Overview Results Main-Log Progressbar log Args Overview Worker-Usage Debug-Logs CPU/RAM-Usage (main) Param-Distrib by Status Timeline Insights Parallel Plot Scatter-2D Scatter-3D Results by Generation Method Job Status Distribution Boxplots Violin Histogram Heatmap Evolution Exit-Codes Single Logs Export
GUI page with all the settings of this job Experiment overview Setting Value Model for non-random steps BOTORCH_MODULAR Max. nr. evaluations 500 Number random steps 20 Nr. of workers (parameter) 20 Main process memory (GB) 8 Worker memory (GB) 10
Job Summary per Generation Node
Generation Node Total COMPLETED FAILED RUNNING
SOBOL 17 4 4 9
Experiment parameters Name Type Lower bound Upper bound Values Type Log Scale? epochs range 10 200 int No lr range 1e-05 0.1 float No batch_size range 8 2048 int No hidden_size range 8 2048 int No dropout range 0 0.5 float No activation fixed leaky_relu num_dense_layers range 1 4 int No init fixed normal weight_decay range 0 1 float No
Number of evaluations
Failed
Succeeded
Running
Total
4
4
9
17
Result names and types
Last progressbar status
2025-07-31 14:45:09: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, cancelled by 2054851/running/unknown 4/4/1∑9 (25%/20), started new job
Git-Version
Commit: f9547a580b93e0983ebff52a5b7750569294ad57 (7752-1-gf9547a580)
Copy raw data to clipboard
Download »results.csv« as file
trial_index,submit_time,queue_time,start_time,end_time,run_time,program_string,exit_code,signal,hostname,OO_Info_SLURM_JOB_ID,arm_name,trial_status,generation_node,VAL_ACC,epochs,lr,batch_size,hidden_size,dropout,num_dense_layers,weight_decay,activation,init
0,,,,,,,,,,,0_0,RUNNING,SOBOL,,195,0.080375011477470406640044586766,497,1162,0.196376144886016845703125,4,0.643941462039947509765625,leaky_relu,normal
1,1753965239,12,1753965251,1753965607,356,python3 .tests/mnist/train --epochs 65 --learning_rate 0.04973049013627693637 --batch_size 1049 --hidden_size 708 --dropout 0.48792621353641152382 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.36102242954075336456,0,,c142,530735,1_0,COMPLETED,SOBOL,8.51999999999999957367435854394,65,0.049730490136276936374848389733,1049,708,0.487926213536411523818969726562,1,0.36102242954075336456298828125,leaky_relu,normal
2,1753965267,13,1753965280,1753965520,240,python3 .tests/mnist/train --epochs 43 --learning_rate 0.07452280639337376111 --batch_size 651 --hidden_size 1785 --dropout 0.28283687774091959 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.77368538081645965576,0,,c142,530736,2_0,COMPLETED,SOBOL,1.600000000000000088817841970013,43,0.074522806393373761113529951672,651,1785,0.282836877740919589996337890625,2,0.77368538081645965576171875,leaky_relu,normal
3,,,,,,,,,,,3_0,RUNNING,SOBOL,,127,0.004808055776543915423026920308,1917,214,0.026534139178693294525146484375,3,0.24466808140277862548828125,leaky_relu,normal
4,,,,,,,,,,,4_0,RUNNING,SOBOL,,137,0.060602928094053647167793741346,1501,432,0.10777241922914981842041015625,4,0.879836857318878173828125,leaky_relu,normal
5,1753965360,11,1753965371,1753965580,209,python3 .tests/mnist/train --epochs 30 --learning_rate 0.01629175907264463624 --batch_size 43 --hidden_size 1938 --dropout 0.33294622227549552917 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.09982791543006896973,0,,c141,530739,5_0,COMPLETED,SOBOL,9.39000000000000056843418860808,30,0.016291759072644636241466997717,43,1938,0.3329462222754955291748046875,1,0.0998279154300689697265625,leaky_relu,normal
6,1753965391,57,1753965448,1753965473,25,python3 .tests/mnist/train --epochs 104 --learning_rate 0.09068539249560796101 --batch_size 1718 --hidden_size 988 --dropout 0.3816634821705520153 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.51546639390289783478,1,,c137,530740,6_0,FAILED,SOBOL,,104,0.090685392495607961005354979989,1718,988,0.381663482170552015304565429688,2,0.51546639390289783477783203125,leaky_relu,normal
7,1753965424,24,1753965448,1753965472,24,python3 .tests/mnist/train --epochs 164 --learning_rate 0.03542465820719488401 --batch_size 848 --hidden_size 1507 --dropout 0.18398649757727980614 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.48155525512993335724,1,,c137,530741,7_0,FAILED,SOBOL,,164,0.035424658207194884007584789742,848,1507,0.183986497577279806137084960938,3,0.48155525512993335723876953125,leaky_relu,normal
8,1753965457,47,1753965504,1753965523,19,python3 .tests/mnist/train --epochs 165 --learning_rate 0.0651036307624075633 --batch_size 1641 --hidden_size 1876 --dropout 0.46071868576109409332 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.96236990019679069519,1,,c137,530742,8_0,FAILED,SOBOL,,165,0.065103630762407563303817426004,1641,1876,0.46071868576109409332275390625,3,0.9623699001967906951904296875,leaky_relu,normal
9,1753965493,12,1753965505,1753965524,19,python3 .tests/mnist/train --epochs 82 --learning_rate 0.00787871418240480154 --batch_size 925 --hidden_size 370 --dropout 0.23188253864645957947 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.05834103748202323914,1,,c137,530743,9_0,FAILED,SOBOL,,82,0.007878714182404801535941629709,925,370,0.2318825386464595794677734375,2,0.0583410374820232391357421875,leaky_relu,normal
10,1753965562,18,1753965580,1753965660,80,python3 .tests/mnist/train --epochs 13 --learning_rate 0.08346851554899477332 --batch_size 1291 --hidden_size 1318 --dropout 0.0618269103579223156 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.58039437048137187958,0,,c142,530745,10_0,COMPLETED,SOBOL,10.27999999999999936051153781591,13,0.083468515548994773323165929924,1291,1318,0.061826910357922315597534179688,1,0.58039437048137187957763671875,leaky_relu,normal
11,,,,,,,,,,,11_0,RUNNING,SOBOL,,145,0.040291533701987944371403216337,253,799,0.255842981394380331039428710938,4,0.42245615832507610321044921875,leaky_relu,normal
12,,,,,,,,,,,12_0,RUNNING,SOBOL,,107,0.093865676535144451642089791221,605,642,0.359907456208020448684692382812,3,0.70203366689383983612060546875,leaky_relu,normal
13,,,,,,,,,,,13_0,RUNNING,SOBOL,,48,0.026091078020390123803906590183,1963,1096,0.072508497629314661026000976562,2,0.29313409142196178436279296875,leaky_relu,normal
14,,,,,,,,,,,14_0,RUNNING,SOBOL,,74,0.051298390346113602322741797934,320,21,0.148447909392416477203369140625,1,0.8181321881711483001708984375,leaky_relu,normal
15,,,,,,,,,,,15_0,RUNNING,SOBOL,,182,0.019446064045690002880517610606,1227,1592,0.408899380825459957122802734375,4,0.1631424389779567718505859375,leaky_relu,normal
16,,,,,,,,,,,16_0,RUNNING,SOBOL,,185,0.055223758884808057945114967424,970,926,0.004842550028115510940551757812,2,0.314713393338024616241455078125,leaky_relu,normal
Copy raw data to clipboard
Download »results.csv« as file
Copy raw data to clipboard
Download »outfile« as file
To cancel, press CTRL c , then run ' scancel 530730 '
โ Importing logging...
โ Importing warnings...
โ Importing argparse...
โ Importing datetime...
โ Importing dataclass...
โ Importing hashlib...
โ Importing socket...
โ Importing stat...
โ Importing pwd...
โ Importing signal...
โ Importing base64...
โ Importing json...
โ Importing yaml...
โ Importing toml...
โ Importing csv...
โ Importing ast...
โ Importing rich.table...
โ Importing rich print...
โ Importing rich.pretty...
โ Importing rich.prompt...
โ Importing types.FunctionType...
โ Importing typing...
โ Importing ThreadPoolExecutor...
โ Importing submitit.LocalExecutor...
โ Importing submitit.Job...
โ Importing importlib.util...
โ Importing inspect...
โ Importing platform...
โ Importing inspect frame info...
โ Importing pathlib.Path...
โ Importing uuid...
โ Importing traceback...
โ Importing cowsay...
โ Importing psutil...
โ Importing shutil...
โ Importing itertools.combinations...
โ Importing os.listdir...
โ Importing os.path...
โ Importing PIL.Image...
โ Importing sixel...
โ Importing subprocess...
โ Importing tqdm...
โ ผ Importing beartype...
โ Importing statistics...
โ Trying to import pyfiglet...
โ น Importing helpers...
โ Parsing arguments...
โ ฆ Importing torch...
โ Importing numpy...
โ Importing collections...
โ Importing ax...
โ Importing ax.core.generator_run...
โ Importing Cont_X_trans and Y_trans from ax.modelbridge.registry...
โ Importing ax.core.arm...
โ Importing ax.core.objective...
โ Importing ax.core.Metric...
โ Importing ax.exceptions.core...
โ Importing ax.exceptions.generation_strategy...
โ Importing CORE_DECODER_REGISTRY...
โ Trying ax.generation_strategy.generation_node...
โ Importing GenerationStep, GenerationStrategy from generation_strategy...
โ Importing GenerationNode from generation_node...
โ Importing ExternalGenerationNode...
โ Importing MaxTrials...
โ Importing GeneratorSpec...
โ Importing Models from ax.modelbridge.registry...
โ Importing get_pending_observation_features...
โ Importing load_experiment...
โ Importing save_experiment...
โ Importing save_experiment_to_db...
โ Importing TrialStatus...
โ Importing Data...
โ Importing Experiment...
โ Importing parameter types...
โ Importing TParameterization...
โ Importing pandas...
โ Importing AxClient and ObjectiveProperties...
โ Importing RandomForestRegressor...
โ Importing botorch...
โ Importing submitit...
โ Importing ax logger...
โ Importing SQL-Storage-Stuff...
Run-UUID: 591f811e-2dc9-4652-ac5a-ca731d85a1af
_________________________________________________
/ \
| OmniOpt2 - Finding the needle in the hyper haysta |
| ck! |
\ /
=================================================
\
\
\
\
____________
|__________|
/ /\
/ / \
/___________/___/|
| | |
| ==\ /== | |
| O O | \ \ |
| < | \ \|
/| | \ \
/ | \_____/ | / /
/ /| | / /|
/||\| | /||\/
-------------|
| | | |
<__/ \__>
โ Writing worker creation log...
omniopt --partition=alpha --experiment_name=mnist_gpu_noall --mem_gb=10 --time=2880 --worker_timeout=120 --max_eval=500 --num_parallel_jobs=20 --gpus=1 --num_random_steps=20 --follow --live_share --send_anonymized_usage_stats --result_names VAL_ACC=max --run_program=cHl0aG9uMyAudGVzdHMvbW5pc3QvdHJhaW4gLS1lcG9jaHMgJWVwb2NocyAtLWxlYXJuaW5nX3JhdGUgJWxyIC0tYmF0Y2hfc2l6ZSAlYmF0Y2hfc2l6ZSAtLWhpZGRlbl9zaXplICVoaWRkZW5fc2l6ZSAtLWRyb3BvdXQgJWRyb3BvdXQgLS1hY3RpdmF0aW9uICVhY3RpdmF0aW9uIC0tbnVtX2RlbnNlX2xheWVycyAlbnVtX2RlbnNlX2xheWVycyAtLWluaXQgJWluaXQgLS13ZWlnaHRfZGVjYXkgJXdlaWdodF9kZWNheQ== --cpus_per_task=1 --nodes_per_job=1 --revert_to_random_when_seemingly_exhausted --model=BOTORCH_MODULAR --n_estimators_randomforest=100 --run_mode=local --occ_type=euclid --main_process_gb=8 --max_nr_of_zero_results=50 --slurm_signal_delay_s=0 --max_failed_jobs=0 --max_attempts_for_generation=20 --num_restarts=20 --raw_samples=1024 --max_abandoned_retrial=20 --max_num_of_parallel_sruns=16 --parameter epochs range 10 200 int false --parameter lr range 0.00001 0.1 float false --parameter batch_size range 8 2048 int false --parameter hidden_size range 8 2048 int false --parameter dropout range 0 0.5 float false --parameter activation fixed leaky_relu --parameter num_dense_layers range 1 4 int false --parameter init fixed normal --parameter weight_decay range 0 1 float false --ui_url aHR0cHM6Ly9pbWFnZXNlZy5zY2Fkcy5kZS9vbW5pYXgvZ3VpP3BhcnRpdGlvbj1hbHBoYSZleHBlcmltZW50X25hbWU9bW5pc3RfZ3B1X25vYWxsJnJlc2VydmF0aW9uPSZhY2NvdW50PSZtZW1fZ2I9MTAmdGltZT0xNDQwJndvcmtlcl90aW1lb3V0PTEyMCZtYXhfZXZhbD01MDAmbnVtX3BhcmFsbGVsX2pvYnM9MjAmZ3B1cz0xJm51bV9yYW5kb21fc3RlcHM9MjAmZm9sbG93PTEmbGl2ZV9zaGFyZT0xJnNlbmRfYW5vbnltaXplZF91c2FnZV9zdGF0cz0xJmNvbnN0cmFpbnRzPSZyZXN1bHRfbmFtZXM9VkFMX0FDQyUzRG1heCZydW5fcHJvZ3JhbT1weXRob24zJTIwLnRlc3RzJTJGbW5pc3QlMkZ0cmFpbiUyMC0tZXBvY2hzJTIwJTI1ZXBvY2hzJTIwLS1sZWFybmluZ19yYXRlJTIwJTI1bHIlMjAtLWJhdGNoX3NpemUlMjAlMjViYXRjaF9zaXplJTIwLS1oaWRkZW5fc2l6ZSUyMCUyNWhpZGRlbl9zaXplJTIwLS1kcm9wb3V0JTIwJTI1ZHJvcG91dCUyMC0tYWN0aXZhdGlvbiUyMCUyNWFjdGl2YXRpb24lMjAtLW51bV9kZW5zZV9sYXllcnMlMjAlMjVudW1fZGVuc2VfbGF5ZXJzJTIwLS1pbml0JTIwJTI1aW5pdCUyMC0td2VpZ2h0X2RlY2F5JTIwJTI1d2VpZ2h0X2RlY2F5JmNwdXNfcGVyX3Rhc2s9MSZub2Rlc19wZXJfam9iPTEmc2VlZD0mZHJ5cnVuPTAmZGVidWc9MCZyZXZlcnRfdG9fcmFuZG9tX3doZW5fc2VlbWluZ2x5X2V4aGF1c3RlZD0xJmdyaWRzZWFyY2g9MCZtb2RlbD1CT1RPUkNIX01PRFVMQVImZXh0ZXJuYWxfZ2VuZXJhdG9yPSZuX2VzdGltYXRvcnNfcmFuZG9tZm9yZXN0PTEwMCZpbnN0YWxsYXRpb25fbWV0aG9kPWNsb25lJnJ1bl9tb2RlPWxvY2FsJmRpc2FibGVfdHFkbT0wJnZlcmJvc2VfdHFkbT0wJmZvcmNlX2xvY2FsX2V4ZWN1dGlvbj0wJmF1dG9fZXhjbHVkZV9kZWZlY3RpdmVfaG9zdHM9MCZzaG93X3NpeGVsX2dlbmVyYWw9MCZzaG93X3NpeGVsX3RyaWFsX2luZGV4X3Jlc3VsdD0wJnNob3dfc2l4ZWxfc2NhdHRlcj0wJnNob3dfd29ya2VyX3BlcmNlbnRhZ2VfdGFibGVfYXRfZW5kPTAmb2NjPTAmb2NjX3R5cGU9ZXVjbGlkJm5vX3NsZWVwPTAmc2x1cm1fdXNlX3NydW49MCZ2ZXJib3NlX2JyZWFrX3J1bl9zZWFyY2hfdGFibGU9MCZhYmJyZXZpYXRlX2pvYl9uYW1lcz0wJm1haW5fcHJvY2Vzc19nYj04Jm1heF9ucl9vZl96ZXJvX3Jlc3VsdHM9NTAmc2x1cm1fc2lnbmFsX2RlbGF5X3M9MCZtYXhfZmFpbGVkX2pvYnM9MCZleGNsdWRlPSZ1c2VybmFtZT0mZ2VuZXJhdGlvbl9zdHJhdGVneT0mcm9vdF92ZW52X2Rpcj0md29ya2Rpcj0mZG9udF9qaXRfY29tcGlsZT0wJmZpdF9vdXRfb2ZfZGVzaWduPTAmcmVmaXRfb25fY3Y9MCZzaG93X2dlbmVyYXRlX3RpbWVfdGFibGU9MCZkb250X3dhcm1fc3RhcnRfcmVmaXR0aW5nPTAmbWF4X2F0dGVtcHRzX2Zvcl9nZW5lcmF0aW9uPTIwJm51bV9yZXN0YXJ0cz0yMCZyYXdfc2FtcGxlcz0xMDI0Jm1heF9hYmFuZG9uZWRfcmV0cmlhbD0yMCZtYXhfbnVtX29mX3BhcmFsbGVsX3NydW5zPTE2JmZvcmNlX2Nob2ljZV9mb3JfcmFuZ2VzPTAmbm9fdHJhbnNmb3JtX2lucHV0cz0wJmZpdF9hYmFuZG9uZWQ9MCZub19ub3JtYWxpemVfeT0wJnZlcmJvc2U9MCZnZW5lcmF0ZV9hbGxfam9ic19hdF9vbmNlPTAmZmxhbWVfZ3JhcGg9MCZjaGVja291dF90b19sYXRlc3RfdGVzdGVkX3ZlcnNpb249MCZwYXJhbWV0ZXJfMF9uYW1lPWVwb2NocyZwYXJhbWV0ZXJfMF90eXBlPXJhbmdlJnBhcmFtZXRlcl8wX21pbj0xMCZwYXJhbWV0ZXJfMF9tYXg9MjAwJnBhcmFtZXRlcl8wX251bWJlcl90eXBlPWludCZwYXJhbWV0ZXJfMF9sb2dfc2NhbGU9ZmFsc2UmcGFyYW1ldGVyXzFfbmFtZT1sciZwYXJhbWV0ZXJfMV90eXBlPXJhbmdlJnBhcmFtZXRlcl8xX21pbj0wLjAwMDAxJnBhcmFtZXRlcl8xX21heD0wLjEmcGFyYW1ldGVyXzFfbnVtYmVyX3R5cGU9ZmxvYXQmcGFyYW1ldGVyXzFfbG9nX3NjYWxlPWZhbHNlJnBhcmFtZXRlcl8yX25hbWU9YmF0Y2hfc2l6ZSZwYXJhbWV0ZXJfMl90eXBlPXJhbmdlJnBhcmFtZXRlcl8yX21pbj04JnBhcmFtZXRlcl8yX21heD0yMDQ4JnBhcmFtZXRlcl8yX251bWJlcl90eXBlPWludCZwYXJhbWV0ZXJfMl9sb2dfc2NhbGU9ZmFsc2UmcGFyYW1ldGVyXzNfbmFtZT1oaWRkZW5fc2l6ZSZwYXJhbWV0ZXJfM190eXBlPXJhbmdlJnBhcmFtZXRlcl8zX21pbj04JnBhcmFtZXRlcl8zX21heD0yMDQ4JnBhcmFtZXRlcl8zX251bWJlcl90eXBlPWludCZwYXJhbWV0ZXJfM19sb2dfc2NhbGU9ZmFsc2UmcGFyYW1ldGVyXzRfbmFtZT1kcm9wb3V0JnBhcmFtZXRlcl80X3R5cGU9cmFuZ2UmcGFyYW1ldGVyXzRfbWluPTAmcGFyYW1ldGVyXzRfbWF4PTAuNSZwYXJhbWV0ZXJfNF9udW1iZXJfdHlwZT1mbG9hdCZwYXJhbWV0ZXJfNF9sb2dfc2NhbGU9ZmFsc2UmcGFyYW1ldGVyXzVfbmFtZT1hY3RpdmF0aW9uJnBhcmFtZXRlcl81X3R5cGU9Zml4ZWQmcGFyYW1ldGVyXzVfdmFsdWU9bGVha3lfcmVsdSZwYXJhbWV0ZXJfNl9uYW1lPW51bV9kZW5zZV9sYXllcnMmcGFyYW1ldGVyXzZfdHlwZT1yYW5nZSZwYXJhbWV0ZXJfNl9taW49MSZwYXJhbWV0ZXJfNl9tYXg9NCZwYXJhbWV0ZXJfNl9udW1iZXJfdHlwZT1pbnQmcGFyYW1ldGVyXzZfbG9nX3NjYWxlPWZhbHNlJnBhcmFtZXRlcl83X25hbWU9aW5pdCZwYXJhbWV0ZXJfN190eXBlPWZpeGVkJnBhcmFtZXRlcl83X3ZhbHVlPW5vcm1hbCZwYXJhbWV0ZXJfOF9uYW1lPXdlaWdodF9kZWNheSZwYXJhbWV0ZXJfOF90eXBlPXJhbmdlJnBhcmFtZXRlcl84X21pbj0wJnBhcmFtZXRlcl84X21heD0xJnBhcmFtZXRlcl84X251bWJlcl90eXBlPWZsb2F0JnBhcmFtZXRlcl84X2xvZ19zY2FsZT1mYWxzZSZwYXJ0aXRpb249YWxwaGEmbnVtX3BhcmFtZXRlcnM9OQ==
โ Disabling logging...
โ Setting run folder...
โ Creating folder /data/horse/ws/pwinkler-mnist_tst/omniopt/runs/mnist_gpu_noall/1...
โ Writing revert_to_random_when_seemingly_exhausted file ...
โ Writing username state file...
โ Writing result names file...
โ Writing result min/max file...
โ Saving state files...
Run-folder : /data/horse/ws/pwinkler-mnist_tst/omniopt/runs/mnist_gpu_noall/ 1
โ Printing run info...
โ Initializing NVIDIA-Logs...
โ Writing ui_url file if it is present...
โ Writing live_share file if it is present...
โ Writing job_start_time file...
โ น Writing git info file...
โ Checking max_eval...
โ Calculating number of steps...
โ Adding excluded nodes...
โ Handling random steps...
โ Initializing ax_client...
[WARNING 07-31 14:32:27] ax.service.ax_client: Selecting a GenerationStrategy when using BatchTrials is in beta. Double check the recommended strategy matches your expectations.
โ Setting orchestrator...
You have 1 CPUs available for the main process. Using CUDA device NVIDIA H100. Generation strategy: SOBOL for 20 steps and then BOTORCH_MODULAR for 480 steps.
Run-Program: python3 .tests/mnist/train --epochs %epochs --learning_rate %lr --batch_size %batch_size --hidden_size %hidden_size --dropout %dropout --activation %activation --num_dense_layers %num_dense_layers --init %init --weight_decay %weight_decay
Experiment parameters
โโโโโโโโโโโโโโโโโโโโณโโโโโโโโณโโโโโโโโโโโโโโณโโโโโโโโโโโโโโณโโโโโโโโโโโโโณโโโโโโโโณโโโโโโโโโโโโโ
โ Name โ Type โ Lower bound โ Upper bound โ Values โ Type โ Log Scale? โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ epochs โ range โ 10 โ 200 โ โ int โ No โ
โ lr โ range โ 1e-05 โ 0.1 โ โ float โ No โ
โ batch_size โ range โ 8 โ 2048 โ โ int โ No โ
โ hidden_size โ range โ 8 โ 2048 โ โ int โ No โ
โ dropout โ range โ 0 โ 0.5 โ โ float โ No โ
โ activation โ fixed โ โ โ leaky_relu โ โ โ
โ num_dense_layers โ range โ 1 โ 4 โ โ int โ No โ
โ init โ fixed โ โ โ normal โ โ โ
โ weight_decay โ range โ 0 โ 1 โ โ float โ No โ
โโโโโโโโโโโโโโโโโโโโดโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโดโโโโโโโโดโโโโโโโโโโโโโ
Result-Names
โโโโโโโโโโโโโโโณโโโโโโโโโโโโโโ
โ Result-Name โ Min or max? โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ VAL_ACC โ max โ
โโโโโโโโโโโโโโโดโโโโโโโโโโโโโโ
See https://imageseg.scads.de/omniax/share?user_id=pwinkler&experiment_name=mnist_gpu_noall&run_nr=5 for live-results.
โโโโโโโย โโโโโโโย ย โโโโโโย ย ย โย โย โโโโโโโ
โย โโโย โย ย ย โย โโโโโโย โโโโโโโโโโย โย โโโย โ
โย โโโย โย ย โโโโโโย โโโโโโโโย โย ย โย โย โโโย โ
โโโโโโโย โย โโโโโย โย โย โย โโโโโย โย โโโโโโโ
โโโโโโโโย โโโโย โโโโโย โโโโย โโโโย โโโย ย โโ
โโย โโโโโโโย โโโโโโโย ย โโโโโย โโโโโโย โโโโ
โโโโโโโโโโย โโโย โโโโโย ย ย โย โโโโย โย โโโโโ
โโโโโโโโย ย ย โโโโโโย ย โย โย ย ย โย โโโโโโย โโโ
โโโโโโโโโโย โโโย โย ย โโโย โย โโโโย โโย ย โโโโ
โโโโโโโย โย โโโโโโโโย โย ย โโโโโโโย โย โโย ย โ
โย โโโโโโโย โย โโโย ย โโโย ย โโโย โโโโโโโโย โโ
ย ย โโโย โโย โโย โโโโโโโย โย โโโย โโโโโโโโโโโ
โย ย ย โย โโโย โย โย โโโโโย โย ย โโย โโโโโโโโโโโ
โโโโโโโโโโโย โย โโโย โโโโย โย ย โโย โย ย โโโโโ
โย ย ย โโโโโโโโโโโโโโย โโโโโย โโย โโโโโโโโย
โโโโโโโย ย โโโโโโโโย โโโโโโโโย ย โย โย โโโย โ
โย โโโย โย โโโโโโย โโโย โโย ย โย ย โโโโโโโโโย โ
โย โโโย โย โโโโย ย โโโโโย โโโโย โโย ย โโโโโโโโ
โโโโโโโย โโโโย ย โย ย โย โโย ย โโย ย ย โโโย โโย ย โ
Sobol, failed: 2 ('VAL_ACC: ' not found) , best VAL_ACC: 1.6, running/completed 5/3โ8 (25%/20), eval #1/1 start : 0%|โโโโโโโโโโ| 0/500 [06:01, ?it/s]
Runtime (end): 7 minutes and 17 seconds, PID: 1235908
Sobol, failed: 4 ('VAL_ACC: ' not found) , best VAL_ACC: 10.28, cancelled by 2054851/running/unknown 4/4/1โ9 (25%/20), started new job : 1%|โโโโโโโโโโ| 4/500 [12:18<13:59:01, 101.50s/it] Copy raw data to clipboard
Download »outfile« as file
Copy raw data to clipboard
Download »progressbar« as file
2025-07-31 14:32:51: SOBOL, Started OmniOpt2 run...
2025-07-31 14:33:02: Sobol, getting new HP set
2025-07-31 14:33:14: Sobol, requested 1 jobs, got 1, 12.20 s/job
2025-07-31 14:33:19: Sobol, eval #1/1 start
2025-07-31 14:33:24: Sobol, starting new job
2025-07-31 14:33:30: Sobol, unknown 1∑1 (5%/20), started new job
2025-07-31 14:33:35: Sobol, pending 1∑1 (5%/20), getting new HP set
2025-07-31 14:33:44: Sobol, running 1∑1 (5%/20), requested 1 jobs, got 1, 8.90 s/job
2025-07-31 14:33:50: Sobol, running 1∑1 (5%/20), eval #1/1 start
2025-07-31 14:33:55: Sobol, running 1∑1 (5%/20), starting new job
2025-07-31 14:34:00: Sobol, running/unknown 1/1∑2 (10%/20), started new job
2025-07-31 14:34:05: Sobol, running/pending 1/1∑2 (10%/20), getting new HP set
2025-07-31 14:34:14: Sobol, running 2∑2 (10%/20), requested 1 jobs, got 1, 8.79 s/job
2025-07-31 14:34:18: Sobol, running 2∑2 (10%/20), eval #1/1 start
2025-07-31 14:34:23: Sobol, running 2∑2 (10%/20), starting new job
2025-07-31 14:34:28: Sobol, running/unknown 2/1∑3 (15%/20), started new job
2025-07-31 14:34:33: Sobol, running/pending 2/1∑3 (15%/20), getting new HP set
2025-07-31 14:34:44: Sobol, running 3∑3 (15%/20), requested 1 jobs, got 1, 10.65 s/job
2025-07-31 14:34:50: Sobol, running 3∑3 (15%/20), eval #1/1 start
2025-07-31 14:34:54: Sobol, running 3∑3 (15%/20), starting new job
2025-07-31 14:35:00: Sobol, running/unknown 3/1∑4 (20%/20), started new job
2025-07-31 14:35:05: Sobol, running/pending 3/1∑4 (20%/20), getting new HP set
2025-07-31 14:35:16: Sobol, running 4∑4 (20%/20), requested 1 jobs, got 1, 10.26 s/job
2025-07-31 14:35:21: Sobol, running 4∑4 (20%/20), eval #1/1 start
2025-07-31 14:35:25: Sobol, running 4∑4 (20%/20), starting new job
2025-07-31 14:35:31: Sobol, running/unknown 4/1∑5 (25%/20), started new job
2025-07-31 14:35:37: Sobol, running 5∑5 (25%/20), getting new HP set
2025-07-31 14:35:47: Sobol, running 5∑5 (25%/20), requested 1 jobs, got 1, 10.07 s/job
2025-07-31 14:35:51: Sobol, running 5∑5 (25%/20), eval #1/1 start
2025-07-31 14:35:56: Sobol, running 5∑5 (25%/20), starting new job
2025-07-31 14:36:01: Sobol, running/unknown 5/1∑6 (30%/20), started new job
2025-07-31 14:36:07: Sobol, running 6∑6 (30%/20), getting new HP set
2025-07-31 14:36:16: Sobol, running 6∑6 (30%/20), requested 1 jobs, got 1, 9.34 s/job
2025-07-31 14:36:21: Sobol, running 6∑6 (30%/20), eval #1/1 start
2025-07-31 14:36:27: Sobol, running 6∑6 (30%/20), starting new job
2025-07-31 14:36:32: Sobol, running/unknown 6/1∑7 (35%/20), started new job
2025-07-31 14:36:39: Sobol, running 7∑7 (35%/20), getting new HP set
2025-07-31 14:36:48: Sobol, running 7∑7 (35%/20), requested 1 jobs, got 1, 10.07 s/job
2025-07-31 14:36:53: Sobol, running 7∑7 (35%/20), eval #1/1 start
2025-07-31 14:36:58: Sobol, running 7∑7 (35%/20), starting new job
2025-07-31 14:37:05: Sobol, running/unknown 7/1∑8 (40%/20), started new job
2025-07-31 14:37:10: Sobol, running 8∑8 (40%/20), getting new HP set
2025-07-31 14:37:22: Sobol, running 8∑8 (40%/20), requested 1 jobs, got 1, 12.26 s/job
2025-07-31 14:37:27: Sobol, running 8∑8 (40%/20), eval #1/1 start
2025-07-31 14:37:31: Sobol, running 8∑8 (40%/20), starting new job
2025-07-31 14:37:38: Sobol, running/unknown 8/1∑9 (45%/20), started new job
2025-07-31 14:37:44: Sobol, running/pending 8/1∑9 (45%/20), getting new HP set
2025-07-31 14:37:53: Sobol, running/completed/pending 7/1/1∑9 (40%/20), requested 1 jobs, got 1, 9.36 s/job
2025-07-31 14:37:58: Sobol, running/completed/pending 7/1/1∑9 (35%/20), eval #1/1 start
2025-07-31 14:38:08: Sobol, running/completed/pending 7/1/1∑9 (35%/20), starting new job
2025-07-31 14:38:14: Sobol, running/completed/unknown 7/2/1∑10 (40%/20), started new job
2025-07-31 14:38:20: Sobol, running/completed 8/2∑10 (40%/20), job_failed
2025-07-31 14:38:20: Sobol, running/completed 8/2∑10 (40%/20), job_failed
2025-07-31 14:38:32: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), running 8∑8 (40%/20), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 14:38:37: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), running 8∑8 (40%/20), getting new HP set
2025-07-31 14:38:47: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed 5/3∑8 (25%/20), requested 1 jobs, got 1, 9.98 s/job
2025-07-31 14:38:52: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed 5/3∑8 (25%/20), eval #1/1 start
2025-07-31 14:39:14: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed 5/3∑8 (25%/20), starting new job
2025-07-31 14:39:23: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed/unknown 5/3/1∑9 (30%/20), started new job
2025-07-31 14:39:30: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed/pending 5/3/1∑9 (30%/20), job_failed
2025-07-31 14:39:30: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed/pending 5/3/1∑9 (30%/20), new result: 1.6
2025-07-31 14:39:31: Sobol, failed: 2 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed/pending 5/3/1∑9 (30%/20), job_failed
2025-07-31 14:39:56: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running 6∑6 (25%/20), finishing jobs (_get_next_trials), finished 3 jobs
2025-07-31 14:40:03: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed 5/1∑6 (25%/20), getting new HP set
2025-07-31 14:40:13: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed 5/1∑6 (20%/20), requested 1 jobs, got 1, 10.35 s/job
2025-07-31 14:40:19: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed 5/1∑6 (20%/20), eval #1/1 start
2025-07-31 14:40:25: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed 5/1∑6 (20%/20), starting new job
2025-07-31 14:40:31: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed/unknown 4/2/1∑7 (25%/20), started new job
2025-07-31 14:40:37: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed 5/2∑7 (25%/20), new result: 9.39
2025-07-31 14:40:38: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 1.6, running/completed 5/2∑7 (25%/20), new result: 8.52
2025-07-31 14:40:57: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 9.39, running 5∑5 (25%/20), finishing jobs (_get_next_trials), finished 2 jobs
2025-07-31 14:41:25: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 9.39, running/completed 4/1∑5 (20%/20), getting new HP set
2025-07-31 14:41:36: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 9.39, running/completed 4/1∑5 (20%/20), requested 1 jobs, got 1, 17.32 s/job
2025-07-31 14:41:41: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 9.39, running/completed 4/1∑5 (20%/20), eval #1/1 start
2025-07-31 14:41:46: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 9.39, running/completed 4/1∑5 (20%/20), starting new job
2025-07-31 14:41:52: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 9.39, running/completed/unknown 4/1/1∑6 (25%/20), started new job
2025-07-31 14:41:58: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 9.39, running/completed/pending 4/1/1∑6 (25%/20), new result: 10.28
2025-07-31 14:42:14: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running 5∑5 (25%/20), finishing jobs (_get_next_trials), finished 1 job
2025-07-31 14:42:19: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running 5∑5 (25%/20), getting new HP set
2025-07-31 14:42:49: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running 5∑5 (25%/20), requested 1 jobs, got 1, 30.66 s/job
2025-07-31 14:42:55: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running 5∑5 (25%/20), eval #1/1 start
2025-07-31 14:43:01: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running 5∑5 (25%/20), starting new job
2025-07-31 14:43:09: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running/unknown 5/1∑6 (30%/20), started new job
2025-07-31 14:43:15: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running/pending 5/1∑6 (30%/20), getting new HP set
2025-07-31 14:43:26: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running/pending 5/1∑6 (30%/20), requested 1 jobs, got 1, 11.91 s/job
2025-07-31 14:43:31: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running/pending 5/1∑6 (30%/20), eval #1/1 start
2025-07-31 14:43:37: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running/pending 5/1∑6 (30%/20), starting new job
2025-07-31 14:43:43: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running/unknown 6/1∑7 (35%/20), started new job
2025-07-31 14:43:51: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running/pending 6/1∑7 (35%/20), getting new HP set
2025-07-31 14:44:17: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running 7∑7 (35%/20), requested 1 jobs, got 1, 26.33 s/job
2025-07-31 14:44:23: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running 7∑7 (35%/20), eval #1/1 start
2025-07-31 14:44:28: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running 7∑7 (35%/20), starting new job
2025-07-31 14:44:35: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running/unknown 7/1∑8 (40%/20), started new job
2025-07-31 14:44:40: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, running 8∑8 (40%/20), getting new HP set
2025-07-31 14:44:51: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, cancelled by 2054851/running 1/7∑8 (35%/20), requested 1 jobs, got 1, 10.64 s/job
2025-07-31 14:44:56: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, cancelled by 2054851/running 1/7∑8 (30%/20), eval #1/1 start
2025-07-31 14:45:02: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, cancelled by 2054851/running 1/7∑8 (25%/20), starting new job
2025-07-31 14:45:09: Sobol, failed: 4 ('VAL_ACC: <FLOAT>' not found), best VAL_ACC: 10.28, cancelled by 2054851/running/unknown 4/4/1∑9 (25%/20), started new job
Copy raw data to clipboard
Download »progressbar« as file
Arguments Overview Key Value config_yaml None config_toml None config_json None num_random_steps 20 max_eval 500 run_program [['cHl0aG9uMyAudGVzdHMvbW5pc3QvdHJhaW4gLS1lcG9jaHMgJWVwb2NocyAtLWxlYXJuaW5nX3JhdGUgJWxyIC0tYmF0Y2hfc2l6ZSAlYmF0Y2hfc2l6ZSAtLWhpZGRlbl9zaXplICVoaWRkZW5f… experiment_name mnist_gpu_noall mem_gb 10 parameter [['epochs', 'range', '10', '200', 'int', 'false'], ['lr', 'range', '0.00001', '0.1', 'float', 'false'], ['batch_size', 'range', '8', '2048', 'int', 'false'], ['hidden_size', 'range', '8', '2048', 'int', 'false'], ['dropout', 'range', '0', '0.5', 'float', 'false'], ['activation', 'fixed', 'leaky_relu'], ['num_dense_layers', 'range', '1', '4', 'int', 'false'], ['init', 'fixed', 'normal'], ['weight_decay', 'range', '0', '1', 'float', 'false']] continue_previous_job None experiment_constraints None run_dir runs seed None verbose_tqdm False model BOTORCH_MODULAR gridsearch False occ False show_sixel_scatter False show_sixel_general False show_sixel_trial_index_result False follow True send_anonymized_usage_stats True ui_url aHR0cHM6Ly9pbWFnZXNlZy5zY2Fkcy5kZS9vbW5pYXgvZ3VpP3BhcnRpdGlvbj1hbHBoYSZleHBlcmltZW50X25hbWU9bW5pc3RfZ3B1X25vYWxsJnJlc2VydmF0aW9uPSZhY2NvdW50PSZtZW1fZ2I… root_venv_dir /home/pwinkler exclude None main_process_gb 8 max_nr_of_zero_results 50 abbreviate_job_names False orchestrator_file None checkout_to_latest_tested_version False live_share True disable_tqdm False disable_previous_job_constraint False workdir occ_type euclid result_names ['VAL_ACC=max'] minkowski_p 2 signed_weighted_euclidean_weights generation_strategy None generate_all_jobs_at_once False revert_to_random_when_seemingly_exhausted True load_data_from_existing_jobs [] n_estimators_randomforest 100 max_attempts_for_generation 20 external_generator None username None max_failed_jobs 0 num_cpus_main_job None calculate_pareto_front_of_job [] show_generate_time_table False force_choice_for_ranges False max_abandoned_retrial 20 share_password None dryrun False db_url None run_program_once None dont_warm_start_refitting False refit_on_cv False fit_out_of_design False fit_abandoned False dont_jit_compile False num_restarts 20 raw_samples 1024 max_num_of_parallel_sruns 16 no_transform_inputs False no_normalize_y False transforms [] num_parallel_jobs 20 worker_timeout 120 slurm_use_srun False time 2880 partition alpha reservation None force_local_execution False slurm_signal_delay_s 0 nodes_per_job 1 cpus_per_task 1 account None gpus 1 run_mode local verbose False verbose_break_run_search_table False debug False flame_graph False no_sleep False tests False show_worker_percentage_table_at_end False auto_exclude_defective_hosts False run_tests_that_fail_on_taurus False raise_in_eval False show_ram_every_n_seconds 0 show_generation_and_submission_sixel False just_return_defaults False prettyprint False
Copy raw data to clipboard
Download »worker_usage.csv« as file
1753965171.2894826,20,0,0
1753965176.7219334,20,0,0
1753965176.8298905,20,0,0
1753965182.8904345,20,0,0
1753965194.8530767,20,0,0
1753965199.7104073,20,0,0
1753965204.706559,20,0,0
1753965210.8391547,20,1,5
1753965215.7592335,20,1,5
1753965224.715386,20,1,5
1753965230.088852,20,1,5
1753965235.0364993,20,1,5
1753965240.8777394,20,2,10
1753965245.7307236,20,2,10
1753965254.0755587,20,2,10
1753965258.2935398,20,2,10
1753965263.0323467,20,2,10
1753965268.838387,20,3,15
1753965273.841259,20,3,15
1753965284.2223022,20,3,15
1753965288.9034579,20,3,15
1753965294.3276317,20,3,15
1753965300.8443332,20,4,20
1753965305.7670114,20,4,20
1753965315.7632296,20,4,20
1753965320.9980884,20,4,20
1753965325.7771468,20,4,20
1753965331.754863,20,5,25
1753965337.1913111,20,5,25
1753965346.9834085,20,5,25
1753965351.7273035,20,5,25
1753965356.0314596,20,5,25
1753965361.7311378,20,6,30
1753965367.2395296,20,6,30
1753965376.294039,20,6,30
1753965381.7207282,20,6,30
1753965386.9462805,20,6,30
1753965392.8478353,20,7,35
1753965399.735184,20,7,35
1753965408.721903,20,7,35
1753965413.2763295,20,7,35
1753965418.1420128,20,7,35
1753965425.2047937,20,8,40
1753965430.7230277,20,8,40
1753965442.7103474,20,8,40
1753965447.2320192,20,8,40
1753965451.7467792,20,8,40
1753965458.289858,20,9,45
1753965464.2561421,20,9,45
1753965473.2936869,20,9,45
1753965478.7165916,20,7,35
1753965488.2828436,20,7,35
1753965494.8518486,20,8,40
1753965500.2776577,20,8,40
1753965500.2943537,20,8,40
1753965512.1166506,20,8,40
1753965517.714961,20,8,40
1753965527.1047885,20,5,25
1753965531.8591456,20,5,25
1753965554.014297,20,5,25
1753965563.200215,20,6,30
1753965569.9933615,20,6,30
1753965570.0728755,20,6,30
1753965571.0092447,20,6,30
1753965580.7187245,20,6,30
1753965596.7468677,20,5,25
1753965603.7134352,20,5,25
1753965613.7256129,20,4,20
1753965619.7253926,20,4,20
1753965625.1249866,20,4,20
1753965631.8627846,20,5,25
1753965637.735853,20,5,25
1753965638.7718422,20,5,25
1753965644.7068892,20,5,25
1753965644.9135895,20,5,25
1753965657.741738,20,5,25
1753965685.7509274,20,4,20
1753965696.2468283,20,4,20
1753965701.06277,20,4,20
1753965706.0259595,20,4,20
1753965712.370942,20,5,25
1753965718.2097118,20,5,25
1753965722.9142683,20,5,25
Copy raw data to clipboard
Download »worker_usage.csv« as file
Copy raw data to clipboard
Download »cpu_ram_usage.csv« as file
timestamp,ram_usage_mb,cpu_usage_percent
1753965147,713.1484375,4.2
1753965171,713.6484375,3.7
1753965176,713.6484375,3.9
1753965176,713.6484375,4.6
1753965176,713.6484375,4.0
1753965644,736.32421875,50.0
1753965722,738.6484375,5.7
1753965722,738.6484375,20.0
Copy raw data to clipboard
Download »cpu_ram_usage.csv« as file
Parameter statistics Parameter Min Max Mean Std Dev Count run_time 19 356 121.5 121.5741 8 VAL_ACC 1.6 10.28 7.4475 3.4329 4 epochs 13 195 109.7647 56.6252 17 lr 0.0048 0.0939 0.0503 0.028 17 batch_size 43 1963 1024.6471 572.439 17 hidden_size 21 1938 1022 571.6089 17 dropout 0.0048 0.4879 0.2356 0.1486 17 num_dense_layers 1 4 2.4706 1.091 17 weight_decay 0.0583 0.9624 0.4891 0.2698 17 activation No numerical statistics available init No numerical statistics available
Show SLURM-Job-ID (if it exists)
530732
530735 (6m:1s, VAL_ACC: 8.52) ✅
530736 (4m:4s, VAL_ACC: 1.6) ✅
530737
530738
530739 (3m:33s, VAL_ACC: 9.39) ✅
530740 (43s, exit-code: 1) ❌
530741 (44s, exit-code: 1) ❌
530742 (35s, exit-code: 1) ❌
530743 (23s, exit-code: 1) ❌
530745 (1m:24s, VAL_ACC: 10.28) ✅
530747
530750
530753
530754
530755
Copy raw data to clipboard
Download »530732_0_log.out« as file
submitit INFO (2025-07-31 14:33:38,187 ) - Starting with JobEnvironment(job_id=530732, hostname=c143, local_rank=0(1), node=0(1), global_rank=0(1))
submitit INFO (2025-07-31 14:33:38,189 ) - Loading pickle: /data/horse/ws/pwinkler-mnist_tst/omniopt/runs/mnist_gpu_noall/1/single_runs/530732/530732_submitted.pkl
slurmstepd: error: *** JOB 530732 ON c143 CANCELLED AT 2025-07-31T14:44:47 ***
Copy raw data to clipboard
Download »530732_0_log.out« as file
Copy raw data to clipboard
Download »530735_0_log.out« as file
Copy raw data to clipboard
Download »530735_0_log.out« as file
Copy raw data to clipboard
Download »530736_0_log.out« as file
Copy raw data to clipboard
Download »530736_0_log.out« as file
Copy raw data to clipboard
Download »530737_0_log.out« as file
Copy raw data to clipboard
Download »530737_0_log.out« as file
Copy raw data to clipboard
Download »530738_0_log.out« as file
Copy raw data to clipboard
Download »530738_0_log.out« as file
Copy raw data to clipboard
Download »530739_0_log.out« as file
Copy raw data to clipboard
Download »530739_0_log.out« as file
Copy raw data to clipboard
Download »530740_0_log.out« as file
Copy raw data to clipboard
Download »530740_0_log.out« as file
Copy raw data to clipboard
Download »530741_0_log.out« as file
Copy raw data to clipboard
Download »530741_0_log.out« as file
Copy raw data to clipboard
Download »530742_0_log.out« as file
Copy raw data to clipboard
Download »530742_0_log.out« as file
Copy raw data to clipboard
Download »530743_0_log.out« as file
Copy raw data to clipboard
Download »530743_0_log.out« as file
Copy raw data to clipboard
Download »530745_0_log.out« as file
Copy raw data to clipboard
Download »530745_0_log.out« as file
Copy raw data to clipboard
Download »530747_0_log.out« as file
Copy raw data to clipboard
Download »530747_0_log.out« as file
Copy raw data to clipboard
Download »530750_0_log.out« as file
Copy raw data to clipboard
Download »530750_0_log.out« as file
Copy raw data to clipboard
Download »530753_0_log.out« as file
Copy raw data to clipboard
Download »530753_0_log.out« as file
Copy raw data to clipboard
Download »530754_0_log.out« as file
Copy raw data to clipboard
Download »530754_0_log.out« as file
Copy raw data to clipboard
Download »530755_0_log.out« as file
Copy raw data to clipboard
Download »530755_0_log.out« as file
Click here to enable the export (reloads the site)