trial_index,submit_time,queue_time,worker_generator_uuid,start_time,end_time,run_time,program_string,exit_code,signal,hostname,OO_Info_int_param,OO_Info_int_param_two,OO_Info_float_param,OO_Info_choice_param,arm_name,trial_status,generation_node,RESULT,int_param,float_param,int_param_two,choice_param
0,,,,,,,,,,,,,,,0_0,COMPLETED,SOBOL,-70700.526043928504805080592632293701,-73,7.98673808574676513671875,-26,2
1,,,,,,,,,,,,,,,1_0,COMPLETED,BOTORCH_MODULAR,-170166.336654245009412989020347595215,-29,-97.780064533082153843679407145828,-68,1
2,1760781052,2,1e382437-013a-443e-a5b0-eabfba065abd,1760781054,1760781060,6,./.tests/optimization_example --int_param='10' --float_param='-100' --choice_param='1' --int_param_two='-7' --nr_results=1,0,,8a56ac96cfad,10,-7,-100,1,2_0,COMPLETED,BOTORCH_MODULAR,-112199.720000000001164153218269348145,10,-100,-7,1
3,1760781070,2,1e382437-013a-443e-a5b0-eabfba065abd,1760781072,1760781078,6,./.tests/optimization_example --int_param='-52' --float_param='-100' --choice_param='1' --int_param_two='-100' --nr_results=1,0,,8a56ac96cfad,-52,-100,-100,1,3_0,COMPLETED,BOTORCH_MODULAR,-252369.320000000006984919309616088867,-52,-100,-100,1
========================================================================
Current git-hash: 728acdfd8a4372c9f91ba690cde85872e9aa371c (last fully tested stable version 4 commits ago [5bc15eb90264da1af3a4f977836d321945e13f09, 8682])
Using coverage run -p because $RUN_WITH_COVERAGE is set
โ Importing logging...
โ Importing warnings...
โ Importing argparse...
โ Importing datetime...
โ Importing dataclass...
โ Importing socket...
โ Importing stat...
โ Importing pwd...
โ Importing base64...
โ Importing json...
โ Importing yaml...
โ Importing toml...
โ Importing csv...
โ Importing ast...
โ Importing rich.table...
โ Importing rich print...
โ Importing rich.pretty...
โ Importing pformat...
โ Importing rich.prompt...
โ Importing types.FunctionType...
โ Importing typing...
โ Importing ThreadPoolExecutor...
โ Importing submitit.LocalExecutor...
โ Importing submitit.Job...
โ Importing importlib.util...
โ Importing platform...
โ Importing inspect frame info...
โ Importing pathlib.Path...
โ Importing uuid...
โ Importing cowsay...
โ Importing shutil...
โ Importing itertools.combinations...
โ Importing os.listdir...
โ Importing os.path...
โ Importing PIL.Image...
โ Importing sixel...
โ Importing subprocess...
โ Importing tqdm...
โ Importing beartype...
โ Importing statistics...
โ Trying to import pyfiglet...
โ Importing helpers...
โ Parsing arguments...
โ ธ Importing torch...
โ Importing numpy...
[WARNING 10-18 09:50:37] ax.service.utils.with_db_settings_base: Ax currently requires a sqlalchemy version below 2.0. This will be addressed in a future release. Disabling SQL storage in Ax for now, if you would like to use SQL storage please install Ax with mysql extras via `pip install ax-platform[mysql]`.
โ ฆ Importing ax...
โ Importing ax.core.generator_run...
โ Importing Cont_X_trans and Y_trans from ax.adapter.registry...
โ Importing ax.core.arm...
โ Importing ax.core.objective...
โ Importing ax.core.Metric...
โ Importing ax.exceptions.core...
โ Importing ax.exceptions.generation_strategy...
โ Importing CORE_DECODER_REGISTRY...
โ Trying ax.generation_strategy.generation_node...
โ Importing GenerationStep, GenerationStrategy from generation_strategy...
โ Importing GenerationNode from generation_node...
โ Importing ExternalGenerationNode...
โ Importing MaxTrials...
โ Importing GeneratorSpec...
โ Importing Models from ax.generation_strategy.registry...
โ Importing get_pending_observation_features...
โ Importing load_experiment...
โ Importing save_experiment...
โ Importing save_experiment_to_db...
โ Importing TrialStatus...
โ Importing Data...
โ Importing Experiment...
โ Importing parameter types...
โ Importing TParameterization...
โ Importing pandas...
โ Importing AxClient and ObjectiveProperties...
โ Importing RandomForestRegressor...
โ Importing botorch...
โ Importing submitit...
โ Importing ax logger...
โ Importing SQL-Storage-Stuff...
Using old run's --time: 60
Using old run's --gpus: 0
Run-UUID: 6685463c-6414-490c-a8f6-b1b82817ff8b
_______________________________________
| OmniOpt2 - Hyper-sanity check complete! |
=======================================
\
\
\
\
,.
(_|,.
,' /, )_______ _
__j o``-' `.'-)'
(") \'
`-j |
`-._( /
|_\ |--^. /
/_]'|_| /_)_/
/_]' /_]'
โ Writing worker creation log...
omniopt --continue runs/__main__tests__BOTORCH_MODULAR___nogridsearch/0 --num_parallel_jobs 1 --worker_timeout 10 --follow --gpus=0 --mem_gb=4 --num_random_steps=1 --max_eval=2 --send_anonymized_usage_stats --generate_all_jobs_at_once --live_share
โ Disabling logging...
โ Setting run folder...
โ Creating folder /var/opt/omniopt/runs/__main__tests__BOTORCH_MODULAR___nogridsearch/1...
โ Writing revert_to_random_when_seemingly_exhausted file ...
โ Writing username state file...
โ Writing result names file...
โ Writing result min/max file...
โ Saving state files...
Run-folder: /var/opt/omniopt/runs/__main__tests__BOTORCH_MODULAR___nogridsearch/1
Continuation from runs/__main__tests__BOTORCH_MODULAR___nogridsearch/0
โ Writing live_share file if it is present...
โ Writing job_start_time file...
โ Writing git information
โ Checking max_eval...
โ Calculating number of steps...
โ Adding excluded nodes...
โ Setting global generation strategy
โ Initializing ax_client...
โ Setting orchestrator...
Warning: The disk space is almost full. This may lead to error messages and you not being able to push jobs. If you want to see results anyway, check https://imageseg.scads.de/omniax/tutorials?tutorial=oo_share#run-locally-in-docker on how to install it locally (with docker). If you run on HPC, you may want to install this into a Research Cloud at the TU Dresden.
See https://imageseg.scads.de/omniax/share?user_id=defaultuser&experiment_name=__main__tests__BOTORCH_MODULAR___nogridsearch&run_nr=363 for live-results.
You have 4 CPUs available for the main process. No CUDA devices found.
Generation strategy: BOTORCH_MODULAR for 5 steps.
Run-Program: ./.tests/optimization_example --int_param='%(int_param)' --float_param='%(float_param)' --choice_param='%(choice_param)' --int_param_two='%(int_param_two)' --nr_results=1
Experiment parameters
โโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโณโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโณโโโโโโโโโโโโโ
โ Name โ Type โ Lower bound โ Upper bound โ Values โ Type โ Log Scale? โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ int_param โ rangeparameter โ -100 โ 10 โ โ int โ No โ
โ float_param โ rangeparameter โ -100 โ 10 โ โ float โ No โ
โ choice_param โ choiceparameter โ โ โ 1, 2, 4, 8, 16, hallo โ โ โ
โ int_param_two โ rangeparameter โ -100 โ 10 โ โ int โ No โ
โโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโดโโโโโโโโโโโโโ
Result-Names
โโโโโโโโโโโโโโโณโโโโโโโโโโโโโโ
โ Result-Name โ Min or max? โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ RESULT โ min โ
โโโโโโโโโโโโโโโดโโโโโโโโโโโโโโ
โ Write files and show overview
BOTORCH_MODULAR, best RESULT: -252369.32, finishing jobs, finished 1 job : 100%|โโโโโโโโโโ| 4/4 [00:33<00:00, 8.36s/it]
Best RESULT, min (total: 2 + inserted jobs: 2)
โโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโณโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโโณโโโโโโโโโโโโโ
โ OO_Info_int_param โ OO_Info_int_param_two โ OO_Info_float_param โ OO_Info_choice_param โ int_param โ float_param โ int_param_two โ choice_param โ RESULT โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ -52.0 โ -100.0 โ -100.0 โ 1.0 โ -52 โ -100.0 โ -100 โ 1 โ -252369.32 โ
โโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโดโโโโโโโโโโโโโ
Runtime Infos
โโโโโโโโโโโโโโโโโโโโโโโโโณโโโโโโโโโโโโณโโโโโโโโโโโโณโโโโโโโโโโโโโโโณโโโโโโโโโโโโโโ
โ Number of evaluations โ Min time โ Max time โ Average time โ Median time โ
โกโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฉ
โ 2 โ 6.00 sec โ 6.00 sec โ 6.00 sec โ 6.00 sec โ
โโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโ
2025-10-18 09:50:51 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, Started OmniOpt2 run...
2025-10-18 09:50:52 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, getting new HP set (no sbatch)
2025-10-18 09:50:52 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, requested 1 jobs, got 1, 1.25 s/job
2025-10-18 09:50:52 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, eval #1/1 start
2025-10-18 09:50:52 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, starting new job
2025-10-18 09:50:52 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, started new job
2025-10-18 09:51:01 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, new result: -112199.72
2025-10-18 09:51:09 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, best RESULT: -170166.336654245, finishing jobs, finished 1 job
2025-10-18 09:51:10 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, best RESULT: -170166.336654245, getting new HP set (no sbatch)
2025-10-18 09:51:10 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, best RESULT: -170166.336654245, requested 1 jobs, got 1, 1.16 s/job
2025-10-18 09:51:10 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, best RESULT: -170166.336654245, eval #1/1 start
2025-10-18 09:51:10 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, best RESULT: -170166.336654245, starting new job
2025-10-18 09:51:10 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, best RESULT: -170166.336654245, started new job
2025-10-18 09:51:19 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, best RESULT: -170166.336654245, new result: -252369.32
2025-10-18 09:51:24 (1e382437-013a-443e-a5b0-eabfba065abd): BOTORCH_MODULAR, best RESULT: -252369.32, finishing jobs, finished 1 job
timestamp,ram_usage_mb,cpu_usage_percent
1760781051,810.73828125,9.2