.00 sec โ 6.00 sec โ 6.00 sec โ
โโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโ
Copy raw data to clipboard
Download »outfile« as file
Copy raw data to clipboard
Download »progressbar« as file
2025-09-15 06:44:51 (b0693e39-936c-4f3b-bcd0-83f19439217f): BOTORCH_MODULAR, Started OmniOpt2 run...
2025-09-15 06:44:56 (b0693e39-936c-4f3b-bcd0-83f19439217f): BOTORCH_MODULAR, getting new HP set (no sbatch)
2025-09-15 06:44:56 (b0693e39-936c-4f3b-bcd0-83f19439217f): BOTORCH_MODULAR, requested 1 jobs, got 1, 4.96 s/job
2025-09-15 06:44:56 (b0693e39-936c-4f3b-bcd0-83f19439217f): BOTORCH_MODULAR, eval #1/1 start
2025-09-15 06:44:56 (b0693e39-936c-4f3b-bcd0-83f19439217f): BOTORCH_MODULAR, starting new job
2025-09-15 06:44:56 (b0693e39-936c-4f3b-bcd0-83f19439217f): BOTORCH_MODULAR, started new job
2025-09-15 06:45:05 (b0693e39-936c-4f3b-bcd0-83f19439217f): BOTORCH_MODULAR, new result: (-109555.097423054, 0.734088628626527)
2025-09-15 06:45:06 (b0693e39-936c-4f3b-bcd0-83f19439217f): BOTORCH_MODULAR, best RESULT: -109555.097423054, finishing jobs, finished 1 job
Copy raw data to clipboard
Download »progressbar« as file
Copy raw data to clipboard
Download »cpu_ram_usage.csv« as file
timestamp,ram_usage_mb,cpu_usage_percent
1757918691,743.0078125,23.8
Copy raw data to clipboard
Download »cpu_ram_usage.csv« as file
Correlation Heatmap Explanation
This is a heatmap that visualizes the correlation between numerical columns in a dataset. The values represented in the heatmap show the strength and direction of relationships between different variables.
How It Works
The heatmap uses a matrix to represent correlations between each pair of numerical columns. The calculation behind this is based on the concept of "correlation," which measures how strongly two variables are related. A correlation can be positive, negative, or zero:
Positive correlation : Both variables increase or decrease together (e.g., if the temperature rises, ice cream sales increase).
Negative correlation : As one variable increases, the other decreases (e.g., as the price of a product rises, the demand for it decreases).
Zero correlation : There is no relationship between the two variables (e.g., height and shoe size might show zero correlation in some contexts).
Color Scale: Yellow to Purple (Viridis)
The heatmap uses a color scale called "Viridis," which ranges from yellow to purple. Here's what the colors represent:
Yellow (brightest) : A strong positive correlation (close to +1). This indicates that as one variable increases, the other increases in a very predictable manner.
Green : A moderate positive correlation. Variables are still positively related, but the relationship is not as strong.
Blue : A weak or near-zero correlation. There is a small or no discernible relationship between the variables.
Purple (darkest) : A strong negative correlation (close to -1). This indicates that as one variable increases, the other decreases in a very predictable manner.
What the Heatmap Shows
In the heatmap, each cell represents the correlation between two numerical columns. The color of the cell is determined by the correlation coefficient: from yellow for strong positive correlations, through green and blue for weaker correlations, to purple for strong negative correlations.