Experiment overview
Setting | Value |
---|
Model for non-random steps | BOTORCH_MODULAR |
Max. nr. evaluations | 500 |
Number random steps | 20 |
Nr. of workers (parameter) | 20 |
Main process memory (GB) | 8 |
Worker memory (GB) | 10 |
Job Summary per Generation Node
Generation Node | Total | COMPLETED | RUNNING |
SOBOL | 20 | 20 | 0 |
BOTORCH_MODULAR | 60 | 49 | 11 |
Experiment parameters
Name | Type | Lower bound | Upper bound | Values | Type | Log Scale? |
---|
epochs | range | 10 | 200 | | int | No |
lr | range | 1e-05 | 0.1 | | float | No |
batch_size | range | 8 | 2048 | | int | No |
hidden_size | range | 8 | 2048 | | int | No |
dropout | range | 0 | 0.5 | | float | No |
activation | fixed | | | leaky_relu | | |
num_dense_layers | range | 1 | 4 | | int | No |
init | fixed | | | normal | | |
weight_decay | range | 0 | 1 | | float | No |
Number of evaluations
Failed |
Succeeded |
Running |
Total |
0 |
69 |
11 |
80 |
Result names and types
Last progressbar status
2025-08-05 15:38:40: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
Git-Version
Commit: 7d06cb38a4cd366c430c71ceef65b7fe8b8acbd6 (7762)
trial_index,submit_time,queue_time,start_time,end_time,run_time,program_string,exit_code,signal,hostname,OO_Info_SLURM_JOB_ID,arm_name,trial_status,generation_node,VAL_ACC,epochs,lr,batch_size,hidden_size,dropout,num_dense_layers,weight_decay,activation,init
0,1754388708,27,1754388735,1754389718,983,python3 .tests/mnist/train --epochs 176 --learning_rate 0.06931720866739750353 --batch_size 1698 --hidden_size 821 --dropout 0.32942062616348266602 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.22888082265853881836,0,,c137,538079,0_0,COMPLETED,SOBOL,9.8000000000000007105427357601,176,0.069317208667397503529805646849,1698,821,0.329420626163482666015625,3,0.228880822658538818359375,leaky_relu,normal
1,1754388739,33,1754388772,1754389067,295,python3 .tests/mnist/train --epochs 48 --learning_rate 0.04228069994828664163 --batch_size 776 --hidden_size 1084 --dropout 0.01213549496605992317 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.67859717924147844315,0,,c136,538080,1_0,COMPLETED,SOBOL,0.230000000000000009992007221626,48,0.042280699948286641631778337569,776,1084,0.012135494966059923171997070312,1,0.678597179241478443145751953125,leaky_relu,normal
2,1754388777,30,1754388807,1754389398,591,python3 .tests/mnist/train --epochs 105 --learning_rate 0.08686420962755568576 --batch_size 1506 --hidden_size 164 --dropout 0.24581183213740587234 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.25264733936637639999,0,,c129,538082,2_0,COMPLETED,SOBOL,11.34999999999999964472863211995,105,0.086864209627555685755417869132,1506,164,0.245811832137405872344970703125,2,0.252647339366376399993896484375,leaky_relu,normal
3,1754388810,26,1754388836,1754389647,811,python3 .tests/mnist/train --epochs 120 --learning_rate 0.00121615063012577604 --batch_size 133 --hidden_size 1942 --dropout 0.41263011982664465904 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.84182903077453374863,0,,c128,538083,3_0,COMPLETED,SOBOL,11.34999999999999964472863211995,120,0.001216150630125776037002149899,133,1942,0.412630119826644659042358398438,4,0.841829030774533748626708984375,leaky_relu,normal
4,1754388844,15,1754388859,1754389645,786,python3 .tests/mnist/train --epochs 137 --learning_rate 0.09290798052768223236 --batch_size 538 --hidden_size 1734 --dropout 0.49616283131763339043 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.41653559077531099319,0,,c128,538087,4_0,COMPLETED,SOBOL,9.58000000000000007105427357601,137,0.092907980527682232363417824672,538,1734,0.496162831317633390426635742188,3,0.416535590775310993194580078125,leaky_relu,normal
5,1754388876,29,1754388905,1754389267,362,python3 .tests/mnist/train --epochs 62 --learning_rate 0.01900114766820333936 --batch_size 1970 --hidden_size 466 --dropout 0.15739634167402982712 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.99043977726250886917,0,,c142,538089,5_0,COMPLETED,SOBOL,0.44000000000000000222044604925,62,0.019001147668203339363701687148,1970,466,0.157396341674029827117919921875,1,0.990439777262508869171142578125,leaky_relu,normal
6,1754388908,28,1754388936,1754389071,135,python3 .tests/mnist/train --epochs 18 --learning_rate 0.05116524809596129791 --batch_size 371 --hidden_size 1388 --dropout 0.08492908114567399025 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.06482718046754598618,0,,c108,538090,6_0,COMPLETED,SOBOL,16.66000000000000014210854715202,18,0.051165248095961297913891741018,371,1388,0.084929081145673990249633789062,2,0.064827180467545986175537109375,leaky_relu,normal
7,1754388943,16,1754388959,1754389954,995,python3 .tests/mnist/train --epochs 181 --learning_rate 0.03738501351826824942 --batch_size 1234 --hidden_size 614 --dropout 0.26150984130799770355 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.53014982398599386215,0,,c108,538093,7_0,COMPLETED,SOBOL,10.32000000000000028421709430404,181,0.03738501351826824942170546251,1234,614,0.26150984130799770355224609375,4,0.530149823985993862152099609375,leaky_relu,normal
8,1754388978,39,1754389017,1754390121,1104,python3 .tests/mnist/train --epochs 193 --learning_rate 0.07980995271972381178 --batch_size 473 --hidden_size 293 --dropout 0.04527942230924963951 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.4674478527158498764,0,,c106,538094,8_0,COMPLETED,SOBOL,10.08999999999999985789145284798,193,0.079809952719723811775942579061,473,293,0.045279422309249639511108398438,4,0.46744785271584987640380859375,leaky_relu,normal
9,1754389013,35,1754389048,1754389237,189,python3 .tests/mnist/train --epochs 28 --learning_rate 0.00665921335387043706 --batch_size 1141 --hidden_size 1560 --dropout 0.36268283147364854813 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.87704158388078212738,0,,c106,538096,9_0,COMPLETED,SOBOL,11.34999999999999964472863211995,28,0.006659213353870437057668851821,1141,1560,0.362682831473648548126220703125,2,0.87704158388078212738037109375,leaky_relu,normal
10,1754389047,30,1754389077,1754389506,429,python3 .tests/mnist/train --epochs 74 --learning_rate 0.06382376689643599887 --batch_size 689 --hidden_size 696 --dropout 0.3796082627959549427 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.05298194661736488342,0,,c106,538097,10_0,COMPLETED,SOBOL,10.09999999999999964472863211995,74,0.063823766896435998874359540878,689,696,0.379608262795954942703247070312,1,0.0529819466173648834228515625,leaky_relu,normal
11,1754389097,9,1754389106,1754389924,818,python3 .tests/mnist/train --epochs 148 --learning_rate 0.0492876295409072282 --batch_size 1808 --hidden_size 1470 --dropout 0.21242757141590118408 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.6044824160635471344,0,,c136,538101,11_0,COMPLETED,SOBOL,10.32000000000000028421709430404,148,0.049287629540907228198332035163,1808,1470,0.21242757141590118408203125,3,0.6044824160635471343994140625,leaky_relu,normal
12,1754389164,46,1754389210,1754389825,615,python3 .tests/mnist/train --epochs 105 --learning_rate 0.05660976204766892533 --batch_size 1379 --hidden_size 1262 --dropout 0.12803656421601772308 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.15477496199309825897,0,,c93,538103,12_0,COMPLETED,SOBOL,10.09999999999999964472863211995,105,0.056609762047668925333265832478,1379,1262,0.12803656421601772308349609375,4,0.15477496199309825897216796875,leaky_relu,normal
13,1754389200,27,1754389227,1754389774,547,python3 .tests/mnist/train --epochs 91 --learning_rate 0.03032934710155241534 --batch_size 201 --hidden_size 998 --dropout 0.46692893141880631447 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.6901884954422712326,0,,c140,538104,13_0,COMPLETED,SOBOL,9.58000000000000007105427357601,91,0.030329347101552415338909796105,201,998,0.466928931418806314468383789062,2,0.69018849544227123260498046875,leaky_relu,normal
14,1754389240,18,1754389258,1754389472,214,python3 .tests/mnist/train --epochs 34 --learning_rate 0.09991331585549749483 --batch_size 1569 --hidden_size 1864 --dropout 0.29099168907850980759 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.36581068858504295349,0,,c106,538105,14_0,COMPLETED,SOBOL,9.81000000000000049737991503207,34,0.099913315855497494832881955062,1569,1864,0.290991689078509807586669921875,1,0.3658106885850429534912109375,leaky_relu,normal
15,1754389315,35,1754389350,1754390246,896,python3 .tests/mnist/train --epochs 162 --learning_rate 0.01350935408023186055 --batch_size 962 --hidden_size 86 --dropout 0.11404091073200106621 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.79117783531546592712,0,,c137,538109,15_0,COMPLETED,SOBOL,10.08999999999999985789145284798,162,0.013509354080231860545380229155,962,86,0.114040910732001066207885742188,3,0.7911778353154659271240234375,leaky_relu,normal
16,1754389381,23,1754389404,1754390275,871,python3 .tests/mnist/train --epochs 157 --learning_rate 0.09526312413536013046 --batch_size 1071 --hidden_size 1321 --dropout 0.42190515249967575073 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0.62752053141593933105,0,,c93,538110,16_0,COMPLETED,SOBOL,9.58000000000000007105427357601,157,0.095263124135360130462224503844,1071,1321,0.421905152499675750732421875,2,0.6275205314159393310546875,leaky_relu,normal
17,1754389425,17,1754389442,1754389707,265,python3 .tests/mnist/train --epochs 41 --learning_rate 0.01820834911424666636 --batch_size 399 --hidden_size 563 --dropout 0.23166462453082203865 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.21695387363433837891,0,,c129,538111,17_0,COMPLETED,SOBOL,11.34999999999999964472863211995,41,0.018208349114246666355931836279,399,563,0.231664624530822038650512695312,4,0.21695387363433837890625,leaky_relu,normal
18,1754389500,35,1754389535,1754390031,496,python3 .tests/mnist/train --epochs 86 --learning_rate 0.06130847436042503179 --batch_size 1877 --hidden_size 1675 --dropout 0.02625409234315156937 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.85400006361305713654,0,,c106,538112,18_0,COMPLETED,SOBOL,10.08999999999999985789145284798,86,0.061308474360425031790544636578,1877,1675,0.026254092343151569366455078125,3,0.85400006361305713653564453125,leaky_relu,normal
19,1754389572,12,1754389584,1754390224,640,python3 .tests/mnist/train --epochs 113 --learning_rate 0.02567944480752572603 --batch_size 763 --hidden_size 391 --dropout 0.32017803331837058067 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.30347979255020618439,0,,c93,538114,19_0,COMPLETED,SOBOL,5.01999999999999957367435854394,113,0.025679444807525726029995283284,763,391,0.320178033318370580673217773438,1,0.30347979255020618438720703125,leaky_relu,normal
20,1754390369,27,1754390396,1754390605,209,python3 .tests/mnist/train --epochs 10 --learning_rate 0.02639436580551864434 --batch_size 8 --hidden_size 2048 --dropout 0 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0,0,,c140,538128,20_0,COMPLETED,BOTORCH_MODULAR,11.34999999999999964472863211995,10,0.026394365805518644335636579967,8,2048,0,2,0,leaky_relu,normal
21,1754390414,16,1754390430,1754390522,92,python3 .tests/mnist/train --epochs 10 --learning_rate 0.06277108132796016537 --batch_size 109 --hidden_size 2048 --dropout 0 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0,0,,c138,538130,21_0,COMPLETED,BOTORCH_MODULAR,8.91999999999999992894572642399,10,0.062771081327960165374690859608,109,2048,0,2,0,leaky_relu,normal
22,1754390458,29,1754390487,1754390663,176,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00706665769959874922 --batch_size 8 --hidden_size 8 --dropout 0 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0,0,,c137,538132,22_0,COMPLETED,BOTORCH_MODULAR,76.480000000000003979039320256561,10,0.007066657699598749217684279245,8,8,0,2,0,leaky_relu,normal
23,1754390504,12,1754390516,1754390602,86,python3 .tests/mnist/train --epochs 10 --learning_rate 0.01785651590137468658 --batch_size 2048 --hidden_size 2048 --dropout 0 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0,0,,c137,538134,23_0,COMPLETED,BOTORCH_MODULAR,9.8000000000000007105427357601,10,0.017856515901374686583480411173,2048,2048,0,2,0,leaky_relu,normal
24,1754390564,13,1754390577,1754393973,3396,python3 .tests/mnist/train --epochs 200 --learning_rate 0.02378495334315852694 --batch_size 8 --hidden_size 2048 --dropout 0 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0,0,,c137,538137,24_0,COMPLETED,BOTORCH_MODULAR,10.09999999999999964472863211995,200,0.023784953343158526939404850964,8,2048,0,2,0,leaky_relu,normal
25,1754390637,31,1754390668,1754390754,86,python3 .tests/mnist/train --epochs 10 --learning_rate 0.04465888755771292573 --batch_size 654 --hidden_size 1061 --dropout 0.14776104616249807755 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0,0,,c140,538138,25_0,COMPLETED,BOTORCH_MODULAR,10.09999999999999964472863211995,10,0.044658887557712925731046027522,654,1061,0.147761046162498077549685149279,2,0,leaky_relu,normal
26,1754390726,33,1754390759,1754391122,363,python3 .tests/mnist/train --epochs 61 --learning_rate 0.01392544246966049247 --batch_size 507 --hidden_size 1233 --dropout 0.05768364407712422287 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0,0,,c138,538139,26_0,COMPLETED,BOTORCH_MODULAR,11.34999999999999964472863211995,61,0.013925442469660492469940571425,507,1233,0.057683644077124222870889269643,2,0,leaky_relu,normal
27,1754390805,13,1754390818,1754390904,86,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 2048 --hidden_size 8 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c140,538140,27_0,COMPLETED,BOTORCH_MODULAR,18.51999999999999957367435854394,10,0.000010000000000000000818030539,2048,8,0,1,0,leaky_relu,normal
28,1754390883,30,1754390913,1754391078,165,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 8 --hidden_size 8 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c137,538143,28_0,COMPLETED,BOTORCH_MODULAR,84.39000000000000056843418860808,10,0.000010000000000000000818030539,8,8,0,1,0,leaky_relu,normal
29,1754390934,33,1754390967,1754391132,165,python3 .tests/mnist/train --epochs 10 --learning_rate 0.10000000000000000555 --batch_size 8 --hidden_size 8 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c140,538144,29_0,COMPLETED,BOTORCH_MODULAR,10.27999999999999936051153781591,10,0.100000000000000005551115123126,8,8,0,1,0,leaky_relu,normal
30,1754391009,18,1754391027,1754393224,2197,python3 .tests/mnist/train --epochs 152 --learning_rate 0.00001 --batch_size 8 --hidden_size 8 --dropout 0 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0,0,,c108,538153,30_0,COMPLETED,BOTORCH_MODULAR,85.129999999999995452526491135359,152,0.000010000000000000000818030539,8,8,0,2,0,leaky_relu,normal
31,1754391060,28,1754391088,1754391265,177,python3 .tests/mnist/train --epochs 10 --learning_rate 0.0875659571130234099 --batch_size 8 --hidden_size 8 --dropout 0 --activation leaky_relu --num_dense_layers 2 --init normal --weight_decay 0,0,,c137,538156,31_0,COMPLETED,BOTORCH_MODULAR,10.32000000000000028421709430404,10,0.0875659571130234098967903833,8,8,0,2,0,leaky_relu,normal
32,1754391108,42,1754391150,1754393102,1952,python3 .tests/mnist/train --epochs 143 --learning_rate 0.00001 --batch_size 8 --hidden_size 8 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c140,538157,32_0,COMPLETED,BOTORCH_MODULAR,84.549999999999997157829056959599,143,0.000010000000000000000818030539,8,8,0,1,0,leaky_relu,normal
33,1754391210,28,1754391238,1754393881,2643,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00001 --batch_size 8 --hidden_size 8 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c138,538159,33_0,COMPLETED,BOTORCH_MODULAR,92.67000000000000170530256582424,200,0.000010000000000000000818030539,8,8,0,1,0,leaky_relu,normal
34,1754391305,16,1754391321,1754391492,171,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 8 --hidden_size 189 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c137,538168,34_0,COMPLETED,BOTORCH_MODULAR,92.810000000000002273736754432321,10,0.000010000000000000000818030539,8,189,0,1,0,leaky_relu,normal
35,1754391385,9,1754391394,1754391486,92,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 182 --hidden_size 8 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c106,538172,35_0,COMPLETED,BOTORCH_MODULAR,29.3999999999999985789145284798,10,0.000010000000000000000818030539,182,8,0,1,0,leaky_relu,normal
36,1754391443,49,1754391492,1754391664,172,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 8 --hidden_size 8 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0.55196057229157757806,0,,c126,538173,36_0,COMPLETED,BOTORCH_MODULAR,11.34999999999999964472863211995,10,0.000010000000000000000818030539,8,8,0,1,0.551960572291577578063481723802,leaky_relu,normal
37,1754391502,22,1754391524,1754391982,458,python3 .tests/mnist/train --epochs 32 --learning_rate 0.00001 --batch_size 8 --hidden_size 8 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c137,538175,37_0,COMPLETED,BOTORCH_MODULAR,90.560000000000002273736754432321,32,0.000010000000000000000818030539,8,8,0,1,0,leaky_relu,normal
38,1754391614,16,1754391630,1754391803,173,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 8 --hidden_size 443 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c128,538176,38_0,COMPLETED,BOTORCH_MODULAR,94.10999999999999943156581139192,10,0.000010000000000000000818030539,8,443,0,1,0,leaky_relu,normal
39,1754391667,32,1754391699,1754393267,1568,python3 .tests/mnist/train --epochs 112 --learning_rate 0.00001 --batch_size 8 --hidden_size 416 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c126,538179,39_0,COMPLETED,BOTORCH_MODULAR,97.85999999999999943156581139192,112,0.000010000000000000000818030539,8,416,0,1,0,leaky_relu,normal
40,1754394097,36,1754394133,1754394409,276,python3 .tests/mnist/train --epochs 45 --learning_rate 0.00001 --batch_size 1504 --hidden_size 8 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 1,0,,c108,539333,40_0,COMPLETED,BOTORCH_MODULAR,11.16999999999999992894572642399,45,0.000010000000000000000818030539,1504,8,0,1,1,leaky_relu,normal
41,1754394166,78,1754394244,1754395319,1075,python3 .tests/mnist/train --epochs 194 --learning_rate 0.10000000000000000555 --batch_size 1578 --hidden_size 8 --dropout 0.5 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 1,0,,c106,539675,41_0,COMPLETED,BOTORCH_MODULAR,9.58000000000000007105427357601,194,0.100000000000000005551115123126,1578,8,0.5,4,1,leaky_relu,normal
42,1754394266,82,1754394348,1754397153,2805,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00001 --batch_size 8 --hidden_size 438 --dropout 0.5 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c88,539679,42_0,COMPLETED,BOTORCH_MODULAR,98.200000000000002842170943040401,200,0.000010000000000000000818030539,8,438,0.5,1,0,leaky_relu,normal
43,1754394339,46,1754394385,1754394793,408,python3 .tests/mnist/train --epochs 67 --learning_rate 0.00001 --batch_size 1042 --hidden_size 2048 --dropout 0.5 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0,0,,c14,539681,43_0,COMPLETED,BOTORCH_MODULAR,96.400000000000005684341886080801,67,0.000010000000000000000818030539,1042,2048,0.5,4,0,leaky_relu,normal
44,1754394448,70,1754394518,1754397307,2789,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00001 --batch_size 8 --hidden_size 443 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c151,539683,44_0,COMPLETED,BOTORCH_MODULAR,98.019999999999996020960679743439,200,0.000010000000000000000818030539,8,443,0,1,0,leaky_relu,normal
45,1754394619,15,1754394634,1754397443,2809,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00001 --batch_size 8 --hidden_size 280 --dropout 0.5 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c140,539929,45_0,COMPLETED,BOTORCH_MODULAR,97.879999999999995452526491135359,200,0.000010000000000000000818030539,8,280,0.5,1,0,leaky_relu,normal
46,1754394731,25,1754394756,1754395893,1137,python3 .tests/mnist/train --epochs 200 --learning_rate 0.10000000000000000555 --batch_size 1405 --hidden_size 2048 --dropout 0 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 1,0,,c140,540149,46_0,COMPLETED,BOTORCH_MODULAR,9.82000000000000028421709430404,200,0.100000000000000005551115123126,1405,2048,0,4,1,leaky_relu,normal
47,1754394833,16,1754394849,1754395021,172,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 8 --hidden_size 617 --dropout 0.5 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c139,540177,47_0,COMPLETED,BOTORCH_MODULAR,94.310000000000002273736754432321,10,0.000010000000000000000818030539,8,617,0.5,1,0,leaky_relu,normal
48,1754394948,18,1754394966,1754396067,1101,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00001 --batch_size 1059 --hidden_size 2048 --dropout 0.5 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c138,540178,48_0,COMPLETED,BOTORCH_MODULAR,96.96999999999999886313162278384,200,0.000010000000000000000818030539,1059,2048,0.5,1,0,leaky_relu,normal
49,1754395029,14,1754395043,1754395129,86,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 1034 --hidden_size 2048 --dropout 0 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0,0,,c139,540182,49_0,COMPLETED,BOTORCH_MODULAR,94.819999999999993178789736703038,10,0.000010000000000000000818030539,1034,2048,0,4,0,leaky_relu,normal
50,1754395168,25,1754395193,1754396330,1137,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00001 --batch_size 948 --hidden_size 2048 --dropout 0.5 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0,0,,c151,540189,50_0,COMPLETED,BOTORCH_MODULAR,98.099999999999994315658113919199,200,0.000010000000000000000818030539,948,2048,0.5,4,0,leaky_relu,normal
51,1754395284,4,1754395288,1754395374,86,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 1130 --hidden_size 2048 --dropout 0.5 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0,0,,c139,540190,51_0,COMPLETED,BOTORCH_MODULAR,84.040000000000006252776074688882,10,0.000010000000000000000818030539,1130,2048,0.5,4,0,leaky_relu,normal
52,1754395362,35,1754395397,1754396183,786,python3 .tests/mnist/train --epochs 137 --learning_rate 0.04745326739579402986 --batch_size 1033 --hidden_size 2048 --dropout 0.5 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0,0,,c128,540194,52_0,COMPLETED,BOTORCH_MODULAR,9.8000000000000007105427357601,137,0.04745326739579402985924616587,1033,2048,0.5,4,0,leaky_relu,normal
53,1754395492,7,1754395499,1754396618,1119,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00001 --batch_size 1029 --hidden_size 1514 --dropout 0.5 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0,0,,c139,540201,53_0,COMPLETED,BOTORCH_MODULAR,97.89000000000000056843418860808,200,0.000010000000000000000818030539,1029,1514,0.5,4,0,leaky_relu,normal
54,1754395557,35,1754395592,1754395684,92,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 998 --hidden_size 2048 --dropout 0.5 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c128,540205,54_0,COMPLETED,BOTORCH_MODULAR,90.260000000000005115907697472721,10,0.000010000000000000000818030539,998,2048,0.5,1,0,leaky_relu,normal
55,1754395622,29,1754395651,1754396727,1076,python3 .tests/mnist/train --epochs 189 --learning_rate 0.00001 --batch_size 1009 --hidden_size 2048 --dropout 0.5 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0.19774709299680001684,0,,c128,540208,55_0,COMPLETED,BOTORCH_MODULAR,11.34999999999999964472863211995,189,0.000010000000000000000818030539,1009,2048,0.5,4,0.197747092996800016839742397678,leaky_relu,normal
56,1754395765,40,1754395805,1754396051,246,python3 .tests/mnist/train --epochs 41 --learning_rate 0.04274142020693751098 --batch_size 1003 --hidden_size 2005 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c128,540211,56_0,COMPLETED,BOTORCH_MODULAR,9.8000000000000007105427357601,41,0.042741420206937510983813410803,1003,2005,0,1,0,leaky_relu,normal
57,1754395926,19,1754395945,1754396866,921,python3 .tests/mnist/train --epochs 162 --learning_rate 0.10000000000000000555 --batch_size 1043 --hidden_size 2048 --dropout 0 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0,0,,c141,540214,57_0,COMPLETED,BOTORCH_MODULAR,9.8000000000000007105427357601,162,0.100000000000000005551115123126,1043,2048,0,4,0,leaky_relu,normal
58,1754396082,10,1754396092,1754396196,104,python3 .tests/mnist/train --epochs 12 --learning_rate 0.03558783859194145083 --batch_size 986 --hidden_size 2048 --dropout 0.5 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0,0,,c141,540220,58_0,COMPLETED,BOTORCH_MODULAR,9.8000000000000007105427357601,12,0.035587838591941450827604853657,986,2048,0.5,4,0,leaky_relu,normal
59,1754396244,15,1754396259,1754397364,1105,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00001 --batch_size 1070 --hidden_size 1258 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c141,540223,59_0,COMPLETED,BOTORCH_MODULAR,96.32999999999999829469743417576,200,0.000010000000000000000818030539,1070,1258,0,1,0,leaky_relu,normal
60,,,,,,,,,,,60_0,RUNNING,BOTORCH_MODULAR,,200,0.000010000000000000000818030539,8,2048,0.48052237526750846141609940787,4,0,leaky_relu,normal
61,1754397632,30,1754397662,1754400477,2815,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00001 --batch_size 8 --hidden_size 2048 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c141,540287,61_0,COMPLETED,BOTORCH_MODULAR,98.290000000000006252776074688882,200,0.000010000000000000000818030539,8,2048,0,1,0,leaky_relu,normal
62,1754397697,25,1754397722,1754400570,2848,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00001 --batch_size 8 --hidden_size 2048 --dropout 0.5 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c140,540289,62_0,COMPLETED,BOTORCH_MODULAR,98.430000000000006821210263296962,200,0.000010000000000000000818030539,8,2048,0.5,1,0,leaky_relu,normal
63,,,,,,,,,,,63_0,RUNNING,BOTORCH_MODULAR,,200,0.000010000000000000000818030539,8,1367,0.5,4,0,leaky_relu,normal
64,,,,,,,,,,,64_0,RUNNING,BOTORCH_MODULAR,,200,0.000010000000000000000818030539,8,2048,0,4,0,leaky_relu,normal
65,1754397919,11,1754397930,1754398176,246,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 8 --hidden_size 2048 --dropout 0 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0,0,,c139,540296,65_0,COMPLETED,BOTORCH_MODULAR,97.96999999999999886313162278384,10,0.000010000000000000000818030539,8,2048,0,4,0,leaky_relu,normal
66,1754397985,8,1754397993,1754398283,290,python3 .tests/mnist/train --epochs 11 --learning_rate 0.00001 --batch_size 8 --hidden_size 2048 --dropout 0.5 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0,0,,c138,540297,66_0,COMPLETED,BOTORCH_MODULAR,97.07999999999999829469743417576,11,0.000010000000000000000818030539,8,2048,0.5,4,0,leaky_relu,normal
67,,,,,,,,,,,67_0,RUNNING,BOTORCH_MODULAR,,200,0.000010000000000000000818030539,8,1550,0,4,0,leaky_relu,normal
68,,,,,,,,,,,68_0,RUNNING,BOTORCH_MODULAR,,200,0.000010000000000000000818030539,8,806,0.5,4,0,leaky_relu,normal
69,1754398182,21,1754398203,1754398382,179,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 8 --hidden_size 2048 --dropout 0.5 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c140,540301,69_0,COMPLETED,BOTORCH_MODULAR,96.14000000000000056843418860808,10,0.000010000000000000000818030539,8,2048,0.5,1,0,leaky_relu,normal
70,,,,,,,,,,,70_0,RUNNING,BOTORCH_MODULAR,,200,0.000010000000000000000818030539,8,1566,0.5,1,0,leaky_relu,normal
71,,,,,,,,,,,71_0,RUNNING,BOTORCH_MODULAR,,200,0.000010000000000000000818030539,8,1726,0.5,4,0,leaky_relu,normal
72,1754398595,20,1754398615,1754399721,1106,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00001 --batch_size 574 --hidden_size 2048 --dropout 0 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c138,540307,72_0,COMPLETED,BOTORCH_MODULAR,97.730000000000003979039320256561,200,0.000010000000000000000818030539,574,2048,0,1,0,leaky_relu,normal
73,,,,,,,,,,,73_0,RUNNING,BOTORCH_MODULAR,,200,0.000010000000000000000818030539,8,1254,0,4,0,leaky_relu,normal
74,,,,,,,,,,,74_0,RUNNING,BOTORCH_MODULAR,,200,0.000010000000000000000818030539,8,1640,0,1,0,leaky_relu,normal
75,1754398864,28,1754398892,1754399888,996,python3 .tests/mnist/train --epochs 68 --learning_rate 0.00001 --batch_size 8 --hidden_size 1559 --dropout 0.5 --activation leaky_relu --num_dense_layers 1 --init normal --weight_decay 0,0,,c120,540326,75_0,COMPLETED,BOTORCH_MODULAR,98.230000000000003979039320256561,68,0.000010000000000000000818030539,8,1559,0.5,1,0,leaky_relu,normal
76,,,,,,,,,,,76_0,RUNNING,BOTORCH_MODULAR,,200,0.000010000000000000000818030539,8,1172,0.5,4,0,leaky_relu,normal
77,1754399117,9,1754399126,1754400281,1155,python3 .tests/mnist/train --epochs 200 --learning_rate 0.00001 --batch_size 568 --hidden_size 2048 --dropout 0 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0,0,,c120,540331,77_0,COMPLETED,BOTORCH_MODULAR,98.019999999999996020960679743439,200,0.000010000000000000000818030539,568,2048,0,4,0,leaky_relu,normal
78,,,,,,,,,,,78_0,RUNNING,BOTORCH_MODULAR,,200,0.000010000000000000000818030539,8,1285,0.5,1,0,leaky_relu,normal
79,1754399257,27,1754399284,1754399369,85,python3 .tests/mnist/train --epochs 10 --learning_rate 0.00001 --batch_size 697 --hidden_size 1436 --dropout 0.5 --activation leaky_relu --num_dense_layers 4 --init normal --weight_decay 0,0,,c139,540333,79_0,COMPLETED,BOTORCH_MODULAR,88.290000000000006252776074688882,10,0.000010000000000000000818030539,697,1436,0.5,4,0,leaky_relu,normal
To cancel, press CTRL c, then run 'scancel 538075'
⠋ Importing logging...
⠋ Importing warnings...
⠋ Importing argparse...
⠋ Importing datetime...
⠋ Importing dataclass...
⠋ Importing hashlib...
⠋ Importing socket...
⠋ Importing stat...
⠋ Importing pwd...
⠋ Importing signal...
⠋ Importing base64...
⠋ Importing json...
⠋ Importing yaml...
⠋ Importing toml...
⠋ Importing csv...
⠋ Importing ast...
⠋ Importing rich.table...
⠋ Importing rich print...
⠋ Importing rich.pretty...
⠋ Importing rich.prompt...
⠋ Importing types.FunctionType...
⠋ Importing typing...
⠋ Importing ThreadPoolExecutor...
⠙ Importing submitit.LocalExecutor...
⠋ Importing submitit.Job...
⠋ Importing importlib.util...
⠋ Importing inspect...
⠋ Importing platform...
⠋ Importing inspect frame info...
⠋ Importing pathlib.Path...
⠋ Importing uuid...
⠋ Importing traceback...
⠋ Importing cowsay...
⠋ Importing psutil...
⠋ Importing shutil...
⠋ Importing itertools.combinations...
⠋ Importing os.listdir...
⠋ Importing os.path...
⠋ Importing PIL.Image...
⠋ Importing sixel...
⠋ Importing subprocess...
⠋ Importing tqdm...
⠙ Importing beartype...
⠋ Importing statistics...
⠋ Trying to import pyfiglet...
⠏ Importing helpers...
⠋ Parsing arguments...
⠧ Importing torch...
⠋ Importing numpy...
⠋ Importing collections...
⠴ Importing ax...
⠋ Importing ax.core.generator_run...
⠋ Importing Cont_X_trans and Y_trans from ax.modelbridge.registry...
⠋ Importing ax.core.arm...
⠋ Importing ax.core.objective...
⠋ Importing ax.core.Metric...
⠋ Importing ax.exceptions.core...
⠋ Importing ax.exceptions.generation_strategy...
⠋ Importing CORE_DECODER_REGISTRY...
⠋ Trying ax.generation_strategy.generation_node...
⠋ Importing GenerationStep, GenerationStrategy from generation_strategy...
⠋ Importing GenerationNode from generation_node...
⠋ Importing ExternalGenerationNode...
⠋ Importing MaxTrials...
⠋ Importing GeneratorSpec...
⠋ Importing Models from ax.modelbridge.registry...
⠋ Importing get_pending_observation_features...
⠋ Importing load_experiment...
⠋ Importing save_experiment...
⠋ Importing save_experiment_to_db...
⠋ Importing TrialStatus...
⠋ Importing Data...
⠋ Importing Experiment...
⠋ Importing parameter types...
⠋ Importing TParameterization...
⠋ Importing pandas...
⠋ Importing AxClient and ObjectiveProperties...
⠋ Importing RandomForestRegressor...
⠋ Importing botorch...
⠋ Importing submitit...
⠋ Importing ax logger...
⠋ Importing SQL-Storage-Stuff...
Run-UUID: 1d23ffe9-96c6-4876-937d-24b0dd8711d3
.88888. oo .88888. dP d8888b.
d8' `8b d8' `8b 88 `88
88 88 88d8b.d8b. 88d888b. dP 88 88 88d888b. d8888P .aaadP'
88 88 88'`88'`88 88' `88 88 88 88 88' `88 88 88'
Y8. .8P 88 88 88 88 88 88 Y8. .8P 88. .88 88 88.
`8888P' dP dP dP dP dP dP `8888P' 88Y888P' dP Y88888P
88
dP
⠋ Writing worker creation log...
omniopt --partition=alpha --experiment_name=mnist_gpu_noall --mem_gb=10 --time=240 --worker_timeout=120 --max_eval=500 --num_parallel_jobs=20 --gpus=1 --num_random_steps=20 --follow --live_share --send_anonymized_usage_stats --result_names VAL_ACC=max --run_program=cHl0aG9uMyAudGVzdHMvbW5pc3QvdHJhaW4gLS1lcG9jaHMgJWVwb2NocyAtLWxlYXJuaW5nX3JhdGUgJWxyIC0tYmF0Y2hfc2l6ZSAlYmF0Y2hfc2l6ZSAtLWhpZGRlbl9zaXplICVoaWRkZW5fc2l6ZSAtLWRyb3BvdXQgJWRyb3BvdXQgLS1hY3RpdmF0aW9uICVhY3RpdmF0aW9uIC0tbnVtX2RlbnNlX2xheWVycyAlbnVtX2RlbnNlX2xheWVycyAtLWluaXQgJWluaXQgLS13ZWlnaHRfZGVjYXkgJXdlaWdodF9kZWNheQ== --cpus_per_task=1 --nodes_per_job=1 --revert_to_random_when_seemingly_exhausted --model=BOTORCH_MODULAR --n_estimators_randomforest=100 --run_mode=local --occ_type=euclid --main_process_gb=8 --max_nr_of_zero_results=50 --slurm_signal_delay_s=0 --max_failed_jobs=0 --max_attempts_for_generation=20 --num_restarts=20 --raw_samples=1024 --max_abandoned_retrial=20 --max_num_of_parallel_sruns=16 --parameter epochs range 10 200 int false --parameter lr range 0.00001 0.1 float false --parameter batch_size range 8 2048 int false --parameter hidden_size range 8 2048 int false --parameter dropout range 0 0.5 float false --parameter activation fixed leaky_relu --parameter num_dense_layers range 1 4 int false --parameter init fixed normal --parameter weight_decay range 0 1 float false --ui_url aHR0cHM6Ly9pbWFnZXNlZy5zY2Fkcy5kZS9vbW5pYXgvZ3VpP3BhcnRpdGlvbj1hbHBoYSZleHBlcmltZW50X25hbWU9bW5pc3RfZ3B1X25vYWxsJnJlc2VydmF0aW9uPSZhY2NvdW50PSZtZW1fZ2I9MTAmdGltZT0yODgwJndvcmtlcl90aW1lb3V0PTEyMCZtYXhfZXZhbD01MDAmbnVtX3BhcmFsbGVsX2pvYnM9MjAmZ3B1cz0xJm51bV9yYW5kb21fc3RlcHM9MjAmZm9sbG93PTEmbGl2ZV9zaGFyZT0xJnNlbmRfYW5vbnltaXplZF91c2FnZV9zdGF0cz0xJmNvbnN0cmFpbnRzPSZyZXN1bHRfbmFtZXM9VkFMX0FDQyUzRG1heCZydW5fcHJvZ3JhbT1weXRob24zJTIwLnRlc3RzJTJGbW5pc3QlMkZ0cmFpbiUyMC0tZXBvY2hzJTIwJTI1ZXBvY2hzJTIwLS1sZWFybmluZ19yYXRlJTIwJTI1bHIlMjAtLWJhdGNoX3NpemUlMjAlMjViYXRjaF9zaXplJTIwLS1oaWRkZW5fc2l6ZSUyMCUyNWhpZGRlbl9zaXplJTIwLS1kcm9wb3V0JTIwJTI1ZHJvcG91dCUyMC0tYWN0aXZhdGlvbiUyMCUyNWFjdGl2YXRpb24lMjAtLW51bV9kZW5zZV9sYXllcnMlMjAlMjVudW1fZGVuc2VfbGF5ZXJzJTIwLS1pbml0JTIwJTI1aW5pdCUyMC0td2VpZ2h0X2RlY2F5JTIwJTI1d2VpZ2h0X2RlY2F5JnJ1bl9wcm9ncmFtX29uY2U9JmNwdXNfcGVyX3Rhc2s9MSZub2Rlc19wZXJfam9iPTEmc2VlZD0mZHJ5cnVuPTAmZGVidWc9MCZyZXZlcnRfdG9fcmFuZG9tX3doZW5fc2VlbWluZ2x5X2V4aGF1c3RlZD0xJmdyaWRzZWFyY2g9MCZtb2RlbD1CT1RPUkNIX01PRFVMQVImZXh0ZXJuYWxfZ2VuZXJhdG9yPSZuX2VzdGltYXRvcnNfcmFuZG9tZm9yZXN0PTEwMCZpbnN0YWxsYXRpb25fbWV0aG9kPWNsb25lJnJ1bl9tb2RlPWxvY2FsJmRpc2FibGVfdHFkbT0wJnZlcmJvc2VfdHFkbT0wJmZvcmNlX2xvY2FsX2V4ZWN1dGlvbj0wJmF1dG9fZXhjbHVkZV9kZWZlY3RpdmVfaG9zdHM9MCZzaG93X3NpeGVsX2dlbmVyYWw9MCZzaG93X3NpeGVsX3RyaWFsX2luZGV4X3Jlc3VsdD0wJnNob3dfc2l4ZWxfc2NhdHRlcj0wJnNob3dfd29ya2VyX3BlcmNlbnRhZ2VfdGFibGVfYXRfZW5kPTAmb2NjPTAmb2NjX3R5cGU9ZXVjbGlkJm5vX3NsZWVwPTAmc2x1cm1fdXNlX3NydW49MCZ2ZXJib3NlX2JyZWFrX3J1bl9zZWFyY2hfdGFibGU9MCZhYmJyZXZpYXRlX2pvYl9uYW1lcz0wJm1haW5fcHJvY2Vzc19nYj04Jm1heF9ucl9vZl96ZXJvX3Jlc3VsdHM9NTAmc2x1cm1fc2lnbmFsX2RlbGF5X3M9MCZtYXhfZmFpbGVkX2pvYnM9MCZleGNsdWRlPSZ1c2VybmFtZT0mZ2VuZXJhdGlvbl9zdHJhdGVneT0mcm9vdF92ZW52X2Rpcj0md29ya2Rpcj0mZG9udF9qaXRfY29tcGlsZT0wJmZpdF9vdXRfb2ZfZGVzaWduPTAmcmVmaXRfb25fY3Y9MCZzaG93X2dlbmVyYXRlX3RpbWVfdGFibGU9MCZkb250X3dhcm1fc3RhcnRfcmVmaXR0aW5nPTAmbWF4X2F0dGVtcHRzX2Zvcl9nZW5lcmF0aW9uPTIwJm51bV9yZXN0YXJ0cz0yMCZyYXdfc2FtcGxlcz0xMDI0Jm1heF9hYmFuZG9uZWRfcmV0cmlhbD0yMCZtYXhfbnVtX29mX3BhcmFsbGVsX3NydW5zPTE2JmZvcmNlX2Nob2ljZV9mb3JfcmFuZ2VzPTAmbm9fdHJhbnNmb3JtX2lucHV0cz0wJmZpdF9hYmFuZG9uZWQ9MCZub19ub3JtYWxpemVfeT0wJnZlcmJvc2U9MCZnZW5lcmF0ZV9hbGxfam9ic19hdF9vbmNlPTAmZmxhbWVfZ3JhcGg9MCZjaGVja291dF90b19sYXRlc3RfdGVzdGVkX3ZlcnNpb249MCZwYXJhbWV0ZXJfMF9uYW1lPWVwb2NocyZwYXJhbWV0ZXJfMF90eXBlPXJhbmdlJnBhcmFtZXRlcl8wX21pbj0xMCZwYXJhbWV0ZXJfMF9tYXg9MjAwJnBhcmFtZXRlcl8wX251bWJlcl90eXBlPWludCZwYXJhbWV0ZXJfMF9sb2dfc2NhbGU9ZmFsc2UmcGFyYW1ldGVyXzFfbmFtZT1sciZwYXJhbWV0ZXJfMV90eXBlPXJhbmdlJnBhcmFtZXRlcl8xX21pbj0wLjAwMDAxJnBhcmFtZXRlcl8xX21heD0wLjEmcGFyYW1ldGVyXzFfbnVtYmVyX3R5cGU9ZmxvYXQmcGFyYW1ldGVyXzFfbG9nX3NjYWxlPWZhbHNlJnBhcmFtZXRlcl8yX25hbWU9YmF0Y2hfc2l6ZSZwYXJhbWV0ZXJfMl90eXBlPXJhbmdlJnBhcmFtZXRlcl8yX21pbj04JnBhcmFtZXRlcl8yX21heD0yMDQ4JnBhcmFtZXRlcl8yX251bWJlcl90eXBlPWludCZwYXJhbWV0ZXJfMl9sb2dfc2NhbGU9ZmFsc2UmcGFyYW1ldGVyXzNfbmFtZT1oaWRkZW5fc2l6ZSZwYXJhbWV0ZXJfM190eXBlPXJhbmdlJnBhcmFtZXRlcl8zX21pbj04JnBhcmFtZXRlcl8zX21heD0yMDQ4JnBhcmFtZXRlcl8zX251bWJlcl90eXBlPWludCZwYXJhbWV0ZXJfM19sb2dfc2NhbGU9ZmFsc2UmcGFyYW1ldGVyXzRfbmFtZT1kcm9wb3V0JnBhcmFtZXRlcl80X3R5cGU9cmFuZ2UmcGFyYW1ldGVyXzRfbWluPTAmcGFyYW1ldGVyXzRfbWF4PTAuNSZwYXJhbWV0ZXJfNF9udW1iZXJfdHlwZT1mbG9hdCZwYXJhbWV0ZXJfNF9sb2dfc2NhbGU9ZmFsc2UmcGFyYW1ldGVyXzVfbmFtZT1hY3RpdmF0aW9uJnBhcmFtZXRlcl81X3R5cGU9Zml4ZWQmcGFyYW1ldGVyXzVfdmFsdWU9bGVha3lfcmVsdSZwYXJhbWV0ZXJfNl9uYW1lPW51bV9kZW5zZV9sYXllcnMmcGFyYW1ldGVyXzZfdHlwZT1yYW5nZSZwYXJhbWV0ZXJfNl9taW49MSZwYXJhbWV0ZXJfNl9tYXg9NCZwYXJhbWV0ZXJfNl9udW1iZXJfdHlwZT1pbnQmcGFyYW1ldGVyXzZfbG9nX3NjYWxlPWZhbHNlJnBhcmFtZXRlcl83X25hbWU9aW5pdCZwYXJhbWV0ZXJfN190eXBlPWZpeGVkJnBhcmFtZXRlcl83X3ZhbHVlPW5vcm1hbCZwYXJhbWV0ZXJfOF9uYW1lPXdlaWdodF9kZWNheSZwYXJhbWV0ZXJfOF90eXBlPXJhbmdlJnBhcmFtZXRlcl84X21pbj0wJnBhcmFtZXRlcl84X21heD0xJnBhcmFtZXRlcl84X251bWJlcl90eXBlPWZsb2F0JnBhcmFtZXRlcl84X2xvZ19zY2FsZT1mYWxzZSZwYXJ0aXRpb249YWxwaGEmbnVtX3BhcmFtZXRlcnM9OQ==
⠋ Disabling logging...
⠋ Setting run folder...
⠋ Creating folder /data/cat/ws/pwinkler-mnist_tst/omniopt/runs/mnist_gpu_noall/6...
⠋ Writing revert_to_random_when_seemingly_exhausted file ...
⠋ Writing username state file...
⠋ Writing result names file...
⠋ Writing result min/max file...
⠋ Saving state files...
Run-folder: /data/cat/ws/pwinkler-mnist_tst/omniopt/runs/mnist_gpu_noall/6
⠋ Printing run info...
⠋ Initializing NVIDIA-Logs...
⠋ Writing ui_url file if it is present...
⠋ Writing live_share file if it is present...
⠋ Writing job_start_time file...
⠙ Writing git info file...
⠋ Checking max_eval...
⠋ Calculating number of steps...
⠋ Adding excluded nodes...
⠋ Handling random steps...
⠋ Initializing ax_client...
[WARNING 08-05 12:10:57] ax.service.ax_client: Selecting a GenerationStrategy when using BatchTrials is in beta. Double check the recommended strategy matches your expectations.
⠋ Setting orchestrator...
You have 1 CPUs available for the main process. Using CUDA device NVIDIA H100. Generation strategy: SOBOL for 20 steps and then BOTORCH_MODULAR for 480 steps.
Run-Program: python3 .tests/mnist/train --epochs %epochs --learning_rate %lr --batch_size %batch_size --hidden_size %hidden_size --dropout %dropout --activation %activation --num_dense_layers %num_dense_layers --init %init --weight_decay %weight_decay
Experiment parameters
┏━━━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━┓
┃ Name ┃ Type ┃ Lower bound ┃ Upper bound ┃ Values ┃ Type ┃ Log Scale? ┃
┡━━━━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━┩
│ epochs │ range │ 10 │ 200 │ │ int │ No │
│ lr │ range │ 1e-05 │ 0.1 │ │ float │ No │
│ batch_size │ range │ 8 │ 2048 │ │ int │ No │
│ hidden_size │ range │ 8 │ 2048 │ │ int │ No │
│ dropout │ range │ 0 │ 0.5 │ │ float │ No │
│ activation │ fixed │ │ │ leaky_relu │ │ │
│ num_dense_layers │ range │ 1 │ 4 │ │ int │ No │
│ init │ fixed │ │ │ normal │ │ │
│ weight_decay │ range │ 0 │ 1 │ │ float │ No │
└──────────────────┴───────┴─────────────┴─────────────┴────────────┴───────┴────────────┘
Result-Names
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━┓
┃ Result-Name ┃ Min or max? ┃
┡━━━━━━━━━━━━━╇━━━━━━━━━━━━━┩
│ VAL_ACC │ max │
└─────────────┴─────────────┘
See https://imageseg.scads.de/omniax/share?user_id=pwinkler&experiment_name=mnist_gpu_noall&run_nr=12 for live-results.
█▀▀▀▀▀█ ▄█ ▄▄▀▄▄▀ █▀▀ ▄▀ █▄▄ █▀▀▀▀▀█
█ ███ █ ▄█▀█ ▄ ▀▀▄ █▀▀▄▄█▄█▀▄ █ ███ █
█ ▀▀▀ █ ▄ █ ▀▄▄▄█▀▀▀█ ▀ ▄▀▄█ █ ▀▀▀ █
▀▀▀▀▀▀▀ ▀ ▀ █ ▀▄▀ ▀▄█▄█▄▀ █▄▀ ▀▀▀▀▀▀▀
▀▀▀██ ▀█▀█▀ ▀▀█▀▄▀▄▀█ ▀▄ █▀▀▄▀ █ █▄█
▄▄ ██▀▄▄▀▀█▀▀ ▀█ ▄█▀ █ █▀▄▀▀▀█▀▄▀
█▄█▀▀█▀█ ▀▄▀█ ▄█▀▄█▄▀▄ ▀▀ ▄▀▀█▀▀█▄▀
▀█▄█▄█▀▄█▀█ ▄ █▀▄ ▄▄██ ▄▀▄▄█▄█▄▀▀█
▄ █ ██▀ ▀▀▀ ▀█▀ ▄█▄█▄▄██▄▀█ ▄▀▀ ▀▀█▄▀
▀ ███▀▀█▄▀█▀▀▀▀█ █▄ ▀▀ ██▀██▀ ▀▀█
███ ▄▄▀▄█▄ ▀▄▄█▄██▄▄▄▄ ▄▀▀▀ ▄█▀▄▀███▀
█▄██ █▀▀▀ ▄▀███▀▄ █▄▀ ▄ █▀█▄▀█ ▀█
█ █▄▀ ▀█▀██ ▀█▀▀██▄█▄▄▀█▀█▄ ▄ ▀▄▀▀██▀
█ ▀▄ ▀▀ ▄ █▀▀▀█ ▀ ▀██▄ ▀█▀█▀ ▀▀ ▀█
▀ ▀▀▀▀▀▀▄ ▀▀█▀█▀█▀ █▄ █▀ ▀█▄█▀▀▀██▀
█▀▀▀▀▀█ ▀▄▀▄█▀ ▀█▀▀▄ █ ▄█ █▄█ ▀ █ ██
█ ███ █ ███▄▄█▄▀▄▀ ▄█▄█▄ ▀█▀▀████▀▀ ▀
█ ▀▀▀ █ █▀▄ ▄ █▀█ ▄ ██ ▀▄▄▄▄▄█ ▀▀█
▀▀▀▀▀▀▀ ▀ ▀ ▀ ▀ ▀ ▀▀▀ ▀▀ ▀▀▀▀
BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs : 14%|█░░░░░░░░░| 69/500 [3:20:37<29:14:04, 244.19s/it]
Runtime (end): 3 hours 29 minutes and 4 seconds, PID: 424424
2025-08-05 12:11:02: SOBOL, Started OmniOpt2 run...
2025-08-05 12:11:15: Sobol, getting new HP set
2025-08-05 12:11:28: Sobol, requested 1 jobs, got 1, 13.21 s/job
2025-08-05 12:11:38: Sobol, eval #1/1 start
2025-08-05 12:11:42: Sobol, starting new job
2025-08-05 12:11:49: Sobol, unknown 1∑1 (5%/20), started new job
2025-08-05 12:11:55: Sobol, running 1∑1 (5%/20), getting new HP set
2025-08-05 12:12:05: Sobol, running 1∑1 (5%/20), requested 1 jobs, got 1, 10.24 s/job
2025-08-05 12:12:09: Sobol, running 1∑1 (5%/20), eval #1/1 start
2025-08-05 12:12:14: Sobol, running 1∑1 (5%/20), starting new job
2025-08-05 12:12:20: Sobol, running/unknown 1/1∑2 (10%/20), started new job
2025-08-05 12:12:25: Sobol, running 2∑2 (10%/20), getting new HP set
2025-08-05 12:12:35: Sobol, running 2∑2 (10%/20), requested 1 jobs, got 1, 10.10 s/job
2025-08-05 12:12:47: Sobol, running 2∑2 (10%/20), eval #1/1 start
2025-08-05 12:12:53: Sobol, running 2∑2 (10%/20), starting new job
2025-08-05 12:12:59: Sobol, running/unknown 2/1∑3 (15%/20), started new job
2025-08-05 12:13:06: Sobol, running 3∑3 (15%/20), getting new HP set
2025-08-05 12:13:16: Sobol, running 3∑3 (15%/20), requested 1 jobs, got 1, 9.92 s/job
2025-08-05 12:13:21: Sobol, running 3∑3 (15%/20), eval #1/1 start
2025-08-05 12:13:25: Sobol, running 3∑3 (15%/20), starting new job
2025-08-05 12:13:32: Sobol, running/unknown 3/1∑4 (20%/20), started new job
2025-08-05 12:13:38: Sobol, running 4∑4 (20%/20), getting new HP set
2025-08-05 12:13:49: Sobol, running 4∑4 (20%/20), requested 1 jobs, got 1, 10.99 s/job
2025-08-05 12:13:54: Sobol, running 4∑4 (20%/20), eval #1/1 start
2025-08-05 12:13:59: Sobol, running 4∑4 (20%/20), starting new job
2025-08-05 12:14:06: Sobol, running/unknown 4/1∑5 (25%/20), started new job
2025-08-05 12:14:11: Sobol, running 5∑5 (25%/20), getting new HP set
2025-08-05 12:14:21: Sobol, running 5∑5 (25%/20), requested 1 jobs, got 1, 9.99 s/job
2025-08-05 12:14:26: Sobol, running 5∑5 (25%/20), eval #1/1 start
2025-08-05 12:14:31: Sobol, running 5∑5 (25%/20), starting new job
2025-08-05 12:14:37: Sobol, running/unknown 5/1∑6 (30%/20), started new job
2025-08-05 12:14:43: Sobol, running/pending 5/1∑6 (30%/20), getting new HP set
2025-08-05 12:14:53: Sobol, running 6∑6 (30%/20), requested 1 jobs, got 1, 9.93 s/job
2025-08-05 12:14:58: Sobol, running 6∑6 (30%/20), eval #1/1 start
2025-08-05 12:15:02: Sobol, running 6∑6 (30%/20), starting new job
2025-08-05 12:15:09: Sobol, running/unknown 6/1∑7 (35%/20), started new job
2025-08-05 12:15:15: Sobol, running 7∑7 (35%/20), getting new HP set
2025-08-05 12:15:26: Sobol, running 7∑7 (35%/20), requested 1 jobs, got 1, 11.22 s/job
2025-08-05 12:15:31: Sobol, running 7∑7 (35%/20), eval #1/1 start
2025-08-05 12:15:37: Sobol, running 7∑7 (35%/20), starting new job
2025-08-05 12:15:44: Sobol, running/unknown 7/1∑8 (40%/20), started new job
2025-08-05 12:15:50: Sobol, running 8∑8 (40%/20), getting new HP set
2025-08-05 12:16:02: Sobol, running 8∑8 (40%/20), requested 1 jobs, got 1, 12.48 s/job
2025-08-05 12:16:07: Sobol, running 8∑8 (40%/20), eval #1/1 start
2025-08-05 12:16:13: Sobol, running 8∑8 (40%/20), starting new job
2025-08-05 12:16:19: Sobol, running/unknown 8/1∑9 (45%/20), started new job
2025-08-05 12:16:25: Sobol, running 9∑9 (45%/20), getting new HP set
2025-08-05 12:16:37: Sobol, running 9∑9 (45%/20), requested 1 jobs, got 1, 12.02 s/job
2025-08-05 12:16:42: Sobol, running 9∑9 (45%/20), eval #1/1 start
2025-08-05 12:16:48: Sobol, running 9∑9 (45%/20), starting new job
2025-08-05 12:16:55: Sobol, running/unknown 9/1∑10 (50%/20), started new job
2025-08-05 12:17:00: Sobol, running/pending 9/1∑10 (50%/20), getting new HP set
2025-08-05 12:17:11: Sobol, running/pending 9/1∑10 (50%/20), requested 1 jobs, got 1, 11.37 s/job
2025-08-05 12:17:16: Sobol, running/pending 9/1∑10 (50%/20), eval #1/1 start
2025-08-05 12:17:22: Sobol, running/pending 9/1∑10 (50%/20), starting new job
2025-08-05 12:17:28: Sobol, running/unknown 10/1∑11 (55%/20), started new job
2025-08-05 12:17:34: Sobol, running/pending 10/1∑11 (55%/20), getting new HP set
2025-08-05 12:17:53: Sobol, best VAL_ACC: 0.23, running/completed 9/2∑11 (50%/20), requested 1 jobs, got 1, 18.96 s/job
2025-08-05 12:17:59: Sobol, best VAL_ACC: 0.23, running/completed 9/2∑11 (45%/20), eval #1/1 start
2025-08-05 12:18:11: Sobol, best VAL_ACC: 16.66, running/completed 9/2∑11 (45%/20), starting new job
2025-08-05 12:18:18: Sobol, best VAL_ACC: 16.66, running/completed/unknown 9/2/1∑12 (50%/20), started new job
2025-08-05 12:18:24: Sobol, best VAL_ACC: 16.66, running/completed 10/2∑12 (50%/20), new result: 16.66
2025-08-05 12:18:25: Sobol, best VAL_ACC: 16.66, running/completed 10/2∑12 (50%/20), new result: 0.23
2025-08-05 12:18:45: Sobol, best VAL_ACC: 16.66, running 10∑10 (50%/20), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-05 12:18:52: Sobol, best VAL_ACC: 16.66, running 10∑10 (50%/20), getting new HP set
2025-08-05 12:19:08: Sobol, best VAL_ACC: 16.66, running 10∑10 (50%/20), requested 1 jobs, got 1, 17.13 s/job
2025-08-05 12:19:13: Sobol, best VAL_ACC: 16.66, running 10∑10 (50%/20), eval #1/1 start
2025-08-05 12:19:18: Sobol, best VAL_ACC: 16.66, running 10∑10 (50%/20), starting new job
2025-08-05 12:19:26: Sobol, best VAL_ACC: 16.66, running/unknown 10/1∑11 (55%/20), started new job
2025-08-05 12:19:32: Sobol, best VAL_ACC: 16.66, running/pending 10/1∑11 (55%/20), getting new HP set
2025-08-05 12:19:43: Sobol, best VAL_ACC: 16.66, running/pending 10/1∑11 (55%/20), requested 1 jobs, got 1, 11.68 s/job
2025-08-05 12:19:48: Sobol, best VAL_ACC: 16.66, running/pending 10/1∑11 (55%/20), eval #1/1 start
2025-08-05 12:19:55: Sobol, best VAL_ACC: 16.66, running/pending 10/1∑11 (55%/20), starting new job
2025-08-05 12:20:01: Sobol, best VAL_ACC: 16.66, running/unknown 11/1∑12 (60%/20), started new job
2025-08-05 12:20:09: Sobol, best VAL_ACC: 16.66, running/pending 11/1∑12 (60%/20), getting new HP set
2025-08-05 12:20:21: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), requested 1 jobs, got 1, 12.03 s/job
2025-08-05 12:20:27: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), eval #1/1 start
2025-08-05 12:20:33: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), starting new job
2025-08-05 12:20:41: Sobol, best VAL_ACC: 16.66, running/completed/unknown 11/1/1∑13 (60%/20), started new job
2025-08-05 12:20:52: Sobol, best VAL_ACC: 16.66, running/completed 12/1∑13 (60%/20), new result: 11.35
2025-08-05 12:21:19: Sobol, best VAL_ACC: 16.66, running/completed 11/1∑12 (55%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 12:21:25: Sobol, best VAL_ACC: 16.66, running/completed 11/1∑12 (55%/20), getting new HP set
2025-08-05 12:21:37: Sobol, best VAL_ACC: 16.66, running/completed 11/1∑12 (55%/20), requested 1 jobs, got 1, 11.57 s/job
2025-08-05 12:21:42: Sobol, best VAL_ACC: 16.66, running/completed 11/1∑12 (55%/20), eval #1/1 start
2025-08-05 12:21:49: Sobol, best VAL_ACC: 16.66, running/completed 11/1∑12 (55%/20), starting new job
2025-08-05 12:21:58: Sobol, best VAL_ACC: 16.66, running/completed/unknown 11/1/1∑13 (60%/20), started new job
2025-08-05 12:22:04: Sobol, best VAL_ACC: 16.66, running/completed/pending 11/1/1∑13 (60%/20), new result: 0.44
2025-08-05 12:22:22: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 12:22:30: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), getting new HP set
2025-08-05 12:22:43: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), requested 1 jobs, got 1, 12.76 s/job
2025-08-05 12:22:48: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), eval #1/1 start
2025-08-05 12:22:55: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), starting new job
2025-08-05 12:23:02: Sobol, best VAL_ACC: 16.66, running/unknown 12/1∑13 (65%/20), started new job
2025-08-05 12:23:10: Sobol, best VAL_ACC: 16.66, running/pending 12/1∑13 (65%/20), getting new HP set
2025-08-05 12:23:21: Sobol, best VAL_ACC: 16.66, running/completed 12/1∑13 (60%/20), requested 1 jobs, got 1, 11.86 s/job
2025-08-05 12:23:27: Sobol, best VAL_ACC: 16.66, running/completed 12/1∑13 (60%/20), eval #1/1 start
2025-08-05 12:23:40: Sobol, best VAL_ACC: 16.66, running/completed 12/1∑13 (60%/20), starting new job
2025-08-05 12:23:47: Sobol, best VAL_ACC: 16.66, running/completed/unknown 12/1/1∑14 (65%/20), started new job
2025-08-05 12:23:54: Sobol, best VAL_ACC: 16.66, running/completed 13/1∑14 (65%/20), new result: 11.35
2025-08-05 12:24:15: Sobol, best VAL_ACC: 16.66, running 13∑13 (65%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 12:24:21: Sobol, best VAL_ACC: 16.66, running 13∑13 (65%/20), getting new HP set
2025-08-05 12:24:34: Sobol, best VAL_ACC: 16.66, running 13∑13 (65%/20), requested 1 jobs, got 1, 13.28 s/job
2025-08-05 12:24:40: Sobol, best VAL_ACC: 16.66, running 13∑13 (60%/20), eval #1/1 start
2025-08-05 12:24:54: Sobol, best VAL_ACC: 16.66, running/completed 12/1∑13 (60%/20), starting new job
2025-08-05 12:25:01: Sobol, best VAL_ACC: 16.66, running/completed/unknown 12/1/1∑14 (65%/20), started new job
2025-08-05 12:25:14: Sobol, best VAL_ACC: 16.66, running/completed/pending 11/2/1∑14 (60%/20), new result: 10.1
2025-08-05 12:25:14: Sobol, best VAL_ACC: 16.66, running/completed/pending 11/2/1∑14 (60%/20), new result: 9.81
2025-08-05 12:25:37: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-05 12:25:43: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), getting new HP set
2025-08-05 12:25:55: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), requested 1 jobs, got 1, 12.02 s/job
2025-08-05 12:26:01: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), eval #1/1 start
2025-08-05 12:26:07: Sobol, best VAL_ACC: 16.66, running 12∑12 (60%/20), starting new job
2025-08-05 12:26:14: Sobol, best VAL_ACC: 16.66, running/unknown 12/1∑13 (65%/20), started new job
2025-08-05 12:26:24: Sobol, best VAL_ACC: 16.66, running 13∑13 (65%/20), waiting for 13 jobs
2025-08-05 12:26:35: Sobol, best VAL_ACC: 16.66, running 13∑13 (65%/20), waiting for 13 jobs
2025-08-05 12:26:47: Sobol, best VAL_ACC: 16.66, running 13∑13 (65%/20), waiting for 13 jobs
2025-08-05 12:27:00: Sobol, best VAL_ACC: 16.66, running 13∑13 (65%/20), waiting for 13 jobs
2025-08-05 12:27:11: Sobol, best VAL_ACC: 16.66, running 13∑13 (65%/20), waiting for 13 jobs
2025-08-05 12:27:23: Sobol, best VAL_ACC: 16.66, running 13∑13 (65%/20), waiting for 13 jobs
2025-08-05 12:27:34: Sobol, best VAL_ACC: 16.66, running 13∑13 (55%/20), new result: 11.35
2025-08-05 12:27:34: Sobol, best VAL_ACC: 16.66, running 13∑13 (55%/20), new result: 9.58
2025-08-05 12:27:58: Sobol, best VAL_ACC: 16.66, running 11∑11 (55%/20), waiting for 13 jobs, finished 2 jobs
2025-08-05 12:28:04: Sobol, best VAL_ACC: 16.66, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 12:28:16: Sobol, best VAL_ACC: 16.66, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 12:28:27: Sobol, best VAL_ACC: 16.66, running 11∑11 (55%/20), new result: 11.35
2025-08-05 12:28:51: Sobol, best VAL_ACC: 16.66, running 10∑10 (45%/20), waiting for 11 jobs, finished 1 job
2025-08-05 12:28:57: Sobol, best VAL_ACC: 16.66, running 10∑10 (45%/20), waiting for 10 jobs
2025-08-05 12:29:08: Sobol, best VAL_ACC: 16.66, running 10∑10 (45%/20), new result: 9.8
2025-08-05 12:29:28: Sobol, best VAL_ACC: 16.66, running 9∑9 (45%/20), waiting for 10 jobs, finished 1 job
2025-08-05 12:29:38: Sobol, best VAL_ACC: 16.66, running/completed 8/1∑9 (40%/20), waiting for 9 jobs
2025-08-05 12:29:52: Sobol, best VAL_ACC: 16.66, running/completed 8/1∑9 (40%/20), new result: 9.58
2025-08-05 12:30:15: Sobol, best VAL_ACC: 16.66, running 8∑8 (40%/20), waiting for 9 jobs, finished 1 job
2025-08-05 12:30:24: Sobol, best VAL_ACC: 16.66, running 8∑8 (40%/20), waiting for 8 jobs
2025-08-05 12:30:37: Sobol, best VAL_ACC: 16.66, running 8∑8 (35%/20), new result: 10.1
2025-08-05 12:31:02: Sobol, best VAL_ACC: 16.66, running 7∑7 (35%/20), waiting for 8 jobs, finished 1 job
2025-08-05 12:31:08: Sobol, best VAL_ACC: 16.66, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 12:31:19: Sobol, best VAL_ACC: 16.66, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 12:31:32: Sobol, best VAL_ACC: 16.66, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 12:31:43: Sobol, best VAL_ACC: 16.66, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 12:31:55: Sobol, best VAL_ACC: 16.66, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 12:32:07: Sobol, best VAL_ACC: 16.66, running 7∑7 (30%/20), new result: 10.32
2025-08-05 12:32:27: Sobol, best VAL_ACC: 16.66, running 6∑6 (30%/20), waiting for 7 jobs, finished 1 job
2025-08-05 12:32:33: Sobol, best VAL_ACC: 16.66, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 12:32:49: Sobol, best VAL_ACC: 16.66, running 6∑6 (25%/20), new result: 10.32
2025-08-05 12:33:08: Sobol, best VAL_ACC: 16.66, running 5∑5 (25%/20), waiting for 6 jobs, finished 1 job
2025-08-05 12:33:14: Sobol, best VAL_ACC: 16.66, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 12:33:25: Sobol, best VAL_ACC: 16.66, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 12:33:37: Sobol, best VAL_ACC: 16.66, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 12:33:49: Sobol, best VAL_ACC: 16.66, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 12:34:01: Sobol, best VAL_ACC: 16.66, running 5∑5 (20%/20), new result: 10.09
2025-08-05 12:34:21: Sobol, best VAL_ACC: 16.66, running 4∑4 (20%/20), waiting for 5 jobs, finished 1 job
2025-08-05 12:34:27: Sobol, best VAL_ACC: 16.66, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 12:34:38: Sobol, best VAL_ACC: 16.66, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 12:34:50: Sobol, best VAL_ACC: 16.66, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 12:35:04: Sobol, best VAL_ACC: 16.66, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 12:35:16: Sobol, best VAL_ACC: 16.66, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 12:35:28: Sobol, best VAL_ACC: 16.66, running 4∑4 (15%/20), new result: 10.09
2025-08-05 12:35:48: Sobol, best VAL_ACC: 16.66, running 3∑3 (15%/20), waiting for 4 jobs, finished 1 job
2025-08-05 12:35:54: Sobol, best VAL_ACC: 16.66, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 12:36:07: Sobol, best VAL_ACC: 16.66, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 12:36:19: Sobol, best VAL_ACC: 16.66, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 12:36:31: Sobol, best VAL_ACC: 16.66, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 12:36:42: Sobol, best VAL_ACC: 16.66, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 12:36:54: Sobol, best VAL_ACC: 16.66, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 12:37:05: Sobol, best VAL_ACC: 16.66, running 3∑3 (15%/20), new result: 5.02
2025-08-05 12:37:25: Sobol, best VAL_ACC: 16.66, running 2∑2 (10%/20), waiting for 3 jobs, finished 1 job
2025-08-05 12:37:31: Sobol, best VAL_ACC: 16.66, running 2∑2 (5%/20), waiting for 2 jobs
2025-08-05 12:37:42: Sobol, best VAL_ACC: 16.66, running 2∑2 (5%/20), new result: 10.09
2025-08-05 12:38:08: Sobol, best VAL_ACC: 16.66, running 1∑1 (0%/20), waiting for 2 jobs, finished 1 job
2025-08-05 12:38:16: Sobol, best VAL_ACC: 16.66, running 1∑1 (0%/20), waiting for 1 job
2025-08-05 12:38:27: Sobol, best VAL_ACC: 16.66, running 1∑1 (0%/20), new result: 9.58
2025-08-05 12:38:45: Sobol, best VAL_ACC: 16.66, waiting for 1 job, finished 1 job
2025-08-05 12:38:57: BoTorchGenerator, best VAL_ACC: 16.66, getting new HP set
2025-08-05 12:39:09: BoTorchGenerator, best VAL_ACC: 16.66, requested 1 jobs, got 1, 16.44 s/job
2025-08-05 12:39:15: BoTorchGenerator, best VAL_ACC: 16.66, eval #1/1 start
2025-08-05 12:39:22: BoTorchGenerator, best VAL_ACC: 16.66, starting new job
2025-08-05 12:39:31: BoTorchGenerator, best VAL_ACC: 16.66, unknown 1∑1 (5%/20), started new job
2025-08-05 12:39:43: BoTorchGenerator, best VAL_ACC: 16.66, pending 1∑1 (5%/20), getting new HP set
2025-08-05 12:39:55: BoTorchGenerator, best VAL_ACC: 16.66, running 1∑1 (5%/20), requested 1 jobs, got 1, 16.51 s/job
2025-08-05 12:40:02: BoTorchGenerator, best VAL_ACC: 16.66, running 1∑1 (5%/20), eval #1/1 start
2025-08-05 12:40:08: BoTorchGenerator, best VAL_ACC: 16.66, running 1∑1 (5%/20), starting new job
2025-08-05 12:40:15: BoTorchGenerator, best VAL_ACC: 16.66, running/unknown 1/1∑2 (10%/20), started new job
2025-08-05 12:40:27: BoTorchGenerator, best VAL_ACC: 16.66, running 2∑2 (10%/20), getting new HP set
2025-08-05 12:40:40: BoTorchGenerator, best VAL_ACC: 16.66, running 2∑2 (10%/20), requested 1 jobs, got 1, 17.28 s/job
2025-08-05 12:40:46: BoTorchGenerator, best VAL_ACC: 16.66, running 2∑2 (10%/20), eval #1/1 start
2025-08-05 12:40:53: BoTorchGenerator, best VAL_ACC: 16.66, running 2∑2 (10%/20), starting new job
2025-08-05 12:41:00: BoTorchGenerator, best VAL_ACC: 16.66, running/unknown 2/1∑3 (15%/20), started new job
2025-08-05 12:41:11: BoTorchGenerator, best VAL_ACC: 16.66, running/pending 2/1∑3 (15%/20), getting new HP set
2025-08-05 12:41:24: BoTorchGenerator, best VAL_ACC: 16.66, running 3∑3 (15%/20), requested 1 jobs, got 1, 17.07 s/job
2025-08-05 12:41:30: BoTorchGenerator, best VAL_ACC: 16.66, running 3∑3 (15%/20), eval #1/1 start
2025-08-05 12:41:38: BoTorchGenerator, best VAL_ACC: 16.66, running 3∑3 (15%/20), starting new job
2025-08-05 12:41:45: BoTorchGenerator, best VAL_ACC: 16.66, running/unknown 3/1∑4 (20%/20), started new job
2025-08-05 12:41:56: BoTorchGenerator, best VAL_ACC: 16.66, running 4∑4 (20%/20), getting new HP set
2025-08-05 12:42:22: BoTorchGenerator, best VAL_ACC: 16.66, running/completed 3/1∑4 (15%/20), requested 1 jobs, got 1, 30.01 s/job
2025-08-05 12:42:31: BoTorchGenerator, best VAL_ACC: 16.66, running/completed 3/1∑4 (15%/20), eval #1/1 start
2025-08-05 12:42:38: BoTorchGenerator, best VAL_ACC: 16.66, running/completed 3/1∑4 (15%/20), starting new job
2025-08-05 12:42:45: BoTorchGenerator, best VAL_ACC: 16.66, running/completed/unknown 3/1/1∑5 (20%/20), started new job
2025-08-05 12:42:52: BoTorchGenerator, best VAL_ACC: 16.66, running/completed 4/1∑5 (20%/20), new result: 8.92
2025-08-05 12:43:13: BoTorchGenerator, best VAL_ACC: 16.66, running 4∑4 (20%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 12:43:22: BoTorchGenerator, best VAL_ACC: 16.66, running 4∑4 (20%/20), getting new HP set
2025-08-05 12:43:36: BoTorchGenerator, best VAL_ACC: 16.66, running 4∑4 (10%/20), requested 1 jobs, got 1, 16.65 s/job
2025-08-05 12:43:42: BoTorchGenerator, best VAL_ACC: 16.66, completed/running 2/2∑4 (10%/20), eval #1/1 start
2025-08-05 12:43:50: BoTorchGenerator, best VAL_ACC: 16.66, completed/running 2/2∑4 (10%/20), starting new job
2025-08-05 12:43:58: BoTorchGenerator, best VAL_ACC: 16.66, completed/running/unknown 2/2/1∑5 (15%/20), started new job
2025-08-05 12:44:06: BoTorchGenerator, best VAL_ACC: 16.66, completed/running/pending 2/2/1∑5 (15%/20), new result: 11.35
2025-08-05 12:44:06: BoTorchGenerator, best VAL_ACC: 16.66, completed/running/pending 2/2/1∑5 (15%/20), new result: 9.8
2025-08-05 12:44:42: BoTorchGenerator, best VAL_ACC: 16.66, completed/running 1/2∑3 (10%/20), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-05 12:44:52: BoTorchGenerator, best VAL_ACC: 16.66, completed/running 1/2∑3 (10%/20), getting new HP set
2025-08-05 12:45:06: BoTorchGenerator, best VAL_ACC: 16.66, completed/running 1/2∑3 (10%/20), requested 1 jobs, got 1, 17.73 s/job
2025-08-05 12:45:12: BoTorchGenerator, best VAL_ACC: 16.66, completed/running 1/2∑3 (10%/20), eval #1/1 start
2025-08-05 12:45:19: BoTorchGenerator, best VAL_ACC: 16.66, completed/running 1/2∑3 (10%/20), starting new job
2025-08-05 12:45:29: BoTorchGenerator, best VAL_ACC: 16.66, completed/running/unknown 1/2/1∑4 (15%/20), started new job
2025-08-05 12:45:36: BoTorchGenerator, best VAL_ACC: 16.66, completed/running/pending 1/2/1∑4 (15%/20), new result: 76.48
2025-08-05 12:46:01: BoTorchGenerator, best VAL_ACC: 76.48, running 3∑3 (10%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 12:46:11: BoTorchGenerator, best VAL_ACC: 76.48, running 3∑3 (10%/20), getting new HP set
2025-08-05 12:46:25: BoTorchGenerator, best VAL_ACC: 76.48, running/completed 2/1∑3 (10%/20), requested 1 jobs, got 1, 16.83 s/job
2025-08-05 12:46:31: BoTorchGenerator, best VAL_ACC: 76.48, running/completed 2/1∑3 (10%/20), eval #1/1 start
2025-08-05 12:46:39: BoTorchGenerator, best VAL_ACC: 76.48, running/completed 2/1∑3 (10%/20), starting new job
2025-08-05 12:46:47: BoTorchGenerator, best VAL_ACC: 76.48, running/completed/unknown 2/1/1∑4 (15%/20), started new job
2025-08-05 12:46:55: BoTorchGenerator, best VAL_ACC: 76.48, running/completed 3/1∑4 (15%/20), new result: 10.1
2025-08-05 12:47:19: BoTorchGenerator, best VAL_ACC: 76.48, running 3∑3 (15%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 12:47:29: BoTorchGenerator, best VAL_ACC: 76.48, running 3∑3 (15%/20), getting new HP set
2025-08-05 12:47:42: BoTorchGenerator, best VAL_ACC: 76.48, running 3∑3 (15%/20), requested 1 jobs, got 1, 16.22 s/job
2025-08-05 12:47:49: BoTorchGenerator, best VAL_ACC: 76.48, running 3∑3 (15%/20), eval #1/1 start
2025-08-05 12:47:56: BoTorchGenerator, best VAL_ACC: 76.48, running 3∑3 (15%/20), starting new job
2025-08-05 12:48:04: BoTorchGenerator, best VAL_ACC: 76.48, running/unknown 3/1∑4 (20%/20), started new job
2025-08-05 12:48:15: BoTorchGenerator, best VAL_ACC: 76.48, running/pending 3/1∑4 (20%/20), getting new HP set
2025-08-05 12:48:34: BoTorchGenerator, best VAL_ACC: 76.48, running/completed 3/1∑4 (15%/20), requested 1 jobs, got 1, 21.50 s/job
2025-08-05 12:48:40: BoTorchGenerator, best VAL_ACC: 76.48, running/completed 3/1∑4 (15%/20), eval #1/1 start
2025-08-05 12:48:47: BoTorchGenerator, best VAL_ACC: 76.48, running/completed 3/1∑4 (15%/20), starting new job
2025-08-05 12:48:55: BoTorchGenerator, best VAL_ACC: 76.48, running/completed/unknown 3/1/1∑5 (20%/20), started new job
2025-08-05 12:49:03: BoTorchGenerator, best VAL_ACC: 76.48, running/completed/pending 3/1/1∑5 (20%/20), new result: 18.52
2025-08-05 12:49:24: BoTorchGenerator, best VAL_ACC: 76.48, running 4∑4 (20%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 12:49:33: BoTorchGenerator, best VAL_ACC: 76.48, running 4∑4 (20%/20), getting new HP set
2025-08-05 12:49:47: BoTorchGenerator, best VAL_ACC: 76.48, running 4∑4 (20%/20), requested 1 jobs, got 1, 16.78 s/job
2025-08-05 12:49:54: BoTorchGenerator, best VAL_ACC: 76.48, running 4∑4 (20%/20), eval #1/1 start
2025-08-05 12:50:02: BoTorchGenerator, best VAL_ACC: 76.48, running 4∑4 (20%/20), starting new job
2025-08-05 12:50:10: BoTorchGenerator, best VAL_ACC: 76.48, running/unknown 4/1∑5 (25%/20), started new job
2025-08-05 12:50:21: BoTorchGenerator, best VAL_ACC: 76.48, running/pending 4/1∑5 (25%/20), getting new HP set
2025-08-05 12:50:37: BoTorchGenerator, best VAL_ACC: 76.48, running 5∑5 (25%/20), requested 1 jobs, got 1, 17.77 s/job
2025-08-05 12:50:44: BoTorchGenerator, best VAL_ACC: 76.48, running 5∑5 (25%/20), eval #1/1 start
2025-08-05 12:50:52: BoTorchGenerator, best VAL_ACC: 76.48, running 5∑5 (25%/20), starting new job
2025-08-05 12:51:01: BoTorchGenerator, best VAL_ACC: 76.48, running/unknown 5/1∑6 (30%/20), started new job
2025-08-05 12:51:12: BoTorchGenerator, best VAL_ACC: 76.48, running/pending 5/1∑6 (30%/20), getting new HP set
2025-08-05 12:51:26: BoTorchGenerator, best VAL_ACC: 76.48, running/completed 5/1∑6 (25%/20), requested 1 jobs, got 1, 17.01 s/job
2025-08-05 12:51:33: BoTorchGenerator, best VAL_ACC: 76.48, running/completed 5/1∑6 (25%/20), eval #1/1 start
2025-08-05 12:51:41: BoTorchGenerator, best VAL_ACC: 76.48, running/completed 5/1∑6 (25%/20), starting new job
2025-08-05 12:51:51: BoTorchGenerator, best VAL_ACC: 76.48, running/completed/unknown 5/1/1∑7 (30%/20), started new job
2025-08-05 12:51:58: BoTorchGenerator, best VAL_ACC: 76.48, running/completed/pending 5/1/1∑7 (30%/20), new result: 84.39
2025-08-05 12:52:36: BoTorchGenerator, best VAL_ACC: 84.39, running/completed 4/2∑6 (20%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 12:52:48: BoTorchGenerator, best VAL_ACC: 84.39, running/completed 4/2∑6 (20%/20), getting new HP set
2025-08-05 12:53:05: BoTorchGenerator, best VAL_ACC: 84.39, running/completed 4/2∑6 (20%/20), requested 1 jobs, got 1, 19.05 s/job
2025-08-05 12:53:13: BoTorchGenerator, best VAL_ACC: 84.39, running/completed 4/2∑6 (20%/20), eval #1/1 start
2025-08-05 12:53:22: BoTorchGenerator, best VAL_ACC: 84.39, running/completed 4/2∑6 (20%/20), starting new job
2025-08-05 12:53:31: BoTorchGenerator, best VAL_ACC: 84.39, running/completed/unknown 4/2/1∑7 (25%/20), started new job
2025-08-05 12:53:40: BoTorchGenerator, best VAL_ACC: 84.39, running/completed/pending 4/2/1∑7 (25%/20), new result: 11.35
2025-08-05 12:53:40: BoTorchGenerator, best VAL_ACC: 84.39, running/completed/pending 4/2/1∑7 (25%/20), new result: 10.28
2025-08-05 12:54:12: BoTorchGenerator, best VAL_ACC: 84.39, running 5∑5 (25%/20), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-05 12:54:22: BoTorchGenerator, best VAL_ACC: 84.39, running 5∑5 (25%/20), getting new HP set
2025-08-05 12:54:38: BoTorchGenerator, best VAL_ACC: 84.39, running 5∑5 (20%/20), requested 1 jobs, got 1, 17.78 s/job
2025-08-05 12:54:45: BoTorchGenerator, best VAL_ACC: 84.39, running 5∑5 (20%/20), eval #1/1 start
2025-08-05 12:54:58: BoTorchGenerator, best VAL_ACC: 84.39, running/completed 4/1∑5 (20%/20), starting new job
2025-08-05 12:55:06: BoTorchGenerator, best VAL_ACC: 84.39, running/completed/unknown 4/1/1∑6 (25%/20), started new job
2025-08-05 12:55:16: BoTorchGenerator, best VAL_ACC: 84.39, running/completed 5/1∑6 (25%/20), new result: 10.32
2025-08-05 12:55:37: BoTorchGenerator, best VAL_ACC: 84.39, running 5∑5 (25%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 12:55:47: BoTorchGenerator, best VAL_ACC: 84.39, running 5∑5 (25%/20), getting new HP set
2025-08-05 12:56:03: BoTorchGenerator, best VAL_ACC: 84.39, running 5∑5 (25%/20), requested 1 jobs, got 1, 19.19 s/job
2025-08-05 12:56:11: BoTorchGenerator, best VAL_ACC: 84.39, running 5∑5 (25%/20), eval #1/1 start
2025-08-05 12:56:18: BoTorchGenerator, best VAL_ACC: 84.39, running 5∑5 (25%/20), starting new job
2025-08-05 12:56:26: BoTorchGenerator, best VAL_ACC: 84.39, running/unknown 5/1∑6 (30%/20), started new job
2025-08-05 12:56:40: BoTorchGenerator, best VAL_ACC: 84.39, running 6∑6 (30%/20), getting new HP set
2025-08-05 12:57:01: BoTorchGenerator, best VAL_ACC: 84.39, running 6∑6 (30%/20), requested 1 jobs, got 1, 21.52 s/job
2025-08-05 12:57:08: BoTorchGenerator, best VAL_ACC: 84.39, running 6∑6 (30%/20), eval #1/1 start
2025-08-05 12:57:16: BoTorchGenerator, best VAL_ACC: 84.39, running 6∑6 (30%/20), starting new job
2025-08-05 12:57:26: BoTorchGenerator, best VAL_ACC: 84.39, running/unknown 6/1∑7 (35%/20), started new job
2025-08-05 12:57:37: BoTorchGenerator, best VAL_ACC: 84.39, running 7∑7 (35%/20), getting new HP set
2025-08-05 12:57:53: BoTorchGenerator, best VAL_ACC: 84.39, running 7∑7 (35%/20), requested 1 jobs, got 1, 17.97 s/job
2025-08-05 12:58:00: BoTorchGenerator, best VAL_ACC: 84.39, running 7∑7 (35%/20), eval #1/1 start
2025-08-05 12:58:15: BoTorchGenerator, best VAL_ACC: 84.39, running 7∑7 (30%/20), starting new job
2025-08-05 12:58:23: BoTorchGenerator, best VAL_ACC: 84.39, running/completed/unknown 5/2/1∑8 (30%/20), started new job
2025-08-05 12:58:43: BoTorchGenerator, best VAL_ACC: 84.39, running/completed 6/2∑8 (30%/20), new result: 92.81
2025-08-05 12:58:43: BoTorchGenerator, best VAL_ACC: 84.39, running/completed 6/2∑8 (30%/20), new result: 29.4
2025-08-05 12:59:24: BoTorchGenerator, best VAL_ACC: 92.81, running 6∑6 (30%/20), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-05 12:59:34: BoTorchGenerator, best VAL_ACC: 92.81, running 6∑6 (30%/20), getting new HP set
2025-08-05 12:59:49: BoTorchGenerator, best VAL_ACC: 92.81, running 6∑6 (30%/20), requested 1 jobs, got 1, 17.66 s/job
2025-08-05 12:59:59: BoTorchGenerator, best VAL_ACC: 92.81, running 6∑6 (30%/20), eval #1/1 start
2025-08-05 13:00:06: BoTorchGenerator, best VAL_ACC: 92.81, running 6∑6 (30%/20), starting new job
2025-08-05 13:00:16: BoTorchGenerator, best VAL_ACC: 92.81, running/unknown 6/1∑7 (35%/20), started new job
2025-08-05 13:00:28: BoTorchGenerator, best VAL_ACC: 92.81, running 7∑7 (35%/20), getting new HP set
2025-08-05 13:00:44: BoTorchGenerator, best VAL_ACC: 92.81, running 7∑7 (35%/20), requested 1 jobs, got 1, 18.86 s/job
2025-08-05 13:00:51: BoTorchGenerator, best VAL_ACC: 92.81, running 7∑7 (35%/20), eval #1/1 start
2025-08-05 13:00:59: BoTorchGenerator, best VAL_ACC: 92.81, running 7∑7 (35%/20), starting new job
2025-08-05 13:01:08: BoTorchGenerator, best VAL_ACC: 92.81, running/completed/unknown 6/1/1∑8 (35%/20), started new job
2025-08-05 13:01:24: BoTorchGenerator, best VAL_ACC: 92.81, running/completed 7/1∑8 (35%/20), new result: 11.35
2025-08-05 13:01:51: BoTorchGenerator, best VAL_ACC: 92.81, running 7∑7 (35%/20), finishing jobs, finished 1 job
2025-08-05 13:02:01: BoTorchGenerator, best VAL_ACC: 92.81, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 13:02:16: BoTorchGenerator, best VAL_ACC: 92.81, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 13:02:31: BoTorchGenerator, best VAL_ACC: 92.81, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 13:02:44: BoTorchGenerator, best VAL_ACC: 92.81, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 13:02:58: BoTorchGenerator, best VAL_ACC: 92.81, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 13:03:11: BoTorchGenerator, best VAL_ACC: 92.81, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 13:03:24: BoTorchGenerator, best VAL_ACC: 92.81, running 7∑7 (35%/20), new result: 94.11
2025-08-05 13:03:50: BoTorchGenerator, best VAL_ACC: 94.11, running 6∑6 (30%/20), waiting for 7 jobs, finished 1 job
2025-08-05 13:03:59: BoTorchGenerator, best VAL_ACC: 94.11, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 13:04:13: BoTorchGenerator, best VAL_ACC: 94.11, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 13:04:27: BoTorchGenerator, best VAL_ACC: 94.11, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 13:04:42: BoTorchGenerator, best VAL_ACC: 94.11, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 13:04:56: BoTorchGenerator, best VAL_ACC: 94.11, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 13:05:10: BoTorchGenerator, best VAL_ACC: 94.11, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 13:05:25: BoTorchGenerator, best VAL_ACC: 94.11, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 13:05:39: BoTorchGenerator, best VAL_ACC: 94.11, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 13:05:54: BoTorchGenerator, best VAL_ACC: 94.11, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 13:06:13: BoTorchGenerator, best VAL_ACC: 94.11, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 13:06:26: BoTorchGenerator, best VAL_ACC: 94.11, running 6∑6 (25%/20), new result: 90.56
2025-08-05 13:06:51: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 6 jobs, finished 1 job
2025-08-05 13:07:00: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:07:19: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:07:33: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:07:47: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:08:00: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:08:14: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:08:27: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:08:40: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:08:53: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:09:07: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:09:22: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:09:37: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:09:51: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:10:04: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:10:17: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:10:30: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:10:43: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:10:56: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:11:10: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:11:24: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:11:38: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:11:51: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:12:04: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:12:17: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:12:32: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:12:46: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:12:58: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:13:11: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:13:25: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:13:37: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:13:50: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:14:03: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:14:16: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:14:29: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:14:42: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:14:56: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:15:10: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:15:23: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:15:36: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:15:49: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:16:04: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:16:17: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:16:51: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:17:08: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:17:25: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:17:38: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:17:53: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:18:07: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:18:20: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:18:34: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:19:03: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:19:22: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:19:42: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:19:58: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:20:20: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:20:35: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:20:49: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:21:05: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:21:21: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:21:38: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:21:53: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:22:08: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:22:24: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:22:38: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:22:53: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:23:08: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:23:24: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:23:40: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:23:56: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:24:12: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:24:28: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:24:42: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 13:25:09: BoTorchGenerator, best VAL_ACC: 94.11, running 5∑5 (20%/20), new result: 84.55
2025-08-05 13:25:40: BoTorchGenerator, best VAL_ACC: 94.11, running 4∑4 (20%/20), waiting for 5 jobs, finished 1 job
2025-08-05 13:26:07: BoTorchGenerator, best VAL_ACC: 94.11, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 13:26:30: BoTorchGenerator, best VAL_ACC: 94.11, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 13:26:45: BoTorchGenerator, best VAL_ACC: 94.11, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 13:27:00: BoTorchGenerator, best VAL_ACC: 94.11, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 13:27:14: BoTorchGenerator, best VAL_ACC: 94.11, running 4∑4 (15%/20), new result: 85.13
2025-08-05 13:27:38: BoTorchGenerator, best VAL_ACC: 94.11, running 3∑3 (15%/20), waiting for 4 jobs, finished 1 job
2025-08-05 13:27:47: BoTorchGenerator, best VAL_ACC: 94.11, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 13:28:00: BoTorchGenerator, best VAL_ACC: 94.11, running 3∑3 (10%/20), new result: 97.86
2025-08-05 13:28:40: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 3 jobs, finished 1 job
2025-08-05 13:28:49: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:29:03: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:29:17: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:29:31: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:29:44: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:30:00: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:30:13: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:30:40: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:31:04: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:31:21: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:31:35: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:31:51: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:32:06: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:32:19: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:32:35: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:33:00: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:33:22: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:33:36: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:33:52: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:34:08: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:34:23: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:34:37: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:34:51: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:35:10: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:35:38: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:35:56: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:36:12: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:36:28: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:36:45: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:37:02: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:37:19: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:37:57: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (10%/20), waiting for 2 jobs
2025-08-05 13:38:14: BoTorchGenerator, best VAL_ACC: 97.86, running 2∑2 (5%/20), new result: 92.67
2025-08-05 13:38:47: BoTorchGenerator, best VAL_ACC: 97.86, running 1∑1 (5%/20), waiting for 2 jobs, finished 1 job
2025-08-05 13:38:57: BoTorchGenerator, best VAL_ACC: 97.86, running 1∑1 (5%/20), waiting for 1 job
2025-08-05 13:39:14: BoTorchGenerator, best VAL_ACC: 97.86, running 1∑1 (5%/20), waiting for 1 job
2025-08-05 13:39:41: BoTorchGenerator, best VAL_ACC: 97.86, running 1∑1 (0%/20), new result: 10.1
2025-08-05 13:40:10: BoTorchGenerator, best VAL_ACC: 97.86, waiting for 1 job, finished 1 job
2025-08-05 13:40:28: BoTorchGenerator, best VAL_ACC: 97.86, getting new HP set
2025-08-05 13:40:48: BoTorchGenerator, best VAL_ACC: 97.86, requested 1 jobs, got 1, 26.75 s/job
2025-08-05 13:41:16: BoTorchGenerator, best VAL_ACC: 97.86, eval #1/1 start
2025-08-05 13:41:28: BoTorchGenerator, best VAL_ACC: 97.86, starting new job
2025-08-05 13:41:39: BoTorchGenerator, best VAL_ACC: 97.86, unknown 1∑1 (5%/20), started new job
2025-08-05 13:41:57: BoTorchGenerator, best VAL_ACC: 97.86, pending 1∑1 (5%/20), getting new HP set
2025-08-05 13:42:18: BoTorchGenerator, best VAL_ACC: 97.86, running 1∑1 (5%/20), requested 1 jobs, got 1, 26.08 s/job
2025-08-05 13:42:28: BoTorchGenerator, best VAL_ACC: 97.86, running 1∑1 (5%/20), eval #1/1 start
2025-08-05 13:42:38: BoTorchGenerator, best VAL_ACC: 97.86, running 1∑1 (5%/20), starting new job
2025-08-05 13:42:47: BoTorchGenerator, best VAL_ACC: 97.86, running/unknown 1/1∑2 (10%/20), started new job
2025-08-05 13:43:05: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 1/1∑2 (10%/20), getting new HP set
2025-08-05 13:43:53: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 1/1∑2 (10%/20), requested 1 jobs, got 1, 53.16 s/job
2025-08-05 13:44:04: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 1/1∑2 (10%/20), eval #1/1 start
2025-08-05 13:44:16: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 1/1∑2 (10%/20), starting new job
2025-08-05 13:44:27: BoTorchGenerator, best VAL_ACC: 97.86, running/unknown 2/1∑3 (15%/20), started new job
2025-08-05 13:44:50: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 2/1∑3 (15%/20), getting new HP set
2025-08-05 13:45:07: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 2/1∑3 (15%/20), requested 1 jobs, got 1, 21.96 s/job
2025-08-05 13:45:16: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 2/1∑3 (15%/20), eval #1/1 start
2025-08-05 13:45:29: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 2/1∑3 (15%/20), starting new job
2025-08-05 13:45:40: BoTorchGenerator, best VAL_ACC: 97.86, running/unknown 3/1∑4 (20%/20), started new job
2025-08-05 13:45:58: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 3/1∑4 (20%/20), getting new HP set
2025-08-05 13:46:35: BoTorchGenerator, best VAL_ACC: 97.86, running 4∑4 (20%/20), requested 1 jobs, got 1, 44.74 s/job
2025-08-05 13:46:53: BoTorchGenerator, best VAL_ACC: 97.86, running 4∑4 (15%/20), eval #1/1 start
2025-08-05 13:47:16: BoTorchGenerator, best VAL_ACC: 97.86, running 4∑4 (15%/20), starting new job
2025-08-05 13:47:29: BoTorchGenerator, best VAL_ACC: 97.86, completed/running/unknown 1/3/1∑5 (20%/20), started new job
2025-08-05 13:47:46: BoTorchGenerator, best VAL_ACC: 97.86, completed/running/pending 1/3/1∑5 (20%/20), new result: 11.17
2025-08-05 13:48:16: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 3/1∑4 (20%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 13:48:32: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 3/1∑4 (20%/20), getting new HP set
2025-08-05 13:49:12: BoTorchGenerator, best VAL_ACC: 97.86, running 4∑4 (20%/20), requested 1 jobs, got 1, 45.62 s/job
2025-08-05 13:49:55: BoTorchGenerator, best VAL_ACC: 97.86, running 4∑4 (20%/20), eval #1/1 start
2025-08-05 13:50:05: BoTorchGenerator, best VAL_ACC: 97.86, running 4∑4 (20%/20), starting new job
2025-08-05 13:50:20: BoTorchGenerator, best VAL_ACC: 97.86, running/unknown 4/1∑5 (25%/20), started new job
2025-08-05 13:50:37: BoTorchGenerator, best VAL_ACC: 97.86, running 5∑5 (25%/20), getting new HP set
2025-08-05 13:50:57: BoTorchGenerator, best VAL_ACC: 97.86, running 5∑5 (25%/20), requested 1 jobs, got 1, 25.57 s/job
2025-08-05 13:51:18: BoTorchGenerator, best VAL_ACC: 97.86, running 5∑5 (25%/20), eval #1/1 start
2025-08-05 13:51:40: BoTorchGenerator, best VAL_ACC: 97.86, running 5∑5 (25%/20), starting new job
2025-08-05 13:52:12: BoTorchGenerator, best VAL_ACC: 97.86, running/unknown 5/1∑6 (30%/20), started new job
2025-08-05 13:52:47: BoTorchGenerator, best VAL_ACC: 97.86, running 6∑6 (30%/20), getting new HP set
2025-08-05 13:53:13: BoTorchGenerator, best VAL_ACC: 97.86, running 6∑6 (30%/20), requested 1 jobs, got 1, 32.53 s/job
2025-08-05 13:53:21: BoTorchGenerator, best VAL_ACC: 97.86, running 6∑6 (25%/20), eval #1/1 start
2025-08-05 13:53:44: BoTorchGenerator, best VAL_ACC: 97.86, running 6∑6 (25%/20), starting new job
2025-08-05 13:53:55: BoTorchGenerator, best VAL_ACC: 97.86, running/completed/pending 5/1/1∑7 (30%/20), started new job
2025-08-05 13:54:11: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 6/1∑7 (30%/20), new result: 96.4
2025-08-05 13:54:40: BoTorchGenerator, best VAL_ACC: 97.86, running 6∑6 (30%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 13:55:01: BoTorchGenerator, best VAL_ACC: 97.86, running 6∑6 (30%/20), getting new HP set
2025-08-05 13:55:20: BoTorchGenerator, best VAL_ACC: 97.86, running 6∑6 (30%/20), requested 1 jobs, got 1, 26.79 s/job
2025-08-05 13:55:29: BoTorchGenerator, best VAL_ACC: 97.86, running 6∑6 (30%/20), eval #1/1 start
2025-08-05 13:55:40: BoTorchGenerator, best VAL_ACC: 97.86, running 6∑6 (30%/20), starting new job
2025-08-05 13:55:50: BoTorchGenerator, best VAL_ACC: 97.86, running/unknown 6/1∑7 (35%/20), started new job
2025-08-05 13:56:08: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 6/1∑7 (35%/20), getting new HP set
2025-08-05 13:56:39: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), requested 1 jobs, got 1, 38.50 s/job
2025-08-05 13:56:51: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), eval #1/1 start
2025-08-05 13:57:00: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), starting new job
2025-08-05 13:57:10: BoTorchGenerator, best VAL_ACC: 97.86, running/completed/unknown 6/1/1∑8 (35%/20), started new job
2025-08-05 13:57:28: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 7/1∑8 (35%/20), new result: 94.31
2025-08-05 13:57:55: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 13:58:10: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), getting new HP set
2025-08-05 13:58:47: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), requested 1 jobs, got 1, 43.01 s/job
2025-08-05 13:59:01: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (30%/20), eval #1/1 start
2025-08-05 13:59:19: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (30%/20), starting new job
2025-08-05 13:59:29: BoTorchGenerator, best VAL_ACC: 97.86, running/completed/unknown 6/1/1∑8 (35%/20), started new job
2025-08-05 13:59:41: BoTorchGenerator, best VAL_ACC: 97.86, running/completed/pending 6/1/1∑8 (35%/20), new result: 94.82
2025-08-05 14:00:12: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 14:00:32: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), getting new HP set
2025-08-05 14:00:53: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), requested 1 jobs, got 1, 30.59 s/job
2025-08-05 14:01:03: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), eval #1/1 start
2025-08-05 14:01:14: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), starting new job
2025-08-05 14:01:25: BoTorchGenerator, best VAL_ACC: 97.86, running/unknown 7/1∑8 (40%/20), started new job
2025-08-05 14:01:44: BoTorchGenerator, best VAL_ACC: 97.86, running 8∑8 (40%/20), getting new HP set
2025-08-05 14:02:04: BoTorchGenerator, best VAL_ACC: 97.86, completed/running 1/7∑8 (35%/20), requested 1 jobs, got 1, 26.95 s/job
2025-08-05 14:02:14: BoTorchGenerator, best VAL_ACC: 97.86, completed/running 1/7∑8 (35%/20), eval #1/1 start
2025-08-05 14:02:33: BoTorchGenerator, best VAL_ACC: 97.86, completed/running 1/7∑8 (35%/20), starting new job
2025-08-05 14:02:43: BoTorchGenerator, best VAL_ACC: 97.86, completed/running/unknown 1/7/1∑9 (40%/20), started new job
2025-08-05 14:03:10: BoTorchGenerator, best VAL_ACC: 97.86, completed/running 2/7∑9 (35%/20), new result: 9.58
2025-08-05 14:03:10: BoTorchGenerator, best VAL_ACC: 97.86, completed/running 2/7∑9 (35%/20), new result: 84.04
2025-08-05 14:03:50: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-05 14:04:05: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), getting new HP set
2025-08-05 14:04:23: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), requested 1 jobs, got 1, 25.12 s/job
2025-08-05 14:04:32: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), eval #1/1 start
2025-08-05 14:04:42: BoTorchGenerator, best VAL_ACC: 97.86, running 7∑7 (35%/20), starting new job
2025-08-05 14:04:53: BoTorchGenerator, best VAL_ACC: 97.86, running/unknown 7/1∑8 (40%/20), started new job
2025-08-05 14:05:09: BoTorchGenerator, best VAL_ACC: 97.86, running 8∑8 (40%/20), getting new HP set
2025-08-05 14:05:28: BoTorchGenerator, best VAL_ACC: 97.86, running 8∑8 (40%/20), requested 1 jobs, got 1, 23.49 s/job
2025-08-05 14:05:37: BoTorchGenerator, best VAL_ACC: 97.86, running 8∑8 (40%/20), eval #1/1 start
2025-08-05 14:05:48: BoTorchGenerator, best VAL_ACC: 97.86, running 8∑8 (40%/20), starting new job
2025-08-05 14:05:58: BoTorchGenerator, best VAL_ACC: 97.86, running/unknown 8/1∑9 (45%/20), started new job
2025-08-05 14:06:15: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 8/1∑9 (45%/20), getting new HP set
2025-08-05 14:06:34: BoTorchGenerator, best VAL_ACC: 97.86, running 9∑9 (45%/20), requested 1 jobs, got 1, 24.75 s/job
2025-08-05 14:06:42: BoTorchGenerator, best VAL_ACC: 97.86, running 9∑9 (45%/20), eval #1/1 start
2025-08-05 14:06:52: BoTorchGenerator, best VAL_ACC: 97.86, running 9∑9 (45%/20), starting new job
2025-08-05 14:07:03: BoTorchGenerator, best VAL_ACC: 97.86, running/unknown 9/1∑10 (50%/20), started new job
2025-08-05 14:07:24: BoTorchGenerator, best VAL_ACC: 97.86, running/pending 9/1∑10 (50%/20), getting new HP set
2025-08-05 14:08:15: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 9/1∑10 (45%/20), requested 1 jobs, got 1, 59.76 s/job
2025-08-05 14:08:41: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 9/1∑10 (45%/20), eval #1/1 start
2025-08-05 14:09:16: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 9/1∑10 (45%/20), starting new job
2025-08-05 14:09:27: BoTorchGenerator, best VAL_ACC: 97.86, running/completed/unknown 9/1/1∑11 (50%/20), started new job
2025-08-05 14:09:38: BoTorchGenerator, best VAL_ACC: 97.86, running/completed/pending 9/1/1∑11 (50%/20), new result: 90.26
2025-08-05 14:10:09: BoTorchGenerator, best VAL_ACC: 97.86, running 10∑10 (50%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 14:10:26: BoTorchGenerator, best VAL_ACC: 97.86, running 10∑10 (50%/20), getting new HP set
2025-08-05 14:11:09: BoTorchGenerator, best VAL_ACC: 97.86, running 10∑10 (50%/20), requested 1 jobs, got 1, 50.30 s/job
2025-08-05 14:11:24: BoTorchGenerator, best VAL_ACC: 97.86, running 10∑10 (50%/20), eval #1/1 start
2025-08-05 14:11:55: BoTorchGenerator, best VAL_ACC: 97.86, running 10∑10 (45%/20), starting new job
2025-08-05 14:12:07: BoTorchGenerator, best VAL_ACC: 97.86, running/completed/unknown 9/1/1∑11 (50%/20), started new job
2025-08-05 14:12:21: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 10/1∑11 (50%/20), new result: 9.82
2025-08-05 14:12:52: BoTorchGenerator, best VAL_ACC: 97.86, running 10∑10 (50%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 14:13:11: BoTorchGenerator, best VAL_ACC: 97.86, running 10∑10 (50%/20), getting new HP set
2025-08-05 14:13:45: BoTorchGenerator, best VAL_ACC: 97.86, running 10∑10 (50%/20), requested 1 jobs, got 1, 39.98 s/job
2025-08-05 14:14:09: BoTorchGenerator, best VAL_ACC: 97.86, running 10∑10 (50%/20), eval #1/1 start
2025-08-05 14:14:31: BoTorchGenerator, best VAL_ACC: 97.86, running 10∑10 (40%/20), starting new job
2025-08-05 14:14:44: BoTorchGenerator, best VAL_ACC: 97.86, running/completed/unknown 8/2/1∑11 (45%/20), started new job
2025-08-05 14:15:05: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 9/2∑11 (45%/20), new result: 96.97
2025-08-05 14:15:05: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 9/2∑11 (45%/20), new result: 9.8
2025-08-05 14:15:47: BoTorchGenerator, best VAL_ACC: 97.86, running 9∑9 (45%/20), finishing jobs (_get_next_trials), finished 2 jobs
2025-08-05 14:16:02: BoTorchGenerator, best VAL_ACC: 97.86, running 9∑9 (45%/20), getting new HP set
2025-08-05 14:16:42: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 7/2∑9 (35%/20), requested 1 jobs, got 1, 45.85 s/job
2025-08-05 14:16:55: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 7/2∑9 (35%/20), eval #1/1 start
2025-08-05 14:17:15: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 7/2∑9 (35%/20), starting new job
2025-08-05 14:17:26: BoTorchGenerator, best VAL_ACC: 97.86, running/completed/unknown 7/2/1∑10 (40%/20), started new job
2025-08-05 14:17:36: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 8/2∑10 (40%/20), new result: 9.8
2025-08-05 14:17:36: BoTorchGenerator, best VAL_ACC: 97.86, running/completed 8/2∑10 (40%/20), new result: 9.8
2025-08-05 14:18:17: BoTorchGenerator, best VAL_ACC: 97.86, running 8∑8 (40%/20), finishing jobs, finished 2 jobs
2025-08-05 14:18:48: BoTorchGenerator, best VAL_ACC: 97.86, running 8∑8 (40%/20), waiting for 8 jobs
2025-08-05 14:19:14: BoTorchGenerator, best VAL_ACC: 97.86, running 8∑8 (35%/20), new result: 98.1
2025-08-05 14:19:47: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), waiting for 8 jobs, finished 1 job
2025-08-05 14:19:59: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 14:20:20: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 14:20:45: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 14:21:02: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 14:21:27: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 14:21:49: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 14:22:08: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 14:22:24: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 14:22:41: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 14:23:02: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 14:23:18: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), waiting for 7 jobs
2025-08-05 14:23:40: BoTorchGenerator, best VAL_ACC: 98.1, running 7∑7 (35%/20), new result: 97.89
2025-08-05 14:24:16: BoTorchGenerator, best VAL_ACC: 98.1, running 6∑6 (30%/20), waiting for 7 jobs, finished 1 job
2025-08-05 14:24:27: BoTorchGenerator, best VAL_ACC: 98.1, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 14:24:51: BoTorchGenerator, best VAL_ACC: 98.1, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 14:25:08: BoTorchGenerator, best VAL_ACC: 98.1, running 6∑6 (30%/20), waiting for 6 jobs
2025-08-05 14:25:27: BoTorchGenerator, best VAL_ACC: 98.1, running 6∑6 (30%/20), new result: 11.35
2025-08-05 14:26:35: BoTorchGenerator, best VAL_ACC: 98.1, running 5∑5 (25%/20), waiting for 6 jobs, finished 1 job
2025-08-05 14:26:50: BoTorchGenerator, best VAL_ACC: 98.1, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 14:27:08: BoTorchGenerator, best VAL_ACC: 98.1, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 14:27:24: BoTorchGenerator, best VAL_ACC: 98.1, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 14:27:40: BoTorchGenerator, best VAL_ACC: 98.1, running 5∑5 (25%/20), waiting for 5 jobs
2025-08-05 14:27:54: BoTorchGenerator, best VAL_ACC: 98.1, running 5∑5 (20%/20), new result: 9.8
2025-08-05 14:28:25: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 5 jobs, finished 1 job
2025-08-05 14:28:37: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:29:06: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:29:25: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:29:43: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:29:58: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:30:14: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:30:30: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:30:48: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:31:03: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:31:30: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:31:52: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:32:10: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:32:25: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (20%/20), waiting for 4 jobs
2025-08-05 14:32:42: BoTorchGenerator, best VAL_ACC: 98.1, running 4∑4 (15%/20), new result: 98.2
2025-08-05 14:33:19: BoTorchGenerator, best VAL_ACC: 98.2, running 3∑3 (15%/20), waiting for 4 jobs, finished 1 job
2025-08-05 14:33:41: BoTorchGenerator, best VAL_ACC: 98.2, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 14:34:01: BoTorchGenerator, best VAL_ACC: 98.2, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 14:34:17: BoTorchGenerator, best VAL_ACC: 98.2, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 14:34:34: BoTorchGenerator, best VAL_ACC: 98.2, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 14:34:50: BoTorchGenerator, best VAL_ACC: 98.2, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 14:35:06: BoTorchGenerator, best VAL_ACC: 98.2, running 3∑3 (15%/20), waiting for 3 jobs
2025-08-05 14:35:22: BoTorchGenerator, best VAL_ACC: 98.2, running 3∑3 (10%/20), new result: 98.02
2025-08-05 14:37:09: BoTorchGenerator, best VAL_ACC: 98.2, running 2∑2 (5%/20), waiting for 3 jobs, finished 1 job
2025-08-05 14:37:20: BoTorchGenerator, best VAL_ACC: 98.2, running 2∑2 (5%/20), waiting for 2 jobs
2025-08-05 14:37:36: BoTorchGenerator, best VAL_ACC: 98.2, running 2∑2 (0%/20), new result: 97.88
2025-08-05 14:37:36: BoTorchGenerator, best VAL_ACC: 98.2, running 2∑2 (0%/20), new result: 96.33
2025-08-05 14:38:21: BoTorchGenerator, best VAL_ACC: 98.2, waiting for 2 jobs, finished 2 jobs
2025-08-05 14:38:37: BoTorchGenerator, best VAL_ACC: 98.2, getting new HP set
2025-08-05 14:38:56: BoTorchGenerator, best VAL_ACC: 98.2, requested 1 jobs, got 1, 22.90 s/job
2025-08-05 14:39:04: BoTorchGenerator, best VAL_ACC: 98.2, eval #1/1 start
2025-08-05 14:39:15: BoTorchGenerator, best VAL_ACC: 98.2, starting new job
2025-08-05 14:39:26: BoTorchGenerator, best VAL_ACC: 98.2, unknown 1∑1 (5%/20), started new job
2025-08-05 14:39:43: BoTorchGenerator, best VAL_ACC: 98.2, pending 1∑1 (5%/20), getting new HP set
2025-08-05 14:40:04: BoTorchGenerator, best VAL_ACC: 98.2, pending 1∑1 (5%/20), requested 1 jobs, got 1, 22.86 s/job
2025-08-05 14:40:12: BoTorchGenerator, best VAL_ACC: 98.2, pending 1∑1 (5%/20), eval #1/1 start
2025-08-05 14:40:23: BoTorchGenerator, best VAL_ACC: 98.2, pending 1∑1 (5%/20), starting new job
2025-08-05 14:40:34: BoTorchGenerator, best VAL_ACC: 98.2, pending/unknown 1/1∑2 (10%/20), started new job
2025-08-05 14:40:50: BoTorchGenerator, best VAL_ACC: 98.2, pending 2∑2 (10%/20), getting new HP set
2025-08-05 14:41:09: BoTorchGenerator, best VAL_ACC: 98.2, pending/running 1/1∑2 (10%/20), requested 1 jobs, got 1, 23.83 s/job
2025-08-05 14:41:18: BoTorchGenerator, best VAL_ACC: 98.2, pending/running 1/1∑2 (10%/20), eval #1/1 start
2025-08-05 14:41:28: BoTorchGenerator, best VAL_ACC: 98.2, pending/running 1/1∑2 (10%/20), starting new job
2025-08-05 14:41:38: BoTorchGenerator, best VAL_ACC: 98.2, pending/running/unknown 1/1/1∑3 (15%/20), started new job
2025-08-05 14:41:54: BoTorchGenerator, best VAL_ACC: 98.2, pending/running 2/1∑3 (15%/20), getting new HP set
2025-08-05 14:42:15: BoTorchGenerator, best VAL_ACC: 98.2, running 3∑3 (15%/20), requested 1 jobs, got 1, 23.27 s/job
2025-08-05 14:42:23: BoTorchGenerator, best VAL_ACC: 98.2, running 3∑3 (15%/20), eval #1/1 start
2025-08-05 14:42:34: BoTorchGenerator, best VAL_ACC: 98.2, running 3∑3 (15%/20), starting new job
2025-08-05 14:42:45: BoTorchGenerator, best VAL_ACC: 98.2, running/unknown 3/1∑4 (20%/20), started new job
2025-08-05 14:43:11: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 3/1∑4 (20%/20), getting new HP set
2025-08-05 14:43:32: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 3/1∑4 (20%/20), requested 1 jobs, got 1, 30.86 s/job
2025-08-05 14:43:46: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 3/1∑4 (20%/20), eval #1/1 start
2025-08-05 14:43:57: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 3/1∑4 (20%/20), starting new job
2025-08-05 14:44:09: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/unknown 3/1/1∑5 (25%/20), started new job
2025-08-05 14:44:25: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 3/2∑5 (25%/20), getting new HP set
2025-08-05 14:44:45: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 4/1∑5 (25%/20), requested 1 jobs, got 1, 22.76 s/job
2025-08-05 14:44:54: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 4/1∑5 (25%/20), eval #1/1 start
2025-08-05 14:45:05: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 4/1∑5 (25%/20), starting new job
2025-08-05 14:45:20: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/unknown 4/1/1∑6 (30%/20), started new job
2025-08-05 14:45:36: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 5/1∑6 (30%/20), getting new HP set
2025-08-05 14:45:57: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 5/1∑6 (30%/20), requested 1 jobs, got 1, 25.32 s/job
2025-08-05 14:46:06: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 5/1∑6 (30%/20), eval #1/1 start
2025-08-05 14:46:16: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 5/1∑6 (30%/20), starting new job
2025-08-05 14:46:26: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/unknown 5/1/1∑7 (35%/20), started new job
2025-08-05 14:46:43: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 6/1∑7 (35%/20), getting new HP set
2025-08-05 14:47:02: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 6/1∑7 (35%/20), requested 1 jobs, got 1, 24.21 s/job
2025-08-05 14:47:11: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 6/1∑7 (35%/20), eval #1/1 start
2025-08-05 14:47:21: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 6/1∑7 (35%/20), starting new job
2025-08-05 14:47:31: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/unknown 6/1/1∑8 (40%/20), started new job
2025-08-05 14:47:46: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 6/2∑8 (40%/20), getting new HP set
2025-08-05 14:48:05: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 7/1∑8 (40%/20), requested 1 jobs, got 1, 22.39 s/job
2025-08-05 14:48:15: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 7/1∑8 (40%/20), eval #1/1 start
2025-08-05 14:48:25: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 7/1∑8 (40%/20), starting new job
2025-08-05 14:48:36: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/unknown 7/1/1∑9 (45%/20), started new job
2025-08-05 14:48:53: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 7/2∑9 (45%/20), getting new HP set
2025-08-05 14:49:11: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 8/1∑9 (45%/20), requested 1 jobs, got 1, 23.80 s/job
2025-08-05 14:49:22: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 8/1∑9 (45%/20), eval #1/1 start
2025-08-05 14:49:32: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 8/1∑9 (45%/20), starting new job
2025-08-05 14:49:43: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/completed/unknown 7/1/1/1∑10 (45%/20), started new job
2025-08-05 14:50:04: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/completed 8/1/1∑10 (45%/20), new result: 97.97
2025-08-05 14:50:35: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 8/1∑9 (45%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 14:50:49: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 8/1∑9 (45%/20), getting new HP set
2025-08-05 14:51:08: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 8/1∑9 (45%/20), requested 1 jobs, got 1, 23.87 s/job
2025-08-05 14:51:17: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 8/1∑9 (45%/20), eval #1/1 start
2025-08-05 14:51:40: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/completed 7/1/1∑9 (40%/20), starting new job
2025-08-05 14:51:51: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/completed/unknown 7/1/1/1∑10 (45%/20), started new job
2025-08-05 14:52:34: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/completed 8/1/1∑10 (45%/20), new result: 97.08
2025-08-05 14:53:13: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 8/1∑9 (40%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 14:53:27: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/completed 7/1/1∑9 (40%/20), getting new HP set
2025-08-05 14:53:45: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/completed 7/1/1∑9 (40%/20), requested 1 jobs, got 1, 23.46 s/job
2025-08-05 14:53:54: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/completed 7/1/1∑9 (40%/20), eval #1/1 start
2025-08-05 14:54:05: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/completed 7/1/1∑9 (40%/20), starting new job
2025-08-05 14:54:16: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/completed/unknown 7/1/1/1∑10 (45%/20), started new job
2025-08-05 14:54:28: BoTorchGenerator, best VAL_ACC: 98.2, running/pending/completed 7/2/1∑10 (45%/20), new result: 96.14
2025-08-05 14:55:11: BoTorchGenerator, best VAL_ACC: 98.2, running 9∑9 (45%/20), finishing jobs (_get_next_trials), finished 1 job
2025-08-05 14:55:24: BoTorchGenerator, best VAL_ACC: 98.2, running 9∑9 (45%/20), getting new HP set
2025-08-05 14:55:50: BoTorchGenerator, best VAL_ACC: 98.2, running 9∑9 (45%/20), requested 1 jobs, got 1, 30.73 s/job
2025-08-05 14:56:00: BoTorchGenerator, best VAL_ACC: 98.2, running 9∑9 (45%/20), eval #1/1 start
2025-08-05 14:56:21: BoTorchGenerator, best VAL_ACC: 98.2, running 9∑9 (45%/20), starting new job
2025-08-05 14:56:36: BoTorchGenerator, best VAL_ACC: 98.2, running/unknown 9/1∑10 (50%/20), started new job
2025-08-05 14:56:53: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 9/1∑10 (50%/20), getting new HP set
2025-08-05 14:57:26: BoTorchGenerator, best VAL_ACC: 98.2, running 10∑10 (50%/20), requested 1 jobs, got 1, 37.34 s/job
2025-08-05 14:57:36: BoTorchGenerator, best VAL_ACC: 98.2, running 10∑10 (50%/20), eval #1/1 start
2025-08-05 14:57:45: BoTorchGenerator, best VAL_ACC: 98.2, running 10∑10 (50%/20), starting new job
2025-08-05 14:57:56: BoTorchGenerator, best VAL_ACC: 98.2, running/unknown 10/1∑11 (55%/20), started new job
2025-08-05 14:58:13: BoTorchGenerator, best VAL_ACC: 98.2, running 11∑11 (55%/20), getting new HP set
2025-08-05 14:58:55: BoTorchGenerator, best VAL_ACC: 98.2, running 11∑11 (55%/20), requested 1 jobs, got 1, 46.11 s/job
2025-08-05 14:59:09: BoTorchGenerator, best VAL_ACC: 98.2, running 11∑11 (55%/20), eval #1/1 start
2025-08-05 14:59:21: BoTorchGenerator, best VAL_ACC: 98.2, running 11∑11 (55%/20), starting new job
2025-08-05 14:59:35: BoTorchGenerator, best VAL_ACC: 98.2, running/unknown 11/1∑12 (60%/20), started new job
2025-08-05 15:00:00: BoTorchGenerator, best VAL_ACC: 98.2, running 12∑12 (60%/20), getting new HP set
2025-08-05 15:00:34: BoTorchGenerator, best VAL_ACC: 98.2, running 12∑12 (60%/20), requested 1 jobs, got 1, 38.39 s/job
2025-08-05 15:00:44: BoTorchGenerator, best VAL_ACC: 98.2, running 12∑12 (60%/20), eval #1/1 start
2025-08-05 15:00:55: BoTorchGenerator, best VAL_ACC: 98.2, running 12∑12 (60%/20), starting new job
2025-08-05 15:01:06: BoTorchGenerator, best VAL_ACC: 98.2, running/unknown 12/1∑13 (65%/20), started new job
2025-08-05 15:01:31: BoTorchGenerator, best VAL_ACC: 98.2, running 13∑13 (65%/20), getting new HP set
2025-08-05 15:02:17: BoTorchGenerator, best VAL_ACC: 98.2, running 13∑13 (65%/20), requested 1 jobs, got 1, 49.46 s/job
2025-08-05 15:02:35: BoTorchGenerator, best VAL_ACC: 98.2, running 13∑13 (65%/20), eval #1/1 start
2025-08-05 15:02:58: BoTorchGenerator, best VAL_ACC: 98.2, running 13∑13 (65%/20), starting new job
2025-08-05 15:03:25: BoTorchGenerator, best VAL_ACC: 98.2, running/unknown 13/1∑14 (70%/20), started new job
2025-08-05 15:03:55: BoTorchGenerator, best VAL_ACC: 98.2, running 14∑14 (70%/20), getting new HP set
2025-08-05 15:04:35: BoTorchGenerator, best VAL_ACC: 98.2, running 14∑14 (70%/20), requested 1 jobs, got 1, 46.25 s/job
2025-08-05 15:04:54: BoTorchGenerator, best VAL_ACC: 98.2, running 14∑14 (70%/20), eval #1/1 start
2025-08-05 15:05:06: BoTorchGenerator, best VAL_ACC: 98.2, running 14∑14 (70%/20), starting new job
2025-08-05 15:05:18: BoTorchGenerator, best VAL_ACC: 98.2, running/unknown 14/1∑15 (75%/20), started new job
2025-08-05 15:05:35: BoTorchGenerator, best VAL_ACC: 98.2, running 15∑15 (75%/20), getting new HP set
2025-08-05 15:05:55: BoTorchGenerator, best VAL_ACC: 98.2, running 15∑15 (75%/20), requested 1 jobs, got 1, 25.07 s/job
2025-08-05 15:06:06: BoTorchGenerator, best VAL_ACC: 98.2, running 15∑15 (75%/20), eval #1/1 start
2025-08-05 15:06:18: BoTorchGenerator, best VAL_ACC: 98.2, running 15∑15 (75%/20), starting new job
2025-08-05 15:06:29: BoTorchGenerator, best VAL_ACC: 98.2, running/unknown 15/1∑16 (80%/20), started new job
2025-08-05 15:06:45: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), getting new HP set
2025-08-05 15:07:07: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), requested 1 jobs, got 1, 24.85 s/job
2025-08-05 15:07:17: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), eval #1/1 start
2025-08-05 15:07:27: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), starting new job
2025-08-05 15:07:39: BoTorchGenerator, best VAL_ACC: 98.2, running/unknown 16/1∑17 (85%/20), started new job
2025-08-05 15:07:55: BoTorchGenerator, best VAL_ACC: 98.2, running/pending 16/1∑17 (85%/20), waiting for 17 jobs
2025-08-05 15:08:13: BoTorchGenerator, best VAL_ACC: 98.2, running 17∑17 (85%/20), waiting for 17 jobs
2025-08-05 15:08:30: BoTorchGenerator, best VAL_ACC: 98.2, running 17∑17 (85%/20), waiting for 17 jobs
2025-08-05 15:08:47: BoTorchGenerator, best VAL_ACC: 98.2, running 17∑17 (85%/20), waiting for 17 jobs
2025-08-05 15:09:04: BoTorchGenerator, best VAL_ACC: 98.2, running 17∑17 (85%/20), waiting for 17 jobs
2025-08-05 15:09:20: BoTorchGenerator, best VAL_ACC: 98.2, running 17∑17 (85%/20), waiting for 17 jobs
2025-08-05 15:09:37: BoTorchGenerator, best VAL_ACC: 98.2, running 17∑17 (80%/20), new result: 88.29
2025-08-05 15:10:10: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 17 jobs, finished 1 job
2025-08-05 15:10:20: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:10:37: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:10:54: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:11:26: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:11:56: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:12:27: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:12:45: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:13:06: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:13:22: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:13:38: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:13:54: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:14:16: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:14:42: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:14:59: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:15:15: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (80%/20), waiting for 16 jobs
2025-08-05 15:15:30: BoTorchGenerator, best VAL_ACC: 98.2, running 16∑16 (75%/20), new result: 97.73
2025-08-05 15:16:07: BoTorchGenerator, best VAL_ACC: 98.2, running 15∑15 (75%/20), waiting for 16 jobs, finished 1 job
2025-08-05 15:16:34: BoTorchGenerator, best VAL_ACC: 98.2, running 15∑15 (75%/20), waiting for 15 jobs
2025-08-05 15:17:06: BoTorchGenerator, best VAL_ACC: 98.2, running 15∑15 (75%/20), waiting for 15 jobs
2025-08-05 15:17:29: BoTorchGenerator, best VAL_ACC: 98.2, running 15∑15 (75%/20), waiting for 15 jobs
2025-08-05 15:17:52: BoTorchGenerator, best VAL_ACC: 98.2, running 15∑15 (75%/20), waiting for 15 jobs
2025-08-05 15:18:09: BoTorchGenerator, best VAL_ACC: 98.2, running 15∑15 (75%/20), new result: 98.23
2025-08-05 15:18:49: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 15 jobs, finished 1 job
2025-08-05 15:18:59: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:19:34: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:20:09: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:20:33: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:20:52: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:21:10: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:21:26: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:21:47: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:22:09: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:22:26: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:22:44: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:23:01: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:23:17: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:23:33: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:23:51: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:24:07: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:24:26: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:24:42: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (70%/20), waiting for 14 jobs
2025-08-05 15:25:13: BoTorchGenerator, best VAL_ACC: 98.23, running 14∑14 (65%/20), new result: 98.02
2025-08-05 15:25:52: BoTorchGenerator, best VAL_ACC: 98.23, running 13∑13 (65%/20), waiting for 14 jobs, finished 1 job
2025-08-05 15:26:05: BoTorchGenerator, best VAL_ACC: 98.23, running 13∑13 (65%/20), waiting for 13 jobs
2025-08-05 15:26:24: BoTorchGenerator, best VAL_ACC: 98.23, running 13∑13 (65%/20), waiting for 13 jobs
2025-08-05 15:26:40: BoTorchGenerator, best VAL_ACC: 98.23, running 13∑13 (65%/20), waiting for 13 jobs
2025-08-05 15:26:57: BoTorchGenerator, best VAL_ACC: 98.23, running 13∑13 (65%/20), waiting for 13 jobs
2025-08-05 15:27:30: BoTorchGenerator, best VAL_ACC: 98.23, running 13∑13 (65%/20), waiting for 13 jobs
2025-08-05 15:27:54: BoTorchGenerator, best VAL_ACC: 98.23, running 13∑13 (65%/20), waiting for 13 jobs
2025-08-05 15:28:09: BoTorchGenerator, best VAL_ACC: 98.23, running 13∑13 (60%/20), new result: 98.29
2025-08-05 15:28:43: BoTorchGenerator, best VAL_ACC: 98.29, running 12∑12 (60%/20), waiting for 13 jobs, finished 1 job
2025-08-05 15:28:57: BoTorchGenerator, best VAL_ACC: 98.29, running 12∑12 (60%/20), waiting for 12 jobs
2025-08-05 15:29:15: BoTorchGenerator, best VAL_ACC: 98.29, running 12∑12 (60%/20), waiting for 12 jobs
2025-08-05 15:29:31: BoTorchGenerator, best VAL_ACC: 98.29, running 12∑12 (60%/20), new result: 98.43
2025-08-05 15:31:12: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 12 jobs, finished 1 job
2025-08-05 15:31:40: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:32:05: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:32:21: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:32:39: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:32:58: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:33:15: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:33:46: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:34:13: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:34:39: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:35:06: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:35:25: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:35:43: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:36:01: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:36:22: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:36:39: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:36:55: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:37:12: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:37:33: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:37:49: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:38:18: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
2025-08-05 15:38:40: BoTorchGenerator, best VAL_ACC: 98.43, running 11∑11 (55%/20), waiting for 11 jobs
Arguments Overview
Key | Value |
---|
config_yaml | None |
config_toml | None |
config_json | None |
num_random_steps | 20 |
max_eval | 500 |
run_program | [['cHl0aG9uMyAudGVzdHMvbW5pc3QvdHJhaW4gLS1lcG9jaHMgJWVwb2NocyAtLWxlYXJuaW5nX3JhdGUgJWxyIC0tYmF0Y2hfc2l6ZSAlYmF0Y2hfc2l6ZSAtLWhpZGRlbl9zaXplICVoaWRkZW5f… |
experiment_name | mnist_gpu_noall |
mem_gb | 10 |
parameter | [['epochs', 'range', '10', '200', 'int', 'false'], ['lr', 'range', '0.00001', '0.1', 'float', 'false'], ['batch_size', 'range', '8', '2048', 'int', |
| 'false'], ['hidden_size', 'range', '8', '2048', 'int', 'false'], ['dropout', 'range', '0', '0.5', 'float', 'false'], ['activation', 'fixed', |
| 'leaky_relu'], ['num_dense_layers', 'range', '1', '4', 'int', 'false'], ['init', 'fixed', 'normal'], ['weight_decay', 'range', '0', '1', 'float', |
| 'false']] |
continue_previous_job | None |
experiment_constraints | None |
run_dir | runs |
seed | None |
verbose_tqdm | False |
model | BOTORCH_MODULAR |
gridsearch | False |
occ | False |
show_sixel_scatter | False |
show_sixel_general | False |
show_sixel_trial_index_result | False |
follow | True |
send_anonymized_usage_stats | True |
ui_url | aHR0cHM6Ly9pbWFnZXNlZy5zY2Fkcy5kZS9vbW5pYXgvZ3VpP3BhcnRpdGlvbj1hbHBoYSZleHBlcmltZW50X25hbWU9bW5pc3RfZ3B1X25vYWxsJnJlc2VydmF0aW9uPSZhY2NvdW50PSZtZW1fZ2I… |
root_venv_dir | /home/pwinkler |
exclude | None |
main_process_gb | 8 |
max_nr_of_zero_results | 50 |
abbreviate_job_names | False |
orchestrator_file | None |
checkout_to_latest_tested_version | False |
live_share | True |
disable_tqdm | False |
disable_previous_job_constraint | False |
workdir | |
occ_type | euclid |
result_names | ['VAL_ACC=max'] |
minkowski_p | 2 |
signed_weighted_euclidean_weights | |
generation_strategy | None |
generate_all_jobs_at_once | False |
revert_to_random_when_seemingly_exhausted | True |
load_data_from_existing_jobs | [] |
n_estimators_randomforest | 100 |
max_attempts_for_generation | 20 |
external_generator | None |
username | None |
max_failed_jobs | 0 |
num_cpus_main_job | None |
calculate_pareto_front_of_job | [] |
show_generate_time_table | False |
force_choice_for_ranges | False |
max_abandoned_retrial | 20 |
share_password | None |
dryrun | False |
db_url | None |
run_program_once | None |
dont_warm_start_refitting | False |
refit_on_cv | False |
fit_out_of_design | False |
fit_abandoned | False |
dont_jit_compile | False |
num_restarts | 20 |
raw_samples | 1024 |
max_num_of_parallel_sruns | 16 |
no_transform_inputs | False |
no_normalize_y | False |
transforms | [] |
num_parallel_jobs | 20 |
worker_timeout | 120 |
slurm_use_srun | False |
time | 240 |
partition | alpha |
reservation | None |
force_local_execution | False |
slurm_signal_delay_s | 0 |
nodes_per_job | 1 |
cpus_per_task | 1 |
account | None |
gpus | 1 |
run_mode | local |
verbose | False |
verbose_break_run_search_table | False |
debug | False |
flame_graph | False |
no_sleep | False |
tests | False |
show_worker_percentage_table_at_end | False |
auto_exclude_defective_hosts | False |
run_tests_that_fail_on_taurus | False |
raise_in_eval | False |
show_ram_every_n_seconds | 0 |
show_generation_and_submission_sixel | False |
just_return_defaults | False |
prettyprint | False |
1754388662.7948549,20,0,0
1754388668.2826533,20,0,0
1754388668.7888288,20,0,0
1754388675.7882516,20,0,0
1754388688.2941108,20,0,0
1754388698.3001928,20,0,0
1754388702.797552,20,0,0
1754388709.7081375,20,1,5
1754388715.2653978,20,1,5
1754388725.200803,20,1,5
1754388729.7066305,20,1,5
1754388734.145997,20,1,5
1754388740.233851,20,2,10
1754388745.7151668,20,2,10
1754388755.2237976,20,2,10
1754388767.9590204,20,2,10
1754388773.0908282,20,2,10
1754388778.9266376,20,3,15
1754388786.7161272,20,3,15
1754388796.11825,20,3,15
1754388801.0864656,20,3,15
1754388805.7657275,20,3,15
1754388811.8369834,20,4,20
1754388818.7933993,20,4,20
1754388829.704506,20,4,20
1754388834.2648523,20,4,20
1754388839.699089,20,4,20
1754388845.9063404,20,5,25
1754388851.7948577,20,5,25
1754388861.708343,20,5,25
1754388866.8029916,20,5,25
1754388871.7165387,20,5,25
1754388877.8476584,20,6,30
1754388883.7130754,20,6,30
1754388893.0981398,20,6,30
1754388898.016864,20,6,30
1754388902.9214451,20,6,30
1754388909.706874,20,7,35
1754388915.318072,20,7,35
1754388926.2357328,20,7,35
1754388931.9284968,20,7,35
1754388937.711289,20,7,35
1754388944.8348362,20,8,40
1754388950.7198896,20,8,40
1754388962.7983205,20,8,40
1754388967.7823195,20,8,40
1754388973.7821076,20,8,40
1754388979.8400347,20,9,45
1754388985.707671,20,9,45
1754388997.2192812,20,9,45
1754389002.7897203,20,9,45
1754389008.2727606,20,9,45
1754389015.050759,20,10,50
1754389020.9022849,20,10,50
1754389031.9123766,20,10,50
1754389036.8081403,20,10,50
1754389041.9912713,20,10,50
1754389048.715218,20,11,55
1754389054.8262968,20,11,55
1754389073.7136528,20,10,50
1754389079.0317898,20,9,45
1754389091.7042642,20,9,45
1754389098.2164345,20,10,50
1754389104.0689046,20,10,50
1754389104.0746913,20,10,50
1754389112.0771394,20,10,50
1754389112.7100568,20,10,50
1754389125.7134764,20,10,50
1754389132.2511003,20,10,50
1754389147.9443758,20,10,50
1754389153.108551,20,10,50
1754389158.7211034,20,10,50
1754389165.9820702,20,11,55
1754389172.73487,20,11,55
1754389183.7599168,20,11,55
1754389188.953696,20,11,55
1754389195.276468,20,11,55
1754389201.850444,20,12,60
1754389209.6970458,20,12,60
1754389221.0860589,20,12,60
1754389227.9273515,20,12,60
1754389233.7966747,20,12,60
1754389241.7114415,20,12,60
1754389252.719192,20,12,60
1754389258.0029988,20,12,60
1754389279.8617227,20,11,55
1754389285.9305809,20,11,55
1754389297.05748,20,11,55
1754389302.283893,20,11,55
1754389308.7118447,20,11,55
1754389318.1839836,20,12,60
1754389324.9729872,20,12,60
1754389330.7175243,20,12,60
1754389342.7097118,20,12,60
1754389350.8134549,20,12,60
1754389363.1582623,20,12,60
1754389368.8545501,20,12,60
1754389375.9017444,20,12,60
1754389382.8594089,20,13,65
1754389390.1765218,20,13,65
1754389401.734182,20,12,60
1754389407.8492827,20,12,60
1754389420.0580385,20,12,60
1754389427.1855605,20,13,65
1754389434.3137896,20,13,65
1754389441.744664,20,13,65
1754389454.9992359,20,13,65
1754389461.929447,20,13,65
1754389474.7993386,20,13,65
1754389480.717639,20,12,60
1754389494.7174618,20,12,60
1754389501.8730345,20,13,65
1754389514.0616102,20,12,60
1754389514.0695078,20,12,60
1754389522.7202177,20,12,60
1754389523.7258265,20,12,60
1754389537.7015657,20,12,60
1754389543.7200308,20,12,60
1754389555.2013934,20,12,60
1754389561.0731418,20,12,60
1754389567.0960748,20,12,60
1754389574.1230261,20,13,65
1754389584.086726,20,13,65
1754389584.1616282,20,13,65
1754389584.2815816,20,13,65
1754389595.7155426,20,13,65
1754389607.7018268,20,13,65
1754389620.1339417,20,13,65
1754389631.7257643,20,13,65
1754389643.248412,20,13,65
1754389654.9192212,20,11,55
1754389654.9228313,20,11,55
1754389662.8679767,20,11,55
1754389662.8821394,20,11,55
1754389678.6916664,20,11,55
1754389684.706911,20,11,55
1754389696.705231,20,11,55
1754389707.7318666,20,11,55
1754389713.9121718,20,10,50
1754389731.799812,20,9,45
1754389737.7527215,20,9,45
1754389748.7156358,20,9,45
1754389754.7022188,20,9,45
1754389768.260806,20,9,45
1754389778.8594856,20,8,40
1754389791.0260978,20,8,40
1754389799.721318,20,8,40
1754389815.7399633,20,8,40
1754389824.7072935,20,8,40
1754389837.7049937,20,7,35
1754389845.844729,20,7,35
1754389861.7246342,20,7,35
1754389868.8279815,20,7,35
1754389879.8981886,20,7,35
1754389892.0811503,20,7,35
1754389903.694627,20,7,35
1754389915.7098625,20,7,35
1754389927.7089427,20,7,35
1754389934.0357184,20,6,30
1754389947.690686,20,6,30
1754389953.715818,20,6,30
1754389968.8094928,20,5,25
1754389976.00742,20,5,25
1754389988.1408584,20,5,25
1754389994.6998286,20,5,25
1754390005.7735367,20,5,25
1754390017.725568,20,5,25
1754390029.7057316,20,5,25
1754390041.8188026,20,4,20
1754390048.0947144,20,4,20
1754390061.2228913,20,4,20
1754390067.7068753,20,4,20
1754390078.9249284,20,4,20
1754390090.7751167,20,4,20
1754390104.6999617,20,4,20
1754390116.7119033,20,4,20
1754390128.7062638,20,3,15
1754390135.2774634,20,3,15
1754390148.7378888,20,3,15
1754390154.7198431,20,3,15
1754390167.7112236,20,3,15
1754390179.3076532,20,3,15
1754390191.1087193,20,3,15
1754390202.3086548,20,3,15
1754390214.6936858,20,3,15
1754390225.7218602,20,3,15
1754390231.72918,20,2,10
1754390245.7127185,20,2,10
1754390251.7136898,20,1,5
1754390262.802295,20,1,5
1754390269.3020658,20,1,5
1754390288.0745344,20,0,0
1754390296.1428933,20,0,0
1754390307.1599073,20,0,0
1754390314.1768267,20,0,0
1754390325.9130917,20,0,0
1754390337.035543,20,0,0
1754390349.2861352,20,0,0
1754390355.9860525,20,0,0
1754390362.8832433,20,0,0
1754390370.7143426,20,1,5
1754390383.1988342,20,1,5
1754390395.7776403,20,1,5
1754390402.7336009,20,1,5
1754390408.871458,20,1,5
1754390415.9030123,20,2,10
1754390427.7138178,20,2,10
1754390440.7152603,20,2,10
1754390446.7099235,20,2,10
1754390453.1870973,20,2,10
1754390460.1865413,20,3,15
1754390471.9573877,20,3,15
1754390484.749134,20,3,15
1754390490.9653292,20,3,15
1754390498.1900358,20,3,15
1754390505.2270143,20,4,20
1754390516.7118459,20,4,20
1754390542.7080166,20,3,15
1754390550.6988547,20,3,15
1754390558.2208848,20,3,15
1754390565.8540416,20,4,20
1754390572.7149873,20,4,20
1754390579.7153928,20,4,20
1754390593.236074,20,4,20
1754390602.7240653,20,4,20
1754390616.0195236,20,2,10
1754390622.709616,20,2,10
1754390630.733264,20,2,10
1754390638.8370373,20,3,15
1754390646.0542321,20,3,15
1754390646.0605743,20,3,15
1754390654.7964513,20,3,15
1754390654.8056054,20,3,15
1754390682.2150548,20,2,10
1754390692.8240724,20,2,10
1754390706.2416763,20,2,10
1754390712.7031183,20,2,10
1754390719.8455877,20,2,10
1754390728.1867142,20,3,15
1754390736.0314307,20,3,15
1754390742.155721,20,3,15
1754390761.9736314,20,2,10
1754390771.0695646,20,2,10
1754390785.1242588,20,2,10
1754390791.713054,20,2,10
1754390799.7198074,20,2,10
1754390807.0124605,20,3,15
1754390815.066408,20,3,15
1754390821.8320117,20,3,15
1754390839.71563,20,3,15
1754390849.0167713,20,3,15
1754390862.7026787,20,3,15
1754390869.7439759,20,3,15
1754390876.7084196,20,3,15
1754390884.8695633,20,4,20
1754390895.0134695,20,4,20
1754390914.1438322,20,3,15
1754390920.972013,20,3,15
1754390927.811637,20,3,15
1754390935.8679342,20,4,20
1754390943.257536,20,4,20
1754390950.039144,20,4,20
1754390963.988047,20,4,20
1754390973.7804418,20,4,20
1754390987.7128778,20,4,20
1754390994.6970382,20,4,20
1754391002.8814518,20,4,20
1754391010.8409755,20,5,25
1754391021.7085676,20,5,25
1754391036.2156363,20,5,25
1754391044.8512337,20,5,25
1754391052.7009654,20,5,25
1754391061.2920556,20,6,30
1754391072.2445605,20,6,30
1754391086.7140958,20,5,25
1754391093.7020202,20,5,25
1754391101.160904,20,5,25
1754391111.1166542,20,6,30
1754391118.9651895,20,6,30
1754391126.0943792,20,5,25
1754391156.7422497,20,4,20
1754391168.7578807,20,4,20
1754391185.1034591,20,4,20
1754391193.724083,20,4,20
1754391202.080854,20,4,20
1754391211.7146013,20,5,25
1754391220.0255728,20,5,25
1754391220.0306764,20,5,25
1754391229.7038817,20,5,25
1754391229.7097127,20,5,25
1754391252.710751,20,5,25
1754391262.9200318,20,5,25
1754391278.0573838,20,4,20
1754391285.012844,20,4,20
1754391297.9520278,20,4,20
1754391306.7209752,20,5,25
1754391314.9637547,20,5,25
1754391322.7164874,20,5,25
1754391337.7195399,20,5,25
1754391347.9173267,20,5,25
1754391363.8716068,20,5,25
1754391371.1885126,20,5,25
1754391378.7109113,20,5,25
1754391386.8377073,20,6,30
1754391400.9568183,20,6,30
1754391420.090739,20,6,30
1754391428.7041967,20,6,30
1754391436.8307536,20,6,30
1754391444.9257133,20,7,35
1754391457.8849854,20,7,35
1754391472.6986756,20,7,35
1754391480.7993402,20,7,35
1754391495.1790042,20,6,30
1754391503.8679807,20,6,30
1754391523.0812101,20,6,30
1754391523.0859468,20,6,30
1754391533.7184381,20,6,30
1754391533.719445,20,6,30
1754391564.0206823,20,6,30
1754391574.2380013,20,6,30
1754391589.722918,20,6,30
1754391599.017653,20,6,30
1754391606.9681818,20,6,30
1754391615.8325567,20,7,35
1754391628.041203,20,7,35
1754391644.2767394,20,7,35
1754391651.8789124,20,7,35
1754391659.7139742,20,7,35
1754391668.8316102,20,7,35
1754391684.8735297,20,7,35
1754391695.7282982,20,7,35
1754391711.7142026,20,7,35
1754391721.7045617,20,7,35
1754391721.7776458,20,7,35
1754391721.934851,20,7,35
1754391735.949452,20,7,35
1754391751.7135344,20,7,35
1754391764.7192988,20,7,35
1754391778.0332706,20,7,35
1754391791.4859204,20,7,35
1754391804.1645737,20,7,35
1754391811.7299142,20,6,30
1754391830.2321515,20,6,30
1754391838.9882934,20,6,30
1754391853.703362,20,6,30
1754391867.710703,20,6,30
1754391882.714804,20,6,30
1754391896.933168,20,6,30
1754391910.280075,20,6,30
1754391925.03303,20,6,30
1754391939.0226312,20,6,30
1754391954.750687,20,6,30
1754391973.6636112,20,6,30
1754391986.1600854,20,5,25
1754391996.0438328,20,5,25
1754392011.8869226,20,5,25
1754392020.225669,20,5,25
1754392039.6955898,20,5,25
1754392053.8622758,20,5,25
1754392067.7081776,20,5,25
1754392080.7120388,20,5,25
1754392094.2741787,20,5,25
1754392107.1637497,20,5,25
1754392120.7178946,20,5,25
1754392133.830299,20,5,25
1754392147.7292547,20,5,25
1754392162.7107773,20,5,25
1754392177.71213,20,5,25
1754392191.2751954,20,5,25
1754392204.2573638,20,5,25
1754392217.716984,20,5,25
1754392230.710037,20,5,25
1754392243.7308238,20,5,25
1754392256.717342,20,5,25
1754392270.7232075,20,5,25
1754392284.960541,20,5,25
1754392298.7125723,20,5,25
1754392311.9394321,20,5,25
1754392324.746766,20,5,25
1754392337.9196093,20,5,25
1754392352.7186458,20,5,25
1754392365.9727235,20,5,25
1754392378.8341286,20,5,25
1754392391.7370806,20,5,25
1754392405.099708,20,5,25
1754392417.7130663,20,5,25
1754392430.9308772,20,5,25
1754392443.7174885,20,5,25
1754392456.7149591,20,5,25
1754392469.8502748,20,5,25
1754392482.703829,20,5,25
1754392496.311466,20,5,25
1754392510.2889087,20,5,25
1754392523.106411,20,5,25
1754392536.7230115,20,5,25
1754392549.7043233,20,5,25
1754392562.9575205,20,5,25
1754392577.3136473,20,5,25
1754392611.0856311,20,5,25
1754392628.0831027,20,5,25
1754392645.7044616,20,5,25
1754392658.7400413,20,5,25
1754392673.8701835,20,5,25
1754392687.7504852,20,5,25
1754392700.8656802,20,5,25
1754392714.7128835,20,5,25
1754392743.7258165,20,5,25
1754392762.3304856,20,5,25
1754392781.7049816,20,5,25
1754392798.7202878,20,5,25
1754392820.056146,20,5,25
1754392835.041899,20,5,25
1754392849.8906977,20,5,25
1754392865.1283674,20,5,25
1754392881.7298934,20,5,25
1754392898.7288184,20,5,25
1754392913.3032043,20,5,25
1754392928.9558244,20,5,25
1754392944.1496637,20,5,25
1754392958.766717,20,5,25
1754392973.7213035,20,5,25
1754392988.2092712,20,5,25
1754393004.8813386,20,5,25
1754393019.9782276,20,5,25
1754393036.0456817,20,5,25
1754393052.7410796,20,5,25
1754393067.9842503,20,5,25
1754393082.7373652,20,5,25
1754393109.0061243,20,4,20
1754393119.005228,20,4,20
1754393140.0223901,20,4,20
1754393167.7198906,20,4,20
1754393190.1577091,20,4,20
1754393205.7339804,20,4,20
1754393219.9903054,20,4,20
1754393233.9804783,20,3,15
1754393242.1033876,20,3,15
1754393258.7384505,20,3,15
1754393267.1518784,20,3,15
1754393280.0309944,20,2,10
1754393300.7125835,20,2,10
1754393320.7393796,20,2,10
1754393329.7332196,20,2,10
1754393343.7528968,20,2,10
1754393357.1444857,20,2,10
1754393371.318321,20,2,10
1754393384.7837927,20,2,10
1754393400.8735943,20,2,10
1754393413.7494485,20,2,10
1754393440.754509,20,2,10
1754393464.8836246,20,2,10
1754393481.7359085,20,2,10
1754393495.7240007,20,2,10
1754393511.72033,20,2,10
1754393525.9657087,20,2,10
1754393539.7242918,20,2,10
1754393555.1178114,20,2,10
1754393580.7187123,20,2,10
1754393602.7270696,20,2,10
1754393616.9540899,20,2,10
1754393632.717099,20,2,10
1754393648.7193325,20,2,10
1754393663.710631,20,2,10
1754393677.7288194,20,2,10
1754393691.7230563,20,2,10
1754393710.1863983,20,2,10
1754393738.712591,20,2,10
1754393756.7130911,20,2,10
1754393772.713338,20,2,10
1754393788.7105668,20,2,10
1754393805.0043716,20,2,10
1754393821.719845,20,2,10
1754393839.1582344,20,2,10
1754393877.7205331,20,2,10
1754393894.8722916,20,1,5
1754393906.7144456,20,1,5
1754393927.7140787,20,1,5
1754393937.8865876,20,1,5
1754393954.7101524,20,1,5
1754393981.213281,20,0,0
1754393993.1284056,20,0,0
1754394010.7320333,20,0,0
1754394028.7176352,20,0,0
1754394048.031167,20,0,0
1754394076.7126803,20,0,0
1754394088.2500808,20,0,0
1754394098.975786,20,1,5
1754394117.7287126,20,1,5
1754394138.7316687,20,1,5
1754394148.8609595,20,1,5
1754394158.2334216,20,1,5
1754394167.7281773,20,2,10
1754394185.1740186,20,2,10
1754394233.7277954,20,2,10
1754394244.711672,20,2,10
1754394256.0473692,20,2,10
1754394267.8553162,20,3,15
1754394290.7451859,20,3,15
1754394307.8312714,20,3,15
1754394316.8867447,20,3,15
1754394327.9822543,20,3,15
1754394340.8965843,20,4,20
1754394358.732474,20,4,20
1754394395.7482824,20,4,20
1754394412.95666,20,3,15
1754394436.7299242,20,3,15
1754394449.2801375,20,4,20
1754394466.1731768,20,4,20
1754394476.761395,20,4,20
1754394496.7132015,20,4,20
1754394512.6976676,20,4,20
1754394552.2675667,20,4,20
1754394595.7040904,20,4,20
1754394605.7213902,20,4,20
1754394620.8772,20,5,25
1754394637.0261598,20,5,25
1754394657.7252083,20,5,25
1754394678.1109626,20,5,25
1754394700.0489979,20,5,25
1754394732.8674047,20,6,30
1754394767.2046885,20,6,30
1754394793.182274,20,6,30
1754394801.8383048,20,5,25
1754394824.2857456,20,5,25
1754394835.8859992,20,6,30
1754394851.9586525,20,6,30
1754394860.9701662,20,6,30
1754394880.1510808,20,6,30
1754394901.718432,20,6,30
1754394920.8948102,20,6,30
1754394928.9489195,20,6,30
1754394940.7159941,20,6,30
1754394950.1388004,20,7,35
1754394968.699972,20,7,35
1754394999.0458326,20,7,35
1754395011.1710262,20,7,35
1754395020.7008476,20,7,35
1754395030.2478664,20,7,35
1754395048.7155526,20,7,35
1754395057.714063,20,7,35
1754395075.8833551,20,7,35
1754395090.0191705,20,7,35
1754395127.2591538,20,7,35
1754395141.7057045,20,6,30
1754395159.324875,20,6,30
1754395169.8482988,20,7,35
1754395181.0151527,20,7,35
1754395191.714588,20,7,35
1754395212.693368,20,7,35
1754395232.7428854,20,7,35
1754395253.815219,20,7,35
1754395263.3328536,20,7,35
1754395274.8792136,20,7,35
1754395285.866865,20,8,40
1754395304.9806376,20,8,40
1754395324.7079144,20,7,35
1754395334.6947684,20,7,35
1754395353.1108835,20,7,35
1754395363.7051806,20,8,40
1754395390.719329,20,7,35
1754395390.7229478,20,7,35
1754395406.1456904,20,7,35
1754395406.2070298,20,7,35
1754395430.1943927,20,7,35
1754395445.94626,20,7,35
1754395463.8089888,20,7,35
1754395472.7005079,20,7,35
1754395482.2827895,20,7,35
1754395493.8488588,20,8,40
1754395509.713079,20,8,40
1754395528.234092,20,8,40
1754395537.7134132,20,8,40
1754395548.7117271,20,8,40
1754395558.916876,20,9,45
1754395575.8724604,20,9,45
1754395593.9351254,20,9,45
1754395602.2426894,20,9,45
1754395612.2978992,20,9,45
1754395623.7125108,20,10,50
1754395644.70341,20,10,50
1754395695.7186186,20,9,45
1754395721.714527,20,9,45
1754395755.994089,20,9,45
1754395767.0297742,20,10,50
1754395778.7090602,20,10,50
1754395789.1336443,20,10,50
1754395809.7154663,20,10,50
1754395826.0908072,20,10,50
1754395869.8960974,20,10,50
1754395884.1639102,20,10,50
1754395915.860186,20,9,45
1754395927.8342004,20,10,50
1754395941.2902908,20,10,50
1754395952.229577,20,10,50
1754395972.21839,20,10,50
1754395991.868852,20,10,50
1754396025.3024201,20,10,50
1754396049.1863337,20,10,50
1754396071.7072139,20,8,40
1754396084.099192,20,9,45
1754396105.712085,20,9,45
1754396105.7157285,20,9,45
1754396121.2287538,20,9,45
1754396122.1237495,20,9,45
1754396147.1031957,20,9,45
1754396162.2005167,20,9,45
1754396202.0853212,20,7,35
1754396215.729771,20,7,35
1754396235.7250764,20,7,35
1754396246.1062987,20,8,40
1754396256.7171707,20,8,40
1754396256.7203257,20,8,40
1754396271.0063267,20,8,40
1754396271.0220082,20,8,40
1754396297.0703068,20,8,40
1754396328.7052877,20,8,40
1754396328.757491,20,8,40
1754396328.8636234,20,8,40
1754396354.3101077,20,7,35
1754396366.9743304,20,7,35
1754396387.9113722,20,7,35
1754396399.6961339,20,7,35
1754396420.7277308,20,7,35
1754396445.9089012,20,7,35
1754396461.7081785,20,7,35
1754396487.715882,20,7,35
1754396509.7395356,20,7,35
1754396528.142203,20,7,35
1754396544.1747823,20,7,35
1754396561.7072773,20,7,35
1754396582.0407856,20,7,35
1754396598.7351475,20,7,35
1754396620.7235444,20,7,35
1754396632.1386206,20,6,30
1754396656.0129938,20,6,30
1754396667.149862,20,6,30
1754396691.2883205,20,6,30
1754396708.900703,20,6,30
1754396727.720741,20,6,30
1754396752.714402,20,5,25
1754396795.0059578,20,5,25
1754396809.7166953,20,5,25
1754396828.8276155,20,5,25
1754396844.2119029,20,5,25
1754396859.9911582,20,5,25
1754396874.5355268,20,4,20
1754396885.1981914,20,4,20
1754396905.2156239,20,4,20
1754396917.016399,20,4,20
1754396946.7194169,20,4,20
1754396965.749392,20,4,20
1754396983.0052521,20,4,20
1754396998.9153104,20,4,20
1754397014.7096162,20,4,20
1754397030.7220047,20,4,20
1754397047.7312243,20,4,20
1754397063.899132,20,4,20
1754397090.8165267,20,4,20
1754397112.8261795,20,4,20
1754397130.7077637,20,4,20
1754397145.9505198,20,4,20
1754397162.1095827,20,3,15
1754397172.71641,20,3,15
1754397199.0537941,20,3,15
1754397221.8547804,20,3,15
1754397241.304731,20,3,15
1754397257.0858226,20,3,15
1754397274.9003465,20,3,15
1754397290.9014604,20,3,15
1754397306.7450643,20,3,15
1754397321.8704362,20,2,10
1754397359.714623,20,2,10
1754397428.0636275,20,1,5
1754397440.9401205,20,1,5
1754397456.0277386,20,0,0
1754397456.0314429,20,0,0
1754397470.7239714,20,0,0
1754397470.7345226,20,0,0
1754397501.723117,20,0,0
1754397517.714847,20,0,0
1754397536.097902,20,0,0
1754397544.9086962,20,0,0
1754397555.7199275,20,0,0
1754397566.8644502,20,1,5
1754397583.731112,20,1,5
1754397603.9473226,20,1,5
1754397612.7064013,20,1,5
1754397623.0847049,20,1,5
1754397634.1987443,20,2,10
1754397650.095598,20,2,10
1754397669.708493,20,2,10
1754397678.7776418,20,2,10
1754397688.3404052,20,2,10
1754397698.870077,20,3,15
1754397714.7195606,20,3,15
1754397734.0089042,20,3,15
1754397743.7690787,20,3,15
1754397754.3400114,20,3,15
1754397765.8425124,20,4,20
1754397791.821354,20,4,20
1754397812.200539,20,4,20
1754397826.2604141,20,4,20
1754397837.1848147,20,4,20
1754397849.8446238,20,5,25
1754397865.586307,20,5,25
1754397885.0150895,20,5,25
1754397894.6973557,20,5,25
1754397905.255564,20,5,25
1754397920.8611572,20,6,30
1754397935.7832406,20,6,30
1754397957.0815651,20,6,30
1754397966.711996,20,6,30
1754397976.3069937,20,6,30
1754397986.8922548,20,7,35
1754398003.8009112,20,7,35
1754398022.7335162,20,7,35
1754398031.721433,20,7,35
1754398041.2805994,20,7,35
1754398051.8682258,20,8,40
1754398066.8118625,20,8,40
1754398085.7284918,20,8,40
1754398095.175407,20,8,40
1754398105.7191784,20,8,40
1754398116.8186927,20,9,45
1754398133.212895,20,9,45
1754398151.8058033,20,9,45
1754398161.98151,20,9,45
1754398172.1923935,20,9,45
1754398183.8844419,20,9,45
1754398204.0912678,20,9,45
1754398213.711696,20,9,45
1754398235.7181191,20,9,45
1754398249.7144039,20,9,45
1754398268.7111719,20,9,45
1754398277.708839,20,9,45
1754398300.7318075,20,8,40
1754398311.0611641,20,9,45
1754398354.7133307,20,9,45
1754398363.8964846,20,9,45
1754398393.2562394,20,8,40
1754398407.1179125,20,8,40
1754398425.7211416,20,8,40
1754398434.7120728,20,8,40
1754398445.2262192,20,8,40
1754398456.7232614,20,9,45
1754398466.975554,20,9,45
1754398483.728874,20,9,45
1754398511.062584,20,9,45
1754398524.0799353,20,9,45
1754398550.719911,20,9,45
1754398560.809985,20,9,45
1754398581.1818247,20,9,45
1754398596.970347,20,10,50
1754398613.7146776,20,10,50
1754398646.169124,20,10,50
1754398656.020127,20,10,50
1754398665.9361298,20,10,50
1754398676.7182639,20,11,55
1754398693.9369686,20,11,55
1754398735.7148733,20,11,55
1754398749.7058487,20,11,55
1754398761.7225416,20,11,55
1754398775.8359668,20,12,60
1754398800.0615213,20,12,60
1754398834.247621,20,12,60
1754398844.2333245,20,12,60
1754398855.1914454,20,12,60
1754398866.224863,20,13,65
1754398891.7822976,20,13,65
1754398936.7290418,20,13,65
1754398955.735914,20,13,65
1754398978.706697,20,13,65
1754399005.1763303,20,14,70
1754399035.8153422,20,14,70
1754399075.2420876,20,14,70
1754399094.7130377,20,14,70
1754399105.7366698,20,14,70
1754399118.8787277,20,15,75
1754399135.1363082,20,15,75
1754399155.909408,20,15,75
1754399165.8672178,20,15,75
1754399178.7207823,20,15,75
1754399189.3045292,20,16,80
1754399205.7817159,20,16,80
1754399226.9465852,20,16,80
1754399237.2281573,20,16,80
1754399247.9211938,20,16,80
1754399259.9185464,20,17,85
1754399275.2997046,20,17,85
1754399275.7451956,20,17,85
1754399275.8564823,20,17,85
1754399293.0796099,20,17,85
1754399310.0563505,20,17,85
1754399327.725356,20,17,85
1754399344.0910408,20,17,85
1754399360.7761624,20,17,85
1754399376.9860158,20,16,80
1754399387.1015875,20,16,80
1754399410.718476,20,16,80
1754399420.7293153,20,16,80
1754399437.7145782,20,16,80
1754399454.7156317,20,16,80
1754399485.7190437,20,16,80
1754399516.7106833,20,16,80
1754399547.7240345,20,16,80
1754399564.7110765,20,16,80
1754399586.0494635,20,16,80
1754399602.71507,20,16,80
1754399618.834955,20,16,80
1754399634.808946,20,16,80
1754399656.8343816,20,16,80
1754399682.7273102,20,16,80
1754399699.2264714,20,16,80
1754399715.7278633,20,16,80
1754399730.959071,20,15,75
1754399742.7090917,20,15,75
1754399767.9677444,20,15,75
1754399794.704363,20,15,75
1754399825.7513826,20,15,75
1754399849.7207263,20,15,75
1754399871.0822372,20,15,75
1754399889.215045,20,15,75
1754399900.7192068,20,14,70
1754399929.188675,20,14,70
1754399939.2012157,20,14,70
1754399974.262687,20,14,70
1754400009.7006326,20,14,70
1754400033.719847,20,14,70
1754400051.7381818,20,14,70
1754400070.1164458,20,14,70
1754400086.7736661,20,14,70
1754400107.2274206,20,14,70
1754400129.168093,20,14,70
1754400146.8812773,20,14,70
1754400164.7110598,20,14,70
1754400181.7138815,20,14,70
1754400197.7182617,20,14,70
1754400213.914874,20,14,70
1754400231.0548222,20,14,70
1754400247.7130668,20,14,70
1754400265.0696456,20,14,70
1754400282.720645,20,14,70
1754400313.8097732,20,13,65
1754400329.7564757,20,13,65
1754400352.9549384,20,13,65
1754400364.7137713,20,13,65
1754400384.04172,20,13,65
1754400400.3016698,20,13,65
1754400417.7207918,20,13,65
1754400450.1952832,20,13,65
1754400474.0945637,20,13,65
1754400489.9015124,20,12,60
1754400502.125261,20,12,60
1754400523.962255,20,12,60
1754400537.70962,20,12,60
1754400555.716253,20,12,60
1754400571.2521746,20,12,60
1754400617.864803,20,11,55
timestamp,ram_usage_mb,cpu_usage_percent
1754388658,711.09765625,4.2
1754388662,711.59765625,4.3
1754388668,711.59765625,4.1
1754388668,711.59765625,9.1
1754388668,711.59765625,4.1
1754388668,711.59765625,5.2
1754388668,711.59765625,16.7
1754389112,737.2734375,10.0
1754389112,737.7734375,10.0
1754389258,736.6640625,11.1
1754389330,738.97265625,10.0
1754389441,740.27734375,11.1
1754389523,740.56640625,10.0
1754389584,739.046875,4.6
1754389584,739.046875,8.3
1754389584,739.046875,4.7
1754389584,739.046875,8.3
1754389662,741.6484375,4.4
1754389662,741.6484375,7.7
1754389662,741.6484375,18.2
1754389713,743.046875,50.0
1754389754,743.1015625,3.2
1754389754,743.1015625,8.3
1754389799,741.078125,3.9
1754389799,741.078125,7.7
1754389845,743.12109375,4.1
1754389845,743.12109375,8.3
1754389934,741.1015625,3.2
1754389976,741.1015625,3.1
1754389976,741.1015625,8.3
1754390048,741.1015625,20.0
1754390135,741.1015625,4.5
1754390135,741.1015625,20.0
1754390231,741.6015625,4.5
1754390231,741.6015625,14.3
1754390269,742.1015625,4.6
1754390269,742.1015625,15.4
1754390314,742.1015625,4.6
1754390314,742.1015625,8.3
1754390579,763.5859375,4.3
1754390579,763.5859375,15.4
1754390654,766.7265625,4.7
1754390654,766.7265625,8.3
1754390654,766.7265625,5.2
1754390654,766.7265625,9.1
1754390742,765.6640625,5.1
1754390742,765.6640625,7.7
1754390821,766.6640625,4.3
1754390821,766.6640625,8.3
1754390950,767.1640625,4.9
1754390950,767.1640625,8.3
1754391126,771.99609375,5.0
1754391126,771.99609375,7.7
1754391229,768.02734375,7.1
1754391229,768.02734375,18.2
1754391322,769.02734375,11.1
1754391533,768.296875,5.0
1754391533,768.296875,5.0
1754391533,768.296875,12.5
1754391533,768.296875,8.8
1754391695,772.90625,5.0
1754391695,772.90625,6.7
1754391721,769.07421875,4.6
1754391721,769.07421875,8.3
1754391721,769.07421875,3.5
1754391811,769.00390625,10.0
1754391996,768.99609375,4.5
1754391996,768.99609375,7.7
1754393119,769.3515625,4.1
1754393119,769.3515625,8.3
1754393242,769.3515625,4.3
1754393242,769.3515625,7.7
1754393300,769.3515625,3.7
1754393300,769.3515625,14.3
1754393906,769.8515625,4.4
1754393906,769.8515625,23.1
1754393993,769.8515625,11.8
1754393993,769.8515625,21.4
1754394476,773.3515625,4.6
1754394860,772.44921875,4.6
1754394860,772.44921875,8.3
1754395057,776.5390625,4.7
1754395057,776.5390625,12.5
1754395191,776.55859375,4.8
1754395191,776.55859375,7.7
1754395406,773.49609375,4.6
1754395406,773.49609375,7.1
1754395406,773.49609375,12.5
1754395789,779.203125,4.9
1754395789,779.203125,7.7
1754396121,778.0234375,5.1
1754396121,778.0234375,15.4
1754396122,778.0234375,4.9
1754396122,778.0234375,7.7
1754396271,780.0703125,4.6
1754396271,780.0703125,7.7
1754396271,780.0703125,5.0
1754396271,780.0703125,9.1
1754396328,776.2109375,4.6
1754396328,776.2109375,7.7
1754396328,776.2109375,4.8
1754396328,776.2109375,8.3
1754396366,780.1484375,4.8
1754396366,780.1484375,8.3
1754396632,778.140625,5.8
1754396632,778.140625,33.3
1754396752,776.34765625,11.4
1754396752,776.34765625,30.8
1754396885,776.34765625,16.7
1754396885,776.34765625,31.2
1754397172,776.34765625,12.7
1754397172,776.34765625,23.1
1754397359,776.34765625,16.6
1754397359,776.34765625,9.1
1754397470,776.34765625,16.3
1754397470,776.34765625,28.6
1754397470,776.34765625,16.8
1754397470,776.34765625,25.0
1754398213,787.8984375,10.4
1754398213,787.8984375,25.0
1754398363,787.0546875,17.7
1754398363,787.0546875,25.0
1754398483,789.91015625,15.2
1754398483,789.91015625,8.3
1754399275,791.828125,13.5
1754399275,791.828125,7.7
1754399275,791.828125,3.5
1754399275,791.828125,18.8
1754399387,797.8671875,10.0
1754399742,795.84375,12.0
1754399742,795.84375,8.7
1754399900,796.328125,20.0
1754400329,797.25390625,10.3
1754400329,797.25390625,14.3
1754400502,797.25390625,2.9
VAL_ACC
(goal: maximize)
Best value: 98.43
Achieved at:
- run_time
= 2848
- epochs
= 200
- lr
= 1.0E-5
- batch_size
= 8
- hidden_size
= 2048
- dropout
= 0.5
- num_dense_layers
= 1
- weight_decay
= 0
Parameter statistics
Parameter | Min | Max | Mean | Std Dev | Count |
---|
run_time | 85 | 3396 | 804.6232 | 836.0561 | 69 |
VAL_ACC | 0.23 | 98.43 | 46.6925 | 41.549 | 69 |
epochs | 10 | 200 | 108.8125 | 80.6303 | 80 |
lr | 0 | 0.1 | 0.0226 | 0.0332 | 80 |
batch_size | 8 | 2048 | 576.2 | 630.8619 | 80 |
hidden_size | 8 | 2048 | 1186.325 | 786.0515 | 80 |
dropout | 0 | 0.5 | 0.2211 | 0.2242 | 80 |
num_dense_layers | 1 | 4 | 2.35 | 1.3238 | 80 |
weight_decay | 0 | 1 | 0.172 | 0.3078 | 80 |
activation | No numerical statistics available |
init | No numerical statistics available |
Show SLURM-Job-ID (if it exists)
submitit INFO (2025-08-05 12:11:53,682) - Starting with JobEnvironment(job_id=538079, hostname=c137, local_rank=0(1), node=0(1), global_rank=0(1))
submitit INFO (2025-08-05 12:11:53,682) - Loading pickle: /data/cat/ws/pwinkler-mnist_tst/omniopt/runs/mnist_gpu_noall/6/single_runs/538079/538079_submitted.pkl
Parameters: {"epochs": 176, "lr": 0.0693172086673975, "batch_size": 1698, "hidden_size": 821, "dropout": 0.32942062616348267, "num_dense_layers": 3, "weight_decay": 0.22888082265853882, "activation": "leaky_relu", "init": "normal"}
Debug-Infos:
========
DEBUG INFOS START:
Program-Code: python3 .tests/mnist/train --epochs 176 --learning_rate 0.06931720866739750353 --batch_size 1698 --hidden_size 821 --dropout 0.32942062616348266602 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.22888082265853881836
pwd: /data/cat/ws/pwinkler-mnist_tst/omniopt
File: .tests/mnist/train
UID: 2054851
GID: 200270
SLURM_JOB_ID: 538079
Status-Change-Time: 1754385641.721337
Size: 12479 Bytes
Permissions: -rwxr-xr-x
Owner: pwinkler
Last access: 1754385733.5706365
Last modification: 1754385641.721337
Hostname: c137
========
DEBUG INFOS END
python3 .tests/mnist/train --epochs 176 --learning_rate 0.06931720866739750353 --batch_size 1698 --hidden_size 821 --dropout 0.32942062616348266602 --activation leaky_relu --num_dense_layers 3 --init normal --weight_decay 0.22888082265853881836
stdout:
Available GPU memory: 0.00 MB reserved
Free GPU memory: 0.00 MB allocated
Max GPU memory allocated: 0.00 MB
Hyperparameters
╭──────────────────┬─────────────────────╮
│ Parameter │ Value │
├──────────────────┼─────────────────────┤
│ Epochs │ 176 │
│ Num Dense Layers │ 3 │
│ Batch size │ 1698 │
│ Learning rate │ 0.0693172086673975 │
│ Hidden size │ 821 │
│ Dropout │ 0.32942062616348267 │
│ Optimizer │ adam │
│ Momentum │ 0.9 │
│ Weight Decay │ 0.22888082265853882 │
│ Activation │ leaky_relu │
│ Init Method │ normal │
│ Seed │ None │
╰──────────────────┴─────────────────────╯
──────────────────────────── Epoch 1/176 - Training ────────────────────────────
Epoch-Loss: 82.88835859298706
─────────────────────────── Epoch 1/176 - Validation ───────────────────────────
╔══ Epoch 1/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
──────────────────────────── Epoch 2/176 - Training ────────────────────────────
Epoch-Loss: 82.89266777038574
─────────────────────────── Epoch 2/176 - Validation ───────────────────────────
╔══ Epoch 2/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
──────────────────────────── Epoch 3/176 - Training ────────────────────────────
Epoch-Loss: 82.89283847808838
─────────────────────────── Epoch 3/176 - Validation ───────────────────────────
╔══ Epoch 3/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
──────────────────────────── Epoch 4/176 - Training ────────────────────────────
Epoch-Loss: 82.89259719848633
─────────────────────────── Epoch 4/176 - Validation ───────────────────────────
╔══ Epoch 4/176 Summary ══╗
║ Validation Loss: 2.3025 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
──────────────────────────── Epoch 5/176 - Training ────────────────────────────
Epoch-Loss: 82.89264631271362
─────────────────────────── Epoch 5/176 - Validation ───────────────────────────
╔══ Epoch 5/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
──────────────────────────── Epoch 6/176 - Training ────────────────────────────
Epoch-Loss: 82.89273476600647
─────────────────────────── Epoch 6/176 - Validation ───────────────────────────
╔══ Epoch 6/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
──────────────────────────── Epoch 7/176 - Training ────────────────────────────
Epoch-Loss: 82.89271640777588
─────────────────────────── Epoch 7/176 - Validation ───────────────────────────
╔══ Epoch 7/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
──────────────────────────── Epoch 8/176 - Training ────────────────────────────
Epoch-Loss: 82.89275932312012
─────────────────────────── Epoch 8/176 - Validation ───────────────────────────
╔══ Epoch 8/176 Summary ══╗
║ Validation Loss: 2.3025 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
──────────────────────────── Epoch 9/176 - Training ────────────────────────────
Epoch-Loss: 82.8927493095398
─────────────────────────── Epoch 9/176 - Validation ───────────────────────────
╔══ Epoch 9/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 10/176 - Training ────────────────────────────
Epoch-Loss: 82.89265084266663
────────────────────────── Epoch 10/176 - Validation ───────────────────────────
╔═ Epoch 10/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 11/176 - Training ────────────────────────────
Epoch-Loss: 82.8925576210022
────────────────────────── Epoch 11/176 - Validation ───────────────────────────
╔═ Epoch 11/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 12/176 - Training ────────────────────────────
Epoch-Loss: 82.89257669448853
────────────────────────── Epoch 12/176 - Validation ───────────────────────────
╔═ Epoch 12/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 13/176 - Training ────────────────────────────
Epoch-Loss: 82.89271759986877
────────────────────────── Epoch 13/176 - Validation ───────────────────────────
╔═ Epoch 13/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 14/176 - Training ────────────────────────────
Epoch-Loss: 82.89248275756836
────────────────────────── Epoch 14/176 - Validation ───────────────────────────
╔═ Epoch 14/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 15/176 - Training ────────────────────────────
Epoch-Loss: 82.89270973205566
────────────────────────── Epoch 15/176 - Validation ───────────────────────────
╔═ Epoch 15/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 16/176 - Training ────────────────────────────
Epoch-Loss: 82.89275574684143
────────────────────────── Epoch 16/176 - Validation ───────────────────────────
╔═ Epoch 16/176 Summary ══╗
║ Validation Loss: 2.3025 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 17/176 - Training ────────────────────────────
Epoch-Loss: 82.89265871047974
────────────────────────── Epoch 17/176 - Validation ───────────────────────────
╔═ Epoch 17/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 8.92% ║
╚═════════════════════════╝
─────────────────────────── Epoch 18/176 - Training ────────────────────────────
Epoch-Loss: 82.8926944732666
────────────────────────── Epoch 18/176 - Validation ───────────────────────────
╔═ Epoch 18/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 19/176 - Training ────────────────────────────
Epoch-Loss: 82.89258170127869
────────────────────────── Epoch 19/176 - Validation ───────────────────────────
╔═ Epoch 19/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 20/176 - Training ────────────────────────────
Epoch-Loss: 82.89261102676392
────────────────────────── Epoch 20/176 - Validation ───────────────────────────
╔═ Epoch 20/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 21/176 - Training ────────────────────────────
Epoch-Loss: 82.89265394210815
────────────────────────── Epoch 21/176 - Validation ───────────────────────────
╔═ Epoch 21/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 22/176 - Training ────────────────────────────
Epoch-Loss: 82.89259052276611
────────────────────────── Epoch 22/176 - Validation ───────────────────────────
╔═ Epoch 22/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 23/176 - Training ────────────────────────────
Epoch-Loss: 82.89261245727539
────────────────────────── Epoch 23/176 - Validation ───────────────────────────
╔═ Epoch 23/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 24/176 - Training ────────────────────────────
Epoch-Loss: 82.89271116256714
────────────────────────── Epoch 24/176 - Validation ───────────────────────────
╔═ Epoch 24/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 25/176 - Training ────────────────────────────
Epoch-Loss: 82.89249658584595
────────────────────────── Epoch 25/176 - Validation ───────────────────────────
╔═ Epoch 25/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 26/176 - Training ────────────────────────────
Epoch-Loss: 82.8926420211792
────────────────────────── Epoch 26/176 - Validation ───────────────────────────
╔═ Epoch 26/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.32% ║
╚═════════════════════════╝
─────────────────────────── Epoch 27/176 - Training ────────────────────────────
Epoch-Loss: 82.89232230186462
────────────────────────── Epoch 27/176 - Validation ───────────────────────────
╔═ Epoch 27/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 28/176 - Training ────────────────────────────
Epoch-Loss: 82.89239358901978
────────────────────────── Epoch 28/176 - Validation ───────────────────────────
╔═ Epoch 28/176 Summary ══╗
║ Validation Loss: 2.3025 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 29/176 - Training ────────────────────────────
Epoch-Loss: 82.89285230636597
────────────────────────── Epoch 29/176 - Validation ───────────────────────────
╔═ Epoch 29/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 30/176 - Training ────────────────────────────
Epoch-Loss: 82.89271640777588
────────────────────────── Epoch 30/176 - Validation ───────────────────────────
╔═ Epoch 30/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 31/176 - Training ────────────────────────────
Epoch-Loss: 82.89263796806335
────────────────────────── Epoch 31/176 - Validation ───────────────────────────
╔═ Epoch 31/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 32/176 - Training ────────────────────────────
Epoch-Loss: 82.89273238182068
────────────────────────── Epoch 32/176 - Validation ───────────────────────────
╔═ Epoch 32/176 Summary ══╗
║ Validation Loss: 2.3025 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 33/176 - Training ────────────────────────────
Epoch-Loss: 82.89281630516052
────────────────────────── Epoch 33/176 - Validation ───────────────────────────
╔═ Epoch 33/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 34/176 - Training ────────────────────────────
Epoch-Loss: 82.89249849319458
────────────────────────── Epoch 34/176 - Validation ───────────────────────────
╔═ Epoch 34/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 35/176 - Training ────────────────────────────
Epoch-Loss: 82.89273571968079
────────────────────────── Epoch 35/176 - Validation ───────────────────────────
╔═ Epoch 35/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 36/176 - Training ────────────────────────────
Epoch-Loss: 82.89260411262512
────────────────────────── Epoch 36/176 - Validation ───────────────────────────
╔═ Epoch 36/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 37/176 - Training ────────────────────────────
Epoch-Loss: 82.89289712905884
────────────────────────── Epoch 37/176 - Validation ───────────────────────────
╔═ Epoch 37/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 38/176 - Training ────────────────────────────
Epoch-Loss: 82.89243388175964
────────────────────────── Epoch 38/176 - Validation ───────────────────────────
╔═ Epoch 38/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 39/176 - Training ────────────────────────────
Epoch-Loss: 82.89281964302063
────────────────────────── Epoch 39/176 - Validation ───────────────────────────
╔═ Epoch 39/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 40/176 - Training ────────────────────────────
Epoch-Loss: 82.89260149002075
────────────────────────── Epoch 40/176 - Validation ───────────────────────────
╔═ Epoch 40/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 41/176 - Training ────────────────────────────
Epoch-Loss: 82.89270234107971
────────────────────────── Epoch 41/176 - Validation ───────────────────────────
╔═ Epoch 41/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 42/176 - Training ────────────────────────────
Epoch-Loss: 82.89241981506348
────────────────────────── Epoch 42/176 - Validation ───────────────────────────
╔═ Epoch 42/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 43/176 - Training ────────────────────────────
Epoch-Loss: 82.89259099960327
────────────────────────── Epoch 43/176 - Validation ───────────────────────────
╔═ Epoch 43/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 44/176 - Training ────────────────────────────
Epoch-Loss: 82.89277648925781
────────────────────────── Epoch 44/176 - Validation ───────────────────────────
╔═ Epoch 44/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 8.92% ║
╚═════════════════════════╝
─────────────────────────── Epoch 45/176 - Training ────────────────────────────
Epoch-Loss: 82.89251399040222
────────────────────────── Epoch 45/176 - Validation ───────────────────────────
╔═ Epoch 45/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 46/176 - Training ────────────────────────────
Epoch-Loss: 82.89252805709839
────────────────────────── Epoch 46/176 - Validation ───────────────────────────
╔═ Epoch 46/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 47/176 - Training ────────────────────────────
Epoch-Loss: 82.89254403114319
────────────────────────── Epoch 47/176 - Validation ───────────────────────────
╔═ Epoch 47/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 48/176 - Training ────────────────────────────
Epoch-Loss: 82.89260149002075
────────────────────────── Epoch 48/176 - Validation ───────────────────────────
╔═ Epoch 48/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 49/176 - Training ────────────────────────────
Epoch-Loss: 82.89251041412354
────────────────────────── Epoch 49/176 - Validation ───────────────────────────
╔═ Epoch 49/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 50/176 - Training ────────────────────────────
Epoch-Loss: 82.8928337097168
────────────────────────── Epoch 50/176 - Validation ───────────────────────────
╔═ Epoch 50/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.32% ║
╚═════════════════════════╝
─────────────────────────── Epoch 51/176 - Training ────────────────────────────
Epoch-Loss: 82.89266037940979
────────────────────────── Epoch 51/176 - Validation ───────────────────────────
╔═ Epoch 51/176 Summary ══╗
║ Validation Loss: 2.3025 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 52/176 - Training ────────────────────────────
Epoch-Loss: 82.89254140853882
────────────────────────── Epoch 52/176 - Validation ───────────────────────────
╔═ Epoch 52/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 53/176 - Training ────────────────────────────
Epoch-Loss: 82.8925940990448
────────────────────────── Epoch 53/176 - Validation ───────────────────────────
╔═ Epoch 53/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 54/176 - Training ────────────────────────────
Epoch-Loss: 82.89282321929932
────────────────────────── Epoch 54/176 - Validation ───────────────────────────
╔═ Epoch 54/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 8.92% ║
╚═════════════════════════╝
─────────────────────────── Epoch 55/176 - Training ────────────────────────────
Epoch-Loss: 82.89272809028625
────────────────────────── Epoch 55/176 - Validation ───────────────────────────
╔═ Epoch 55/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 56/176 - Training ────────────────────────────
Epoch-Loss: 82.89271783828735
────────────────────────── Epoch 56/176 - Validation ───────────────────────────
╔═ Epoch 56/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 57/176 - Training ────────────────────────────
Epoch-Loss: 82.89258980751038
────────────────────────── Epoch 57/176 - Validation ───────────────────────────
╔═ Epoch 57/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 58/176 - Training ────────────────────────────
Epoch-Loss: 82.89270448684692
────────────────────────── Epoch 58/176 - Validation ───────────────────────────
╔═ Epoch 58/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 59/176 - Training ────────────────────────────
Epoch-Loss: 82.89267420768738
────────────────────────── Epoch 59/176 - Validation ───────────────────────────
╔═ Epoch 59/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 60/176 - Training ────────────────────────────
Epoch-Loss: 82.89278531074524
────────────────────────── Epoch 60/176 - Validation ───────────────────────────
╔═ Epoch 60/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 61/176 - Training ────────────────────────────
Epoch-Loss: 82.89250826835632
────────────────────────── Epoch 61/176 - Validation ───────────────────────────
╔═ Epoch 61/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 62/176 - Training ────────────────────────────
Epoch-Loss: 82.89254927635193
────────────────────────── Epoch 62/176 - Validation ───────────────────────────
╔═ Epoch 62/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 63/176 - Training ────────────────────────────
Epoch-Loss: 82.89271378517151
────────────────────────── Epoch 63/176 - Validation ───────────────────────────
╔═ Epoch 63/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.32% ║
╚═════════════════════════╝
─────────────────────────── Epoch 64/176 - Training ────────────────────────────
Epoch-Loss: 82.89259052276611
────────────────────────── Epoch 64/176 - Validation ───────────────────────────
╔═ Epoch 64/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 65/176 - Training ────────────────────────────
Epoch-Loss: 82.89279508590698
────────────────────────── Epoch 65/176 - Validation ───────────────────────────
╔═ Epoch 65/176 Summary ══╗
║ Validation Loss: 2.3025 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 66/176 - Training ────────────────────────────
Epoch-Loss: 82.8926944732666
────────────────────────── Epoch 66/176 - Validation ───────────────────────────
╔═ Epoch 66/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 67/176 - Training ────────────────────────────
Epoch-Loss: 82.89274477958679
────────────────────────── Epoch 67/176 - Validation ───────────────────────────
╔═ Epoch 67/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 68/176 - Training ────────────────────────────
Epoch-Loss: 82.89265275001526
────────────────────────── Epoch 68/176 - Validation ───────────────────────────
╔═ Epoch 68/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.01% ║
╚═════════════════════════╝
─────────────────────────── Epoch 69/176 - Training ────────────────────────────
Epoch-Loss: 82.89263248443604
────────────────────────── Epoch 69/176 - Validation ───────────────────────────
╔═ Epoch 69/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 70/176 - Training ────────────────────────────
Epoch-Loss: 82.89280939102173
────────────────────────── Epoch 70/176 - Validation ───────────────────────────
╔═ Epoch 70/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 71/176 - Training ────────────────────────────
Epoch-Loss: 82.89260196685791
────────────────────────── Epoch 71/176 - Validation ───────────────────────────
╔═ Epoch 71/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 72/176 - Training ────────────────────────────
Epoch-Loss: 82.89276051521301
────────────────────────── Epoch 72/176 - Validation ───────────────────────────
╔═ Epoch 72/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.32% ║
╚═════════════════════════╝
─────────────────────────── Epoch 73/176 - Training ────────────────────────────
Epoch-Loss: 82.89287447929382
────────────────────────── Epoch 73/176 - Validation ───────────────────────────
╔═ Epoch 73/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 74/176 - Training ────────────────────────────
Epoch-Loss: 82.89267349243164
────────────────────────── Epoch 74/176 - Validation ───────────────────────────
╔═ Epoch 74/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 75/176 - Training ────────────────────────────
Epoch-Loss: 82.89280605316162
────────────────────────── Epoch 75/176 - Validation ───────────────────────────
╔═ Epoch 75/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 8.92% ║
╚═════════════════════════╝
─────────────────────────── Epoch 76/176 - Training ────────────────────────────
Epoch-Loss: 82.89266586303711
────────────────────────── Epoch 76/176 - Validation ───────────────────────────
╔═ Epoch 76/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 77/176 - Training ────────────────────────────
Epoch-Loss: 82.8928291797638
────────────────────────── Epoch 77/176 - Validation ───────────────────────────
╔═ Epoch 77/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 78/176 - Training ────────────────────────────
Epoch-Loss: 82.89279055595398
────────────────────────── Epoch 78/176 - Validation ───────────────────────────
╔═ Epoch 78/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 79/176 - Training ────────────────────────────
Epoch-Loss: 82.8927206993103
────────────────────────── Epoch 79/176 - Validation ───────────────────────────
╔═ Epoch 79/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 80/176 - Training ────────────────────────────
Epoch-Loss: 82.8926990032196
────────────────────────── Epoch 80/176 - Validation ───────────────────────────
╔═ Epoch 80/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.32% ║
╚═════════════════════════╝
─────────────────────────── Epoch 81/176 - Training ────────────────────────────
Epoch-Loss: 82.89267563819885
────────────────────────── Epoch 81/176 - Validation ───────────────────────────
╔═ Epoch 81/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 82/176 - Training ────────────────────────────
Epoch-Loss: 82.89271593093872
────────────────────────── Epoch 82/176 - Validation ───────────────────────────
╔═ Epoch 82/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 83/176 - Training ────────────────────────────
Epoch-Loss: 82.89265418052673
────────────────────────── Epoch 83/176 - Validation ───────────────────────────
╔═ Epoch 83/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 84/176 - Training ────────────────────────────
Epoch-Loss: 82.89265203475952
────────────────────────── Epoch 84/176 - Validation ───────────────────────────
╔═ Epoch 84/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 85/176 - Training ────────────────────────────
Epoch-Loss: 82.8927412033081
────────────────────────── Epoch 85/176 - Validation ───────────────────────────
╔═ Epoch 85/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 86/176 - Training ────────────────────────────
Epoch-Loss: 82.89260339736938
────────────────────────── Epoch 86/176 - Validation ───────────────────────────
╔═ Epoch 86/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 87/176 - Training ────────────────────────────
Epoch-Loss: 82.89250946044922
────────────────────────── Epoch 87/176 - Validation ───────────────────────────
╔═ Epoch 87/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 88/176 - Training ────────────────────────────
Epoch-Loss: 82.89271569252014
────────────────────────── Epoch 88/176 - Validation ───────────────────────────
╔═ Epoch 88/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 89/176 - Training ────────────────────────────
Epoch-Loss: 82.89264869689941
────────────────────────── Epoch 89/176 - Validation ───────────────────────────
╔═ Epoch 89/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 90/176 - Training ────────────────────────────
Epoch-Loss: 82.89247441291809
────────────────────────── Epoch 90/176 - Validation ───────────────────────────
╔═ Epoch 90/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 91/176 - Training ────────────────────────────
Epoch-Loss: 82.89256143569946
────────────────────────── Epoch 91/176 - Validation ───────────────────────────
╔═ Epoch 91/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 92/176 - Training ────────────────────────────
Epoch-Loss: 82.89283919334412
────────────────────────── Epoch 92/176 - Validation ───────────────────────────
╔═ Epoch 92/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 93/176 - Training ────────────────────────────
Epoch-Loss: 82.89276337623596
────────────────────────── Epoch 93/176 - Validation ───────────────────────────
╔═ Epoch 93/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 94/176 - Training ────────────────────────────
Epoch-Loss: 82.89273452758789
────────────────────────── Epoch 94/176 - Validation ───────────────────────────
╔═ Epoch 94/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 95/176 - Training ────────────────────────────
Epoch-Loss: 82.89273071289062
────────────────────────── Epoch 95/176 - Validation ───────────────────────────
╔═ Epoch 95/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 96/176 - Training ────────────────────────────
Epoch-Loss: 82.89261198043823
────────────────────────── Epoch 96/176 - Validation ───────────────────────────
╔═ Epoch 96/176 Summary ══╗
║ Validation Loss: 2.3025 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 97/176 - Training ────────────────────────────
Epoch-Loss: 82.89262080192566
────────────────────────── Epoch 97/176 - Validation ───────────────────────────
╔═ Epoch 97/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.32% ║
╚═════════════════════════╝
─────────────────────────── Epoch 98/176 - Training ────────────────────────────
Epoch-Loss: 82.89264965057373
────────────────────────── Epoch 98/176 - Validation ───────────────────────────
╔═ Epoch 98/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 99/176 - Training ────────────────────────────
Epoch-Loss: 82.89278554916382
────────────────────────── Epoch 99/176 - Validation ───────────────────────────
╔═ Epoch 99/176 Summary ══╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 100/176 - Training ───────────────────────────
Epoch-Loss: 82.89247727394104
────────────────────────── Epoch 100/176 - Validation ──────────────────────────
╔═ Epoch 100/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 101/176 - Training ───────────────────────────
Epoch-Loss: 82.89274406433105
────────────────────────── Epoch 101/176 - Validation ──────────────────────────
╔═ Epoch 101/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 102/176 - Training ───────────────────────────
Epoch-Loss: 82.89269781112671
────────────────────────── Epoch 102/176 - Validation ──────────────────────────
╔═ Epoch 102/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 103/176 - Training ───────────────────────────
Epoch-Loss: 82.89268517494202
────────────────────────── Epoch 103/176 - Validation ──────────────────────────
╔═ Epoch 103/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.32% ║
╚═════════════════════════╝
─────────────────────────── Epoch 104/176 - Training ───────────────────────────
Epoch-Loss: 82.89254689216614
────────────────────────── Epoch 104/176 - Validation ──────────────────────────
╔═ Epoch 104/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 8.92% ║
╚═════════════════════════╝
─────────────────────────── Epoch 105/176 - Training ───────────────────────────
Epoch-Loss: 82.8925940990448
────────────────────────── Epoch 105/176 - Validation ──────────────────────────
╔═ Epoch 105/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 106/176 - Training ───────────────────────────
Epoch-Loss: 82.89276480674744
────────────────────────── Epoch 106/176 - Validation ──────────────────────────
╔═ Epoch 106/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 8.92% ║
╚═════════════════════════╝
─────────────────────────── Epoch 107/176 - Training ───────────────────────────
Epoch-Loss: 82.8926055431366
────────────────────────── Epoch 107/176 - Validation ──────────────────────────
╔═ Epoch 107/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 108/176 - Training ───────────────────────────
Epoch-Loss: 82.8927674293518
────────────────────────── Epoch 108/176 - Validation ──────────────────────────
╔═ Epoch 108/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 109/176 - Training ───────────────────────────
Epoch-Loss: 82.89285206794739
────────────────────────── Epoch 109/176 - Validation ──────────────────────────
╔═ Epoch 109/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 110/176 - Training ───────────────────────────
Epoch-Loss: 82.8925211429596
────────────────────────── Epoch 110/176 - Validation ──────────────────────────
╔═ Epoch 110/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 111/176 - Training ───────────────────────────
Epoch-Loss: 82.89275121688843
────────────────────────── Epoch 111/176 - Validation ──────────────────────────
╔═ Epoch 111/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 112/176 - Training ───────────────────────────
Epoch-Loss: 82.89282488822937
────────────────────────── Epoch 112/176 - Validation ──────────────────────────
╔═ Epoch 112/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 113/176 - Training ───────────────────────────
Epoch-Loss: 82.89250111579895
────────────────────────── Epoch 113/176 - Validation ──────────────────────────
╔═ Epoch 113/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 114/176 - Training ───────────────────────────
Epoch-Loss: 82.8928713798523
────────────────────────── Epoch 114/176 - Validation ──────────────────────────
╔═ Epoch 114/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 115/176 - Training ───────────────────────────
Epoch-Loss: 82.89267230033875
────────────────────────── Epoch 115/176 - Validation ──────────────────────────
╔═ Epoch 115/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 116/176 - Training ───────────────────────────
Epoch-Loss: 82.89266037940979
────────────────────────── Epoch 116/176 - Validation ──────────────────────────
╔═ Epoch 116/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 117/176 - Training ───────────────────────────
Epoch-Loss: 82.89275002479553
────────────────────────── Epoch 117/176 - Validation ──────────────────────────
╔═ Epoch 117/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 118/176 - Training ───────────────────────────
Epoch-Loss: 82.89253973960876
────────────────────────── Epoch 118/176 - Validation ──────────────────────────
╔═ Epoch 118/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 119/176 - Training ───────────────────────────
Epoch-Loss: 82.89282703399658
────────────────────────── Epoch 119/176 - Validation ──────────────────────────
╔═ Epoch 119/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 120/176 - Training ───────────────────────────
Epoch-Loss: 82.89255881309509
────────────────────────── Epoch 120/176 - Validation ──────────────────────────
╔═ Epoch 120/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 121/176 - Training ───────────────────────────
Epoch-Loss: 82.89272546768188
────────────────────────── Epoch 121/176 - Validation ──────────────────────────
╔═ Epoch 121/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 122/176 - Training ───────────────────────────
Epoch-Loss: 82.89271283149719
────────────────────────── Epoch 122/176 - Validation ──────────────────────────
╔═ Epoch 122/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 123/176 - Training ───────────────────────────
Epoch-Loss: 82.89261507987976
────────────────────────── Epoch 123/176 - Validation ──────────────────────────
╔═ Epoch 123/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 124/176 - Training ───────────────────────────
Epoch-Loss: 82.89253497123718
────────────────────────── Epoch 124/176 - Validation ──────────────────────────
╔═ Epoch 124/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 125/176 - Training ───────────────────────────
Epoch-Loss: 82.89264869689941
────────────────────────── Epoch 125/176 - Validation ──────────────────────────
╔═ Epoch 125/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 126/176 - Training ───────────────────────────
Epoch-Loss: 82.89265847206116
────────────────────────── Epoch 126/176 - Validation ──────────────────────────
╔═ Epoch 126/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 127/176 - Training ───────────────────────────
Epoch-Loss: 82.89265322685242
────────────────────────── Epoch 127/176 - Validation ──────────────────────────
╔═ Epoch 127/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 128/176 - Training ───────────────────────────
Epoch-Loss: 82.89260411262512
────────────────────────── Epoch 128/176 - Validation ──────────────────────────
╔═ Epoch 128/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 129/176 - Training ───────────────────────────
Epoch-Loss: 82.89286541938782
────────────────────────── Epoch 129/176 - Validation ──────────────────────────
╔═ Epoch 129/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 130/176 - Training ───────────────────────────
Epoch-Loss: 82.89284157752991
────────────────────────── Epoch 130/176 - Validation ──────────────────────────
╔═ Epoch 130/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 131/176 - Training ───────────────────────────
Epoch-Loss: 82.89263939857483
────────────────────────── Epoch 131/176 - Validation ──────────────────────────
╔═ Epoch 131/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 132/176 - Training ───────────────────────────
Epoch-Loss: 82.89284086227417
────────────────────────── Epoch 132/176 - Validation ──────────────────────────
╔═ Epoch 132/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 8.92% ║
╚═════════════════════════╝
─────────────────────────── Epoch 133/176 - Training ───────────────────────────
Epoch-Loss: 82.89283847808838
────────────────────────── Epoch 133/176 - Validation ──────────────────────────
╔═ Epoch 133/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 134/176 - Training ───────────────────────────
Epoch-Loss: 82.89272379875183
────────────────────────── Epoch 134/176 - Validation ──────────────────────────
╔═ Epoch 134/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 135/176 - Training ───────────────────────────
Epoch-Loss: 82.89270806312561
────────────────────────── Epoch 135/176 - Validation ──────────────────────────
╔═ Epoch 135/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 8.92% ║
╚═════════════════════════╝
─────────────────────────── Epoch 136/176 - Training ───────────────────────────
Epoch-Loss: 82.892826795578
────────────────────────── Epoch 136/176 - Validation ──────────────────────────
╔═ Epoch 136/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.32% ║
╚═════════════════════════╝
─────────────────────────── Epoch 137/176 - Training ───────────────────────────
Epoch-Loss: 82.8925838470459
────────────────────────── Epoch 137/176 - Validation ──────────────────────────
╔═ Epoch 137/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 138/176 - Training ───────────────────────────
Epoch-Loss: 82.89273047447205
────────────────────────── Epoch 138/176 - Validation ──────────────────────────
╔═ Epoch 138/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 139/176 - Training ───────────────────────────
Epoch-Loss: 82.89257860183716
────────────────────────── Epoch 139/176 - Validation ──────────────────────────
╔═ Epoch 139/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 140/176 - Training ───────────────────────────
Epoch-Loss: 82.89282178878784
────────────────────────── Epoch 140/176 - Validation ──────────────────────────
╔═ Epoch 140/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.32% ║
╚═════════════════════════╝
─────────────────────────── Epoch 141/176 - Training ───────────────────────────
Epoch-Loss: 82.89267420768738
────────────────────────── Epoch 141/176 - Validation ──────────────────────────
╔═ Epoch 141/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 142/176 - Training ───────────────────────────
Epoch-Loss: 82.89287042617798
────────────────────────── Epoch 142/176 - Validation ──────────────────────────
╔═ Epoch 142/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 143/176 - Training ───────────────────────────
Epoch-Loss: 82.89291048049927
────────────────────────── Epoch 143/176 - Validation ──────────────────────────
╔═ Epoch 143/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 144/176 - Training ───────────────────────────
Epoch-Loss: 82.89269542694092
────────────────────────── Epoch 144/176 - Validation ──────────────────────────
╔═ Epoch 144/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 145/176 - Training ───────────────────────────
Epoch-Loss: 82.89262318611145
────────────────────────── Epoch 145/176 - Validation ──────────────────────────
╔═ Epoch 145/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 146/176 - Training ───────────────────────────
Epoch-Loss: 82.89296126365662
────────────────────────── Epoch 146/176 - Validation ──────────────────────────
╔═ Epoch 146/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 147/176 - Training ───────────────────────────
Epoch-Loss: 82.89261984825134
────────────────────────── Epoch 147/176 - Validation ──────────────────────────
╔═ Epoch 147/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.32% ║
╚═════════════════════════╝
─────────────────────────── Epoch 148/176 - Training ───────────────────────────
Epoch-Loss: 82.89271402359009
────────────────────────── Epoch 148/176 - Validation ──────────────────────────
╔═ Epoch 148/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.74% ║
╚═════════════════════════╝
─────────────────────────── Epoch 149/176 - Training ───────────────────────────
Epoch-Loss: 82.89276027679443
────────────────────────── Epoch 149/176 - Validation ──────────────────────────
╔═ Epoch 149/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 150/176 - Training ───────────────────────────
Epoch-Loss: 82.89268088340759
────────────────────────── Epoch 150/176 - Validation ──────────────────────────
╔═ Epoch 150/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 151/176 - Training ───────────────────────────
Epoch-Loss: 82.89270949363708
────────────────────────── Epoch 151/176 - Validation ──────────────────────────
╔═ Epoch 151/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 152/176 - Training ───────────────────────────
Epoch-Loss: 82.892742395401
────────────────────────── Epoch 152/176 - Validation ──────────────────────────
╔═ Epoch 152/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 153/176 - Training ───────────────────────────
Epoch-Loss: 82.89261841773987
────────────────────────── Epoch 153/176 - Validation ──────────────────────────
╔═ Epoch 153/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 154/176 - Training ───────────────────────────
Epoch-Loss: 82.89286088943481
────────────────────────── Epoch 154/176 - Validation ──────────────────────────
╔═ Epoch 154/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 155/176 - Training ───────────────────────────
Epoch-Loss: 82.89292573928833
────────────────────────── Epoch 155/176 - Validation ──────────────────────────
╔═ Epoch 155/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 156/176 - Training ───────────────────────────
Epoch-Loss: 82.8926293849945
────────────────────────── Epoch 156/176 - Validation ──────────────────────────
╔═ Epoch 156/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 157/176 - Training ───────────────────────────
Epoch-Loss: 82.89265751838684
────────────────────────── Epoch 157/176 - Validation ──────────────────────────
╔═ Epoch 157/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 158/176 - Training ───────────────────────────
Epoch-Loss: 82.89281749725342
────────────────────────── Epoch 158/176 - Validation ──────────────────────────
╔═ Epoch 158/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 159/176 - Training ───────────────────────────
Epoch-Loss: 82.89280891418457
────────────────────────── Epoch 159/176 - Validation ──────────────────────────
╔═ Epoch 159/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 160/176 - Training ───────────────────────────
Epoch-Loss: 82.89268136024475
────────────────────────── Epoch 160/176 - Validation ──────────────────────────
╔═ Epoch 160/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 161/176 - Training ───────────────────────────
Epoch-Loss: 82.8926932811737
────────────────────────── Epoch 161/176 - Validation ──────────────────────────
╔═ Epoch 161/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 162/176 - Training ───────────────────────────
Epoch-Loss: 82.89277410507202
────────────────────────── Epoch 162/176 - Validation ──────────────────────────
╔═ Epoch 162/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
─────────────────────────── Epoch 163/176 - Training ───────────────────────────
Epoch-Loss: 82.89278364181519
────────────────────────── Epoch 163/176 - Validation ──────────────────────────
╔═ Epoch 163/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 164/176 - Training ───────────────────────────
Epoch-Loss: 82.89262270927429
────────────────────────── Epoch 164/176 - Validation ──────────────────────────
╔═ Epoch 164/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.58% ║
╚═════════════════════════╝
─────────────────────────── Epoch 165/176 - Training ───────────────────────────
Epoch-Loss: 82.89277076721191
────────────────────────── Epoch 165/176 - Validation ──────────────────────────
╔═ Epoch 165/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 166/176 - Training ───────────────────────────
Epoch-Loss: 82.89259338378906
────────────────────────── Epoch 166/176 - Validation ──────────────────────────
╔═ Epoch 166/176 Summary ═╗
║ Validation Loss: 2.3025 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 167/176 - Training ───────────────────────────
Epoch-Loss: 82.89273309707642
────────────────────────── Epoch 167/176 - Validation ──────────────────────────
╔═ Epoch 167/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.09% ║
╚═════════════════════════╝
─────────────────────────── Epoch 168/176 - Training ───────────────────────────
Epoch-Loss: 82.89256834983826
────────────────────────── Epoch 168/176 - Validation ──────────────────────────
╔═ Epoch 168/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 169/176 - Training ───────────────────────────
Epoch-Loss: 82.89267253875732
────────────────────────── Epoch 169/176 - Validation ──────────────────────────
╔═ Epoch 169/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 170/176 - Training ───────────────────────────
Epoch-Loss: 82.89283323287964
────────────────────────── Epoch 170/176 - Validation ──────────────────────────
╔═ Epoch 170/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 11.35% ║
╚═════════════════════════╝
─────────────────────────── Epoch 171/176 - Training ───────────────────────────
Epoch-Loss: 82.89264059066772
────────────────────────── Epoch 171/176 - Validation ──────────────────────────
╔═ Epoch 171/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.32% ║
╚═════════════════════════╝
─────────────────────────── Epoch 172/176 - Training ───────────────────────────
Epoch-Loss: 82.89276719093323
────────────────────────── Epoch 172/176 - Validation ──────────────────────────
╔═ Epoch 172/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 173/176 - Training ───────────────────────────
Epoch-Loss: 82.89259815216064
────────────────────────── Epoch 173/176 - Validation ──────────────────────────
╔═ Epoch 173/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.10% ║
╚═════════════════════════╝
─────────────────────────── Epoch 174/176 - Training ───────────────────────────
Epoch-Loss: 82.89264631271362
────────────────────────── Epoch 174/176 - Validation ──────────────────────────
╔═ Epoch 174/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.82% ║
╚═════════════════════════╝
─────────────────────────── Epoch 175/176 - Training ───────────────────────────
Epoch-Loss: 82.89274334907532
────────────────────────── Epoch 175/176 - Validation ──────────────────────────
╔═ Epoch 175/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 10.28% ║
╚═════════════════════════╝
─────────────────────────── Epoch 176/176 - Training ───────────────────────────
Epoch-Loss: 82.8924925327301
────────────────────────── Epoch 176/176 - Validation ──────────────────────────
╔═ Epoch 176/176 Summary ═╗
║ Validation Loss: 2.3026 ║
║ Accuracy: 9.80% ║
╚═════════════════════════╝
VAL_LOSS: 2.3025652170181274
VAL_ACC: 9.8
stderr was empty
Result: {'VAL_ACC': 9.8}
Final-results: {'VAL_ACC': 9.8}
EXIT_CODE: 0
submitit INFO (2025-08-05 12:28:38,416) - Job completed successfully
submitit INFO (2025-08-05 12:28:38,420) - Exiting after successful completion