Copy raw data to clipboard
Download »job_infos.csv« as file
start_time,end_time,run_time,program_string,recent_samples_size,n_samples,feature_proportion,n_clusters,confidence,ACCURACY,RUNTIME,exit_code,signal,hostname,OO_Info_runtime,OO_Info_peak_memory,OO_Info_mean_memory,OO_Info_lpd,OO_Info_portion_req_label,OO_Info_SLURM_JOB_ID
1746192483,1746192502,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4100 n_samples 661 confidence 0.001 feature_proportion 0.001 n_clusters 44,4100,661,0.001,44,0.001,0.91,0,0,None,i7185,0,752.7578125,752.70703125,-1,0,4903058
1746192566,1746192605,39,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1730 n_samples 651 confidence 0.001 feature_proportion 0.999 n_clusters 44,1730,651,0.999,44,0.001,0.91,0,0,None,i7183,0,754.17578125,754.1458333333334,-1,0,4903083
1746192704,1746192717,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 111 n_samples 451 confidence 0.005 feature_proportion 0.9542554711250371 n_clusters 37,111,451,0.9542554711250371,37,0.005,0.91,1,0,None,i7179,1,756.21875,753.8606770833334,-1,0,4903120
1746192843,1746192856,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4793 n_samples 1780 confidence 0.001 feature_proportion 0.001 n_clusters 49,4793,1780,0.001,49,0.001,0.91,0,0,None,i7180,0,752.3359375,752.28515625,-1,0,4903151
1746192965,1746192978,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3626 n_samples 3097 confidence 0.25 feature_proportion 0.001 n_clusters 20,3626,3097,0.001,20,0.25,0.91,0,0,None,i7180,0,753.5703125,753.51953125,-1,0,4903184
1746193105,1746193118,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1072 n_samples 434 confidence 0.001 feature_proportion 0.001 n_clusters 36,1072,434,0.001,36,0.001,0.91,1,0,None,i7178,1,759.203125,755.6458333333334,-1,0,4903222
1746193223,1746193236,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2339 n_samples 4364 confidence 0.1 feature_proportion 0.001 n_clusters 29,2339,4364,0.001,29,0.1,0.91,0,0,None,i7176,0,753.45703125,753.4244791666666,-1,0,4903263
1746193363,1746193376,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 118 n_samples 312 confidence 0.001 feature_proportion 0.001 n_clusters 23,118,312,0.001,23,0.001,0.91,1,0,None,i7175,1,760.421875,755.6549479166666,-1,0,4903299
1746193463,1746193476,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3862 n_samples 1700 confidence 0.025 feature_proportion 0.999 n_clusters 1,3862,1700,0.999,1,0.025,0.91,0,0,None,i7176,0,752.12890625,752.0989583333334,-1,0,4903317
1746193583,1746193596,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3101 n_samples 1987 confidence 0.001 feature_proportion 0.001 n_clusters 2,3101,1987,0.001,2,0.001,0.91,0,0,None,i7175,0,753.390625,753.33984375,-1,0,4903348
1746193684,1746193697,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3104 n_samples 1206 confidence 0.05 feature_proportion 0.001 n_clusters 7,3104,1206,0.001,7,0.05,0.91,0,0,None,i7174,0,753.203125,753.1536458333334,-1,0,4903372
1746193753,1746193785,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3057 n_samples 3462 confidence 0.1 feature_proportion 0.001 n_clusters 1,3057,3462,0.001,1,0.1,0.91,0,0,None,i7173,0,753.07421875,753.0455729166666,-1,0,4903387
1746193865,1746193878,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 917 n_samples 2160 confidence 0.001 feature_proportion 0.6189931788524364 n_clusters 42,917,2160,0.6189931788524364,42,0.001,0.91,0,0,None,i7174,0,752.859375,752.8098958333334,-1,0,4903417
1746193984,1746193997,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4603 n_samples 553 confidence 0.25 feature_proportion 0.999 n_clusters 46,4603,553,0.999,46,0.25,0.91,0,0,None,i7174,0,754.14453125,754.0950520833334,-1,0,4903444
1746194064,1746194077,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3376 n_samples 1 confidence 0.005 feature_proportion 0.001 n_clusters 10,3376,1,0.001,10,0.005,None,None,1,None,i7182,,,,,,4903457
1746194134,1746194147,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2008 n_samples 1141 confidence 0.001 feature_proportion 0.025647193782838064 n_clusters 50,2008,1141,0.025647193782838064,50,0.001,0.91,0,0,None,i7173,0,750.9296875,750.8802083333334,-1,0,4903478
1746194243,1746194256,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3428 n_samples 4455 confidence 0.001 feature_proportion 0.9103786965085964 n_clusters 28,3428,4455,0.9103786965085964,28,0.001,0.91,0,0,None,i7172,0,752.82421875,752.7942708333334,-1,0,4903501
1746194374,1746194387,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 791 n_samples 1568 confidence 0.25 feature_proportion 0.999 n_clusters 5,791,1568,0.999,5,0.25,0.91,0,0,None,i7173,0,752.26953125,752.2408854166666,-1,0,4903528
1746194503,1746194516,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2136 n_samples 3097 confidence 0.001 feature_proportion 0.07796484612992775 n_clusters 14,2136,3097,0.07796484612992775,14,0.001,0.91,0,0,None,i7172,0,753.0703125,753.01953125,-1,0,4903554
1746194643,1746194656,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3398 n_samples 3174 confidence 0.001 feature_proportion 0.001 n_clusters 33,3398,3174,0.001,33,0.001,0.91,0,0,None,i7172,0,754.17578125,754.1263020833334,-1,0,4903580
1746194794,1746194807,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 425 n_samples 2430 confidence 0.025 feature_proportion 0.1577255825427562 n_clusters 35,425,2430,0.1577255825427562,35,0.025,0.91,0,0,None,i7172,0,751.0234375,750.98828125,-1,0,4903612
1746194914,1746194926,12,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2266 n_samples 2819 confidence 0.001 feature_proportion 0.5763293020013667 n_clusters 22,2266,2819,0.5763293020013667,22,0.001,0.91,0,0,None,i7171,0,753.6171875,753.5872395833334,-1,0,4903644
1746195484,1746195497,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4036 n_samples 4203 confidence 0.001 feature_proportion 0.9501322578872753 n_clusters 50,4036,4203,0.9501322578872753,50,0.001,0.91,0,0,None,i7170,0,753.421875,753.3723958333334,-1,0,4903751
1746195944,1746195957,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1504 n_samples 1983 confidence 0.025 feature_proportion 0.001 n_clusters 30,1504,1983,0.001,30,0.025,0.91,0,0,None,i7170,0,752.5703125,752.5377604166666,-1,0,4903839
1746196043,1746196056,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1194 n_samples 2728 confidence 0.001 feature_proportion 0.999 n_clusters 43,1194,2728,0.999,43,0.001,0.91,0,0,None,i7169,0,752.21875,752.1888020833334,-1,0,4903855
1746196183,1746196196,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3372 n_samples 3941 confidence 0.005 feature_proportion 0.001 n_clusters 45,3372,3941,0.001,45,0.005,0.91,0,0,None,i7169,0,753.6796875,753.5859375,-1,0,4903878
1746196354,1746196367,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 161 n_samples 2908 confidence 0.025 feature_proportion 0.001 n_clusters 18,161,2908,0.001,18,0.025,0.91,0,0,None,i7169,0,753.0703125,753.01953125,-1,0,4903918
1746196524,1746196536,12,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 659 n_samples 4650 confidence 0.001 feature_proportion 0.001 n_clusters 41,659,4650,0.001,41,0.001,0.91,0,0,None,i7176,0,752.10546875,752.0169270833334,-1,0,4903947
1746196644,1746196657,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2436 n_samples 2812 confidence 0.25 feature_proportion 0.001 n_clusters 29,2436,2812,0.001,29,0.25,0.91,0,0,None,i7169,0,752.73046875,752.7005208333334,-1,0,4903968
1746196775,1746196789,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3551 n_samples 3658 confidence 0.01 feature_proportion 0.999 n_clusters 31,3551,3658,0.999,31,0.01,0.91,0,0,None,i7168,0,752.96875,752.8971354166666,-1,0,4903994
1746196894,1746196907,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1917 n_samples 4626 confidence 0.005 feature_proportion 0.001 n_clusters 22,1917,4626,0.001,22,0.005,0.91,0,0,None,i7169,0,753.203125,753.15234375,-1,0,4904014
1746197104,1746197116,12,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4275 n_samples 246 confidence 0.01 feature_proportion 0.001 n_clusters 39,4275,246,0.001,39,0.01,0.91,1,0,None,i7173,1,760.734375,755.7747395833334,-1,0,4904055
1746197223,1746197236,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4108 n_samples 730 confidence 0.001 feature_proportion 0.001 n_clusters 50,4108,730,0.001,50,0.001,0.91,0,0,None,i7173,0,752.53125,752.453125,-1,0,4904075
1746197943,1746197956,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 997 n_samples 2849 confidence 0.1 feature_proportion 0.999 n_clusters 24,997,2849,0.999,24,0.1,0.91,0,0,None,i7167,0,753.49609375,753.46484375,-1,0,4904211
1746198124,1746198137,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 354 n_samples 4237 confidence 0.005 feature_proportion 0.999 n_clusters 39,354,4237,0.999,39,0.005,0.91,0,0,None,i7167,0,752.421875,752.3723958333334,-1,0,4904243
1746198363,1746198376,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3712 n_samples 4218 confidence 0.01 feature_proportion 0.001 n_clusters 39,3712,4218,0.001,39,0.01,0.91,0,0,None,i7166,0,753.29296875,753.2421875,-1,0,4904286
1746198483,1746198496,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3095 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 39,3095,5000,0.001,39,0.25,0.91,0,0,None,i7166,0,752.2734375,752.22265625,-1,0,4904309
1746198623,1746198636,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3915 n_samples 350 confidence 0.001 feature_proportion 0.963488666825792 n_clusters 43,3915,350,0.963488666825792,43,0.001,0.91,0,0,None,i7166,0,757.98828125,754.3697916666666,-1,0,4904337
1746198824,1746198837,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 868 n_samples 3474 confidence 0.001 feature_proportion 0.999 n_clusters 7,868,3474,0.999,7,0.001,0.91,0,0,None,i7180,0,753.8828125,753.7799479166666,-1,0,4904375
1746199114,1746199127,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 2,1,5000,0.001,2,0.001,0.91,0,0,None,i7166,0,753.01171875,752.9609375,-1,0,4904438
1746199223,1746199236,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2138 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,2138,5000,0.001,1,0.001,0.91,0,0,None,i7166,0,753.44921875,753.3984375,-1,0,4904459
1746199284,1746199297,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 251 n_samples 4911 confidence 0.05 feature_proportion 0.001 n_clusters 1,251,4911,0.001,1,0.05,0.91,0,0,None,i7172,0,752.8359375,752.7864583333334,-1,0,4904469
1746199363,1746199376,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 717 n_samples 619 confidence 0.1 feature_proportion 0.001 n_clusters 1,717,619,0.001,1,0.1,0.91,0,0,None,i7166,0,753.3984375,753.34765625,-1,0,4904489
1746199464,1746199477,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.25,0.91,0,0,None,i7167,0,752.49609375,752.4466145833334,-1,0,4904513
1746199535,1746199548,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3331 n_samples 4804 confidence 0.025 feature_proportion 0.001 n_clusters 1,3331,4804,0.001,1,0.025,0.91,0,0,None,i7167,0,752.375,752.3463541666666,-1,0,4904528
1746199644,1746199657,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.005,0.91,0,0,None,i7167,0,754.2578125,754.2083333333334,-1,0,4904551
1746199744,1746199757,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.025,0.91,0,0,None,i7167,0,752.34765625,752.2981770833334,-1,0,4904569
1746199836,1746199849,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.01,0.91,0,0,None,i7164,0,754.03125,753.98046875,-1,0,4904596
1746199944,1746199957,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2897 n_samples 5000 confidence 0.1 feature_proportion 0.001 n_clusters 1,2897,5000,0.001,1,0.1,0.91,0,0,None,i7164,0,754.03125,753.98046875,-1,0,4904619
1746200023,1746200036,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.001,0.91,0,0,None,i7166,0,753.51171875,753.4817708333334,-1,0,4904640
1746200104,1746200117,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4904 n_samples 4599 confidence 0.025 feature_proportion 0.001 n_clusters 5,4904,4599,0.001,5,0.025,0.91,0,0,None,i7164,0,752.8046875,752.75390625,-1,0,4904657
1746200244,1746200257,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.05,0.91,0,0,None,i7178,0,754.12109375,754.0716145833334,-1,0,4904684
1746200345,1746200365,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 483 n_samples 130 confidence 0.1 feature_proportion 0.001 n_clusters 1,483,130,0.001,1,0.1,0.91,3,0,None,i7180,3,753.12109375,752.10546875,-1,0.9812734082397003,4904703
1746200434,1746200447,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.1 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.1,0.91,0,0,None,i7179,0,754.15234375,754.1015625,-1,0,4904726
1746200544,1746200557,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.001,0.91,0,0,None,i7179,0,752.5546875,752.5221354166666,-1,0,4904757
1746200604,1746200617,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 28 n_samples 446 confidence 0.025 feature_proportion 0.001 n_clusters 1,28,446,0.001,1,0.025,0.91,0,0,None,i7178,0,760.44921875,755.6888020833334,-1,0,4904770
1746200784,1746200797,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2601 n_samples 649 confidence 0.025 feature_proportion 0.999 n_clusters 26,2601,649,0.999,26,0.025,0.91,0,0,None,i7178,0,753.25390625,753.2044270833334,-1,0,4904816
1746200885,1746200898,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3973 n_samples 2641 confidence 0.005 feature_proportion 0.001 n_clusters 1,3973,2641,0.001,1,0.005,0.91,0,0,None,i7183,0,753.8984375,753.8125,-1,0,4904838
1746201024,1746201037,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.1 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.1,0.91,0,0,None,i7186,0,752.5625,752.5325520833334,-1,0,4904867
1746201124,1746201137,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.001,0.91,0,0,None,i7179,0,753.86328125,753.8125,-1,0,4904894
1746201324,1746201344,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 943 n_samples 228 confidence 0.05 feature_proportion 0.999 n_clusters 1,943,228,0.999,1,0.05,0.91,2,0,None,i7178,2,758.390625,755.2877604166666,-1,0.8539325842696629,4904937
1746201444,1746201457,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3022 n_samples 238 confidence 0.005 feature_proportion 0.999 n_clusters 1,3022,238,0.999,1,0.005,0.91,2,0,None,i7176,2,752.53125,752.0065104166666,-1,0.8913857677902621,4904969
1746202297,1746202317,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2531 n_samples 545 confidence 0.05 feature_proportion 0.001 n_clusters 50,2531,545,0.001,50,0.05,0.91,1,0,None,i7185,1,752.5703125,752.5403645833334,-1,0,4905125
1746202753,1746202774,21,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2863 n_samples 2263 confidence 0.001 feature_proportion 0.001 n_clusters 1,2863,2263,0.001,1,0.001,0.91,0,0,None,i7176,0,752.40625,752.35546875,-1,0,4905203
1746203064,1746203078,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 667 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 28,667,5000,0.001,28,0.01,0.91,0,0,None,i7184,0,752.671875,752.6223958333334,-1,0,4905251
1746203230,1746203243,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3084 n_samples 1005 confidence 0.25 feature_proportion 0.001 n_clusters 50,3084,1005,0.001,50,0.25,0.91,0,0,None,i7175,0,752.85546875,752.8229166666666,-1,0,4905282
1746203425,1746203438,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1753 n_samples 426 confidence 0.05 feature_proportion 0.001 n_clusters 16,1753,426,0.001,16,0.05,0.91,0,0,None,i7176,0,754,753.1354166666666,-1,0,4905316
1746203646,1746203659,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 862 n_samples 625 confidence 0.001 feature_proportion 0.001 n_clusters 50,862,625,0.001,50,0.001,0.91,0,0,None,i7186,0,752.5078125,752.4778645833334,-1,0,4905354
1746204035,1746204054,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1466 n_samples 1233 confidence 0.05 feature_proportion 0.001 n_clusters 35,1466,1233,0.001,35,0.05,0.91,0,0,None,i7186,0,753.30078125,753.2513020833334,-1,0,4905430
1746204217,1746204230,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3380 n_samples 2117 confidence 0.001 feature_proportion 0.999 n_clusters 19,3380,2117,0.999,19,0.001,0.91,0,0,None,i7173,0,754.21484375,754.1861979166666,-1,0,4905472
1746205266,1746205279,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4053 n_samples 1468 confidence 0.01 feature_proportion 0.001 n_clusters 50,4053,1468,0.001,50,0.01,0.91,0,0,None,i7171,0,752.19921875,752.1692708333334,-1,0,4905681
1746205446,1746205459,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 54 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 32,54,5000,0.001,32,0.001,0.91,0,0,None,i7181,0,752.16015625,752.0911458333334,-1,0,4905712
1746205706,1746205719,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 71 n_samples 1838 confidence 0.01 feature_proportion 0.001 n_clusters 5,71,1838,0.001,5,0.01,0.91,0,0,None,i7171,0,752.39453125,752.3645833333334,-1,0,4905770
1746205897,1746205910,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1801 n_samples 3550 confidence 0.05 feature_proportion 0.999 n_clusters 26,1801,3550,0.999,26,0.05,0.91,0,0,None,i7175,0,753.15234375,753.1015625,-1,0,4905803
1746206206,1746206219,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4656 n_samples 3439 confidence 0.01 feature_proportion 0.999 n_clusters 27,4656,3439,0.999,27,0.01,0.91,0,0,None,i7179,0,753.1796875,753.1458333333334,-1,0,4905865
1746206424,1746206437,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4283 n_samples 319 confidence 0.001 feature_proportion 0.999 n_clusters 34,4283,319,0.999,34,0.001,0.91,1,0,None,i7169,1,758.14453125,754.5234375,-1,0,4905911
1746206616,1746206635,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1089 n_samples 3230 confidence 0.005 feature_proportion 0.001 n_clusters 16,1089,3230,0.001,16,0.005,0.91,0,0,None,i7181,0,752.76953125,752.71875,-1,0,4905946
1746206764,1746206777,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.05,0.91,0,0,None,i7171,0,753.0390625,752.9908854166666,-1,0,4905969
1746206904,1746206917,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.025,0.91,0,0,None,i7179,0,751.14453125,751.1145833333334,-1,0,4905997
1746207094,1746207107,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.1 feature_proportion 0.001 n_clusters 37,1,5000,0.001,37,0.1,0.91,0,0,None,i7169,0,752.7890625,752.7591145833334,-1,0,4906035
1746207444,1746207457,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 18,1,5000,0.001,18,0.01,0.91,0,0,None,i7169,0,752.80078125,752.75,-1,0,4906102
1746207546,1746207559,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4932 n_samples 3735 confidence 0.01 feature_proportion 0.001 n_clusters 19,4932,3735,0.001,19,0.01,0.91,0,0,None,i7185,0,753.5234375,753.4114583333334,-1,0,4906120
1746207804,1746207817,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3460 n_samples 2583 confidence 0.1 feature_proportion 0.001 n_clusters 50,3460,2583,0.001,50,0.1,0.91,0,0,None,i7169,0,752.83984375,752.7890625,-1,0,4906171
1746207965,1746207979,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.25,0.91,0,0,None,i7180,0,753.2421875,753.19140625,-1,0,4906193
1746208111,1746208124,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3519 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 50,3519,5000,0.001,50,0.025,0.91,0,0,None,i7180,0,753.7734375,753.72265625,-1,0,4906226
1746208265,1746208279,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.05,0.91,0,0,None,i7180,0,753.97265625,753.921875,-1,0,4906252
1746208345,1746208358,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3218 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,3218,5000,0.001,1,0.005,0.91,0,0,None,i7179,0,753.421875,753.3919270833334,-1,0,4906269
1746208415,1746208428,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 135 n_samples 628 confidence 0.025 feature_proportion 0.001 n_clusters 17,135,628,0.001,17,0.025,0.91,0,0,None,i7179,0,752.89453125,752.859375,-1,0,4906284
1746208525,1746208538,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 19,1,5000,0.001,19,0.005,0.91,0,0,None,i7179,0,753.8828125,753.8528645833334,-1,0,4906305
1746208605,1746208618,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4877 n_samples 4792 confidence 0.025 feature_proportion 0.001 n_clusters 20,4877,4792,0.001,20,0.025,0.91,0,0,None,i7182,0,752.44140625,752.390625,-1,0,4906322
1746208835,1746208847,12,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 75 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 18,75,5000,0.001,18,0.001,0.91,0,0,None,i7179,0,753.7421875,753.69140625,-1,0,4906363
1746208965,1746208978,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.025,0.91,0,0,None,i7179,0,752.2734375,752.22265625,-1,0,4906393
1746209135,1746209148,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4789 n_samples 1481 confidence 0.01 feature_proportion 0.001 n_clusters 14,4789,1481,0.001,14,0.01,0.91,0,0,None,i7182,0,753.203125,753.15234375,-1,0,4906430
1746209225,1746209239,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 636 n_samples 4475 confidence 0.025 feature_proportion 0.001 n_clusters 13,636,4475,0.001,13,0.025,0.91,0,0,None,i7183,0,753.9296875,753.87890625,-1,0,4906455
1746209285,1746209298,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 812 n_samples 4867 confidence 0.025 feature_proportion 0.001 n_clusters 18,812,4867,0.001,18,0.025,0.91,0,0,None,i7182,0,753.19921875,753.1692708333334,-1,0,4906472
1746209346,1746209359,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3033 n_samples 318 confidence 0.025 feature_proportion 0.001 n_clusters 11,3033,318,0.001,11,0.025,0.91,1,0,None,i7178,1,760.30859375,755.5559895833334,-1,0,4906490
1746209426,1746209439,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 806 n_samples 113 confidence 0.025 feature_proportion 0.001 n_clusters 15,806,113,0.001,15,0.025,0.91,2,0,None,i7172,2,751.4375,751.0794270833334,-1,0.8183520599250936,4906511
1746209586,1746209599,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1604 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,1604,5000,0.001,1,0.05,0.91,0,0,None,i7179,0,754.02734375,753.9973958333334,-1,0,4906546
1746209677,1746209690,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1712 n_samples 4645 confidence 0.025 feature_proportion 0.001 n_clusters 18,1712,4645,0.001,18,0.025,0.91,0,0,None,i7176,0,753.6171875,753.5677083333334,-1,0,4906567
1746209766,1746209779,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 258 n_samples 4803 confidence 0.025 feature_proportion 0.001 n_clusters 15,258,4803,0.001,15,0.025,0.91,0,0,None,i7179,0,753.67578125,753.640625,-1,0,4906590
1746209966,1746209979,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.005,0.91,0,0,None,i7179,0,752.19921875,752.1484375,-1,0,4906637
1746210127,1746210140,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.01,0.91,0,0,None,i7179,0,752.3203125,752.2903645833334,-1,0,4906679
1746210219,1746210232,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 319 n_samples 133 confidence 0.025 feature_proportion 0.001 n_clusters 10,319,133,0.001,10,0.025,0.91,1,0,None,i7179,1,752.54296875,752.4283854166666,-1,0.7602996254681648,4906698
1746210326,1746210339,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1506 n_samples 4858 confidence 0.025 feature_proportion 0.001 n_clusters 3,1506,4858,0.001,3,0.025,0.91,0,0,None,i7179,0,753.5234375,753.47265625,-1,0,4906722
1746210507,1746210520,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.25,0.91,0,0,None,i7184,0,753.08203125,752.98046875,-1,0,4906761
1746210746,1746210760,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3058 n_samples 2059 confidence 0.005 feature_proportion 0.2276442541779499 n_clusters 42,3058,2059,0.2276442541779499,42,0.005,0.91,0,0,None,i7181,0,754.08984375,754.0598958333334,-1,0,4906811
1746210847,1746210860,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4695 n_samples 4504 confidence 0.1 feature_proportion 0.001 n_clusters 8,4695,4504,0.001,8,0.1,0.91,0,0,None,i7184,0,752.29296875,752.1901041666666,-1,0,4906833
1746210926,1746210939,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1807 n_samples 1813 confidence 0.025 feature_proportion 0.001 n_clusters 16,1807,1813,0.001,16,0.025,0.91,0,0,None,i7179,0,752.2734375,752.22265625,-1,0,4906856
1746210996,1746211009,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3437 n_samples 4811 confidence 0.025 feature_proportion 0.001 n_clusters 15,3437,4811,0.001,15,0.025,0.91,0,0,None,i7179,0,752.63671875,752.6041666666666,-1,0,4906874
1746211086,1746211099,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 309 n_samples 4998 confidence 0.025 feature_proportion 0.001 n_clusters 20,309,4998,0.001,20,0.025,0.91,0,0,None,i7183,0,753.12890625,753.078125,-1,0,4906892
1746211286,1746211299,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.1 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.1,0.91,0,0,None,i7183,0,752.8359375,752.7799479166666,-1,0,4906939
1746211466,1746211479,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4076 n_samples 5000 confidence 0.1 feature_proportion 0.001 n_clusters 1,4076,5000,0.001,1,0.1,0.91,0,0,None,i7182,0,753.08984375,753.0390625,-1,0,4906984
1746211646,1746211659,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.25,0.91,0,0,None,i7179,0,753.82421875,753.7942708333334,-1,0,4907022
1746212187,1746212200,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1375 n_samples 663 confidence 0.1 feature_proportion 0.36592538000417135 n_clusters 1,1375,663,0.36592538000417135,1,0.1,0.91,0,0,None,i7183,0,752.41015625,752.359375,-1,0,4907132
1746212408,1746212421,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.01,0.91,0,0,None,i7186,0,753.328125,753.2981770833334,-1,0,4907178
1746212587,1746212601,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.005,0.91,0,0,None,i7186,0,753.1953125,753.1263020833334,-1,0,4907220
1746212707,1746212720,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.05,0.91,0,0,None,i7184,0,754.1015625,754.05078125,-1,0,4907246
1746212887,1746212900,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.25,0.91,0,0,None,i7183,0,752.33984375,752.2890625,-1,0,4907286
1746212977,1746212990,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4384 n_samples 3015 confidence 0.025 feature_proportion 0.001 n_clusters 7,4384,3015,0.001,7,0.025,0.91,0,0,None,i7183,0,752.296875,752.24609375,-1,0,4907308
1746213126,1746213140,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4518 n_samples 3519 confidence 0.25 feature_proportion 0.001 n_clusters 1,4518,3519,0.001,1,0.25,0.91,0,0,None,i7184,0,752.3125,752.2630208333334,-1,0,4907337
1746213247,1746213260,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3957 n_samples 891 confidence 0.025 feature_proportion 0.001 n_clusters 14,3957,891,0.001,14,0.025,0.91,0,0,None,i7184,0,752.1953125,752.1458333333334,-1,0,4907364
1746213326,1746213340,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 185 n_samples 524 confidence 0.025 feature_proportion 0.001 n_clusters 16,185,524,0.001,16,0.025,0.91,0,0,None,i7183,0,756.23046875,753.984375,-1,0,4907385
1746213407,1746213420,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4949 n_samples 4821 confidence 0.025 feature_proportion 0.001 n_clusters 15,4949,4821,0.001,15,0.025,0.91,0,0,None,i7184,0,753.4375,753.3880208333334,-1,0,4907401
1746213517,1746213543,26,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4976 n_samples 3025 confidence 0.025 feature_proportion 0.001 n_clusters 20,4976,3025,0.001,20,0.025,0.91,0,0,None,i7180,0,753.68359375,753.5559895833334,-1,0,4907430
1746213688,1746213701,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.25,0.91,0,0,None,i7185,0,753.16015625,753.109375,-1,0,4907465
1746213749,1746213775,26,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 151 n_samples 2349 confidence 0.025 feature_proportion 0.001 n_clusters 10,151,2349,0.001,10,0.025,0.91,0,0,None,i7179,0,752.61328125,752.5625,-1,0,4907491
1746213938,1746213951,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.001,0.91,0,0,None,i7185,0,753.65234375,753.6015625,-1,0,4907527
1746214117,1746214130,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.05,0.91,0,0,None,i7186,0,752.671875,752.6223958333334,-1,0,4907569
1746214188,1746214214,26,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4128 n_samples 53 confidence 0.025 feature_proportion 0.001 n_clusters 19,4128,53,0.001,19,0.025,0.91,12,0,None,i7185,12,752.6015625,749.1337890625,-1,0.9531835205992509,4907585
1746214388,1746214401,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.005,0.91,0,0,None,i7179,0,753.83203125,753.78125,-1,0,4907635
1746215288,1746215301,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 294 confidence 0.001 feature_proportion 0.001 n_clusters 1,5000,294,0.001,1,0.001,0.91,1,0,None,i7185,1,755.453125,753.37109375,-1,0,4907843
1746215427,1746215440,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.025,0.91,0,0,None,i7181,0,752.140625,752.0911458333334,-1,0,4907877
1746215557,1746215570,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3755 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 1,3755,5000,0.001,1,0.01,0.91,0,0,None,i7176,0,753.1796875,753.1302083333334,-1,0,4907914
1746215927,1746215940,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1286 n_samples 224 confidence 0.01 feature_proportion 0.001 n_clusters 17,1286,224,0.001,17,0.01,0.91,2,0,None,i7179,2,758.43359375,755.015625,-1,0.8389513108614233,4907996
1746216108,1746216121,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.05,0.91,0,0,None,i7185,0,754.12109375,754.0703125,-1,0,4908038
1746216290,1746216303,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3024 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,3024,5000,0.001,1,0.05,0.91,0,0,None,i7183,0,752.41015625,752.359375,-1,0,4908085
1746216388,1746216401,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3270 n_samples 584 confidence 0.1 feature_proportion 0.001 n_clusters 16,3270,584,0.001,16,0.1,0.91,0,0,None,i7186,0,753.07421875,753.0247395833334,-1,0,4908103
1746216811,1746216831,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 84 n_samples 4921 confidence 0.25 feature_proportion 0.999 n_clusters 1,84,4921,0.999,1,0.25,0.91,0,0,None,i7179,0,752.94140625,752.890625,-1,0,4908196
1746216950,1746216963,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3523 n_samples 4987 confidence 0.001 feature_proportion 0.001 n_clusters 17,3523,4987,0.001,17,0.001,0.91,0,0,None,i7176,0,753.16796875,753.1184895833334,-1,0,4908233
1746217051,1746217064,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 57 n_samples 1017 confidence 0.025 feature_proportion 0.001 n_clusters 19,57,1017,0.001,19,0.025,0.91,0,0,None,i7176,0,752.94921875,752.9192708333334,-1,0,4908258
1746217312,1746217325,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.025,0.91,0,0,None,i7183,0,752.76953125,752.7395833333334,-1,0,4908321
1746217418,1746217431,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1524 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 1,1524,5000,0.001,1,0.25,0.91,0,0,None,i7185,0,752.3203125,752.2903645833334,-1,0,4908346
1746217594,1746217607,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.005,0.91,0,0,None,i7175,0,752.3203125,752.26953125,-1,0,4908392
1746217809,1746217822,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 21 n_samples 2022 confidence 0.025 feature_proportion 0.001 n_clusters 17,21,2022,0.001,17,0.025,0.91,0,0,None,i7180,0,752.18359375,752.1328125,-1,0,4908440
1746217888,1746217901,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4973 n_samples 1891 confidence 0.025 feature_proportion 0.001 n_clusters 18,4973,1891,0.001,18,0.025,0.91,0,0,None,i7176,0,752.98828125,752.9375,-1,0,4908456
1746218008,1746218021,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4323 n_samples 4652 confidence 0.05 feature_proportion 0.001 n_clusters 18,4323,4652,0.001,18,0.05,0.91,0,0,None,i7176,0,752.3671875,752.31640625,-1,0,4908484
1746218188,1746218201,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4003 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 1,4003,5000,0.001,1,0.25,0.91,0,0,None,i7183,0,753.4921875,753.44140625,-1,0,4908520
1746218367,1746218380,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3924 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,3924,5000,0.001,1,0.05,0.91,0,0,None,i7184,0,752.21484375,752.1848958333334,-1,0,4908566
1746218509,1746218522,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.01,0.91,0,0,None,i7176,0,753.72265625,753.6731770833334,-1,0,4908611
1746219189,1746219202,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3596 n_samples 417 confidence 0.005 feature_proportion 0.001 n_clusters 8,3596,417,0.001,8,0.005,0.91,0,0,None,i7180,0,755.42578125,753.265625,-1,0,4908781
1746219398,1746219411,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 598 n_samples 416 confidence 0.001 feature_proportion 0.999 n_clusters 41,598,416,0.999,41,0.001,0.91,1,0,None,i7184,1,758.17578125,754.484375,-1,0,4908827
1746219569,1746219582,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1633 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,1633,5000,0.001,1,0.001,0.91,0,0,None,i7173,0,753.34765625,753.2981770833334,-1,0,4908874
1746219943,1746219956,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 20,1,5000,0.001,20,0.05,0.91,0,0,None,i7183,0,752.39453125,752.34375,-1,0,4908961
1746220047,1746220060,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 83 n_samples 4187 confidence 0.025 feature_proportion 0.001 n_clusters 20,83,4187,0.001,20,0.025,0.91,0,0,None,i7173,0,752.3984375,752.3489583333334,-1,0,4908984
1746220178,1746220190,12,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.05,0.91,0,0,None,i7173,0,754.10546875,754.0559895833334,-1,0,4909022
1746220288,1746220301,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 57 n_samples 2754 confidence 0.025 feature_proportion 0.001 n_clusters 17,57,2754,0.001,17,0.025,0.91,0,0,None,i7173,0,753.4140625,753.3645833333334,-1,0,4909047
1746220392,1746220411,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2316 n_samples 474 confidence 0.25 feature_proportion 0.001 n_clusters 17,2316,474,0.001,17,0.25,0.91,1,0,None,i7185,1,761.375,756.5325520833334,-1,0,4909073
1746220950,1746220963,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.025 feature_proportion 0.0019708308075793855 n_clusters 20,1,5000,0.0019708308075793855,20,0.025,0.91,0,0,None,i7186,0,753.3203125,753.2708333333334,-1,0,4909199
1746221168,1746221181,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 300 n_samples 607 confidence 0.005 feature_proportion 0.001 n_clusters 19,300,607,0.001,19,0.005,0.91,0,0,None,i7182,0,754.15234375,754.1223958333334,-1,0,4909258
1746221309,1746221322,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 52 n_samples 397 confidence 0.1 feature_proportion 0.001 n_clusters 9,52,397,0.001,9,0.1,0.91,0,0,None,i7173,0,760.34375,755.5416666666666,-1,0,4909297
1746221589,1746221602,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3732 n_samples 3261 confidence 0.1 feature_proportion 0.1860611702500999 n_clusters 28,3732,3261,0.1860611702500999,28,0.1,0.91,0,0,None,i7180,0,752.89453125,752.8645833333334,-1,0,4909364
1746221833,1746221853,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1487 n_samples 3477 confidence 0.005 feature_proportion 0.24511018932932305 n_clusters 7,1487,3477,0.24511018932932305,7,0.005,0.91,0,0,None,i7183,0,752.53515625,752.5052083333334,-1,0,4909413
1746222099,1746222112,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2431 n_samples 883 confidence 0.05 feature_proportion 0.001 n_clusters 44,2431,883,0.001,44,0.05,0.91,0,0,None,i7178,0,753.47265625,753.44140625,-1,0,4909476
1746222429,1746222443,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3433 n_samples 2708 confidence 0.1 feature_proportion 0.5379727097325452 n_clusters 50,3433,2708,0.5379727097325452,50,0.1,0.91,0,0,None,i7183,0,752.7734375,752.6901041666666,-1,0,4909545
1746222612,1746222625,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.001,0.91,0,0,None,i7179,0,754.296875,754.2669270833334,-1,0,4909581
1746222790,1746222803,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4309 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,4309,5000,0.001,1,0.005,0.91,0,0,None,i7185,0,752.29296875,752.1861979166666,-1,0,4909622
1746223270,1746223283,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 26,1,5000,0.001,26,0.025,0.91,0,0,None,i7186,0,752.7109375,752.66015625,-1,0,4909726
1746223450,1746223463,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.005,0.91,0,0,None,i7181,0,753.66796875,753.6184895833334,-1,0,4909766
1746223664,1746223677,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.05,0.91,0,0,None,i7179,0,752.7265625,752.67578125,-1,0,4909813
1746224413,1746224426,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2261 n_samples 5000 confidence 0.025 feature_proportion 0.20096236028882092 n_clusters 24,2261,5000,0.20096236028882092,24,0.025,0.91,0,0,None,i7176,0,754.18359375,754.1536458333334,-1,0,4909962
1746225211,1746225224,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3032 n_samples 1362 confidence 0.05 feature_proportion 0.999 n_clusters 25,3032,1362,0.999,25,0.05,0.91,0,0,None,i7172,0,752.453125,752.34375,-1,0,4910125
1746225490,1746225503,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 531 n_samples 2349 confidence 0.001 feature_proportion 0.999 n_clusters 13,531,2349,0.999,13,0.001,0.91,0,0,None,i7185,0,752.5078125,752.4778645833334,-1,0,4910179
1746225609,1746225623,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 370 n_samples 1350 confidence 0.01 feature_proportion 0.001 n_clusters 20,370,1350,0.001,20,0.01,0.91,0,0,None,i7180,0,752.890625,752.83984375,-1,0,4910205
1746225870,1746225883,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2966 n_samples 4413 confidence 0.25 feature_proportion 0.001 n_clusters 42,2966,4413,0.001,42,0.25,0.91,0,0,None,i7176,0,754.1015625,754.0026041666666,-1,0,4910262
1746226006,1746226025,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3774 n_samples 4853 confidence 0.01 feature_proportion 0.001 n_clusters 22,3774,4853,0.001,22,0.01,0.91,0,0,None,i7183,0,753.484375,753.4518229166666,-1,0,4910285
1746226190,1746226203,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4159 n_samples 688 confidence 0.01 feature_proportion 0.001 n_clusters 1,4159,688,0.001,1,0.01,0.91,0,0,None,i7185,0,753.53125,753.5013020833334,-1,0,4910325
1746226455,1746226468,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2707 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 18,2707,5000,0.001,18,0.005,0.91,0,0,None,i7183,0,754.109375,754.05859375,-1,0,4910382
1746226630,1746226643,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.005,0.91,0,0,None,i7184,0,752.87109375,752.8411458333334,-1,0,4910423
1746226850,1746226863,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.05,0.91,0,0,None,i7172,0,753.421875,753.3919270833334,-1,0,4910476
1746227031,1746227044,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 4,1,5000,0.001,4,0.001,0.91,0,0,None,i7185,0,752.3359375,752.28515625,-1,0,4910510
1746227739,1746227753,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 731 confidence 0.005 feature_proportion 0.001 n_clusters 23,1,731,0.001,23,0.005,0.91,0,0,None,i7180,0,752.41015625,752.3203125,-1,0,4910650
1746228190,1746228203,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2222 n_samples 635 confidence 0.025 feature_proportion 0.001 n_clusters 10,2222,635,0.001,10,0.025,0.91,0,0,None,i7178,0,753.16796875,753.1341145833334,-1,0,4910734
1746228389,1746228402,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.01,0.91,0,0,None,i7184,0,753.0703125,753.01953125,-1,0,4910768
1746228690,1746228703,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1131 n_samples 1889 confidence 0.001 feature_proportion 0.7826504319458195 n_clusters 49,1131,1889,0.7826504319458195,49,0.001,0.91,0,0,None,i7184,0,752.94140625,752.890625,-1,0,4910828
1746229313,1746229326,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.001 feature_proportion 0.32682141392671527 n_clusters 21,1,5000,0.32682141392671527,21,0.001,0.91,0,0,None,i7183,0,753.86328125,753.8333333333334,-1,0,4910948
1746229508,1746229521,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 19,1,5000,0.001,19,0.25,0.91,0,0,None,i7182,0,753.48046875,753.4453125,-1,0,4910994
1746229689,1746229702,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.01,0.91,0,0,None,i7183,0,753.53515625,753.5052083333334,-1,0,4911028
1746229830,1746229843,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3464 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,3464,5000,0.001,1,0.001,0.91,0,0,None,i7180,0,752.83203125,752.78125,-1,0,4911060
1746230089,1746230102,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 836 n_samples 1314 confidence 0.01 feature_proportion 0.999 n_clusters 43,836,1314,0.999,43,0.01,0.91,0,0,None,i7181,0,752.765625,752.7356770833334,-1,0,4911113
1746230511,1746230524,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3053 n_samples 4588 confidence 0.001 feature_proportion 0.001 n_clusters 16,3053,4588,0.001,16,0.001,0.91,0,0,None,i7183,0,752.69921875,752.6692708333334,-1,0,4911193
1746230710,1746230723,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.005,0.91,0,0,None,i7184,0,752.81640625,752.765625,-1,0,4911237
1746230889,1746230902,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.01,0.91,0,0,None,i7184,0,753.90625,753.8763020833334,-1,0,4911272
1746231009,1746231022,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 653 n_samples 1434 confidence 0.005 feature_proportion 0.001 n_clusters 1,653,1434,0.001,1,0.005,0.91,0,0,None,i7180,0,752.265625,752.21484375,-1,0,4911306
1746231391,1746231404,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2784 n_samples 4856 confidence 0.01 feature_proportion 0.999 n_clusters 39,2784,4856,0.999,39,0.01,0.91,0,0,None,i7179,0,752.5,752.46484375,-1,0,4911387
1746232149,1746232162,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4842 n_samples 2919 confidence 0.25 feature_proportion 0.001 n_clusters 35,4842,2919,0.001,35,0.25,0.91,0,0,None,i7184,0,752.6015625,752.55078125,-1,0,4911564
1746232269,1746232282,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 532 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,532,5000,0.001,1,0.001,0.91,0,0,None,i7179,0,753.7890625,753.7174479166666,-1,0,4911595
1746232661,1746232674,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 550 n_samples 1992 confidence 0.001 feature_proportion 0.999 n_clusters 33,550,1992,0.999,33,0.001,0.91,0,0,None,i7183,0,754.16015625,754.109375,-1,0,4911676
1746233019,1746233032,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4550 n_samples 1864 confidence 0.01 feature_proportion 0.999 n_clusters 37,4550,1864,0.999,37,0.01,0.91,0,0,None,i7180,0,752.46484375,752.4296875,-1,0,4911758
1746233411,1746233424,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1373 n_samples 2402 confidence 0.001 feature_proportion 0.999 n_clusters 37,1373,2402,0.999,37,0.001,0.91,0,0,None,i7179,0,752.31640625,752.265625,-1,0,4911842
1746234039,1746234053,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1763 n_samples 887 confidence 0.005 feature_proportion 0.999 n_clusters 50,1763,887,0.999,50,0.005,0.91,0,0,None,i7180,0,753.5703125,753.51953125,-1,0,4911979
1746234460,1746234473,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1268 n_samples 566 confidence 0.001 feature_proportion 0.001 n_clusters 31,1268,566,0.001,31,0.001,0.91,0,0,None,i7178,0,752.3984375,752.3489583333334,-1,0,4912084
1746234989,1746235003,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3026 n_samples 4414 confidence 0.001 feature_proportion 0.999 n_clusters 44,3026,4414,0.999,44,0.001,0.91,0,0,None,i7181,0,753.56640625,753.5364583333334,-1,0,4912202
1746236261,1746236274,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4471 n_samples 1321 confidence 0.001 feature_proportion 0.999 n_clusters 42,4471,1321,0.999,42,0.001,0.91,0,0,None,i7181,0,752.47265625,752.4401041666666,-1,0,4912471
1746236559,1746236572,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 747 n_samples 1427 confidence 0.001 feature_proportion 0.999 n_clusters 6,747,1427,0.999,6,0.001,0.91,0,0,None,i7175,0,753.21875,753.16796875,-1,0,4912541
1746236851,1746236864,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 29,1,5000,0.001,29,0.025,0.91,0,0,None,i7174,0,753.1328125,753.0833333333334,-1,0,4912605
1746236969,1746236982,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 605 n_samples 3302 confidence 0.05 feature_proportion 0.001 n_clusters 18,605,3302,0.001,18,0.05,0.91,0,0,None,i7173,0,752.921875,752.8880208333334,-1,0,4912634
1746237149,1746237162,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1679 n_samples 2516 confidence 0.1 feature_proportion 0.001 n_clusters 9,1679,2516,0.001,9,0.1,0.91,0,0,None,i7176,0,752.1640625,752.11328125,-1,0,4912671
1746237281,1746237294,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 559 n_samples 1193 confidence 0.005 feature_proportion 0.001 n_clusters 10,559,1193,0.001,10,0.005,0.91,0,0,None,i7182,0,753.1484375,753.1158854166666,-1,0,4912702
1746237551,1746237564,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4770 n_samples 4606 confidence 0.1 feature_proportion 0.001 n_clusters 18,4770,4606,0.001,18,0.1,0.91,0,0,None,i7185,0,754.20703125,754.15625,-1,0,4912755
1746237892,1746237905,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4496 n_samples 4991 confidence 0.005 feature_proportion 0.001 n_clusters 18,4496,4991,0.001,18,0.005,0.91,0,0,None,i7178,0,754.1953125,752.9375,-1,0,4912838
1746238170,1746238183,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 263 n_samples 1262 confidence 0.05 feature_proportion 0.001 n_clusters 13,263,1262,0.001,13,0.05,0.91,0,0,None,i7180,0,754.03125,753.98046875,-1,0,4912895
1746238310,1746238324,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 868 n_samples 2595 confidence 0.05 feature_proportion 0.001 n_clusters 16,868,2595,0.001,16,0.05,0.91,0,0,None,i7184,0,752.9140625,752.87890625,-1,0,4912925
1746239110,1746239123,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3737 n_samples 2595 confidence 0.001 feature_proportion 0.999 n_clusters 15,3737,2595,0.999,15,0.001,0.91,0,0,None,i7186,0,752.95703125,752.9244791666666,-1,0,4913105
1746239833,1746239846,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3980 n_samples 3119 confidence 0.05 feature_proportion 0.999 n_clusters 42,3980,3119,0.999,42,0.05,0.91,0,0,None,i7186,0,753.30078125,753.2513020833334,-1,0,4913265
1746240410,1746240423,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 106 n_samples 2133 confidence 0.001 feature_proportion 0.999 n_clusters 8,106,2133,0.999,8,0.001,0.91,0,0,None,i7180,0,752.58984375,752.48828125,-1,0,4913395
1746241893,1746241906,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1052 n_samples 537 confidence 0.005 feature_proportion 0.001 n_clusters 42,1052,537,0.001,42,0.005,0.91,0,0,None,i7179,0,754.375,754.3450520833334,-1,0,4913728
1746242260,1746242273,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3754 n_samples 1559 confidence 0.1 feature_proportion 0.999 n_clusters 1,3754,1559,0.999,1,0.1,0.91,0,0,None,i7180,0,753.59765625,753.5677083333334,-1,0,4913814
1746242510,1746242523,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3985 n_samples 1564 confidence 0.1 feature_proportion 0.001 n_clusters 50,3985,1564,0.001,50,0.1,0.91,0,0,None,i7178,0,752.515625,752.4661458333334,-1,0,4913883
1746243765,1746243784,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 945 n_samples 4014 confidence 0.05 feature_proportion 0.24238697074458973 n_clusters 25,945,4014,0.24238697074458973,25,0.05,0.91,0,0,None,i7180,0,753.39453125,753.34375,-1,0,4914173
1746245312,1746245325,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 840 n_samples 765 confidence 0.1 feature_proportion 0.999 n_clusters 37,840,765,0.999,37,0.1,0.91,0,0,None,i7184,0,752.30078125,752.25,-1,0,4914485
1746246432,1746246446,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4539 n_samples 3341 confidence 0.005 feature_proportion 0.999 n_clusters 1,4539,3341,0.999,1,0.005,0.91,0,0,None,i7185,0,752.34765625,752.296875,-1,0,4914692
1746247030,1746247043,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2585 n_samples 3994 confidence 0.001 feature_proportion 0.999 n_clusters 30,2585,3994,0.999,30,0.001,0.91,0,0,None,i7172,0,752.4453125,752.3958333333334,-1,0,4914808
1746247410,1746247423,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3962 n_samples 2417 confidence 0.05 feature_proportion 0.02807262507136601 n_clusters 23,3962,2417,0.02807262507136601,23,0.05,0.91,0,0,None,i7172,0,753.26171875,753.2122395833334,-1,0,4914888
1746247691,1746247704,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1642 n_samples 1338 confidence 0.001 feature_proportion 0.001 n_clusters 4,1642,1338,0.001,4,0.001,0.91,0,0,None,i7186,0,752.92578125,752.890625,-1,0,4914935
1746247852,1746247871,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 705 n_samples 175 confidence 0.05 feature_proportion 0.001 n_clusters 12,705,175,0.001,12,0.05,0.91,1,0,None,i7184,1,760.39453125,756.0078125,-1,0.6685393258426966,4914968
1746248321,1746248334,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4620 n_samples 3503 confidence 0.25 feature_proportion 0.001 n_clusters 32,4620,3503,0.001,32,0.25,0.91,0,0,None,i7180,0,752.828125,752.7734375,-1,0,4915052
1746249873,1746249886,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 46 n_samples 2592 confidence 0.1 feature_proportion 0.999 n_clusters 50,46,2592,0.999,50,0.1,0.91,0,0,None,i7180,0,752.3203125,752.26953125,-1,0,4915329
1746250736,1746250749,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2544 n_samples 4170 confidence 0.025 feature_proportion 0.999 n_clusters 12,2544,4170,0.999,12,0.025,0.91,0,0,None,i7183,0,752.73046875,752.6796875,-1,0,4915504
1746251033,1746251046,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 205 n_samples 1242 confidence 0.005 feature_proportion 0.001 n_clusters 10,205,1242,0.001,10,0.005,0.91,0,0,None,i7186,0,753.625,753.57421875,-1,0,4915559
1746251733,1746251746,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2497 n_samples 1183 confidence 0.005 feature_proportion 0.001 n_clusters 50,2497,1183,0.001,50,0.005,0.91,0,0,None,i7184,0,754.10546875,754.0481770833334,-1,0,4915713
1746252971,1746252984,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4341 n_samples 3321 confidence 0.25 feature_proportion 0.001 n_clusters 40,4341,3321,0.001,40,0.25,0.91,0,0,None,i7184,0,752.25390625,752.2044270833334,-1,0,4915999
1746254973,1746254986,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2038 n_samples 2019 confidence 0.05 feature_proportion 0.001 n_clusters 13,2038,2019,0.001,13,0.05,0.91,0,0,None,i7182,0,752.3671875,752.2916666666666,-1,0,4916420
1746255713,1746255726,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3964 n_samples 1775 confidence 0.001 feature_proportion 0.001 n_clusters 6,3964,1775,0.001,6,0.001,0.91,0,0,None,i7181,0,753.84765625,753.8125,-1,0,4916573
1746256331,1746256344,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3328 n_samples 2579 confidence 0.1 feature_proportion 0.999 n_clusters 39,3328,2579,0.999,39,0.1,0.91,0,0,None,i7178,0,752.53515625,752.4700520833334,-1,0,4916703
1746256913,1746256926,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 4772 confidence 0.001 feature_proportion 0.001 n_clusters 18,1,4772,0.001,18,0.001,0.91,0,0,None,i7175,0,754.30078125,754.2044270833334,-1,0,4917325
1746258604,1746258636,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 792 n_samples 1621 confidence 0.1 feature_proportion 0.999 n_clusters 30,792,1621,0.999,30,0.1,0.91,0,0,None,i7167,0,752.1171875,752.0677083333334,-1,0,4917668
1746258874,1746258887,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4963 n_samples 4574 confidence 0.1 feature_proportion 0.001 n_clusters 13,4963,4574,0.001,13,0.1,0.91,0,0,None,i7179,0,752.9921875,752.94140625,-1,0,4917730
1746260713,1746260732,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 483 confidence 0.005 feature_proportion 0.001 n_clusters 44,5000,483,0.001,44,0.005,0.91,1,0,None,i7186,1,760.75390625,755.8645833333334,-1,0,4918117
1746261732,1746261746,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 910 n_samples 2977 confidence 0.05 feature_proportion 0.999 n_clusters 34,910,2977,0.999,34,0.05,0.91,0,0,None,i7185,0,753.22265625,753.171875,-1,0,4918343
1746262294,1746262307,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2912 n_samples 2076 confidence 0.01 feature_proportion 0.001 n_clusters 50,2912,2076,0.001,50,0.01,0.91,0,0,None,i7167,0,752.84765625,752.7981770833334,-1,0,4918485
1746263473,1746263486,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3289 n_samples 2538 confidence 0.1 feature_proportion 0.001 n_clusters 28,3289,2538,0.001,28,0.1,0.91,0,0,None,i7179,0,753.23046875,753.2005208333334,-1,0,4918910
1746264415,1746264429,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3285 n_samples 2936 confidence 0.001 feature_proportion 0.999 n_clusters 35,3285,2936,0.999,35,0.001,0.91,0,0,None,i7176,0,753.1171875,753.0872395833334,-1,0,4919236
1746265454,1746265467,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4766 n_samples 1067 confidence 0.25 feature_proportion 0.999 n_clusters 22,4766,1067,0.999,22,0.25,0.91,0,0,None,i7183,0,753.90625,753.8763020833334,-1,0,4919568
1746266055,1746266068,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 357 n_samples 1914 confidence 0.001 feature_proportion 0.999 n_clusters 17,357,1914,0.999,17,0.001,0.91,0,0,None,i7176,0,753.3046875,753.25390625,-1,0,4919758
1746266434,1746266447,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 3920 confidence 0.001 feature_proportion 0.001 n_clusters 14,1,3920,0.001,14,0.001,0.91,0,0,None,i7184,0,753.42578125,753.3763020833334,-1,0,4919893
1746267080,1746267094,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1066 n_samples 3921 confidence 0.005 feature_proportion 0.999 n_clusters 14,1066,3921,0.999,14,0.005,0.91,0,0,None,i7175,0,754.26953125,754.21875,-1,0,4920042
1746267994,1746268007,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 746 n_samples 1708 confidence 0.025 feature_proportion 0.4573056286456728 n_clusters 50,746,1708,0.4573056286456728,50,0.025,0.91,0,0,None,i7186,0,752.44140625,752.3919270833334,-1,0,4920328
1746268274,1746268300,26,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3005 n_samples 3492 confidence 0.01 feature_proportion 0.001 n_clusters 17,3005,3492,0.001,17,0.01,0.91,0,0,None,i7174,0,753.703125,753.6471354166666,-1,0,4920389
1746268835,1746268848,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 97 n_samples 2665 confidence 0.01 feature_proportion 0.001 n_clusters 14,97,2665,0.001,14,0.01,0.91,0,0,None,i7186,0,753.48046875,753.4296875,-1,0,4920570
1746269262,1746269275,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1152 n_samples 2056 confidence 0.1 feature_proportion 0.001 n_clusters 8,1152,2056,0.001,8,0.1,0.91,0,0,None,i7169,0,752.7109375,752.66015625,-1,0,4920699
1746269495,1746269508,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4538 n_samples 1816 confidence 0.01 feature_proportion 0.001 n_clusters 3,4538,1816,0.001,3,0.01,0.91,0,0,None,i7186,0,752.5703125,752.5208333333334,-1,0,4920744
1746270595,1746270608,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1841 n_samples 3287 confidence 0.25 feature_proportion 0.001 n_clusters 10,1841,3287,0.001,10,0.25,0.91,0,0,None,i7181,0,752.69140625,752.6588541666666,-1,0,4921049
1746270895,1746270908,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4711 n_samples 4323 confidence 0.005 feature_proportion 0.001 n_clusters 23,4711,4323,0.001,23,0.005,0.91,0,0,None,i7167,0,753.1328125,753.0833333333334,-1,0,4921174
1746271835,1746271847,12,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 4099 confidence 0.025 feature_proportion 0.0734449822400176 n_clusters 13,1,4099,0.0734449822400176,13,0.025,0.91,0,0,None,i7169,0,752.87890625,752.828125,-1,0,4921413
1746272097,1746272123,26,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 372 n_samples 1862 confidence 0.005 feature_proportion 0.001 n_clusters 17,372,1862,0.001,17,0.005,0.91,0,0,None,i7169,0,751.7734375,751.72265625,-1,0,4921501
1746272316,1746272328,12,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4943 n_samples 3119 confidence 0.1 feature_proportion 0.001 n_clusters 7,4943,3119,0.001,7,0.1,0.91,0,0,None,i7169,0,751.46484375,751.4348958333334,-1,0,4921585
1746273673,1746273687,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3539 n_samples 763 confidence 0.25 feature_proportion 0.999 n_clusters 29,3539,763,0.999,29,0.25,0.91,0,0,None,i7176,0,753.41796875,753.3880208333334,-1,0,4921877
1746274114,1746274127,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1744 n_samples 184 confidence 0.001 feature_proportion 0.001 n_clusters 23,1744,184,0.001,23,0.001,0.91,1,0,None,i7167,1,753.64453125,752.7330729166666,-1,0,4921961
1746274421,1746274452,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4514 n_samples 4640 confidence 0.001 feature_proportion 0.999 n_clusters 29,4514,4640,0.999,29,0.001,0.91,0,0,None,i7166,0,751.55078125,751.5,-1,0,4922014
1746274775,1746274788,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 3317 confidence 0.001 feature_proportion 0.001 n_clusters 15,1,3317,0.001,15,0.001,0.91,0,0,None,i7179,0,751.65625,751.60546875,-1,0,4922110
1746275714,1746275727,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 637 confidence 0.001 feature_proportion 0.7538482195091332 n_clusters 1,5000,637,0.7538482195091332,1,0.001,0.91,0,0,None,i7186,0,752.15625,752.12109375,-1,0,4922310
1746276417,1746276430,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4086 n_samples 4233 confidence 0.005 feature_proportion 0.9582588874047921 n_clusters 38,4086,4233,0.9582588874047921,38,0.005,0.91,0,0,None,i7185,0,751.7578125,751.70703125,-1,0,4922467
1746276877,1746276897,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 363 confidence 0.001 feature_proportion 0.999 n_clusters 1,5000,363,0.999,1,0.001,0.91,1,0,None,i7186,1,755.69921875,753.5846354166666,-1,0,4922556
1746277575,1746277588,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 146 n_samples 4129 confidence 0.001 feature_proportion 0.14571470477678114 n_clusters 16,146,4129,0.14571470477678114,16,0.001,0.91,0,0,None,i7175,0,751.71875,751.6315104166666,-1,0,4922714
1746277836,1746277849,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4526 n_samples 3196 confidence 0.05 feature_proportion 0.001 n_clusters 9,4526,3196,0.001,9,0.05,0.91,0,0,None,i7186,0,752.33203125,752.2734375,-1,0,4922763
1746278435,1746278448,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 927 n_samples 3275 confidence 0.005 feature_proportion 0.7035201792934183 n_clusters 50,927,3275,0.7035201792934183,50,0.005,0.91,0,0,None,i7166,0,752.640625,752.58984375,-1,0,4922928
1746279935,1746279949,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4859 n_samples 4546 confidence 0.005 feature_proportion 0.999 n_clusters 46,4859,4546,0.999,46,0.005,0.91,0,0,None,i7185,0,753,752.94921875,-1,0,4923278
1746281195,1746281208,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1149 n_samples 1551 confidence 0.01 feature_proportion 0.001 n_clusters 34,1149,1551,0.001,34,0.01,0.91,0,0,None,i7185,0,752.171875,752.12109375,-1,0,4923629
1746282577,1746282590,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 173 confidence 0.001 feature_proportion 0.001 n_clusters 15,1,173,0.001,15,0.001,0.91,1,0,None,i7169,1,753.59375,752.04296875,-1,0,4923922
1746284116,1746284129,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2869 n_samples 330 confidence 0.001 feature_proportion 0.3540841384375866 n_clusters 50,2869,330,0.3540841384375866,50,0.001,0.91,1,0,None,i7168,1,758.79296875,753.9505208333334,-1,0,4924286
1746284496,1746284509,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 367 n_samples 2242 confidence 0.05 feature_proportion 0.001 n_clusters 8,367,2242,0.001,8,0.05,0.91,0,0,None,i7183,0,751.97265625,751.8619791666666,-1,0,4924392
1746284834,1746284847,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4962 n_samples 1785 confidence 0.01 feature_proportion 0.001 n_clusters 6,4962,1785,0.001,6,0.01,0.91,0,0,None,i7167,0,751.43359375,751.3841145833334,-1,0,4924456
1746285885,1746285898,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3395 n_samples 4842 confidence 0.001 feature_proportion 0.009998748776895428 n_clusters 20,3395,4842,0.009998748776895428,20,0.001,0.91,0,0,None,i7180,0,752.234375,752.18359375,-1,0,4924655
1746286276,1746286289,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2973 n_samples 1620 confidence 0.25 feature_proportion 0.001 n_clusters 1,2973,1620,0.001,1,0.25,0.91,0,0,None,i7180,0,752.62109375,752.5911458333334,-1,0,4924765
1746286856,1746286869,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 55 n_samples 3245 confidence 0.001 feature_proportion 0.001 n_clusters 8,55,3245,0.001,8,0.001,0.91,0,0,None,i7185,0,752.8984375,752.84765625,-1,0,4924875
1746287055,1746287068,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4180 n_samples 906 confidence 0.01 feature_proportion 0.001 n_clusters 14,4180,906,0.001,14,0.01,0.91,0,0,None,i7185,0,752.296875,752.2669270833334,-1,0,4924914
1746288286,1746288330,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 875 n_samples 4084 confidence 0.005 feature_proportion 0.14651864370875342 n_clusters 20,875,4084,0.14651864370875342,20,0.005,0.91,0,0,None,i7170,0,753.5,753.44921875,-1,0,4925181
1746289216,1746289229,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 94 n_samples 3577 confidence 0.1 feature_proportion 0.02327773851112432 n_clusters 19,94,3577,0.02327773851112432,19,0.1,0.91,0,0,None,i7186,0,752,751.9505208333334,-1,0,4925410
1746289967,1746289980,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1276 n_samples 2806 confidence 0.01 feature_proportion 0.029994820202927173 n_clusters 12,1276,2806,0.029994820202927173,12,0.01,0.91,0,0,None,i7183,0,752.68359375,752.6328125,-1,0,4925599
1746290736,1746290749,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 579 n_samples 641 confidence 0.005 feature_proportion 0.001 n_clusters 6,579,641,0.001,6,0.005,0.91,0,0,None,i7175,0,751.82421875,751.7734375,-1,0,4925766
1746292521,1746292534,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 279 n_samples 4611 confidence 0.005 feature_proportion 0.3359248083038842 n_clusters 19,279,4611,0.3359248083038842,19,0.005,0.91,0,0,None,i7183,0,753.14453125,753.09375,-1,0,4926129
1746293016,1746293029,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 431 n_samples 1077 confidence 0.1 feature_proportion 0.001 n_clusters 9,431,1077,0.001,9,0.1,0.91,0,0,None,i7184,0,753.15625,753.1263020833334,-1,0,4926229
1746293877,1746293902,25,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4930 n_samples 3803 confidence 0.01 feature_proportion 0.09668105696656208 n_clusters 11,4930,3803,0.09668105696656208,11,0.01,0.91,0,0,None,i7167,0,753.18359375,753.15234375,-1,0,4926493
1746294519,1746294533,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4075 n_samples 4796 confidence 0.1 feature_proportion 0.009785618276395097 n_clusters 21,4075,4796,0.009785618276395097,21,0.1,0.91,0,0,None,i7179,0,752.625,752.5950520833334,-1,0,4926636
1746294997,1746295010,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4384 n_samples 4771 confidence 0.05 feature_proportion 0.5396463161899256 n_clusters 50,4384,4771,0.5396463161899256,50,0.05,0.91,0,0,None,i7175,0,752.2265625,752.17578125,-1,0,4926769
1746296640,1746296653,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4010 n_samples 1408 confidence 0.001 feature_proportion 0.999 n_clusters 50,4010,1408,0.999,50,0.001,0.91,0,0,None,i7183,0,751.9921875,751.94140625,-1,0,4927108
1746296980,1746296993,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 362 n_samples 1243 confidence 0.1 feature_proportion 0.6652381455374503 n_clusters 33,362,1243,0.6652381455374503,33,0.1,0.91,0,0,None,i7183,0,753.49609375,753.4088541666666,-1,0,4927176
1746298499,1746298537,38,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 174 n_samples 4346 confidence 0.05 feature_proportion 0.001 n_clusters 13,174,4346,0.001,13,0.05,0.91,0,0,None,i7175,0,753.6484375,753.59765625,-1,0,4927512
1746299339,1746299352,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4734 n_samples 3045 confidence 0.05 feature_proportion 0.5426684242819018 n_clusters 50,4734,3045,0.5426684242819018,50,0.05,0.91,0,0,None,i7179,0,753.30078125,753.25,-1,0,4927725
1746299618,1746299631,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 101 n_samples 1390 confidence 0.005 feature_proportion 0.001 n_clusters 1,101,1390,0.001,1,0.005,0.91,0,0,None,i7181,0,752.984375,752.9348958333334,-1,0,4927785
1746301258,1746301271,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4737 n_samples 413 confidence 0.01 feature_proportion 0.001 n_clusters 1,4737,413,0.001,1,0.01,0.91,1,0,None,i7178,1,756.671875,754.578125,-1,0,4928199
1746302096,1746302116,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 392 n_samples 319 confidence 0.001 feature_proportion 0.999 n_clusters 23,392,319,0.999,23,0.001,0.91,1,0,None,i7183,1,755.921875,753.62890625,-1,0,4928401
1746303518,1746303531,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3716 n_samples 2269 confidence 0.025 feature_proportion 0.999 n_clusters 27,3716,2269,0.999,27,0.025,0.91,0,0,None,i7175,0,752.06640625,752.0364583333334,-1,0,4928688
1746303819,1746303832,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 3331 confidence 0.025 feature_proportion 0.001 n_clusters 1,1,3331,0.001,1,0.025,0.91,0,0,None,i7185,0,751.6875,751.63671875,-1,0,4928744
1746304078,1746304092,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4380 n_samples 3755 confidence 0.005 feature_proportion 0.001 n_clusters 1,4380,3755,0.001,1,0.005,0.91,0,0,None,i7175,0,753.1640625,753.11328125,-1,0,4928797
1746305558,1746305571,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 338 n_samples 348 confidence 0.025 feature_proportion 0.001 n_clusters 1,338,348,0.001,1,0.025,0.91,1,0,None,i7174,1,754.609375,752.5442708333334,-1,0,4929099
1746305898,1746305911,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4336 n_samples 3597 confidence 0.025 feature_proportion 0.001 n_clusters 1,4336,3597,0.001,1,0.025,0.91,0,0,None,i7185,0,752.33984375,752.3046875,-1,0,4929191
1746306757,1746306771,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4198 n_samples 2926 confidence 0.025 feature_proportion 0.999 n_clusters 1,4198,2926,0.999,1,0.025,0.91,0,0,None,i7182,0,752.73828125,752.6875,-1,0,4929363
1746307917,1746307930,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2032 n_samples 1276 confidence 0.01 feature_proportion 0.999 n_clusters 50,2032,1276,0.999,50,0.01,0.91,0,0,None,i7181,0,752.69921875,752.6497395833334,-1,0,4929689
1746309457,1746309489,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 617 confidence 0.1 feature_proportion 0.999 n_clusters 38,5000,617,0.999,38,0.1,0.91,0,0,None,i7173,0,751.79296875,751.7643229166666,-1,0,4930014
1746310102,1746310115,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 203 n_samples 4805 confidence 0.01 feature_proportion 0.999 n_clusters 50,203,4805,0.999,50,0.01,0.91,0,0,None,i7183,0,753.47265625,753.4427083333334,-1,0,4930153
1746311898,1746311911,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 543 confidence 0.001 feature_proportion 0.7667116392731638 n_clusters 29,1,543,0.7667116392731638,29,0.001,0.91,0,0,None,i7182,0,751.58203125,751.5377604166666,-1,0,4930500
1746315178,1746315191,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 218 n_samples 319 confidence 0.001 feature_proportion 0.999 n_clusters 37,218,319,0.999,37,0.001,0.91,1,0,None,i7180,1,762.1640625,755.9596354166666,-1,0,4931245
1746315598,1746315611,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3651 n_samples 4031 confidence 0.001 feature_proportion 0.001 n_clusters 21,3651,4031,0.001,21,0.001,0.91,0,0,None,i7186,0,753.015625,752.9661458333334,-1,0,4931328
1746316498,1746316511,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 452 n_samples 525 confidence 0.01 feature_proportion 0.999 n_clusters 34,452,525,0.999,34,0.01,0.91,1,0,None,i7185,1,757.8203125,754.19921875,-1,0,4931510
1746319118,1746319131,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2393 n_samples 413 confidence 0.005 feature_proportion 0.001 n_clusters 1,2393,413,0.001,1,0.005,0.91,1,0,None,i7180,1,755.04296875,752.9505208333334,-1,0,4932097
1746320508,1746320521,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2738 n_samples 1598 confidence 0.25 feature_proportion 0.999 n_clusters 29,2738,1598,0.999,29,0.25,0.91,0,0,None,i7184,0,752.77734375,752.7447916666666,-1,0,4932420
1746325128,1746325160,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2288 n_samples 384 confidence 0.001 feature_proportion 0.999 n_clusters 50,2288,384,0.999,50,0.001,0.91,1,0,None,i7173,1,763.015625,756.6979166666666,-1,0,4933389
1746326178,1746326191,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 6 n_samples 827 confidence 0.001 feature_proportion 0.999 n_clusters 6,6,827,0.999,6,0.001,0.91,0,0,None,i7183,0,753.59375,753.4869791666666,-1,0,4933667
1746329239,1746329252,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2446 n_samples 194 confidence 0.001 feature_proportion 0.001 n_clusters 1,2446,194,0.001,1,0.001,0.91,1,0,None,i7186,1,754.90234375,753.3333333333334,-1,0.8220973782771536,4934268
1746330840,1746330853,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 156 n_samples 515 confidence 0.1 feature_proportion 0.001 n_clusters 9,156,515,0.001,9,0.1,0.91,1,0,None,i7178,1,759.69921875,754.7877604166666,-1,0,4934609
1746331659,1746331672,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 723 n_samples 1975 confidence 0.05 feature_proportion 0.44923546581769425 n_clusters 31,723,1975,0.44923546581769425,31,0.05,0.91,0,0,None,i7182,0,751.6328125,751.5638020833334,-1,0,4934756
1746335540,1746335553,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2178 n_samples 263 confidence 0.001 feature_proportion 0.001 n_clusters 20,2178,263,0.001,20,0.001,0.91,1,0,None,i7184,1,758.90234375,753.94921875,-1,0,4935551
1746337519,1746337532,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4706 n_samples 915 confidence 0.05 feature_proportion 0.999 n_clusters 50,4706,915,0.999,50,0.05,0.91,0,0,None,i7182,0,753.578125,753.54296875,-1,0,4936069
1746338482,1746338495,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2943 n_samples 587 confidence 0.001 feature_proportion 0.999 n_clusters 50,2943,587,0.999,50,0.001,0.91,0,0,None,i7180,0,752.4375,752.4075520833334,-1,0,4936261
1746338780,1746338793,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1023 n_samples 4149 confidence 0.001 feature_proportion 0.001 n_clusters 1,1023,4149,0.001,1,0.001,0.91,0,0,None,i7186,0,752.625,752.5755208333334,-1,0,4936321
1746339040,1746339053,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1053 n_samples 5000 confidence 0.1 feature_proportion 0.001 n_clusters 1,1053,5000,0.001,1,0.1,0.91,0,0,None,i7179,0,751.859375,751.80859375,-1,0,4936375
1746339530,1746339543,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4178 n_samples 4721 confidence 0.01 feature_proportion 0.001 n_clusters 1,4178,4721,0.001,1,0.01,0.91,0,0,None,i7180,0,751.78515625,751.734375,-1,0,4936472
1746339860,1746339873,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4733 n_samples 5000 confidence 0.1 feature_proportion 0.001 n_clusters 1,4733,5000,0.001,1,0.1,0.91,0,0,None,i7181,0,752.578125,752.52734375,-1,0,4936535
1746340221,1746340234,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4530 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,4530,5000,0.001,1,0.005,0.91,0,0,None,i7184,0,752.48046875,752.4309895833334,-1,0,4936610
1746340880,1746340893,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2689 n_samples 729 confidence 0.001 feature_proportion 0.999 n_clusters 1,2689,729,0.999,1,0.001,0.91,0,0,None,i7183,0,752.73828125,752.6875,-1,0,4936767
1746341880,1746341893,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 4772 confidence 0.001 feature_proportion 0.999 n_clusters 50,5000,4772,0.999,50,0.001,0.91,0,0,None,i7182,0,751.94921875,751.9166666666666,-1,0,4936960
1746342162,1746342175,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1858 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,1858,5000,0.001,1,0.005,0.91,0,0,None,i7186,0,752.625,752.5247395833334,-1,0,4937014
1746342441,1746342454,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.005,0.91,0,0,None,i7182,0,751.6328125,751.59765625,-1,0,4937071
1746344381,1746344394,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 607 n_samples 1651 confidence 0.001 feature_proportion 0.09472949419306306 n_clusters 28,607,1651,0.09472949419306306,28,0.001,0.91,0,0,None,i7179,0,753.5390625,753.5065104166666,-1,0,4937477
1746345522,1746345535,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 540 confidence 0.001 feature_proportion 0.999 n_clusters 40,1,540,0.999,40,0.001,0.91,0,0,None,i7184,0,751.62890625,751.5364583333334,-1,0,4937701
1746346071,1746346085,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2578 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,2578,5000,0.001,1,0.001,0.91,0,0,None,i7178,0,751.62109375,751.5716145833334,-1,0,4937808
1746346362,1746346382,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4647 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 1,4647,5000,0.001,1,0.25,0.91,0,0,None,i7178,0,739.765625,739.7161458333334,-1,0,4937859
1746346681,1746346694,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4132 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,4132,5000,0.001,1,0.05,0.91,0,0,None,i7176,0,753.5390625,753.5091145833334,-1,0,4937918
1746347021,1746347034,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.25,0.91,0,0,None,i7184,0,752.00390625,751.9739583333334,-1,0,4937974
1746348380,1746348394,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 78 n_samples 379 confidence 0.05 feature_proportion 0.001 n_clusters 50,78,379,0.001,50,0.05,0.91,0,0,None,i7179,0,753.46484375,752.65234375,-1,0,4938266
1746351501,1746351515,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4134 n_samples 641 confidence 0.01 feature_proportion 0.999 n_clusters 15,4134,641,0.999,15,0.01,0.91,0,0,None,i7181,0,753.52734375,753.421875,-1,0,4938956
1746353902,1746353915,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 225 confidence 0.05 feature_proportion 0.999 n_clusters 26,1,225,0.999,26,0.05,0.91,1,0,None,i7176,1,758.890625,753.95703125,-1,0.0018726591760299626,4939428
1746354261,1746354274,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2262 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 1,2262,5000,0.001,1,0.025,0.91,0,0,None,i7176,0,751.96484375,751.9153645833334,-1,0,4939493
1746354522,1746354535,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 5000 confidence 0.25 feature_proportion 0.001 n_clusters 1,5000,5000,0.001,1,0.25,0.91,0,0,None,i7180,0,751.69921875,751.6692708333334,-1,0,4939540
1746354782,1746354795,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4473 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 1,4473,5000,0.001,1,0.025,0.91,0,0,None,i7180,0,751.73828125,751.6875,-1,0,4939585
1746355782,1746355795,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4503 n_samples 769 confidence 0.01 feature_proportion 0.41035779925773497 n_clusters 6,4503,769,0.41035779925773497,6,0.01,0.91,0,0,None,i7176,0,752.09375,752.0442708333334,-1,0,4939797
1746356141,1746356154,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 448 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,448,5000,0.001,1,0.005,0.91,0,0,None,i7180,0,752.078125,752.02734375,-1,0,4939862
1746356502,1746356515,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4545 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 1,4545,5000,0.001,1,0.01,0.91,0,0,None,i7184,0,751.6796875,751.62890625,-1,0,4939927
1746356861,1746356874,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4773 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 1,4773,5000,0.001,1,0.025,0.91,0,0,None,i7180,0,752.625,752.57421875,-1,0,4939995
1746359563,1746359576,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1462 n_samples 846 confidence 0.01 feature_proportion 0.001 n_clusters 21,1462,846,0.001,21,0.01,0.91,0,0,None,i7179,0,752.08203125,752.0494791666666,-1,0,4940973
1746362702,1746362715,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1629 n_samples 438 confidence 0.05 feature_proportion 0.001 n_clusters 50,1629,438,0.001,50,0.05,0.91,1,0,None,i7182,1,759.93359375,755.1744791666666,-1,0,4941616
1746363002,1746363015,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 4117 confidence 0.001 feature_proportion 0.001 n_clusters 1,1,4117,0.001,1,0.001,0.91,0,0,None,i7170,0,753.171875,753.1419270833334,-1,0,4941705
1746364582,1746364595,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 982 confidence 0.25 feature_proportion 0.001 n_clusters 50,1,982,0.001,50,0.25,0.91,0,0,None,i7182,0,751.65234375,751.6015625,-1,0,4941991
1746366903,1746366916,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1954 n_samples 3399 confidence 0.005 feature_proportion 0.4787626384253156 n_clusters 25,1954,3399,0.4787626384253156,25,0.005,0.91,0,0,None,i7175,0,751.609375,751.55859375,-1,0,4942435
1746368724,1746368737,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 564 n_samples 3781 confidence 0.25 feature_proportion 0.001 n_clusters 28,564,3781,0.001,28,0.25,0.91,0,0,None,i7175,0,751.65234375,751.6015625,-1,0,4942775
1746370823,1746370836,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 378 confidence 0.01 feature_proportion 0.999 n_clusters 13,5000,378,0.999,13,0.01,0.91,0,0,None,i7169,0,761.19140625,754.8984375,-1,0,4943199
1746371243,1746371256,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1857 n_samples 4699 confidence 0.1 feature_proportion 0.26886999645295523 n_clusters 1,1857,4699,0.26886999645295523,1,0.1,0.91,0,0,None,i7169,0,752.0234375,751.97265625,-1,0,4943262
1746371585,1746371598,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4068 n_samples 3371 confidence 0.05 feature_proportion 0.001 n_clusters 1,4068,3371,0.001,1,0.05,0.91,0,0,None,i7183,0,745.6640625,745.6341145833334,-1,0,4943359
1746371924,1746371938,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4494 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 1,4494,5000,0.001,1,0.01,0.91,0,0,None,i7183,0,752.2890625,752.2565104166666,-1,0,4943412
1746372384,1746372397,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.01,0.91,0,0,None,i7180,0,753.0390625,752.9739583333334,-1,0,4943496
1746372765,1746372778,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 3892 confidence 0.005 feature_proportion 0.001 n_clusters 1,1,3892,0.001,1,0.005,0.91,0,0,None,i7180,0,752.2109375,752.16015625,-1,0,4943561
1746373104,1746373118,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1655 n_samples 2532 confidence 0.1 feature_proportion 0.001 n_clusters 1,1655,2532,0.001,1,0.1,0.91,0,0,None,i7184,0,752.22265625,752.1458333333334,-1,0,4943618
1746374485,1746374498,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 253 confidence 0.05 feature_proportion 0.001 n_clusters 50,1,253,0.001,50,0.05,0.91,1,0,None,i7176,1,760.41015625,755.4973958333334,-1,0.0018726591760299626,4943869
1746376735,1746376748,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1658 n_samples 1026 confidence 0.001 feature_proportion 0.9168241564329709 n_clusters 13,1658,1026,0.9168241564329709,13,0.001,0.91,0,0,None,i7179,0,752.2421875,752.14453125,-1,0,4944274
1746377634,1746377648,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2228 n_samples 3391 confidence 0.001 feature_proportion 0.001 n_clusters 25,2228,3391,0.001,25,0.001,0.91,0,0,None,i7180,0,752.5390625,752.48828125,-1,0,4944433
1746378085,1746378098,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4099 n_samples 4829 confidence 0.05 feature_proportion 0.999 n_clusters 50,4099,4829,0.999,50,0.05,0.91,0,0,None,i7186,0,752.87109375,752.7942708333334,-1,0,4944512
1746378525,1746378538,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4851 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,4851,5000,0.001,1,0.05,0.91,0,0,None,i7181,0,752.94921875,752.9192708333334,-1,0,4944601
1746381226,1746381239,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4818 n_samples 2753 confidence 0.005 feature_proportion 0.999 n_clusters 33,4818,2753,0.999,33,0.005,0.91,0,0,None,i7184,0,752.734375,752.6848958333334,-1,0,4945139
1746381585,1746381599,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2207 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 1,2207,5000,0.001,1,0.01,0.91,0,0,None,i7179,0,753.20703125,753.15625,-1,0,4945208
1746385164,1746385177,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3191 n_samples 1860 confidence 0.01 feature_proportion 0.001 n_clusters 29,3191,1860,0.001,29,0.01,0.91,0,0,None,i7183,0,751.75390625,751.703125,-1,0,4945869
1746388706,1746388720,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 118 n_samples 3651 confidence 0.05 feature_proportion 0.001 n_clusters 27,118,3651,0.001,27,0.05,0.91,0,0,None,i7181,0,751.921875,751.87109375,-1,0,4946578
1746389166,1746389179,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4374 n_samples 4157 confidence 0.005 feature_proportion 0.001 n_clusters 50,4374,4157,0.001,50,0.005,0.91,0,0,None,i7183,0,751.66796875,751.6171875,-1,0,4946686
1746389636,1746389649,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3245 n_samples 4635 confidence 0.005 feature_proportion 0.999 n_clusters 1,3245,4635,0.999,1,0.005,0.91,0,0,None,i7182,0,753.00390625,752.953125,-1,0,4946769
1746390488,1746390501,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2118 n_samples 625 confidence 0.05 feature_proportion 0.795236415101529 n_clusters 22,2118,625,0.795236415101529,22,0.05,0.91,0,0,None,i7183,0,753.54296875,753.4921875,-1,0,4946909
1746390968,1746390982,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 4780 confidence 0.1 feature_proportion 0.001 n_clusters 1,1,4780,0.001,1,0.1,0.91,0,0,None,i7178,0,752.828125,752.7786458333334,-1,0,4946993
1746391407,1746391420,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3308 n_samples 4034 confidence 0.1 feature_proportion 0.999 n_clusters 1,3308,4034,0.999,1,0.1,0.91,0,0,None,i7184,0,752.19921875,752.1497395833334,-1,0,4947071
1746391887,1746391900,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3284 n_samples 1725 confidence 0.05 feature_proportion 0.001 n_clusters 1,3284,1725,0.001,1,0.05,0.91,0,0,None,i7185,0,753.0234375,752.97265625,-1,0,4947153
1746392307,1746392320,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4977 n_samples 4042 confidence 0.005 feature_proportion 0.001 n_clusters 1,4977,4042,0.001,1,0.005,0.91,0,0,None,i7180,0,752.5625,752.5325520833334,-1,0,4947225
1746394847,1746394860,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1392 n_samples 1674 confidence 0.25 feature_proportion 0.999 n_clusters 1,1392,1674,0.999,1,0.25,0.91,0,0,None,i7186,0,752.39453125,752.3450520833334,-1,0,4947691
1746395207,1746395220,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 4135 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,4135,0.001,1,0.05,0.91,0,0,None,i7176,0,753.515625,753.4856770833334,-1,0,4947771
1746398247,1746398260,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2169 n_samples 3093 confidence 0.25 feature_proportion 0.6906860023619809 n_clusters 29,2169,3093,0.6906860023619809,29,0.25,0.91,0,0,None,i7180,0,752.265625,752.15234375,-1,0,4948295
1746399569,1746399582,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3259 n_samples 1303 confidence 0.001 feature_proportion 0.999 n_clusters 17,3259,1303,0.999,17,0.001,0.91,0,0,None,i7182,0,752.45703125,752.4270833333334,-1,0,4948549
1746400107,1746400120,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 956 n_samples 3075 confidence 0.005 feature_proportion 0.001 n_clusters 1,956,3075,0.001,1,0.005,0.91,0,0,None,i7184,0,752.375,752.25,-1,0,4948668
1746400627,1746400640,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 47 n_samples 1243 confidence 0.01 feature_proportion 0.001 n_clusters 1,47,1243,0.001,1,0.01,0.91,0,0,None,i7185,0,752.14453125,752.1145833333334,-1,0,4948752
1746402178,1746402198,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 445 confidence 0.001 feature_proportion 0.001 n_clusters 18,1,445,0.001,18,0.001,0.91,1,0,None,i7184,1,755.83984375,753.6419270833334,-1,0,4949016
1746402567,1746402580,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 385 n_samples 4927 confidence 0.025 feature_proportion 0.001 n_clusters 1,385,4927,0.001,1,0.025,0.91,0,0,None,i7179,0,752.65234375,752.6015625,-1,0,4949082
1746403389,1746403402,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 532 n_samples 3192 confidence 0.001 feature_proportion 0.001 n_clusters 16,532,3192,0.001,16,0.001,0.91,0,0,None,i7183,0,751.7890625,751.73828125,-1,0,4949212
1746403856,1746403869,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 4350 confidence 0.025 feature_proportion 0.001 n_clusters 1,1,4350,0.001,1,0.025,0.91,0,0,None,i7182,0,752.67578125,752.625,-1,0,4949291
1746404219,1746404232,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4174 n_samples 3827 confidence 0.01 feature_proportion 0.001 n_clusters 1,4174,3827,0.001,1,0.01,0.91,0,0,None,i7179,0,752.1015625,752.0416666666666,-1,0,4949362
1746406528,1746406548,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4489 n_samples 3536 confidence 0.25 feature_proportion 0.001 n_clusters 50,4489,3536,0.001,50,0.25,0.91,0,0,None,i7180,0,752.83203125,752.796875,-1,0,4949808
1746408388,1746408401,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2146 n_samples 2736 confidence 0.001 feature_proportion 0.999 n_clusters 3,2146,2736,0.999,3,0.001,0.91,0,0,None,i7184,0,753.56640625,753.515625,-1,0,4950153
1746410469,1746410482,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3108 n_samples 1604 confidence 0.001 feature_proportion 0.001 n_clusters 14,3108,1604,0.001,14,0.001,0.91,0,0,None,i7184,0,753.609375,753.5598958333334,-1,0,4950551
1746411049,1746411062,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2770 n_samples 3102 confidence 0.001 feature_proportion 0.067001562593041 n_clusters 41,2770,3102,0.067001562593041,41,0.001,0.91,0,0,None,i7185,0,753.5390625,753.4270833333334,-1,0,4950659
1746417769,1746417783,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3037 n_samples 710 confidence 0.25 feature_proportion 0.999 n_clusters 50,3037,710,0.999,50,0.25,0.91,0,0,None,i7183,0,751.796875,751.74609375,-1,0,4951888
1746420268,1746420282,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 2561 confidence 0.001 feature_proportion 0.999 n_clusters 50,1,2561,0.999,50,0.001,0.91,0,0,None,i7181,0,752.68359375,752.6015625,-1,0,4952422
1746423329,1746423342,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4958 n_samples 4930 confidence 0.1 feature_proportion 0.001 n_clusters 50,4958,4930,0.001,50,0.1,0.91,0,0,None,i7181,0,751.71484375,751.6653645833334,-1,0,4952965
1746423730,1746423743,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4936 n_samples 3508 confidence 0.001 feature_proportion 0.001 n_clusters 1,4936,3508,0.001,1,0.001,0.91,0,0,None,i7183,0,751.703125,751.65234375,-1,0,4953043
1746430769,1746430783,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 228 n_samples 840 confidence 0.1 feature_proportion 0.999 n_clusters 10,228,840,0.999,10,0.1,0.91,0,0,None,i7179,0,752.65234375,752.6015625,-1,0,4954302
1746431610,1746431624,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 781 n_samples 4544 confidence 0.025 feature_proportion 0.12879683740927841 n_clusters 1,781,4544,0.12879683740927841,1,0.025,0.91,0,0,None,i7176,0,752.6796875,752.62890625,-1,0,4954936
1746434073,1746434086,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4705 n_samples 846 confidence 0.001 feature_proportion 0.999 n_clusters 38,4705,846,0.999,38,0.001,0.91,0,0,None,i7185,0,752.859375,752.8294270833334,-1,0,4955396
1746436497,1746436516,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 246 n_samples 1774 confidence 0.05 feature_proportion 0.001 n_clusters 32,246,1774,0.001,32,0.05,0.91,0,0,None,i7179,0,751.65234375,751.5651041666666,-1,0,4956320
1746440136,1746440149,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3955 n_samples 2774 confidence 0.25 feature_proportion 0.999 n_clusters 10,3955,2774,0.999,10,0.25,0.91,0,0,None,i7183,0,753.265625,753.21484375,-1,0,4956976
1746441446,1746441466,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2173 n_samples 1232 confidence 0.001 feature_proportion 0.23586142753187023 n_clusters 19,2173,1232,0.23586142753187023,19,0.001,0.91,0,0,None,i7181,0,753.4453125,753.4127604166666,-1,0,4957214
1746442232,1746442252,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 3205 confidence 0.25 feature_proportion 0.001 n_clusters 1,1,3205,0.001,1,0.25,0.91,0,0,None,i7180,0,752.140625,752.08984375,-1,0,4957349
1746443651,1746443677,26,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 649 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,649,0.001,1,0.05,0.91,0,0,None,i7184,0,751.99609375,751.9036458333334,-1,0,4957586
1746446733,1746446746,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3975 n_samples 1723 confidence 0.05 feature_proportion 0.999 n_clusters 32,3975,1723,0.999,32,0.05,0.91,0,0,None,i7175,0,752.70703125,752.65625,-1,0,4958186
1746448820,1746448846,26,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3508 n_samples 477 confidence 0.005 feature_proportion 0.3422383444201465 n_clusters 1,3508,477,0.3422383444201465,1,0.005,0.91,1,0,None,i7184,1,756.80078125,753.3138020833334,-1,0,4958637
1746452655,1746452674,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3491 n_samples 466 confidence 0.025 feature_proportion 0.21733725213107813 n_clusters 1,3491,466,0.21733725213107813,1,0.025,0.91,1,0,None,i7183,1,755.84765625,753.71875,-1,0,4959328
1746453460,1746453480,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 1936 confidence 0.1 feature_proportion 0.001 n_clusters 1,1,1936,0.001,1,0.1,0.91,0,0,None,i7181,0,751.73046875,751.6979166666666,-1,0,4959605
1746457954,1746457974,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 374 confidence 0.001 feature_proportion 0.999 n_clusters 28,5000,374,0.999,28,0.001,0.91,1,0,None,i7184,1,759.03125,754.06640625,-1,0,4960469
1746463842,1746463855,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 472 confidence 0.005 feature_proportion 0.001 n_clusters 50,1,472,0.001,50,0.005,0.91,1,0,None,i7179,1,758.15234375,754.6614583333334,-1,0,4961550
1746464402,1746464415,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 827 n_samples 5000 confidence 0.001 feature_proportion 0.8583031926457532 n_clusters 1,827,5000,0.8583031926457532,1,0.001,0.91,0,0,None,i7179,0,753.2109375,753.1783854166666,-1,0,4961671
1746464739,1746464759,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1856 n_samples 2303 confidence 0.01 feature_proportion 0.001 n_clusters 12,1856,2303,0.001,12,0.01,0.91,0,0,None,i7179,0,753.53125,753.48046875,-1,0,4961727
1746465084,1746465097,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2843 n_samples 3647 confidence 0.01 feature_proportion 0.001 n_clusters 8,2843,3647,0.001,8,0.01,0.91,0,0,None,i7179,0,753.2421875,753.2122395833334,-1,0,4961815
1746465486,1746465499,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1214 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,1214,5000,0.001,1,0.001,0.91,0,0,None,i7183,0,751.53515625,751.484375,-1,0,4961879
1746466783,1746466797,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2790 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 11,2790,5000,0.001,11,0.025,0.91,0,0,None,i7184,0,752.0546875,752.0247395833334,-1,0,4962085
1746467163,1746467176,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4723 n_samples 3672 confidence 0.01 feature_proportion 0.001 n_clusters 4,4723,3672,0.001,4,0.01,0.91,0,0,None,i7181,0,752.41796875,752.3489583333334,-1,0,4962143
1746467543,1746467556,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3597 n_samples 3107 confidence 0.01 feature_proportion 0.001 n_clusters 1,3597,3107,0.001,1,0.01,0.91,0,0,None,i7181,0,752.32421875,752.2747395833334,-1,0,4962207
1746469474,1746469487,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 989 n_samples 5000 confidence 0.025 feature_proportion 0.38821365374608546 n_clusters 14,989,5000,0.38821365374608546,14,0.025,0.91,0,0,None,i7183,0,752.5625,752.51171875,-1,0,4962507
1746472123,1746472136,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 351 n_samples 5000 confidence 0.1 feature_proportion 0.36468857236344576 n_clusters 18,351,5000,0.36468857236344576,18,0.1,0.91,0,0,None,i7179,0,752.07421875,752.0442708333334,-1,0,4962977
1746472745,1746472758,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.05,0.91,0,0,None,i7184,0,751.5703125,751.5403645833334,-1,0,4963084
1746475144,1746475157,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1788 n_samples 256 confidence 0.005 feature_proportion 0.26272290203957027 n_clusters 1,1788,256,0.26272290203957027,1,0.005,0.91,2,0,None,i7181,2,756.20703125,753.9895833333334,-1,0.9588014981273408,4963519
1746475744,1746475757,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1406 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,1406,5000,0.001,1,0.001,0.91,0,0,None,i7185,0,753.58984375,753.5390625,-1,0,4963618
1746480144,1746480157,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3937 n_samples 761 confidence 0.25 feature_proportion 0.999 n_clusters 50,3937,761,0.999,50,0.25,0.91,0,0,None,i7181,0,752.46875,752.4192708333334,-1,0,4964335
1746484324,1746484337,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 238 n_samples 5000 confidence 0.025 feature_proportion 0.5207987309182464 n_clusters 14,238,5000,0.5207987309182464,14,0.025,0.91,0,0,None,i7183,0,752.07421875,752.0442708333334,-1,0,4965031
1746484727,1746484740,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3191 n_samples 4098 confidence 0.01 feature_proportion 0.001 n_clusters 1,3191,4098,0.001,1,0.01,0.91,0,0,None,i7184,0,751.7734375,751.6744791666666,-1,0,4965094
1746486165,1746486178,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1799 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 14,1799,5000,0.001,14,0.001,0.91,0,0,None,i7186,0,753.0859375,753.0364583333334,-1,0,4965367
1746486544,1746486557,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4794 n_samples 4977 confidence 0.25 feature_proportion 0.001 n_clusters 20,4794,4977,0.001,20,0.25,0.91,0,0,None,i7181,0,752.19140625,752.1419270833334,-1,0,4965423
1746488685,1746488698,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 93 n_samples 5000 confidence 0.001 feature_proportion 0.2952245382558428 n_clusters 26,93,5000,0.2952245382558428,26,0.001,0.91,0,0,None,i7180,0,752.50390625,752.453125,-1,0,4965780
1746489145,1746489159,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4302 n_samples 1567 confidence 0.025 feature_proportion 0.001 n_clusters 8,4302,1567,0.001,8,0.025,0.91,0,0,None,i7184,0,753.0546875,752.9986979166666,-1,0,4965852
1746490126,1746490139,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4629 n_samples 3200 confidence 0.01 feature_proportion 0.3313589870333687 n_clusters 2,4629,3200,0.3313589870333687,2,0.01,0.91,0,0,None,i7179,0,753.4375,752.2408854166666,-1,0,4966024
1746492145,1746492158,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4150 n_samples 4271 confidence 0.005 feature_proportion 0.999 n_clusters 18,4150,4271,0.999,18,0.005,0.91,0,0,None,i7176,0,751.91796875,751.8880208333334,-1,0,4966425
1746492515,1746492528,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4756 n_samples 4493 confidence 0.025 feature_proportion 0.001 n_clusters 11,4756,4493,0.001,11,0.025,0.91,0,0,None,i7175,0,753.66015625,753.609375,-1,0,4966489
1746493485,1746493498,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 65 n_samples 4840 confidence 0.001 feature_proportion 0.001 n_clusters 24,65,4840,0.001,24,0.001,0.91,0,0,None,i7181,0,751.80078125,751.765625,-1,0,4966661
1746494248,1746494261,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4074 n_samples 5000 confidence 0.1 feature_proportion 0.13571612970417257 n_clusters 1,4074,5000,0.13571612970417257,1,0.1,0.91,0,0,None,i7185,0,752.28515625,751.0286458333334,-1,0,4966783
1746495207,1746495220,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 244 n_samples 2814 confidence 0.025 feature_proportion 0.999 n_clusters 39,244,2814,0.999,39,0.025,0.91,0,0,None,i7185,0,752.21875,752.16796875,-1,0,4966926
1746495687,1746495700,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.001,0.91,0,0,None,i7185,0,752.85546875,752.8046875,-1,0,4966995
1746496206,1746496219,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.001 feature_proportion 0.999 n_clusters 1,1,5000,0.999,1,0.001,0.91,0,0,None,i7185,0,753.11328125,753.0625,-1,0,4967080
1746496846,1746496859,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 4261 confidence 0.25 feature_proportion 0.001 n_clusters 1,1,4261,0.001,1,0.25,0.91,0,0,None,i7183,0,752.9453125,752.89453125,-1,0,4967180
1746497486,1746497499,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4932 n_samples 4546 confidence 0.1 feature_proportion 0.999 n_clusters 20,4932,4546,0.999,20,0.1,0.91,0,0,None,i7183,0,752.12890625,752.078125,-1,0,4967275
1746498168,1746498181,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 5000 n_samples 5000 confidence 0.005 feature_proportion 0.999 n_clusters 50,5000,5000,0.999,50,0.005,0.91,0,0,None,i7183,0,752.3515625,752.3216145833334,-1,0,4967391
1746498870,1746498883,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.05 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.05,0.91,0,0,None,i7185,0,752.859375,752.8268229166666,-1,0,4967510
1746504469,1746504482,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4369 n_samples 4128 confidence 0.05 feature_proportion 0.001 n_clusters 29,4369,4128,0.001,29,0.05,0.91,0,0,None,i7179,0,751.73828125,751.7083333333334,-1,0,4968416
1746510757,1746510770,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4650 n_samples 4063 confidence 0.005 feature_proportion 0.999 n_clusters 47,4650,4063,0.999,47,0.005,0.91,0,0,None,i7181,0,753.46484375,753.4153645833334,-1,0,4969500
1746511297,1746511310,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 4371 confidence 0.001 feature_proportion 0.001 n_clusters 1,1,4371,0.001,1,0.001,0.91,0,0,None,i7181,0,752.921875,752.87109375,-1,0,4969591
1746515278,1746515291,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 399 confidence 0.005 feature_proportion 0.001 n_clusters 17,1,399,0.001,17,0.005,0.91,1,0,None,i7182,1,755.12890625,752.9921875,-1,0,4970239
1746515830,1746515843,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 88 n_samples 2215 confidence 0.005 feature_proportion 0.999 n_clusters 49,88,2215,0.999,49,0.005,0.91,0,0,None,i7185,0,753.60546875,753.5546875,-1,0,4970316
1746516914,1746516933,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4529 n_samples 2604 confidence 0.01 feature_proportion 0.9775430923545331 n_clusters 1,4529,2604,0.9775430923545331,1,0.01,0.91,0,0,None,i7186,0,751.921875,751.8372395833334,-1,0,4970516
1746519263,1746519282,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1182 n_samples 4977 confidence 0.025 feature_proportion 0.6144462020205601 n_clusters 9,1182,4977,0.6144462020205601,9,0.025,0.91,0,0,None,i7180,0,752.5390625,752.48828125,-1,0,4970935
1746519938,1746519958,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.01 feature_proportion 0.999 n_clusters 1,1,5000,0.999,1,0.01,0.91,0,0,None,i7186,0,752.2578125,752.1979166666666,-1,0,4971044
1746520482,1746520501,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 1,1,5000,0.001,1,0.005,0.91,0,0,None,i7183,0,751.640625,751.58984375,-1,0,4971121
1746523161,1746523180,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1146 n_samples 5000 confidence 0.001 feature_proportion 0.10595983013507317 n_clusters 20,1146,5000,0.10595983013507317,20,0.001,0.91,0,0,None,i7176,0,751.59765625,751.546875,-1,0,4971548
1746523757,1746523783,26,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1416 n_samples 1732 confidence 0.01 feature_proportion 0.001 n_clusters 8,1416,1732,0.001,8,0.01,0.91,0,0,None,i7178,0,741.125,741.0911458333334,-1,0,4971648
1746524417,1746524436,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3133 n_samples 4372 confidence 0.005 feature_proportion 0.07456881958109499 n_clusters 12,3133,4372,0.07456881958109499,12,0.005,0.91,0,0,None,i7181,0,752.76953125,752.7200520833334,-1,0,4971782
1746525421,1746525447,26,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2045 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 17,2045,5000,0.001,17,0.025,0.91,0,0,None,i7180,0,753.51953125,753.44921875,-1,0,4971929
1746527110,1746527155,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2287 n_samples 4833 confidence 0.025 feature_proportion 0.17759036213208032 n_clusters 9,2287,4833,0.17759036213208032,9,0.025,0.91,0,0,None,i7178,0,752.203125,752.1536458333334,-1,0,4972245
1746527591,1746527604,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 74 n_samples 563 confidence 0.01 feature_proportion 0.001 n_clusters 1,74,563,0.001,1,0.01,0.91,0,0,None,i7183,0,751.703125,751.65234375,-1,0,4972317
1746528432,1746528445,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 485 n_samples 551 confidence 0.1 feature_proportion 0.001 n_clusters 27,485,551,0.001,27,0.1,0.91,0,0,None,i7186,0,752.3984375,752.34765625,-1,0,4972460
1746528959,1746528973,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4942 n_samples 2926 confidence 0.05 feature_proportion 0.001 n_clusters 1,4942,2926,0.001,1,0.05,0.91,0,0,None,i7183,0,752.93359375,752.8828125,-1,0,4972541
1746530818,1746530831,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 63 n_samples 2151 confidence 0.025 feature_proportion 0.14974518948243706 n_clusters 17,63,2151,0.14974518948243706,17,0.025,0.91,0,0,None,i7182,0,752.328125,752.2981770833334,-1,0,4973000
1746532177,1746532197,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3840 n_samples 532 confidence 0.01 feature_proportion 0.001 n_clusters 1,3840,532,0.001,1,0.01,0.91,1,0,None,i7185,1,760.94921875,756.0677083333334,-1,0,4973270
1746533798,1746533811,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1557 n_samples 5000 confidence 0.025 feature_proportion 0.17493011865036476 n_clusters 12,1557,5000,0.17493011865036476,12,0.025,0.91,0,0,None,i7186,0,752.125,752.0755208333334,-1,0,4973598
1746535920,1746535933,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2259 n_samples 5000 confidence 0.025 feature_proportion 0.8094538891205975 n_clusters 17,2259,5000,0.8094538891205975,17,0.025,0.91,0,0,None,i7185,0,753.453125,753.40234375,-1,0,4974032
1746536835,1746536848,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1713 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 9,1713,5000,0.001,9,0.001,0.91,0,0,None,i7181,0,752.15625,752.12109375,-1,0,4974174
1746537717,1746537730,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3516 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 11,3516,5000,0.001,11,0.025,0.91,0,0,None,i7185,0,752.52734375,752.4765625,-1,0,4974321
1746538660,1746538673,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 728 n_samples 5000 confidence 0.025 feature_proportion 0.999 n_clusters 20,728,5000,0.999,20,0.025,0.91,0,0,None,i7181,0,752.0546875,752.0052083333334,-1,0,4974553
1746539224,1746539237,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1798 n_samples 5000 confidence 0.025 feature_proportion 0.001 n_clusters 18,1798,5000,0.001,18,0.025,0.91,0,0,None,i7181,0,751.8046875,751.76953125,-1,0,4974646
1746540967,1746541035,68,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2677 n_samples 5000 confidence 0.025 feature_proportion 0.30723815829242956 n_clusters 5,2677,5000,0.30723815829242956,5,0.025,0.91,0,0,None,i7181,0,752.18359375,750.96484375,-1,0,4974945
1746541735,1746541804,69,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4857 n_samples 1042 confidence 0.1 feature_proportion 0.001 n_clusters 1,4857,1042,0.001,1,0.1,0.91,0,0,None,i7176,0,752.515625,752.4192708333334,-1,0,4975072
1746543939,1746543977,38,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2609 n_samples 559 confidence 0.01 feature_proportion 0.4680933891012467 n_clusters 4,2609,559,0.4680933891012467,4,0.01,0.91,0,0,None,i7181,0,751.8359375,751.7864583333334,-1,0,4975402
1746544808,1746544834,26,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1210 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 20,1210,5000,0.001,20,0.001,0.91,0,0,None,i7184,0,752.0859375,752.03515625,-1,0,4975605
1746547710,1746547729,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1849 n_samples 5000 confidence 0.01 feature_proportion 0.12346429610654674 n_clusters 22,1849,5000,0.12346429610654674,22,0.01,0.91,0,0,None,i7180,0,752.390625,752.3606770833334,-1,0,4976038
1746548159,1746548178,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2135 n_samples 361 confidence 0.1 feature_proportion 0.001 n_clusters 7,2135,361,0.001,7,0.1,0.91,1,0,None,i7179,1,760.29296875,755.5052083333334,-1,0,4976103
1746548613,1746548664,51,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1222 n_samples 549 confidence 0.01 feature_proportion 0.001 n_clusters 9,1222,549,0.001,9,0.01,0.91,0,0,None,i7178,0,751.68359375,751.6341145833334,-1,0,4976188
1746549248,1746549286,38,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3403 n_samples 3739 confidence 0.01 feature_proportion 0.001 n_clusters 16,3403,3739,0.001,16,0.01,0.91,0,0,None,i7183,0,752.44921875,752.3984375,-1,0,4976271
1746552249,1746552262,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3329 n_samples 5000 confidence 0.025 feature_proportion 0.1068425277687478 n_clusters 28,3329,5000,0.1068425277687478,28,0.025,0.91,0,0,None,i7183,0,753.57421875,753.5390625,-1,0,4976760
1746553528,1746553560,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 652 n_samples 2904 confidence 0.01 feature_proportion 0.10005392313118601 n_clusters 10,652,2904,0.10005392313118601,10,0.01,0.91,0,0,None,i7184,0,752.3515625,752.30078125,-1,0,4976945
1746553967,1746553986,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2667 n_samples 93 confidence 0.1 feature_proportion 0.001 n_clusters 1,2667,93,0.001,1,0.1,0.91,4,0,None,i7185,4,752.67578125,751.2981770833334,-1,0.9363295880149812,4977020
1746555604,1746555617,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 210 n_samples 4023 confidence 0.05 feature_proportion 0.12615119702079503 n_clusters 21,210,4023,0.12615119702079503,21,0.05,0.91,0,0,None,i7183,0,753.45703125,753.4270833333334,-1,0,4977264
1746560462,1746560475,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1272 n_samples 5000 confidence 0.025 feature_proportion 0.24123154017242465 n_clusters 20,1272,5000,0.24123154017242465,20,0.025,0.91,0,0,None,i7180,0,752.61328125,752.5833333333334,-1,0,4978065
1746563343,1746563356,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2028 n_samples 5000 confidence 0.025 feature_proportion 0.4730639302623294 n_clusters 7,2028,5000,0.4730639302623294,7,0.025,0.91,0,0,None,i7179,0,751.765625,751.71484375,-1,0,4978567
1746567973,1746567986,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2476 n_samples 5000 confidence 0.25 feature_proportion 0.15955909456531325 n_clusters 22,2476,5000,0.15955909456531325,22,0.25,0.91,0,0,None,i7186,0,752.99609375,752.8802083333334,-1,0,4979239
1746569893,1746569913,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4968 n_samples 4676 confidence 0.025 feature_proportion 0.001 n_clusters 11,4968,4676,0.001,11,0.025,0.91,0,0,None,i7184,0,753.03125,753.0013020833334,-1,0,4979534
1746570543,1746570556,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4899 n_samples 3714 confidence 0.05 feature_proportion 0.001 n_clusters 1,4899,3714,0.001,1,0.05,0.91,0,0,None,i7183,0,753.23046875,753.1796875,-1,0,4979657
1746574027,1746574040,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2913 n_samples 5000 confidence 0.025 feature_proportion 0.7475168615729411 n_clusters 12,2913,5000,0.7475168615729411,12,0.025,0.91,0,0,None,i7180,0,752.7734375,752.6822916666666,-1,0,4980238
1746576048,1746576067,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1517 n_samples 3227 confidence 0.025 feature_proportion 0.32720140772314793 n_clusters 13,1517,3227,0.32720140772314793,13,0.025,0.91,0,0,None,i7186,0,752.11328125,752.0625,-1,0,4980549
1746578409,1746578422,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 574 n_samples 5000 confidence 0.001 feature_proportion 0.2645568468749879 n_clusters 11,574,5000,0.2645568468749879,11,0.001,0.91,0,0,None,i7186,0,752.79296875,752.6705729166666,-1,0,4980944
1746579553,1746579572,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3311 n_samples 1336 confidence 0.01 feature_proportion 0.001 n_clusters 13,3311,1336,0.001,13,0.01,0.91,0,0,None,i7179,0,752.921875,752.87109375,-1,0,4981126
1746581778,1746581791,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 657 n_samples 4979 confidence 0.025 feature_proportion 0.4953720530927283 n_clusters 29,657,4979,0.4953720530927283,29,0.025,0.91,0,0,None,i7186,0,751.62109375,751.5911458333334,-1,0,4981499
1746585411,1746585424,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 673 n_samples 4949 confidence 0.001 feature_proportion 0.741503098348371 n_clusters 22,673,4949,0.741503098348371,22,0.001,0.91,0,0,None,i7182,0,752.20703125,752.15625,-1,0,4982020
1746586430,1746586450,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1955 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 13,1955,5000,0.001,13,0.001,0.91,0,0,None,i7183,0,751.59765625,751.546875,-1,0,4982164
1746590667,1746590680,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1245 n_samples 5000 confidence 0.1 feature_proportion 0.4253053967013822 n_clusters 21,1245,5000,0.4253053967013822,21,0.1,0.91,0,0,None,i7180,0,752.0859375,752.03515625,-1,0,4982841
1746595548,1746595561,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2162 n_samples 5000 confidence 0.005 feature_proportion 0.7527149277415941 n_clusters 19,2162,5000,0.7527149277415941,19,0.005,0.91,0,0,None,i7179,0,753.125,753.0950520833334,-1,0,4983578
1746598184,1746598197,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3274 n_samples 5000 confidence 0.005 feature_proportion 0.001 n_clusters 10,3274,5000,0.001,10,0.005,0.91,0,0,None,i7180,0,752.8203125,752.76953125,-1,0,4983978
1746601542,1746601567,25,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 736 n_samples 5000 confidence 0.005 feature_proportion 0.4815928240732939 n_clusters 31,736,5000,0.4815928240732939,31,0.005,0.91,0,0,None,i7181,0,752.140625,752.10546875,-1,0,4984487
1746604916,1746604936,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1126 n_samples 4865 confidence 0.025 feature_proportion 0.4243320797388181 n_clusters 17,1126,4865,0.4243320797388181,17,0.025,0.91,0,0,None,i7184,0,751.91015625,751.8125,-1,0,4985080
1746609793,1746609806,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2611 n_samples 5000 confidence 0.025 feature_proportion 0.19811429945413958 n_clusters 15,2611,5000,0.19811429945413958,15,0.025,0.91,0,0,None,i7180,0,750.34375,750.29296875,-1,0,4985861
1746613757,1746613770,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1537 n_samples 4960 confidence 0.025 feature_proportion 0.999 n_clusters 22,1537,4960,0.999,22,0.025,0.91,0,0,None,i7180,0,752.6875,752.63671875,-1,0,4986463
1746617353,1746617366,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2044 n_samples 5000 confidence 0.025 feature_proportion 0.9938556269009974 n_clusters 20,2044,5000,0.9938556269009974,20,0.025,0.91,0,0,None,i7179,0,753.1640625,753.1341145833334,-1,0,4987096
1746619721,1746619746,25,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4562 n_samples 3046 confidence 0.01 feature_proportion 0.001 n_clusters 9,4562,3046,0.001,9,0.01,0.91,0,0,None,i7183,0,752.5,752.4700520833334,-1,0,4987454
1746622972,1746623005,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2411 n_samples 5000 confidence 0.01 feature_proportion 0.001 n_clusters 22,2411,5000,0.001,22,0.01,0.91,0,0,None,i7184,0,752.21484375,752.1653645833334,-1,0,4987913
1746624736,1746624756,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4555 n_samples 4454 confidence 0.05 feature_proportion 0.001 n_clusters 8,4555,4454,0.001,8,0.05,0.91,0,0,None,i7180,0,751.8828125,751.83203125,-1,0,4988166
1746625173,1746625192,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 380 n_samples 2861 confidence 0.025 feature_proportion 0.001 n_clusters 21,380,2861,0.001,21,0.025,0.91,1,0,None,i7181,1,752.75390625,752.71875,-1,0,4988219
1746627714,1746627733,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1433 n_samples 5000 confidence 0.1 feature_proportion 0.7637037815662986 n_clusters 26,1433,5000,0.7637037815662986,26,0.1,0.91,0,0,None,i7180,0,751.6484375,751.6184895833334,-1,0,4988631
1746630423,1746630442,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 676 n_samples 881 confidence 0.25 feature_proportion 0.0432611965188918 n_clusters 6,676,881,0.0432611965188918,6,0.25,0.91,0,0,None,i7184,0,752.22265625,752.1731770833334,-1,0,4989026
1746631490,1746631503,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1585 n_samples 4942 confidence 0.025 feature_proportion 0.001 n_clusters 17,1585,4942,0.001,17,0.025,0.91,0,0,None,i7179,0,751.79296875,751.7421875,-1,0,4989185
1746632001,1746632014,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4727 n_samples 2479 confidence 0.005 feature_proportion 0.001 n_clusters 1,4727,2479,0.001,1,0.005,0.91,0,0,None,i7185,0,752.1171875,752.0299479166666,-1,0,4989269
1746634666,1746634680,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2695 n_samples 5000 confidence 0.1 feature_proportion 0.2827711240971839 n_clusters 25,2695,5000,0.2827711240971839,25,0.1,0.91,0,0,None,i7180,0,752.76953125,752.71875,-1,0,4990875
1746638417,1746638430,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2331 n_samples 5000 confidence 0.05 feature_proportion 0.3537258867730524 n_clusters 17,2331,5000,0.3537258867730524,17,0.05,0.91,0,0,None,i7182,0,751.99609375,751.9453125,-1,0,4992811
1746641567,1746641580,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1010 n_samples 4908 confidence 0.025 feature_proportion 0.572824104680273 n_clusters 20,1010,4908,0.572824104680273,20,0.025,0.91,0,0,None,i7183,0,752.85546875,752.8229166666666,-1,0,4993275
1746642039,1746642052,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4797 n_samples 4510 confidence 0.01 feature_proportion 0.001 n_clusters 11,4797,4510,0.001,11,0.01,0.91,0,0,None,i7183,0,753.52734375,753.4765625,-1,0,4993343
1746645454,1746645474,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 702 n_samples 1955 confidence 0.005 feature_proportion 0.36108168459341267 n_clusters 24,702,1955,0.36108168459341267,24,0.005,0.91,0,0,None,i7176,0,751.63671875,751.6067708333334,-1,0,4993850
1746649150,1746649169,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2027 n_samples 4982 confidence 0.05 feature_proportion 0.001 n_clusters 15,2027,4982,0.001,15,0.05,0.91,0,0,None,i7181,0,752.5,752.44921875,-1,0,4994376
1746653002,1746653015,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1999 n_samples 5000 confidence 0.025 feature_proportion 0.25578863744480285 n_clusters 17,1999,5000,0.25578863744480285,17,0.025,0.91,0,0,None,i7183,0,753.16796875,753.1354166666666,-1,0,4994936
1746655339,1746655352,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4537 n_samples 4502 confidence 0.1 feature_proportion 0.32138931944604476 n_clusters 26,4537,4502,0.32138931944604476,26,0.1,0.91,0,0,None,i7185,0,751.859375,751.80859375,-1,0,4995276
1746659624,1746659649,25,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1 n_samples 3005 confidence 0.1 feature_proportion 0.999 n_clusters 12,1,3005,0.999,12,0.1,0.91,0,0,None,i7174,0,753.046875,752.9973958333334,-1,0,4995924
1746660496,1746660516,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4990 n_samples 3061 confidence 0.01 feature_proportion 0.001 n_clusters 1,4990,3061,0.001,1,0.01,0.91,0,0,None,i7179,0,753.06640625,753.0364583333334,-1,0,4996048
1746662014,1746662027,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2423 n_samples 4996 confidence 0.025 feature_proportion 0.001 n_clusters 18,2423,4996,0.001,18,0.025,0.91,0,0,None,i7183,0,752.125,752.07421875,-1,0,4996287
1746666175,1746666195,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3596 n_samples 357 confidence 0.001 feature_proportion 0.999 n_clusters 30,3596,357,0.999,30,0.001,0.91,1,0,None,i7183,1,758.9375,753.97265625,-1,0,4996895
1746669468,1746669510,42,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 953 n_samples 5000 confidence 0.001 feature_proportion 0.19147207765149507 n_clusters 20,953,5000,0.19147207765149507,20,0.001,0.91,1,0,None,i7173,1,752.203125,752.1536458333334,-1,0,4997371
1746673661,1746673674,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1640 n_samples 4855 confidence 0.025 feature_proportion 0.22119121470476868 n_clusters 22,1640,4855,0.22119121470476868,22,0.025,0.91,0,0,None,i7181,0,753.51953125,753.484375,-1,0,4997953
1746676974,1746676987,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2203 n_samples 4831 confidence 0.025 feature_proportion 0.42351350405582155 n_clusters 20,2203,4831,0.42351350405582155,20,0.025,0.91,0,0,None,i7181,0,751.66015625,751.6106770833334,-1,0,4998411
1746679320,1746679333,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1161 n_samples 5000 confidence 0.001 feature_proportion 0.001 n_clusters 25,1161,5000,0.001,25,0.001,0.91,0,0,None,i7185,0,751.87890625,751.828125,-1,0,4998742
1746682781,1746682813,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2209 n_samples 5000 confidence 0.025 feature_proportion 0.33088175161977457 n_clusters 15,2209,5000,0.33088175161977457,15,0.025,0.91,0,0,None,i7182,0,751.65625,751.6263020833334,-1,0,4999237
1746685998,1746686018,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1511 n_samples 3964 confidence 0.01 feature_proportion 0.12035662486199686 n_clusters 23,1511,3964,0.12035662486199686,23,0.01,0.91,0,0,None,i7178,0,751.609375,751.5494791666666,-1,0,4999680
1746688062,1746688075,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 570 n_samples 1431 confidence 0.1 feature_proportion 0.001 n_clusters 43,570,1431,0.001,43,0.1,0.91,0,0,None,i7175,0,750.23828125,750.1875,-1,0,4999959
1746689780,1746689794,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1561 n_samples 4278 confidence 0.001 feature_proportion 0.5568573307037903 n_clusters 44,1561,4278,0.5568573307037903,44,0.001,0.91,0,0,None,i7183,0,751.87890625,751.8489583333334,-1,0,5000164
1746694942,1746694955,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 475 n_samples 1007 confidence 0.005 feature_proportion 0.999 n_clusters 35,475,1007,0.999,35,0.005,0.91,0,0,None,i7186,0,752.328125,752.27734375,-1,0,5000922
1746699108,1746699121,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2604 n_samples 5000 confidence 0.025 feature_proportion 0.1029170670016721 n_clusters 21,2604,5000,0.1029170670016721,21,0.025,0.91,0,0,None,i7183,0,751.75,751.69921875,-1,0,5001524
1746704211,1746704230,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2005 n_samples 3618 confidence 0.05 feature_proportion 0.999 n_clusters 41,2005,3618,0.999,41,0.05,0.91,0,0,None,i7173,0,753.15625,753.1067708333334,-1,0,5002277
1746707781,1746707794,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2369 n_samples 1109 confidence 0.01 feature_proportion 0.999 n_clusters 34,2369,1109,0.999,34,0.01,0.91,0,0,None,i7180,0,753.5546875,753.50390625,-1,0,5002831
1746710883,1746710928,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 214 n_samples 2706 confidence 0.1 feature_proportion 0.5905920098791658 n_clusters 36,214,2706,0.5905920098791658,36,0.1,0.91,0,0,None,i7183,0,751.703125,751.6731770833334,-1,0,5003229
1746714792,1746714805,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 511 n_samples 2688 confidence 0.25 feature_proportion 0.999 n_clusters 32,511,2688,0.999,32,0.25,0.91,0,0,None,i7185,0,752.28125,752.23046875,-1,0,5003771
1746718315,1746718328,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4699 n_samples 1576 confidence 0.1 feature_proportion 0.001 n_clusters 43,4699,1576,0.001,43,0.1,0.91,0,0,None,i7180,0,751.96875,751.9388020833334,-1,0,5004473
1746721873,1746721904,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4338 n_samples 4702 confidence 0.25 feature_proportion 0.001 n_clusters 32,4338,4702,0.001,32,0.25,0.91,0,0,None,i7178,0,615.7265625,615.6575520833334,-1,0,5005033
1746728233,1746728246,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2640 n_samples 2979 confidence 0.1 feature_proportion 0.999 n_clusters 20,2640,2979,0.999,20,0.1,0.91,0,0,None,i7185,0,752.08984375,752.0390625,-1,0,5005982
1746731698,1746731718,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4508 n_samples 2957 confidence 0.25 feature_proportion 0.999 n_clusters 16,4508,2957,0.999,16,0.25,0.91,0,0,None,i7184,0,752.58984375,752.4921875,-1,0,5006474
1746736462,1746736475,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2950 n_samples 4106 confidence 0.025 feature_proportion 0.999 n_clusters 40,2950,4106,0.999,40,0.025,0.91,0,0,None,i7183,0,752.921875,752.83984375,-1,0,5007207
1746737543,1746737556,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1764 n_samples 4782 confidence 0.001 feature_proportion 0.999 n_clusters 42,1764,4782,0.999,42,0.001,0.91,0,0,None,i7181,0,752.0625,752.0143229166666,-1,0,5007374
1746743789,1746743802,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3171 n_samples 2713 confidence 0.1 feature_proportion 0.999 n_clusters 14,3171,2713,0.999,14,0.1,0.91,0,0,None,i7186,0,751.4921875,751.4140625,-1,0,5008273
1746750998,1746751011,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4462 n_samples 999 confidence 0.005 feature_proportion 0.999 n_clusters 35,4462,999,0.999,35,0.005,0.91,0,0,None,i7184,0,753.5859375,753.5221354166666,-1,0,5009244
1746754719,1746754732,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1191 n_samples 4931 confidence 0.01 feature_proportion 0.001 n_clusters 39,1191,4931,0.001,39,0.01,0.91,0,0,None,i7185,0,753.6796875,753.64453125,-1,0,5009796
1746759854,1746759867,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 617 n_samples 2248 confidence 0.25 feature_proportion 0.999 n_clusters 28,617,2248,0.999,28,0.25,0.91,0,0,None,i7183,0,753.015625,752.96484375,-1,0,5010488
1746764313,1746764326,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1410 n_samples 3022 confidence 0.025 feature_proportion 0.999 n_clusters 14,1410,3022,0.999,14,0.025,0.91,0,0,None,i7181,0,752.203125,752.1731770833334,-1,0,5011152
1746768975,1746768995,20,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1849 n_samples 4821 confidence 0.001 feature_proportion 0.12238211895390877 n_clusters 20,1849,4821,0.12238211895390877,20,0.001,0.91,0,0,None,i7186,0,751.69140625,751.640625,-1,0,5011772
1746771313,1746771327,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 2226 n_samples 2979 confidence 0.01 feature_proportion 0.001 n_clusters 7,2226,2979,0.001,7,0.01,0.91,0,0,None,i7183,0,752.2265625,752.17578125,-1,0,5012109
1746772493,1746772506,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 864 n_samples 4918 confidence 0.025 feature_proportion 0.004755343779967529 n_clusters 24,864,4918,0.004755343779967529,24,0.025,0.91,0,0,None,i7182,0,752.96484375,752.9140625,-1,0,5012297
1746777446,1746777472,26,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4199 n_samples 1747 confidence 0.005 feature_proportion 0.999 n_clusters 20,4199,1747,0.999,20,0.005,0.91,0,0,None,i7185,0,752.078125,752.02734375,-1,0,5012950
1746781789,1746781801,12,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 3962 n_samples 3819 confidence 0.005 feature_proportion 0.001 n_clusters 38,3962,3819,0.001,38,0.005,0.91,0,0,None,i7182,0,752.9765625,752.89453125,-1,0,5013562
1746784873,1746784899,26,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4061 n_samples 2000 confidence 0.1 feature_proportion 0.001 n_clusters 46,4061,2000,0.001,46,0.1,0.91,0,0,None,i7186,0,752.125,752.0950520833334,-1,0,5013991
1746788717,1746788730,13,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 4920 n_samples 4819 confidence 0.005 feature_proportion 0.001 n_clusters 29,4920,4819,0.001,29,0.005,0.91,0,0,None,i7182,0,753.515625,753.46484375,-1,0,5014606
1746794974,1746794993,19,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/main.py 1 1 0 Ozone 2000 HoeffdingTreeClassifier CSDDM recent_samples_size 1200 n_samples 258 confidence 0.25 feature_proportion 0.001 n_clusters 32,1200,258,0.001,32,0.25,0.91,2,0,None,i7183,2,756.2578125,753.97265625,-1,0.9662921348314607,5015687
Copy raw data to clipboard
Download »job_infos.csv« as file
Copy raw data to clipboard
Download »worker_usage.csv« as file
1746192418.5891068,20,0,0
1746192424.0814054,20,0,0
1746192475.7604,20,0,0
1746192476.1702986,20,0,0
1746192479.2394361,20,1,5
1746192482.3325105,20,1,5
1746192547.642257,20,1,5
1746192548.3738027,20,1,5
1746192550.5890994,20,2,10
1746192552.324501,20,2,10
1746192558.038599,20,1,5
1746192558.3388422,20,1,5
1746192697.7532015,20,1,5
1746192698.4755135,20,1,5
1746192700.509905,20,2,10
1746192702.1443086,20,2,10
1746192707.5070393,20,1,5
1746192707.9154053,20,1,5
1746192823.5095055,20,1,5
1746192824.4125526,20,1,5
1746192826.5247633,20,2,10
1746192828.2614963,20,2,10
1746192833.814799,20,1,5
1746192834.0374527,20,1,5
1746192953.7737796,20,1,5
1746192954.5197947,20,1,5
1746192956.5232964,20,2,10
1746192958.228226,20,2,10
1746192965.316812,20,1,5
1746192965.8134124,20,1,5
1746193092.8588278,20,1,5
1746193093.5834901,20,1,5
1746193095.5174417,20,2,10
1746193097.2907526,20,2,10
1746193103.3257205,20,1,5
1746193103.8242972,20,1,5
1746193201.2290704,20,1,5
1746193201.9038222,20,1,5
1746193203.814404,20,2,10
1746193205.4722364,20,2,10
1746193210.9393027,20,1,5
1746193211.1525607,20,1,5
1746193355.7156222,20,1,5
1746193356.3555405,20,1,5
1746193358.4604573,20,2,10
1746193360.1120355,20,2,10
1746193365.7936072,20,1,5
1746193365.9949684,20,1,5
1746193440.035482,20,1,5
1746193440.765197,20,1,5
1746193443.0619512,20,2,10
1746193444.8474145,20,2,10
1746193450.4768436,20,1,5
1746193450.8988955,20,1,5
1746193569.5453777,20,1,5
1746193570.3434675,20,1,5
1746193572.5465076,20,2,10
1746193574.1136837,20,2,10
1746193579.4114447,20,1,5
1746193579.8994548,20,1,5
1746193662.9415467,20,1,5
1746193663.6555495,20,1,5
1746193665.5562901,20,2,10
1746193667.2821996,20,2,10
1746193673.401454,20,1,5
1746193674.89087,20,1,5
1746193727.9107902,20,1,5
1746193728.664952,20,1,5
1746193730.6131577,20,2,10
1746193732.4462047,20,2,10
1746193738.7898512,20,1,5
1746193738.994249,20,1,5
1746193847.1987083,20,1,5
1746193847.87735,20,1,5
1746193849.7665067,20,2,10
1746193851.4893243,20,2,10
1746193857.4562082,20,1,5
1746193857.9025273,20,1,5
1746193963.4927833,20,1,5
1746193964.3239021,20,1,5
1746193966.4411502,20,2,10
1746193968.0954027,20,2,10
1746193973.673402,20,1,5
1746193973.877328,20,1,5
1746194040.5881948,20,1,5
1746194041.744938,20,1,5
1746194043.6418173,20,2,10
1746194045.2344093,20,2,10
1746194050.5737824,20,1,5
1746194050.8749511,20,1,5
1746194120.2910259,20,1,5
1746194120.9882867,20,1,5
1746194122.7558868,20,2,10
1746194123.7314067,20,2,10
1746194130.7276428,20,1,5
1746194130.827915,20,1,5
1746194229.2080774,20,1,5
1746194229.9216967,20,1,5
1746194231.8450983,20,2,10
1746194233.5991004,20,2,10
1746194239.511424,20,1,5
1746194239.8958588,20,1,5
1746194365.2437348,20,1,5
1746194365.9861429,20,1,5
1746194368.0205104,20,2,10
1746194369.8478284,20,2,10
1746194375.7027721,20,1,5
1746194375.9438326,20,1,5
1746194498.047392,20,1,5
1746194498.7213256,20,1,5
1746194500.6539621,20,2,10
1746194502.2931693,20,2,10
1746194508.4181612,20,1,5
1746194508.9365013,20,1,5
1746194622.6946948,20,1,5
1746194623.4736502,20,1,5
1746194625.599631,20,2,10
1746194627.2967982,20,2,10
1746194633.4242606,20,1,5
1746194634.13695,20,1,5
1746194639.338065,20,1,5
1746194648.9527059,20,1,5
1746194657.6452103,20,1,5
1746194664.3495803,20,1,5
1746194668.7248116,20,0,0
1746194676.5915215,20,0,0
1746194783.2074478,20,0,0
1746194783.7606676,20,0,0
1746194785.6335645,20,1,5
1746194789.5543454,20,1,5
1746194906.8672862,20,1,5
1746194907.5613115,20,1,5
1746194909.6419811,20,2,10
1746194911.4459677,20,2,10
1746194917.680794,20,1,5
1746194917.9268658,20,1,5
1746195473.7240405,20,1,5
1746195474.3637154,20,1,5
1746195476.5239344,20,2,10
1746195478.057931,20,2,10
1746195483.5095193,20,1,5
1746195483.9182851,20,1,5
1746195933.78611,20,1,5
1746195934.5267906,20,1,5
1746195936.501389,20,2,10
1746195938.3225105,20,2,10
1746195944.6419816,20,1,5
1746195944.9287608,20,1,5
1746196029.1055017,20,1,5
1746196029.8248281,20,1,5
1746196031.7567658,20,2,10
1746196033.6157866,20,2,10
1746196039.739912,20,1,5
1746196039.9722993,20,1,5
1746196173.3513474,20,1,5
1746196174.3470821,20,1,5
1746196176.4687335,20,2,10
1746196178.1597228,20,2,10
1746196184.5048382,20,1,5
1746196184.905489,20,1,5
1746196348.6016743,20,1,5
1746196349.3702526,20,1,5
1746196351.5421033,20,2,10
1746196353.158035,20,2,10
1746196358.8748262,20,1,5
1746196359.118838,20,1,5
1746196508.0661354,20,1,5
1746196508.6657164,20,1,5
1746196510.518923,20,2,10
1746196511.887621,20,2,10
1746196517.6546822,20,1,5
1746196517.9646873,20,1,5
1746196634.2303736,20,1,5
1746196635.000661,20,1,5
1746196636.9570332,20,2,10
1746196638.6626878,20,2,10
1746196644.7732687,20,1,5
1746196644.9815078,20,1,5
1746196765.591572,20,1,5
1746196766.3304327,20,1,5
1746196768.5351267,20,2,10
1746196770.0945232,20,2,10
1746196775.7953184,20,1,5
1746196775.9966564,20,1,5
1746196882.922925,20,1,5
1746196883.6219585,20,1,5
1746196885.5881686,20,2,10
1746196887.2752016,20,2,10
1746196893.57393,20,1,5
1746196893.9227726,20,1,5
1746197080.7046044,20,1,5
1746197081.3868015,20,1,5
1746197083.462854,20,2,10
1746197085.0488544,20,2,10
1746197090.783144,20,1,5
1746197091.0177128,20,1,5
1746197199.3703125,20,1,5
1746197200.3672993,20,1,5
1746197202.6783152,20,2,10
1746197204.4911373,20,2,10
1746197211.2649987,20,1,5
1746197211.5407205,20,1,5
1746197923.9969344,20,1,5
1746197924.7162914,20,1,5
1746197926.621358,20,2,10
1746197928.3735733,20,2,10
1746197935.6647663,20,1,5
1746197935.902247,20,1,5
1746198100.7834184,20,1,5
1746198101.518583,20,1,5
1746198103.5418782,20,2,10
1746198105.284473,20,2,10
1746198112.1528502,20,1,5
1746198112.385691,20,1,5
1746198352.437256,20,1,5
1746198353.3743699,20,1,5
1746198356.641612,20,2,10
1746198358.4773746,20,2,10
1746198365.1318786,20,1,5
1746198365.3996603,20,1,5
1746198473.3683474,20,1,5
1746198474.2694576,20,1,5
1746198476.4126332,20,2,10
1746198477.938457,20,2,10
1746198484.2638357,20,1,5
1746198484.6004634,20,1,5
1746198612.0431373,20,1,5
1746198612.6800795,20,1,5
1746198614.5343888,20,2,10
1746198616.0651567,20,2,10
1746198621.9961805,20,1,5
1746198622.1902723,20,1,5
1746198810.2723575,20,1,5
1746198811.0056412,20,1,5
1746198812.839087,20,2,10
1746198814.5222285,20,2,10
1746198821.1669118,20,1,5
1746198821.4018116,20,1,5
1746199100.5201302,20,1,5
1746199101.3306198,20,1,5
1746199103.5198405,20,2,10
1746199104.9714541,20,2,10
1746199111.005302,20,1,5
1746199111.3899505,20,1,5
1746199116.5589163,20,1,5
1746199125.9899328,20,1,5
1746199132.4170363,20,1,5
1746199136.7346456,20,0,0
1746199144.1873653,20,0,0
1746199206.4541893,20,0,0
1746199207.0307553,20,0,0
1746199209.5768375,20,1,5
1746199213.9650598,20,1,5
1746199267.6288242,20,1,5
1746199268.3942816,20,1,5
1746199270.577125,20,2,10
1746199272.6938848,20,2,10
1746199279.2925193,20,1,5
1746199279.4482188,20,1,5
1746199356.7376637,20,1,5
1746199357.3421624,20,1,5
1746199360.4688065,20,2,10
1746199361.9970274,20,2,10
1746199368.0397763,20,1,5
1746199368.2718625,20,1,5
1746199440.8756256,20,1,5
1746199441.5319176,20,1,5
1746199443.5193343,20,2,10
1746199445.1771195,20,2,10
1746199452.2157986,20,1,5
1746199452.4961667,20,1,5
1746199518.7018673,20,1,5
1746199519.411174,20,1,5
1746199521.5170732,20,2,10
1746199523.2821143,20,2,10
1746199530.1926188,20,1,5
1746199530.4467196,20,1,5
1746199624.6507804,20,1,5
1746199625.314124,20,1,5
1746199627.5284333,20,2,10
1746199629.0744991,20,2,10
1746199635.3074045,20,1,5
1746199635.747279,20,1,5
1746199721.035748,20,1,5
1746199721.6854963,20,1,5
1746199723.6120448,20,2,10
1746199725.2098737,20,2,10
1746199731.8014357,20,1,5
1746199732.035258,20,1,5
1746199824.017614,20,1,5
1746199824.7474005,20,1,5
1746199826.7444503,20,2,10
1746199828.3911564,20,2,10
1746199835.192821,20,1,5
1746199835.4272,20,1,5
1746199930.8063946,20,1,5
1746199931.4654963,20,1,5
1746199933.495556,20,2,10
1746199935.0918043,20,2,10
1746199941.6747,20,1,5
1746199941.899696,20,1,5
1746200018.6089664,20,1,5
1746200019.234939,20,1,5
1746200021.1959972,20,2,10
1746200022.3773613,20,2,10
1746200028.359835,20,1,5
1746200028.9017437,20,1,5
1746200092.4199214,20,1,5
1746200093.300649,20,1,5
1746200095.544091,20,2,10
1746200097.0791767,20,2,10
1746200103.5554745,20,1,5
1746200103.8955812,20,1,5
1746200225.7405467,20,1,5
1746200226.4347222,20,1,5
1746200228.5440276,20,2,10
1746200230.2096052,20,2,10
1746200237.140273,20,1,5
1746200237.4158664,20,1,5
1746200323.7663696,20,1,5
1746200324.4450312,20,1,5
1746200326.523169,20,2,10
1746200328.140254,20,2,10
1746200335.5739362,20,1,5
1746200335.922788,20,1,5
1746200427.5194666,20,1,5
1746200428.3458574,20,1,5
1746200430.4247308,20,2,10
1746200431.9169598,20,2,10
1746200438.3034642,20,1,5
1746200438.7646904,20,1,5
1746200530.737295,20,1,5
1746200531.349927,20,1,5
1746200533.45449,20,2,10
1746200534.8634458,20,2,10
1746200541.06748,20,1,5
1746200541.2948692,20,1,5
1746200596.785387,20,1,5
1746200597.3077617,20,1,5
1746200599.5207126,20,2,10
1746200600.7126508,20,2,10
1746200606.963665,20,1,5
1746200607.198482,20,1,5
1746200778.4494548,20,1,5
1746200779.3232367,20,1,5
1746200781.5678377,20,2,10
1746200783.1436558,20,2,10
1746200789.6762695,20,1,5
1746200789.9434392,20,1,5
1746200875.4799006,20,1,5
1746200876.3619416,20,1,5
1746200878.4697855,20,2,10
1746200879.977087,20,2,10
1746200886.603626,20,1,5
1746200886.9098227,20,1,5
1746201005.9859571,20,1,5
1746201006.6374714,20,1,5
1746201008.4577022,20,2,10
1746201009.960709,20,2,10
1746201016.3941758,20,1,5
1746201016.8655365,20,1,5
1746201110.7418911,20,1,5
1746201111.4594245,20,1,5
1746201113.5903502,20,2,10
1746201115.1669416,20,2,10
1746201122.8361733,20,1,5
1746201123.2401226,20,1,5
1746201128.468625,20,1,5
1746201138.4471576,20,1,5
1746201145.153389,20,1,5
1746201150.333205,20,0,0
1746201158.8531277,20,0,0
1746201309.1621106,20,0,0
1746201309.710388,20,0,0
1746201311.5243025,20,1,5
1746201315.2662334,20,1,5
1746201434.6519434,20,1,5
1746201435.3166258,20,1,5
1746201437.4969604,20,2,10
1746201439.0185378,20,2,10
1746201445.708975,20,1,5
1746201445.9365592,20,1,5
1746202281.556792,20,1,5
1746202282.2715652,20,1,5
1746202284.4229069,20,2,10
1746202285.8827522,20,2,10
1746202292.166603,20,1,5
1746202292.371206,20,1,5
1746202729.8605747,20,1,5
1746202730.4696484,20,1,5
1746202732.5439322,20,2,10
1746202734.207339,20,2,10
1746202741.8935,20,1,5
1746202742.1364841,20,1,5
1746203039.4002368,20,1,5
1746203040.2227192,20,1,5
1746203042.3343246,20,2,10
1746203043.642717,20,2,10
1746203049.8103728,20,1,5
1746203050.016301,20,1,5
1746203206.6723719,20,1,5
1746203207.3627527,20,1,5
1746203209.942136,20,2,10
1746203211.5674605,20,2,10
1746203218.9156108,20,1,5
1746203219.1567676,20,1,5
1746203410.8847911,20,1,5
1746203411.5636678,20,1,5
1746203413.4918675,20,2,10
1746203415.0908413,20,2,10
1746203422.1892962,20,1,5
1746203422.4123993,20,1,5
1746203622.5340831,20,1,5
1746203623.2683966,20,1,5
1746203625.4327447,20,2,10
1746203626.8178985,20,2,10
1746203633.8722432,20,1,5
1746203634.0665057,20,1,5
1746204006.5950575,20,1,5
1746204007.3098412,20,1,5
1746204009.4773767,20,2,10
1746204010.8984754,20,2,10
1746204017.5126717,20,1,5
1746204017.8918548,20,1,5
1746204203.9908702,20,1,5
1746204204.6380281,20,1,5
1746204206.442055,20,2,10
1746204207.8750453,20,2,10
1746204214.440188,20,1,5
1746204214.902146,20,1,5
1746205250.3921416,20,1,5
1746205251.2005522,20,1,5
1746205253.134679,20,2,10
1746205254.465263,20,2,10
1746205260.7404494,20,1,5
1746205260.9402082,20,1,5
1746205420.0171645,20,1,5
1746205420.7196858,20,1,5
1746205423.6140954,20,2,10
1746205425.2727907,20,2,10
1746205432.6751947,20,1,5
1746205432.9453044,20,1,5
1746205685.739096,20,1,5
1746205686.4854643,20,1,5
1746205688.5270293,20,2,10
1746205690.1195579,20,2,10
1746205697.2212646,20,1,5
1746205697.4631715,20,1,5
1746205886.4583306,20,1,5
1746205887.222305,20,1,5
1746205889.137806,20,2,10
1746205890.2116528,20,2,10
1746205896.5097146,20,1,5
1746205896.8709793,20,1,5
1746206198.687417,20,1,5
1746206199.3586721,20,1,5
1746206201.5251162,20,2,10
1746206203.2143047,20,2,10
1746206210.5698557,20,1,5
1746206210.883426,20,1,5
1746206409.1984425,20,1,5
1746206409.8193035,20,1,5
1746206411.609122,20,2,10
1746206413.1060905,20,2,10
1746206420.653057,20,1,5
1746206420.8793101,20,1,5
1746206602.1412816,20,1,5
1746206602.7863183,20,1,5
1746206604.655547,20,2,10
1746206606.2532694,20,2,10
1746206613.5077207,20,1,5
1746206613.911883,20,1,5
1746206745.9986982,20,1,5
1746206746.6206088,20,1,5
1746206748.4697814,20,2,10
1746206749.9989848,20,2,10
1746206757.0854886,20,1,5
1746206757.3016493,20,1,5
1746206895.355495,20,1,5
1746206896.2561893,20,1,5
1746206898.8411314,20,2,10
1746206900.3645546,20,2,10
1746206907.6675055,20,1,5
1746206907.919851,20,1,5
1746207087.1594725,20,1,5
1746207087.8425553,20,1,5
1746207089.7300808,20,2,10
1746207091.2107966,20,2,10
1746207098.768574,20,1,5
1746207099.2379823,20,1,5
1746207105.505057,20,1,5
1746207112.3377285,20,1,5
1746207117.784891,20,0,0
1746207125.7363126,20,0,0
1746207437.8047352,20,0,0
1746207438.3043978,20,0,0
1746207440.4115386,20,1,5
1746207444.9426093,20,1,5
1746207522.0886877,20,1,5
1746207522.7485728,20,1,5
1746207524.646793,20,2,10
1746207526.230429,20,2,10
1746207533.110851,20,1,5
1746207533.3148885,20,1,5
1746207796.8902907,20,1,5
1746207797.5327723,20,1,5
1746207799.4779508,20,2,10
1746207800.968386,20,2,10
1746207808.119532,20,1,5
1746207808.3316338,20,1,5
1746207941.8663516,20,1,5
1746207942.4683151,20,1,5
1746207944.4251757,20,2,10
1746207946.595485,20,2,10
1746207953.6003978,20,1,5
1746207953.9183338,20,1,5
1746208096.6108172,20,1,5
1746208097.3325107,20,1,5
1746208099.4852183,20,2,10
1746208101.1399093,20,2,10
1746208108.636891,20,1,5
1746208108.9089918,20,1,5
1746208247.717226,20,1,5
1746208248.3543675,20,1,5
1746208250.4628682,20,2,10
1746208251.8946378,20,2,10
1746208258.7143185,20,1,5
1746208258.9097915,20,1,5
1746208329.9704523,20,1,5
1746208330.303168,20,1,5
1746208332.3485463,20,2,10
1746208333.3990455,20,2,10
1746208340.062575,20,1,5
1746208340.2505348,20,1,5
1746208404.1461928,20,1,5
1746208404.8034282,20,1,5
1746208406.6782053,20,2,10
1746208408.3419209,20,2,10
1746208416.2394943,20,1,5
1746208416.4623718,20,1,5
1746208511.818845,20,1,5
1746208512.3937778,20,1,5
1746208514.3731294,20,2,10
1746208515.7383301,20,2,10
1746208522.81093,20,1,5
1746208522.9194798,20,1,5
1746208591.227483,20,1,5
1746208591.8848333,20,1,5
1746208593.8095682,20,2,10
1746208595.3701422,20,2,10
1746208603.8819897,20,1,5
1746208604.0981236,20,1,5
1746208826.805308,20,1,5
1746208827.4091501,20,1,5
1746208829.4358475,20,2,10
1746208830.8699281,20,2,10
1746208837.7578323,20,1,5
1746208838.020563,20,1,5
1746208957.2595637,20,1,5
1746208957.9465182,20,1,5
1746208959.7509017,20,2,10
1746208961.233781,20,2,10
1746208969.1394744,20,1,5
1746208969.403239,20,1,5
1746209120.0633304,20,1,5
1746209120.6884842,20,1,5
1746209122.4925194,20,2,10
1746209123.9906476,20,2,10
1746209131.6442742,20,1,5
1746209131.7458344,20,1,5
1746209200.1732793,20,1,5
1746209200.734813,20,1,5
1746209202.4783762,20,2,10
1746209203.8613162,20,2,10
1746209211.5608473,20,1,5
1746209211.6582043,20,1,5
1746209265.6332848,20,1,5
1746209266.165342,20,1,5
1746209268.1403472,20,2,10
1746209269.4910576,20,2,10
1746209276.3376431,20,1,5
1746209276.8667834,20,1,5
1746209340.0267568,20,1,5
1746209340.6805668,20,1,5
1746209342.5015311,20,2,10
1746209344.0055509,20,2,10
1746209351.3582976,20,1,5
1746209351.871742,20,1,5
1746209419.9897108,20,1,5
1746209420.6621814,20,1,5
1746209422.4695024,20,2,10
1746209423.9821656,20,2,10
1746209431.3030465,20,1,5
1746209431.662556,20,1,5
1746209574.4467788,20,1,5
1746209576.3252735,20,1,5
1746209578.4751954,20,2,10
1746209580.031262,20,2,10
1746209588.602343,20,1,5
1746209588.7428427,20,1,5
1746209666.8645957,20,1,5
1746209667.4939787,20,1,5
1746209669.4021366,20,2,10
1746209670.9124007,20,2,10
1746209678.4133258,20,1,5
1746209678.8855584,20,1,5
1746209753.95491,20,1,5
1746209754.5825922,20,1,5
1746209756.4219627,20,2,10
1746209757.7991579,20,2,10
1746209765.3056855,20,1,5
1746209766.0299575,20,1,5
1746209771.388862,20,1,5
1746209781.5655892,20,1,5
1746209787.9581738,20,1,5
1746209793.034592,20,0,0
1746209800.80634,20,0,0
1746209952.0868783,20,0,0
1746209952.595067,20,0,0
1746209954.4576406,20,1,5
1746209958.4338253,20,1,5
1746210110.646747,20,1,5
1746210111.3309617,20,1,5
1746210113.4722207,20,2,10
1746210115.0200927,20,2,10
1746210122.7382946,20,1,5
1746210122.992993,20,1,5
1746210202.481921,20,1,5
1746210203.2907097,20,1,5
1746210205.5065732,20,2,10
1746210206.9998355,20,2,10
1746210214.7402203,20,1,5
1746210214.8699932,20,1,5
1746210305.7870212,20,1,5
1746210306.3973637,20,1,5
1746210308.5001223,20,2,10
1746210309.925038,20,2,10
1746210317.3668628,20,1,5
1746210317.8701243,20,1,5
1746210479.598524,20,1,5
1746210480.2941976,20,1,5
1746210483.7323031,20,2,10
1746210485.1935675,20,2,10
1746210495.22467,20,1,5
1746210495.3793302,20,1,5
1746210734.1530888,20,1,5
1746210734.7929316,20,1,5
1746210736.6206582,20,2,10
1746210738.154153,20,2,10
1746210745.8459706,20,1,5
1746210746.0774221,20,1,5
1746210831.916401,20,1,5
1746210832.555725,20,1,5
1746210834.4897635,20,2,10
1746210836.0423903,20,2,10
1746210843.7480333,20,1,5
1746210843.9776893,20,1,5
1746210914.5591655,20,1,5
1746210915.0790324,20,1,5
1746210916.7022882,20,2,10
1746210917.4346826,20,2,10
1746210924.0613768,20,1,5
1746210924.260799,20,1,5
1746210981.9976313,20,1,5
1746210982.5985262,20,1,5
1746210984.4111352,20,2,10
1746210985.7734902,20,2,10
1746210993.006235,20,1,5
1746210993.252016,20,1,5
1746211076.2700858,20,1,5
1746211076.974287,20,1,5
1746211078.7352343,20,2,10
1746211080.2879887,20,2,10
1746211088.1950407,20,1,5
1746211088.4335184,20,1,5
1746211265.076933,20,1,5
1746211265.651472,20,1,5
1746211267.459125,20,2,10
1746211268.84281,20,2,10
1746211275.9616811,20,1,5
1746211276.1682475,20,1,5
1746211452.498308,20,1,5
1746211453.2925396,20,1,5
1746211455.4935114,20,2,10
1746211456.996403,20,2,10
1746211464.76296,20,1,5
1746211464.9933941,20,1,5
1746211627.3182688,20,1,5
1746211628.3864784,20,1,5
1746211630.49407,20,2,10
1746211632.0028343,20,2,10
1746211639.8383622,20,1,5
1746211640.067365,20,1,5
1746212177.8173132,20,1,5
1746212178.4655108,20,1,5
1746212181.4824314,20,2,10
1746212182.8659883,20,2,10
1746212190.0092897,20,1,5
1746212190.2471037,20,1,5
1746212381.4546893,20,1,5
1746212382.2991543,20,1,5
1746212384.5057552,20,2,10
1746212386.019152,20,2,10
1746212393.8345404,20,1,5
1746212394.0507176,20,1,5
1746212563.3396244,20,1,5
1746212564.0293899,20,1,5
1746212565.6513798,20,2,10
1746212566.7108984,20,2,10
1746212573.3014095,20,1,5
1746212573.6538599,20,1,5
1746212690.4237542,20,1,5
1746212691.2415352,20,1,5
1746212693.3564231,20,2,10
1746212694.7230296,20,2,10
1746212702.1691325,20,1,5
1746212702.406735,20,1,5
1746212876.6315973,20,1,5
1746212877.3015473,20,1,5
1746212879.4591143,20,2,10
1746212880.924704,20,2,10
1746212888.7740252,20,1,5
1746212889.0250626,20,1,5
1746212962.8033078,20,1,5
1746212963.4256396,20,1,5
1746212965.3647552,20,2,10
1746212966.8417706,20,2,10
1746212974.959659,20,1,5
1746212975.0726886,20,1,5
1746213101.3993745,20,1,5
1746213102.2462275,20,1,5
1746213104.365377,20,2,10
1746213105.5923822,20,2,10
1746213113.0455554,20,1,5
1746213113.3920872,20,1,5
1746213119.0380855,20,1,5
1746213128.7952106,20,1,5
1746213138.291124,20,1,5
1746213144.522018,20,1,5
1746213149.4823658,20,0,0
1746213157.3061664,20,0,0
1746213233.9037094,20,0,0
1746213234.4113572,20,0,0
1746213236.5029888,20,1,5
1746213241.4324586,20,1,5
1746213314.31012,20,1,5
1746213315.034396,20,1,5
1746213316.8866227,20,2,10
1746213318.1993861,20,2,10
1746213325.7095523,20,1,5
1746213325.923334,20,1,5
1746213397.8693373,20,1,5
1746213398.468051,20,1,5
1746213400.3846202,20,2,10
1746213401.937269,20,2,10
1746213413.4274757,20,1,5
1746213413.5671217,20,1,5
1746213510.5275812,20,1,5
1746213511.2895272,20,1,5
1746213513.4009447,20,2,10
1746213514.8759394,20,2,10
1746213523.3697214,20,1,5
1746213523.477459,20,1,5
1746213667.3134146,20,1,5
1746213668.0697246,20,1,5
1746213670.1570687,20,2,10
1746213671.324349,20,2,10
1746213678.4598534,20,1,5
1746213678.882402,20,1,5
1746213739.6022704,20,1,5
1746213740.2653,20,1,5
1746213742.3403478,20,2,10
1746213743.646732,20,2,10
1746213751.1649504,20,1,5
1746213751.366471,20,1,5
1746213927.93836,20,1,5
1746213928.5237842,20,1,5
1746213930.3746767,20,2,10
1746213931.6629958,20,2,10
1746213938.989928,20,1,5
1746213939.1841497,20,1,5
1746214103.51984,20,1,5
1746214104.1349635,20,1,5
1746214106.1224463,20,2,10
1746214107.0862231,20,2,10
1746214113.802898,20,1,5
1746214114.0132384,20,1,5
1746214178.1914701,20,1,5
1746214178.76206,20,1,5
1746214180.4975095,20,2,10
1746214181.7448256,20,2,10
1746214189.1022115,20,1,5
1746214189.2867205,20,1,5
1746214376.6583905,20,1,5
1746214377.2265666,20,1,5
1746214379.2223876,20,2,10
1746214380.4858403,20,2,10
1746214387.9545329,20,1,5
1746214388.1494756,20,1,5
1746215273.31536,20,1,5
1746215274.1391356,20,1,5
1746215276.060161,20,2,10
1746215277.4219337,20,2,10
1746215285.1102262,20,1,5
1746215285.3211224,20,1,5
1746215402.6229591,20,1,5
1746215403.2472477,20,1,5
1746215405.3465312,20,2,10
1746215406.6385164,20,2,10
1746215414.0291576,20,1,5
1746215414.219506,20,1,5
1746215545.8207424,20,1,5
1746215546.378563,20,1,5
1746215548.3510375,20,2,10
1746215549.6826189,20,2,10
1746215557.3531857,20,1,5
1746215557.4793515,20,1,5
1746215921.0574281,20,1,5
1746215921.661532,20,1,5
1746215923.4698122,20,2,10
1746215924.94947,20,2,10
1746215932.2115617,20,1,5
1746215932.4223835,20,1,5
1746216091.6133637,20,1,5
1746216092.2637465,20,1,5
1746216094.4411428,20,2,10
1746216095.8377929,20,2,10
1746216103.268516,20,1,5
1746216103.5114868,20,1,5
1746216272.0398285,20,1,5
1746216272.6605082,20,1,5
1746216274.5929196,20,2,10
1746216276.080634,20,2,10
1746216284.6607714,20,1,5
1746216284.7877772,20,1,5
1746216364.4747198,20,1,5
1746216365.2764528,20,1,5
1746216367.4113855,20,2,10
1746216368.805726,20,2,10
1746216377.215181,20,1,5
1746216377.3462358,20,1,5
1746216797.5605848,20,1,5
1746216798.2400348,20,1,5
1746216800.364117,20,2,10
1746216801.6428359,20,2,10
1746216808.961477,20,1,5
1746216809.1715138,20,1,5
1746216941.9000592,20,1,5
1746216942.5067847,20,1,5
1746216944.4311023,20,2,10
1746216945.9591749,20,2,10
1746216954.5607624,20,1,5
1746216954.6865568,20,1,5
1746217023.9387276,20,1,5
1746217024.4947176,20,1,5
1746217026.322985,20,2,10
1746217027.2692647,20,2,10
1746217033.6749523,20,1,5
1746217034.0285509,20,1,5
1746217039.4045584,20,1,5
1746217049.070463,20,1,5
1746217059.1179357,20,1,5
1746217069.1636443,20,1,5
1746217075.3975708,20,1,5
1746217080.4588606,20,0,0
1746217088.6645658,20,0,0
1746217292.4063056,20,0,0
1746217292.7542129,20,0,0
1746217294.4126115,20,1,5
1746217298.856135,20,1,5
1746217402.9406655,20,1,5
1746217403.5576947,20,1,5
1746217405.4606073,20,2,10
1746217407.036617,20,2,10
1746217415.615364,20,1,5
1746217415.742666,20,1,5
1746217572.9643004,20,1,5
1746217573.5569956,20,1,5
1746217575.4552033,20,2,10
1746217576.9165838,20,2,10
1746217585.1740944,20,1,5
1746217585.265119,20,1,5
1746217790.1004922,20,1,5
1746217790.726352,20,1,5
1746217792.5559468,20,2,10
1746217794.0532982,20,2,10
1746217801.857786,20,1,5
1746217802.0657587,20,1,5
1746217880.88781,20,1,5
1746217881.3510294,20,1,5
1746217883.2498822,20,2,10
1746217884.1843655,20,2,10
1746217891.193177,20,1,5
1746217891.2603912,20,1,5
1746217997.859677,20,1,5
1746217998.5512252,20,1,5
1746218000.4718688,20,2,10
1746218001.9321554,20,2,10
1746218009.6628397,20,1,5
1746218009.900068,20,1,5
1746218170.6560547,20,1,5
1746218171.3390412,20,1,5
1746218173.4476376,20,2,10
1746218174.8859062,20,2,10
1746218182.8097038,20,1,5
1746218183.0678716,20,1,5
1746218347.7669556,20,1,5
1746218348.357618,20,1,5
1746218350.3943398,20,2,10
1746218351.75292,20,2,10
1746218359.3292036,20,1,5
1746218359.8273866,20,1,5
1746218492.7274702,20,1,5
1746218493.312734,20,1,5
1746218495.4851038,20,2,10
1746218496.7898302,20,2,10
1746218503.8678596,20,1,5
1746218504.0635078,20,1,5
1746219174.377848,20,1,5
1746219175.3237932,20,1,5
1746219177.472567,20,2,10
1746219178.994069,20,2,10
1746219187.566973,20,1,5
1746219187.6726751,20,1,5
1746219384.3640444,20,1,5
1746219385.1657193,20,1,5
1746219387.1541102,20,2,10
1746219388.3856504,20,2,10
1746219395.998799,20,1,5
1746219396.1794295,20,1,5
1746219561.8294792,20,1,5
1746219562.4676373,20,1,5
1746219564.499052,20,2,10
1746219566.049836,20,2,10
1746219573.9287527,20,1,5
1746219574.1563826,20,1,5
1746219923.7952764,20,1,5
1746219924.39729,20,1,5
1746219926.4053843,20,2,10
1746219927.8539267,20,2,10
1746219936.416967,20,1,5
1746219936.8755105,20,1,5
1746220028.6056876,20,1,5
1746220029.2946844,20,1,5
1746220031.4686363,20,2,10
1746220032.9618435,20,2,10
1746220041.6348388,20,1,5
1746220041.755026,20,1,5
1746220170.8488684,20,1,5
1746220171.4812655,20,1,5
1746220173.4704123,20,2,10
1746220174.9835207,20,2,10
1746220183.0361059,20,1,5
1746220183.2873101,20,1,5
1746220276.787028,20,1,5
1746220277.379464,20,1,5
1746220279.5644178,20,2,10
1746220281.0035965,20,2,10
1746220289.585418,20,1,5
1746220289.68958,20,1,5
1746220373.7132149,20,1,5
1746220374.148325,20,1,5
1746220375.964098,20,2,10
1746220377.0985205,20,2,10
1746220384.5918434,20,1,5
1746220384.6992557,20,1,5
1746220922.690688,20,1,5
1746220923.204792,20,1,5
1746220925.2213616,20,2,10
1746220926.4947777,20,2,10
1746220933.543829,20,1,5
1746220933.9151027,20,1,5
1746221149.251267,20,1,5
1746221149.8772516,20,1,5
1746221151.674593,20,2,10
1746221153.076401,20,2,10
1746221161.7678232,20,1,5
1746221161.86755,20,1,5
1746221301.0360942,20,1,5
1746221301.642338,20,1,5
1746221303.5425918,20,2,10
1746221304.8979864,20,2,10
1746221312.2228477,20,1,5
1746221312.6748111,20,1,5
1746221318.6998987,20,1,5
1746221324.9921072,20,1,5
1746221330.2478125,20,0,0
1746221337.698238,20,0,0
1746221571.489845,20,0,0
1746221571.9897618,20,0,0
1746221573.7992637,20,1,5
1746221579.0693045,20,1,5
1746221805.5616143,20,1,5
1746221806.1980398,20,1,5
1746221808.3363605,20,2,10
1746221809.6441941,20,2,10
1746221817.4852054,20,1,5
1746221817.6059594,20,1,5
1746222091.3876133,20,1,5
1746222092.2507532,20,1,5
1746222094.4113371,20,2,10
1746222095.8815973,20,2,10
1746222104.847677,20,1,5
1746222104.9523697,20,1,5
1746222415.5042431,20,1,5
1746222416.1741717,20,1,5
1746222418.1148536,20,2,10
1746222419.239159,20,2,10
1746222426.4623995,20,1,5
1746222426.8979797,20,1,5
1746222589.0090363,20,1,5
1746222589.566331,20,1,5
1746222591.4442627,20,2,10
1746222592.778426,20,2,10
1746222600.3875456,20,1,5
1746222600.8640294,20,1,5
1746222763.6792126,20,1,5
1746222764.2451913,20,1,5
1746222766.411906,20,2,10
1746222767.820995,20,2,10
1746222776.0303686,20,1,5
1746222776.242753,20,1,5
1746223244.5231857,20,1,5
1746223245.2446742,20,1,5
1746223247.208307,20,2,10
1746223248.5093522,20,2,10
1746223256.805422,20,1,5
1746223256.9059024,20,1,5
1746223439.6798964,20,1,5
1746223440.3076727,20,1,5
1746223442.4470334,20,2,10
1746223443.8867671,20,2,10
1746223451.2739844,20,1,5
1746223451.5609574,20,1,5
1746223651.9810953,20,1,5
1746223652.585074,20,1,5
1746223654.4790435,20,2,10
1746223655.9277685,20,2,10
1746223664.0296044,20,1,5
1746223664.1351898,20,1,5
1746224396.687168,20,1,5
1746224397.2351182,20,1,5
1746224399.3680565,20,2,10
1746224400.6198397,20,2,10
1746224408.8205473,20,1,5
1746224409.00618,20,1,5
1746225202.393873,20,1,5
1746225203.105433,20,1,5
1746225205.1374753,20,2,10
1746225206.2125638,20,2,10
1746225213.8189793,20,1,5
1746225214.0481777,20,1,5
1746225467.2576075,20,1,5
1746225467.8610702,20,1,5
1746225469.7083127,20,2,10
1746225471.0865204,20,2,10
1746225478.7535214,20,1,5
1746225478.9548013,20,1,5
1746225587.230193,20,1,5
1746225587.8245704,20,1,5
1746225589.6528575,20,2,10
1746225591.105627,20,2,10
1746225600.2319136,20,1,5
1746225600.341844,20,1,5
1746225858.4638221,20,1,5
1746225859.2567022,20,1,5
1746225861.427035,20,2,10
1746225862.7834163,20,2,10
1746225871.2483385,20,1,5
1746225871.3560374,20,1,5
1746225988.7121038,20,1,5
1746225989.2522552,20,1,5
1746225991.2011328,20,2,10
1746225992.4531522,20,2,10
1746226000.1385922,20,1,5
1746226000.3501506,20,1,5
1746226174.4172044,20,1,5
1746226175.2873676,20,1,5
1746226177.4015334,20,2,10
1746226178.869185,20,2,10
1746226188.0650635,20,1,5
1746226188.161832,20,1,5
1746226432.9476948,20,1,5
1746226433.5038257,20,1,5
1746226435.3459892,20,2,10
1746226436.587998,20,2,10
1746226444.5460558,20,1,5
1746226444.8872285,20,1,5
1746226615.452652,20,1,5
1746226616.2898588,20,1,5
1746226618.4140291,20,2,10
1746226619.8925898,20,2,10
1746226628.1156228,20,1,5
1746226628.376317,20,1,5
1746226838.1246083,20,1,5
1746226838.6063364,20,1,5
1746226840.2872064,20,2,10
1746226841.3527286,20,2,10
1746226848.510242,20,1,5
1746226848.8578725,20,1,5
1746227017.6739666,20,1,5
1746227018.2826076,20,1,5
1746227020.402142,20,2,10
1746227021.6959014,20,2,10
1746227030.9658272,20,1,5
1746227031.2035704,20,1,5
1746227038.1522763,20,1,5
1746227048.2204351,20,1,5
1746227054.4013827,20,1,5
1746227059.849074,20,0,0
1746227067.3195744,20,0,0
1746227724.4535284,20,0,0
1746227724.943103,20,0,0
1746227726.7054873,20,1,5
1746227732.0504925,20,1,5
1746228168.7938154,20,1,5
1746228169.379859,20,1,5
1746228171.3972075,20,2,10
1746228172.8747177,20,2,10
1746228180.9484675,20,1,5
1746228181.1534128,20,1,5
1746228364.4371321,20,1,5
1746228365.2518497,20,1,5
1746228367.3196402,20,2,10
1746228368.594622,20,2,10
1746228376.2346685,20,1,5
1746228376.4686804,20,1,5
1746228682.776948,20,1,5
1746228683.3765914,20,1,5
1746228685.4008002,20,2,10
1746228686.756842,20,2,10
1746228695.876426,20,1,5
1746228695.969416,20,1,5
1746229297.572185,20,1,5
1746229298.2434633,20,1,5
1746229300.239639,20,2,10
1746229301.5163908,20,2,10
1746229309.4755247,20,1,5
1746229309.892977,20,1,5
1746229494.051503,20,1,5
1746229494.618323,20,1,5
1746229496.3491,20,2,10
1746229497.6808465,20,2,10
1746229505.7171237,20,1,5
1746229505.9434655,20,1,5
1746229678.3961957,20,1,5
1746229679.2567785,20,1,5
1746229681.323388,20,2,10
1746229682.7274003,20,2,10
1746229691.8738859,20,1,5
1746229691.983699,20,1,5
1746229811.4089835,20,1,5
1746229812.1838765,20,1,5
1746229814.1399977,20,2,10
1746229815.310237,20,2,10
1746229822.7111404,20,1,5
1746229822.961191,20,1,5
1746230078.7740586,20,1,5
1746230079.3852477,20,1,5
1746230081.3738017,20,2,10
1746230082.7892745,20,2,10
1746230091.899506,20,1,5
1746230092.0065656,20,1,5
1746230499.088966,20,1,5
1746230499.6604595,20,1,5
1746230501.385374,20,2,10
1746230502.6793065,20,2,10
1746230510.775145,20,1,5
1746230510.995986,20,1,5
1746230687.7757342,20,1,5
1746230688.303265,20,1,5
1746230690.4195185,20,2,10
1746230691.588721,20,2,10
1746230699.7856836,20,1,5
1746230699.872237,20,1,5
1746230871.4047184,20,1,5
1746230872.1568775,20,1,5
1746230874.1530902,20,2,10
1746230875.363832,20,2,10
1746230883.083964,20,1,5
1746230883.2907417,20,1,5
1746231000.4926693,20,1,5
1746231001.165132,20,1,5
1746231003.2760699,20,2,10
1746231004.4175582,20,2,10
1746231011.933033,20,1,5
1746231012.1206772,20,1,5
1746231368.8023524,20,1,5
1746231369.3483453,20,1,5
1746231371.4125545,20,2,10
1746231372.7456596,20,2,10
1746231381.0020273,20,1,5
1746231381.2121346,20,1,5
1746232131.0209088,20,1,5
1746232132.5829046,20,1,5
1746232134.3967369,20,2,10
1746232135.729252,20,2,10
1746232144.032437,20,1,5
1746232144.1915014,20,1,5
1746232251.8984396,20,1,5
1746232252.3965225,20,1,5
1746232254.334673,20,2,10
1746232255.5192986,20,2,10
1746232263.6555235,20,1,5
1746232263.751777,20,1,5
1746232646.0624778,20,1,5
1746232646.5635135,20,1,5
1746232648.3115668,20,2,10
1746232649.4827504,20,2,10
1746232657.0435512,20,1,5
1746232657.2417324,20,1,5
1746233009.6088116,20,1,5
1746233010.186287,20,1,5
1746233012.1865685,20,2,10
1746233013.3714592,20,2,10
1746233021.8043413,20,1,5
1746233021.9965386,20,1,5
1746233394.4123526,20,1,5
1746233395.2539952,20,1,5
1746233398.447049,20,2,10
1746233399.7311344,20,2,10
1746233407.763572,20,1,5
1746233407.9555347,20,1,5
1746234025.837779,20,1,5
1746234026.3522277,20,1,5
1746234028.4152777,20,2,10
1746234029.564139,20,2,10
1746234038.1087353,20,1,5
1746234038.310665,20,1,5
1746234045.303082,20,1,5
1746234055.4480321,20,1,5
1746234061.5473373,20,1,5
1746234067.3000293,20,0,0
1746234074.96018,20,0,0
1746234444.8573492,20,0,0
1746234445.285157,20,0,0
1746234447.3658957,20,1,5
1746234452.3357732,20,1,5
1746234973.5920703,20,1,5
1746234974.263259,20,1,5
1746234976.3828316,20,2,10
1746234977.7365763,20,2,10
1746234986.0574872,20,1,5
1746234986.2745051,20,1,5
1746236245.6506205,20,1,5
1746236246.208485,20,1,5
1746236248.1775548,20,2,10
1746236249.3956268,20,2,10
1746236258.661394,20,1,5
1746236258.7446814,20,1,5
1746236551.9780633,20,1,5
1746236552.5300784,20,1,5
1746236554.4050713,20,2,10
1746236555.6702716,20,2,10
1746236563.769939,20,1,5
1746236563.978511,20,1,5
1746236841.3974528,20,1,5
1746236842.2657406,20,1,5
1746236844.449513,20,2,10
1746236845.8777153,20,2,10
1746236855.7994854,20,1,5
1746236855.9049907,20,1,5
1746236955.8632433,20,1,5
1746236956.3877006,20,1,5
1746236958.3192098,20,2,10
1746236959.5281363,20,2,10
1746236969.1285794,20,1,5
1746236969.2422495,20,1,5
1746237131.4190652,20,1,5
1746237132.2884471,20,1,5
1746237134.4026859,20,2,10
1746237135.787967,20,2,10
1746237145.6858518,20,1,5
1746237145.7833586,20,1,5
1746237267.0717633,20,1,5
1746237267.5913339,20,1,5
1746237269.390786,20,2,10
1746237270.62826,20,2,10
1746237279.858244,20,1,5
1746237279.9666421,20,1,5
1746237523.967491,20,1,5
1746237524.5428762,20,1,5
1746237526.355242,20,2,10
1746237527.6323426,20,2,10
1746237536.987685,20,1,5
1746237537.0740445,20,1,5
1746237882.749903,20,1,5
1746237883.382774,20,1,5
1746237885.496438,20,2,10
1746237886.9894073,20,2,10
1746237897.6682022,20,1,5
1746237897.7793005,20,1,5
1746238158.8058467,20,1,5
1746238159.5491986,20,1,5
1746238161.4942226,20,2,10
1746238162.9220147,20,2,10
1746238171.7983499,20,1,5
1746238171.8905802,20,1,5
1746238292.9172688,20,1,5
1746238294.5642717,20,1,5
1746238296.4128394,20,2,10
1746238297.8791463,20,2,10
1746238307.5032518,20,1,5
1746238307.583823,20,1,5
1746239084.3754222,20,1,5
1746239085.3043056,20,1,5
1746239087.4015052,20,2,10
1746239088.8352954,20,2,10
1746239097.711258,20,1,5
1746239097.9180489,20,1,5
1746239806.2823982,20,1,5
1746239806.8462274,20,1,5
1746239808.4857156,20,2,10
1746239809.701068,20,2,10
1746239817.8703153,20,1,5
1746239817.9731371,20,1,5
1746240394.5699055,20,1,5
1746240395.2760508,20,1,5
1746240397.3883023,20,2,10
1746240398.7629025,20,2,10
1746240407.5906188,20,1,5
1746240407.8947399,20,1,5
1746241872.3092568,20,1,5
1746241873.1805534,20,1,5
1746241875.3141878,20,2,10
1746241876.8325083,20,2,10
1746241887.8338144,20,1,5
1746241887.9550848,20,1,5
1746242254.2339914,20,1,5
1746242254.8528569,20,1,5
1746242256.6701002,20,2,10
1746242258.1682234,20,2,10
1746242267.642638,20,1,5
1746242267.7844257,20,1,5
1746242502.222825,20,1,5
1746242502.8946452,20,1,5
1746242504.7831445,20,2,10
1746242506.335128,20,2,10
1746242516.299309,20,1,5
1746242516.644691,20,1,5
1746243746.416764,20,1,5
1746243747.2336047,20,1,5
1746243749.3550649,20,2,10
1746243750.6951027,20,2,10
1746243759.667878,20,1,5
1746243759.877406,20,1,5
1746245289.833989,20,1,5
1746245290.4030538,20,1,5
1746245292.3379784,20,2,10
1746245293.4117427,20,2,10
1746245302.0381954,20,1,5
1746245302.3861234,20,1,5
1746245309.432736,20,1,5
1746245320.5395896,20,1,5
1746245330.2251964,20,1,5
1746245336.54468,20,1,5
1746245342.6633742,20,0,0
1746245350.8983893,20,0,0
1746246404.75538,20,0,0
1746246405.2628288,20,0,0
1746246407.5296638,20,1,5
1746246413.9078846,20,1,5
1746247007.5402677,20,1,5
1746247008.2290876,20,1,5
1746247010.2725923,20,2,10
1746247011.6329174,20,2,10
1746247021.7412426,20,1,5
1746247021.8714821,20,1,5
1746247401.5586002,20,1,5
1746247402.2535186,20,1,5
1746247404.3746545,20,2,10
1746247405.728436,20,2,10
1746247415.6201158,20,1,5
1746247415.7316132,20,1,5
1746247675.8969438,20,1,5
1746247676.5053425,20,1,5
1746247678.5734224,20,2,10
1746247680.0661263,20,2,10
1746247689.614954,20,1,5
1746247689.738623,20,1,5
1746247838.344486,20,1,5
1746247839.1686893,20,1,5
1746247841.1486375,20,2,10
1746247842.3567116,20,2,10
1746247851.1424377,20,1,5
1746247851.2504213,20,1,5
1746248315.0076647,20,1,5
1746248315.551429,20,1,5
1746248317.381341,20,2,10
1746248318.7146373,20,2,10
1746248328.5991912,20,1,5
1746248328.714363,20,1,5
1746249857.1380336,20,1,5
1746249857.607513,20,1,5
1746249859.3228986,20,2,10
1746249860.359234,20,2,10
1746249868.0388832,20,1,5
1746249868.1119397,20,1,5
1746250724.8444312,20,1,5
1746250725.3563302,20,1,5
1746250727.3213105,20,2,10
1746250728.4744654,20,2,10
1746250736.9853451,20,1,5
1746250737.0716054,20,1,5
1746251022.9130788,20,1,5
1746251023.4280636,20,1,5
1746251025.3641887,20,2,10
1746251026.5492277,20,2,10
1746251035.3218746,20,1,5
1746251035.7987764,20,1,5
1746251708.3453207,20,1,5
1746251709.1139107,20,1,5
1746251711.1113338,20,2,10
1746251712.2292302,20,2,10
1746251720.4190361,20,1,5
1746251720.8737817,20,1,5
1746252962.2055404,20,1,5
1746252962.7566807,20,1,5
1746252964.4863117,20,2,10
1746252965.8028014,20,2,10
1746252975.2481456,20,1,5
1746252975.3422697,20,1,5
1746254959.200577,20,1,5
1746254959.7483518,20,1,5
1746254961.5251586,20,2,10
1746254962.8223681,20,2,10
1746254971.8218343,20,1,5
1746254971.9441519,20,1,5
1746255703.2336664,20,1,5
1746255703.8519738,20,1,5
1746255705.6520386,20,2,10
1746255707.0258994,20,2,10
1746255716.7496023,20,1,5
1746255716.87526,20,1,5
1746256310.4920282,20,1,5
1746256311.3051014,20,1,5
1746256313.394352,20,2,10
1746256314.860371,20,2,10
1746256325.0009859,20,1,5
1746256325.1287858,20,1,5
1746256898.5427039,20,1,5
1746256899.2650335,20,1,5
1746256901.396189,20,2,10
1746256902.7717927,20,2,10
1746256912.7788525,20,1,5
1746256912.8805196,20,1,5
1746258586.7175004,20,1,5
1746258587.2616365,20,1,5
1746258589.383699,20,2,10
1746258590.6445901,20,2,10
1746258599.9507964,20,1,5
1746258600.041381,20,1,5
1746258848.996427,20,1,5
1746258849.6110494,20,1,5
1746258851.388747,20,2,10
1746258852.8556004,20,2,10
1746258863.3240433,20,1,5
1746258863.4491153,20,1,5
1746260700.574062,20,1,5
1746260701.2593746,20,1,5
1746260703.384017,20,2,10
1746260704.6923826,20,2,10
1746260713.7053874,20,1,5
1746260713.9074848,20,1,5
1746261715.3125453,20,1,5
1746261716.1115098,20,1,5
1746261718.0683312,20,2,10
1746261719.419199,20,2,10
1746261730.0057328,20,1,5
1746261730.2211528,20,1,5
1746262287.6370807,20,1,5
1746262288.2849548,20,1,5
1746262290.437264,20,2,10
1746262291.7944865,20,2,10
1746262300.995014,20,1,5
1746262301.3015165,20,1,5
1746262309.1731358,20,1,5
1746262315.3271177,20,1,5
1746262321.333296,20,0,0
1746262329.042101,20,0,0
1746263465.474946,20,0,0
1746263465.9003146,20,0,0
1746263467.6994479,20,1,5
1746263473.1091392,20,1,5
1746264402.2217968,20,1,5
1746264403.366524,20,1,5
1746264405.500768,20,2,10
1746264407.0012095,20,2,10
1746264417.8469045,20,1,5
1746264417.97679,20,1,5
1746265436.6534517,20,1,5
1746265437.346341,20,1,5
1746265439.3911154,20,2,10
1746265440.8146875,20,2,10
1746265450.7378109,20,1,5
1746265450.8441129,20,1,5
1746266043.626395,20,1,5
1746266044.2766397,20,1,5
1746266046.413977,20,2,10
1746266047.7237487,20,2,10
1746266057.9210184,20,1,5
1746266058.0460317,20,1,5
1746266409.015985,20,1,5
1746266409.5947602,20,1,5
1746266411.362085,20,2,10
1746266412.6368403,20,2,10
1746266422.3488777,20,1,5
1746266422.465032,20,1,5
1746267066.5868006,20,1,5
1746267067.1704106,20,1,5
1746267069.0684216,20,2,10
1746267070.0565326,20,2,10
1746267078.6961257,20,1,5
1746267078.7686622,20,1,5
1746267982.0296264,20,1,5
1746267982.5422099,20,1,5
1746267984.2997417,20,2,10
1746267985.4815726,20,2,10
1746267995.05895,20,1,5
1746267995.1819582,20,1,5
1746268254.8654544,20,1,5
1746268255.3909106,20,1,5
1746268257.3574116,20,2,10
1746268258.5864832,20,2,10
1746268268.5269072,20,1,5
1746268268.9084413,20,1,5
1746268819.7108834,20,1,5
1746268820.296805,20,1,5
1746268822.432904,20,2,10
1746268823.834455,20,2,10
1746268834.1774604,20,1,5
1746268834.2917447,20,1,5
1746269240.2672968,20,1,5
1746269240.808939,20,1,5
1746269242.5540745,20,2,10
1746269243.6933374,20,2,10
1746269253.0792692,20,1,5
1746269253.1906538,20,1,5
1746269485.9960775,20,1,5
1746269486.5659397,20,1,5
1746269488.3934307,20,2,10
1746269489.683902,20,2,10
1746269499.6549075,20,1,5
1746269499.7633533,20,1,5
1746270583.7459342,20,1,5
1746270584.3061533,20,1,5
1746270586.372449,20,2,10
1746270587.6502793,20,2,10
1746270597.6935785,20,1,5
1746270597.8139515,20,1,5
1746270880.894774,20,1,5
1746270881.465589,20,1,5
1746270883.3796055,20,2,10
1746270884.6824694,20,2,10
1746270894.7354379,20,1,5
1746270894.8452964,20,1,5
1746271821.7028615,20,1,5
1746271822.205291,20,1,5
1746271824.1492107,20,2,10
1746271825.2001064,20,2,10
1746271833.6143324,20,1,5
1746271833.7275212,20,1,5
1746272037.3128102,20,1,5
1746272038.0766382,20,1,5
1746272040.236346,20,2,10
1746272041.5598085,20,2,10
1746272051.7458918,20,1,5
1746272051.8661852,20,1,5
1746272300.633355,20,1,5
1746272301.2456028,20,1,5
1746272303.253621,20,2,10
1746272304.5390406,20,2,10
1746272314.596981,20,1,5
1746272314.7005105,20,1,5
1746273654.2590551,20,1,5
1746273654.8694773,20,1,5
1746273656.6092932,20,2,10
1746273657.9383628,20,2,10
1746273668.295315,20,1,5
1746273668.4423435,20,1,5
1746274102.7710416,20,1,5
1746274103.3612523,20,1,5
1746274105.4001458,20,2,10
1746274106.5764782,20,2,10
1746274116.1328464,20,1,5
1746274116.2257915,20,1,5
1746274404.380491,20,1,5
1746274405.2083788,20,1,5
1746274407.2967994,20,2,10
1746274408.6749532,20,2,10
1746274419.1354263,20,1,5
1746274419.262203,20,1,5
1746274761.3869402,20,1,5
1746274762.1647522,20,1,5
1746274764.1473548,20,2,10
1746274765.2207744,20,2,10
1746274774.3569062,20,1,5
1746274774.592449,20,1,5
1746274781.4059753,20,1,5
1746274791.9549901,20,1,5
1746274798.1182082,20,1,5
1746274804.9114323,20,0,0
1746274812.8143818,20,0,0
1746275694.5247111,20,0,0
1746275694.923194,20,0,0
1746275696.6648836,20,1,5
1746275702.1217933,20,1,5
1746276399.4981732,20,1,5
1746276400.2523308,20,1,5
1746276402.4639187,20,2,10
1746276403.84161,20,2,10
1746276414.4391663,20,1,5
1746276414.54699,20,1,5
1746276854.2034214,20,1,5
1746276854.812995,20,1,5
1746276856.6025398,20,2,10
1746276857.9685173,20,2,10
1746276868.9594996,20,1,5
1746276869.1046624,20,1,5
1746277567.9515994,20,1,5
1746277568.5548062,20,1,5
1746277570.4876227,20,2,10
1746277571.9333773,20,2,10
1746277583.0754201,20,1,5
1746277583.236736,20,1,5
1746277825.1878476,20,1,5
1746277825.7772121,20,1,5
1746277827.643223,20,2,10
1746277828.985918,20,2,10
1746277839.956868,20,1,5
1746277840.06765,20,1,5
1746278417.171498,20,1,5
1746278417.8127015,20,1,5
1746278419.6042423,20,2,10
1746278420.9603467,20,2,10
1746278431.344659,20,1,5
1746278431.4738097,20,1,5
1746279909.8923073,20,1,5
1746279910.549861,20,1,5
1746279912.4796972,20,2,10
1746279913.9813375,20,2,10
1746279925.2159245,20,1,5
1746279925.3674688,20,1,5
1746281170.9177086,20,1,5
1746281171.536173,20,1,5
1746281173.4940143,20,2,10
1746281174.9928694,20,2,10
1746281186.2529027,20,1,5
1746281186.5142984,20,1,5
1746282527.2414072,20,1,5
1746282527.8238168,20,1,5
1746282529.675563,20,2,10
1746282531.0139463,20,2,10
1746282541.4612148,20,1,5
1746282541.608797,20,1,5
1746284095.4041462,20,1,5
1746284099.3079445,20,1,5
1746284101.5016441,20,2,10
1746284103.0677428,20,2,10
1746284114.0332806,20,1,5
1746284114.170046,20,1,5
1746284482.2480829,20,1,5
1746284482.869871,20,1,5
1746284484.742217,20,2,10
1746284486.2597303,20,2,10
1746284497.701259,20,1,5
1746284497.8446434,20,1,5
1746284818.3539338,20,1,5
1746284819.1691432,20,1,5
1746284821.2529933,20,2,10
1746284822.612835,20,2,10
1746284833.5332875,20,1,5
1746284833.7880223,20,1,5
1746285876.1923182,20,1,5
1746285876.776963,20,1,5
1746285878.5580332,20,2,10
1746285879.841818,20,2,10
1746285890.8116295,20,1,5
1746285890.912092,20,1,5
1746286268.7858403,20,1,5
1746286269.421965,20,1,5
1746286271.4358659,20,2,10
1746286272.8659525,20,2,10
1746286284.5879824,20,1,5
1746286284.9361415,20,1,5
1746286845.639841,20,1,5
1746286846.247294,20,1,5
1746286848.2356305,20,2,10
1746286849.6144538,20,2,10
1746286859.5743957,20,1,5
1746286859.6650302,20,1,5
1746287034.4409368,20,1,5
1746287035.2936366,20,1,5
1746287037.472054,20,2,10
1746287038.9240768,20,2,10
1746287050.5758595,20,1,5
1746287050.6855114,20,1,5
1746288278.4397044,20,1,5
1746288279.344697,20,1,5
1746288281.4816353,20,2,10
1746288282.9363387,20,2,10
1746288294.9074922,20,1,5
1746288295.0190928,20,1,5
1746289196.553685,20,1,5
1746289197.174978,20,1,5
1746289199.024121,20,2,10
1746289200.1473095,20,2,10
1746289209.7898326,20,1,5
1746289209.8616261,20,1,5
1746289956.6487544,20,1,5
1746289957.363412,20,1,5
1746289959.472328,20,2,10
1746289960.9328067,20,2,10
1746289972.9015021,20,1,5
1746289973.1486647,20,1,5
1746290728.11339,20,1,5
1746290728.6725454,20,1,5
1746290730.46656,20,2,10
1746290731.66831,20,2,10
1746290742.835302,20,1,5
1746290743.249214,20,1,5
1746290751.2391157,20,1,5
1746290757.5543838,20,1,5
1746290765.269084,20,0,0
1746290775.0841775,20,0,0
1746292491.7947586,20,0,0
1746292492.2157493,20,0,0
1746292494.2215354,20,1,5
1746292500.550314,20,1,5
1746293007.2723758,20,1,5
1746293007.875291,20,1,5
1746293009.69062,20,2,10
1746293011.0378354,20,2,10
1746293022.6264818,20,1,5
1746293022.7567468,20,1,5
1746293867.5677667,20,1,5
1746293868.2714596,20,1,5
1746293870.3714786,20,2,10
1746293871.5785954,20,2,10
1746293882.1869705,20,1,5
1746293882.2753866,20,1,5
1746294501.2769396,20,1,5
1746294501.9429367,20,1,5
1746294503.8279626,20,2,10
1746294505.2340786,20,2,10
1746294516.7893317,20,1,5
1746294516.937091,20,1,5
1746294989.6676364,20,1,5
1746294990.301117,20,1,5
1746294992.4207752,20,2,10
1746294993.845554,20,2,10
1746295005.5040593,20,1,5
1746295005.63467,20,1,5
1746296622.6896644,20,1,5
1746296623.3258042,20,1,5
1746296625.3885932,20,2,10
1746296626.8384511,20,2,10
1746296638.23266,20,1,5
1746296638.3819242,20,1,5
1746296968.981829,20,1,5
1746296969.4913802,20,1,5
1746296971.4792166,20,2,10
1746296972.6547837,20,2,10
1746296983.6442251,20,1,5
1746296983.7815936,20,1,5
1746298488.087261,20,1,5
1746298488.7375154,20,1,5
1746298490.636725,20,2,10
1746298492.1673725,20,2,10
1746298504.3728073,20,1,5
1746298504.5106304,20,1,5
1746299326.9869835,20,1,5
1746299327.6141968,20,1,5
1746299329.443126,20,2,10
1746299330.969893,20,2,10
1746299343.5969217,20,1,5
1746299343.7428844,20,1,5
1746299593.513706,20,1,5
1746299594.3339257,20,1,5
1746299596.496227,20,2,10
1746299597.966426,20,2,10
1746299609.1935928,20,1,5
1746299609.364648,20,1,5
1746301242.2071912,20,1,5
1746301242.8085365,20,1,5
1746301244.7067387,20,2,10
1746301246.263184,20,2,10
1746301257.91108,20,1,5
1746301258.074674,20,1,5
1746302076.0713477,20,1,5
1746302076.6375263,20,1,5
1746302078.4174902,20,2,10
1746302079.8097835,20,2,10
1746302090.35327,20,1,5
1746302090.477125,20,1,5
1746303505.8866017,20,1,5
1746303506.4101083,20,1,5
1746303508.3440273,20,2,10
1746303509.6133723,20,2,10
1746303520.920136,20,1,5
1746303521.075205,20,1,5
1746303803.2596781,20,1,5
1746303804.0340524,20,1,5
1746303805.8624601,20,2,10
1746303807.3770335,20,2,10
1746303820.2688413,20,1,5
1746303820.4109797,20,1,5
1746304064.9866984,20,1,5
1746304065.577364,20,1,5
1746304067.4026418,20,2,10
1746304068.893437,20,2,10
1746304081.0785365,20,1,5
1746304081.1881676,20,1,5
1746305550.1236935,20,1,5
1746305550.7042372,20,1,5
1746305552.5632775,20,2,10
1746305553.9708037,20,2,10
1746305565.2638934,20,1,5
1746305565.36025,20,1,5
1746305876.0433414,20,1,5
1746305876.568878,20,1,5
1746305878.3496442,20,2,10
1746305879.6062725,20,2,10
1746305889.6283479,20,1,5
1746305889.7056515,20,1,5
1746306736.4302347,20,1,5
1746306737.264326,20,1,5
1746306739.5298386,20,2,10
1746306740.785484,20,2,10
1746306751.093167,20,1,5
1746306751.2897556,20,1,5
1746307909.5360694,20,1,5
1746307910.2517295,20,1,5
1746307912.4568665,20,2,10
1746307913.8296945,20,2,10
1746307924.8038027,20,1,5
1746307924.959478,20,1,5
1746309445.8575053,20,1,5
1746309446.436502,20,1,5
1746309448.4593005,20,2,10
1746309449.74552,20,2,10
1746309461.772826,20,1,5
1746309462.0948188,20,1,5
1746309470.5234756,20,1,5
1746309482.7719858,20,1,5
1746309495.019361,20,1,5
1746309501.3256369,20,1,5
1746309509.274178,20,0,0
1746309519.4751668,20,0,0
1746310080.86694,20,0,0
1746310081.3302467,20,0,0
1746310083.4983199,20,1,5
1746310089.956797,20,1,5
1746311885.1701448,20,1,5
1746311885.7740273,20,1,5
1746311887.5563521,20,2,10
1746311888.9555805,20,2,10
1746311898.9663498,20,1,5
1746311899.0627985,20,1,5
1746315171.6267679,20,1,5
1746315172.3131142,20,1,5
1746315174.4873946,20,2,10
1746315175.9207582,20,2,10
1746315187.976636,20,1,5
1746315188.1037118,20,1,5
1746315585.762697,20,1,5
1746315586.3358386,20,1,5
1746315588.4197083,20,2,10
1746315589.8161123,20,2,10
1746315601.8929234,20,1,5
1746315602.0315585,20,1,5
1746316482.3506763,20,1,5
1746316483.3675914,20,1,5
1746316485.3721793,20,2,10
1746316486.5928547,20,2,10
1746316496.9320722,20,1,5
1746316497.0318542,20,1,5
1746319101.1559954,20,1,5
1746319101.7288663,20,1,5
1746319103.5317929,20,2,10
1746319104.8292718,20,2,10
1746319116.1111782,20,1,5
1746319116.2483578,20,1,5
1746320496.4599013,20,1,5
1746320497.2817185,20,1,5
1746320499.3984,20,2,10
1746320500.9922862,20,2,10
1746320511.6313336,20,1,5
1746320511.7481542,20,1,5
1746325115.9337857,20,1,5
1746325116.6307697,20,1,5
1746325118.7671115,20,2,10
1746325120.385861,20,2,10
1746325133.6144533,20,1,5
1746325133.7376792,20,1,5
1746326154.5636153,20,1,5
1746326155.2226338,20,1,5
1746326157.2359607,20,2,10
1746326158.5129745,20,2,10
1746326170.2543705,20,1,5
1746326170.373783,20,1,5
1746329218.8112895,20,1,5
1746329219.4208453,20,1,5
1746329221.5376775,20,2,10
1746329223.0781763,20,2,10
1746329234.9936843,20,1,5
1746329235.1204717,20,1,5
1746330833.4000225,20,1,5
1746330834.2105775,20,1,5
1746330836.1958292,20,2,10
1746330837.3581,20,2,10
1746330848.3011026,20,1,5
1746330848.3960965,20,1,5
1746331643.1202433,20,1,5
1746331643.7231297,20,1,5
1746331645.582694,20,2,10
1746331647.0848877,20,2,10
1746331659.209599,20,1,5
1746331659.34426,20,1,5
1746335520.5612497,20,1,5
1746335521.3115394,20,1,5
1746335523.4890602,20,2,10
1746335524.7489786,20,2,10
1746335536.118251,20,1,5
1746335536.20754,20,1,5
1746337499.0334542,20,1,5
1746337499.610523,20,1,5
1746337501.380681,20,2,10
1746337502.6626348,20,2,10
1746337513.6993182,20,1,5
1746337513.7933815,20,1,5
1746338468.4740858,20,1,5
1746338469.2327626,20,1,5
1746338471.335945,20,2,10
1746338472.6026702,20,2,10
1746338484.8743954,20,1,5
1746338485.0006616,20,1,5
1746338758.9757535,20,1,5
1746338759.5127406,20,1,5
1746338761.3684137,20,2,10
1746338762.6333086,20,2,10
1746338773.6033401,20,1,5
1746338773.702364,20,1,5
1746339020.4727387,20,1,5
1746339021.1658132,20,1,5
1746339023.0849733,20,2,10
1746339024.1207662,20,2,10
1746339034.6893766,20,1,5
1746339034.7685657,20,1,5
1746339523.3996885,20,1,5
1746339524.2384381,20,1,5
1746339526.222043,20,2,10
1746339527.4242916,20,2,10
1746339538.3153756,20,1,5
1746339538.4435983,20,1,5
1746339841.6402137,20,1,5
1746339842.2567608,20,1,5
1746339844.445569,20,2,10
1746339845.7867732,20,2,10
1746339858.1635692,20,1,5
1746339858.2717948,20,1,5
1746340209.2452223,20,1,5
1746340209.9000845,20,1,5
1746340211.7480545,20,2,10
1746340212.9971976,20,2,10
1746340225.5889242,20,1,5
1746340225.911087,20,1,5
1746340234.670038,20,1,5
1746340240.9373775,20,1,5
1746340249.2315931,20,0,0
1746340259.775219,20,0,0
1746340859.937141,20,0,0
1746340860.4405508,20,0,0
1746340862.8454916,20,1,5
1746340870.5309873,20,1,5
1746341869.1206083,20,1,5
1746341869.645423,20,1,5
1746341871.4522185,20,2,10
1746341872.7975826,20,2,10
1746341884.372749,20,1,5
1746341884.4816256,20,1,5
1746342138.7394388,20,1,5
1746342139.3101115,20,1,5
1746342141.3403597,20,2,10
1746342142.5775912,20,2,10
1746342154.495126,20,1,5
1746342154.6246738,20,1,5
1746342433.8939643,20,1,5
1746342434.5432587,20,1,5
1746342436.4806206,20,2,10
1746342437.9330764,20,2,10
1746342450.5707238,20,1,5
1746342450.6739347,20,1,5
1746344358.2003696,20,1,5
1746344358.809244,20,1,5
1746344360.7016933,20,2,10
1746344362.2528186,20,2,10
1746344375.7219622,20,1,5
1746344375.8252919,20,1,5
1746345499.1395326,20,1,5
1746345499.7682285,20,1,5
1746345501.6114585,20,2,10
1746345503.0182538,20,2,10
1746345516.4034,20,1,5
1746345516.5203793,20,1,5
1746346057.2140875,20,1,5
1746346057.8405259,20,1,5
1746346059.6649873,20,2,10
1746346061.022018,20,2,10
1746346073.4898546,20,1,5
1746346073.9330382,20,1,5
1746346341.8517168,20,1,5
1746346342.358381,20,1,5
1746346344.3047357,20,2,10
1746346345.4904182,20,2,10
1746346356.4278336,20,1,5
1746346356.51507,20,1,5
1746346672.5785272,20,1,5
1746346673.3307142,20,1,5
1746346675.4357471,20,2,10
1746346676.9427505,20,2,10
1746346690.9481528,20,1,5
1746346691.091645,20,1,5
1746347008.8076606,20,1,5
1746347009.441265,20,1,5
1746347011.6394148,20,2,10
1746347013.0711744,20,2,10
1746347026.2529008,20,1,5
1746347026.3636055,20,1,5
1746348359.2874875,20,1,5
1746348359.9451113,20,1,5
1746348361.718225,20,2,10
1746348363.0192733,20,2,10
1746348375.124684,20,1,5
1746348375.34554,20,1,5
1746351477.276143,20,1,5
1746351478.0733302,20,1,5
1746351480.2752278,20,2,10
1746351481.5455446,20,2,10
1746351492.736287,20,1,5
1746351492.8392084,20,1,5
1746353891.9414465,20,1,5
1746353892.5275562,20,1,5
1746353894.4533725,20,2,10
1746353895.7519011,20,2,10
1746353908.3569317,20,1,5
1746353908.4634552,20,1,5
1746354245.8959842,20,1,5
1746354246.4644856,20,1,5
1746354248.4440584,20,2,10
1746354249.8122878,20,2,10
1746354262.6916847,20,1,5
1746354262.8151789,20,1,5
1746354507.0914204,20,1,5
1746354507.6971018,20,1,5
1746354509.481734,20,2,10
1746354510.9727685,20,2,10
1746354523.838277,20,1,5
1746354524.069759,20,1,5
1746354772.9013455,20,1,5
1746354773.557613,20,1,5
1746354775.4405718,20,2,10
1746354776.8762448,20,2,10
1746354789.6469128,20,1,5
1746354789.7664003,20,1,5
1746355775.2276418,20,1,5
1746355775.7709627,20,1,5
1746355777.5588634,20,2,10
1746355778.8776834,20,2,10
1746355789.761652,20,1,5
1746355789.9561927,20,1,5
1746356133.3598135,20,1,5
1746356134.2139423,20,1,5
1746356136.2472498,20,2,10
1746356137.6827893,20,2,10
1746356151.7061427,20,1,5
1746356151.8251784,20,1,5
1746356483.0633492,20,1,5
1746356483.686974,20,1,5
1746356485.5042868,20,2,10
1746356486.9864247,20,2,10
1746356499.7239974,20,1,5
1746356499.8422,20,1,5
1746356846.4324548,20,1,5
1746356848.1762028,20,1,5
1746356850.1658454,20,2,10
1746356851.0564485,20,2,10
1746356862.4390101,20,1,5
1746356862.684386,20,1,5
1746356869.848526,20,1,5
1746356875.8572764,20,1,5
1746356883.335243,20,0,0
1746356893.3491116,20,0,0
1746359544.1469479,20,0,0
1746359544.661326,20,0,0
1746359546.4280918,20,1,5
1746359553.9713397,20,1,5
1746362695.9017873,20,1,5
1746362696.5292964,20,1,5
1746362698.5647714,20,2,10
1746362699.9921958,20,2,10
1746362714.1231024,20,1,5
1746362714.2623596,20,1,5
1746362993.5937388,20,1,5
1746362994.2780693,20,1,5
1746362996.3787324,20,2,10
1746362997.7555392,20,2,10
1746363011.8909,20,1,5
1746363011.9999833,20,1,5
1746364559.776702,20,1,5
1746364560.394191,20,1,5
1746364563.7719367,20,2,10
1746364565.1709201,20,2,10
1746364578.019339,20,1,5
1746364578.317528,20,1,5
1746366895.6556847,20,1,5
1746366896.3634958,20,1,5
1746366898.4077237,20,2,10
1746366900.0556042,20,2,10
1746366915.5140455,20,1,5
1746366915.6597526,20,1,5
1746368708.3479984,20,1,5
1746368709.2282286,20,1,5
1746368711.2698448,20,2,10
1746368712.6605606,20,2,10
1746368725.3646722,20,1,5
1746368725.4729664,20,1,5
1746370802.322673,20,1,5
1746370803.2231712,20,1,5
1746370805.2849464,20,2,10
1746370806.7864118,20,2,10
1746370821.9354465,20,1,5
1746370822.0465465,20,1,5
1746371223.018938,20,1,5
1746371223.5714195,20,1,5
1746371225.359481,20,2,10
1746371226.6443229,20,2,10
1746371239.2254345,20,1,5
1746371239.3302898,20,1,5
1746371577.2731874,20,1,5
1746371577.9895358,20,1,5
1746371579.8369274,20,2,10
1746371581.4002657,20,2,10
1746371595.284243,20,1,5
1746371595.402773,20,1,5
1746371907.417058,20,1,5
1746371908.4583218,20,1,5
1746371910.4422665,20,2,10
1746371912.1074548,20,2,10
1746371926.630389,20,1,5
1746371926.7584162,20,1,5
1746372375.466112,20,1,5
1746372376.297028,20,1,5
1746372378.4284277,20,2,10
1746372379.9011507,20,2,10
1746372392.9665813,20,1,5
1746372393.0989943,20,1,5
1746372739.5622334,20,1,5
1746372740.2910593,20,1,5
1746372742.440099,20,2,10
1746372743.8594294,20,2,10
1746372756.7560837,20,1,5
1746372756.8712404,20,1,5
1746373082.520416,20,1,5
1746373083.3328865,20,1,5
1746373085.5070324,20,2,10
1746373087.0685294,20,2,10
1746373101.3682415,20,1,5
1746373101.4960968,20,1,5
1746374464.369321,20,1,5
1746374465.3255787,20,1,5
1746374467.5754344,20,2,10
1746374469.1167393,20,2,10
1746374483.7352574,20,1,5
1746374483.8777795,20,1,5
1746376722.7283218,20,1,5
1746376723.4071596,20,1,5
1746376725.5638921,20,2,10
1746376727.1157808,20,2,10
1746376742.0267184,20,1,5
1746376742.1470406,20,1,5
1746377626.3907762,20,1,5
1746377627.3571665,20,1,5
1746377629.5181227,20,2,10
1746377631.0341434,20,2,10
1746377645.1483302,20,1,5
1746377645.2731733,20,1,5
1746378062.2246635,20,1,5
1746378062.8037925,20,1,5
1746378064.6399155,20,2,10
1746378065.9938366,20,2,10
1746378079.2641115,20,1,5
1746378079.5665133,20,1,5
1746378501.8070602,20,1,5
1746378502.4952672,20,1,5
1746378504.5435271,20,2,10
1746378506.0003371,20,2,10
1746378520.2451587,20,1,5
1746378520.3925016,20,1,5
1746381203.63839,20,1,5
1746381204.4045868,20,1,5
1746381206.5406532,20,2,10
1746381208.0839152,20,2,10
1746381222.6584861,20,1,5
1746381222.7767382,20,1,5
1746381575.4129415,20,1,5
1746381577.3787193,20,1,5
1746381580.5457149,20,2,10
1746381581.8884246,20,2,10
1746381596.7778914,20,1,5
1746381597.1503606,20,1,5
1746381608.7442534,20,1,5
1746381615.2227404,20,1,5
1746381624.8921633,20,0,0
1746381637.3580728,20,0,0
1746385155.7766137,20,0,0
1746385156.4141154,20,0,0
1746385158.7610943,20,1,5
1746385168.4811194,20,1,5
1746388699.529868,20,1,5
1746388700.3086812,20,1,5
1746388702.7400637,20,2,10
1746388704.202621,20,2,10
1746388718.6840272,20,1,5
1746388718.8049078,20,1,5
1746389150.2086315,20,1,5
1746389150.7689784,20,1,5
1746389152.6323721,20,2,10
1746389153.942564,20,2,10
1746389167.1201835,20,1,5
1746389167.2171826,20,1,5
1746389621.4359589,20,1,5
1746389622.2626798,20,1,5
1746389624.5553079,20,2,10
1746389626.050766,20,2,10
1746389640.2956119,20,1,5
1746389640.410272,20,1,5
1746390472.625333,20,1,5
1746390473.2555523,20,1,5
1746390475.5031753,20,2,10
1746390476.9274163,20,2,10
1746390490.6651328,20,1,5
1746390490.922644,20,1,5
1746390952.6230783,20,1,5
1746390953.285405,20,1,5
1746390955.448565,20,2,10
1746390956.8576114,20,2,10
1746390970.7641754,20,1,5
1746390970.895416,20,1,5
1746391400.2936199,20,1,5
1746391400.960612,20,1,5
1746391402.8013282,20,2,10
1746391404.2484152,20,2,10
1746391419.4414165,20,1,5
1746391419.6228719,20,1,5
1746391880.2807586,20,1,5
1746391880.9455705,20,1,5
1746391882.7619164,20,2,10
1746391884.0625665,20,2,10
1746391897.4482865,20,1,5
1746391897.5573108,20,1,5
1746392300.3797197,20,1,5
1746392301.2576246,20,1,5
1746392303.506848,20,2,10
1746392305.1584046,20,2,10
1746392320.6637754,20,1,5
1746392320.907209,20,1,5
1746394824.567402,20,1,5
1746394825.3017817,20,1,5
1746394827.547508,20,2,10
1746394829.067303,20,2,10
1746394843.8321326,20,1,5
1746394844.0729125,20,1,5
1746395193.429388,20,1,5
1746395194.2506506,20,1,5
1746395196.3157842,20,2,10
1746395197.6304798,20,2,10
1746395211.1966207,20,1,5
1746395211.301028,20,1,5
1746398230.3636017,20,1,5
1746398231.1988754,20,1,5
1746398233.2635572,20,2,10
1746398234.5084326,20,2,10
1746398247.575926,20,1,5
1746398247.6987567,20,1,5
1746399561.8677874,20,1,5
1746399562.4234302,20,1,5
1746399564.4446967,20,2,10
1746399565.7376766,20,2,10
1746399579.5255377,20,1,5
1746399579.6702993,20,1,5
1746400087.545406,20,1,5
1746400088.318669,20,1,5
1746400090.4695685,20,2,10
1746400091.935248,20,2,10
1746400105.4875581,20,1,5
1746400105.609455,20,1,5
1746400616.772581,20,1,5
1746400617.3707778,20,1,5
1746400619.4049585,20,2,10
1746400620.8336427,20,2,10
1746400634.914918,20,1,5
1746400635.0447638,20,1,5
1746402166.2530959,20,1,5
1746402166.8447216,20,1,5
1746402168.6913323,20,2,10
1746402170.049905,20,2,10
1746402182.4833863,20,1,5
1746402182.591388,20,1,5
1746402559.477485,20,1,5
1746402560.324122,20,1,5
1746402562.5167427,20,2,10
1746402564.1333292,20,2,10
1746402579.950855,20,1,5
1746402580.21014,20,1,5
1746403371.1767042,20,1,5
1746403371.904974,20,1,5
1746403373.8611703,20,2,10
1746403375.4656467,20,2,10
1746403390.7004733,20,1,5
1746403390.9266667,20,1,5
1746403844.446558,20,1,5
1746403845.3184934,20,1,5
1746403847.5314422,20,2,10
1746403849.1079252,20,2,10
1746403864.6662197,20,1,5
1746403864.8040674,20,1,5
1746404210.68687,20,1,5
1746404211.2098768,20,1,5
1746404213.223102,20,2,10
1746404214.325562,20,2,10
1746404227.3292644,20,1,5
1746404227.6705198,20,1,5
1746404237.272215,20,1,5
1746404243.616194,20,1,5
1746404252.750424,20,0,0
1746404265.179064,20,0,0
1746406505.5539114,20,0,0
1746406506.123383,20,0,0
1746406508.2975764,20,1,5
1746406517.4121509,20,1,5
1746408370.145192,20,1,5
1746408370.7164843,20,1,5
1746408372.6849148,20,2,10
1746408374.0744343,20,2,10
1746408387.3013256,20,1,5
1746408387.404842,20,1,5
1746410460.0181487,20,1,5
1746410460.6011176,20,1,5
1746410463.7384138,20,2,10
1746410465.1013267,20,2,10
1746410478.8344612,20,1,5
1746410478.9765744,20,1,5
1746411036.2753685,20,1,5
1746411036.876819,20,1,5
1746411038.729531,20,2,10
1746411040.2242334,20,2,10
1746411053.4352598,20,1,5
1746411053.8927388,20,1,5
1746417757.6747563,20,1,5
1746417758.3357112,20,1,5
1746417760.7544162,20,2,10
1746417762.1506956,20,2,10
1746417775.4827735,20,1,5
1746417775.8985507,20,1,5
1746420256.105833,20,1,5
1746420256.74543,20,1,5
1746420258.6400626,20,2,10
1746420260.1298075,20,2,10
1746420273.8513885,20,1,5
1746420274.1068327,20,1,5
1746423312.6054432,20,1,5
1746423313.4011705,20,1,5
1746423315.5986693,20,2,10
1746423317.1133304,20,2,10
1746423329.6825364,20,1,5
1746423329.791111,20,1,5
1746423718.7408736,20,1,5
1746423719.3101957,20,1,5
1746423721.4446383,20,2,10
1746423722.6735,20,2,10
1746423736.4239938,20,1,5
1746423736.535104,20,1,5
1746430760.8257325,20,1,5
1746430761.6647127,20,1,5
1746430763.5751488,20,2,10
1746430765.236406,20,2,10
1746430780.425909,20,1,5
1746430780.5734134,20,1,5
1746431599.043543,20,1,5
1746431599.7117057,20,1,5
1746431601.4972486,20,2,10
1746431603.0183158,20,2,10
1746431616.581026,20,1,5
1746431616.6983962,20,1,5
1746434048.4930947,20,1,5
1746434049.1555436,20,1,5
1746434051.0553093,20,2,10
1746434052.0484786,20,2,10
1746434063.8543475,20,1,5
1746434063.9573538,20,1,5
1746436473.579033,20,1,5
1746436474.2686377,20,1,5
1746436476.5910723,20,2,10
1746436477.9759378,20,2,10
1746436492.2838216,20,1,5
1746436492.9433212,20,1,5
1746440125.646919,20,1,5
1746440126.3895943,20,1,5
1746440128.3835566,20,2,10
1746440129.9922388,20,2,10
1746440145.7770936,20,1,5
1746440145.907707,20,1,5
1746441423.5044374,20,1,5
1746441424.3052692,20,1,5
1746441426.276545,20,2,10
1746441427.520616,20,2,10
1746441441.3994522,20,1,5
1746441441.5197499,20,1,5
1746442222.9739323,20,1,5
1746442223.6483288,20,1,5
1746442225.4637218,20,2,10
1746442227.1132915,20,2,10
1746442242.97242,20,1,5
1746442243.1271546,20,1,5
1746443614.1828415,20,1,5
1746443614.77197,20,1,5
1746443616.4656153,20,2,10
1746443617.8294222,20,2,10
1746443632.1806386,20,1,5
1746443632.313235,20,1,5
1746446711.8179848,20,1,5
1746446712.3661215,20,1,5
1746446715.2799125,20,2,10
1746446716.3418918,20,2,10
1746446728.899072,20,1,5
1746446729.0055566,20,1,5
1746448776.7558026,20,1,5
1746448777.2439516,20,1,5
1746448779.1292424,20,2,10
1746448780.2032652,20,2,10
1746448792.5614822,20,1,5
1746448792.656169,20,1,5
1746452631.1627607,20,1,5
1746452631.786683,20,1,5
1746452633.485915,20,2,10
1746452634.8596306,20,2,10
1746452651.4399526,20,1,5
1746452651.5589182,20,1,5
1746453443.795875,20,1,5
1746453444.417708,20,1,5
1746453446.3291163,20,2,10
1746453447.595832,20,2,10
1746453461.9327798,20,1,5
1746453462.2876742,20,1,5
1746453472.0253708,20,1,5
1746453485.418126,20,1,5
1746453491.6546125,20,1,5
1746453500.6651316,20,0,0
1746453511.46303,20,0,0
1746457945.884406,20,0,0
1746457946.4085371,20,0,0
1746457948.4078,20,1,5
1746457956.868118,20,1,5
1746463830.464258,20,1,5
1746463831.2433877,20,1,5
1746463833.3297293,20,2,10
1746463834.6593013,20,2,10
1746463847.7316172,20,1,5
1746463847.964549,20,1,5
1746464387.185819,20,1,5
1746464387.7837226,20,1,5
1746464389.4800704,20,2,10
1746464390.8729696,20,2,10
1746464405.4430325,20,1,5
1746464405.872665,20,1,5
1746464721.691258,20,1,5
1746464722.1752236,20,1,5
1746464723.9623945,20,2,10
1746464725.0314105,20,2,10
1746464736.4433427,20,1,5
1746464737.872671,20,1,5
1746465070.2362537,20,1,5
1746465070.8013747,20,1,5
1746465072.4609485,20,2,10
1746465073.7288392,20,2,10
1746465088.1936111,20,1,5
1746465088.317559,20,1,5
1746465473.773508,20,1,5
1746465474.3322427,20,1,5
1746465476.273306,20,2,10
1746465477.526934,20,2,10
1746465490.9629505,20,1,5
1746465491.0757747,20,1,5
1746466775.3586993,20,1,5
1746466776.1450293,20,1,5
1746466777.7667887,20,2,10
1746466778.917453,20,2,10
1746466791.6302688,20,1,5
1746466791.7569335,20,1,5
1746467147.9838748,20,1,5
1746467148.6043441,20,1,5
1746467150.3420289,20,2,10
1746467151.7231617,20,2,10
1746467166.2607648,20,1,5
1746467166.3915763,20,1,5
1746467524.1458611,20,1,5
1746467524.7132432,20,1,5
1746467526.3596385,20,2,10
1746467527.6166806,20,2,10
1746467540.9427962,20,1,5
1746467541.0550733,20,1,5
1746469464.2728527,20,1,5
1746469465.0308158,20,1,5
1746469466.771952,20,2,10
1746469468.1420634,20,2,10
1746469483.0175362,20,1,5
1746469483.1614683,20,1,5
1746472113.83179,20,1,5
1746472114.5541003,20,1,5
1746472116.4238238,20,2,10
1746472118.2575006,20,2,10
1746472132.8999188,20,1,5
1746472133.142045,20,1,5
1746472721.9686449,20,1,5
1746472722.5858157,20,1,5
1746472724.3811982,20,2,10
1746472725.8445122,20,2,10
1746472741.882692,20,1,5
1746472742.0460477,20,1,5
1746475135.9838703,20,1,5
1746475136.6592631,20,1,5
1746475138.4532976,20,2,10
1746475139.9943242,20,2,10
1746475156.1017964,20,1,5
1746475156.2609873,20,1,5
1746475719.0437145,20,1,5
1746475719.6655147,20,1,5
1746475721.6236153,20,2,10
1746475723.0857801,20,2,10
1746475738.8196955,20,1,5
1746475738.9548182,20,1,5
1746480130.9274907,20,1,5
1746480131.5767615,20,1,5
1746480133.377399,20,2,10
1746480134.7338083,20,2,10
1746480148.7791672,20,1,5
1746480148.886448,20,1,5
1746484315.591586,20,1,5
1746484316.2604303,20,1,5
1746484318.3779862,20,2,10
1746484319.745156,20,2,10
1746484334.1329894,20,1,5
1746484334.2779691,20,1,5
1746484714.7932773,20,1,5
1746484715.4124246,20,1,5
1746484717.3783715,20,2,10
1746484718.8561256,20,2,10
1746484734.6282647,20,1,5
1746484734.7506883,20,1,5
1746486156.5876274,20,1,5
1746486157.2552238,20,1,5
1746486159.276667,20,2,10
1746486160.5963485,20,2,10
1746486173.4364054,20,1,5
1746486173.8644593,20,1,5
1746486525.68569,20,1,5
1746486526.2588675,20,1,5
1746486528.292703,20,2,10
1746486529.6170862,20,2,10
1746486544.6390615,20,1,5
1746486544.7685838,20,1,5
1746488670.781274,20,1,5
1746488671.4314773,20,1,5
1746488673.3953695,20,2,10
1746488674.8839695,20,2,10
1746488691.1095235,20,1,5
1746488691.4213219,20,1,5
1746488702.6037736,20,1,5
1746488709.0819645,20,1,5
1746488719.6907325,20,0,0
1746488732.608393,20,0,0
1746489123.0536554,20,0,0
1746489123.5580785,20,0,0
1746489125.3809128,20,1,5
1746489134.8878522,20,1,5
1746490119.3994467,20,1,5
1746490120.1790721,20,1,5
1746490121.9983454,20,2,10
1746490123.2956328,20,2,10
1746490137.602063,20,1,5
1746490137.8933973,20,1,5
1746492133.3738232,20,1,5
1746492134.2032697,20,1,5
1746492136.2522428,20,2,10
1746492137.589342,20,2,10
1746492152.7314456,20,1,5
1746492152.837922,20,1,5
1746492507.43166,20,1,5
1746492508.1955214,20,1,5
1746492510.1115766,20,2,10
1746492511.4564903,20,2,10
1746492526.680806,20,1,5
1746492526.9013672,20,1,5
1746493472.258125,20,1,5
1746493472.8227496,20,1,5
1746493474.4619122,20,2,10
1746493475.657246,20,2,10
1746493489.4512372,20,1,5
1746493489.5720458,20,1,5
1746494234.210446,20,1,5
1746494234.7314024,20,1,5
1746494236.4295745,20,2,10
1746494237.680819,20,2,10
1746494251.4786894,20,1,5
1746494251.860086,20,1,5
1746495195.5776703,20,1,5
1746495196.262788,20,1,5
1746495198.3216789,20,2,10
1746495199.670175,20,2,10
1746495215.098895,20,1,5
1746495215.227875,20,1,5
1746495661.9763143,20,1,5
1746495662.5291631,20,1,5
1746495664.3095381,20,2,10
1746495665.5368824,20,2,10
1746495678.3629282,20,1,5
1746495678.799035,20,1,5
1746496189.6032813,20,1,5
1746496190.1912358,20,1,5
1746496191.8805819,20,2,10
1746496193.0975063,20,2,10
1746496206.6987772,20,1,5
1746496206.796352,20,1,5
1746496830.8831656,20,1,5
1746496831.4602842,20,1,5
1746496833.286456,20,2,10
1746496834.5941982,20,2,10
1746496849.9064827,20,1,5
1746496850.137128,20,1,5
1746497461.8810859,20,1,5
1746497462.498275,20,1,5
1746497464.342159,20,2,10
1746497465.7982364,20,2,10
1746497480.2039297,20,1,5
1746497480.4385872,20,1,5
1746498153.5760202,20,1,5
1746498154.1080446,20,1,5
1746498155.8313575,20,2,10
1746498157.1111352,20,2,10
1746498171.0820427,20,1,5
1746498171.1881843,20,1,5
1746498851.5045803,20,1,5
1746498852.2124424,20,1,5
1746498853.9465675,20,2,10
1746498855.2835763,20,2,10
1746498870.068356,20,1,5
1746498870.1976266,20,1,5
1746504461.1365774,20,1,5
1746504461.7019114,20,1,5
1746504463.4145103,20,2,10
1746504464.655072,20,2,10
1746504477.2266188,20,1,5
1746504477.4462788,20,1,5
1746510746.811082,20,1,5
1746510747.4727376,20,1,5
1746510749.4206412,20,2,10
1746510750.8068254,20,2,10
1746510765.3689091,20,1,5
1746510765.8064966,20,1,5
1746511283.6492777,20,1,5
1746511284.2399065,20,1,5
1746511286.278385,20,2,10
1746511287.612435,20,2,10
1746511301.9789937,20,1,5
1746511302.0912166,20,1,5
1746515262.77929,20,1,5
1746515263.3422353,20,1,5
1746515265.3203351,20,2,10
1746515266.5374644,20,2,10
1746515280.7273285,20,1,5
1746515280.8438942,20,1,5
1746515807.4589984,20,1,5
1746515808.161978,20,1,5
1746515809.9002805,20,2,10
1746515811.176746,20,2,10
1746515825.068575,20,1,5
1746515825.1774085,20,1,5
1746516892.2181022,20,1,5
1746516892.850639,20,1,5
1746516894.5781574,20,2,10
1746516896.060447,20,2,10
1746516911.4499013,20,1,5
1746516911.8617167,20,1,5
1746519227.645815,20,1,5
1746519228.3203611,20,1,5
1746519230.3537924,20,2,10
1746519231.692497,20,2,10
1746519246.580454,20,1,5
1746519247.0429776,20,1,5
1746519258.0466938,20,1,5
1746519273.1102502,20,1,5
1746519287.8733869,20,1,5
1746519294.1909122,20,1,5
1746519306.3746774,20,0,0
1746519319.305719,20,0,0
1746519917.7204835,20,0,0
1746519918.162103,20,0,0
1746519919.8886113,20,1,5
1746519928.2994912,20,1,5
1746520456.7341647,20,1,5
1746520457.37887,20,1,5
1746520459.3157601,20,2,10
1746520460.7194445,20,2,10
1746520476.7451692,20,1,5
1746520476.8788195,20,1,5
1746523142.955126,20,1,5
1746523143.5476756,20,1,5
1746523145.3881128,20,2,10
1746523146.8670974,20,2,10
1746523163.027044,20,1,5
1746523163.1322093,20,1,5
1746523733.0230713,20,1,5
1746523733.6327968,20,1,5
1746523735.3153827,20,2,10
1746523736.5351443,20,2,10
1746523751.0599096,20,1,5
1746523751.1825833,20,1,5
1746524406.1401298,20,1,5
1746524406.7206457,20,1,5
1746524408.4452786,20,2,10
1746524409.8039112,20,2,10
1746524425.5879645,20,1,5
1746524425.706573,20,1,5
1746525371.3671165,20,1,5
1746525372.2523553,20,1,5
1746525374.3164499,20,2,10
1746525375.7729452,20,2,10
1746525391.987943,20,1,5
1746525392.1228595,20,1,5
1746527085.9814835,20,1,5
1746527086.4055436,20,1,5
1746527088.2696662,20,2,10
1746527089.3804936,20,2,10
1746527103.0674171,20,1,5
1746527103.1789095,20,1,5
1746527574.5532296,20,1,5
1746527575.3368022,20,1,5
1746527577.3574748,20,2,10
1746527578.8908575,20,2,10
1746527595.8928685,20,1,5
1746527596.0694933,20,1,5
1746528413.7966037,20,1,5
1746528414.39178,20,1,5
1746528416.3189828,20,2,10
1746528417.733436,20,2,10
1746528431.5869644,20,1,5
1746528431.912993,20,1,5
1746528934.1558304,20,1,5
1746528934.7119591,20,1,5
1746528936.4033039,20,2,10
1746528937.740127,20,2,10
1746528951.5065439,20,1,5
1746528951.9085042,20,1,5
1746530799.2298136,20,1,5
1746530799.8614118,20,1,5
1746530801.6111155,20,2,10
1746530802.9310365,20,2,10
1746530818.746434,20,1,5
1746530818.8856173,20,1,5
1746532148.650441,20,1,5
1746532149.2495017,20,1,5
1746532151.2673774,20,2,10
1746532152.571058,20,2,10
1746532168.6712365,20,1,5
1746532168.932599,20,1,5
1746533782.2559474,20,1,5
1746533782.8801756,20,1,5
1746533784.59246,20,2,10
1746533785.9367902,20,2,10
1746533800.3428164,20,1,5
1746533800.8341258,20,1,5
1746535901.6099656,20,1,5
1746535902.2219348,20,1,5
1746535904.1170921,20,2,10
1746535905.307881,20,2,10
1746535920.9667222,20,1,5
1746535921.076179,20,1,5
1746536823.5847065,20,1,5
1746536824.2024505,20,1,5
1746536826.007964,20,2,10
1746536827.1589553,20,2,10
1746536840.8737597,20,1,5
1746536840.9706023,20,1,5
1746537697.827459,20,1,5
1746537698.4436977,20,1,5
1746537700.3561544,20,2,10
1746537701.7799776,20,2,10
1746537716.8913617,20,1,5
1746537717.0020232,20,1,5
1746538640.6003535,20,1,5
1746538641.232078,20,1,5
1746538643.1735969,20,2,10
1746538644.4601774,20,2,10
1746538660.0434515,20,1,5
1746538660.1719532,20,1,5
1746539196.218389,20,1,5
1746539196.6807647,20,1,5
1746539198.3448668,20,2,10
1746539199.3115134,20,2,10
1746539214.2160583,20,1,5
1746539214.3302639,20,1,5
1746540824.1383412,20,1,5
1746540824.6761603,20,1,5
1746540826.5173535,20,2,10
1746540827.891687,20,2,10
1746540843.0378916,20,1,5
1746540843.15992,20,1,5
1746541640.2763693,20,1,5
1746541640.9652636,20,1,5
1746541642.809172,20,2,10
1746541644.1590323,20,2,10
1746541661.5525632,20,1,5
1746541661.8473797,20,1,5
1746541673.2924562,20,1,5
1746541690.0627325,20,1,5
1746541705.2046359,20,1,5
1746541720.5820982,20,1,5
1746541735.8016672,20,1,5
1746541750.6786475,20,1,5
1746541765.445288,20,1,5
1746541780.383463,20,1,5
1746541794.2240586,20,1,5
1746541807.9116697,20,1,5
1746541814.114822,20,1,5
1746541824.6826289,20,0,0
1746541835.8843803,20,0,0
1746543699.7171273,20,0,0
1746543700.2181292,20,0,0
1746543702.2860146,20,1,5
1746543711.9517696,20,1,5
1746544761.983068,20,1,5
1746544762.5447204,20,1,5
1746544764.3136823,20,2,10
1746544765.6196826,20,2,10
1746544780.0995035,20,1,5
1746544780.209669,20,1,5
1746547690.5203588,20,1,5
1746547691.2478611,20,1,5
1746547693.3177295,20,2,10
1746547694.6417224,20,2,10
1746547709.7893367,20,1,5
1746547709.920253,20,1,5
1746548121.9233124,20,1,5
1746548122.4621081,20,1,5
1746548124.3091154,20,2,10
1746548125.5342813,20,2,10
1746548139.788179,20,1,5
1746548139.900941,20,1,5
1746548524.1944506,20,1,5
1746548524.6908448,20,1,5
1746548526.241955,20,2,10
1746548527.0209243,20,2,10
1746548539.5389366,20,1,5
1746548539.6382072,20,1,5
1746549178.7412865,20,1,5
1746549179.349163,20,1,5
1746549181.3563979,20,2,10
1746549182.7124412,20,2,10
1746549198.25725,20,1,5
1746549198.8580382,20,1,5
1746552229.7463439,20,1,5
1746552230.3181274,20,1,5
1746552232.4106004,20,2,10
1746552233.7070396,20,2,10
1746552247.777616,20,1,5
1746552247.8973312,20,1,5
1746553476.0563128,20,1,5
1746553476.5969126,20,1,5
1746553478.3301718,20,2,10
1746553479.574929,20,2,10
1746553494.029305,20,1,5
1746553494.1441712,20,1,5
1746553943.4244401,20,1,5
1746553944.2458234,20,1,5
1746553946.3020082,20,2,10
1746553947.5795398,20,2,10
1746553961.8901792,20,1,5
1746553962.0992289,20,1,5
1746555592.5435226,20,1,5
1746555593.1920705,20,1,5
1746555594.8983295,20,2,10
1746555596.0153852,20,2,10
1746555609.4659212,20,1,5
1746555609.565031,20,1,5
1746560446.8678372,20,1,5
1746560447.560134,20,1,5
1746560449.4825594,20,2,10
1746560450.9699502,20,2,10
1746560467.4034007,20,1,5
1746560467.5448904,20,1,5
1746563320.2445722,20,1,5
1746563320.813783,20,1,5
1746563322.5515819,20,2,10
1746563323.8954666,20,2,10
1746563338.57294,20,1,5
1746563338.8922288,20,1,5
1746567961.376779,20,1,5
1746567962.2882638,20,1,5
1746567964.42751,20,2,10
1746567965.7381692,20,2,10
1746567981.1342976,20,1,5
1746567981.247534,20,1,5
1746569884.305457,20,1,5
1746569885.3159835,20,1,5
1746569887.3573713,20,2,10
1746569888.8271933,20,2,10
1746569905.5545962,20,1,5
1746569905.934736,20,1,5
1746570519.2721076,20,1,5
1746570519.8316529,20,1,5
1746570521.455852,20,2,10
1746570522.6220362,20,2,10
1746570536.2397726,20,1,5
1746570536.3415327,20,1,5
1746574013.6741197,20,1,5
1746574014.43344,20,1,5
1746574016.4774544,20,2,10
1746574018.0824745,20,2,10
1746574035.501493,20,1,5
1746574035.9419627,20,1,5
1746576035.275383,20,1,5
1746576036.0136724,20,1,5
1746576037.8095164,20,2,10
1746576039.4152575,20,2,10
1746576057.3345616,20,1,5
1746576057.5081007,20,1,5
1746578385.0956237,20,1,5
1746578385.764378,20,1,5
1746578387.6132362,20,2,10
1746578389.1703248,20,2,10
1746578406.378965,20,1,5
1746578406.5172591,20,1,5
1746579529.4469888,20,1,5
1746579530.3252065,20,1,5
1746579533.0713894,20,2,10
1746579534.6652305,20,2,10
1746579553.1860287,20,1,5
1746579553.3365803,20,1,5
1746581757.5216346,20,1,5
1746581758.325378,20,1,5
1746581760.375721,20,2,10
1746581761.7462137,20,2,10
1746581778.6680448,20,1,5
1746581778.9348276,20,1,5
1746581790.3656008,20,1,5
1746581796.7136312,20,1,5
1746581809.1364422,20,0,0
1746581821.399268,20,0,0
1746585392.1985464,20,0,0
1746585392.7317657,20,0,0
1746585394.5088348,20,1,5
1746585405.2432332,20,1,5
1746586411.921964,20,1,5
1746586412.4061694,20,1,5
1746586414.2354798,20,2,10
1746586415.3039732,20,2,10
1746586428.4085317,20,1,5
1746586428.5049293,20,1,5
1746590658.0839097,20,1,5
1746590658.6964214,20,1,5
1746590660.4465845,20,2,10
1746590661.7446783,20,2,10
1746590676.112603,20,1,5
1746590676.2369118,20,1,5
1746595535.8763156,20,1,5
1746595536.57939,20,1,5
1746595538.4812748,20,2,10
1746595540.0370548,20,2,10
1746595557.1352,20,1,5
1746595557.290596,20,1,5
1746598171.5274656,20,1,5
1746598172.3396583,20,1,5
1746598174.488742,20,2,10
1746598175.8453143,20,2,10
1746598191.083136,20,1,5
1746598191.19054,20,1,5
1746601510.8957603,20,1,5
1746601511.6125836,20,1,5
1746601513.4457667,20,2,10
1746601514.9717655,20,2,10
1746601532.6178787,20,1,5
1746601532.9158976,20,1,5
1746604884.358715,20,1,5
1746604885.2268224,20,1,5
1746604887.3251762,20,2,10
1746604888.6216674,20,2,10
1746604903.9524403,20,1,5
1746604904.073261,20,1,5
1746609782.5689032,20,1,5
1746609783.3962893,20,1,5
1746609785.7179067,20,2,10
1746609787.189967,20,2,10
1746609804.2343407,20,1,5
1746609804.3726733,20,1,5
1746613747.4887543,20,1,5
1746613748.4312835,20,1,5
1746613751.0065546,20,2,10
1746613752.512028,20,2,10
1746613769.8346326,20,1,5
1746613770.0174813,20,1,5
1746617340.0211775,20,1,5
1746617340.6173935,20,1,5
1746617342.4210718,20,2,10
1746617343.7447314,20,2,10
1746617358.95805,20,1,5
1746617359.1066723,20,1,5
1746619676.4811652,20,1,5
1746619677.299716,20,1,5
1746619679.3529222,20,2,10
1746619680.7435558,20,2,10
1746619697.4493961,20,1,5
1746619697.9510174,20,1,5
1746622912.7706826,20,1,5
1746622913.3464031,20,1,5
1746622915.3583643,20,2,10
1746622916.688378,20,2,10
1746622931.9294987,20,1,5
1746622932.0643795,20,1,5
1746624705.4061666,20,1,5
1746624706.1356516,20,1,5
1746624707.868024,20,2,10
1746624709.0254247,20,2,10
1746624722.776041,20,1,5
1746624722.9107015,20,1,5
1746625141.6780462,20,1,5
1746625142.2062716,20,1,5
1746625143.929156,20,2,10
1746625145.1178138,20,2,10
1746625158.9411812,20,1,5
1746625159.0715964,20,1,5
1746627685.5632265,20,1,5
1746627686.2065268,20,1,5
1746627688.088744,20,2,10
1746627689.2679436,20,2,10
1746627702.9745524,20,1,5
1746627703.3139162,20,1,5
1746630397.5827303,20,1,5
1746630398.1674974,20,1,5
1746630399.8381307,20,2,10
1746630400.8755352,20,2,10
1746630413.4455786,20,1,5
1746630413.8800688,20,1,5
1746631474.7907646,20,1,5
1746631475.3320174,20,1,5
1746631477.317518,20,2,10
1746631478.5319142,20,2,10
1746631493.1564207,20,1,5
1746631493.2801754,20,1,5
1746631988.3444693,20,1,5
1746631989.2563825,20,1,5
1746631991.3767338,20,2,10
1746631992.829517,20,2,10
1746632009.4827702,20,1,5
1746632009.6337974,20,1,5
1746634660.1850853,20,1,5
1746634660.776514,20,1,5
1746634662.4542263,20,2,10
1746634663.7807648,20,2,10
1746634678.416964,20,1,5
1746634678.5406888,20,1,5
1746638405.08009,20,1,5
1746638405.7362535,20,1,5
1746638407.5047526,20,2,10
1746638408.8011236,20,2,10
1746638423.5464284,20,1,5
1746638423.8087566,20,1,5
1746638435.2407706,20,1,5
1746638441.3583996,20,1,5
1746638450.9457853,20,0,0
1746638462.1686325,20,0,0
1746641555.8172934,20,0,0
1746641556.2929761,20,0,0
1746641558.2848678,20,1,5
1746641568.3093045,20,1,5
1746642017.6009223,20,1,5
1746642018.21428,20,1,5
1746642020.1373453,20,2,10
1746642021.428944,20,2,10
1746642036.4546542,20,1,5
1746642036.90219,20,1,5
1746645431.7718635,20,1,5
1746645432.361141,20,1,5
1746645434.3376498,20,2,10
1746645435.675619,20,2,10
1746645451.194317,20,1,5
1746645451.4189067,20,1,5
1746649138.8206408,20,1,5
1746649139.4273655,20,1,5
1746649141.471903,20,2,10
1746649142.8927622,20,2,10
1746649156.7296052,20,1,5
1746649156.9752853,20,1,5
1746652981.4395063,20,1,5
1746652983.3617406,20,1,5
1746652985.4456832,20,2,10
1746652986.8871856,20,2,10
1746653003.7937713,20,1,5
1746653003.9370334,20,1,5
1746655330.0947666,20,1,5
1746655330.5329282,20,1,5
1746655332.2190723,20,2,10
1746655333.2297354,20,2,10
1746655346.1556823,20,1,5
1746655346.2562468,20,1,5
1746659586.608735,20,1,5
1746659587.304347,20,1,5
1746659589.3917217,20,2,10
1746659590.761711,20,2,10
1746659606.4210958,20,1,5
1746659606.5573072,20,1,5
1746660479.222114,20,1,5
1746660479.7880585,20,1,5
1746660481.4979277,20,2,10
1746660482.7095942,20,2,10
1746660497.109243,20,1,5
1746660497.2285645,20,1,5
1746662002.0988812,20,1,5
1746662002.6834335,20,1,5
1746662004.4054236,20,2,10
1746662005.760165,20,2,10
1746662021.58785,20,1,5
1746662021.7090607,20,1,5
1746666156.6942532,20,1,5
1746666157.300291,20,1,5
1746666159.3994532,20,2,10
1746666160.6775355,20,2,10
1746666175.687103,20,1,5
1746666175.8072855,20,1,5
1746669448.6870255,20,1,5
1746669449.3644707,20,1,5
1746669451.358251,20,2,10
1746669452.875471,20,2,10
1746669470.1356854,20,1,5
1746669470.3792794,20,1,5
1746673639.5982165,20,1,5
1746673640.3668633,20,1,5
1746673642.4263308,20,2,10
1746673643.880669,20,2,10
1746673661.2300608,20,1,5
1746673661.92248,20,1,5
1746676954.7507477,20,1,5
1746676955.278465,20,1,5
1746676957.2772498,20,2,10
1746676958.5091972,20,2,10
1746676973.366868,20,1,5
1746676973.4881995,20,1,5
1746679309.7828574,20,1,5
1746679310.2514682,20,1,5
1746679312.3396318,20,2,10
1746679313.484589,20,2,10
1746679328.5286415,20,1,5
1746679328.648101,20,1,5
1746682729.5808647,20,1,5
1746682730.2592504,20,1,5
1746682732.3019812,20,2,10
1746682733.5684164,20,2,10
1746682748.5882988,20,1,5
1746682748.7220967,20,1,5
1746685970.8253968,20,1,5
1746685971.4731903,20,1,5
1746685973.5868719,20,2,10
1746685975.0529573,20,2,10
1746685992.277049,20,1,5
1746685992.4145286,20,1,5
1746688054.764523,20,1,5
1746688055.2980936,20,1,5
1746688057.3442738,20,2,10
1746688058.6089845,20,2,10
1746688073.7618284,20,1,5
1746688073.85526,20,1,5
1746689763.1807766,20,1,5
1746689763.9834816,20,1,5
1746689765.7312582,20,2,10
1746689767.216443,20,2,10
1746689785.0457976,20,1,5
1746689785.1932566,20,1,5
1746694925.660842,20,1,5
1746694926.4667537,20,1,5
1746694928.4154973,20,2,10
1746694929.8718023,20,2,10
1746694946.8357008,20,1,5
1746694946.9626663,20,1,5
1746699092.6504488,20,1,5
1746699093.350773,20,1,5
1746699095.408508,20,2,10
1746699096.7179573,20,2,10
1746699113.9678392,20,1,5
1746699114.3576417,20,1,5
1746699126.0002182,20,1,5
1746699132.3310475,20,1,5
1746699145.1572294,20,0,0
1746699158.5546656,20,0,0
1746704202.277037,20,0,0
1746704202.7372754,20,0,0
1746704204.3652122,20,1,5
1746704212.8695989,20,1,5
1746707746.6262383,20,1,5
1746707747.2366064,20,1,5
1746707749.321502,20,2,10
1746707750.6074145,20,2,10
1746707766.332379,20,1,5
1746707766.4531775,20,1,5
1746710847.2567408,20,1,5
1746710847.8840296,20,1,5
1746710849.6736798,20,2,10
1746710851.0899696,20,2,10
1746710871.1120515,20,1,5
1746710871.4055972,20,1,5
1746714769.7660875,20,1,5
1746714770.382531,20,1,5
1746714772.3112223,20,2,10
1746714773.6474335,20,2,10
1746714789.6845949,20,1,5
1746714789.8103633,20,1,5
1746718303.889708,20,1,5
1746718304.494677,20,1,5
1746718306.3768835,20,2,10
1746718307.798191,20,2,10
1746718323.5606866,20,1,5
1746718323.9057446,20,1,5
1746721862.0846138,20,1,5
1746721863.562246,20,1,5
1746721865.494627,20,2,10
1746721867.079309,20,2,10
1746721886.555823,20,1,5
1746721886.965319,20,1,5
1746728220.4511628,20,1,5
1746728221.4229007,20,1,5
1746728223.5532148,20,2,10
1746728225.162399,20,2,10
1746728244.6392388,20,1,5
1746728244.9345057,20,1,5
1746731668.7919652,20,1,5
1746731669.4877098,20,1,5
1746731672.4263535,20,2,10
1746731674.0268447,20,2,10
1746731693.0858748,20,1,5
1746731693.2407877,20,1,5
1746736456.5931053,20,1,5
1746736457.3289442,20,1,5
1746736459.3861678,20,2,10
1746736460.8338976,20,2,10
1746736476.663303,20,1,5
1746736476.9105988,20,1,5
1746737517.402574,20,1,5
1746737517.8526464,20,1,5
1746737519.5280862,20,2,10
1746737520.8265228,20,2,10
1746737538.1827528,20,1,5
1746737538.4268277,20,1,5
1746743753.030149,20,1,5
1746743753.8223588,20,1,5
1746743755.794606,20,2,10
1746743757.3955653,20,2,10
1746743776.9807239,20,1,5
1746743777.1343155,20,1,5
1746750971.9241562,20,1,5
1746750972.6146948,20,1,5
1746750974.4356816,20,2,10
1746750975.8904343,20,2,10
1746750993.552927,20,1,5
1746750993.779235,20,1,5
1746754708.1059613,20,1,5
1746754708.604773,20,1,5
1746754710.2813566,20,2,10
1746754711.4229136,20,2,10
1746754728.264336,20,1,5
1746754728.524314,20,1,5
1746759817.6461844,20,1,5
1746759818.388633,20,1,5
1746759820.3757377,20,2,10
1746759821.778527,20,2,10
1746759839.0985951,20,1,5
1746759839.359588,20,1,5
1746764302.4657145,20,1,5
1746764303.255604,20,1,5
1746764305.234839,20,2,10
1746764306.235452,20,2,10
1746764321.808888,20,1,5
1746764321.9053469,20,1,5
1746768954.6168547,20,1,5
1746768955.4073806,20,1,5
1746768957.4588943,20,2,10
1746768959.0960684,20,2,10
1746768976.8460605,20,1,5
1746768977.0859315,20,1,5
1746771305.381548,20,1,5
1746771306.3431668,20,1,5
1746771308.4442353,20,2,10
1746771310.0506735,20,2,10
1746771329.7674234,20,1,5
1746771330.006886,20,1,5
1746772485.3069565,20,1,5
1746772485.866709,20,1,5
1746772487.6272874,20,2,10
1746772489.1858914,20,2,10
1746772509.4269652,20,1,5
1746772509.5654428,20,1,5
1746777190.4300451,20,1,5
1746777191.0631382,20,1,5
1746777193.827994,20,2,10
1746777195.4241743,20,2,10
1746777216.2601535,20,1,5
1746777216.4017138,20,1,5
1746781749.6141276,20,1,5
1746781750.386456,20,1,5
1746781752.45385,20,2,10
1746781753.8045294,20,2,10
1746781772.6863062,20,1,5
1746781773.001696,20,1,5
Copy raw data to clipboard
Download »worker_usage.csv« as file
Skipped tabs:
Job-Infos
Copy raw data to clipboard
Download »export.html« as file
<!DOCTYPE html>
<html lang='en'>
<head>
<meta charset='UTF-8'>
<meta name='viewport' content='width=device-width, initial-scale=1.0'>
<title>Exported »s4122485/CSDDM_Ozone_HoeffdingTreeClassifier_ACCURACY-RUNTIME/1« from OmniOpt2-Share</title>
<script src='https://code.jquery.com/jquery-3.7.1.js'></script>
<script src='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/gridjs.production.min.js'></script>
<script src='https://cdn.jsdelivr.net/npm/plotly.js-dist@3.0.1/plotly.min.js'></script>
<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/theme/mermaid.css'>
<style>
#share_path {
color: black;
}
.debug_log_pre {
min-width: 300px;
}
body.dark-mode {
background-color: #1e1e1e; color: #fff;
}
.plot-container {
margin-bottom: 2rem;
}
.spinner {
border: 4px solid #f3f3f3;
border-top: 4px solid #3498db;
border-radius: 50%;
width: 40px;
height: 40px;
animation: spin 2s linear infinite;
margin: auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.tabs {
margin-bottom: 20px;
}
.tab-content {
display: none;
}
.tab-content.active {
display: block;
}
pre {
color: #00CC00 !important;
background-color: black !important;
font-family: monospace !important;
line-break: anywhere;
}
menu[role="tablist"] {
display: flex;
flex-wrap: wrap;
gap: 4px;
max-width: 100%;
max-height: 100px;
overflow: scroll;
}
menu[role="tablist"] button {
white-space: nowrap;
min-width: 100px;
}
.container {
max-width: 100% !important;
}
.gridjs-sort {
min-width: 1px !important;
}
td.gridjs-td {
overflow: clip;
}
.title-bar-text {
font-size: 22px;
display: block ruby;
}
.title-bar {
height: fit-content;
}
.window {
width: fit-content;
min-width: 100%;
}
.top_link {
display: inline-block;
padding: 5px 5px;
background-color: #007bff; /* Blau, kannst du anpassen */
color: white;
text-decoration: none;
font-size: 16px;
font-weight: bold;
border-radius: 6px;
border: 2px solid #0056b3;
text-align: center;
transition: all 0.3s ease-in-out;
}
.top_link:hover {
background-color: #0056b3;
border-color: #004494;
}
.top_link:active {
background-color: #003366;
border-color: #002244;
}
button {
color: black;
}
.share_folder_buttons {
width: fit-content;
}
button {
background: #fcfcfe;
border-color: #919b9c;
border-top-color: rgb(145, 155, 156);
border-bottom-color: rgb(145, 155, 156);
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c;
}
button {
padding-bottom: 2px;
margin-top: -2px;
background-color: #ece9d8;
position: relative;
z-index: 8;
margin-left: -3px;
margin-bottom: 1px;
}
.window {
min-width: 1100px;
}
[role="tab"] {
padding: 10px !important;
}
[role="tabpanel"] {
min-width: fit-content;
}
select {
border: 1px solid #7f9db9;
background-image: url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 -0.5 15 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e6eefc' d='M0 0h1'/%3E%3Cpath stroke='%23d1e0fd' d='M1 0h1M0 1h1m3 0h2M2 3h1M2 4h1'/%3E%3Cpath stroke='%23cad8f9' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23c4d3f7' d='M3 0h1M0 3h1M0 4h1'/%3E%3Cpath stroke='%23bfd0f8' d='M4 0h2M0 5h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 0h1M0 6h1'/%3E%3Cpath stroke='%23baccf4' d='M7 0h1m6 2h1m-1 5h1m-1 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M8 0h1M0 7h1M0 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M9 0h2M0 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 0h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 0h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 0h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 0h1'/%3E%3Cpath stroke='%23e1eafe' d='M1 1h1'/%3E%3Cpath stroke='%23dae6fe' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23d4e1fc' d='M3 1h1M1 3h1M1 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 1h1M1 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 1h1M4 2h2'/%3E%3Cpath stroke='%23cad9fd' d='M8 1h1M6 2h1M3 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M9 1h2'/%3E%3Cpath stroke='%23c5d6fc' d='M11 1h1M2 11h4'/%3E%3Cpath stroke='%23c2d3fc' d='M12 1h1m-2 1h1M1 11h1m0 1h2m-2 1h2'/%3E%3Cpath stroke='%23bccefa' d='M13 1h1m-1 1h1m-1 1h1m-1 1h1M3 15h4'/%3E%3Cpath stroke='%23b9c9f3' d='M14 1h1M3 16h4'/%3E%3Cpath stroke='%23d8e3fc' d='M2 2h1'/%3E%3Cpath stroke='%23d1defd' d='M3 2h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 2h1M4 3h3M4 4h3M3 6h1m1 0h2M1 7h1M1 8h1'/%3E%3Cpath stroke='%23c5d5fc' d='M8 2h1m-8 8h5'/%3E%3Cpath stroke='%23c5d3fc' d='M9 2h2'/%3E%3Cpath stroke='%23bed0fc' d='M12 2h1M8 3h1M8 4h1m-8 8h1m-1 1h1m0 1h1m1 0h3'/%3E%3Cpath stroke='%23cddbfc' d='M3 3h1M3 4h1M1 6h2'/%3E%3Cpath stroke='%23c8d5fb' d='M7 3h1M7 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M9 3h4M9 4h4M8 5h1M7 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 3h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23ceddfd' d='M2 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M4 5h4M1 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M9 5h2m1 0h2M1 14h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M8 6h2m2 0h2m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%234d6185' d='M4 6h1m5 0h1M3 7h3m3 0h3M4 8h3m1 0h3M5 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1m-1 1h1'/%3E%3Cpath stroke='%23cad8fd' d='M2 7h1M2 8h2'/%3E%3Cpath stroke='%23c1d3fb' d='M6 7h2M7 8h1M4 9h1'/%3E%3Cpath stroke='%23b6cefb' d='M8 7h1m2 1h1m-2 1h3m-2 1h2'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-6 6h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b4c8f6' d='M0 10h1'/%3E%3Cpath stroke='%23bdd3fb' d='M9 10h2m-4 4h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 10h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 10h1'/%3E%3Cpath stroke='%23b1c7f6' d='M0 11h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M8 11h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M9 11h4m-2 3h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 11h1m-3 4h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 11h1m-7 5h3'/%3E%3Cpath stroke='%23adc3f6' d='M0 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c2d5fc' d='M4 12h4m-4 1h4'/%3E%3Cpath stroke='%23b7d3fc' d='M9 12h2m-2 1h2m-3 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 12h1m-1 1h1'/%3E%3Cpath stroke='%23afcdfb' d='M12 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afcbfa' d='M13 12h1m-1 1h1'/%3E%3Cpath stroke='%23b2c8f4' d='M14 12h1m-1 1h1m-4 3h1'/%3E%3Cpath stroke='%23c1d2fb' d='M3 14h1'/%3E%3Cpath stroke='%23b6d1fb' d='M9 14h2'/%3E%3Cpath stroke='%23adc9f9' d='M13 14h1m-2 1h1'/%3E%3Cpath stroke='%23b1c6f3' d='M14 14h1m-3 2h1'/%3E%3Cpath stroke='%23abc1f4' d='M0 15h1'/%3E%3Cpath stroke='%23b7cbf9' d='M1 15h1'/%3E%3Cpath stroke='%23b9cefb' d='M2 15h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 15h1'/%3E%3Cpath stroke='%23b2cdfb' d='M9 15h2'/%3E%3Cpath stroke='%23aec8f7' d='M13 15h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 15h1m-2 1h1'/%3E%3Cpath stroke='%23dbe3f8' d='M0 16h1'/%3E%3Cpath stroke='%23b7c6f1' d='M1 16h1'/%3E%3Cpath stroke='%23b8c9f2' d='M2 16h1m4 0h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 16h1'/%3E%3C/svg%3E");
background-size: 15px;
font-size: 11px;
border: none;
background-color: #fff;
box-sizing: border-box;
height: 21px;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
position: relative;
padding: 5px 32px 32px 5px;
background-position: top 50% right 2px;
background-repeat: no-repeat;
border-radius: 0;
border: 1px solid black;
}
body {
font-variant: oldstyle-nums;
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
background-color: #fafafa;
text-shadow: 0 0.05em 0.1em rgba(0,0,0,0.2);
scroll-behavior: smooth;
text-wrap: balance;
text-rendering: optimizeLegibility;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
font-feature-settings: "ss02", "liga", "onum";
}
.marked_text {
background-color: yellow;
}
.time_picker_container {
font-variant: small-caps;
width: 100%;
}
.time_picker_container > input {
width: 50px;
}
#loader {
display: grid;
justify-content: center;
align-items: center;
height: 100%;
}
.no_linebreak {
line-break: auto;
}
.dark_code_bg {
background-color: #363636;
color: white;
}
.code_bg {
background-color: #C0C0C0;
}
#commands {
line-break: anywhere;
}
.color_red {
color: red;
}
.color_orange {
color: orange;
}
table > tbody > tr:nth-child(odd) {
background-color: #fafafa;
}
table > tbody > tr:nth-child(even) {
background-color: #ddd;
}
table {
border-collapse: collapse;
margin: 0 0;
min-width: 200px;
}
th {
background-color: #4eae46;
color: #ffffff;
text-align: left;
border: 0px;
}
.error_element {
background-color: #e57373;
border-radius: 10px;
padding: 4px;
display: none;
}
button {
background-color: #4eae46;
border: 1px solid #2A8387;
border-radius: 4px;
box-shadow: rgba(0, 0, 0, 0.12) 0 1px 1px;
cursor: pointer;
display: block;
line-height: 100%;
outline: 0;
padding: 11px 15px 12px;
text-align: center;
transition: box-shadow .05s ease-in-out, opacity .05s ease-in-out;
user-select: none;
-webkit-user-select: none;
touch-action: manipulation;
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
}
button:hover {
box-shadow: rgba(255, 255, 255, 0.3) 0 0 2px inset, rgba(0, 0, 0, 0.4) 0 1px 2px;
text-decoration: none;
transition-duration: .15s, .15s;
}
button:active {
box-shadow: rgba(0, 0, 0, 0.15) 0 2px 4px inset, rgba(0, 0, 0, 0.4) 0 1px 1px;
}
button:disabled {
cursor: not-allowed;
opacity: .6;
}
button:disabled:active {
pointer-events: none;
}
button:disabled:hover {
box-shadow: none;
}
.half_width_td {
vertical-align: baseline;
width: 50%;
}
#scads_bar {
width: 100%;
margin: 0;
padding: 0;
user-select: none;
user-drag: none;
-webkit-user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-select: none;
-ms-user-select: none;
display: -webkit-box;
}
.tab {
display: inline-block;
padding: 0px;
margin: 0px;
font-size: 16px;
font-weight: bold;
text-align: center;
border-radius: 25px;
text-decoration: none !important;
transition: background-color 0.3s, color 0.3s;
color: unset !important;
}
.tooltipster-base {
border: 1px solid black;
position: absolute;
border-radius: 8px;
padding: 2px;
color: white;
background-color: #61686f;
width: 70%;
min-width: 200px;
pointer-events: none;
}
td {
padding-top: 3px;
padding-bottom: 3px;
}
.left_side {
text-align: right;
}
.right_side {
text-align: left;
}
.spinner {
border: 8px solid rgba(0, 0, 0, 0.1);
border-left: 8px solid #3498db;
border-radius: 50%;
width: 50px;
height: 50px;
animation: spin 1s linear infinite;
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
#spinner-overlay {
-webkit-text-stroke: 1px black;
white !important;
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
display: flex;
justify-content: center;
align-items: center;
z-index: 9999;
}
#spinner-container {
text-align: center;
color: #fff;
display: contents;
}
#spinner-text {
font-size: 3vw;
margin-left: 10px;
}
a, a:visited, a:active, a:hover, a:link {
color: #007bff;
text-decoration: none;
}
.copy-container {
display: inline-block;
position: relative;
cursor: pointer;
margin-left: 10px;
color: blue;
}
.copy-container:hover {
text-decoration: underline;
}
.clipboard-icon {
position: absolute;
top: 5px;
right: 5px;
font-size: 1.5em;
}
#main_tab {
overflow: scroll;
width: max-content;
}
.ui-tabs .ui-tabs-nav li {
user-select: none;
}
.stacktrace_table {
background-color: black !important;
color: white !important;
}
#breadcrumb {
user-select: none;
}
#statusBar {
user-select: none;
}
.error_line {
background-color: red !important;
color: white !important;
}
.header_table {
border: 0px !important;
padding: 0px !important;
width: revert !important;
min-width: revert !important;
}
.img_auto_width {
max-width: revert !important;
}
#main_dir_or_plot_view {
display: inline-grid;
}
#refresh_button {
width: 300px;
}
._share_link {
color: black !important;
}
#footer_element {
height: 30px;
background-color: #f8f9fa;
padding: 0px;
text-align: center;
border-top: 1px solid #dee2e6;
width: 100%;
box-sizing: border-box;
position: fixed;
bottom: 0;
z-index: 2;
margin-left: -9px;
z-index: 99;
}
.switch {
position: relative;
display: inline-block;
width: 50px;
height: 26px;
}
.switch input {
opacity: 0;
width: 0;
height: 0;
}
.slider {
position: absolute;
cursor: pointer;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #ccc;
transition: .4s;
border-radius: 26px;
}
.slider:before {
position: absolute;
content: "";
height: 20px;
width: 20px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #444;
}
input:checked + .slider:before {
transform: translateX(24px);
}
.mode-text {
position: absolute;
top: 5px;
left: 65px;
font-size: 14px;
color: black;
transition: .4s;
width: 65px;
display: block;
font-size: 0.7rem;
text-align: center;
}
input:checked + .slider .mode-text {
content: "Dark Mode";
color: white;
}
#mainContent {
height: fit-content;
min-height: 100%;
}
li {
text-align: left;
}
#share_path {
margin-bottom: 20px;
margin-top: 20px;
}
#sortForm {
margin-bottom: 20px;
}
.share_folder_buttons {
margin-top: 10px;
margin-bottom: 10px;
}
.nav_tab_button {
margin: 10px;
}
.header_table {
margin: 10px;
}
.no_border {
border: unset !important;
}
.gui_table {
padding: 5px !important;
}
.gui_parameter_row {
}
.gui_parameter_row_cell {
border: unset !important;
}
.gui_param_table {
width: 95%;
margin: unset !important;
}
table td, table tr,
.parameterRow table {
padding: 2px !important;
}
.parameterRow table {
margin: 0px;
border: unset;
}
.parameterRow > td {
border: 0px !important;
}
.parameter_config_table td, .parameter_config_table tr, #config_table th, #config_table td, #hidden_config_table th, #hidden_config_table td {
border: 0px !important;
}
.green_text {
color: green;
}
.remove_parameter {
white-space: pre;
}
select {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
background-color: #fff;
color: #222;
padding: 5px 30px 5px 5px;
border: 1px solid #555;
border-radius: 5px;
cursor: pointer;
outline: none;
transition: all 0.3s ease;
background:
url("data:image/svg+xml;charset=UTF-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 10 6'%3E%3Cpath fill='%23888' d='M0 0l5 6 5-6z'/%3E%3C/svg%3E")
no-repeat right 10px center,
linear-gradient(180deg, #fff, #ecebe5 86%, #d8d0c4);
background-size: 12px, auto;
}
select:hover {
border-color: #888;
}
select:focus {
border-color: #4caf50;
box-shadow: 0 0 5px rgba(76, 175, 80, 0.5);
}
select::-ms-expand {
display: none;
}
input, textarea {
border-radius: 5px;
}
#search {
width: 200px;
max-width: 70%;
background-image: url(images/search.svg);
background-repeat: no-repeat;
background-size: auto 40px;
height: 40px;
line-height: 40px;
padding-left: 40px;
box-sizing: border-box;
}
input[type="checkbox"] {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
width: 25px;
height: 25px;
border: 2px solid #3498db;
border-radius: 5px;
background-color: #fff;
position: relative;
cursor: pointer;
transition: all 0.3s ease;
width: 25px !important;
}
input[type="checkbox"]:checked {
background-color: #3498db;
border-color: #2980b9;
}
input[type="checkbox"]:checked::before {
content: '✔';
position: absolute;
left: 4px;
top: 2px;
color: #fff;
}
input[type="checkbox"]:hover {
border-color: #2980b9;
background-color: #3caffc;
}
.toc {
margin-bottom: 20px;
}
.toc li {
margin-bottom: 5px;
}
.toc a {
text-decoration: none;
color: #007bff;
}
.toc a:hover {
text-decoration: underline;
}
.table-container {
width: 100%;
overflow-x: auto;
}
.section-header {
background-color: #1d6f9a !important;
color: white;
}
.warning {
color: red;
}
.li_list a {
text-decoration: none;
}
.gridjs-td {
white-space: nowrap;
}
th, td {
border: 1px solid gray !important;
}
.no_border {
border: 0px !important;
}
.no_break {
}
img {
user-select: none;
pointer-events: none;
}
#config_table, #hidden_config_table {
user-select: none;
}
.copy_clipboard_button {
margin-bottom: 10px;
}
.badge_table {
background-color: unset !important;
}
.make_markable {
user-select: text;
}
.header-container {
display: flex;
flex-wrap: wrap;
align-items: center;
justify-content: space-between;
gap: 1rem;
padding: 10px;
background: var(--header-bg, #fff);
border-bottom: 1px solid #ccc;
}
.header-logo-group {
display: flex;
gap: 1rem;
align-items: center;
flex: 1 1 auto;
min-width: 200px;
}
.logo-img {
max-height: 45px;
height: auto;
width: auto;
object-fit: contain;
pointer-events: unset;
}
.header-badges {
flex-direction: column;
gap: 5px;
align-items: flex-start;
flex: 0 1 auto;
margin-top: auto;
margin-bottom: auto;
}
.badge-img {
height: auto;
max-width: 130px;
margin-top: 3px;
}
.header-tabs {
margin-top: 10px;
display: flex;
flex-wrap: wrap;
gap: 10px;
flex: 2 1 100%;
justify-content: center;
}
.nav-tab {
display: inline-block;
text-decoration: none;
padding: 8px 16px;
border-radius: 20px;
background: linear-gradient(to right, #4a90e2, #357ABD);
color: white;
font-weight: bold;
white-space: nowrap;
transition: background 0.2s ease-in-out, transform 0.2s;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
}
.nav-tab:hover {
background: linear-gradient(to right, #5aa0f2, #4a90e2);
transform: translateY(-2px);
}
.current-tag {
padding-left: 10px;
font-size: 0.9rem;
color: #666;
}
.header-theme-toggle {
flex: 1 1 auto;
align-items: center;
margin-top: 20px;
min-width: 120px;
}
.switch {
position: relative;
display: inline-block;
width: 60px;
height: 30px;
}
.switch input {
display: none;
}
.slider {
position: absolute;
top: 0; left: 0; right: 0; bottom: 0;
background-color: #ccc;
border-radius: 34px;
cursor: pointer;
}
.slider::before {
content: "";
position: absolute;
height: 24px;
width: 24px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #2196F3;
}
input:checked + .slider::before {
transform: translateX(30px);
}
@media (max-width: 768px) {
.header-logo-group,
.header-badges,
.header-theme-toggle {
justify-content: center;
flex: 1 1 100%;
text-align: center;
width: inherit;
}
.logo-img {
max-height: 50px;
pointer-events: unset;
}
.badge-img {
max-width: 100px;
}
.hide_on_mobile {
display: none;
}
.nav-tab {
font-size: 0.9rem;
padding: 6px 12px;
}
.header_button {
white-space: pre;
font-size: 2em;
}
}
.header_button {
white-space: pre;
margin-top: 20px;
margin: 5px;
}
.line_break_anywhere {
line-break: anywhere;
}
.responsive-container {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
gap: 20px;
}
.responsive-container .half {
flex: 1 1 48%;
box-sizing: border-box;
min-width: 500px;
}
.config-section table {
width: 100%;
border-collapse: collapse;
}
@media (max-width: 768px) {
.responsive-container .half {
flex: 1 1 100%;
}
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
.rotate {
animation: spin 2s linear infinite;
display: inline-block;
}
input::placeholder {
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
}
.gridjs-th-content {
overflow: visible !important;
}
.error_text {
color: red;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1em;
font-weight: bold;
color: #333;
border-left: 5px solid #ccc;
padding-left: 0.5em;
}
.no_cursive {
font-style: normal;
}
.caveat {
background-color: #fff8b3;
border: 1px solid #f2d600;
padding: 1em 1em 1em 70px;
position: relative;
font-family: sans-serif;
color: #665500;
margin: 1em 0;
border-radius: 4px;
}
.caveat h1, .caveat h2, .caveat h3, .caveat h4 {
margin-top: 0;
margin-bottom: 0.5em;
font-weight: bold;
}
.caveat::before {
content: "⚠️";
font-size: 50px;
line-height: 1;
position: absolute;
left: 10px;
top: 50%;
transform: translateY(-50%);
pointer-events: none;
user-select: none;
}
.caveat.warning::before { content: "⚠️"; }
.caveat.stop::before { content: "🛑"; }
.caveat.exclamation::before { content: "❗"; }
.caveat.alarm::before { content: "🚨"; }
.caveat.tip::before { content: "💡"; }
.tutorial_icon {
display: inline-block;
font-size: 1.3em;
line-height: 1;
vertical-align: middle;
transform: translateY(-10%);
padding: 0.2em 0;
}
.highlight {
background-color: yellow;
font-weight: bold;
}
#searchResults li {
opacity: 0;
transform: translateY(8px);
animation: fadeInUp 0.3s ease-out forwards;
animation-delay: 0.05s;
list-style: none;
margin-bottom: 5px;
}
@keyframes fadeInUp {
to {
opacity: 1;
transform: translateY(0);
}
}
.search_headline {
font-weight: bold;
margin-top: 1em;
margin-bottom: 0.3em;
color: #444;
}
.search_share_path {
color: black;
display: block ruby;
margin-top: 20px;
}
@media print {
#scads_bar {
display: none !important;
}
}
/*! XP.css v0.2.6 - https: //botoxparty.github.io/XP.css/ */
body{
color: #222
}
.surface{
background: #ece9d8
}
u{
text-decoration: none;
border-bottom: .5px solid #222
}
a{
color: #00f
}
a: focus{
outline: 1px dotted #00f
}
code,code *{
font-family: monospace
}
pre{
display: block;
padding: 12px 8px;
background-color: #000;
color: silver;
font-size: 1rem;
margin: 0;
overflow: scroll;
}
summary: focus{
outline: 1px dotted #000
}
: :-webkit-scrollbar{
width: 16px
}
: :-webkit-scrollbar: horizontal{
height: 17px
}
: :-webkit-scrollbar-track{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='2' height='2' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 0H0v1h1v1h1V1H1V0z' fill='silver'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 0H1v1H0v1h1V1h1V0z' fill='%23fff'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-color: #dfdfdf;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
: :-webkit-scrollbar-button: horizontal: end: increment,: :-webkit-scrollbar-button: horizontal: start: decrement,: :-webkit-scrollbar-button: vertical: end: increment,: :-webkit-scrollbar-button: vertical: start: decrement{
display: block
}
: :-webkit-scrollbar-button: vertical: start{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 6H7v1H6v1H5v1H4v1h7V9h-1V8H9V7H8V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 6H4v1h1v1h1v1h1v1h1V9h1V8h1V7h1V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 4H8v1H7v1H6v1H5v1h1v1h1v1h1v1h1V4z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M7 4H6v7h1v-1h1V9h1V8h1V7H9V6H8V5H7V4z' fill='%23000'/%3E%3C/svg%3E")
}
button{
border: none;
background: #ece9d8;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf;
border-radius: 0;
min-width: 75px;
min-height: 23px;
padding: 0 12px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: inset -1px -1px #fff,inset 1px 1px #0a0a0a,inset -2px -2px #dfdfdf,inset 2px 2px grey
}
button.focused,button: focus{
outline: 1px dotted #000;
outline-offset: -4px
}
label{
display: inline-flex;
align-items: center
}
textarea{
padding: 3px 4px;
border: none;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0
}
textarea: focus{
outline: none
}
select: focus option{
color: #000;
background-color: #fff
}
.vertical-bar{
width: 4px;
height: 20px;
background: silver;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
&: disabled,&: disabled+label{
color: grey;
text-shadow: 1px 1px 0 #fff
}
input[type=radio]+label{
line-height: 13px;
position: relative;
margin-left: 19px
}
input[type=radio]+label: before{
content: "";
position: absolute;
top: 0;
left: -19px;
display: inline-block;
width: 13px;
height: 13px;
margin-right: 6px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='%23fff'/%3E%3C/svg%3E")
}
input[type=radio]: active+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio]: checked+label: after{
content: "";
display: block;
width: 5px;
height: 5px;
top: 5px;
left: -14px;
position: absolute;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=radio][disabled]+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='gray'/%3E%3C/svg%3E")
}
input[type=email],input[type=password]{
padding: 3px 4px;
border: 1px solid #7f9db9;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0;
height: 21px;
line-height: 2
}
input[type=email]: focus,input[type=password]: focus{
outline: none
}
input[type=range]{
-webkit-appearance: none;
width: 100%;
background: transparent
}
input[type=range]: focus{
outline: none
}
input[type=range]: :-webkit-slider-thumb{
-webkit-appearance: none;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-webkit-slider-runnable-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range]: :-moz-range-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
.is-vertical{
display: inline-block;
width: 4px;
height: 150px;
transform: translateY(50%)
}
.is-vertical>input[type=range]{
width: 150px;
height: 4px;
margin: 0 16px 0 10px;
transform-origin: left;
transform: rotate(270deg) translateX(calc(-50% + 8px))
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-webkit-slider-thumb{
transform: translateY(-8px) scaleX(-1)
}
.is-vertical>input[type=range]: :-moz-range-thumb{
transform: translateY(2px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-webkit-slider-thumb{
transform: translateY(-10px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-moz-range-thumb{
transform: translateY(0) scaleX(-1)
}
.window{
font-size: 11px;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #dfdfdf,inset -2px -2px grey,inset 2px 2px #fff;
background: #ece9d8;
padding: 3px
}
.window fieldset{
margin-bottom: 9px
}
.title-bar{
background: #000;
padding: 3px 2px 3px 3px;
display: flex;
justify-content: space-between;
align-items: center
}
.title-bar-text{
font-weight: 700;
color: #fff;
letter-spacing: 0;
margin-right: 24px
}
.title-bar-controls button{
padding: 0;
display: block;
min-width: 16px;
min-height: 14px
}
.title-bar-controls button: focus{
outline: none
}
.window-body{
margin: 8px
}
.window-body pre{
margin: -8px
}
.status-bar{
margin: 0 1px;
display: flex;
gap: 1px
}
.status-bar-field{
box-shadow: inset -1px -1px #dfdfdf,inset 1px 1px grey;
flex-grow: 1;
padding: 2px 3px;
margin: 0
}
ul.tree-view{
display: block;
background: #fff;
padding: 6px;
margin: 0
}
ul.tree-view li{
list-style-type: none;
margin-top: 3px
}
ul.tree-view a{
text-decoration: none;
color: #000
}
ul.tree-view a: focus{
background-color: #2267cb;
color: #fff
}
ul.tree-view ul{
margin-top: 3px;
margin-left: 16px;
padding-left: 16px;
border-left: 1px dotted grey
}
ul.tree-view ul>li{
position: relative
}
ul.tree-view ul>li: before{
content: "";
display: block;
position: absolute;
left: -16px;
top: 6px;
width: 12px;
border-bottom: 1px dotted grey
}
ul.tree-view ul>li: last-child: after{
content: "";
display: block;
position: absolute;
left: -20px;
top: 7px;
bottom: 0;
width: 8px;
background: #fff
}
ul.tree-view ul details>summary: before{
margin-left: -22px;
position: relative;
z-index: 1
}
ul.tree-view details{
margin-top: 0
}
ul.tree-view details>summary: before{
text-align: center;
display: block;
float: left;
content: "+";
border: 1px solid grey;
width: 8px;
height: 9px;
line-height: 9px;
margin-right: 5px;
padding-left: 1px;
background-color: #fff
}
ul.tree-view details[open] summary{
margin-bottom: 0
}
ul.tree-view details[open]>summary: before{
content: "-"
}
fieldset{
border-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='5' height='5' fill='gray' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h5v5H0V2h2v1h1V2H0' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h4v4H0V1h1v2h2V1H0'/%3E%3C/svg%3E") 2;
padding: 10px;
padding-block-start: 8px;
margin: 0
}
legend{
background: #ece9d8
}
menu[role=tablist]{
position: relative;
margin: 0 0 -2px;
text-indent: 0;
list-style-type: none;
display: flex;
padding-left: 3px
}
menu[role=tablist] button{
z-index: 1;
display: block;
color: #222;
text-decoration: none;
min-width: unset
}
menu[role=tablist] button[aria-selected=true]{
padding-bottom: 2px;margin-top: -2px;background-color: #ece9d8;position: relative;z-index: 8;margin-left: -3px;margin-bottom: 1px
}
menu[role=tablist] button: focus{
outline: 1px dotted #222;outline-offset: -4px
}
menu[role=tablist].justified button{
flex-grow: 1;text-align: center
}
[role=tabpanel]{
padding: 14px;clear: both;background: linear-gradient(180deg,#fcfcfe,#f4f3ee);border: 1px solid #919b9c;position: relative;z-index: 2;margin-bottom: 9px
}
: :-webkit-scrollbar{
width: 17px
}
: :-webkit-scrollbar-corner{
background: #dfdfdf
}
: :-webkit-scrollbar-track: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 1' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1'/%3E%3Cpath stroke='%23f3f1ec' d='M1 0h1'/%3E%3Cpath stroke='%23f4f1ec' d='M2 0h1'/%3E%3Cpath stroke='%23f4f3ee' d='M3 0h1'/%3E%3Cpath stroke='%23f5f4ef' d='M4 0h1'/%3E%3Cpath stroke='%23f6f5f0' d='M5 0h1'/%3E%3Cpath stroke='%23f7f7f3' d='M6 0h1'/%3E%3Cpath stroke='%23f9f8f4' d='M7 0h1'/%3E%3Cpath stroke='%23f9f9f7' d='M8 0h1'/%3E%3Cpath stroke='%23fbfbf8' d='M9 0h1'/%3E%3Cpath stroke='%23fbfbf9' d='M10 0h2'/%3E%3Cpath stroke='%23fdfdfa' d='M12 0h1'/%3E%3Cpath stroke='%23fefefb' d='M13 0h3'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-track: horizontal{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 1 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1M0 16h1'/%3E%3Cpath stroke='%23f3f1ec' d='M0 1h1'/%3E%3Cpath stroke='%23f4f1ec' d='M0 2h1'/%3E%3Cpath stroke='%23f4f3ee' d='M0 3h1'/%3E%3Cpath stroke='%23f5f4ef' d='M0 4h1'/%3E%3Cpath stroke='%23f6f5f0' d='M0 5h1'/%3E%3Cpath stroke='%23f7f7f3' d='M0 6h1'/%3E%3Cpath stroke='%23f9f8f4' d='M0 7h1'/%3E%3Cpath stroke='%23f9f9f7' d='M0 8h1'/%3E%3Cpath stroke='%23fbfbf8' d='M0 9h1'/%3E%3Cpath stroke='%23fbfbf9' d='M0 10h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 12h1'/%3E%3Cpath stroke='%23fefefb' d='M0 13h1m-1 1h1m-1 1h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-position: 50%;
background-repeat: no-repeat;
background-color: #c8d6fb;
background-size: 7px;
border: 1px solid #fff;
border-radius: 2px;
box-shadow: inset -3px 0 #bad1fc,inset 1px 1px #b7caf5
}
: :-webkit-scrollbar-thumb: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 7 8' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h6M0 2h6M0 4h6M0 6h6'/%3E%3Cpath stroke='%23bad1fc' d='M6 0h1M6 2h1M6 4h1'/%3E%3Cpath stroke='%23c8d6fb' d='M0 1h1M0 3h1M0 5h1M0 7h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h6M1 3h6M1 5h6M1 7h6'/%3E%3Cpath stroke='%23bad3fc' d='M6 6h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb: horizontal{
background-size: 8px;background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 8 7' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h1m1 0h1m1 0h1m1 0h1M0 1h1m1 0h1m1 0h1m1 0h1M0 2h1m1 0h1m1 0h1m1 0h1M0 3h1m1 0h1m1 0h1m1 0h1M0 4h1m1 0h1m1 0h1m1 0h1M0 5h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23c8d6fb' d='M1 0h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h1m1 0h1m1 0h1m1 0h1M1 2h1m1 0h1m1 0h1m1 0h1M1 3h1m1 0h1m1 0h1m1 0h1M1 4h1m1 0h1m1 0h1m1 0h1M1 5h1m1 0h1m1 0h1m1 0h1M1 6h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23bad1fc' d='M0 6h1m1 0h1'/%3E%3Cpath stroke='%23bad3fc' d='M4 6h1m1 0h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: start{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h1m1 0h1'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M5 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h1m3 0h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h2M3 8h2'/%3E%3Cpath stroke='%234d6185' d='M8 5h1M7 6h3M6 7h5M5 8h3m1 0h3M4 9h3m3 0h3m-8 1h1m5 0h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1m-2 1h1m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23cad8fd' d='M4 7h2'/%3E%3Cpath stroke='%23b6cefb' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23c1d3fb' d='M8 8h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M8 9h1m-1 1h1m-3 1h2'/%3E%3Cpath stroke='%23bdd3fb' d='M9 9h1m-2 3h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M7 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h1m1 0h1m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c1d5fb' d='M8 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M6 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h3'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1M8 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h3M3 8h2'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M9 6h2m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%234d6185' d='M5 6h1m5 0h1M4 7h3m3 0h3M5 8h3m1 0h3M6 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 7h2M8 8h1'/%3E%3Cpath stroke='%23b6cefb' d='M9 7h1m2 1h1m-2 1h2'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M6 11h2'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23bdd3fb' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1M1 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 4h1M5 5h2M4 7h1M2 8h1'/%3E%3Cpath stroke='%234d6185' d='M8 4h1M7 5h3M6 6h3M5 7h3M4 8h3M5 9h3m-2 1h3m-2 1h3m-2 1h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M2 11h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M9 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23c8d6fb' d='M5 6h1M2 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1M8 7h3m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 8h2'/%3E%3Cpath stroke='%23b6cefb' d='M9 8h3M9 9h4'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 1h1m-1 4h1'/%3E%3Cpath stroke='%23bdd3fb' d='M8 9h1m-2 3h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-5 4h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%239fb5d2' d='M16 10h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M5 11h2'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%234d6185' d='M7 4h1M6 5h3M7 6h3M8 7h3M9 8h3M8 9h3m-4 1h3m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23c8d6fb' d='M8 4h1M5 6h2'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1M2 9h5'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M9 5h1m-8 6h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23c9d8fc' d='M5 5h1M4 7h3M2 8h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M7 7h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1m0 1h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h3'/%3E%3Cpath stroke='%23c1d3fb' d='M6 8h3'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 5h1'/%3E%3Cpath stroke='%23b4c8f6' d='M1 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M7 9h1m-3 2h1'/%3E%3Cpath stroke='%23b6cefb' d='M11 9h2'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23bbd3fd' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b6cdfb' d='M9 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
.window{
box-shadow: inset -1px -1px #00138c,inset 1px 1px #0831d9,inset -2px -2px #001ea0,inset 2px 2px #166aee,inset -3px -3px #003bda,inset 3px 3px #0855dd;
border-top-left-radius: 8px;
border-top-right-radius: 8px;
padding: 0 0 3px;
-webkit-font-smoothing: antialiased
}
.title-bar{
background: linear-gradient(180deg,#0997ff,#0053ee 8%,#0050ee 40%,#06f 88%,#06f 93%,#005bff 95%,#003dd7 96%,#003dd7);
padding: 3px 5px 3px 3px;
border-top: 1px solid #0831d9;
border-left: 1px solid #0831d9;
border-right: 1px solid #001ea0;
border-top-left-radius: 8px;
border-top-right-radius: 7px;
font-size: 13px;
text-shadow: 1px 1px #0f1089;
height: 21px
}
.title-bar-text{
padding-left: 3px
}
.title-bar-controls{
display: flex
}
.title-bar-controls button{
min-width: 21px;
min-height: 21px;
margin-left: 2px;
background-repeat: no-repeat;
background-position: 50%;
box-shadow: none;
background-color: #0050ee;
transition: background .1s;
border: none
}
.title-bar-controls button: active,.title-bar-controls button: focus,.title-bar-controls button: hover{
box-shadow: none!important
}
.title-bar-controls button[aria-label=Minimize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%235985f7' d='M7 5h1'/%3E%3Cpath stroke='%235381f6' d='M8 5h1M6 9h1'/%3E%3Cpath stroke='%234d7bf6' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%234677f5' d='M10 5h1'/%3E%3Cpath stroke='%234173f5' d='M11 5h1'/%3E%3Cpath stroke='%233a6ff4' d='M12 5h1'/%3E%3Cpath stroke='%23386ef4' d='M13 5h1'/%3E%3Cpath stroke='%23346cf4' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%235480f7' d='M7 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%233a6ff5' d='M11 6h1'/%3E%3Cpath stroke='%23346df4' d='M12 6h1'/%3E%3Cpath stroke='%23306bf4' d='M13 6h1'/%3E%3Cpath stroke='%232d69f4' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23507ef6' d='M7 7h1'/%3E%3Cpath stroke='%234a79f6' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236694eb' d='M19 0h1'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1m-6 6h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23427ff6' d='M9 13h1'/%3E%3Cpath stroke='%233c7ff6' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23366ef4' d='M2 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%236699f3' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23afc2ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h1'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1m-5 6h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M6 13h1'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23539fff' d='M9 13h1'/%3E%3Cpath stroke='%234fa4ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-7 7h1m-3 1h1'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m-7 7h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-1 1h1m-1 1h1M7 12h1m-2 1h1m-3 1h1m1 0h1m-3 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 5h11M5 6h11M5 7h11M5 8h1m9 0h1M5 9h1m9 0h1M5 10h1m9 0h1M5 11h1m9 0h1M5 12h1m9 0h1M5 13h1m9 0h1M5 14h1m9 0h1M5 15h11'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%23004fb4' d='M16 7h2m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1'/%3E%3Cpath stroke='%230049ae' d='M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M10 8h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 2h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h1m-6 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230051b6' d='M18 9h1m0 2h1m-1 1h1M8 14h1m10 3h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 1h1m-1 3h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h1m-4 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230049ac' d='M4 11h1m-2 1h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h1m-3 1h1m4 0h1m-7 2h1m0 3h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-1 2h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 3h1'/%3E%3Cpath stroke='%23005ec3' d='M13 13h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230060c5' d='M14 14h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23b2c3ee' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 5h1M8 5h1M6 9h1M9 5h1M8 6h1M10 5h1M11 5h1M12 5h1M13 5h1M14 5h1M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%23FFF' d='M7 6h1M8 6h1M9 6h1M10 6h1M11 6h1M12 6h1M13 6h1M14 6h1M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23FFF' d='M7 7h1'/%3E%3Cpath stroke='%234375f5' d='M8 7h1M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%23FFF' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 8h1'/%3E%3Cpath stroke='%234174f5' d='M8 8h1M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%23FFF' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%23FFF' d='M5 9h1M6 9h1M7 9h1M8 9h1M9 9h1M10 9h1M11 9h1M12 9h1M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%23FFF' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1M4 10h1'/%3E%3Cpath stroke='%23FFF' d='M5 10h1M6 10h1M7 10h1M8 10h1M9 10h1M10 10h1M11 10h1M12 10h1M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%23FFF' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%23FFF' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232673f7' d='M12 11h1'/%3E%3Cpath stroke='%23FFF' d='M13 11h1M14 11h1M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%23FFF' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232677f7' d='M12 12h1'/%3E%3Cpath stroke='%23FFF' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1M6 13h1M7 13h1'/%3E%3Cpath stroke='%23437ff6' d='M8 13h1'/%3E%3Cpath stroke='%232d7df7' d='M9 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M10 13h1M11 13h1'/%3E%3Cpath stroke='%232679f8' d='M12 13h1'/%3E%3Cpath stroke='%23FFF' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1M6 14h1'/%3E%3Cpath stroke='%232d7df7' d='M7 14h1M8 14h1M9 14h1M10 14h1M11 14h1'/%3E%3Cpath stroke='%23257af8' d='M12 14h1'/%3E%3Cpath stroke='%23FFF' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23FFF' d='M11 15h1M12 15h1M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%23FFF' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23548DFF' d='M5 13h1'/%3E%3Cpath stroke='%235991FF' d='M6 13h1'/%3E%3Cpath stroke='%235792FF' d='M7 13h1'/%3E%3Cpath stroke='%235496FF' d='M8 13h1'/%3E%3Cpath stroke='%23539CFF' d='M9 13h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 13h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23548DFF' d='M5 14h1'/%3E%3Cpath stroke='%235991FF' d='M6 14h1'/%3E%3Cpath stroke='%235792FF' d='M7 14h1'/%3E%3Cpath stroke='%235496FF' d='M8 14h1'/%3E%3Cpath stroke='%23539CFF' d='M9 14h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 14h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M12 12h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7M5 13h1'/%3E%3Cpath stroke='%23004BB0' d='M6 13h1'/%3E%3Cpath stroke='%23004DB1' d='M7 13h1'/%3E%3Cpath stroke='%23004FB4' d='M8 13h1'/%3E%3Cpath stroke='%230052B7' d='M9 13h1'/%3E%3Cpath stroke='%230055B9' d='M10 13h1'/%3E%3Cpath stroke='%230157BC' d='M11 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m1 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23004BB0' d='M6 14h1'/%3E%3Cpath stroke='%23004DB1' d='M7 14h1'/%3E%3Cpath stroke='%23004FB4' d='M8 14h1'/%3E%3Cpath stroke='%230052B7' d='M9 14h1'/%3E%3Cpath stroke='%230055B9' d='M10 14h1'/%3E%3Cpath stroke='%230157BC' d='M11 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 14h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M12 15h1M13 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1M5 14h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%2392aff9' d='M7 4h1'/%3E%3Cpath stroke='%23e1e9fd' d='M8 4h1'/%3E%3Cpath stroke='%23e0e8fd' d='M12 4h1'/%3E%3Cpath stroke='%2381a4f8' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%238eacf9' d='M6 5h1'/%3E%3Cpath stroke='%23f3f6fe' d='M7 5h1'/%3E%3Cpath stroke='%23d8e2fd' d='M9 5h1'/%3E%3Cpath stroke='%23cfdcfc' d='M10 5h1'/%3E%3Cpath stroke='%23ecf1fe' d='M11 5h1'/%3E%3Cpath stroke='%23eff4fe' d='M13 5h1'/%3E%3Cpath stroke='%23749af7' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%23d3dffd' d='M6 6h1'/%3E%3Cpath stroke='%23b2c6fb' d='M8 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%234a7bf6' d='M11 6h1'/%3E%3Cpath stroke='%23c8d7fc' d='M12 6h1'/%3E%3Cpath stroke='%23c6d6fc' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%23e6edfe' d='M6 7h1'/%3E%3Cpath stroke='%23e5ecfe' d='M7 7h1'/%3E%3Cpath stroke='%235a85f7' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%236c97f8' d='M12 7h1'/%3E%3Cpath stroke='%23cfddfd' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%2385a9f9' d='M12 8h1'/%3E%3Cpath stroke='%23cbdbfd' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235986f7' d='M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%2396b6fa' d='M11 9h1'/%3E%3Cpath stroke='%23f2f6fe' d='M12 9h1'/%3E%3Cpath stroke='%2393b6fb' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234e82f7' d='M9 10h1'/%3E%3Cpath stroke='%23cadafc' d='M10 10h1'/%3E%3Cpath stroke='%23a0c0fb' d='M13 10h1'/%3E%3Cpath stroke='%232a72f6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23bcd1fc' d='M9 11h1'/%3E%3Cpath stroke='%23dde8fd' d='M11 11h1'/%3E%3Cpath stroke='%235f97f8' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23dfe9fd' d='M9 12h1'/%3E%3Cpath stroke='%234687f7' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%235081f6' d='M5 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23d2e0fd' d='M9 13h1'/%3E%3Cpath stroke='%23edf3fe' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23467af5' d='M5 15h1'/%3E%3Cpath stroke='%23457af6' d='M6 15h1'/%3E%3Cpath stroke='%23437bf6' d='M7 15h1'/%3E%3Cpath stroke='%23417cf6' d='M8 15h1'/%3E%3Cpath stroke='%23cbdcfd' d='M9 15h1'/%3E%3Cpath stroke='%23327df7' d='M11 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%23f5f8fe' d='M9 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ee' d='M1 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b1ed' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m2 5h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2393b0ed' d='M20 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1m7 1h1'/%3E%3Cpath stroke='%239bbdff' d='M7 4h1'/%3E%3Cpath stroke='%23e3edff' d='M8 4h1'/%3E%3Cpath stroke='%23e1ebff' d='M12 4h1'/%3E%3Cpath stroke='%2387afff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1m-6 9h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%239bf' d='M6 5h1'/%3E%3Cpath stroke='%23f4f7ff' d='M7 5h1'/%3E%3Cpath stroke='%23dbe7ff' d='M9 5h1'/%3E%3Cpath stroke='%23d2e1ff' d='M10 5h1'/%3E%3Cpath stroke='%23edf3ff' d='M11 5h1'/%3E%3Cpath stroke='%23f0f5ff' d='M13 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%23548dff' d='M1 6h1m2 7h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%23d8e5ff' d='M6 6h1'/%3E%3Cpath stroke='%23b9d0ff' d='M8 6h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%23538dff' d='M11 6h1'/%3E%3Cpath stroke='%23cbdcff' d='M12 6h1'/%3E%3Cpath stroke='%23c9dbff' d='M14 6h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23e8f0ff' d='M6 7h1'/%3E%3Cpath stroke='%23e7efff' d='M7 7h1'/%3E%3Cpath stroke='%23679aff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%2374a5ff' d='M12 7h1'/%3E%3Cpath stroke='%23d1e1ff' d='M14 7h1'/%3E%3Cpath stroke='%23317aff' d='M15 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%238cb7ff' d='M12 8h1'/%3E%3Cpath stroke='%23cde0ff' d='M14 8h1'/%3E%3Cpath stroke='%232f7fff' d='M15 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%239dc5ff' d='M11 9h1'/%3E%3Cpath stroke='%23f3f8ff' d='M12 9h1'/%3E%3Cpath stroke='%239ac5ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%236297ff' d='M5 10h1'/%3E%3Cpath stroke='%235f95ff' d='M6 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235c9aff' d='M9 10h1'/%3E%3Cpath stroke='%23cee2ff' d='M10 10h1'/%3E%3Cpath stroke='%23a7d0ff' d='M13 10h1'/%3E%3Cpath stroke='%233897ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%23c2dbff' d='M9 11h1'/%3E%3Cpath stroke='%23e0efff' d='M11 11h1'/%3E%3Cpath stroke='%236eb6ff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23e2eeff' d='M9 12h1'/%3E%3Cpath stroke='%2359adff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M5 13h2'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23d6e8ff' d='M9 13h1'/%3E%3Cpath stroke='%23eef6ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528cff' d='M5 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%234d89ff' d='M6 15h1'/%3E%3Cpath stroke='%234c8cff' d='M7 15h1'/%3E%3Cpath stroke='%234d94ff' d='M8 15h1'/%3E%3Cpath stroke='%23cfe4ff' d='M9 15h1'/%3E%3Cpath stroke='%2347aaff' d='M11 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%23f6faff' d='M9 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%2393b2f1' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bdef' d='M1 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h1m5 0h9'/%3E%3Cpath stroke='%23a7bdee' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23a7bcee' d='M20 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230a4aa5' d='M7 4h1'/%3E%3Cpath stroke='%234e7ec0' d='M8 4h1'/%3E%3Cpath stroke='%23789ed1' d='M9 4h1'/%3E%3Cpath stroke='%23789ed3' d='M10 4h1'/%3E%3Cpath stroke='%23789fd4' d='M11 4h1m0 1h1'/%3E%3Cpath stroke='%235184c7' d='M12 4h1'/%3E%3Cpath stroke='%230b54b3' d='M13 4h1m0 1h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-2 1h2M7 12h1m-2 1h1m-3 1h3m-3 1h2m-2 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230949a4' d='M6 5h1'/%3E%3Cpath stroke='%23668ec8' d='M7 5h1'/%3E%3Cpath stroke='%23789dd1' d='M8 5h1M7 6h1'/%3E%3Cpath stroke='%23497cc1' d='M9 5h1'/%3E%3Cpath stroke='%234178c0' d='M10 5h1'/%3E%3Cpath stroke='%23608dcb' d='M11 5h1'/%3E%3Cpath stroke='%236693cf' d='M13 5h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230042a1' d='M5 6h1'/%3E%3Cpath stroke='%234073bb' d='M6 6h1'/%3E%3Cpath stroke='%232661b6' d='M8 6h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1'/%3E%3Cpath stroke='%230049ad' d='M10 6h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M11 6h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%234077c4' d='M12 6h1'/%3E%3Cpath stroke='%2378a1d6' d='M13 6h1'/%3E%3Cpath stroke='%234079c4' d='M14 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%235684c6' d='M6 7h1'/%3E%3Cpath stroke='%235686c8' d='M7 7h1'/%3E%3Cpath stroke='%230049ac' d='M8 7h1m-4 3h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230a53b5' d='M12 7h1'/%3E%3Cpath stroke='%2378a1d7' d='M13 7h1'/%3E%3Cpath stroke='%234881c8' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m0 1h1m0 1h1M8 12h1m-2 3h1m0 3h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230046a8' d='M5 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%23145db9' d='M12 8h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 8h1'/%3E%3Cpath stroke='%23457fc8' d='M14 8h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1M8 14h1m-1 1h1m10 2h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%230050b5' d='M16 8h2m1 2h1M8 13h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230047a8' d='M4 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1m-2 1h1'/%3E%3Cpath stroke='%231b62bd' d='M11 9h1'/%3E%3Cpath stroke='%236899d4' d='M12 9h1'/%3E%3Cpath stroke='%2378a4d9' d='M13 9h1'/%3E%3Cpath stroke='%231f68c1' d='M14 9h1'/%3E%3Cpath stroke='%230054b9' d='M15 9h1m-7 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230053b8' d='M16 9h2m0 1h1m0 4h1m-1 2h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230048ab' d='M4 10h1'/%3E%3Cpath stroke='%23407cc7' d='M10 10h1'/%3E%3Cpath stroke='%2378a3d9' d='M11 10h1m-2 1h1'/%3E%3Cpath stroke='%2378a5da' d='M12 10h1m-3 2h1'/%3E%3Cpath stroke='%23256ec4' d='M13 10h1'/%3E%3Cpath stroke='%230057bb' d='M14 10h1'/%3E%3Cpath stroke='%230057bc' d='M15 10h1m-5 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%230056bb' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%230055ba' d='M17 10h1m0 1h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%23004cb0' d='M7 11h1m-4 2h1'/%3E%3Cpath stroke='%233272c4' d='M9 11h1'/%3E%3Cpath stroke='%23538cd0' d='M11 11h1'/%3E%3Cpath stroke='%23065cbf' d='M12 11h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%230058bd' d='M17 11h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%23538ace' d='M9 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 2h1m-1 1h1'/%3E%3Cpath stroke='%234581cb' d='M9 13h1'/%3E%3Cpath stroke='%236297d5' d='M10 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230052b7' d='M19 13h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23407fca' d='M9 15h1'/%3E%3Cpath stroke='%2378a6dc' d='M10 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%236c9bd5' d='M9 16h1'/%3E%3Cpath stroke='%2378a6db' d='M10 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M4 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M5 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M6 20h1'/%3E%3Cpath stroke='%23a7bdf0' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23fae1dc' d='M1 1h1'/%3E%3Cpath stroke='%23eb8b73' d='M2 1h1'/%3E%3Cpath stroke='%23e97b60' d='M3 1h1'/%3E%3Cpath stroke='%23e77155' d='M4 1h1'/%3E%3Cpath stroke='%23e66a4d' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23e56648' d='M6 1h1'/%3E%3Cpath stroke='%23e46142' d='M7 1h1'/%3E%3Cpath stroke='%23e46344' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%23e45f3e' d='M9 1h2'/%3E%3Cpath stroke='%23e35c3b' d='M11 1h2'/%3E%3Cpath stroke='%23e25633' d='M13 1h2'/%3E%3Cpath stroke='%23e25330' d='M15 1h1'/%3E%3Cpath stroke='%23e04d28' d='M16 1h1'/%3E%3Cpath stroke='%23dc451f' d='M17 1h1'/%3E%3Cpath stroke='%23d05334' d='M18 1h1'/%3E%3Cpath stroke='%23efd8d2' d='M19 1h1'/%3E%3Cpath stroke='%23ec8d76' d='M1 2h1'/%3E%3Cpath stroke='%23efa390' d='M2 2h1'/%3E%3Cpath stroke='%23f0a694' d='M3 2h1'/%3E%3Cpath stroke='%23ee9a85' d='M4 2h1'/%3E%3Cpath stroke='%23eb8d75' d='M5 2h1'/%3E%3Cpath stroke='%23ea876e' d='M6 2h1'/%3E%3Cpath stroke='%23ea8168' d='M7 2h1'/%3E%3Cpath stroke='%23e97f66' d='M8 2h1'/%3E%3Cpath stroke='%23e97c62' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%23e8795f' d='M10 2h1'/%3E%3Cpath stroke='%23e8795e' d='M11 2h1'/%3E%3Cpath stroke='%23e87559' d='M12 2h1'/%3E%3Cpath stroke='%23e77256' d='M13 2h1'/%3E%3Cpath stroke='%23e66e50' d='M14 2h1'/%3E%3Cpath stroke='%23e56849' d='M15 2h1'/%3E%3Cpath stroke='%23e4603f' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23e05532' d='M17 2h1'/%3E%3Cpath stroke='%23d04623' d='M18 2h1'/%3E%3Cpath stroke='%23b64b30' d='M19 2h1'/%3E%3Cpath stroke='%23e97f65' d='M1 3h1'/%3E%3Cpath stroke='%23f0a997' d='M2 3h1'/%3E%3Cpath stroke='%23f1ac9a' d='M3 3h1'/%3E%3Cpath stroke='%23ee9d89' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%23ec917a' d='M5 3h1'/%3E%3Cpath stroke='%23eb8b72' d='M6 3h1'/%3E%3Cpath stroke='%23ea856d' d='M7 3h1'/%3E%3Cpath stroke='%23e98168' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23e87e65' d='M9 3h1'/%3E%3Cpath stroke='%23e97b61' d='M11 3h1'/%3E%3Cpath stroke='%23e8775d' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%23e87459' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%23e66f52' d='M14 3h1'/%3E%3Cpath stroke='%23e56a4c' d='M15 3h1'/%3E%3Cpath stroke='%23e46343' d='M16 3h1'/%3E%3Cpath stroke='%23e15937' d='M17 3h1'/%3E%3Cpath stroke='%23d24a28' d='M18 3h1'/%3E%3Cpath stroke='%23aa3315' d='M19 3h1'/%3E%3Cpath stroke='%23e87458' d='M1 4h1'/%3E%3Cpath stroke='%23efa18d' d='M3 4h1'/%3E%3Cpath stroke='%23ed957f' d='M4 4h1'/%3E%3Cpath stroke='%23eb8a71' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%23ea836a' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23e97d64' d='M7 4h1'/%3E%3Cpath stroke='%23e8785e' d='M8 4h1'/%3E%3Cpath stroke='%23e77359' d='M9 4h1'/%3E%3Cpath stroke='%23e76f54' d='M10 4h1'/%3E%3Cpath stroke='%23e66d51' d='M11 4h1'/%3E%3Cpath stroke='%23e5684b' d='M12 4h1'/%3E%3Cpath stroke='%23e5684a' d='M13 4h1'/%3E%3Cpath stroke='%23e35c3a' d='M16 4h1m-7 4h1m-8 7h1'/%3E%3Cpath stroke='%23e05634' d='M17 4h1'/%3E%3Cpath stroke='%23d24c2a' d='M18 4h1'/%3E%3Cpath stroke='%23ac3618' d='M19 4h1'/%3E%3Cpath stroke='%23e76f52' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23ec9179' d='M2 5h1'/%3E%3Cpath stroke='%23ec937c' d='M3 5h1'/%3E%3Cpath stroke='%23f7ccc2' d='M5 5h1'/%3E%3Cpath stroke='%23e77259' d='M7 5h1M5 9h1'/%3E%3Cpath stroke='%23e76d53' d='M8 5h1'/%3E%3Cpath stroke='%23e5684d' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%23e46446' d='M10 5h1'/%3E%3Cpath stroke='%23e45f41' d='M11 5h1'/%3E%3Cpath stroke='%23e35b3a' d='M12 5h1m-2 1h1'/%3E%3Cpath stroke='%23e35938' d='M13 5h1'/%3E%3Cpath stroke='%23f3bbad' d='M15 5h1'/%3E%3Cpath stroke='%23e25531' d='M16 5h1'/%3E%3Cpath stroke='%23df5330' d='M17 5h1'/%3E%3Cpath stroke='%23d34e2c' d='M18 5h1'/%3E%3Cpath stroke='%23ad3a1d' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%23eb876e' d='M2 6h1'/%3E%3Cpath stroke='%23eb8a70' d='M3 6h1'/%3E%3Cpath stroke='%23e46447' d='M9 6h1'/%3E%3Cpath stroke='%23e45f40' d='M10 6h1'/%3E%3Cpath stroke='%23e25634' d='M12 6h1'/%3E%3Cpath stroke='%23e2522d' d='M16 6h1'/%3E%3Cpath stroke='%23df522e' d='M17 6h1'/%3E%3Cpath stroke='%23d34d2c' d='M18 6h1'/%3E%3Cpath stroke='%23e56546' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23e97e65' d='M4 7h1'/%3E%3Cpath stroke='%23e8775e' d='M5 7h1'/%3E%3Cpath stroke='%23e46143' d='M9 7h1'/%3E%3Cpath stroke='%23e45d3d' d='M10 7h1'/%3E%3Cpath stroke='%23e35836' d='M11 7h1'/%3E%3Cpath stroke='%23e24e27' d='M15 7h1'/%3E%3Cpath stroke='%23e2502a' d='M16 7h1'/%3E%3Cpath stroke='%23e0512c' d='M17 7h1'/%3E%3Cpath stroke='%23d34d2a' d='M18 7h1'/%3E%3Cpath stroke='%23ad391c' d='M19 7h1'/%3E%3Cpath stroke='%23e87a60' d='M2 8h1m1 0h1'/%3E%3Cpath stroke='%23e87c62' d='M3 8h1'/%3E%3Cpath stroke='%23e8745b' d='M5 8h1'/%3E%3Cpath stroke='%23e76e54' d='M6 8h1'/%3E%3Cpath stroke='%23e24d24' d='M14 8h1'/%3E%3Cpath stroke='%23e24b22' d='M15 8h1'/%3E%3Cpath stroke='%23e24d25' d='M16 8h1'/%3E%3Cpath stroke='%23e05029' d='M17 8h1'/%3E%3Cpath stroke='%23d44c29' d='M18 8h1'/%3E%3Cpath stroke='%23ae391b' d='M19 8h1'/%3E%3Cpath stroke='%23e35d3c' d='M1 9h1'/%3E%3Cpath stroke='%23e8765d' d='M4 9h1'/%3E%3Cpath stroke='%23e66f53' d='M6 9h1'/%3E%3Cpath stroke='%23e56b4e' d='M7 9h1'/%3E%3Cpath stroke='%23e45127' d='M13 9h1'/%3E%3Cpath stroke='%23e44f23' d='M14 9h1'/%3E%3Cpath stroke='%23e34c20' d='M15 9h1'/%3E%3Cpath stroke='%23e34d22' d='M16 9h1'/%3E%3Cpath stroke='%23e14f25' d='M17 9h1'/%3E%3Cpath stroke='%23d54a25' d='M18 9h1'/%3E%3Cpath stroke='%23af3719' d='M19 9h1'/%3E%3Cpath stroke='%23e35937' d='M1 10h1'/%3E%3Cpath stroke='%23e76d51' d='M2 10h1'/%3E%3Cpath stroke='%23e87257' d='M3 10h1'/%3E%3Cpath stroke='%23e87359' d='M4 10h1'/%3E%3Cpath stroke='%23e77157' d='M5 10h1'/%3E%3Cpath stroke='%23e66e52' d='M6 10h1'/%3E%3Cpath stroke='%23e56747' d='M8 10h1'/%3E%3Cpath stroke='%23e5572c' d='M12 10h1'/%3E%3Cpath stroke='%23e55326' d='M13 10h1'/%3E%3Cpath stroke='%23e55022' d='M14 10h1'/%3E%3Cpath stroke='%23e54d1e' d='M15 10h1'/%3E%3Cpath stroke='%23e54d1f' d='M16 10h1'/%3E%3Cpath stroke='%23e24e21' d='M17 10h1'/%3E%3Cpath stroke='%23d64921' d='M18 10h1'/%3E%3Cpath stroke='%23af3516' d='M19 10h1'/%3E%3Cpath stroke='%23e25432' d='M1 11h1'/%3E%3Cpath stroke='%23e5694b' d='M2 11h1'/%3E%3Cpath stroke='%23e77054' d='M3 11h1'/%3E%3Cpath stroke='%23e77156' d='M4 11h1'/%3E%3Cpath stroke='%23e87055' d='M5 11h1'/%3E%3Cpath stroke='%23e66c4d' d='M7 11h1'/%3E%3Cpath stroke='%23e75526' d='M13 11h1'/%3E%3Cpath stroke='%23e75221' d='M14 11h1'/%3E%3Cpath stroke='%23e64e1c' d='M15 11h1'/%3E%3Cpath stroke='%23e64d1c' d='M16 11h1'/%3E%3Cpath stroke='%23e34c1c' d='M17 11h1'/%3E%3Cpath stroke='%23d6461c' d='M18 11h1'/%3E%3Cpath stroke='%23b03312' d='M19 11h1'/%3E%3Cpath stroke='%23e14f2b' d='M1 12h1'/%3E%3Cpath stroke='%23e66b4e' d='M3 12h1'/%3E%3Cpath stroke='%23e76f53' d='M5 12h1'/%3E%3Cpath stroke='%23e66e51' d='M6 12h1'/%3E%3Cpath stroke='%23e7653d' d='M10 12h1'/%3E%3Cpath stroke='%23fef5f1' d='M13 12h1'/%3E%3Cpath stroke='%23e85421' d='M14 12h1'/%3E%3Cpath stroke='%23e8501b' d='M15 12h1'/%3E%3Cpath stroke='%23e74d18' d='M16 12h1'/%3E%3Cpath stroke='%23e44a18' d='M17 12h1'/%3E%3Cpath stroke='%23d74216' d='M18 12h1'/%3E%3Cpath stroke='%23b2310f' d='M19 12h1'/%3E%3Cpath stroke='%23e04b25' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23e35e3d' d='M2 13h1'/%3E%3Cpath stroke='%23e56748' d='M3 13h1'/%3E%3Cpath stroke='%23e66c4e' d='M4 13h1'/%3E%3Cpath stroke='%23e66d50' d='M5 13h1'/%3E%3Cpath stroke='%23e76842' d='M9 13h1'/%3E%3Cpath stroke='%23e7653c' d='M10 13h1'/%3E%3Cpath stroke='%23e86236' d='M11 13h1'/%3E%3Cpath stroke='%23e95019' d='M15 13h1m-2 3h1'/%3E%3Cpath stroke='%23e84c16' d='M16 13h1'/%3E%3Cpath stroke='%23e44713' d='M17 13h1'/%3E%3Cpath stroke='%23d83f10' d='M18 13h1'/%3E%3Cpath stroke='%23b12d0a' d='M19 13h1'/%3E%3Cpath stroke='%23df451e' d='M1 14h1'/%3E%3Cpath stroke='%23e25836' d='M2 14h1'/%3E%3Cpath stroke='%23e46242' d='M3 14h1m0 1h1'/%3E%3Cpath stroke='%23e56749' d='M4 14h1'/%3E%3Cpath stroke='%23e66845' d='M8 14h1'/%3E%3Cpath stroke='%23e76741' d='M9 14h1'/%3E%3Cpath stroke='%23e7643b' d='M10 14h1'/%3E%3Cpath stroke='%23e86235' d='M11 14h1'/%3E%3Cpath stroke='%23ea5e2d' d='M12 14h1'/%3E%3Cpath stroke='%23e94a11' d='M16 14h1m-2 2h1'/%3E%3Cpath stroke='%23e6440d' d='M17 14h1'/%3E%3Cpath stroke='%23d73b0b' d='M18 14h1'/%3E%3Cpath stroke='%23b12b06' d='M19 14h1'/%3E%3Cpath stroke='%23de4018' d='M1 15h1'/%3E%3Cpath stroke='%23e1512e' d='M2 15h1'/%3E%3Cpath stroke='%23f5c1b5' d='M5 15h1'/%3E%3Cpath stroke='%23e66543' d='M7 15h1'/%3E%3Cpath stroke='%23e66541' d='M8 15h1'/%3E%3Cpath stroke='%23e6643d' d='M9 15h1'/%3E%3Cpath stroke='%23e76238' d='M10 15h1'/%3E%3Cpath stroke='%23e86032' d='M11 15h1'/%3E%3Cpath stroke='%23e95c2a' d='M12 15h1'/%3E%3Cpath stroke='%23ea5924' d='M13 15h1'/%3E%3Cpath stroke='%23f7b8a1' d='M15 15h1'/%3E%3Cpath stroke='%23e9480e' d='M16 15h1'/%3E%3Cpath stroke='%23e54009' d='M17 15h1'/%3E%3Cpath stroke='%23d73605' d='M18 15h1'/%3E%3Cpath stroke='%23b02702' d='M19 15h1'/%3E%3Cpath stroke='%23dd3c14' d='M1 16h1'/%3E%3Cpath stroke='%23e15431' d='M3 16h1'/%3E%3Cpath stroke='%23e35b39' d='M4 16h1'/%3E%3Cpath stroke='%23e45e3d' d='M5 16h1'/%3E%3Cpath stroke='%23e45f3d' d='M6 16h1'/%3E%3Cpath stroke='%23e45e3b' d='M7 16h1'/%3E%3Cpath stroke='%23e55e39' d='M8 16h1'/%3E%3Cpath stroke='%23e55e37' d='M9 16h1'/%3E%3Cpath stroke='%23e65d32' d='M10 16h1'/%3E%3Cpath stroke='%23e75b2c' d='M11 16h1'/%3E%3Cpath stroke='%23e85725' d='M12 16h1'/%3E%3Cpath stroke='%23e9541f' d='M13 16h1'/%3E%3Cpath stroke='%23e8440b' d='M16 16h1'/%3E%3Cpath stroke='%23e43d05' d='M17 16h1'/%3E%3Cpath stroke='%23d63302' d='M18 16h1'/%3E%3Cpath stroke='%23af2601' d='M19 16h1'/%3E%3Cpath stroke='%23d8370e' d='M1 17h1'/%3E%3Cpath stroke='%23db431c' d='M2 17h1'/%3E%3Cpath stroke='%23dd4c28' d='M3 17h1'/%3E%3Cpath stroke='%23de522f' d='M4 17h1'/%3E%3Cpath stroke='%23df5533' d='M5 17h1'/%3E%3Cpath stroke='%23e05734' d='M6 17h1'/%3E%3Cpath stroke='%23e05531' d='M7 17h1'/%3E%3Cpath stroke='%23e05631' d='M8 17h1'/%3E%3Cpath stroke='%23e1562e' d='M9 17h1'/%3E%3Cpath stroke='%23e2552a' d='M10 17h1'/%3E%3Cpath stroke='%23e45325' d='M11 17h1'/%3E%3Cpath stroke='%23e4501f' d='M12 17h1'/%3E%3Cpath stroke='%23e54c19' d='M13 17h1'/%3E%3Cpath stroke='%23e54813' d='M14 17h1'/%3E%3Cpath stroke='%23e5430d' d='M15 17h1'/%3E%3Cpath stroke='%23e43e07' d='M16 17h1'/%3E%3Cpath stroke='%23e03802' d='M17 17h1'/%3E%3Cpath stroke='%23d12f00' d='M18 17h1'/%3E%3Cpath stroke='%23aa2300' d='M19 17h1'/%3E%3Cpath stroke='%23cd4928' d='M1 18h1'/%3E%3Cpath stroke='%23cc3813' d='M2 18h1'/%3E%3Cpath stroke='%23cc3e1b' d='M3 18h1'/%3E%3Cpath stroke='%23cf4421' d='M4 18h1'/%3E%3Cpath stroke='%23cf4725' d='M5 18h1'/%3E%3Cpath stroke='%23cf4726' d='M6 18h1'/%3E%3Cpath stroke='%23cf4624' d='M7 18h1'/%3E%3Cpath stroke='%23d04723' d='M8 18h1'/%3E%3Cpath stroke='%23d14621' d='M9 18h1'/%3E%3Cpath stroke='%23d2451e' d='M10 18h1'/%3E%3Cpath stroke='%23d5451b' d='M11 18h1'/%3E%3Cpath stroke='%23d54216' d='M12 18h1'/%3E%3Cpath stroke='%23d64013' d='M13 18h1'/%3E%3Cpath stroke='%23d53d0e' d='M14 18h1'/%3E%3Cpath stroke='%23d63909' d='M15 18h1'/%3E%3Cpath stroke='%23d53504' d='M16 18h1'/%3E%3Cpath stroke='%23d13001' d='M17 18h1'/%3E%3Cpath stroke='%23c22a00' d='M18 18h1'/%3E%3Cpath stroke='%23ab3c1f' d='M19 18h1'/%3E%3Cpath stroke='%23eed6d0' d='M1 19h1'/%3E%3Cpath stroke='%23b54428' d='M2 19h1'/%3E%3Cpath stroke='%23a62b0d' d='M3 19h1'/%3E%3Cpath stroke='%23ac3011' d='M4 19h1'/%3E%3Cpath stroke='%23ab3112' d='M5 19h1'/%3E%3Cpath stroke='%23a93214' d='M6 19h1'/%3E%3Cpath stroke='%23a93012' d='M7 19h1'/%3E%3Cpath stroke='%23ac3213' d='M8 19h1'/%3E%3Cpath stroke='%23ad3213' d='M9 19h1'/%3E%3Cpath stroke='%23ae3110' d='M10 19h1'/%3E%3Cpath stroke='%23b1300d' d='M11 19h1'/%3E%3Cpath stroke='%23b22e0a' d='M12 19h1'/%3E%3Cpath stroke='%23b42d08' d='M13 19h1'/%3E%3Cpath stroke='%23b12a06' d='M14 19h1'/%3E%3Cpath stroke='%23b12803' d='M15 19h1'/%3E%3Cpath stroke='%23b42701' d='M16 19h1'/%3E%3Cpath stroke='%23ae2400' d='M17 19h1'/%3E%3Cpath stroke='%23ac3c1f' d='M18 19h1'/%3E%3Cpath stroke='%23ead4cf' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h3m5 0h7'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23ffe4e1' d='M1 1h1'/%3E%3Cpath stroke='%23ff9285' d='M2 1h1m4 3h1M2 7h1'/%3E%3Cpath stroke='%23ff8c7f' d='M3 1h1'/%3E%3Cpath stroke='%23ff8375' d='M4 1h1m5 3h1'/%3E%3Cpath stroke='%23ff7b6c' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23ff7868' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%23ff7362' d='M7 1h1'/%3E%3Cpath stroke='%23ff7363' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%23ff705f' d='M9 1h1M6 16h1'/%3E%3Cpath stroke='%23ff6f5f' d='M10 1h1'/%3E%3Cpath stroke='%23ff6e5d' d='M11 1h1m4 1h1m-5 3h1M2 13h1'/%3E%3Cpath stroke='%23ff6b5a' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%23f65' d='M13 1h2'/%3E%3Cpath stroke='%23ff6250' d='M15 1h1M2 15h1'/%3E%3Cpath stroke='%23ff5d4a' d='M16 1h1'/%3E%3Cpath stroke='%23fa5643' d='M17 1h1'/%3E%3Cpath stroke='%23eb6151' d='M18 1h1'/%3E%3Cpath stroke='%23f5dad7' d='M19 1h1'/%3E%3Cpath stroke='%23ff9386' d='M1 2h1'/%3E%3Cpath stroke='%23ffaea5' d='M2 2h1'/%3E%3Cpath stroke='%23ffb2a9' d='M3 2h1'/%3E%3Cpath stroke='%23ffa99f' d='M4 2h1'/%3E%3Cpath stroke='%23ff9e93' d='M5 2h1m0 1h1M5 4h1'/%3E%3Cpath stroke='%23ff998d' d='M6 2h1M4 6h1'/%3E%3Cpath stroke='%23ff9488' d='M7 2h1m0 1h1'/%3E%3Cpath stroke='%23ff9083' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%23ff8e80' d='M9 2h1'/%3E%3Cpath stroke='%23ff8b7d' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%23ff887a' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%23ff8475' d='M12 2h1M8 5h1'/%3E%3Cpath stroke='%23ff8172' d='M13 2h1M7 9h1m-3 3h1'/%3E%3Cpath stroke='%23ff7c6d' d='M14 2h1'/%3E%3Cpath stroke='%23ff7666' d='M15 2h1M1 7h1m1 6h1m0 1h1'/%3E%3Cpath stroke='%23fc6352' d='M17 2h1'/%3E%3Cpath stroke='%23e54' d='M18 2h1'/%3E%3Cpath stroke='%23d3594b' d='M19 2h1'/%3E%3Cpath stroke='%23ff8d80' d='M1 3h1'/%3E%3Cpath stroke='%23ffb3ab' d='M2 3h1'/%3E%3Cpath stroke='%23ffb8b0' d='M3 3h1'/%3E%3Cpath stroke='%23ffb0a6' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23ffa49a' d='M5 3h1'/%3E%3Cpath stroke='%23ff988d' d='M7 3h1M6 4h1'/%3E%3Cpath stroke='%23ff9184' d='M9 3h1'/%3E%3Cpath stroke='%23ff8e81' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23ff8c7e' d='M11 3h1M2 8h1'/%3E%3Cpath stroke='%23ff8576' d='M13 3h1M6 9h1m-4 1h1'/%3E%3Cpath stroke='%23ff7f70' d='M14 3h1M1 5h1m0 5h1m1 2h1'/%3E%3Cpath stroke='%23ff796a' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%23ff7161' d='M16 3h1M3 14h1'/%3E%3Cpath stroke='%23fc6857' d='M17 3h1'/%3E%3Cpath stroke='%23ed5948' d='M18 3h1M6 18h1'/%3E%3Cpath stroke='%23cb4233' d='M19 3h1'/%3E%3Cpath stroke='%23ff8577' d='M1 4h1m0 5h1'/%3E%3Cpath stroke='%23ffaaa0' d='M2 4h1'/%3E%3Cpath stroke='%23ffa89e' d='M4 4h1'/%3E%3Cpath stroke='%23ff8d7f' d='M8 4h1'/%3E%3Cpath stroke='%23ff8879' d='M9 4h1'/%3E%3Cpath stroke='%23ff8071' d='M11 4h1M8 6h1'/%3E%3Cpath stroke='%23ff7a6b' d='M12 4h1M1 6h1m7 0h1m-6 7h1'/%3E%3Cpath stroke='%23ff7969' d='M13 4h1'/%3E%3Cpath stroke='%23ff7464' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%23ff7060' d='M15 4h1'/%3E%3Cpath stroke='%23ff6c5b' d='M16 4h1m-4 1h1'/%3E%3Cpath stroke='%23fc6655' d='M17 4h1'/%3E%3Cpath stroke='%23ef5c4b' d='M18 4h1'/%3E%3Cpath stroke='%23cc4636' d='M19 4h1'/%3E%3Cpath stroke='%23ffa095' d='M2 5h1'/%3E%3Cpath stroke='%23ffa59b' d='M3 5h1'/%3E%3Cpath stroke='%23ff9f94' d='M4 5h1'/%3E%3Cpath stroke='%23ffd5d1' d='M5 5h1'/%3E%3Cpath stroke='%23ff8a7c' d='M7 5h1'/%3E%3Cpath stroke='%23ff7e6f' d='M9 5h1'/%3E%3Cpath stroke='%23ffc2bb' d='M15 5h1'/%3E%3Cpath stroke='%23ff6554' d='M16 5h1'/%3E%3Cpath stroke='%23fc6453' d='M17 5h1'/%3E%3Cpath stroke='%23ee5d4d' d='M18 5h1'/%3E%3Cpath stroke='%23cd4939' d='M19 5h1'/%3E%3Cpath stroke='%23ff998e' d='M2 6h1'/%3E%3Cpath stroke='%23ff9d92' d='M3 6h1'/%3E%3Cpath stroke='%23ff6f5e' d='M11 6h1'/%3E%3Cpath stroke='%23ff6a58' d='M12 6h1'/%3E%3Cpath stroke='%23ff6451' d='M16 6h1'/%3E%3Cpath stroke='%23fd6451' d='M17 6h1'/%3E%3Cpath stroke='%23ee5e4d' d='M18 6h1'/%3E%3Cpath stroke='%23ce4a3a' d='M19 6h1'/%3E%3Cpath stroke='%23ff968a' d='M3 7h1'/%3E%3Cpath stroke='%23ff9487' d='M4 7h1'/%3E%3Cpath stroke='%23ff8f82' d='M5 7h1'/%3E%3Cpath stroke='%23ff7968' d='M9 7h1m-3 8h1'/%3E%3Cpath stroke='%23ff7463' d='M10 7h1'/%3E%3Cpath stroke='%23ff6f5d' d='M11 7h1'/%3E%3Cpath stroke='%23ff6450' d='M15 7h1'/%3E%3Cpath stroke='%23ff6552' d='M16 7h1'/%3E%3Cpath stroke='%23fd6653' d='M17 7h1'/%3E%3Cpath stroke='%23f0604e' d='M18 7h1'/%3E%3Cpath stroke='%23ce4a3b' d='M19 7h1'/%3E%3Cpath stroke='%23ff7565' d='M1 8h1'/%3E%3Cpath stroke='%23ff8677' d='M6 8h1m-2 2h1'/%3E%3Cpath stroke='%23ff7664' d='M10 8h1'/%3E%3Cpath stroke='%23ff6a53' d='M14 8h1'/%3E%3Cpath stroke='%23ff6953' d='M15 8h1'/%3E%3Cpath stroke='%23ff6b55' d='M16 8h1'/%3E%3Cpath stroke='%23fd6b56' d='M17 8h1'/%3E%3Cpath stroke='%23f06350' d='M18 8h1'/%3E%3Cpath stroke='%23cf4c3b' d='M19 8h1'/%3E%3Cpath stroke='%23ff6d5d' d='M1 9h1'/%3E%3Cpath stroke='%23ff8b7c' d='M4 9h1'/%3E%3Cpath stroke='%23ff775d' d='M13 9h1'/%3E%3Cpath stroke='%23ff745a' d='M14 9h1'/%3E%3Cpath stroke='%23ff7359' d='M15 9h1'/%3E%3Cpath stroke='%23ff735a' d='M16 9h1'/%3E%3Cpath stroke='%23fd715a' d='M17 9h1'/%3E%3Cpath stroke='%23f16752' d='M18 9h1'/%3E%3Cpath stroke='%23d24e3c' d='M19 9h1'/%3E%3Cpath stroke='%23ff6a59' d='M1 10h1m2 6h1'/%3E%3Cpath stroke='%23ff8778' d='M4 10h1'/%3E%3Cpath stroke='%23ff8374' d='M6 10h1m-3 1h2'/%3E%3Cpath stroke='%23ff8171' d='M7 10h1m-5 1h1'/%3E%3Cpath stroke='%23ff8271' d='M8 10h1m-2 1h1'/%3E%3Cpath stroke='%23ff8369' d='M12 10h1'/%3E%3Cpath stroke='%23ff8165' d='M13 10h1'/%3E%3Cpath stroke='%23ff7e61' d='M14 10h1'/%3E%3Cpath stroke='%23ff7d5f' d='M15 10h1'/%3E%3Cpath stroke='%23ff7b5f' d='M16 10h1'/%3E%3Cpath stroke='%23fd775d' d='M17 10h1'/%3E%3Cpath stroke='%23f36a53' d='M18 10h1'/%3E%3Cpath stroke='%23d34e3c' d='M19 10h1'/%3E%3Cpath stroke='%23ff6553' d='M1 11h1'/%3E%3Cpath stroke='%23ff8273' d='M6 11h1'/%3E%3Cpath stroke='%23ff8c6c' d='M13 11h1'/%3E%3Cpath stroke='%23ff8969' d='M14 11h1'/%3E%3Cpath stroke='%23ff8665' d='M15 11h1'/%3E%3Cpath stroke='%23ff8262' d='M16 11h1'/%3E%3Cpath stroke='%23fd7c5e' d='M17 11h1'/%3E%3Cpath stroke='%23f46d54' d='M18 11h1'/%3E%3Cpath stroke='%23d64f3b' d='M19 11h1'/%3E%3Cpath stroke='%23ff5f4d' d='M1 12h1'/%3E%3Cpath stroke='%23ff8070' d='M6 12h1'/%3E%3Cpath stroke='%23ff9279' d='M10 12h1'/%3E%3Cpath stroke='%23fff8f6' d='M13 12h1'/%3E%3Cpath stroke='%23ff936f' d='M14 12h1'/%3E%3Cpath stroke='%23ff906c' d='M15 12h1'/%3E%3Cpath stroke='%23ff8967' d='M16 12h1'/%3E%3Cpath stroke='%23fe7f5f' d='M17 12h1'/%3E%3Cpath stroke='%23f56e52' d='M18 12h1'/%3E%3Cpath stroke='%23d84f39' d='M19 12h1'/%3E%3Cpath stroke='%23ff5c4a' d='M1 13h1'/%3E%3Cpath stroke='%23ff7d6e' d='M5 13h1'/%3E%3Cpath stroke='%23ff907a' d='M9 13h1'/%3E%3Cpath stroke='%23ff957c' d='M10 13h1'/%3E%3Cpath stroke='%23ff9a7e' d='M11 13h1'/%3E%3Cpath stroke='%23ff9670' d='M15 13h1'/%3E%3Cpath stroke='%23ff8e68' d='M16 13h1'/%3E%3Cpath stroke='%23fe815e' d='M17 13h1'/%3E%3Cpath stroke='%23f66c4f' d='M18 13h1'/%3E%3Cpath stroke='%23da4d36' d='M19 13h1'/%3E%3Cpath stroke='%23ff5744' d='M1 14h1'/%3E%3Cpath stroke='%23ff6857' d='M2 14h1'/%3E%3Cpath stroke='%23ff8672' d='M8 14h1'/%3E%3Cpath stroke='%23ff8f78' d='M9 14h1'/%3E%3Cpath stroke='%23ff967c' d='M10 14h1'/%3E%3Cpath stroke='%23ff9c7e' d='M11 14h1'/%3E%3Cpath stroke='%23ffa07e' d='M12 14h1'/%3E%3Cpath stroke='%23ff8e66' d='M16 14h1'/%3E%3Cpath stroke='%23fe7f5a' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%23f76a4b' d='M18 14h1'/%3E%3Cpath stroke='%23da4a33' d='M19 14h1'/%3E%3Cpath stroke='%23ff523f' d='M1 15h1'/%3E%3Cpath stroke='%23ff7160' d='M4 15h1'/%3E%3Cpath stroke='%23ffc7c1' d='M5 15h1'/%3E%3Cpath stroke='%23ff836f' d='M8 15h1'/%3E%3Cpath stroke='%23ff8b74' d='M9 15h1'/%3E%3Cpath stroke='%23ff9379' d='M10 15h1'/%3E%3Cpath stroke='%23ff9a7c' d='M11 15h1'/%3E%3Cpath stroke='%23ff9e7c' d='M12 15h1'/%3E%3Cpath stroke='%23ffa07a' d='M13 15h1'/%3E%3Cpath stroke='%23ffd5c5' d='M15 15h1'/%3E%3Cpath stroke='%23ff8b62' d='M16 15h1'/%3E%3Cpath stroke='%23fe7c56' d='M17 15h1'/%3E%3Cpath stroke='%23f76545' d='M18 15h1'/%3E%3Cpath stroke='%23db4931' d='M19 15h1'/%3E%3Cpath stroke='%23ff4f3a' d='M1 16h1'/%3E%3Cpath stroke='%23ff5c49' d='M2 16h1'/%3E%3Cpath stroke='%23ff6452' d='M3 16h1'/%3E%3Cpath stroke='%23ff6e5e' d='M5 16h1'/%3E%3Cpath stroke='%23ff7462' d='M7 16h1'/%3E%3Cpath stroke='%23ff7c68' d='M8 16h1'/%3E%3Cpath stroke='%23ff846d' d='M9 16h1'/%3E%3Cpath stroke='%23ff8b71' d='M10 16h1'/%3E%3Cpath stroke='%23ff9174' d='M11 16h1'/%3E%3Cpath stroke='%23ff9674' d='M12 16h1'/%3E%3Cpath stroke='%23ff9571' d='M13 16h1'/%3E%3Cpath stroke='%23ff946d' d='M14 16h1'/%3E%3Cpath stroke='%23ff8d66' d='M15 16h1'/%3E%3Cpath stroke='%23ff855c' d='M16 16h1'/%3E%3Cpath stroke='%23fe7650' d='M17 16h1'/%3E%3Cpath stroke='%23f66141' d='M18 16h1'/%3E%3Cpath stroke='%23da462f' d='M19 16h1'/%3E%3Cpath stroke='%23fa4935' d='M1 17h1'/%3E%3Cpath stroke='%23fb5441' d='M2 17h1'/%3E%3Cpath stroke='%23fc5c4a' d='M3 17h1'/%3E%3Cpath stroke='%23fb6150' d='M4 17h1'/%3E%3Cpath stroke='%23fc6554' d='M5 17h1'/%3E%3Cpath stroke='%23fc6756' d='M6 17h1'/%3E%3Cpath stroke='%23fc6a58' d='M7 17h1'/%3E%3Cpath stroke='%23fc715c' d='M8 17h1'/%3E%3Cpath stroke='%23fc7761' d='M9 17h1'/%3E%3Cpath stroke='%23fd7e64' d='M10 17h1'/%3E%3Cpath stroke='%23fd8367' d='M11 17h1'/%3E%3Cpath stroke='%23fe8566' d='M12 17h1'/%3E%3Cpath stroke='%23fe8664' d='M13 17h1'/%3E%3Cpath stroke='%23fe8460' d='M14 17h1'/%3E%3Cpath stroke='%23fe7651' d='M16 17h1'/%3E%3Cpath stroke='%23fc6b47' d='M17 17h1'/%3E%3Cpath stroke='%23f2573a' d='M18 17h1'/%3E%3Cpath stroke='%23d4402a' d='M19 17h1'/%3E%3Cpath stroke='%23e85848' d='M1 18h1'/%3E%3Cpath stroke='%23ed4a37' d='M2 18h1'/%3E%3Cpath stroke='%23ec4f3d' d='M3 18h1'/%3E%3Cpath stroke='%23ee5443' d='M4 18h1'/%3E%3Cpath stroke='%23ed5746' d='M5 18h1'/%3E%3Cpath stroke='%23ee5a48' d='M7 18h1'/%3E%3Cpath stroke='%23ef5e4b' d='M8 18h1'/%3E%3Cpath stroke='%23f0644e' d='M9 18h1'/%3E%3Cpath stroke='%23f16750' d='M10 18h1'/%3E%3Cpath stroke='%23f46c52' d='M11 18h1'/%3E%3Cpath stroke='%23f66d51' d='M12 18h1'/%3E%3Cpath stroke='%23f66e51' d='M13 18h1'/%3E%3Cpath stroke='%23f66c4e' d='M14 18h1'/%3E%3Cpath stroke='%23f86a4a' d='M15 18h1'/%3E%3Cpath stroke='%23f76343' d='M16 18h1'/%3E%3Cpath stroke='%23f3583a' d='M17 18h1'/%3E%3Cpath stroke='%23e54930' d='M18 18h1'/%3E%3Cpath stroke='%23cd5140' d='M19 18h1'/%3E%3Cpath stroke='%23f6d9d6' d='M1 19h1'/%3E%3Cpath stroke='%23d25344' d='M2 19h1'/%3E%3Cpath stroke='%23c93c2b' d='M3 19h1'/%3E%3Cpath stroke='%23ca3f2f' d='M4 19h1'/%3E%3Cpath stroke='%23ca4131' d='M5 19h1'/%3E%3Cpath stroke='%23ca4333' d='M6 19h1'/%3E%3Cpath stroke='%23cc4332' d='M7 19h1'/%3E%3Cpath stroke='%23cf4434' d='M8 19h1'/%3E%3Cpath stroke='%23d24936' d='M9 19h1'/%3E%3Cpath stroke='%23d34936' d='M10 19h1'/%3E%3Cpath stroke='%23d84b37' d='M11 19h1'/%3E%3Cpath stroke='%23da4c36' d='M12 19h1'/%3E%3Cpath stroke='%23dc4d36' d='M13 19h1'/%3E%3Cpath stroke='%23d94933' d='M14 19h1'/%3E%3Cpath stroke='%23de4a32' d='M15 19h1'/%3E%3Cpath stroke='%23dd482f' d='M16 19h1'/%3E%3Cpath stroke='%23d6402a' d='M17 19h1'/%3E%3Cpath stroke='%23cf5140' d='M18 19h1'/%3E%3Cpath stroke='%23f1d8d5' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M6 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M7 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M8 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bced' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7baec' d='M19 0h1m0 1h1'/%3E%3Cpath stroke='%23dad2d0' d='M1 1h1'/%3E%3Cpath stroke='%23643529' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%235a1d0d' d='M3 1h1'/%3E%3Cpath stroke='%235d1e0d' d='M4 1h1'/%3E%3Cpath stroke='%235f1e0e' d='M5 1h1'/%3E%3Cpath stroke='%2363200e' d='M6 1h1'/%3E%3Cpath stroke='%2368210f' d='M7 1h1'/%3E%3Cpath stroke='%236f2310' d='M8 1h1'/%3E%3Cpath stroke='%23732511' d='M9 1h1'/%3E%3Cpath stroke='%23752511' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%237c2712' d='M11 1h1'/%3E%3Cpath stroke='%23822912' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%23852a13' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%23892b13' d='M14 1h1'/%3E%3Cpath stroke='%238a2b14' d='M15 1h1M6 2h1'/%3E%3Cpath stroke='%238e2d14' d='M16 1h1M7 2h1'/%3E%3Cpath stroke='%238c2c14' d='M17 1h1M2 6h1'/%3E%3Cpath stroke='%239d4732' d='M18 1h1M1 18h1'/%3E%3Cpath stroke='%23ebd8d3' d='M19 1h1'/%3E%3Cpath stroke='%2369220f' d='M2 2h1'/%3E%3Cpath stroke='%23782611' d='M3 2h1'/%3E%3Cpath stroke='%237e2812' d='M4 2h1'/%3E%3Cpath stroke='%23932e15' d='M8 2h1'/%3E%3Cpath stroke='%239a3016' d='M9 2h1'/%3E%3Cpath stroke='%239c3116' d='M10 2h1'/%3E%3Cpath stroke='%23a03217' d='M11 2h1'/%3E%3Cpath stroke='%23a43418' d='M12 2h1'/%3E%3Cpath stroke='%23a73518' d='M13 2h1'/%3E%3Cpath stroke='%23aa3618' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%23ab3618' d='M15 2h1'/%3E%3Cpath stroke='%23ad3719' d='M16 2h1m1 0h1M2 16h1m-1 1h1'/%3E%3Cpath stroke='%23ac3618' d='M17 2h1'/%3E%3Cpath stroke='%23b24e35' d='M19 2h1'/%3E%3Cpath stroke='%23591c0d' d='M1 3h1M1 4h1'/%3E%3Cpath stroke='%23792711' d='M2 3h1'/%3E%3Cpath stroke='%238d2c14' d='M3 3h1'/%3E%3Cpath stroke='%23962e15' d='M4 3h1'/%3E%3Cpath stroke='%239a2f16' d='M5 3h1'/%3E%3Cpath stroke='%23a13117' d='M6 3h1'/%3E%3Cpath stroke='%23a63317' d='M7 3h1'/%3E%3Cpath stroke='%23aa3418' d='M8 3h1'/%3E%3Cpath stroke='%23af3619' d='M9 3h1'/%3E%3Cpath stroke='%23b23719' d='M10 3h1M8 4h1M4 8h1'/%3E%3Cpath stroke='%23b5391a' d='M11 3h1'/%3E%3Cpath stroke='%23b73a1b' d='M12 3h1'/%3E%3Cpath stroke='%23b93b1b' d='M13 3h1'/%3E%3Cpath stroke='%23ba3b1b' d='M14 3h2m3 0h1M3 13h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23bb3b1b' d='M16 3h3M3 15h1'/%3E%3Cpath stroke='%23802812' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23962f15' d='M3 4h1'/%3E%3Cpath stroke='%239e3016' d='M4 4h1'/%3E%3Cpath stroke='%23a43216' d='M5 4h1'/%3E%3Cpath stroke='%23aa3317' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%23ae3518' d='M7 4h1'/%3E%3Cpath stroke='%23b5381a' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%23b8391a' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%23ba3a1b' d='M11 4h1m-8 7h2'/%3E%3Cpath stroke='%23bc3b1c' d='M12 4h1m-9 8h1'/%3E%3Cpath stroke='%23bd3c1c' d='M13 4h1m-1 1h1m-2 1h1m-7 6h1m-3 1h2'/%3E%3Cpath stroke='%23be3d1c' d='M14 4h3m-1 1h1m-1 1h1M4 14h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23bf3d1c' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1M4 17h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%235b1d0d' d='M1 5h1'/%3E%3Cpath stroke='%239c3016' d='M3 5h1'/%3E%3Cpath stroke='%23a43217' d='M4 5h1'/%3E%3Cpath stroke='%23b8553e' d='M5 5h1'/%3E%3Cpath stroke='%23d59485' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%23b33619' d='M7 5h1'/%3E%3Cpath stroke='%23b53719' d='M8 5h1'/%3E%3Cpath stroke='%23b8381a' d='M9 5h1M6 8h1'/%3E%3Cpath stroke='%23b9391b' d='M10 5h1'/%3E%3Cpath stroke='%23ba391b' d='M11 5h1M6 9h1m-2 1h1'/%3E%3Cpath stroke='%23bc3b1b' d='M12 5h1m-2 1h1m-6 5h1m-2 1h1'/%3E%3Cpath stroke='%23dc9887' d='M14 5h1'/%3E%3Cpath stroke='%23c85d42' d='M15 5h1M5 15h1'/%3E%3Cpath stroke='%23611f0e' d='M1 6h1'/%3E%3Cpath stroke='%23a23217' d='M3 6h1'/%3E%3Cpath stroke='%23d79585' d='M6 6h1'/%3E%3Cpath stroke='%23d89585' d='M7 6h1'/%3E%3Cpath stroke='%23b8371a' d='M8 6h1'/%3E%3Cpath stroke='%23ba391a' d='M9 6h1'/%3E%3Cpath stroke='%23bb3a1b' d='M10 6h1m-5 4h1'/%3E%3Cpath stroke='%23dd9887' d='M13 6h3m-4 1h1m-2 1h1M9 9h1m-2 2h1m-2 1h1m-2 1h1m-2 1h2'/%3E%3Cpath stroke='%23c03e1d' d='M17 6h1m-2 1h3m0 1h1m-1 1h1M7 16h1m-2 1h2m0 1h1'/%3E%3Cpath stroke='%2365200e' d='M1 7h1'/%3E%3Cpath stroke='%23902d15' d='M2 7h1'/%3E%3Cpath stroke='%23a73418' d='M3 7h1'/%3E%3Cpath stroke='%23af3518' d='M4 7h1'/%3E%3Cpath stroke='%23b43619' d='M5 7h1'/%3E%3Cpath stroke='%23d99585' d='M6 7h1'/%3E%3Cpath stroke='%23da9686' d='M7 7h1'/%3E%3Cpath stroke='%23db9686' d='M8 7h1M7 8h1'/%3E%3Cpath stroke='%23bc3a1b' d='M9 7h1M7 9h1'/%3E%3Cpath stroke='%23bd3b1b' d='M10 7h1m-4 3h1'/%3E%3Cpath stroke='%23be3c1c' d='M11 7h1m-2 1h1m-3 2h1m-2 1h1'/%3E%3Cpath stroke='%23de9987' d='M13 7h2m-3 1h2m-4 1h2m-3 1h1m-2 2h1m-2 2h1'/%3E%3Cpath stroke='%23c03f1d' d='M15 7h1m-9 8h1'/%3E%3Cpath stroke='%236a220f' d='M1 8h1'/%3E%3Cpath stroke='%23952f15' d='M2 8h1'/%3E%3Cpath stroke='%23ac3518' d='M3 8h1'/%3E%3Cpath stroke='%23b63719' d='M5 8h1'/%3E%3Cpath stroke='%23dc9786' d='M8 8h2M8 9h1'/%3E%3Cpath stroke='%23c2401d' d='M14 8h1m2 0h1m1 3h1M8 14h1m-1 2h1m-1 1h1m0 1h1m1 1h1'/%3E%3Cpath stroke='%23c2401e' d='M15 8h2m1 1h1M8 15h1'/%3E%3Cpath stroke='%23c13f1d' d='M18 8h1m0 2h1M9 19h2'/%3E%3Cpath stroke='%23702410' d='M1 9h1'/%3E%3Cpath stroke='%239b3016' d='M2 9h1'/%3E%3Cpath stroke='%23b03619' d='M3 9h1'/%3E%3Cpath stroke='%23b9381a' d='M5 9h1'/%3E%3Cpath stroke='%23df9a88' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23c4421e' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1m-1 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h3'/%3E%3Cpath stroke='%23c5431e' d='M14 9h1'/%3E%3Cpath stroke='%23c5431f' d='M15 9h1m-4 1h1m5 1h1m-9 1h1m-2 2h1m-1 1h1m0 2h1m0 1h1m6 0h1'/%3E%3Cpath stroke='%239e3217' d='M2 10h1'/%3E%3Cpath stroke='%23b4381a' d='M3 10h1'/%3E%3Cpath stroke='%23df9a87' d='M10 10h1m-2 1h1m-2 2h1'/%3E%3Cpath stroke='%23c6441f' d='M13 10h1m3 0h1m-8 3h1m-1 3h1'/%3E%3Cpath stroke='%23c74520' d='M14 10h2m-6 4h1m-1 1h1m7 2h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23c7451f' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%237b2711' d='M1 11h1'/%3E%3Cpath stroke='%23a13217' d='M2 11h1'/%3E%3Cpath stroke='%23b7391a' d='M3 11h1'/%3E%3Cpath stroke='%23e09b88' d='M11 11h1'/%3E%3Cpath stroke='%23e29d89' d='M12 11h1'/%3E%3Cpath stroke='%23c94621' d='M13 11h1m-3 2h1'/%3E%3Cpath stroke='%23ca4721' d='M14 11h1m2 1h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%23ca4821' d='M15 11h1m1 6h1'/%3E%3Cpath stroke='%23c94620' d='M16 11h1m1 3h1m-8 2h1m6 0h1'/%3E%3Cpath stroke='%23c84620' d='M17 11h1m0 2h1'/%3E%3Cpath stroke='%23a53418' d='M2 12h1'/%3E%3Cpath stroke='%23b83a1b' d='M3 12h1'/%3E%3Cpath stroke='%23e19d89' d='M11 12h1'/%3E%3Cpath stroke='%23e39e89' d='M12 12h1'/%3E%3Cpath stroke='%23e0947c' d='M13 12h1'/%3E%3Cpath stroke='%23cc4a22' d='M14 12h1m-3 2h1m4 0h1m-6 1h1'/%3E%3Cpath stroke='%23cd4a22' d='M15 12h1m0 1h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23cb4922' d='M16 12h1m0 1h1m-5 4h1'/%3E%3Cpath stroke='%23c3411e' d='M19 12h1m-1 1h1m-1 4h1m-8 2h2m3 0h1'/%3E%3Cpath stroke='%23a93618' d='M2 13h1'/%3E%3Cpath stroke='%23dd9987' d='M7 13h1m-2 2h1'/%3E%3Cpath stroke='%23e39f8a' d='M12 13h1'/%3E%3Cpath stroke='%23e59f8b' d='M13 13h1'/%3E%3Cpath stroke='%23e5a08b' d='M14 13h1m-2 1h1'/%3E%3Cpath stroke='%23ce4c23' d='M15 13h1m0 3h1'/%3E%3Cpath stroke='%23882b13' d='M1 14h1'/%3E%3Cpath stroke='%23e6a08b' d='M14 14h1'/%3E%3Cpath stroke='%23e6a18b' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23ce4b23' d='M16 14h1m-4 1h1'/%3E%3Cpath stroke='%238b2c14' d='M1 15h1m-1 1h1'/%3E%3Cpath stroke='%23ac3619' d='M2 15h1'/%3E%3Cpath stroke='%23d76b48' d='M15 15h1'/%3E%3Cpath stroke='%23cf4c23' d='M16 15h1m-2 1h1'/%3E%3Cpath stroke='%23c94721' d='M18 15h1m-3 3h1'/%3E%3Cpath stroke='%23bb3c1b' d='M3 16h1'/%3E%3Cpath stroke='%23bf3e1d' d='M6 16h1'/%3E%3Cpath stroke='%23cb4821' d='M12 16h1'/%3E%3Cpath stroke='%23cd4b23' d='M14 16h1'/%3E%3Cpath stroke='%23cc4922' d='M17 16h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%238d2d14' d='M1 17h1'/%3E%3Cpath stroke='%23bc3c1b' d='M3 17h1m-1 1h1'/%3E%3Cpath stroke='%23c84520' d='M11 17h1m1 1h1'/%3E%3Cpath stroke='%23ae3719' d='M2 18h1'/%3E%3Cpath stroke='%23c94720' d='M14 18h1'/%3E%3Cpath stroke='%23c95839' d='M19 18h1'/%3E%3Cpath stroke='%23a7bdf0' d='M0 19h1m0 1h1'/%3E%3Cpath stroke='%23ead7d3' d='M1 19h1'/%3E%3Cpath stroke='%23b34e35' d='M2 19h1'/%3E%3Cpath stroke='%23c03e1c' d='M8 19h1'/%3E%3Cpath stroke='%23c9583a' d='M18 19h1'/%3E%3Cpath stroke='%23f3dbd4' d='M19 19h1'/%3E%3Cpath stroke='%23a7bcef' d='M20 19h1m-2 1h1'/%3E%3C/svg%3E")
}
.status-bar{
margin: 0 3px;
box-shadow: inset 0 1px 2px grey;
padding: 2px 1px;
gap: 0
}
.status-bar-field{
-webkit-font-smoothing: antialiased;
box-shadow: none;
padding: 1px 2px;
border-right: 1px solid rgba(208,206,191,.75);
border-left: 1px solid hsla(0,0%,100%,.75)
}
.status-bar-field: first-of-type{
border-left: none
}
.status-bar-field: last-of-type{
border-right: none
}
button{
-webkit-font-smoothing: antialiased;
box-sizing: border-box;
border: 1px solid #003c74;
background: linear-gradient(180deg,#fff,#ecebe5 86%,#d8d0c4);
box-shadow: none;
border-radius: 3px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: none;
background: linear-gradient(180deg,#cdcac3,#e3e3db 8%,#e5e5de 94%,#f2f2f1)
}
button: not(: disabled): hover{
box-shadow: inset -1px 1px #fff0cf,inset 1px 2px #fdd889,inset -2px 2px #fbc761,inset 2px -2px #e5a01a
}
button.focused,button: focus{
box-shadow: inset -1px 1px #cee7ff,inset 1px 2px #98b8ea,inset -2px 2px #bcd4f6,inset 1px -1px #89ade4,inset 2px -2px #89ade4
}
button: :-moz-focus-inner{
border: 0
}
input,label,option,select,textarea{
-webkit-font-smoothing: antialiased
}
input[type=radio]{
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
margin: 0;
background: 0;
position: fixed;
opacity: 0;
border: none
}
input[type=radio]+label{
line-height: 16px
}
input[type=radio]+label: before{
background: linear-gradient(135deg,#dcdcd7,#fff);
border-radius: 50%;
border: 1px solid #1d5281
}
input[type=radio]: not([disabled]): not(: active)+label: hover: before{
box-shadow: inset -2px -2px #f8b636,inset 2px 2px #fedf9c
}
input[type=radio]: active+label: before{
background: linear-gradient(135deg,#b0b0a7,#e3e1d2)
}
input[type=radio]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a9dca6' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%234dbf4a' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23a0d29e' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%2355d551' d='M1 1h1'/%3E%3Cpath stroke='%2343c33f' d='M2 1h1'/%3E%3Cpath stroke='%2329a826' d='M3 1h1'/%3E%3Cpath stroke='%239acc98' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%2342c33f' d='M1 2h1'/%3E%3Cpath stroke='%2338b935' d='M2 2h1'/%3E%3Cpath stroke='%2321a121' d='M3 2h1'/%3E%3Cpath stroke='%23269623' d='M4 2h1'/%3E%3Cpath stroke='%232aa827' d='M1 3h1'/%3E%3Cpath stroke='%2322a220' d='M2 3h1'/%3E%3Cpath stroke='%23139210' d='M3 3h1'/%3E%3Cpath stroke='%2398c897' d='M4 3h1'/%3E%3Cpath stroke='%23249624' d='M2 4h1'/%3E%3Cpath stroke='%2398c997' d='M3 4h1'/%3E%3C/svg%3E")
}
input[type=radio]: focus+label{
outline: 1px dotted #000
}
input[type=radio][disabled]+label: before{
border: 1px solid #cac8bb;
background: #fff
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e8e6da' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23d2ceb5' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23e5e3d4' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%23d7d3bd' d='M1 1h1'/%3E%3Cpath stroke='%23d0ccb2' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23c7c2a2' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%23e2dfd0' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%23cdc8ac' d='M2 2h1'/%3E%3Cpath stroke='%23c5bf9f' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%23c3bd9c' d='M4 2h1'/%3E%3Cpath stroke='%23bfb995' d='M3 3h1'/%3E%3Cpath stroke='%23e2dfcf' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23c4be9d' d='M2 4h1'/%3E%3C/svg%3E")
}
input[type=email],input[type=password],textarea: :selection{
background: #2267cb;
color: #fff
}
input[type=range]: :-webkit-slider-thumb{
height: 21px;
width: 11px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(-8px)
}
input[type=range]: :-moz-range-thumb{
height: 21px;
width: 11px;
border: 0;
border-radius: 0;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(2px)
}
input[type=range]: :-webkit-slider-runnable-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range]: :-moz-range-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(-10px)
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(0)
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
fieldset{
box-shadow: none;
background: #fff;
border: 1px solid #d0d0bf;
border-radius: 4px;
padding-top: 10px
}
legend{
background: transparent;
color: #0046d5
}
.field-row{
display: flex;
align-items: center
}
.field-row>*+*{
margin-left: 6px
}
[class^=field-row]+[class^=field-row]{
margin-top: 6px
}
.field-row-stacked{
display: flex;
flex-direction: column
}
.field-row-stacked *+*{
margin-top: 6px
}
menu[role=tablist] button{
background: linear-gradient(180deg,#fff,#fafaf9 26%,#f0f0ea 95%,#ecebe5);
margin-left: -1px;
margin-right: 2px;
border-radius: 0;
border-color: #91a7b4;
border-top-right-radius: 3px;
border-top-left-radius: 3px;
padding: 0 12px 3px
}
menu[role=tablist] button: hover{
box-shadow: unset;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]{
border-color: #919b9c;
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]: first-of-type: before{
content: "";
display: block;
position: absolute;
z-index: -1;
top: 100%;
left: -1px;
height: 2px;
width: 0;
border-left: 1px solid #919b9c
}
[role=tabpanel]{
box-shadow: inset 1px 1px #fcfcfe,inset -1px -1px #fcfcfe,1px 2px 2px 0 rgba(208,206,191,.75)
}
ul.tree-view{
-webkit-font-smoothing: auto;
border: 1px solid #7f9db9;
padding: 2px 5px
}
@keyframes sliding{
0%{
transform: translateX(-30px)
}
to{
transform: translateX(100%)
}
}
progress{
box-sizing: border-box;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
height: 14px;
border: 1px solid #686868;
border-radius: 4px;
padding: 1px 2px 1px 0;
overflow: hidden;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress,progress: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px
}
progress[value]: :-webkit-progress-bar{
background-color: transparent
}
progress[value]: :-webkit-progress-value{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress[value]: :-moz-progress-bar{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-webkit-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-webkit-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]){
position: relative
}
progress: not([value]): before{
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before,progress: not([value]): before: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): after{
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): after,progress: not([value]): after: not([value]){
animation: sliding 2s linear 0s infinite
}
progress: not([value]): after: not([value]){
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-moz-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-moz-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress:not([value])::-moz-progress-bar {
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite;
}
progress:not([value])::after {
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
}
progress:not([value])::before {
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868;
}
Element {
}
progress:not([value]) {
position: relative;
}
progress:not([value]) {
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px;
}
</style>
</head>
<body>
<script>
var log = console.log;
var theme = 'light';
var special_col_names = ["trial_index","arm_name","trial_status","generation_method","generation_node","hostname","run_time","start_time","exit_code","signal","end_time","program_string"]
var result_names = [
"ACCURACY",
"RUNTIME"
];
var result_min_max = [
"max",
"min"
];
var tab_results_headers_json = [
"trial_index",
"arm_name",
"trial_status",
"generation_method",
"generation_node",
"ACCURACY",
"RUNTIME",
"recent_samples_size",
"n_samples",
"feature_proportion",
"n_clusters",
"confidence"
];
var tab_results_csv_json = [
[
0,
"0_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
56,
2133,
0.9072593604326248,
32,
0.025
],
[
1,
"1_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
4103,
4414,
0.1244601763729006,
25,
0.005
],
[
2,
"2_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
3090,
1193,
0.31958024847880007,
12,
0.01
],
[
3,
"3_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
1543,
3473,
0.6496748426798731,
45,
0.001
],
[
4,
"4_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
1954,
596,
0.16874598261155188,
2,
0.025
],
[
5,
"5_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
3533,
2866,
0.861998965267092,
43,
0.05
],
[
6,
"6_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
4863,
1529,
0.5732269270662218,
30,
0.01
],
[
7,
"7_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
785,
3800,
0.39505355471745135,
15,
0.005
],
[
8,
"8_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
999,
720,
0.6966383123695851,
18,
0.01
],
[
9,
"9_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
4453,
3283,
0.27261676763556897,
27,
0.001
],
[
10,
"10_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
3434,
2284,
0.04679553171992302,
40,
0.1
],
[
11,
"11_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
2482,
4848,
0.9849240143802017,
5,
0.05
],
[
12,
"12_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
1680,
1712,
0.44153080718778076,
48,
0.05
],
[
13,
"13_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
2601,
4285,
0.5267496634423733,
9,
0.1
],
[
14,
"14_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
4,
3927,
150,
0.7838478654529899,
22,
0.25
],
[
15,
"15_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
505,
2723,
0.24689707127213478,
35,
0.001
],
[
16,
"16_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
1,
391,
268,
0.8409959834069014,
37,
0.001
],
[
17,
"17_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
3812,
2530,
0.12825716332159937,
20,
0.05
],
[
18,
"18_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
2794,
1827,
0.4326262975782156,
8,
0.25
],
[
19,
"19_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
1872,
4088,
0.5990951223131269,
50,
0.01
],
[
20,
"20_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
2288,
2480,
0.0790982507225126,
4,
0.1
],
[
21,
"21_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
3242,
4731,
0.8891802866309881,
41,
0.005
],
[
22,
"22_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
4567,
914,
0.6784669255372137,
28,
0.025
],
[
23,
"23_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
1115,
3166,
0.3522798849791288,
16,
0.25
],
[
24,
"24_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
665,
1336,
0.5526190149374306,
13,
0.05
],
[
25,
"25_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
4744,
3919,
0.47910241610743104,
31,
0.005
],
[
26,
"26_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
3730,
399,
0.2064090513177216,
44,
0.001
],
[
27,
"27_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
2153,
2982,
0.7628441065642982,
1,
0.1
],
[
28,
"28_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
1345,
1076,
0.30531538916565476,
46,
0.1
],
[
29,
"29_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.91,
0,
2892,
3669,
0.7254314325042069,
11,
0.025
],
[
30,
"30_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3031,
2310,
0.41064808832337185,
50,
0.025
],
[
31,
"31_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
332,
519,
0.001,
50,
0.05
],
[
32,
"32_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
357,
533,
0.001,
50,
0.01
],
[
33,
"33_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1735,
4629,
0.5043675030704862,
1,
0.05
],
[
34,
"34_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3712,
524,
0.001,
50,
0.005
],
[
35,
"35_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
387,
4906,
0.4052169468847386,
1,
0.01
],
[
36,
"36_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
3120,
530,
0.001,
50,
0.001
],
[
37,
"37_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1234,
4647,
0.4587615149677127,
1,
0.001
],
[
38,
"38_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4970,
4401,
0.4261493957731293,
1,
0.025
],
[
39,
"39_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3671,
515,
0.001,
50,
0.05
],
[
40,
"40_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
434,
4959,
0.4168222533606635,
50,
0.001
],
[
41,
"41_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
691,
2346,
0.40960838762894686,
49,
0.1
],
[
42,
"42_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4809,
527,
0.001,
50,
0.025
],
[
43,
"43_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3831,
504,
0.001,
50,
0.01
],
[
44,
"44_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
134,
4942,
0.40291999950567503,
1,
0.1
],
[
45,
"45_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
693,
3825,
0.15665164623527314,
1,
0.001
],
[
46,
"46_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3527,
4988,
0.4058968034036463,
1,
0.001
],
[
47,
"47_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
670,
2398,
0.4284955626609721,
50,
0.005
],
[
48,
"48_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4919,
2368,
0.40923547930255144,
50,
0.01
],
[
49,
"49_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3952,
2345,
0.40908344207543196,
1,
0.005
],
[
50,
"50_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3636,
531,
0.001,
50,
0.1
],
[
51,
"51_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
225,
2374,
0.41848974700236324,
50,
0.025
],
[
52,
"52_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2162,
502,
0.001,
50,
0.005
],
[
53,
"53_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4728,
2402,
0.42743728607626263,
50,
0.005
],
[
54,
"54_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3984,
2371,
0.41715405054157695,
50,
0.05
],
[
55,
"55_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1930,
5000,
0.47404201962237313,
50,
0.05
],
[
56,
"56_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1982,
3994,
0.37614048544479833,
1,
0.025
],
[
57,
"57_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
86,
533,
0.001,
50,
0.005
],
[
58,
"58_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4508,
2388,
0.4115105047035801,
50,
0.001
],
[
59,
"59_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2347,
5000,
0.3361172208055097,
1,
0.025
],
[
60,
"60_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
620,
2411,
0.44545674444384986,
5,
0.25
],
[
61,
"61_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4997,
917,
0.999,
1,
0.025
],
[
62,
"62_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
5000,
685,
0.8261529001606592,
1,
0.1
],
[
63,
"63_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2855,
2454,
0.32778345507572976,
1,
0.25
],
[
64,
"64_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
5000,
695,
0.999,
1,
0.05
],
[
65,
"65_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
643,
2365,
0.5244323304149427,
31,
0.25
],
[
66,
"66_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1810,
2397,
0.8304427809585868,
50,
0.25
],
[
67,
"67_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4353,
2435,
0.001,
1,
0.25
],
[
68,
"68_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1777,
3735,
0.001,
50,
0.05
],
[
69,
"69_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
5000,
845,
0.999,
1,
0.005
],
[
70,
"70_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
5000,
779,
0.999,
1,
0.1
],
[
71,
"71_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1690,
2428,
0.001,
1,
0.25
],
[
72,
"72_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3959,
4617,
0.7276067538432607,
1,
0.01
],
[
73,
"73_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2541,
1210,
0.999,
1,
0.005
],
[
74,
"74_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4940,
5000,
0.001,
50,
0.01
],
[
75,
"75_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4111,
2475,
0.001,
47,
0.25
],
[
76,
"76_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4978,
885,
0.999,
1,
0.1
],
[
77,
"77_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
363,
2415,
0.001,
1,
0.25
],
[
78,
"78_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3832,
3043,
0.999,
50,
0.01
],
[
79,
"79_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4858,
3133,
0.001,
1,
0.05
],
[
80,
"80_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2515,
4483,
0.999,
50,
0.1
],
[
81,
"81_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
217,
2400,
0.001,
1,
0.01
],
[
82,
"82_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1155,
2400,
0.7732228901992143,
1,
0.05
],
[
83,
"83_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2099,
1346,
0.001,
1,
0.005
],
[
84,
"84_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1238,
1446,
0.999,
1,
0.005
],
[
85,
"85_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4556,
2451,
0.9754006707129373,
1,
0.05
],
[
86,
"86_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2465,
2739,
0.999,
1,
0.01
],
[
87,
"87_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2342,
1340,
0.999,
1,
0.1
],
[
88,
"88_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
85,
3830,
0.999,
50,
0.005
],
[
89,
"89_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3675,
3138,
0.001,
50,
0.1
],
[
90,
"90_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4529,
2281,
0.999,
50,
0.25
],
[
91,
"91_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3840,
2199,
0.001,
1,
0.01
],
[
92,
"92_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
5000,
838,
0.001,
50,
0.05
],
[
93,
"93_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
673,
2843,
0.993776073383994,
1,
0.01
],
[
94,
"94_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4726,
4714,
0.999,
50,
0.025
],
[
95,
"95_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1613,
4386,
0.999,
1,
0.005
],
[
96,
"96_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
862,
2227,
0.999,
1,
0.01
],
[
97,
"97_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4143,
3083,
0.999,
50,
0.001
],
[
98,
"98_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1104,
3577,
0.001,
1,
0.25
],
[
99,
"99_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
424,
4409,
0.001,
50,
0.01
],
[
100,
"100_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
94,
3064,
0.4985499038062513,
50,
0.01
],
[
101,
"101_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4650,
784,
0.001,
1,
0.1
],
[
102,
"102_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4150,
2786,
0.999,
50,
0.025
],
[
103,
"103_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
5000,
1,
0.02952822113345603,
1,
0.05
],
[
104,
"104_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1555,
4874,
0.999,
50,
0.1
],
[
105,
"105_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
626,
4875,
0.001,
1,
0.1
],
[
106,
"106_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
5000,
634,
0.001,
1,
0.025
],
[
107,
"107_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4873,
2500,
0.001,
1,
0.001
],
[
108,
"108_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
963,
4307,
0.001,
50,
0.05
],
[
109,
"109_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
530,
4582,
0.999,
50,
0.025
],
[
110,
"110_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3594,
3986,
0.999,
1,
0.25
],
[
111,
"111_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4956,
3832,
0.999,
12,
0.25
],
[
112,
"112_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1591,
3232,
0.001,
1,
0.01
],
[
113,
"113_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4637,
2198,
0.999,
11,
0.25
],
[
114,
"114_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3428,
1851,
0.001,
50,
0.005
],
[
115,
"115_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
342,
3928,
0.6237255978649218,
50,
0.25
],
[
116,
"116_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3516,
3765,
0.999,
1,
0.05
],
[
117,
"117_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
613,
2241,
0.999,
1,
0.25
],
[
118,
"118_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1035,
4245,
0.999,
50,
0.25
],
[
119,
"119_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2097,
3050,
0.001,
50,
0.025
],
[
120,
"120_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
183,
2845,
0.999,
50,
0.1
],
[
121,
"121_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
895,
4568,
0.001,
4,
0.005
],
[
122,
"122_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1438,
3452,
0.001,
1,
0.025
],
[
123,
"123_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
907,
3703,
0.999,
50,
0.025
],
[
124,
"124_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
568,
1036,
0.999,
1,
0.005
],
[
125,
"125_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
97,
1026,
0.999,
1,
0.05
],
[
126,
"126_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3594,
3834,
0.001,
50,
0.01
],
[
127,
"127_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
784,
3700,
0.001,
50,
0.1
],
[
128,
"128_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4439,
1061,
0.001,
1,
0.005
],
[
129,
"129_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
435,
3797,
0.999,
50,
0.01
],
[
130,
"130_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1968,
3872,
0.001,
50,
0.025
],
[
131,
"131_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4936,
1045,
0.001,
1,
0.025
],
[
132,
"132_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1260,
3769,
0.001,
50,
0.005
],
[
133,
"133_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4648,
1111,
0.001,
1,
0.05
],
[
134,
"134_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4011,
3352,
0.001,
46,
0.025
],
[
135,
"135_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1710,
3381,
0.999,
50,
0.05
],
[
136,
"136_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
528,
4796,
0.0010235554018516552,
50,
0.005
],
[
137,
"137_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4669,
3360,
0.001,
48,
0.1
],
[
138,
"138_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4954,
2816,
0.999,
50,
0.1
],
[
139,
"139_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1934,
3879,
0.001,
1,
0.01
],
[
140,
"140_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3450,
2242,
0.001,
1,
0.025
],
[
141,
"141_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2205,
5000,
0.001,
1,
0.25
],
[
142,
"142_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
741,
1026,
0.999,
1,
0.1
],
[
143,
"143_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3095,
3884,
0.999,
1,
0.01
],
[
144,
"144_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4859,
4608,
0.999,
1,
0.05
],
[
145,
"145_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2792,
1060,
0.001,
1,
0.025
],
[
146,
"146_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4775,
3796,
0.999,
50,
0.1
],
[
147,
"147_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
189,
3831,
0.001,
50,
0.025
],
[
148,
"148_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
53,
4114,
0.999,
1,
0.025
],
[
149,
"149_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
713,
1347,
0.999,
50,
0.1
],
[
150,
"150_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
4921,
510,
0.999,
13,
0.001
],
[
151,
"151_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1216,
733,
0.999,
1,
0.01
],
[
152,
"152_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1932,
797,
0.001,
43,
0.01
],
[
153,
"153_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2875,
4542,
0.001,
1,
0.001
],
[
154,
"154_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
3,
1933,
144,
0.0010000000000000009,
38,
0.025
],
[
155,
"155_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1953,
748,
0.001,
35,
0.01
],
[
156,
"156_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4700,
1251,
0.999,
1,
0.001
],
[
157,
"157_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
4,
4995,
178,
0.999,
50,
0.025
],
[
158,
"158_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
2,
4922,
196,
0.001,
1,
0.001
],
[
159,
"159_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1500,
1727,
0.001,
50,
0.25
],
[
160,
"160_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
62,
4896,
121,
0.999,
50,
0.001
],
[
161,
"161_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
3427,
199,
0.999,
50,
0.1
],
[
162,
"162_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
287,
1704,
0.999,
50,
0.25
],
[
163,
"163_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1701,
1378,
0.999,
50,
0.005
],
[
164,
"164_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4490,
4433,
0.999,
10,
0.25
],
[
165,
"165_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
300,
3098,
0.999,
50,
0.001
],
[
166,
"166_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
937,
815,
0.999,
1,
0.25
],
[
167,
"167_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
4644,
471,
0.001,
19,
0.001
],
[
168,
"168_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
427,
4552,
0.001,
32,
0.25
],
[
169,
"169_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
2124,
323,
0.999,
50,
0.01
],
[
170,
"170_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
3972,
323,
0.999,
50,
0.05
],
[
171,
"171_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
748,
697,
0.001,
33,
0.25
],
[
172,
"172_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1549,
1198,
0.001,
1,
0.01
],
[
173,
"173_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
2431,
340,
0.001,
26,
0.01
],
[
174,
"174_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
349,
4561,
0.001,
50,
0.25
],
[
175,
"175_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1082,
393,
0.001,
1,
0.01
],
[
176,
"176_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1649,
53,
0.999,
1,
0.01
],
[
177,
"177_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4428,
2477,
0.001,
50,
0.001
],
[
178,
"178_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4429,
4844,
0.999,
28,
0.001
],
[
179,
"179_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2054,
4989,
0.999,
50,
0.001
],
[
180,
"180_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4100,
661,
0.001,
44,
0.001
],
[
181,
"181_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1730,
651,
0.999,
44,
0.001
],
[
182,
"182_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
111,
451,
0.9542554711250371,
37,
0.005
],
[
183,
"183_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4793,
1780,
0.001,
49,
0.001
],
[
184,
"184_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3626,
3097,
0.001,
20,
0.25
],
[
185,
"185_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
1072,
434,
0.001,
36,
0.001
],
[
186,
"186_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2339,
4364,
0.001,
29,
0.1
],
[
187,
"187_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
118,
312,
0.001,
23,
0.001
],
[
188,
"188_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3862,
1700,
0.999,
1,
0.025
],
[
189,
"189_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3101,
1987,
0.001,
2,
0.001
],
[
190,
"190_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3104,
1206,
0.001,
7,
0.05
],
[
191,
"191_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3057,
3462,
0.001,
1,
0.1
],
[
192,
"192_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
917,
2160,
0.6189931788524364,
42,
0.001
],
[
193,
"193_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4603,
553,
0.999,
46,
0.25
],
[
194,
"194_0",
"FAILED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
3376,
1,
0.001,
10,
0.005
],
[
195,
"195_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2008,
1141,
0.025647193782838064,
50,
0.001
],
[
196,
"196_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3428,
4455,
0.9103786965085964,
28,
0.001
],
[
197,
"197_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
791,
1568,
0.999,
5,
0.25
],
[
198,
"198_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2136,
3097,
0.07796484612992775,
14,
0.001
],
[
199,
"199_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3398,
3174,
0.001,
33,
0.001
],
[
200,
"200_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
425,
2430,
0.1577255825427562,
35,
0.025
],
[
201,
"201_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2266,
2819,
0.5763293020013667,
22,
0.001
],
[
202,
"202_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4036,
4203,
0.9501322578872753,
50,
0.001
],
[
203,
"203_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1504,
1983,
0.001,
30,
0.025
],
[
204,
"204_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1194,
2728,
0.999,
43,
0.001
],
[
205,
"205_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3372,
3941,
0.001,
45,
0.005
],
[
206,
"206_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
161,
2908,
0.001,
18,
0.025
],
[
207,
"207_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
659,
4650,
0.001,
41,
0.001
],
[
208,
"208_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2436,
2812,
0.001,
29,
0.25
],
[
209,
"209_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3551,
3658,
0.999,
31,
0.01
],
[
210,
"210_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1917,
4626,
0.001,
22,
0.005
],
[
211,
"211_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
4275,
246,
0.001,
39,
0.01
],
[
212,
"212_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4108,
730,
0.001,
50,
0.001
],
[
213,
"213_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
997,
2849,
0.999,
24,
0.1
],
[
214,
"214_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
354,
4237,
0.999,
39,
0.005
],
[
215,
"215_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3712,
4218,
0.001,
39,
0.01
],
[
216,
"216_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3095,
5000,
0.001,
39,
0.25
],
[
217,
"217_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3915,
350,
0.963488666825792,
43,
0.001
],
[
218,
"218_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
868,
3474,
0.999,
7,
0.001
],
[
219,
"219_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.001,
2,
0.001
],
[
220,
"220_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2138,
5000,
0.001,
1,
0.001
],
[
221,
"221_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
251,
4911,
0.001,
1,
0.05
],
[
222,
"222_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
717,
619,
0.001,
1,
0.1
],
[
223,
"223_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.25
],
[
224,
"224_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3331,
4804,
0.001,
1,
0.025
],
[
225,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.005
],
[
226,
"226_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.025
],
[
227,
"227_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.01
],
[
228,
"228_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2897,
5000,
0.001,
1,
0.1
],
[
229,
"229_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.001
],
[
230,
"230_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4904,
4599,
0.001,
5,
0.025
],
[
231,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.05
],
[
232,
"232_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
3,
483,
130,
0.001,
1,
0.1
],
[
233,
"233_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.1
],
[
234,
"229_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.001
],
[
235,
"235_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
28,
446,
0.001,
1,
0.025
],
[
236,
"236_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2601,
649,
0.999,
26,
0.025
],
[
237,
"237_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3973,
2641,
0.001,
1,
0.005
],
[
238,
"233_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.1
],
[
239,
"229_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.001
],
[
240,
"240_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
2,
943,
228,
0.999,
1,
0.05
],
[
241,
"241_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
2,
3022,
238,
0.999,
1,
0.005
],
[
242,
"242_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
2531,
545,
0.001,
50,
0.05
],
[
243,
"243_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2863,
2263,
0.001,
1,
0.001
],
[
244,
"244_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
667,
5000,
0.001,
28,
0.01
],
[
245,
"245_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3084,
1005,
0.001,
50,
0.25
],
[
246,
"246_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1753,
426,
0.001,
16,
0.05
],
[
247,
"247_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
862,
625,
0.001,
50,
0.001
],
[
248,
"248_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1466,
1233,
0.001,
35,
0.05
],
[
249,
"249_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3380,
2117,
0.999,
19,
0.001
],
[
250,
"250_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4053,
1468,
0.001,
50,
0.01
],
[
251,
"251_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
54,
5000,
0.001,
32,
0.001
],
[
252,
"252_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
71,
1838,
0.001,
5,
0.01
],
[
253,
"253_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1801,
3550,
0.999,
26,
0.05
],
[
254,
"254_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4656,
3439,
0.999,
27,
0.01
],
[
255,
"255_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
4283,
319,
0.999,
34,
0.001
],
[
256,
"256_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1089,
3230,
0.001,
16,
0.005
],
[
257,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.05
],
[
258,
"226_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.025
],
[
259,
"259_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.001,
37,
0.1
],
[
260,
"260_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.001,
18,
0.01
],
[
261,
"261_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4932,
3735,
0.001,
19,
0.01
],
[
262,
"262_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3460,
2583,
0.001,
50,
0.1
],
[
263,
"223_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.25
],
[
264,
"264_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3519,
5000,
0.001,
50,
0.025
],
[
265,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.05
],
[
266,
"266_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3218,
5000,
0.001,
1,
0.005
],
[
267,
"267_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
135,
628,
0.001,
17,
0.025
],
[
268,
"268_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.001,
19,
0.005
],
[
269,
"269_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4877,
4792,
0.001,
20,
0.025
],
[
270,
"270_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
75,
5000,
0.001,
18,
0.001
],
[
271,
"226_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.025
],
[
272,
"272_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4789,
1481,
0.001,
14,
0.01
],
[
273,
"273_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
636,
4475,
0.001,
13,
0.025
],
[
274,
"274_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
812,
4867,
0.001,
18,
0.025
],
[
275,
"275_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
3033,
318,
0.001,
11,
0.025
],
[
276,
"276_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
2,
806,
113,
0.001,
15,
0.025
],
[
277,
"277_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1604,
5000,
0.001,
1,
0.05
],
[
278,
"278_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1712,
4645,
0.001,
18,
0.025
],
[
279,
"279_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
258,
4803,
0.001,
15,
0.025
],
[
280,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.005
],
[
281,
"227_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.01
],
[
282,
"282_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
319,
133,
0.001,
10,
0.025
],
[
283,
"283_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1506,
4858,
0.001,
3,
0.025
],
[
284,
"223_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.25
],
[
285,
"285_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3058,
2059,
0.2276442541779499,
42,
0.005
],
[
286,
"286_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4695,
4504,
0.001,
8,
0.1
],
[
287,
"287_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1807,
1813,
0.001,
16,
0.025
],
[
288,
"288_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3437,
4811,
0.001,
15,
0.025
],
[
289,
"289_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
309,
4998,
0.001,
20,
0.025
],
[
290,
"233_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.1
],
[
291,
"291_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4076,
5000,
0.001,
1,
0.1
],
[
292,
"223_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.25
],
[
293,
"293_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1375,
663,
0.36592538000417135,
1,
0.1
],
[
294,
"227_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.01
],
[
295,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.005
],
[
296,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.05
],
[
297,
"223_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.25
],
[
298,
"298_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4384,
3015,
0.001,
7,
0.025
],
[
299,
"299_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4518,
3519,
0.001,
1,
0.25
],
[
300,
"300_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3957,
891,
0.001,
14,
0.025
],
[
301,
"301_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
185,
524,
0.001,
16,
0.025
],
[
302,
"302_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4949,
4821,
0.001,
15,
0.025
],
[
303,
"303_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4976,
3025,
0.001,
20,
0.025
],
[
304,
"223_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.25
],
[
305,
"305_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
151,
2349,
0.001,
10,
0.025
],
[
306,
"229_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.001
],
[
307,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.05
],
[
308,
"308_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
12,
4128,
53,
0.001,
19,
0.025
],
[
309,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.005
],
[
310,
"310_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
5000,
294,
0.001,
1,
0.001
],
[
311,
"226_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.025
],
[
312,
"312_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3755,
5000,
0.001,
1,
0.01
],
[
313,
"313_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
2,
1286,
224,
0.001,
17,
0.01
],
[
314,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.05
],
[
315,
"315_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3024,
5000,
0.001,
1,
0.05
],
[
316,
"316_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3270,
584,
0.001,
16,
0.1
],
[
317,
"317_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
84,
4921,
0.999,
1,
0.25
],
[
318,
"318_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3523,
4987,
0.001,
17,
0.001
],
[
319,
"319_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
57,
1017,
0.001,
19,
0.025
],
[
320,
"226_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.025
],
[
321,
"321_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1524,
5000,
0.001,
1,
0.25
],
[
322,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.005
],
[
323,
"323_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
21,
2022,
0.001,
17,
0.025
],
[
324,
"324_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4973,
1891,
0.001,
18,
0.025
],
[
325,
"325_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4323,
4652,
0.001,
18,
0.05
],
[
326,
"326_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4003,
5000,
0.001,
1,
0.25
],
[
327,
"327_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3924,
5000,
0.001,
1,
0.05
],
[
328,
"227_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.01
],
[
329,
"329_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3596,
417,
0.001,
8,
0.005
],
[
330,
"330_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
598,
416,
0.999,
41,
0.001
],
[
331,
"331_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1633,
5000,
0.001,
1,
0.001
],
[
332,
"332_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.001,
20,
0.05
],
[
333,
"333_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
83,
4187,
0.001,
20,
0.025
],
[
334,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.05
],
[
335,
"335_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
57,
2754,
0.001,
17,
0.025
],
[
336,
"336_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
2316,
474,
0.001,
17,
0.25
],
[
337,
"337_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.0019708308075793855,
20,
0.025
],
[
338,
"338_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
300,
607,
0.001,
19,
0.005
],
[
339,
"339_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
52,
397,
0.001,
9,
0.1
],
[
340,
"340_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3732,
3261,
0.1860611702500999,
28,
0.1
],
[
341,
"341_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1487,
3477,
0.24511018932932305,
7,
0.005
],
[
342,
"342_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2431,
883,
0.001,
44,
0.05
],
[
343,
"343_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3433,
2708,
0.5379727097325452,
50,
0.1
],
[
344,
"229_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.001
],
[
345,
"345_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4309,
5000,
0.001,
1,
0.005
],
[
346,
"346_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.001,
26,
0.025
],
[
347,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.005
],
[
348,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.05
],
[
349,
"349_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2261,
5000,
0.20096236028882092,
24,
0.025
],
[
350,
"350_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3032,
1362,
0.999,
25,
0.05
],
[
351,
"351_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
531,
2349,
0.999,
13,
0.001
],
[
352,
"352_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
370,
1350,
0.001,
20,
0.01
],
[
353,
"353_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2966,
4413,
0.001,
42,
0.25
],
[
354,
"354_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3774,
4853,
0.001,
22,
0.01
],
[
355,
"355_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4159,
688,
0.001,
1,
0.01
],
[
356,
"356_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2707,
5000,
0.001,
18,
0.005
],
[
357,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.005
],
[
358,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.05
],
[
359,
"359_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.001,
4,
0.001
],
[
360,
"360_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
731,
0.001,
23,
0.005
],
[
361,
"361_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2222,
635,
0.001,
10,
0.025
],
[
362,
"227_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.01
],
[
363,
"363_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1131,
1889,
0.7826504319458195,
49,
0.001
],
[
364,
"364_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.32682141392671527,
21,
0.001
],
[
365,
"365_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.001,
19,
0.25
],
[
366,
"227_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.01
],
[
367,
"367_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3464,
5000,
0.001,
1,
0.001
],
[
368,
"368_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
836,
1314,
0.999,
43,
0.01
],
[
369,
"369_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3053,
4588,
0.001,
16,
0.001
],
[
370,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.005
],
[
371,
"227_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.01
],
[
372,
"372_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
653,
1434,
0.001,
1,
0.005
],
[
373,
"373_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2784,
4856,
0.999,
39,
0.01
],
[
374,
"374_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4842,
2919,
0.001,
35,
0.25
],
[
375,
"375_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
532,
5000,
0.001,
1,
0.001
],
[
376,
"376_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
550,
1992,
0.999,
33,
0.001
],
[
377,
"377_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4550,
1864,
0.999,
37,
0.01
],
[
378,
"378_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1373,
2402,
0.999,
37,
0.001
],
[
379,
"379_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1763,
887,
0.999,
50,
0.005
],
[
380,
"380_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1268,
566,
0.001,
31,
0.001
],
[
381,
"381_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3026,
4414,
0.999,
44,
0.001
],
[
382,
"382_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4471,
1321,
0.999,
42,
0.001
],
[
383,
"383_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
747,
1427,
0.999,
6,
0.001
],
[
384,
"384_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.001,
29,
0.025
],
[
385,
"385_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
605,
3302,
0.001,
18,
0.05
],
[
386,
"386_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1679,
2516,
0.001,
9,
0.1
],
[
387,
"387_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
559,
1193,
0.001,
10,
0.005
],
[
388,
"388_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4770,
4606,
0.001,
18,
0.1
],
[
389,
"389_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4496,
4991,
0.001,
18,
0.005
],
[
390,
"390_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
263,
1262,
0.001,
13,
0.05
],
[
391,
"391_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
868,
2595,
0.001,
16,
0.05
],
[
392,
"392_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3737,
2595,
0.999,
15,
0.001
],
[
393,
"393_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3980,
3119,
0.999,
42,
0.05
],
[
394,
"394_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
106,
2133,
0.999,
8,
0.001
],
[
395,
"395_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1052,
537,
0.001,
42,
0.005
],
[
396,
"396_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3754,
1559,
0.999,
1,
0.1
],
[
397,
"397_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3985,
1564,
0.001,
50,
0.1
],
[
398,
"398_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
945,
4014,
0.24238697074458973,
25,
0.05
],
[
399,
"399_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
840,
765,
0.999,
37,
0.1
],
[
400,
"400_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4539,
3341,
0.999,
1,
0.005
],
[
401,
"401_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2585,
3994,
0.999,
30,
0.001
],
[
402,
"402_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3962,
2417,
0.02807262507136601,
23,
0.05
],
[
403,
"403_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1642,
1338,
0.001,
4,
0.001
],
[
404,
"404_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
705,
175,
0.001,
12,
0.05
],
[
405,
"405_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4620,
3503,
0.001,
32,
0.25
],
[
406,
"406_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
46,
2592,
0.999,
50,
0.1
],
[
407,
"407_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2544,
4170,
0.999,
12,
0.025
],
[
408,
"408_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
205,
1242,
0.001,
10,
0.005
],
[
409,
"409_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2497,
1183,
0.001,
50,
0.005
],
[
410,
"410_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4341,
3321,
0.001,
40,
0.25
],
[
411,
"411_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2038,
2019,
0.001,
13,
0.05
],
[
412,
"412_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3964,
1775,
0.001,
6,
0.001
],
[
413,
"413_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3328,
2579,
0.999,
39,
0.1
],
[
414,
"414_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
4772,
0.001,
18,
0.001
],
[
415,
"415_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
792,
1621,
0.999,
30,
0.1
],
[
416,
"416_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4963,
4574,
0.001,
13,
0.1
],
[
417,
"417_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
5000,
483,
0.001,
44,
0.005
],
[
418,
"418_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
910,
2977,
0.999,
34,
0.05
],
[
419,
"419_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2912,
2076,
0.001,
50,
0.01
],
[
420,
"420_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3289,
2538,
0.001,
28,
0.1
],
[
421,
"421_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3285,
2936,
0.999,
35,
0.001
],
[
422,
"422_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4766,
1067,
0.999,
22,
0.25
],
[
423,
"423_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
357,
1914,
0.999,
17,
0.001
],
[
424,
"424_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
3920,
0.001,
14,
0.001
],
[
425,
"425_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1066,
3921,
0.999,
14,
0.005
],
[
426,
"426_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
746,
1708,
0.4573056286456728,
50,
0.025
],
[
427,
"427_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3005,
3492,
0.001,
17,
0.01
],
[
428,
"428_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
97,
2665,
0.001,
14,
0.01
],
[
429,
"429_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1152,
2056,
0.001,
8,
0.1
],
[
430,
"430_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4538,
1816,
0.001,
3,
0.01
],
[
431,
"431_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1841,
3287,
0.001,
10,
0.25
],
[
432,
"432_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4711,
4323,
0.001,
23,
0.005
],
[
433,
"433_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
4099,
0.0734449822400176,
13,
0.025
],
[
434,
"434_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
372,
1862,
0.001,
17,
0.005
],
[
435,
"435_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4943,
3119,
0.001,
7,
0.1
],
[
436,
"436_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3539,
763,
0.999,
29,
0.25
],
[
437,
"437_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
1744,
184,
0.001,
23,
0.001
],
[
438,
"438_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4514,
4640,
0.999,
29,
0.001
],
[
439,
"439_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
3317,
0.001,
15,
0.001
],
[
440,
"440_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
5000,
637,
0.7538482195091332,
1,
0.001
],
[
441,
"441_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4086,
4233,
0.9582588874047921,
38,
0.005
],
[
442,
"442_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
5000,
363,
0.999,
1,
0.001
],
[
443,
"443_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
146,
4129,
0.14571470477678114,
16,
0.001
],
[
444,
"444_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4526,
3196,
0.001,
9,
0.05
],
[
445,
"445_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
927,
3275,
0.7035201792934183,
50,
0.005
],
[
446,
"446_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4859,
4546,
0.999,
46,
0.005
],
[
447,
"447_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1149,
1551,
0.001,
34,
0.01
],
[
448,
"448_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
1,
173,
0.001,
15,
0.001
],
[
449,
"449_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
2869,
330,
0.3540841384375866,
50,
0.001
],
[
450,
"450_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
367,
2242,
0.001,
8,
0.05
],
[
451,
"451_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4962,
1785,
0.001,
6,
0.01
],
[
452,
"452_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3395,
4842,
0.009998748776895428,
20,
0.001
],
[
453,
"453_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2973,
1620,
0.001,
1,
0.25
],
[
454,
"454_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
55,
3245,
0.001,
8,
0.001
],
[
455,
"455_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4180,
906,
0.001,
14,
0.01
],
[
456,
"456_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
875,
4084,
0.14651864370875342,
20,
0.005
],
[
457,
"457_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
94,
3577,
0.02327773851112432,
19,
0.1
],
[
458,
"458_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1276,
2806,
0.029994820202927173,
12,
0.01
],
[
459,
"459_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
579,
641,
0.001,
6,
0.005
],
[
460,
"460_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
279,
4611,
0.3359248083038842,
19,
0.005
],
[
461,
"461_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
431,
1077,
0.001,
9,
0.1
],
[
462,
"462_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4930,
3803,
0.09668105696656208,
11,
0.01
],
[
463,
"463_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4075,
4796,
0.009785618276395097,
21,
0.1
],
[
464,
"464_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4384,
4771,
0.5396463161899256,
50,
0.05
],
[
465,
"465_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4010,
1408,
0.999,
50,
0.001
],
[
466,
"466_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
362,
1243,
0.6652381455374503,
33,
0.1
],
[
467,
"467_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
174,
4346,
0.001,
13,
0.05
],
[
468,
"468_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4734,
3045,
0.5426684242819018,
50,
0.05
],
[
469,
"469_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
101,
1390,
0.001,
1,
0.005
],
[
470,
"470_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
4737,
413,
0.001,
1,
0.01
],
[
471,
"471_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
392,
319,
0.999,
23,
0.001
],
[
472,
"472_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3716,
2269,
0.999,
27,
0.025
],
[
473,
"473_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
3331,
0.001,
1,
0.025
],
[
474,
"474_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4380,
3755,
0.001,
1,
0.005
],
[
475,
"475_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
338,
348,
0.001,
1,
0.025
],
[
476,
"476_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4336,
3597,
0.001,
1,
0.025
],
[
477,
"477_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4198,
2926,
0.999,
1,
0.025
],
[
478,
"478_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2032,
1276,
0.999,
50,
0.01
],
[
479,
"479_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
5000,
617,
0.999,
38,
0.1
],
[
480,
"480_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
203,
4805,
0.999,
50,
0.01
],
[
481,
"481_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
543,
0.7667116392731638,
29,
0.001
],
[
482,
"482_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
218,
319,
0.999,
37,
0.001
],
[
483,
"483_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3651,
4031,
0.001,
21,
0.001
],
[
484,
"484_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
452,
525,
0.999,
34,
0.01
],
[
485,
"485_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
2393,
413,
0.001,
1,
0.005
],
[
486,
"486_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2738,
1598,
0.999,
29,
0.25
],
[
487,
"487_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
2288,
384,
0.999,
50,
0.001
],
[
488,
"488_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
6,
827,
0.999,
6,
0.001
],
[
489,
"489_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
2446,
194,
0.001,
1,
0.001
],
[
490,
"490_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
156,
515,
0.001,
9,
0.1
],
[
491,
"491_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
723,
1975,
0.44923546581769425,
31,
0.05
],
[
492,
"492_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
2178,
263,
0.001,
20,
0.001
],
[
493,
"493_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4706,
915,
0.999,
50,
0.05
],
[
494,
"494_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2943,
587,
0.999,
50,
0.001
],
[
495,
"495_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1023,
4149,
0.001,
1,
0.001
],
[
496,
"496_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1053,
5000,
0.001,
1,
0.1
],
[
497,
"497_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4178,
4721,
0.001,
1,
0.01
],
[
498,
"498_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4733,
5000,
0.001,
1,
0.1
],
[
499,
"499_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4530,
5000,
0.001,
1,
0.005
],
[
500,
"500_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2689,
729,
0.999,
1,
0.001
],
[
501,
"501_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
5000,
4772,
0.999,
50,
0.001
],
[
502,
"502_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1858,
5000,
0.001,
1,
0.005
],
[
503,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.005
],
[
504,
"504_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
607,
1651,
0.09472949419306306,
28,
0.001
],
[
505,
"505_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
540,
0.999,
40,
0.001
],
[
506,
"506_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2578,
5000,
0.001,
1,
0.001
],
[
507,
"507_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4647,
5000,
0.001,
1,
0.25
],
[
508,
"508_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4132,
5000,
0.001,
1,
0.05
],
[
509,
"223_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.25
],
[
510,
"510_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
78,
379,
0.001,
50,
0.05
],
[
511,
"511_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4134,
641,
0.999,
15,
0.01
],
[
512,
"512_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
1,
225,
0.999,
26,
0.05
],
[
513,
"513_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2262,
5000,
0.001,
1,
0.025
],
[
514,
"514_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
5000,
5000,
0.001,
1,
0.25
],
[
515,
"515_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4473,
5000,
0.001,
1,
0.025
],
[
516,
"516_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4503,
769,
0.41035779925773497,
6,
0.01
],
[
517,
"517_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
448,
5000,
0.001,
1,
0.005
],
[
518,
"518_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4545,
5000,
0.001,
1,
0.01
],
[
519,
"519_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4773,
5000,
0.001,
1,
0.025
],
[
520,
"520_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1462,
846,
0.001,
21,
0.01
],
[
521,
"521_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
1629,
438,
0.001,
50,
0.05
],
[
522,
"522_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
4117,
0.001,
1,
0.001
],
[
523,
"523_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
982,
0.001,
50,
0.25
],
[
524,
"524_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1954,
3399,
0.4787626384253156,
25,
0.005
],
[
525,
"525_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
564,
3781,
0.001,
28,
0.25
],
[
526,
"526_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
5000,
378,
0.999,
13,
0.01
],
[
527,
"527_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1857,
4699,
0.26886999645295523,
1,
0.1
],
[
528,
"528_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4068,
3371,
0.001,
1,
0.05
],
[
529,
"529_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4494,
5000,
0.001,
1,
0.01
],
[
530,
"227_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.01
],
[
531,
"531_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
3892,
0.001,
1,
0.005
],
[
532,
"532_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1655,
2532,
0.001,
1,
0.1
],
[
533,
"533_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
1,
253,
0.001,
50,
0.05
],
[
534,
"534_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1658,
1026,
0.9168241564329709,
13,
0.001
],
[
535,
"535_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2228,
3391,
0.001,
25,
0.001
],
[
536,
"536_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4099,
4829,
0.999,
50,
0.05
],
[
537,
"537_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4851,
5000,
0.001,
1,
0.05
],
[
538,
"538_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4818,
2753,
0.999,
33,
0.005
],
[
539,
"539_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2207,
5000,
0.001,
1,
0.01
],
[
540,
"540_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3191,
1860,
0.001,
29,
0.01
],
[
541,
"541_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
118,
3651,
0.001,
27,
0.05
],
[
542,
"542_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4374,
4157,
0.001,
50,
0.005
],
[
543,
"543_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3245,
4635,
0.999,
1,
0.005
],
[
544,
"544_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2118,
625,
0.795236415101529,
22,
0.05
],
[
545,
"545_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
4780,
0.001,
1,
0.1
],
[
546,
"546_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3308,
4034,
0.999,
1,
0.1
],
[
547,
"547_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3284,
1725,
0.001,
1,
0.05
],
[
548,
"548_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4977,
4042,
0.001,
1,
0.005
],
[
549,
"549_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1392,
1674,
0.999,
1,
0.25
],
[
550,
"550_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
4135,
0.001,
1,
0.05
],
[
551,
"551_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2169,
3093,
0.6906860023619809,
29,
0.25
],
[
552,
"552_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3259,
1303,
0.999,
17,
0.001
],
[
553,
"553_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
956,
3075,
0.001,
1,
0.005
],
[
554,
"554_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
47,
1243,
0.001,
1,
0.01
],
[
555,
"555_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
1,
445,
0.001,
18,
0.001
],
[
556,
"556_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
385,
4927,
0.001,
1,
0.025
],
[
557,
"557_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
532,
3192,
0.001,
16,
0.001
],
[
558,
"558_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
4350,
0.001,
1,
0.025
],
[
559,
"559_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4174,
3827,
0.001,
1,
0.01
],
[
560,
"560_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4489,
3536,
0.001,
50,
0.25
],
[
561,
"561_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2146,
2736,
0.999,
3,
0.001
],
[
562,
"562_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3108,
1604,
0.001,
14,
0.001
],
[
563,
"563_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2770,
3102,
0.067001562593041,
41,
0.001
],
[
564,
"564_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3037,
710,
0.999,
50,
0.25
],
[
565,
"565_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
2561,
0.999,
50,
0.001
],
[
566,
"566_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4958,
4930,
0.001,
50,
0.1
],
[
567,
"567_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4936,
3508,
0.001,
1,
0.001
],
[
568,
"568_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
228,
840,
0.999,
10,
0.1
],
[
569,
"569_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
781,
4544,
0.12879683740927841,
1,
0.025
],
[
570,
"570_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4705,
846,
0.999,
38,
0.001
],
[
571,
"571_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
246,
1774,
0.001,
32,
0.05
],
[
572,
"572_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3955,
2774,
0.999,
10,
0.25
],
[
573,
"573_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2173,
1232,
0.23586142753187023,
19,
0.001
],
[
574,
"574_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
3205,
0.001,
1,
0.25
],
[
575,
"575_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
649,
0.001,
1,
0.05
],
[
576,
"576_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3975,
1723,
0.999,
32,
0.05
],
[
577,
"577_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
3508,
477,
0.3422383444201465,
1,
0.005
],
[
578,
"578_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
3491,
466,
0.21733725213107813,
1,
0.025
],
[
579,
"579_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
1936,
0.001,
1,
0.1
],
[
580,
"580_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
5000,
374,
0.999,
28,
0.001
],
[
581,
"581_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
1,
472,
0.001,
50,
0.005
],
[
582,
"582_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
827,
5000,
0.8583031926457532,
1,
0.001
],
[
583,
"583_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1856,
2303,
0.001,
12,
0.01
],
[
584,
"584_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2843,
3647,
0.001,
8,
0.01
],
[
585,
"585_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1214,
5000,
0.001,
1,
0.001
],
[
586,
"586_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2790,
5000,
0.001,
11,
0.025
],
[
587,
"587_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4723,
3672,
0.001,
4,
0.01
],
[
588,
"588_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3597,
3107,
0.001,
1,
0.01
],
[
589,
"589_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
989,
5000,
0.38821365374608546,
14,
0.025
],
[
590,
"590_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
351,
5000,
0.36468857236344576,
18,
0.1
],
[
591,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.05
],
[
592,
"592_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
2,
1788,
256,
0.26272290203957027,
1,
0.005
],
[
593,
"593_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1406,
5000,
0.001,
1,
0.001
],
[
594,
"594_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3937,
761,
0.999,
50,
0.25
],
[
595,
"595_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
238,
5000,
0.5207987309182464,
14,
0.025
],
[
596,
"596_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3191,
4098,
0.001,
1,
0.01
],
[
597,
"597_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1799,
5000,
0.001,
14,
0.001
],
[
598,
"598_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4794,
4977,
0.001,
20,
0.25
],
[
599,
"599_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
93,
5000,
0.2952245382558428,
26,
0.001
],
[
600,
"600_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4302,
1567,
0.001,
8,
0.025
],
[
601,
"601_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4629,
3200,
0.3313589870333687,
2,
0.01
],
[
602,
"602_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4150,
4271,
0.999,
18,
0.005
],
[
603,
"603_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4756,
4493,
0.001,
11,
0.025
],
[
604,
"604_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
65,
4840,
0.001,
24,
0.001
],
[
605,
"605_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4074,
5000,
0.13571612970417257,
1,
0.1
],
[
606,
"606_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
244,
2814,
0.999,
39,
0.025
],
[
607,
"229_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.001
],
[
608,
"608_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.999,
1,
0.001
],
[
609,
"609_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
4261,
0.001,
1,
0.25
],
[
610,
"610_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4932,
4546,
0.999,
20,
0.1
],
[
611,
"611_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
5000,
5000,
0.999,
50,
0.005
],
[
612,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.05
],
[
613,
"613_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4369,
4128,
0.001,
29,
0.05
],
[
614,
"614_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4650,
4063,
0.999,
47,
0.005
],
[
615,
"615_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
4371,
0.001,
1,
0.001
],
[
616,
"616_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
1,
399,
0.001,
17,
0.005
],
[
617,
"617_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
88,
2215,
0.999,
49,
0.005
],
[
618,
"618_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4529,
2604,
0.9775430923545331,
1,
0.01
],
[
619,
"619_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1182,
4977,
0.6144462020205601,
9,
0.025
],
[
620,
"620_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
5000,
0.999,
1,
0.01
],
[
621,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1,
5000,
0.001,
1,
0.005
],
[
622,
"622_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1146,
5000,
0.10595983013507317,
20,
0.001
],
[
623,
"623_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1416,
1732,
0.001,
8,
0.01
],
[
624,
"624_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3133,
4372,
0.07456881958109499,
12,
0.005
],
[
625,
"625_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2045,
5000,
0.001,
17,
0.025
],
[
626,
"626_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2287,
4833,
0.17759036213208032,
9,
0.025
],
[
627,
"627_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
74,
563,
0.001,
1,
0.01
],
[
628,
"628_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
485,
551,
0.001,
27,
0.1
],
[
629,
"629_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4942,
2926,
0.001,
1,
0.05
],
[
630,
"630_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
63,
2151,
0.14974518948243706,
17,
0.025
],
[
631,
"631_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
3840,
532,
0.001,
1,
0.01
],
[
632,
"632_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1557,
5000,
0.17493011865036476,
12,
0.025
],
[
633,
"633_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2259,
5000,
0.8094538891205975,
17,
0.025
],
[
634,
"634_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1713,
5000,
0.001,
9,
0.001
],
[
635,
"635_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3516,
5000,
0.001,
11,
0.025
],
[
636,
"636_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
728,
5000,
0.999,
20,
0.025
],
[
637,
"637_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1798,
5000,
0.001,
18,
0.025
],
[
638,
"638_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2677,
5000,
0.30723815829242956,
5,
0.025
],
[
639,
"639_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4857,
1042,
0.001,
1,
0.1
],
[
640,
"640_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2609,
559,
0.4680933891012467,
4,
0.01
],
[
641,
"641_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1210,
5000,
0.001,
20,
0.001
],
[
642,
"642_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1849,
5000,
0.12346429610654674,
22,
0.01
],
[
643,
"643_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
2135,
361,
0.001,
7,
0.1
],
[
644,
"644_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1222,
549,
0.001,
9,
0.01
],
[
645,
"645_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3403,
3739,
0.001,
16,
0.01
],
[
646,
"646_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3329,
5000,
0.1068425277687478,
28,
0.025
],
[
647,
"647_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
652,
2904,
0.10005392313118601,
10,
0.01
],
[
648,
"648_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
4,
2667,
93,
0.001,
1,
0.1
],
[
649,
"649_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
210,
4023,
0.12615119702079503,
21,
0.05
],
[
650,
"650_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1272,
5000,
0.24123154017242465,
20,
0.025
],
[
651,
"651_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2028,
5000,
0.4730639302623294,
7,
0.025
],
[
652,
"652_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2476,
5000,
0.15955909456531325,
22,
0.25
],
[
653,
"653_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4968,
4676,
0.001,
11,
0.025
],
[
654,
"654_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4899,
3714,
0.001,
1,
0.05
],
[
655,
"655_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2913,
5000,
0.7475168615729411,
12,
0.025
],
[
656,
"656_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1517,
3227,
0.32720140772314793,
13,
0.025
],
[
657,
"657_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
574,
5000,
0.2645568468749879,
11,
0.001
],
[
658,
"658_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3311,
1336,
0.001,
13,
0.01
],
[
659,
"659_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
657,
4979,
0.4953720530927283,
29,
0.025
],
[
660,
"660_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
673,
4949,
0.741503098348371,
22,
0.001
],
[
661,
"661_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1955,
5000,
0.001,
13,
0.001
],
[
662,
"662_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1245,
5000,
0.4253053967013822,
21,
0.1
],
[
663,
"663_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2162,
5000,
0.7527149277415941,
19,
0.005
],
[
664,
"664_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3274,
5000,
0.001,
10,
0.005
],
[
665,
"665_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
736,
5000,
0.4815928240732939,
31,
0.005
],
[
666,
"666_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1126,
4865,
0.4243320797388181,
17,
0.025
],
[
667,
"667_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2611,
5000,
0.19811429945413958,
15,
0.025
],
[
668,
"668_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1537,
4960,
0.999,
22,
0.025
],
[
669,
"669_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2044,
5000,
0.9938556269009974,
20,
0.025
],
[
670,
"670_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4562,
3046,
0.001,
9,
0.01
],
[
671,
"671_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2411,
5000,
0.001,
22,
0.01
],
[
672,
"672_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4555,
4454,
0.001,
8,
0.05
],
[
673,
"673_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
380,
2861,
0.001,
21,
0.025
],
[
674,
"674_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1433,
5000,
0.7637037815662986,
26,
0.1
],
[
675,
"675_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
676,
881,
0.0432611965188918,
6,
0.25
],
[
676,
"676_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1585,
4942,
0.001,
17,
0.025
],
[
677,
"677_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4727,
2479,
0.001,
1,
0.005
],
[
678,
"678_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2695,
5000,
0.2827711240971839,
25,
0.1
],
[
679,
"679_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2331,
5000,
0.3537258867730524,
17,
0.05
],
[
680,
"680_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1010,
4908,
0.572824104680273,
20,
0.025
],
[
681,
"681_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4797,
4510,
0.001,
11,
0.01
],
[
682,
"682_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
702,
1955,
0.36108168459341267,
24,
0.005
],
[
683,
"683_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2027,
4982,
0.001,
15,
0.05
],
[
684,
"684_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1999,
5000,
0.25578863744480285,
17,
0.025
],
[
685,
"685_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4537,
4502,
0.32138931944604476,
26,
0.1
],
[
686,
"686_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1,
3005,
0.999,
12,
0.1
],
[
687,
"687_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4990,
3061,
0.001,
1,
0.01
],
[
688,
"688_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2423,
4996,
0.001,
18,
0.025
],
[
689,
"689_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
3596,
357,
0.999,
30,
0.001
],
[
690,
"690_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
1,
953,
5000,
0.19147207765149507,
20,
0.001
],
[
691,
"691_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1640,
4855,
0.22119121470476868,
22,
0.025
],
[
692,
"692_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2203,
4831,
0.42351350405582155,
20,
0.025
],
[
693,
"693_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1161,
5000,
0.001,
25,
0.001
],
[
694,
"694_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2209,
5000,
0.33088175161977457,
15,
0.025
],
[
695,
"695_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1511,
3964,
0.12035662486199686,
23,
0.01
],
[
696,
"696_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
570,
1431,
0.001,
43,
0.1
],
[
697,
"697_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1561,
4278,
0.5568573307037903,
44,
0.001
],
[
698,
"698_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
475,
1007,
0.999,
35,
0.005
],
[
699,
"699_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2604,
5000,
0.1029170670016721,
21,
0.025
],
[
700,
"700_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2005,
3618,
0.999,
41,
0.05
],
[
701,
"701_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2369,
1109,
0.999,
34,
0.01
],
[
702,
"702_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
214,
2706,
0.5905920098791658,
36,
0.1
],
[
703,
"703_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
511,
2688,
0.999,
32,
0.25
],
[
704,
"704_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4699,
1576,
0.001,
43,
0.1
],
[
705,
"705_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4338,
4702,
0.001,
32,
0.25
],
[
706,
"706_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2640,
2979,
0.999,
20,
0.1
],
[
707,
"707_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4508,
2957,
0.999,
16,
0.25
],
[
708,
"708_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2950,
4106,
0.999,
40,
0.025
],
[
709,
"709_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1764,
4782,
0.999,
42,
0.001
],
[
710,
"710_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3171,
2713,
0.999,
14,
0.1
],
[
711,
"711_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4462,
999,
0.999,
35,
0.005
],
[
712,
"712_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1191,
4931,
0.001,
39,
0.01
],
[
713,
"713_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
617,
2248,
0.999,
28,
0.25
],
[
714,
"714_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1410,
3022,
0.999,
14,
0.025
],
[
715,
"715_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
1849,
4821,
0.12238211895390877,
20,
0.001
],
[
716,
"716_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
2226,
2979,
0.001,
7,
0.01
],
[
717,
"717_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
864,
4918,
0.004755343779967529,
24,
0.025
],
[
718,
"718_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4199,
1747,
0.999,
20,
0.005
],
[
719,
"719_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
3962,
3819,
0.001,
38,
0.005
],
[
720,
"720_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4061,
2000,
0.001,
46,
0.1
],
[
721,
"721_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.91,
0,
4920,
4819,
0.001,
29,
0.005
],
[
722,
"722_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
"",
1200,
258,
0.001,
32,
0.25
]
];
var tab_worker_usage_csv_json = [
[
1746192418.5891068,
20,
0,
0
],
[
1746192424.0814054,
20,
0,
0
],
[
1746192475.7604,
20,
0,
0
],
[
1746192476.1702986,
20,
0,
0
],
[
1746192479.2394361,
20,
1,
5
],
[
1746192482.3325105,
20,
1,
5
],
[
1746192547.642257,
20,
1,
5
],
[
1746192548.3738027,
20,
1,
5
],
[
1746192550.5890994,
20,
2,
10
],
[
1746192552.324501,
20,
2,
10
],
[
1746192558.038599,
20,
1,
5
],
[
1746192558.3388422,
20,
1,
5
],
[
1746192697.7532015,
20,
1,
5
],
[
1746192698.4755135,
20,
1,
5
],
[
1746192700.509905,
20,
2,
10
],
[
1746192702.1443086,
20,
2,
10
],
[
1746192707.5070393,
20,
1,
5
],
[
1746192707.9154053,
20,
1,
5
],
[
1746192823.5095055,
20,
1,
5
],
[
1746192824.4125526,
20,
1,
5
],
[
1746192826.5247633,
20,
2,
10
],
[
1746192828.2614963,
20,
2,
10
],
[
1746192833.814799,
20,
1,
5
],
[
1746192834.0374527,
20,
1,
5
],
[
1746192953.7737796,
20,
1,
5
],
[
1746192954.5197947,
20,
1,
5
],
[
1746192956.5232964,
20,
2,
10
],
[
1746192958.228226,
20,
2,
10
],
[
1746192965.316812,
20,
1,
5
],
[
1746192965.8134124,
20,
1,
5
],
[
1746193092.8588278,
20,
1,
5
],
[
1746193093.5834901,
20,
1,
5
],
[
1746193095.5174417,
20,
2,
10
],
[
1746193097.2907526,
20,
2,
10
],
[
1746193103.3257205,
20,
1,
5
],
[
1746193103.8242972,
20,
1,
5
],
[
1746193201.2290704,
20,
1,
5
],
[
1746193201.9038222,
20,
1,
5
],
[
1746193203.814404,
20,
2,
10
],
[
1746193205.4722364,
20,
2,
10
],
[
1746193210.9393027,
20,
1,
5
],
[
1746193211.1525607,
20,
1,
5
],
[
1746193355.7156222,
20,
1,
5
],
[
1746193356.3555405,
20,
1,
5
],
[
1746193358.4604573,
20,
2,
10
],
[
1746193360.1120355,
20,
2,
10
],
[
1746193365.7936072,
20,
1,
5
],
[
1746193365.9949684,
20,
1,
5
],
[
1746193440.035482,
20,
1,
5
],
[
1746193440.765197,
20,
1,
5
],
[
1746193443.0619512,
20,
2,
10
],
[
1746193444.8474145,
20,
2,
10
],
[
1746193450.4768436,
20,
1,
5
],
[
1746193450.8988955,
20,
1,
5
],
[
1746193569.5453777,
20,
1,
5
],
[
1746193570.3434675,
20,
1,
5
],
[
1746193572.5465076,
20,
2,
10
],
[
1746193574.1136837,
20,
2,
10
],
[
1746193579.4114447,
20,
1,
5
],
[
1746193579.8994548,
20,
1,
5
],
[
1746193662.9415467,
20,
1,
5
],
[
1746193663.6555495,
20,
1,
5
],
[
1746193665.5562901,
20,
2,
10
],
[
1746193667.2821996,
20,
2,
10
],
[
1746193673.401454,
20,
1,
5
],
[
1746193674.89087,
20,
1,
5
],
[
1746193727.9107902,
20,
1,
5
],
[
1746193728.664952,
20,
1,
5
],
[
1746193730.6131577,
20,
2,
10
],
[
1746193732.4462047,
20,
2,
10
],
[
1746193738.7898512,
20,
1,
5
],
[
1746193738.994249,
20,
1,
5
],
[
1746193847.1987083,
20,
1,
5
],
[
1746193847.87735,
20,
1,
5
],
[
1746193849.7665067,
20,
2,
10
],
[
1746193851.4893243,
20,
2,
10
],
[
1746193857.4562082,
20,
1,
5
],
[
1746193857.9025273,
20,
1,
5
],
[
1746193963.4927833,
20,
1,
5
],
[
1746193964.3239021,
20,
1,
5
],
[
1746193966.4411502,
20,
2,
10
],
[
1746193968.0954027,
20,
2,
10
],
[
1746193973.673402,
20,
1,
5
],
[
1746193973.877328,
20,
1,
5
],
[
1746194040.5881948,
20,
1,
5
],
[
1746194041.744938,
20,
1,
5
],
[
1746194043.6418173,
20,
2,
10
],
[
1746194045.2344093,
20,
2,
10
],
[
1746194050.5737824,
20,
1,
5
],
[
1746194050.8749511,
20,
1,
5
],
[
1746194120.2910259,
20,
1,
5
],
[
1746194120.9882867,
20,
1,
5
],
[
1746194122.7558868,
20,
2,
10
],
[
1746194123.7314067,
20,
2,
10
],
[
1746194130.7276428,
20,
1,
5
],
[
1746194130.827915,
20,
1,
5
],
[
1746194229.2080774,
20,
1,
5
],
[
1746194229.9216967,
20,
1,
5
],
[
1746194231.8450983,
20,
2,
10
],
[
1746194233.5991004,
20,
2,
10
],
[
1746194239.511424,
20,
1,
5
],
[
1746194239.8958588,
20,
1,
5
],
[
1746194365.2437348,
20,
1,
5
],
[
1746194365.9861429,
20,
1,
5
],
[
1746194368.0205104,
20,
2,
10
],
[
1746194369.8478284,
20,
2,
10
],
[
1746194375.7027721,
20,
1,
5
],
[
1746194375.9438326,
20,
1,
5
],
[
1746194498.047392,
20,
1,
5
],
[
1746194498.7213256,
20,
1,
5
],
[
1746194500.6539621,
20,
2,
10
],
[
1746194502.2931693,
20,
2,
10
],
[
1746194508.4181612,
20,
1,
5
],
[
1746194508.9365013,
20,
1,
5
],
[
1746194622.6946948,
20,
1,
5
],
[
1746194623.4736502,
20,
1,
5
],
[
1746194625.599631,
20,
2,
10
],
[
1746194627.2967982,
20,
2,
10
],
[
1746194633.4242606,
20,
1,
5
],
[
1746194634.13695,
20,
1,
5
],
[
1746194639.338065,
20,
1,
5
],
[
1746194648.9527059,
20,
1,
5
],
[
1746194657.6452103,
20,
1,
5
],
[
1746194664.3495803,
20,
1,
5
],
[
1746194668.7248116,
20,
0,
0
],
[
1746194676.5915215,
20,
0,
0
],
[
1746194783.2074478,
20,
0,
0
],
[
1746194783.7606676,
20,
0,
0
],
[
1746194785.6335645,
20,
1,
5
],
[
1746194789.5543454,
20,
1,
5
],
[
1746194906.8672862,
20,
1,
5
],
[
1746194907.5613115,
20,
1,
5
],
[
1746194909.6419811,
20,
2,
10
],
[
1746194911.4459677,
20,
2,
10
],
[
1746194917.680794,
20,
1,
5
],
[
1746194917.9268658,
20,
1,
5
],
[
1746195473.7240405,
20,
1,
5
],
[
1746195474.3637154,
20,
1,
5
],
[
1746195476.5239344,
20,
2,
10
],
[
1746195478.057931,
20,
2,
10
],
[
1746195483.5095193,
20,
1,
5
],
[
1746195483.9182851,
20,
1,
5
],
[
1746195933.78611,
20,
1,
5
],
[
1746195934.5267906,
20,
1,
5
],
[
1746195936.501389,
20,
2,
10
],
[
1746195938.3225105,
20,
2,
10
],
[
1746195944.6419816,
20,
1,
5
],
[
1746195944.9287608,
20,
1,
5
],
[
1746196029.1055017,
20,
1,
5
],
[
1746196029.8248281,
20,
1,
5
],
[
1746196031.7567658,
20,
2,
10
],
[
1746196033.6157866,
20,
2,
10
],
[
1746196039.739912,
20,
1,
5
],
[
1746196039.9722993,
20,
1,
5
],
[
1746196173.3513474,
20,
1,
5
],
[
1746196174.3470821,
20,
1,
5
],
[
1746196176.4687335,
20,
2,
10
],
[
1746196178.1597228,
20,
2,
10
],
[
1746196184.5048382,
20,
1,
5
],
[
1746196184.905489,
20,
1,
5
],
[
1746196348.6016743,
20,
1,
5
],
[
1746196349.3702526,
20,
1,
5
],
[
1746196351.5421033,
20,
2,
10
],
[
1746196353.158035,
20,
2,
10
],
[
1746196358.8748262,
20,
1,
5
],
[
1746196359.118838,
20,
1,
5
],
[
1746196508.0661354,
20,
1,
5
],
[
1746196508.6657164,
20,
1,
5
],
[
1746196510.518923,
20,
2,
10
],
[
1746196511.887621,
20,
2,
10
],
[
1746196517.6546822,
20,
1,
5
],
[
1746196517.9646873,
20,
1,
5
],
[
1746196634.2303736,
20,
1,
5
],
[
1746196635.000661,
20,
1,
5
],
[
1746196636.9570332,
20,
2,
10
],
[
1746196638.6626878,
20,
2,
10
],
[
1746196644.7732687,
20,
1,
5
],
[
1746196644.9815078,
20,
1,
5
],
[
1746196765.591572,
20,
1,
5
],
[
1746196766.3304327,
20,
1,
5
],
[
1746196768.5351267,
20,
2,
10
],
[
1746196770.0945232,
20,
2,
10
],
[
1746196775.7953184,
20,
1,
5
],
[
1746196775.9966564,
20,
1,
5
],
[
1746196882.922925,
20,
1,
5
],
[
1746196883.6219585,
20,
1,
5
],
[
1746196885.5881686,
20,
2,
10
],
[
1746196887.2752016,
20,
2,
10
],
[
1746196893.57393,
20,
1,
5
],
[
1746196893.9227726,
20,
1,
5
],
[
1746197080.7046044,
20,
1,
5
],
[
1746197081.3868015,
20,
1,
5
],
[
1746197083.462854,
20,
2,
10
],
[
1746197085.0488544,
20,
2,
10
],
[
1746197090.783144,
20,
1,
5
],
[
1746197091.0177128,
20,
1,
5
],
[
1746197199.3703125,
20,
1,
5
],
[
1746197200.3672993,
20,
1,
5
],
[
1746197202.6783152,
20,
2,
10
],
[
1746197204.4911373,
20,
2,
10
],
[
1746197211.2649987,
20,
1,
5
],
[
1746197211.5407205,
20,
1,
5
],
[
1746197923.9969344,
20,
1,
5
],
[
1746197924.7162914,
20,
1,
5
],
[
1746197926.621358,
20,
2,
10
],
[
1746197928.3735733,
20,
2,
10
],
[
1746197935.6647663,
20,
1,
5
],
[
1746197935.902247,
20,
1,
5
],
[
1746198100.7834184,
20,
1,
5
],
[
1746198101.518583,
20,
1,
5
],
[
1746198103.5418782,
20,
2,
10
],
[
1746198105.284473,
20,
2,
10
],
[
1746198112.1528502,
20,
1,
5
],
[
1746198112.385691,
20,
1,
5
],
[
1746198352.437256,
20,
1,
5
],
[
1746198353.3743699,
20,
1,
5
],
[
1746198356.641612,
20,
2,
10
],
[
1746198358.4773746,
20,
2,
10
],
[
1746198365.1318786,
20,
1,
5
],
[
1746198365.3996603,
20,
1,
5
],
[
1746198473.3683474,
20,
1,
5
],
[
1746198474.2694576,
20,
1,
5
],
[
1746198476.4126332,
20,
2,
10
],
[
1746198477.938457,
20,
2,
10
],
[
1746198484.2638357,
20,
1,
5
],
[
1746198484.6004634,
20,
1,
5
],
[
1746198612.0431373,
20,
1,
5
],
[
1746198612.6800795,
20,
1,
5
],
[
1746198614.5343888,
20,
2,
10
],
[
1746198616.0651567,
20,
2,
10
],
[
1746198621.9961805,
20,
1,
5
],
[
1746198622.1902723,
20,
1,
5
],
[
1746198810.2723575,
20,
1,
5
],
[
1746198811.0056412,
20,
1,
5
],
[
1746198812.839087,
20,
2,
10
],
[
1746198814.5222285,
20,
2,
10
],
[
1746198821.1669118,
20,
1,
5
],
[
1746198821.4018116,
20,
1,
5
],
[
1746199100.5201302,
20,
1,
5
],
[
1746199101.3306198,
20,
1,
5
],
[
1746199103.5198405,
20,
2,
10
],
[
1746199104.9714541,
20,
2,
10
],
[
1746199111.005302,
20,
1,
5
],
[
1746199111.3899505,
20,
1,
5
],
[
1746199116.5589163,
20,
1,
5
],
[
1746199125.9899328,
20,
1,
5
],
[
1746199132.4170363,
20,
1,
5
],
[
1746199136.7346456,
20,
0,
0
],
[
1746199144.1873653,
20,
0,
0
],
[
1746199206.4541893,
20,
0,
0
],
[
1746199207.0307553,
20,
0,
0
],
[
1746199209.5768375,
20,
1,
5
],
[
1746199213.9650598,
20,
1,
5
],
[
1746199267.6288242,
20,
1,
5
],
[
1746199268.3942816,
20,
1,
5
],
[
1746199270.577125,
20,
2,
10
],
[
1746199272.6938848,
20,
2,
10
],
[
1746199279.2925193,
20,
1,
5
],
[
1746199279.4482188,
20,
1,
5
],
[
1746199356.7376637,
20,
1,
5
],
[
1746199357.3421624,
20,
1,
5
],
[
1746199360.4688065,
20,
2,
10
],
[
1746199361.9970274,
20,
2,
10
],
[
1746199368.0397763,
20,
1,
5
],
[
1746199368.2718625,
20,
1,
5
],
[
1746199440.8756256,
20,
1,
5
],
[
1746199441.5319176,
20,
1,
5
],
[
1746199443.5193343,
20,
2,
10
],
[
1746199445.1771195,
20,
2,
10
],
[
1746199452.2157986,
20,
1,
5
],
[
1746199452.4961667,
20,
1,
5
],
[
1746199518.7018673,
20,
1,
5
],
[
1746199519.411174,
20,
1,
5
],
[
1746199521.5170732,
20,
2,
10
],
[
1746199523.2821143,
20,
2,
10
],
[
1746199530.1926188,
20,
1,
5
],
[
1746199530.4467196,
20,
1,
5
],
[
1746199624.6507804,
20,
1,
5
],
[
1746199625.314124,
20,
1,
5
],
[
1746199627.5284333,
20,
2,
10
],
[
1746199629.0744991,
20,
2,
10
],
[
1746199635.3074045,
20,
1,
5
],
[
1746199635.747279,
20,
1,
5
],
[
1746199721.035748,
20,
1,
5
],
[
1746199721.6854963,
20,
1,
5
],
[
1746199723.6120448,
20,
2,
10
],
[
1746199725.2098737,
20,
2,
10
],
[
1746199731.8014357,
20,
1,
5
],
[
1746199732.035258,
20,
1,
5
],
[
1746199824.017614,
20,
1,
5
],
[
1746199824.7474005,
20,
1,
5
],
[
1746199826.7444503,
20,
2,
10
],
[
1746199828.3911564,
20,
2,
10
],
[
1746199835.192821,
20,
1,
5
],
[
1746199835.4272,
20,
1,
5
],
[
1746199930.8063946,
20,
1,
5
],
[
1746199931.4654963,
20,
1,
5
],
[
1746199933.495556,
20,
2,
10
],
[
1746199935.0918043,
20,
2,
10
],
[
1746199941.6747,
20,
1,
5
],
[
1746199941.899696,
20,
1,
5
],
[
1746200018.6089664,
20,
1,
5
],
[
1746200019.234939,
20,
1,
5
],
[
1746200021.1959972,
20,
2,
10
],
[
1746200022.3773613,
20,
2,
10
],
[
1746200028.359835,
20,
1,
5
],
[
1746200028.9017437,
20,
1,
5
],
[
1746200092.4199214,
20,
1,
5
],
[
1746200093.300649,
20,
1,
5
],
[
1746200095.544091,
20,
2,
10
],
[
1746200097.0791767,
20,
2,
10
],
[
1746200103.5554745,
20,
1,
5
],
[
1746200103.8955812,
20,
1,
5
],
[
1746200225.7405467,
20,
1,
5
],
[
1746200226.4347222,
20,
1,
5
],
[
1746200228.5440276,
20,
2,
10
],
[
1746200230.2096052,
20,
2,
10
],
[
1746200237.140273,
20,
1,
5
],
[
1746200237.4158664,
20,
1,
5
],
[
1746200323.7663696,
20,
1,
5
],
[
1746200324.4450312,
20,
1,
5
],
[
1746200326.523169,
20,
2,
10
],
[
1746200328.140254,
20,
2,
10
],
[
1746200335.5739362,
20,
1,
5
],
[
1746200335.922788,
20,
1,
5
],
[
1746200427.5194666,
20,
1,
5
],
[
1746200428.3458574,
20,
1,
5
],
[
1746200430.4247308,
20,
2,
10
],
[
1746200431.9169598,
20,
2,
10
],
[
1746200438.3034642,
20,
1,
5
],
[
1746200438.7646904,
20,
1,
5
],
[
1746200530.737295,
20,
1,
5
],
[
1746200531.349927,
20,
1,
5
],
[
1746200533.45449,
20,
2,
10
],
[
1746200534.8634458,
20,
2,
10
],
[
1746200541.06748,
20,
1,
5
],
[
1746200541.2948692,
20,
1,
5
],
[
1746200596.785387,
20,
1,
5
],
[
1746200597.3077617,
20,
1,
5
],
[
1746200599.5207126,
20,
2,
10
],
[
1746200600.7126508,
20,
2,
10
],
[
1746200606.963665,
20,
1,
5
],
[
1746200607.198482,
20,
1,
5
],
[
1746200778.4494548,
20,
1,
5
],
[
1746200779.3232367,
20,
1,
5
],
[
1746200781.5678377,
20,
2,
10
],
[
1746200783.1436558,
20,
2,
10
],
[
1746200789.6762695,
20,
1,
5
],
[
1746200789.9434392,
20,
1,
5
],
[
1746200875.4799006,
20,
1,
5
],
[
1746200876.3619416,
20,
1,
5
],
[
1746200878.4697855,
20,
2,
10
],
[
1746200879.977087,
20,
2,
10
],
[
1746200886.603626,
20,
1,
5
],
[
1746200886.9098227,
20,
1,
5
],
[
1746201005.9859571,
20,
1,
5
],
[
1746201006.6374714,
20,
1,
5
],
[
1746201008.4577022,
20,
2,
10
],
[
1746201009.960709,
20,
2,
10
],
[
1746201016.3941758,
20,
1,
5
],
[
1746201016.8655365,
20,
1,
5
],
[
1746201110.7418911,
20,
1,
5
],
[
1746201111.4594245,
20,
1,
5
],
[
1746201113.5903502,
20,
2,
10
],
[
1746201115.1669416,
20,
2,
10
],
[
1746201122.8361733,
20,
1,
5
],
[
1746201123.2401226,
20,
1,
5
],
[
1746201128.468625,
20,
1,
5
],
[
1746201138.4471576,
20,
1,
5
],
[
1746201145.153389,
20,
1,
5
],
[
1746201150.333205,
20,
0,
0
],
[
1746201158.8531277,
20,
0,
0
],
[
1746201309.1621106,
20,
0,
0
],
[
1746201309.710388,
20,
0,
0
],
[
1746201311.5243025,
20,
1,
5
],
[
1746201315.2662334,
20,
1,
5
],
[
1746201434.6519434,
20,
1,
5
],
[
1746201435.3166258,
20,
1,
5
],
[
1746201437.4969604,
20,
2,
10
],
[
1746201439.0185378,
20,
2,
10
],
[
1746201445.708975,
20,
1,
5
],
[
1746201445.9365592,
20,
1,
5
],
[
1746202281.556792,
20,
1,
5
],
[
1746202282.2715652,
20,
1,
5
],
[
1746202284.4229069,
20,
2,
10
],
[
1746202285.8827522,
20,
2,
10
],
[
1746202292.166603,
20,
1,
5
],
[
1746202292.371206,
20,
1,
5
],
[
1746202729.8605747,
20,
1,
5
],
[
1746202730.4696484,
20,
1,
5
],
[
1746202732.5439322,
20,
2,
10
],
[
1746202734.207339,
20,
2,
10
],
[
1746202741.8935,
20,
1,
5
],
[
1746202742.1364841,
20,
1,
5
],
[
1746203039.4002368,
20,
1,
5
],
[
1746203040.2227192,
20,
1,
5
],
[
1746203042.3343246,
20,
2,
10
],
[
1746203043.642717,
20,
2,
10
],
[
1746203049.8103728,
20,
1,
5
],
[
1746203050.016301,
20,
1,
5
],
[
1746203206.6723719,
20,
1,
5
],
[
1746203207.3627527,
20,
1,
5
],
[
1746203209.942136,
20,
2,
10
],
[
1746203211.5674605,
20,
2,
10
],
[
1746203218.9156108,
20,
1,
5
],
[
1746203219.1567676,
20,
1,
5
],
[
1746203410.8847911,
20,
1,
5
],
[
1746203411.5636678,
20,
1,
5
],
[
1746203413.4918675,
20,
2,
10
],
[
1746203415.0908413,
20,
2,
10
],
[
1746203422.1892962,
20,
1,
5
],
[
1746203422.4123993,
20,
1,
5
],
[
1746203622.5340831,
20,
1,
5
],
[
1746203623.2683966,
20,
1,
5
],
[
1746203625.4327447,
20,
2,
10
],
[
1746203626.8178985,
20,
2,
10
],
[
1746203633.8722432,
20,
1,
5
],
[
1746203634.0665057,
20,
1,
5
],
[
1746204006.5950575,
20,
1,
5
],
[
1746204007.3098412,
20,
1,
5
],
[
1746204009.4773767,
20,
2,
10
],
[
1746204010.8984754,
20,
2,
10
],
[
1746204017.5126717,
20,
1,
5
],
[
1746204017.8918548,
20,
1,
5
],
[
1746204203.9908702,
20,
1,
5
],
[
1746204204.6380281,
20,
1,
5
],
[
1746204206.442055,
20,
2,
10
],
[
1746204207.8750453,
20,
2,
10
],
[
1746204214.440188,
20,
1,
5
],
[
1746204214.902146,
20,
1,
5
],
[
1746205250.3921416,
20,
1,
5
],
[
1746205251.2005522,
20,
1,
5
],
[
1746205253.134679,
20,
2,
10
],
[
1746205254.465263,
20,
2,
10
],
[
1746205260.7404494,
20,
1,
5
],
[
1746205260.9402082,
20,
1,
5
],
[
1746205420.0171645,
20,
1,
5
],
[
1746205420.7196858,
20,
1,
5
],
[
1746205423.6140954,
20,
2,
10
],
[
1746205425.2727907,
20,
2,
10
],
[
1746205432.6751947,
20,
1,
5
],
[
1746205432.9453044,
20,
1,
5
],
[
1746205685.739096,
20,
1,
5
],
[
1746205686.4854643,
20,
1,
5
],
[
1746205688.5270293,
20,
2,
10
],
[
1746205690.1195579,
20,
2,
10
],
[
1746205697.2212646,
20,
1,
5
],
[
1746205697.4631715,
20,
1,
5
],
[
1746205886.4583306,
20,
1,
5
],
[
1746205887.222305,
20,
1,
5
],
[
1746205889.137806,
20,
2,
10
],
[
1746205890.2116528,
20,
2,
10
],
[
1746205896.5097146,
20,
1,
5
],
[
1746205896.8709793,
20,
1,
5
],
[
1746206198.687417,
20,
1,
5
],
[
1746206199.3586721,
20,
1,
5
],
[
1746206201.5251162,
20,
2,
10
],
[
1746206203.2143047,
20,
2,
10
],
[
1746206210.5698557,
20,
1,
5
],
[
1746206210.883426,
20,
1,
5
],
[
1746206409.1984425,
20,
1,
5
],
[
1746206409.8193035,
20,
1,
5
],
[
1746206411.609122,
20,
2,
10
],
[
1746206413.1060905,
20,
2,
10
],
[
1746206420.653057,
20,
1,
5
],
[
1746206420.8793101,
20,
1,
5
],
[
1746206602.1412816,
20,
1,
5
],
[
1746206602.7863183,
20,
1,
5
],
[
1746206604.655547,
20,
2,
10
],
[
1746206606.2532694,
20,
2,
10
],
[
1746206613.5077207,
20,
1,
5
],
[
1746206613.911883,
20,
1,
5
],
[
1746206745.9986982,
20,
1,
5
],
[
1746206746.6206088,
20,
1,
5
],
[
1746206748.4697814,
20,
2,
10
],
[
1746206749.9989848,
20,
2,
10
],
[
1746206757.0854886,
20,
1,
5
],
[
1746206757.3016493,
20,
1,
5
],
[
1746206895.355495,
20,
1,
5
],
[
1746206896.2561893,
20,
1,
5
],
[
1746206898.8411314,
20,
2,
10
],
[
1746206900.3645546,
20,
2,
10
],
[
1746206907.6675055,
20,
1,
5
],
[
1746206907.919851,
20,
1,
5
],
[
1746207087.1594725,
20,
1,
5
],
[
1746207087.8425553,
20,
1,
5
],
[
1746207089.7300808,
20,
2,
10
],
[
1746207091.2107966,
20,
2,
10
],
[
1746207098.768574,
20,
1,
5
],
[
1746207099.2379823,
20,
1,
5
],
[
1746207105.505057,
20,
1,
5
],
[
1746207112.3377285,
20,
1,
5
],
[
1746207117.784891,
20,
0,
0
],
[
1746207125.7363126,
20,
0,
0
],
[
1746207437.8047352,
20,
0,
0
],
[
1746207438.3043978,
20,
0,
0
],
[
1746207440.4115386,
20,
1,
5
],
[
1746207444.9426093,
20,
1,
5
],
[
1746207522.0886877,
20,
1,
5
],
[
1746207522.7485728,
20,
1,
5
],
[
1746207524.646793,
20,
2,
10
],
[
1746207526.230429,
20,
2,
10
],
[
1746207533.110851,
20,
1,
5
],
[
1746207533.3148885,
20,
1,
5
],
[
1746207796.8902907,
20,
1,
5
],
[
1746207797.5327723,
20,
1,
5
],
[
1746207799.4779508,
20,
2,
10
],
[
1746207800.968386,
20,
2,
10
],
[
1746207808.119532,
20,
1,
5
],
[
1746207808.3316338,
20,
1,
5
],
[
1746207941.8663516,
20,
1,
5
],
[
1746207942.4683151,
20,
1,
5
],
[
1746207944.4251757,
20,
2,
10
],
[
1746207946.595485,
20,
2,
10
],
[
1746207953.6003978,
20,
1,
5
],
[
1746207953.9183338,
20,
1,
5
],
[
1746208096.6108172,
20,
1,
5
],
[
1746208097.3325107,
20,
1,
5
],
[
1746208099.4852183,
20,
2,
10
],
[
1746208101.1399093,
20,
2,
10
],
[
1746208108.636891,
20,
1,
5
],
[
1746208108.9089918,
20,
1,
5
],
[
1746208247.717226,
20,
1,
5
],
[
1746208248.3543675,
20,
1,
5
],
[
1746208250.4628682,
20,
2,
10
],
[
1746208251.8946378,
20,
2,
10
],
[
1746208258.7143185,
20,
1,
5
],
[
1746208258.9097915,
20,
1,
5
],
[
1746208329.9704523,
20,
1,
5
],
[
1746208330.303168,
20,
1,
5
],
[
1746208332.3485463,
20,
2,
10
],
[
1746208333.3990455,
20,
2,
10
],
[
1746208340.062575,
20,
1,
5
],
[
1746208340.2505348,
20,
1,
5
],
[
1746208404.1461928,
20,
1,
5
],
[
1746208404.8034282,
20,
1,
5
],
[
1746208406.6782053,
20,
2,
10
],
[
1746208408.3419209,
20,
2,
10
],
[
1746208416.2394943,
20,
1,
5
],
[
1746208416.4623718,
20,
1,
5
],
[
1746208511.818845,
20,
1,
5
],
[
1746208512.3937778,
20,
1,
5
],
[
1746208514.3731294,
20,
2,
10
],
[
1746208515.7383301,
20,
2,
10
],
[
1746208522.81093,
20,
1,
5
],
[
1746208522.9194798,
20,
1,
5
],
[
1746208591.227483,
20,
1,
5
],
[
1746208591.8848333,
20,
1,
5
],
[
1746208593.8095682,
20,
2,
10
],
[
1746208595.3701422,
20,
2,
10
],
[
1746208603.8819897,
20,
1,
5
],
[
1746208604.0981236,
20,
1,
5
],
[
1746208826.805308,
20,
1,
5
],
[
1746208827.4091501,
20,
1,
5
],
[
1746208829.4358475,
20,
2,
10
],
[
1746208830.8699281,
20,
2,
10
],
[
1746208837.7578323,
20,
1,
5
],
[
1746208838.020563,
20,
1,
5
],
[
1746208957.2595637,
20,
1,
5
],
[
1746208957.9465182,
20,
1,
5
],
[
1746208959.7509017,
20,
2,
10
],
[
1746208961.233781,
20,
2,
10
],
[
1746208969.1394744,
20,
1,
5
],
[
1746208969.403239,
20,
1,
5
],
[
1746209120.0633304,
20,
1,
5
],
[
1746209120.6884842,
20,
1,
5
],
[
1746209122.4925194,
20,
2,
10
],
[
1746209123.9906476,
20,
2,
10
],
[
1746209131.6442742,
20,
1,
5
],
[
1746209131.7458344,
20,
1,
5
],
[
1746209200.1732793,
20,
1,
5
],
[
1746209200.734813,
20,
1,
5
],
[
1746209202.4783762,
20,
2,
10
],
[
1746209203.8613162,
20,
2,
10
],
[
1746209211.5608473,
20,
1,
5
],
[
1746209211.6582043,
20,
1,
5
],
[
1746209265.6332848,
20,
1,
5
],
[
1746209266.165342,
20,
1,
5
],
[
1746209268.1403472,
20,
2,
10
],
[
1746209269.4910576,
20,
2,
10
],
[
1746209276.3376431,
20,
1,
5
],
[
1746209276.8667834,
20,
1,
5
],
[
1746209340.0267568,
20,
1,
5
],
[
1746209340.6805668,
20,
1,
5
],
[
1746209342.5015311,
20,
2,
10
],
[
1746209344.0055509,
20,
2,
10
],
[
1746209351.3582976,
20,
1,
5
],
[
1746209351.871742,
20,
1,
5
],
[
1746209419.9897108,
20,
1,
5
],
[
1746209420.6621814,
20,
1,
5
],
[
1746209422.4695024,
20,
2,
10
],
[
1746209423.9821656,
20,
2,
10
],
[
1746209431.3030465,
20,
1,
5
],
[
1746209431.662556,
20,
1,
5
],
[
1746209574.4467788,
20,
1,
5
],
[
1746209576.3252735,
20,
1,
5
],
[
1746209578.4751954,
20,
2,
10
],
[
1746209580.031262,
20,
2,
10
],
[
1746209588.602343,
20,
1,
5
],
[
1746209588.7428427,
20,
1,
5
],
[
1746209666.8645957,
20,
1,
5
],
[
1746209667.4939787,
20,
1,
5
],
[
1746209669.4021366,
20,
2,
10
],
[
1746209670.9124007,
20,
2,
10
],
[
1746209678.4133258,
20,
1,
5
],
[
1746209678.8855584,
20,
1,
5
],
[
1746209753.95491,
20,
1,
5
],
[
1746209754.5825922,
20,
1,
5
],
[
1746209756.4219627,
20,
2,
10
],
[
1746209757.7991579,
20,
2,
10
],
[
1746209765.3056855,
20,
1,
5
],
[
1746209766.0299575,
20,
1,
5
],
[
1746209771.388862,
20,
1,
5
],
[
1746209781.5655892,
20,
1,
5
],
[
1746209787.9581738,
20,
1,
5
],
[
1746209793.034592,
20,
0,
0
],
[
1746209800.80634,
20,
0,
0
],
[
1746209952.0868783,
20,
0,
0
],
[
1746209952.595067,
20,
0,
0
],
[
1746209954.4576406,
20,
1,
5
],
[
1746209958.4338253,
20,
1,
5
],
[
1746210110.646747,
20,
1,
5
],
[
1746210111.3309617,
20,
1,
5
],
[
1746210113.4722207,
20,
2,
10
],
[
1746210115.0200927,
20,
2,
10
],
[
1746210122.7382946,
20,
1,
5
],
[
1746210122.992993,
20,
1,
5
],
[
1746210202.481921,
20,
1,
5
],
[
1746210203.2907097,
20,
1,
5
],
[
1746210205.5065732,
20,
2,
10
],
[
1746210206.9998355,
20,
2,
10
],
[
1746210214.7402203,
20,
1,
5
],
[
1746210214.8699932,
20,
1,
5
],
[
1746210305.7870212,
20,
1,
5
],
[
1746210306.3973637,
20,
1,
5
],
[
1746210308.5001223,
20,
2,
10
],
[
1746210309.925038,
20,
2,
10
],
[
1746210317.3668628,
20,
1,
5
],
[
1746210317.8701243,
20,
1,
5
],
[
1746210479.598524,
20,
1,
5
],
[
1746210480.2941976,
20,
1,
5
],
[
1746210483.7323031,
20,
2,
10
],
[
1746210485.1935675,
20,
2,
10
],
[
1746210495.22467,
20,
1,
5
],
[
1746210495.3793302,
20,
1,
5
],
[
1746210734.1530888,
20,
1,
5
],
[
1746210734.7929316,
20,
1,
5
],
[
1746210736.6206582,
20,
2,
10
],
[
1746210738.154153,
20,
2,
10
],
[
1746210745.8459706,
20,
1,
5
],
[
1746210746.0774221,
20,
1,
5
],
[
1746210831.916401,
20,
1,
5
],
[
1746210832.555725,
20,
1,
5
],
[
1746210834.4897635,
20,
2,
10
],
[
1746210836.0423903,
20,
2,
10
],
[
1746210843.7480333,
20,
1,
5
],
[
1746210843.9776893,
20,
1,
5
],
[
1746210914.5591655,
20,
1,
5
],
[
1746210915.0790324,
20,
1,
5
],
[
1746210916.7022882,
20,
2,
10
],
[
1746210917.4346826,
20,
2,
10
],
[
1746210924.0613768,
20,
1,
5
],
[
1746210924.260799,
20,
1,
5
],
[
1746210981.9976313,
20,
1,
5
],
[
1746210982.5985262,
20,
1,
5
],
[
1746210984.4111352,
20,
2,
10
],
[
1746210985.7734902,
20,
2,
10
],
[
1746210993.006235,
20,
1,
5
],
[
1746210993.252016,
20,
1,
5
],
[
1746211076.2700858,
20,
1,
5
],
[
1746211076.974287,
20,
1,
5
],
[
1746211078.7352343,
20,
2,
10
],
[
1746211080.2879887,
20,
2,
10
],
[
1746211088.1950407,
20,
1,
5
],
[
1746211088.4335184,
20,
1,
5
],
[
1746211265.076933,
20,
1,
5
],
[
1746211265.651472,
20,
1,
5
],
[
1746211267.459125,
20,
2,
10
],
[
1746211268.84281,
20,
2,
10
],
[
1746211275.9616811,
20,
1,
5
],
[
1746211276.1682475,
20,
1,
5
],
[
1746211452.498308,
20,
1,
5
],
[
1746211453.2925396,
20,
1,
5
],
[
1746211455.4935114,
20,
2,
10
],
[
1746211456.996403,
20,
2,
10
],
[
1746211464.76296,
20,
1,
5
],
[
1746211464.9933941,
20,
1,
5
],
[
1746211627.3182688,
20,
1,
5
],
[
1746211628.3864784,
20,
1,
5
],
[
1746211630.49407,
20,
2,
10
],
[
1746211632.0028343,
20,
2,
10
],
[
1746211639.8383622,
20,
1,
5
],
[
1746211640.067365,
20,
1,
5
],
[
1746212177.8173132,
20,
1,
5
],
[
1746212178.4655108,
20,
1,
5
],
[
1746212181.4824314,
20,
2,
10
],
[
1746212182.8659883,
20,
2,
10
],
[
1746212190.0092897,
20,
1,
5
],
[
1746212190.2471037,
20,
1,
5
],
[
1746212381.4546893,
20,
1,
5
],
[
1746212382.2991543,
20,
1,
5
],
[
1746212384.5057552,
20,
2,
10
],
[
1746212386.019152,
20,
2,
10
],
[
1746212393.8345404,
20,
1,
5
],
[
1746212394.0507176,
20,
1,
5
],
[
1746212563.3396244,
20,
1,
5
],
[
1746212564.0293899,
20,
1,
5
],
[
1746212565.6513798,
20,
2,
10
],
[
1746212566.7108984,
20,
2,
10
],
[
1746212573.3014095,
20,
1,
5
],
[
1746212573.6538599,
20,
1,
5
],
[
1746212690.4237542,
20,
1,
5
],
[
1746212691.2415352,
20,
1,
5
],
[
1746212693.3564231,
20,
2,
10
],
[
1746212694.7230296,
20,
2,
10
],
[
1746212702.1691325,
20,
1,
5
],
[
1746212702.406735,
20,
1,
5
],
[
1746212876.6315973,
20,
1,
5
],
[
1746212877.3015473,
20,
1,
5
],
[
1746212879.4591143,
20,
2,
10
],
[
1746212880.924704,
20,
2,
10
],
[
1746212888.7740252,
20,
1,
5
],
[
1746212889.0250626,
20,
1,
5
],
[
1746212962.8033078,
20,
1,
5
],
[
1746212963.4256396,
20,
1,
5
],
[
1746212965.3647552,
20,
2,
10
],
[
1746212966.8417706,
20,
2,
10
],
[
1746212974.959659,
20,
1,
5
],
[
1746212975.0726886,
20,
1,
5
],
[
1746213101.3993745,
20,
1,
5
],
[
1746213102.2462275,
20,
1,
5
],
[
1746213104.365377,
20,
2,
10
],
[
1746213105.5923822,
20,
2,
10
],
[
1746213113.0455554,
20,
1,
5
],
[
1746213113.3920872,
20,
1,
5
],
[
1746213119.0380855,
20,
1,
5
],
[
1746213128.7952106,
20,
1,
5
],
[
1746213138.291124,
20,
1,
5
],
[
1746213144.522018,
20,
1,
5
],
[
1746213149.4823658,
20,
0,
0
],
[
1746213157.3061664,
20,
0,
0
],
[
1746213233.9037094,
20,
0,
0
],
[
1746213234.4113572,
20,
0,
0
],
[
1746213236.5029888,
20,
1,
5
],
[
1746213241.4324586,
20,
1,
5
],
[
1746213314.31012,
20,
1,
5
],
[
1746213315.034396,
20,
1,
5
],
[
1746213316.8866227,
20,
2,
10
],
[
1746213318.1993861,
20,
2,
10
],
[
1746213325.7095523,
20,
1,
5
],
[
1746213325.923334,
20,
1,
5
],
[
1746213397.8693373,
20,
1,
5
],
[
1746213398.468051,
20,
1,
5
],
[
1746213400.3846202,
20,
2,
10
],
[
1746213401.937269,
20,
2,
10
],
[
1746213413.4274757,
20,
1,
5
],
[
1746213413.5671217,
20,
1,
5
],
[
1746213510.5275812,
20,
1,
5
],
[
1746213511.2895272,
20,
1,
5
],
[
1746213513.4009447,
20,
2,
10
],
[
1746213514.8759394,
20,
2,
10
],
[
1746213523.3697214,
20,
1,
5
],
[
1746213523.477459,
20,
1,
5
],
[
1746213667.3134146,
20,
1,
5
],
[
1746213668.0697246,
20,
1,
5
],
[
1746213670.1570687,
20,
2,
10
],
[
1746213671.324349,
20,
2,
10
],
[
1746213678.4598534,
20,
1,
5
],
[
1746213678.882402,
20,
1,
5
],
[
1746213739.6022704,
20,
1,
5
],
[
1746213740.2653,
20,
1,
5
],
[
1746213742.3403478,
20,
2,
10
],
[
1746213743.646732,
20,
2,
10
],
[
1746213751.1649504,
20,
1,
5
],
[
1746213751.366471,
20,
1,
5
],
[
1746213927.93836,
20,
1,
5
],
[
1746213928.5237842,
20,
1,
5
],
[
1746213930.3746767,
20,
2,
10
],
[
1746213931.6629958,
20,
2,
10
],
[
1746213938.989928,
20,
1,
5
],
[
1746213939.1841497,
20,
1,
5
],
[
1746214103.51984,
20,
1,
5
],
[
1746214104.1349635,
20,
1,
5
],
[
1746214106.1224463,
20,
2,
10
],
[
1746214107.0862231,
20,
2,
10
],
[
1746214113.802898,
20,
1,
5
],
[
1746214114.0132384,
20,
1,
5
],
[
1746214178.1914701,
20,
1,
5
],
[
1746214178.76206,
20,
1,
5
],
[
1746214180.4975095,
20,
2,
10
],
[
1746214181.7448256,
20,
2,
10
],
[
1746214189.1022115,
20,
1,
5
],
[
1746214189.2867205,
20,
1,
5
],
[
1746214376.6583905,
20,
1,
5
],
[
1746214377.2265666,
20,
1,
5
],
[
1746214379.2223876,
20,
2,
10
],
[
1746214380.4858403,
20,
2,
10
],
[
1746214387.9545329,
20,
1,
5
],
[
1746214388.1494756,
20,
1,
5
],
[
1746215273.31536,
20,
1,
5
],
[
1746215274.1391356,
20,
1,
5
],
[
1746215276.060161,
20,
2,
10
],
[
1746215277.4219337,
20,
2,
10
],
[
1746215285.1102262,
20,
1,
5
],
[
1746215285.3211224,
20,
1,
5
],
[
1746215402.6229591,
20,
1,
5
],
[
1746215403.2472477,
20,
1,
5
],
[
1746215405.3465312,
20,
2,
10
],
[
1746215406.6385164,
20,
2,
10
],
[
1746215414.0291576,
20,
1,
5
],
[
1746215414.219506,
20,
1,
5
],
[
1746215545.8207424,
20,
1,
5
],
[
1746215546.378563,
20,
1,
5
],
[
1746215548.3510375,
20,
2,
10
],
[
1746215549.6826189,
20,
2,
10
],
[
1746215557.3531857,
20,
1,
5
],
[
1746215557.4793515,
20,
1,
5
],
[
1746215921.0574281,
20,
1,
5
],
[
1746215921.661532,
20,
1,
5
],
[
1746215923.4698122,
20,
2,
10
],
[
1746215924.94947,
20,
2,
10
],
[
1746215932.2115617,
20,
1,
5
],
[
1746215932.4223835,
20,
1,
5
],
[
1746216091.6133637,
20,
1,
5
],
[
1746216092.2637465,
20,
1,
5
],
[
1746216094.4411428,
20,
2,
10
],
[
1746216095.8377929,
20,
2,
10
],
[
1746216103.268516,
20,
1,
5
],
[
1746216103.5114868,
20,
1,
5
],
[
1746216272.0398285,
20,
1,
5
],
[
1746216272.6605082,
20,
1,
5
],
[
1746216274.5929196,
20,
2,
10
],
[
1746216276.080634,
20,
2,
10
],
[
1746216284.6607714,
20,
1,
5
],
[
1746216284.7877772,
20,
1,
5
],
[
1746216364.4747198,
20,
1,
5
],
[
1746216365.2764528,
20,
1,
5
],
[
1746216367.4113855,
20,
2,
10
],
[
1746216368.805726,
20,
2,
10
],
[
1746216377.215181,
20,
1,
5
],
[
1746216377.3462358,
20,
1,
5
],
[
1746216797.5605848,
20,
1,
5
],
[
1746216798.2400348,
20,
1,
5
],
[
1746216800.364117,
20,
2,
10
],
[
1746216801.6428359,
20,
2,
10
],
[
1746216808.961477,
20,
1,
5
],
[
1746216809.1715138,
20,
1,
5
],
[
1746216941.9000592,
20,
1,
5
],
[
1746216942.5067847,
20,
1,
5
],
[
1746216944.4311023,
20,
2,
10
],
[
1746216945.9591749,
20,
2,
10
],
[
1746216954.5607624,
20,
1,
5
],
[
1746216954.6865568,
20,
1,
5
],
[
1746217023.9387276,
20,
1,
5
],
[
1746217024.4947176,
20,
1,
5
],
[
1746217026.322985,
20,
2,
10
],
[
1746217027.2692647,
20,
2,
10
],
[
1746217033.6749523,
20,
1,
5
],
[
1746217034.0285509,
20,
1,
5
],
[
1746217039.4045584,
20,
1,
5
],
[
1746217049.070463,
20,
1,
5
],
[
1746217059.1179357,
20,
1,
5
],
[
1746217069.1636443,
20,
1,
5
],
[
1746217075.3975708,
20,
1,
5
],
[
1746217080.4588606,
20,
0,
0
],
[
1746217088.6645658,
20,
0,
0
],
[
1746217292.4063056,
20,
0,
0
],
[
1746217292.7542129,
20,
0,
0
],
[
1746217294.4126115,
20,
1,
5
],
[
1746217298.856135,
20,
1,
5
],
[
1746217402.9406655,
20,
1,
5
],
[
1746217403.5576947,
20,
1,
5
],
[
1746217405.4606073,
20,
2,
10
],
[
1746217407.036617,
20,
2,
10
],
[
1746217415.615364,
20,
1,
5
],
[
1746217415.742666,
20,
1,
5
],
[
1746217572.9643004,
20,
1,
5
],
[
1746217573.5569956,
20,
1,
5
],
[
1746217575.4552033,
20,
2,
10
],
[
1746217576.9165838,
20,
2,
10
],
[
1746217585.1740944,
20,
1,
5
],
[
1746217585.265119,
20,
1,
5
],
[
1746217790.1004922,
20,
1,
5
],
[
1746217790.726352,
20,
1,
5
],
[
1746217792.5559468,
20,
2,
10
],
[
1746217794.0532982,
20,
2,
10
],
[
1746217801.857786,
20,
1,
5
],
[
1746217802.0657587,
20,
1,
5
],
[
1746217880.88781,
20,
1,
5
],
[
1746217881.3510294,
20,
1,
5
],
[
1746217883.2498822,
20,
2,
10
],
[
1746217884.1843655,
20,
2,
10
],
[
1746217891.193177,
20,
1,
5
],
[
1746217891.2603912,
20,
1,
5
],
[
1746217997.859677,
20,
1,
5
],
[
1746217998.5512252,
20,
1,
5
],
[
1746218000.4718688,
20,
2,
10
],
[
1746218001.9321554,
20,
2,
10
],
[
1746218009.6628397,
20,
1,
5
],
[
1746218009.900068,
20,
1,
5
],
[
1746218170.6560547,
20,
1,
5
],
[
1746218171.3390412,
20,
1,
5
],
[
1746218173.4476376,
20,
2,
10
],
[
1746218174.8859062,
20,
2,
10
],
[
1746218182.8097038,
20,
1,
5
],
[
1746218183.0678716,
20,
1,
5
],
[
1746218347.7669556,
20,
1,
5
],
[
1746218348.357618,
20,
1,
5
],
[
1746218350.3943398,
20,
2,
10
],
[
1746218351.75292,
20,
2,
10
],
[
1746218359.3292036,
20,
1,
5
],
[
1746218359.8273866,
20,
1,
5
],
[
1746218492.7274702,
20,
1,
5
],
[
1746218493.312734,
20,
1,
5
],
[
1746218495.4851038,
20,
2,
10
],
[
1746218496.7898302,
20,
2,
10
],
[
1746218503.8678596,
20,
1,
5
],
[
1746218504.0635078,
20,
1,
5
],
[
1746219174.377848,
20,
1,
5
],
[
1746219175.3237932,
20,
1,
5
],
[
1746219177.472567,
20,
2,
10
],
[
1746219178.994069,
20,
2,
10
],
[
1746219187.566973,
20,
1,
5
],
[
1746219187.6726751,
20,
1,
5
],
[
1746219384.3640444,
20,
1,
5
],
[
1746219385.1657193,
20,
1,
5
],
[
1746219387.1541102,
20,
2,
10
],
[
1746219388.3856504,
20,
2,
10
],
[
1746219395.998799,
20,
1,
5
],
[
1746219396.1794295,
20,
1,
5
],
[
1746219561.8294792,
20,
1,
5
],
[
1746219562.4676373,
20,
1,
5
],
[
1746219564.499052,
20,
2,
10
],
[
1746219566.049836,
20,
2,
10
],
[
1746219573.9287527,
20,
1,
5
],
[
1746219574.1563826,
20,
1,
5
],
[
1746219923.7952764,
20,
1,
5
],
[
1746219924.39729,
20,
1,
5
],
[
1746219926.4053843,
20,
2,
10
],
[
1746219927.8539267,
20,
2,
10
],
[
1746219936.416967,
20,
1,
5
],
[
1746219936.8755105,
20,
1,
5
],
[
1746220028.6056876,
20,
1,
5
],
[
1746220029.2946844,
20,
1,
5
],
[
1746220031.4686363,
20,
2,
10
],
[
1746220032.9618435,
20,
2,
10
],
[
1746220041.6348388,
20,
1,
5
],
[
1746220041.755026,
20,
1,
5
],
[
1746220170.8488684,
20,
1,
5
],
[
1746220171.4812655,
20,
1,
5
],
[
1746220173.4704123,
20,
2,
10
],
[
1746220174.9835207,
20,
2,
10
],
[
1746220183.0361059,
20,
1,
5
],
[
1746220183.2873101,
20,
1,
5
],
[
1746220276.787028,
20,
1,
5
],
[
1746220277.379464,
20,
1,
5
],
[
1746220279.5644178,
20,
2,
10
],
[
1746220281.0035965,
20,
2,
10
],
[
1746220289.585418,
20,
1,
5
],
[
1746220289.68958,
20,
1,
5
],
[
1746220373.7132149,
20,
1,
5
],
[
1746220374.148325,
20,
1,
5
],
[
1746220375.964098,
20,
2,
10
],
[
1746220377.0985205,
20,
2,
10
],
[
1746220384.5918434,
20,
1,
5
],
[
1746220384.6992557,
20,
1,
5
],
[
1746220922.690688,
20,
1,
5
],
[
1746220923.204792,
20,
1,
5
],
[
1746220925.2213616,
20,
2,
10
],
[
1746220926.4947777,
20,
2,
10
],
[
1746220933.543829,
20,
1,
5
],
[
1746220933.9151027,
20,
1,
5
],
[
1746221149.251267,
20,
1,
5
],
[
1746221149.8772516,
20,
1,
5
],
[
1746221151.674593,
20,
2,
10
],
[
1746221153.076401,
20,
2,
10
],
[
1746221161.7678232,
20,
1,
5
],
[
1746221161.86755,
20,
1,
5
],
[
1746221301.0360942,
20,
1,
5
],
[
1746221301.642338,
20,
1,
5
],
[
1746221303.5425918,
20,
2,
10
],
[
1746221304.8979864,
20,
2,
10
],
[
1746221312.2228477,
20,
1,
5
],
[
1746221312.6748111,
20,
1,
5
],
[
1746221318.6998987,
20,
1,
5
],
[
1746221324.9921072,
20,
1,
5
],
[
1746221330.2478125,
20,
0,
0
],
[
1746221337.698238,
20,
0,
0
],
[
1746221571.489845,
20,
0,
0
],
[
1746221571.9897618,
20,
0,
0
],
[
1746221573.7992637,
20,
1,
5
],
[
1746221579.0693045,
20,
1,
5
],
[
1746221805.5616143,
20,
1,
5
],
[
1746221806.1980398,
20,
1,
5
],
[
1746221808.3363605,
20,
2,
10
],
[
1746221809.6441941,
20,
2,
10
],
[
1746221817.4852054,
20,
1,
5
],
[
1746221817.6059594,
20,
1,
5
],
[
1746222091.3876133,
20,
1,
5
],
[
1746222092.2507532,
20,
1,
5
],
[
1746222094.4113371,
20,
2,
10
],
[
1746222095.8815973,
20,
2,
10
],
[
1746222104.847677,
20,
1,
5
],
[
1746222104.9523697,
20,
1,
5
],
[
1746222415.5042431,
20,
1,
5
],
[
1746222416.1741717,
20,
1,
5
],
[
1746222418.1148536,
20,
2,
10
],
[
1746222419.239159,
20,
2,
10
],
[
1746222426.4623995,
20,
1,
5
],
[
1746222426.8979797,
20,
1,
5
],
[
1746222589.0090363,
20,
1,
5
],
[
1746222589.566331,
20,
1,
5
],
[
1746222591.4442627,
20,
2,
10
],
[
1746222592.778426,
20,
2,
10
],
[
1746222600.3875456,
20,
1,
5
],
[
1746222600.8640294,
20,
1,
5
],
[
1746222763.6792126,
20,
1,
5
],
[
1746222764.2451913,
20,
1,
5
],
[
1746222766.411906,
20,
2,
10
],
[
1746222767.820995,
20,
2,
10
],
[
1746222776.0303686,
20,
1,
5
],
[
1746222776.242753,
20,
1,
5
],
[
1746223244.5231857,
20,
1,
5
],
[
1746223245.2446742,
20,
1,
5
],
[
1746223247.208307,
20,
2,
10
],
[
1746223248.5093522,
20,
2,
10
],
[
1746223256.805422,
20,
1,
5
],
[
1746223256.9059024,
20,
1,
5
],
[
1746223439.6798964,
20,
1,
5
],
[
1746223440.3076727,
20,
1,
5
],
[
1746223442.4470334,
20,
2,
10
],
[
1746223443.8867671,
20,
2,
10
],
[
1746223451.2739844,
20,
1,
5
],
[
1746223451.5609574,
20,
1,
5
],
[
1746223651.9810953,
20,
1,
5
],
[
1746223652.585074,
20,
1,
5
],
[
1746223654.4790435,
20,
2,
10
],
[
1746223655.9277685,
20,
2,
10
],
[
1746223664.0296044,
20,
1,
5
],
[
1746223664.1351898,
20,
1,
5
],
[
1746224396.687168,
20,
1,
5
],
[
1746224397.2351182,
20,
1,
5
],
[
1746224399.3680565,
20,
2,
10
],
[
1746224400.6198397,
20,
2,
10
],
[
1746224408.8205473,
20,
1,
5
],
[
1746224409.00618,
20,
1,
5
],
[
1746225202.393873,
20,
1,
5
],
[
1746225203.105433,
20,
1,
5
],
[
1746225205.1374753,
20,
2,
10
],
[
1746225206.2125638,
20,
2,
10
],
[
1746225213.8189793,
20,
1,
5
],
[
1746225214.0481777,
20,
1,
5
],
[
1746225467.2576075,
20,
1,
5
],
[
1746225467.8610702,
20,
1,
5
],
[
1746225469.7083127,
20,
2,
10
],
[
1746225471.0865204,
20,
2,
10
],
[
1746225478.7535214,
20,
1,
5
],
[
1746225478.9548013,
20,
1,
5
],
[
1746225587.230193,
20,
1,
5
],
[
1746225587.8245704,
20,
1,
5
],
[
1746225589.6528575,
20,
2,
10
],
[
1746225591.105627,
20,
2,
10
],
[
1746225600.2319136,
20,
1,
5
],
[
1746225600.341844,
20,
1,
5
],
[
1746225858.4638221,
20,
1,
5
],
[
1746225859.2567022,
20,
1,
5
],
[
1746225861.427035,
20,
2,
10
],
[
1746225862.7834163,
20,
2,
10
],
[
1746225871.2483385,
20,
1,
5
],
[
1746225871.3560374,
20,
1,
5
],
[
1746225988.7121038,
20,
1,
5
],
[
1746225989.2522552,
20,
1,
5
],
[
1746225991.2011328,
20,
2,
10
],
[
1746225992.4531522,
20,
2,
10
],
[
1746226000.1385922,
20,
1,
5
],
[
1746226000.3501506,
20,
1,
5
],
[
1746226174.4172044,
20,
1,
5
],
[
1746226175.2873676,
20,
1,
5
],
[
1746226177.4015334,
20,
2,
10
],
[
1746226178.869185,
20,
2,
10
],
[
1746226188.0650635,
20,
1,
5
],
[
1746226188.161832,
20,
1,
5
],
[
1746226432.9476948,
20,
1,
5
],
[
1746226433.5038257,
20,
1,
5
],
[
1746226435.3459892,
20,
2,
10
],
[
1746226436.587998,
20,
2,
10
],
[
1746226444.5460558,
20,
1,
5
],
[
1746226444.8872285,
20,
1,
5
],
[
1746226615.452652,
20,
1,
5
],
[
1746226616.2898588,
20,
1,
5
],
[
1746226618.4140291,
20,
2,
10
],
[
1746226619.8925898,
20,
2,
10
],
[
1746226628.1156228,
20,
1,
5
],
[
1746226628.376317,
20,
1,
5
],
[
1746226838.1246083,
20,
1,
5
],
[
1746226838.6063364,
20,
1,
5
],
[
1746226840.2872064,
20,
2,
10
],
[
1746226841.3527286,
20,
2,
10
],
[
1746226848.510242,
20,
1,
5
],
[
1746226848.8578725,
20,
1,
5
],
[
1746227017.6739666,
20,
1,
5
],
[
1746227018.2826076,
20,
1,
5
],
[
1746227020.402142,
20,
2,
10
],
[
1746227021.6959014,
20,
2,
10
],
[
1746227030.9658272,
20,
1,
5
],
[
1746227031.2035704,
20,
1,
5
],
[
1746227038.1522763,
20,
1,
5
],
[
1746227048.2204351,
20,
1,
5
],
[
1746227054.4013827,
20,
1,
5
],
[
1746227059.849074,
20,
0,
0
],
[
1746227067.3195744,
20,
0,
0
],
[
1746227724.4535284,
20,
0,
0
],
[
1746227724.943103,
20,
0,
0
],
[
1746227726.7054873,
20,
1,
5
],
[
1746227732.0504925,
20,
1,
5
],
[
1746228168.7938154,
20,
1,
5
],
[
1746228169.379859,
20,
1,
5
],
[
1746228171.3972075,
20,
2,
10
],
[
1746228172.8747177,
20,
2,
10
],
[
1746228180.9484675,
20,
1,
5
],
[
1746228181.1534128,
20,
1,
5
],
[
1746228364.4371321,
20,
1,
5
],
[
1746228365.2518497,
20,
1,
5
],
[
1746228367.3196402,
20,
2,
10
],
[
1746228368.594622,
20,
2,
10
],
[
1746228376.2346685,
20,
1,
5
],
[
1746228376.4686804,
20,
1,
5
],
[
1746228682.776948,
20,
1,
5
],
[
1746228683.3765914,
20,
1,
5
],
[
1746228685.4008002,
20,
2,
10
],
[
1746228686.756842,
20,
2,
10
],
[
1746228695.876426,
20,
1,
5
],
[
1746228695.969416,
20,
1,
5
],
[
1746229297.572185,
20,
1,
5
],
[
1746229298.2434633,
20,
1,
5
],
[
1746229300.239639,
20,
2,
10
],
[
1746229301.5163908,
20,
2,
10
],
[
1746229309.4755247,
20,
1,
5
],
[
1746229309.892977,
20,
1,
5
],
[
1746229494.051503,
20,
1,
5
],
[
1746229494.618323,
20,
1,
5
],
[
1746229496.3491,
20,
2,
10
],
[
1746229497.6808465,
20,
2,
10
],
[
1746229505.7171237,
20,
1,
5
],
[
1746229505.9434655,
20,
1,
5
],
[
1746229678.3961957,
20,
1,
5
],
[
1746229679.2567785,
20,
1,
5
],
[
1746229681.323388,
20,
2,
10
],
[
1746229682.7274003,
20,
2,
10
],
[
1746229691.8738859,
20,
1,
5
],
[
1746229691.983699,
20,
1,
5
],
[
1746229811.4089835,
20,
1,
5
],
[
1746229812.1838765,
20,
1,
5
],
[
1746229814.1399977,
20,
2,
10
],
[
1746229815.310237,
20,
2,
10
],
[
1746229822.7111404,
20,
1,
5
],
[
1746229822.961191,
20,
1,
5
],
[
1746230078.7740586,
20,
1,
5
],
[
1746230079.3852477,
20,
1,
5
],
[
1746230081.3738017,
20,
2,
10
],
[
1746230082.7892745,
20,
2,
10
],
[
1746230091.899506,
20,
1,
5
],
[
1746230092.0065656,
20,
1,
5
],
[
1746230499.088966,
20,
1,
5
],
[
1746230499.6604595,
20,
1,
5
],
[
1746230501.385374,
20,
2,
10
],
[
1746230502.6793065,
20,
2,
10
],
[
1746230510.775145,
20,
1,
5
],
[
1746230510.995986,
20,
1,
5
],
[
1746230687.7757342,
20,
1,
5
],
[
1746230688.303265,
20,
1,
5
],
[
1746230690.4195185,
20,
2,
10
],
[
1746230691.588721,
20,
2,
10
],
[
1746230699.7856836,
20,
1,
5
],
[
1746230699.872237,
20,
1,
5
],
[
1746230871.4047184,
20,
1,
5
],
[
1746230872.1568775,
20,
1,
5
],
[
1746230874.1530902,
20,
2,
10
],
[
1746230875.363832,
20,
2,
10
],
[
1746230883.083964,
20,
1,
5
],
[
1746230883.2907417,
20,
1,
5
],
[
1746231000.4926693,
20,
1,
5
],
[
1746231001.165132,
20,
1,
5
],
[
1746231003.2760699,
20,
2,
10
],
[
1746231004.4175582,
20,
2,
10
],
[
1746231011.933033,
20,
1,
5
],
[
1746231012.1206772,
20,
1,
5
],
[
1746231368.8023524,
20,
1,
5
],
[
1746231369.3483453,
20,
1,
5
],
[
1746231371.4125545,
20,
2,
10
],
[
1746231372.7456596,
20,
2,
10
],
[
1746231381.0020273,
20,
1,
5
],
[
1746231381.2121346,
20,
1,
5
],
[
1746232131.0209088,
20,
1,
5
],
[
1746232132.5829046,
20,
1,
5
],
[
1746232134.3967369,
20,
2,
10
],
[
1746232135.729252,
20,
2,
10
],
[
1746232144.032437,
20,
1,
5
],
[
1746232144.1915014,
20,
1,
5
],
[
1746232251.8984396,
20,
1,
5
],
[
1746232252.3965225,
20,
1,
5
],
[
1746232254.334673,
20,
2,
10
],
[
1746232255.5192986,
20,
2,
10
],
[
1746232263.6555235,
20,
1,
5
],
[
1746232263.751777,
20,
1,
5
],
[
1746232646.0624778,
20,
1,
5
],
[
1746232646.5635135,
20,
1,
5
],
[
1746232648.3115668,
20,
2,
10
],
[
1746232649.4827504,
20,
2,
10
],
[
1746232657.0435512,
20,
1,
5
],
[
1746232657.2417324,
20,
1,
5
],
[
1746233009.6088116,
20,
1,
5
],
[
1746233010.186287,
20,
1,
5
],
[
1746233012.1865685,
20,
2,
10
],
[
1746233013.3714592,
20,
2,
10
],
[
1746233021.8043413,
20,
1,
5
],
[
1746233021.9965386,
20,
1,
5
],
[
1746233394.4123526,
20,
1,
5
],
[
1746233395.2539952,
20,
1,
5
],
[
1746233398.447049,
20,
2,
10
],
[
1746233399.7311344,
20,
2,
10
],
[
1746233407.763572,
20,
1,
5
],
[
1746233407.9555347,
20,
1,
5
],
[
1746234025.837779,
20,
1,
5
],
[
1746234026.3522277,
20,
1,
5
],
[
1746234028.4152777,
20,
2,
10
],
[
1746234029.564139,
20,
2,
10
],
[
1746234038.1087353,
20,
1,
5
],
[
1746234038.310665,
20,
1,
5
],
[
1746234045.303082,
20,
1,
5
],
[
1746234055.4480321,
20,
1,
5
],
[
1746234061.5473373,
20,
1,
5
],
[
1746234067.3000293,
20,
0,
0
],
[
1746234074.96018,
20,
0,
0
],
[
1746234444.8573492,
20,
0,
0
],
[
1746234445.285157,
20,
0,
0
],
[
1746234447.3658957,
20,
1,
5
],
[
1746234452.3357732,
20,
1,
5
],
[
1746234973.5920703,
20,
1,
5
],
[
1746234974.263259,
20,
1,
5
],
[
1746234976.3828316,
20,
2,
10
],
[
1746234977.7365763,
20,
2,
10
],
[
1746234986.0574872,
20,
1,
5
],
[
1746234986.2745051,
20,
1,
5
],
[
1746236245.6506205,
20,
1,
5
],
[
1746236246.208485,
20,
1,
5
],
[
1746236248.1775548,
20,
2,
10
],
[
1746236249.3956268,
20,
2,
10
],
[
1746236258.661394,
20,
1,
5
],
[
1746236258.7446814,
20,
1,
5
],
[
1746236551.9780633,
20,
1,
5
],
[
1746236552.5300784,
20,
1,
5
],
[
1746236554.4050713,
20,
2,
10
],
[
1746236555.6702716,
20,
2,
10
],
[
1746236563.769939,
20,
1,
5
],
[
1746236563.978511,
20,
1,
5
],
[
1746236841.3974528,
20,
1,
5
],
[
1746236842.2657406,
20,
1,
5
],
[
1746236844.449513,
20,
2,
10
],
[
1746236845.8777153,
20,
2,
10
],
[
1746236855.7994854,
20,
1,
5
],
[
1746236855.9049907,
20,
1,
5
],
[
1746236955.8632433,
20,
1,
5
],
[
1746236956.3877006,
20,
1,
5
],
[
1746236958.3192098,
20,
2,
10
],
[
1746236959.5281363,
20,
2,
10
],
[
1746236969.1285794,
20,
1,
5
],
[
1746236969.2422495,
20,
1,
5
],
[
1746237131.4190652,
20,
1,
5
],
[
1746237132.2884471,
20,
1,
5
],
[
1746237134.4026859,
20,
2,
10
],
[
1746237135.787967,
20,
2,
10
],
[
1746237145.6858518,
20,
1,
5
],
[
1746237145.7833586,
20,
1,
5
],
[
1746237267.0717633,
20,
1,
5
],
[
1746237267.5913339,
20,
1,
5
],
[
1746237269.390786,
20,
2,
10
],
[
1746237270.62826,
20,
2,
10
],
[
1746237279.858244,
20,
1,
5
],
[
1746237279.9666421,
20,
1,
5
],
[
1746237523.967491,
20,
1,
5
],
[
1746237524.5428762,
20,
1,
5
],
[
1746237526.355242,
20,
2,
10
],
[
1746237527.6323426,
20,
2,
10
],
[
1746237536.987685,
20,
1,
5
],
[
1746237537.0740445,
20,
1,
5
],
[
1746237882.749903,
20,
1,
5
],
[
1746237883.382774,
20,
1,
5
],
[
1746237885.496438,
20,
2,
10
],
[
1746237886.9894073,
20,
2,
10
],
[
1746237897.6682022,
20,
1,
5
],
[
1746237897.7793005,
20,
1,
5
],
[
1746238158.8058467,
20,
1,
5
],
[
1746238159.5491986,
20,
1,
5
],
[
1746238161.4942226,
20,
2,
10
],
[
1746238162.9220147,
20,
2,
10
],
[
1746238171.7983499,
20,
1,
5
],
[
1746238171.8905802,
20,
1,
5
],
[
1746238292.9172688,
20,
1,
5
],
[
1746238294.5642717,
20,
1,
5
],
[
1746238296.4128394,
20,
2,
10
],
[
1746238297.8791463,
20,
2,
10
],
[
1746238307.5032518,
20,
1,
5
],
[
1746238307.583823,
20,
1,
5
],
[
1746239084.3754222,
20,
1,
5
],
[
1746239085.3043056,
20,
1,
5
],
[
1746239087.4015052,
20,
2,
10
],
[
1746239088.8352954,
20,
2,
10
],
[
1746239097.711258,
20,
1,
5
],
[
1746239097.9180489,
20,
1,
5
],
[
1746239806.2823982,
20,
1,
5
],
[
1746239806.8462274,
20,
1,
5
],
[
1746239808.4857156,
20,
2,
10
],
[
1746239809.701068,
20,
2,
10
],
[
1746239817.8703153,
20,
1,
5
],
[
1746239817.9731371,
20,
1,
5
],
[
1746240394.5699055,
20,
1,
5
],
[
1746240395.2760508,
20,
1,
5
],
[
1746240397.3883023,
20,
2,
10
],
[
1746240398.7629025,
20,
2,
10
],
[
1746240407.5906188,
20,
1,
5
],
[
1746240407.8947399,
20,
1,
5
],
[
1746241872.3092568,
20,
1,
5
],
[
1746241873.1805534,
20,
1,
5
],
[
1746241875.3141878,
20,
2,
10
],
[
1746241876.8325083,
20,
2,
10
],
[
1746241887.8338144,
20,
1,
5
],
[
1746241887.9550848,
20,
1,
5
],
[
1746242254.2339914,
20,
1,
5
],
[
1746242254.8528569,
20,
1,
5
],
[
1746242256.6701002,
20,
2,
10
],
[
1746242258.1682234,
20,
2,
10
],
[
1746242267.642638,
20,
1,
5
],
[
1746242267.7844257,
20,
1,
5
],
[
1746242502.222825,
20,
1,
5
],
[
1746242502.8946452,
20,
1,
5
],
[
1746242504.7831445,
20,
2,
10
],
[
1746242506.335128,
20,
2,
10
],
[
1746242516.299309,
20,
1,
5
],
[
1746242516.644691,
20,
1,
5
],
[
1746243746.416764,
20,
1,
5
],
[
1746243747.2336047,
20,
1,
5
],
[
1746243749.3550649,
20,
2,
10
],
[
1746243750.6951027,
20,
2,
10
],
[
1746243759.667878,
20,
1,
5
],
[
1746243759.877406,
20,
1,
5
],
[
1746245289.833989,
20,
1,
5
],
[
1746245290.4030538,
20,
1,
5
],
[
1746245292.3379784,
20,
2,
10
],
[
1746245293.4117427,
20,
2,
10
],
[
1746245302.0381954,
20,
1,
5
],
[
1746245302.3861234,
20,
1,
5
],
[
1746245309.432736,
20,
1,
5
],
[
1746245320.5395896,
20,
1,
5
],
[
1746245330.2251964,
20,
1,
5
],
[
1746245336.54468,
20,
1,
5
],
[
1746245342.6633742,
20,
0,
0
],
[
1746245350.8983893,
20,
0,
0
],
[
1746246404.75538,
20,
0,
0
],
[
1746246405.2628288,
20,
0,
0
],
[
1746246407.5296638,
20,
1,
5
],
[
1746246413.9078846,
20,
1,
5
],
[
1746247007.5402677,
20,
1,
5
],
[
1746247008.2290876,
20,
1,
5
],
[
1746247010.2725923,
20,
2,
10
],
[
1746247011.6329174,
20,
2,
10
],
[
1746247021.7412426,
20,
1,
5
],
[
1746247021.8714821,
20,
1,
5
],
[
1746247401.5586002,
20,
1,
5
],
[
1746247402.2535186,
20,
1,
5
],
[
1746247404.3746545,
20,
2,
10
],
[
1746247405.728436,
20,
2,
10
],
[
1746247415.6201158,
20,
1,
5
],
[
1746247415.7316132,
20,
1,
5
],
[
1746247675.8969438,
20,
1,
5
],
[
1746247676.5053425,
20,
1,
5
],
[
1746247678.5734224,
20,
2,
10
],
[
1746247680.0661263,
20,
2,
10
],
[
1746247689.614954,
20,
1,
5
],
[
1746247689.738623,
20,
1,
5
],
[
1746247838.344486,
20,
1,
5
],
[
1746247839.1686893,
20,
1,
5
],
[
1746247841.1486375,
20,
2,
10
],
[
1746247842.3567116,
20,
2,
10
],
[
1746247851.1424377,
20,
1,
5
],
[
1746247851.2504213,
20,
1,
5
],
[
1746248315.0076647,
20,
1,
5
],
[
1746248315.551429,
20,
1,
5
],
[
1746248317.381341,
20,
2,
10
],
[
1746248318.7146373,
20,
2,
10
],
[
1746248328.5991912,
20,
1,
5
],
[
1746248328.714363,
20,
1,
5
],
[
1746249857.1380336,
20,
1,
5
],
[
1746249857.607513,
20,
1,
5
],
[
1746249859.3228986,
20,
2,
10
],
[
1746249860.359234,
20,
2,
10
],
[
1746249868.0388832,
20,
1,
5
],
[
1746249868.1119397,
20,
1,
5
],
[
1746250724.8444312,
20,
1,
5
],
[
1746250725.3563302,
20,
1,
5
],
[
1746250727.3213105,
20,
2,
10
],
[
1746250728.4744654,
20,
2,
10
],
[
1746250736.9853451,
20,
1,
5
],
[
1746250737.0716054,
20,
1,
5
],
[
1746251022.9130788,
20,
1,
5
],
[
1746251023.4280636,
20,
1,
5
],
[
1746251025.3641887,
20,
2,
10
],
[
1746251026.5492277,
20,
2,
10
],
[
1746251035.3218746,
20,
1,
5
],
[
1746251035.7987764,
20,
1,
5
],
[
1746251708.3453207,
20,
1,
5
],
[
1746251709.1139107,
20,
1,
5
],
[
1746251711.1113338,
20,
2,
10
],
[
1746251712.2292302,
20,
2,
10
],
[
1746251720.4190361,
20,
1,
5
],
[
1746251720.8737817,
20,
1,
5
],
[
1746252962.2055404,
20,
1,
5
],
[
1746252962.7566807,
20,
1,
5
],
[
1746252964.4863117,
20,
2,
10
],
[
1746252965.8028014,
20,
2,
10
],
[
1746252975.2481456,
20,
1,
5
],
[
1746252975.3422697,
20,
1,
5
],
[
1746254959.200577,
20,
1,
5
],
[
1746254959.7483518,
20,
1,
5
],
[
1746254961.5251586,
20,
2,
10
],
[
1746254962.8223681,
20,
2,
10
],
[
1746254971.8218343,
20,
1,
5
],
[
1746254971.9441519,
20,
1,
5
],
[
1746255703.2336664,
20,
1,
5
],
[
1746255703.8519738,
20,
1,
5
],
[
1746255705.6520386,
20,
2,
10
],
[
1746255707.0258994,
20,
2,
10
],
[
1746255716.7496023,
20,
1,
5
],
[
1746255716.87526,
20,
1,
5
],
[
1746256310.4920282,
20,
1,
5
],
[
1746256311.3051014,
20,
1,
5
],
[
1746256313.394352,
20,
2,
10
],
[
1746256314.860371,
20,
2,
10
],
[
1746256325.0009859,
20,
1,
5
],
[
1746256325.1287858,
20,
1,
5
],
[
1746256898.5427039,
20,
1,
5
],
[
1746256899.2650335,
20,
1,
5
],
[
1746256901.396189,
20,
2,
10
],
[
1746256902.7717927,
20,
2,
10
],
[
1746256912.7788525,
20,
1,
5
],
[
1746256912.8805196,
20,
1,
5
],
[
1746258586.7175004,
20,
1,
5
],
[
1746258587.2616365,
20,
1,
5
],
[
1746258589.383699,
20,
2,
10
],
[
1746258590.6445901,
20,
2,
10
],
[
1746258599.9507964,
20,
1,
5
],
[
1746258600.041381,
20,
1,
5
],
[
1746258848.996427,
20,
1,
5
],
[
1746258849.6110494,
20,
1,
5
],
[
1746258851.388747,
20,
2,
10
],
[
1746258852.8556004,
20,
2,
10
],
[
1746258863.3240433,
20,
1,
5
],
[
1746258863.4491153,
20,
1,
5
],
[
1746260700.574062,
20,
1,
5
],
[
1746260701.2593746,
20,
1,
5
],
[
1746260703.384017,
20,
2,
10
],
[
1746260704.6923826,
20,
2,
10
],
[
1746260713.7053874,
20,
1,
5
],
[
1746260713.9074848,
20,
1,
5
],
[
1746261715.3125453,
20,
1,
5
],
[
1746261716.1115098,
20,
1,
5
],
[
1746261718.0683312,
20,
2,
10
],
[
1746261719.419199,
20,
2,
10
],
[
1746261730.0057328,
20,
1,
5
],
[
1746261730.2211528,
20,
1,
5
],
[
1746262287.6370807,
20,
1,
5
],
[
1746262288.2849548,
20,
1,
5
],
[
1746262290.437264,
20,
2,
10
],
[
1746262291.7944865,
20,
2,
10
],
[
1746262300.995014,
20,
1,
5
],
[
1746262301.3015165,
20,
1,
5
],
[
1746262309.1731358,
20,
1,
5
],
[
1746262315.3271177,
20,
1,
5
],
[
1746262321.333296,
20,
0,
0
],
[
1746262329.042101,
20,
0,
0
],
[
1746263465.474946,
20,
0,
0
],
[
1746263465.9003146,
20,
0,
0
],
[
1746263467.6994479,
20,
1,
5
],
[
1746263473.1091392,
20,
1,
5
],
[
1746264402.2217968,
20,
1,
5
],
[
1746264403.366524,
20,
1,
5
],
[
1746264405.500768,
20,
2,
10
],
[
1746264407.0012095,
20,
2,
10
],
[
1746264417.8469045,
20,
1,
5
],
[
1746264417.97679,
20,
1,
5
],
[
1746265436.6534517,
20,
1,
5
],
[
1746265437.346341,
20,
1,
5
],
[
1746265439.3911154,
20,
2,
10
],
[
1746265440.8146875,
20,
2,
10
],
[
1746265450.7378109,
20,
1,
5
],
[
1746265450.8441129,
20,
1,
5
],
[
1746266043.626395,
20,
1,
5
],
[
1746266044.2766397,
20,
1,
5
],
[
1746266046.413977,
20,
2,
10
],
[
1746266047.7237487,
20,
2,
10
],
[
1746266057.9210184,
20,
1,
5
],
[
1746266058.0460317,
20,
1,
5
],
[
1746266409.015985,
20,
1,
5
],
[
1746266409.5947602,
20,
1,
5
],
[
1746266411.362085,
20,
2,
10
],
[
1746266412.6368403,
20,
2,
10
],
[
1746266422.3488777,
20,
1,
5
],
[
1746266422.465032,
20,
1,
5
],
[
1746267066.5868006,
20,
1,
5
],
[
1746267067.1704106,
20,
1,
5
],
[
1746267069.0684216,
20,
2,
10
],
[
1746267070.0565326,
20,
2,
10
],
[
1746267078.6961257,
20,
1,
5
],
[
1746267078.7686622,
20,
1,
5
],
[
1746267982.0296264,
20,
1,
5
],
[
1746267982.5422099,
20,
1,
5
],
[
1746267984.2997417,
20,
2,
10
],
[
1746267985.4815726,
20,
2,
10
],
[
1746267995.05895,
20,
1,
5
],
[
1746267995.1819582,
20,
1,
5
],
[
1746268254.8654544,
20,
1,
5
],
[
1746268255.3909106,
20,
1,
5
],
[
1746268257.3574116,
20,
2,
10
],
[
1746268258.5864832,
20,
2,
10
],
[
1746268268.5269072,
20,
1,
5
],
[
1746268268.9084413,
20,
1,
5
],
[
1746268819.7108834,
20,
1,
5
],
[
1746268820.296805,
20,
1,
5
],
[
1746268822.432904,
20,
2,
10
],
[
1746268823.834455,
20,
2,
10
],
[
1746268834.1774604,
20,
1,
5
],
[
1746268834.2917447,
20,
1,
5
],
[
1746269240.2672968,
20,
1,
5
],
[
1746269240.808939,
20,
1,
5
],
[
1746269242.5540745,
20,
2,
10
],
[
1746269243.6933374,
20,
2,
10
],
[
1746269253.0792692,
20,
1,
5
],
[
1746269253.1906538,
20,
1,
5
],
[
1746269485.9960775,
20,
1,
5
],
[
1746269486.5659397,
20,
1,
5
],
[
1746269488.3934307,
20,
2,
10
],
[
1746269489.683902,
20,
2,
10
],
[
1746269499.6549075,
20,
1,
5
],
[
1746269499.7633533,
20,
1,
5
],
[
1746270583.7459342,
20,
1,
5
],
[
1746270584.3061533,
20,
1,
5
],
[
1746270586.372449,
20,
2,
10
],
[
1746270587.6502793,
20,
2,
10
],
[
1746270597.6935785,
20,
1,
5
],
[
1746270597.8139515,
20,
1,
5
],
[
1746270880.894774,
20,
1,
5
],
[
1746270881.465589,
20,
1,
5
],
[
1746270883.3796055,
20,
2,
10
],
[
1746270884.6824694,
20,
2,
10
],
[
1746270894.7354379,
20,
1,
5
],
[
1746270894.8452964,
20,
1,
5
],
[
1746271821.7028615,
20,
1,
5
],
[
1746271822.205291,
20,
1,
5
],
[
1746271824.1492107,
20,
2,
10
],
[
1746271825.2001064,
20,
2,
10
],
[
1746271833.6143324,
20,
1,
5
],
[
1746271833.7275212,
20,
1,
5
],
[
1746272037.3128102,
20,
1,
5
],
[
1746272038.0766382,
20,
1,
5
],
[
1746272040.236346,
20,
2,
10
],
[
1746272041.5598085,
20,
2,
10
],
[
1746272051.7458918,
20,
1,
5
],
[
1746272051.8661852,
20,
1,
5
],
[
1746272300.633355,
20,
1,
5
],
[
1746272301.2456028,
20,
1,
5
],
[
1746272303.253621,
20,
2,
10
],
[
1746272304.5390406,
20,
2,
10
],
[
1746272314.596981,
20,
1,
5
],
[
1746272314.7005105,
20,
1,
5
],
[
1746273654.2590551,
20,
1,
5
],
[
1746273654.8694773,
20,
1,
5
],
[
1746273656.6092932,
20,
2,
10
],
[
1746273657.9383628,
20,
2,
10
],
[
1746273668.295315,
20,
1,
5
],
[
1746273668.4423435,
20,
1,
5
],
[
1746274102.7710416,
20,
1,
5
],
[
1746274103.3612523,
20,
1,
5
],
[
1746274105.4001458,
20,
2,
10
],
[
1746274106.5764782,
20,
2,
10
],
[
1746274116.1328464,
20,
1,
5
],
[
1746274116.2257915,
20,
1,
5
],
[
1746274404.380491,
20,
1,
5
],
[
1746274405.2083788,
20,
1,
5
],
[
1746274407.2967994,
20,
2,
10
],
[
1746274408.6749532,
20,
2,
10
],
[
1746274419.1354263,
20,
1,
5
],
[
1746274419.262203,
20,
1,
5
],
[
1746274761.3869402,
20,
1,
5
],
[
1746274762.1647522,
20,
1,
5
],
[
1746274764.1473548,
20,
2,
10
],
[
1746274765.2207744,
20,
2,
10
],
[
1746274774.3569062,
20,
1,
5
],
[
1746274774.592449,
20,
1,
5
],
[
1746274781.4059753,
20,
1,
5
],
[
1746274791.9549901,
20,
1,
5
],
[
1746274798.1182082,
20,
1,
5
],
[
1746274804.9114323,
20,
0,
0
],
[
1746274812.8143818,
20,
0,
0
],
[
1746275694.5247111,
20,
0,
0
],
[
1746275694.923194,
20,
0,
0
],
[
1746275696.6648836,
20,
1,
5
],
[
1746275702.1217933,
20,
1,
5
],
[
1746276399.4981732,
20,
1,
5
],
[
1746276400.2523308,
20,
1,
5
],
[
1746276402.4639187,
20,
2,
10
],
[
1746276403.84161,
20,
2,
10
],
[
1746276414.4391663,
20,
1,
5
],
[
1746276414.54699,
20,
1,
5
],
[
1746276854.2034214,
20,
1,
5
],
[
1746276854.812995,
20,
1,
5
],
[
1746276856.6025398,
20,
2,
10
],
[
1746276857.9685173,
20,
2,
10
],
[
1746276868.9594996,
20,
1,
5
],
[
1746276869.1046624,
20,
1,
5
],
[
1746277567.9515994,
20,
1,
5
],
[
1746277568.5548062,
20,
1,
5
],
[
1746277570.4876227,
20,
2,
10
],
[
1746277571.9333773,
20,
2,
10
],
[
1746277583.0754201,
20,
1,
5
],
[
1746277583.236736,
20,
1,
5
],
[
1746277825.1878476,
20,
1,
5
],
[
1746277825.7772121,
20,
1,
5
],
[
1746277827.643223,
20,
2,
10
],
[
1746277828.985918,
20,
2,
10
],
[
1746277839.956868,
20,
1,
5
],
[
1746277840.06765,
20,
1,
5
],
[
1746278417.171498,
20,
1,
5
],
[
1746278417.8127015,
20,
1,
5
],
[
1746278419.6042423,
20,
2,
10
],
[
1746278420.9603467,
20,
2,
10
],
[
1746278431.344659,
20,
1,
5
],
[
1746278431.4738097,
20,
1,
5
],
[
1746279909.8923073,
20,
1,
5
],
[
1746279910.549861,
20,
1,
5
],
[
1746279912.4796972,
20,
2,
10
],
[
1746279913.9813375,
20,
2,
10
],
[
1746279925.2159245,
20,
1,
5
],
[
1746279925.3674688,
20,
1,
5
],
[
1746281170.9177086,
20,
1,
5
],
[
1746281171.536173,
20,
1,
5
],
[
1746281173.4940143,
20,
2,
10
],
[
1746281174.9928694,
20,
2,
10
],
[
1746281186.2529027,
20,
1,
5
],
[
1746281186.5142984,
20,
1,
5
],
[
1746282527.2414072,
20,
1,
5
],
[
1746282527.8238168,
20,
1,
5
],
[
1746282529.675563,
20,
2,
10
],
[
1746282531.0139463,
20,
2,
10
],
[
1746282541.4612148,
20,
1,
5
],
[
1746282541.608797,
20,
1,
5
],
[
1746284095.4041462,
20,
1,
5
],
[
1746284099.3079445,
20,
1,
5
],
[
1746284101.5016441,
20,
2,
10
],
[
1746284103.0677428,
20,
2,
10
],
[
1746284114.0332806,
20,
1,
5
],
[
1746284114.170046,
20,
1,
5
],
[
1746284482.2480829,
20,
1,
5
],
[
1746284482.869871,
20,
1,
5
],
[
1746284484.742217,
20,
2,
10
],
[
1746284486.2597303,
20,
2,
10
],
[
1746284497.701259,
20,
1,
5
],
[
1746284497.8446434,
20,
1,
5
],
[
1746284818.3539338,
20,
1,
5
],
[
1746284819.1691432,
20,
1,
5
],
[
1746284821.2529933,
20,
2,
10
],
[
1746284822.612835,
20,
2,
10
],
[
1746284833.5332875,
20,
1,
5
],
[
1746284833.7880223,
20,
1,
5
],
[
1746285876.1923182,
20,
1,
5
],
[
1746285876.776963,
20,
1,
5
],
[
1746285878.5580332,
20,
2,
10
],
[
1746285879.841818,
20,
2,
10
],
[
1746285890.8116295,
20,
1,
5
],
[
1746285890.912092,
20,
1,
5
],
[
1746286268.7858403,
20,
1,
5
],
[
1746286269.421965,
20,
1,
5
],
[
1746286271.4358659,
20,
2,
10
],
[
1746286272.8659525,
20,
2,
10
],
[
1746286284.5879824,
20,
1,
5
],
[
1746286284.9361415,
20,
1,
5
],
[
1746286845.639841,
20,
1,
5
],
[
1746286846.247294,
20,
1,
5
],
[
1746286848.2356305,
20,
2,
10
],
[
1746286849.6144538,
20,
2,
10
],
[
1746286859.5743957,
20,
1,
5
],
[
1746286859.6650302,
20,
1,
5
],
[
1746287034.4409368,
20,
1,
5
],
[
1746287035.2936366,
20,
1,
5
],
[
1746287037.472054,
20,
2,
10
],
[
1746287038.9240768,
20,
2,
10
],
[
1746287050.5758595,
20,
1,
5
],
[
1746287050.6855114,
20,
1,
5
],
[
1746288278.4397044,
20,
1,
5
],
[
1746288279.344697,
20,
1,
5
],
[
1746288281.4816353,
20,
2,
10
],
[
1746288282.9363387,
20,
2,
10
],
[
1746288294.9074922,
20,
1,
5
],
[
1746288295.0190928,
20,
1,
5
],
[
1746289196.553685,
20,
1,
5
],
[
1746289197.174978,
20,
1,
5
],
[
1746289199.024121,
20,
2,
10
],
[
1746289200.1473095,
20,
2,
10
],
[
1746289209.7898326,
20,
1,
5
],
[
1746289209.8616261,
20,
1,
5
],
[
1746289956.6487544,
20,
1,
5
],
[
1746289957.363412,
20,
1,
5
],
[
1746289959.472328,
20,
2,
10
],
[
1746289960.9328067,
20,
2,
10
],
[
1746289972.9015021,
20,
1,
5
],
[
1746289973.1486647,
20,
1,
5
],
[
1746290728.11339,
20,
1,
5
],
[
1746290728.6725454,
20,
1,
5
],
[
1746290730.46656,
20,
2,
10
],
[
1746290731.66831,
20,
2,
10
],
[
1746290742.835302,
20,
1,
5
],
[
1746290743.249214,
20,
1,
5
],
[
1746290751.2391157,
20,
1,
5
],
[
1746290757.5543838,
20,
1,
5
],
[
1746290765.269084,
20,
0,
0
],
[
1746290775.0841775,
20,
0,
0
],
[
1746292491.7947586,
20,
0,
0
],
[
1746292492.2157493,
20,
0,
0
],
[
1746292494.2215354,
20,
1,
5
],
[
1746292500.550314,
20,
1,
5
],
[
1746293007.2723758,
20,
1,
5
],
[
1746293007.875291,
20,
1,
5
],
[
1746293009.69062,
20,
2,
10
],
[
1746293011.0378354,
20,
2,
10
],
[
1746293022.6264818,
20,
1,
5
],
[
1746293022.7567468,
20,
1,
5
],
[
1746293867.5677667,
20,
1,
5
],
[
1746293868.2714596,
20,
1,
5
],
[
1746293870.3714786,
20,
2,
10
],
[
1746293871.5785954,
20,
2,
10
],
[
1746293882.1869705,
20,
1,
5
],
[
1746293882.2753866,
20,
1,
5
],
[
1746294501.2769396,
20,
1,
5
],
[
1746294501.9429367,
20,
1,
5
],
[
1746294503.8279626,
20,
2,
10
],
[
1746294505.2340786,
20,
2,
10
],
[
1746294516.7893317,
20,
1,
5
],
[
1746294516.937091,
20,
1,
5
],
[
1746294989.6676364,
20,
1,
5
],
[
1746294990.301117,
20,
1,
5
],
[
1746294992.4207752,
20,
2,
10
],
[
1746294993.845554,
20,
2,
10
],
[
1746295005.5040593,
20,
1,
5
],
[
1746295005.63467,
20,
1,
5
],
[
1746296622.6896644,
20,
1,
5
],
[
1746296623.3258042,
20,
1,
5
],
[
1746296625.3885932,
20,
2,
10
],
[
1746296626.8384511,
20,
2,
10
],
[
1746296638.23266,
20,
1,
5
],
[
1746296638.3819242,
20,
1,
5
],
[
1746296968.981829,
20,
1,
5
],
[
1746296969.4913802,
20,
1,
5
],
[
1746296971.4792166,
20,
2,
10
],
[
1746296972.6547837,
20,
2,
10
],
[
1746296983.6442251,
20,
1,
5
],
[
1746296983.7815936,
20,
1,
5
],
[
1746298488.087261,
20,
1,
5
],
[
1746298488.7375154,
20,
1,
5
],
[
1746298490.636725,
20,
2,
10
],
[
1746298492.1673725,
20,
2,
10
],
[
1746298504.3728073,
20,
1,
5
],
[
1746298504.5106304,
20,
1,
5
],
[
1746299326.9869835,
20,
1,
5
],
[
1746299327.6141968,
20,
1,
5
],
[
1746299329.443126,
20,
2,
10
],
[
1746299330.969893,
20,
2,
10
],
[
1746299343.5969217,
20,
1,
5
],
[
1746299343.7428844,
20,
1,
5
],
[
1746299593.513706,
20,
1,
5
],
[
1746299594.3339257,
20,
1,
5
],
[
1746299596.496227,
20,
2,
10
],
[
1746299597.966426,
20,
2,
10
],
[
1746299609.1935928,
20,
1,
5
],
[
1746299609.364648,
20,
1,
5
],
[
1746301242.2071912,
20,
1,
5
],
[
1746301242.8085365,
20,
1,
5
],
[
1746301244.7067387,
20,
2,
10
],
[
1746301246.263184,
20,
2,
10
],
[
1746301257.91108,
20,
1,
5
],
[
1746301258.074674,
20,
1,
5
],
[
1746302076.0713477,
20,
1,
5
],
[
1746302076.6375263,
20,
1,
5
],
[
1746302078.4174902,
20,
2,
10
],
[
1746302079.8097835,
20,
2,
10
],
[
1746302090.35327,
20,
1,
5
],
[
1746302090.477125,
20,
1,
5
],
[
1746303505.8866017,
20,
1,
5
],
[
1746303506.4101083,
20,
1,
5
],
[
1746303508.3440273,
20,
2,
10
],
[
1746303509.6133723,
20,
2,
10
],
[
1746303520.920136,
20,
1,
5
],
[
1746303521.075205,
20,
1,
5
],
[
1746303803.2596781,
20,
1,
5
],
[
1746303804.0340524,
20,
1,
5
],
[
1746303805.8624601,
20,
2,
10
],
[
1746303807.3770335,
20,
2,
10
],
[
1746303820.2688413,
20,
1,
5
],
[
1746303820.4109797,
20,
1,
5
],
[
1746304064.9866984,
20,
1,
5
],
[
1746304065.577364,
20,
1,
5
],
[
1746304067.4026418,
20,
2,
10
],
[
1746304068.893437,
20,
2,
10
],
[
1746304081.0785365,
20,
1,
5
],
[
1746304081.1881676,
20,
1,
5
],
[
1746305550.1236935,
20,
1,
5
],
[
1746305550.7042372,
20,
1,
5
],
[
1746305552.5632775,
20,
2,
10
],
[
1746305553.9708037,
20,
2,
10
],
[
1746305565.2638934,
20,
1,
5
],
[
1746305565.36025,
20,
1,
5
],
[
1746305876.0433414,
20,
1,
5
],
[
1746305876.568878,
20,
1,
5
],
[
1746305878.3496442,
20,
2,
10
],
[
1746305879.6062725,
20,
2,
10
],
[
1746305889.6283479,
20,
1,
5
],
[
1746305889.7056515,
20,
1,
5
],
[
1746306736.4302347,
20,
1,
5
],
[
1746306737.264326,
20,
1,
5
],
[
1746306739.5298386,
20,
2,
10
],
[
1746306740.785484,
20,
2,
10
],
[
1746306751.093167,
20,
1,
5
],
[
1746306751.2897556,
20,
1,
5
],
[
1746307909.5360694,
20,
1,
5
],
[
1746307910.2517295,
20,
1,
5
],
[
1746307912.4568665,
20,
2,
10
],
[
1746307913.8296945,
20,
2,
10
],
[
1746307924.8038027,
20,
1,
5
],
[
1746307924.959478,
20,
1,
5
],
[
1746309445.8575053,
20,
1,
5
],
[
1746309446.436502,
20,
1,
5
],
[
1746309448.4593005,
20,
2,
10
],
[
1746309449.74552,
20,
2,
10
],
[
1746309461.772826,
20,
1,
5
],
[
1746309462.0948188,
20,
1,
5
],
[
1746309470.5234756,
20,
1,
5
],
[
1746309482.7719858,
20,
1,
5
],
[
1746309495.019361,
20,
1,
5
],
[
1746309501.3256369,
20,
1,
5
],
[
1746309509.274178,
20,
0,
0
],
[
1746309519.4751668,
20,
0,
0
],
[
1746310080.86694,
20,
0,
0
],
[
1746310081.3302467,
20,
0,
0
],
[
1746310083.4983199,
20,
1,
5
],
[
1746310089.956797,
20,
1,
5
],
[
1746311885.1701448,
20,
1,
5
],
[
1746311885.7740273,
20,
1,
5
],
[
1746311887.5563521,
20,
2,
10
],
[
1746311888.9555805,
20,
2,
10
],
[
1746311898.9663498,
20,
1,
5
],
[
1746311899.0627985,
20,
1,
5
],
[
1746315171.6267679,
20,
1,
5
],
[
1746315172.3131142,
20,
1,
5
],
[
1746315174.4873946,
20,
2,
10
],
[
1746315175.9207582,
20,
2,
10
],
[
1746315187.976636,
20,
1,
5
],
[
1746315188.1037118,
20,
1,
5
],
[
1746315585.762697,
20,
1,
5
],
[
1746315586.3358386,
20,
1,
5
],
[
1746315588.4197083,
20,
2,
10
],
[
1746315589.8161123,
20,
2,
10
],
[
1746315601.8929234,
20,
1,
5
],
[
1746315602.0315585,
20,
1,
5
],
[
1746316482.3506763,
20,
1,
5
],
[
1746316483.3675914,
20,
1,
5
],
[
1746316485.3721793,
20,
2,
10
],
[
1746316486.5928547,
20,
2,
10
],
[
1746316496.9320722,
20,
1,
5
],
[
1746316497.0318542,
20,
1,
5
],
[
1746319101.1559954,
20,
1,
5
],
[
1746319101.7288663,
20,
1,
5
],
[
1746319103.5317929,
20,
2,
10
],
[
1746319104.8292718,
20,
2,
10
],
[
1746319116.1111782,
20,
1,
5
],
[
1746319116.2483578,
20,
1,
5
],
[
1746320496.4599013,
20,
1,
5
],
[
1746320497.2817185,
20,
1,
5
],
[
1746320499.3984,
20,
2,
10
],
[
1746320500.9922862,
20,
2,
10
],
[
1746320511.6313336,
20,
1,
5
],
[
1746320511.7481542,
20,
1,
5
],
[
1746325115.9337857,
20,
1,
5
],
[
1746325116.6307697,
20,
1,
5
],
[
1746325118.7671115,
20,
2,
10
],
[
1746325120.385861,
20,
2,
10
],
[
1746325133.6144533,
20,
1,
5
],
[
1746325133.7376792,
20,
1,
5
],
[
1746326154.5636153,
20,
1,
5
],
[
1746326155.2226338,
20,
1,
5
],
[
1746326157.2359607,
20,
2,
10
],
[
1746326158.5129745,
20,
2,
10
],
[
1746326170.2543705,
20,
1,
5
],
[
1746326170.373783,
20,
1,
5
],
[
1746329218.8112895,
20,
1,
5
],
[
1746329219.4208453,
20,
1,
5
],
[
1746329221.5376775,
20,
2,
10
],
[
1746329223.0781763,
20,
2,
10
],
[
1746329234.9936843,
20,
1,
5
],
[
1746329235.1204717,
20,
1,
5
],
[
1746330833.4000225,
20,
1,
5
],
[
1746330834.2105775,
20,
1,
5
],
[
1746330836.1958292,
20,
2,
10
],
[
1746330837.3581,
20,
2,
10
],
[
1746330848.3011026,
20,
1,
5
],
[
1746330848.3960965,
20,
1,
5
],
[
1746331643.1202433,
20,
1,
5
],
[
1746331643.7231297,
20,
1,
5
],
[
1746331645.582694,
20,
2,
10
],
[
1746331647.0848877,
20,
2,
10
],
[
1746331659.209599,
20,
1,
5
],
[
1746331659.34426,
20,
1,
5
],
[
1746335520.5612497,
20,
1,
5
],
[
1746335521.3115394,
20,
1,
5
],
[
1746335523.4890602,
20,
2,
10
],
[
1746335524.7489786,
20,
2,
10
],
[
1746335536.118251,
20,
1,
5
],
[
1746335536.20754,
20,
1,
5
],
[
1746337499.0334542,
20,
1,
5
],
[
1746337499.610523,
20,
1,
5
],
[
1746337501.380681,
20,
2,
10
],
[
1746337502.6626348,
20,
2,
10
],
[
1746337513.6993182,
20,
1,
5
],
[
1746337513.7933815,
20,
1,
5
],
[
1746338468.4740858,
20,
1,
5
],
[
1746338469.2327626,
20,
1,
5
],
[
1746338471.335945,
20,
2,
10
],
[
1746338472.6026702,
20,
2,
10
],
[
1746338484.8743954,
20,
1,
5
],
[
1746338485.0006616,
20,
1,
5
],
[
1746338758.9757535,
20,
1,
5
],
[
1746338759.5127406,
20,
1,
5
],
[
1746338761.3684137,
20,
2,
10
],
[
1746338762.6333086,
20,
2,
10
],
[
1746338773.6033401,
20,
1,
5
],
[
1746338773.702364,
20,
1,
5
],
[
1746339020.4727387,
20,
1,
5
],
[
1746339021.1658132,
20,
1,
5
],
[
1746339023.0849733,
20,
2,
10
],
[
1746339024.1207662,
20,
2,
10
],
[
1746339034.6893766,
20,
1,
5
],
[
1746339034.7685657,
20,
1,
5
],
[
1746339523.3996885,
20,
1,
5
],
[
1746339524.2384381,
20,
1,
5
],
[
1746339526.222043,
20,
2,
10
],
[
1746339527.4242916,
20,
2,
10
],
[
1746339538.3153756,
20,
1,
5
],
[
1746339538.4435983,
20,
1,
5
],
[
1746339841.6402137,
20,
1,
5
],
[
1746339842.2567608,
20,
1,
5
],
[
1746339844.445569,
20,
2,
10
],
[
1746339845.7867732,
20,
2,
10
],
[
1746339858.1635692,
20,
1,
5
],
[
1746339858.2717948,
20,
1,
5
],
[
1746340209.2452223,
20,
1,
5
],
[
1746340209.9000845,
20,
1,
5
],
[
1746340211.7480545,
20,
2,
10
],
[
1746340212.9971976,
20,
2,
10
],
[
1746340225.5889242,
20,
1,
5
],
[
1746340225.911087,
20,
1,
5
],
[
1746340234.670038,
20,
1,
5
],
[
1746340240.9373775,
20,
1,
5
],
[
1746340249.2315931,
20,
0,
0
],
[
1746340259.775219,
20,
0,
0
],
[
1746340859.937141,
20,
0,
0
],
[
1746340860.4405508,
20,
0,
0
],
[
1746340862.8454916,
20,
1,
5
],
[
1746340870.5309873,
20,
1,
5
],
[
1746341869.1206083,
20,
1,
5
],
[
1746341869.645423,
20,
1,
5
],
[
1746341871.4522185,
20,
2,
10
],
[
1746341872.7975826,
20,
2,
10
],
[
1746341884.372749,
20,
1,
5
],
[
1746341884.4816256,
20,
1,
5
],
[
1746342138.7394388,
20,
1,
5
],
[
1746342139.3101115,
20,
1,
5
],
[
1746342141.3403597,
20,
2,
10
],
[
1746342142.5775912,
20,
2,
10
],
[
1746342154.495126,
20,
1,
5
],
[
1746342154.6246738,
20,
1,
5
],
[
1746342433.8939643,
20,
1,
5
],
[
1746342434.5432587,
20,
1,
5
],
[
1746342436.4806206,
20,
2,
10
],
[
1746342437.9330764,
20,
2,
10
],
[
1746342450.5707238,
20,
1,
5
],
[
1746342450.6739347,
20,
1,
5
],
[
1746344358.2003696,
20,
1,
5
],
[
1746344358.809244,
20,
1,
5
],
[
1746344360.7016933,
20,
2,
10
],
[
1746344362.2528186,
20,
2,
10
],
[
1746344375.7219622,
20,
1,
5
],
[
1746344375.8252919,
20,
1,
5
],
[
1746345499.1395326,
20,
1,
5
],
[
1746345499.7682285,
20,
1,
5
],
[
1746345501.6114585,
20,
2,
10
],
[
1746345503.0182538,
20,
2,
10
],
[
1746345516.4034,
20,
1,
5
],
[
1746345516.5203793,
20,
1,
5
],
[
1746346057.2140875,
20,
1,
5
],
[
1746346057.8405259,
20,
1,
5
],
[
1746346059.6649873,
20,
2,
10
],
[
1746346061.022018,
20,
2,
10
],
[
1746346073.4898546,
20,
1,
5
],
[
1746346073.9330382,
20,
1,
5
],
[
1746346341.8517168,
20,
1,
5
],
[
1746346342.358381,
20,
1,
5
],
[
1746346344.3047357,
20,
2,
10
],
[
1746346345.4904182,
20,
2,
10
],
[
1746346356.4278336,
20,
1,
5
],
[
1746346356.51507,
20,
1,
5
],
[
1746346672.5785272,
20,
1,
5
],
[
1746346673.3307142,
20,
1,
5
],
[
1746346675.4357471,
20,
2,
10
],
[
1746346676.9427505,
20,
2,
10
],
[
1746346690.9481528,
20,
1,
5
],
[
1746346691.091645,
20,
1,
5
],
[
1746347008.8076606,
20,
1,
5
],
[
1746347009.441265,
20,
1,
5
],
[
1746347011.6394148,
20,
2,
10
],
[
1746347013.0711744,
20,
2,
10
],
[
1746347026.2529008,
20,
1,
5
],
[
1746347026.3636055,
20,
1,
5
],
[
1746348359.2874875,
20,
1,
5
],
[
1746348359.9451113,
20,
1,
5
],
[
1746348361.718225,
20,
2,
10
],
[
1746348363.0192733,
20,
2,
10
],
[
1746348375.124684,
20,
1,
5
],
[
1746348375.34554,
20,
1,
5
],
[
1746351477.276143,
20,
1,
5
],
[
1746351478.0733302,
20,
1,
5
],
[
1746351480.2752278,
20,
2,
10
],
[
1746351481.5455446,
20,
2,
10
],
[
1746351492.736287,
20,
1,
5
],
[
1746351492.8392084,
20,
1,
5
],
[
1746353891.9414465,
20,
1,
5
],
[
1746353892.5275562,
20,
1,
5
],
[
1746353894.4533725,
20,
2,
10
],
[
1746353895.7519011,
20,
2,
10
],
[
1746353908.3569317,
20,
1,
5
],
[
1746353908.4634552,
20,
1,
5
],
[
1746354245.8959842,
20,
1,
5
],
[
1746354246.4644856,
20,
1,
5
],
[
1746354248.4440584,
20,
2,
10
],
[
1746354249.8122878,
20,
2,
10
],
[
1746354262.6916847,
20,
1,
5
],
[
1746354262.8151789,
20,
1,
5
],
[
1746354507.0914204,
20,
1,
5
],
[
1746354507.6971018,
20,
1,
5
],
[
1746354509.481734,
20,
2,
10
],
[
1746354510.9727685,
20,
2,
10
],
[
1746354523.838277,
20,
1,
5
],
[
1746354524.069759,
20,
1,
5
],
[
1746354772.9013455,
20,
1,
5
],
[
1746354773.557613,
20,
1,
5
],
[
1746354775.4405718,
20,
2,
10
],
[
1746354776.8762448,
20,
2,
10
],
[
1746354789.6469128,
20,
1,
5
],
[
1746354789.7664003,
20,
1,
5
],
[
1746355775.2276418,
20,
1,
5
],
[
1746355775.7709627,
20,
1,
5
],
[
1746355777.5588634,
20,
2,
10
],
[
1746355778.8776834,
20,
2,
10
],
[
1746355789.761652,
20,
1,
5
],
[
1746355789.9561927,
20,
1,
5
],
[
1746356133.3598135,
20,
1,
5
],
[
1746356134.2139423,
20,
1,
5
],
[
1746356136.2472498,
20,
2,
10
],
[
1746356137.6827893,
20,
2,
10
],
[
1746356151.7061427,
20,
1,
5
],
[
1746356151.8251784,
20,
1,
5
],
[
1746356483.0633492,
20,
1,
5
],
[
1746356483.686974,
20,
1,
5
],
[
1746356485.5042868,
20,
2,
10
],
[
1746356486.9864247,
20,
2,
10
],
[
1746356499.7239974,
20,
1,
5
],
[
1746356499.8422,
20,
1,
5
],
[
1746356846.4324548,
20,
1,
5
],
[
1746356848.1762028,
20,
1,
5
],
[
1746356850.1658454,
20,
2,
10
],
[
1746356851.0564485,
20,
2,
10
],
[
1746356862.4390101,
20,
1,
5
],
[
1746356862.684386,
20,
1,
5
],
[
1746356869.848526,
20,
1,
5
],
[
1746356875.8572764,
20,
1,
5
],
[
1746356883.335243,
20,
0,
0
],
[
1746356893.3491116,
20,
0,
0
],
[
1746359544.1469479,
20,
0,
0
],
[
1746359544.661326,
20,
0,
0
],
[
1746359546.4280918,
20,
1,
5
],
[
1746359553.9713397,
20,
1,
5
],
[
1746362695.9017873,
20,
1,
5
],
[
1746362696.5292964,
20,
1,
5
],
[
1746362698.5647714,
20,
2,
10
],
[
1746362699.9921958,
20,
2,
10
],
[
1746362714.1231024,
20,
1,
5
],
[
1746362714.2623596,
20,
1,
5
],
[
1746362993.5937388,
20,
1,
5
],
[
1746362994.2780693,
20,
1,
5
],
[
1746362996.3787324,
20,
2,
10
],
[
1746362997.7555392,
20,
2,
10
],
[
1746363011.8909,
20,
1,
5
],
[
1746363011.9999833,
20,
1,
5
],
[
1746364559.776702,
20,
1,
5
],
[
1746364560.394191,
20,
1,
5
],
[
1746364563.7719367,
20,
2,
10
],
[
1746364565.1709201,
20,
2,
10
],
[
1746364578.019339,
20,
1,
5
],
[
1746364578.317528,
20,
1,
5
],
[
1746366895.6556847,
20,
1,
5
],
[
1746366896.3634958,
20,
1,
5
],
[
1746366898.4077237,
20,
2,
10
],
[
1746366900.0556042,
20,
2,
10
],
[
1746366915.5140455,
20,
1,
5
],
[
1746366915.6597526,
20,
1,
5
],
[
1746368708.3479984,
20,
1,
5
],
[
1746368709.2282286,
20,
1,
5
],
[
1746368711.2698448,
20,
2,
10
],
[
1746368712.6605606,
20,
2,
10
],
[
1746368725.3646722,
20,
1,
5
],
[
1746368725.4729664,
20,
1,
5
],
[
1746370802.322673,
20,
1,
5
],
[
1746370803.2231712,
20,
1,
5
],
[
1746370805.2849464,
20,
2,
10
],
[
1746370806.7864118,
20,
2,
10
],
[
1746370821.9354465,
20,
1,
5
],
[
1746370822.0465465,
20,
1,
5
],
[
1746371223.018938,
20,
1,
5
],
[
1746371223.5714195,
20,
1,
5
],
[
1746371225.359481,
20,
2,
10
],
[
1746371226.6443229,
20,
2,
10
],
[
1746371239.2254345,
20,
1,
5
],
[
1746371239.3302898,
20,
1,
5
],
[
1746371577.2731874,
20,
1,
5
],
[
1746371577.9895358,
20,
1,
5
],
[
1746371579.8369274,
20,
2,
10
],
[
1746371581.4002657,
20,
2,
10
],
[
1746371595.284243,
20,
1,
5
],
[
1746371595.402773,
20,
1,
5
],
[
1746371907.417058,
20,
1,
5
],
[
1746371908.4583218,
20,
1,
5
],
[
1746371910.4422665,
20,
2,
10
],
[
1746371912.1074548,
20,
2,
10
],
[
1746371926.630389,
20,
1,
5
],
[
1746371926.7584162,
20,
1,
5
],
[
1746372375.466112,
20,
1,
5
],
[
1746372376.297028,
20,
1,
5
],
[
1746372378.4284277,
20,
2,
10
],
[
1746372379.9011507,
20,
2,
10
],
[
1746372392.9665813,
20,
1,
5
],
[
1746372393.0989943,
20,
1,
5
],
[
1746372739.5622334,
20,
1,
5
],
[
1746372740.2910593,
20,
1,
5
],
[
1746372742.440099,
20,
2,
10
],
[
1746372743.8594294,
20,
2,
10
],
[
1746372756.7560837,
20,
1,
5
],
[
1746372756.8712404,
20,
1,
5
],
[
1746373082.520416,
20,
1,
5
],
[
1746373083.3328865,
20,
1,
5
],
[
1746373085.5070324,
20,
2,
10
],
[
1746373087.0685294,
20,
2,
10
],
[
1746373101.3682415,
20,
1,
5
],
[
1746373101.4960968,
20,
1,
5
],
[
1746374464.369321,
20,
1,
5
],
[
1746374465.3255787,
20,
1,
5
],
[
1746374467.5754344,
20,
2,
10
],
[
1746374469.1167393,
20,
2,
10
],
[
1746374483.7352574,
20,
1,
5
],
[
1746374483.8777795,
20,
1,
5
],
[
1746376722.7283218,
20,
1,
5
],
[
1746376723.4071596,
20,
1,
5
],
[
1746376725.5638921,
20,
2,
10
],
[
1746376727.1157808,
20,
2,
10
],
[
1746376742.0267184,
20,
1,
5
],
[
1746376742.1470406,
20,
1,
5
],
[
1746377626.3907762,
20,
1,
5
],
[
1746377627.3571665,
20,
1,
5
],
[
1746377629.5181227,
20,
2,
10
],
[
1746377631.0341434,
20,
2,
10
],
[
1746377645.1483302,
20,
1,
5
],
[
1746377645.2731733,
20,
1,
5
],
[
1746378062.2246635,
20,
1,
5
],
[
1746378062.8037925,
20,
1,
5
],
[
1746378064.6399155,
20,
2,
10
],
[
1746378065.9938366,
20,
2,
10
],
[
1746378079.2641115,
20,
1,
5
],
[
1746378079.5665133,
20,
1,
5
],
[
1746378501.8070602,
20,
1,
5
],
[
1746378502.4952672,
20,
1,
5
],
[
1746378504.5435271,
20,
2,
10
],
[
1746378506.0003371,
20,
2,
10
],
[
1746378520.2451587,
20,
1,
5
],
[
1746378520.3925016,
20,
1,
5
],
[
1746381203.63839,
20,
1,
5
],
[
1746381204.4045868,
20,
1,
5
],
[
1746381206.5406532,
20,
2,
10
],
[
1746381208.0839152,
20,
2,
10
],
[
1746381222.6584861,
20,
1,
5
],
[
1746381222.7767382,
20,
1,
5
],
[
1746381575.4129415,
20,
1,
5
],
[
1746381577.3787193,
20,
1,
5
],
[
1746381580.5457149,
20,
2,
10
],
[
1746381581.8884246,
20,
2,
10
],
[
1746381596.7778914,
20,
1,
5
],
[
1746381597.1503606,
20,
1,
5
],
[
1746381608.7442534,
20,
1,
5
],
[
1746381615.2227404,
20,
1,
5
],
[
1746381624.8921633,
20,
0,
0
],
[
1746381637.3580728,
20,
0,
0
],
[
1746385155.7766137,
20,
0,
0
],
[
1746385156.4141154,
20,
0,
0
],
[
1746385158.7610943,
20,
1,
5
],
[
1746385168.4811194,
20,
1,
5
],
[
1746388699.529868,
20,
1,
5
],
[
1746388700.3086812,
20,
1,
5
],
[
1746388702.7400637,
20,
2,
10
],
[
1746388704.202621,
20,
2,
10
],
[
1746388718.6840272,
20,
1,
5
],
[
1746388718.8049078,
20,
1,
5
],
[
1746389150.2086315,
20,
1,
5
],
[
1746389150.7689784,
20,
1,
5
],
[
1746389152.6323721,
20,
2,
10
],
[
1746389153.942564,
20,
2,
10
],
[
1746389167.1201835,
20,
1,
5
],
[
1746389167.2171826,
20,
1,
5
],
[
1746389621.4359589,
20,
1,
5
],
[
1746389622.2626798,
20,
1,
5
],
[
1746389624.5553079,
20,
2,
10
],
[
1746389626.050766,
20,
2,
10
],
[
1746389640.2956119,
20,
1,
5
],
[
1746389640.410272,
20,
1,
5
],
[
1746390472.625333,
20,
1,
5
],
[
1746390473.2555523,
20,
1,
5
],
[
1746390475.5031753,
20,
2,
10
],
[
1746390476.9274163,
20,
2,
10
],
[
1746390490.6651328,
20,
1,
5
],
[
1746390490.922644,
20,
1,
5
],
[
1746390952.6230783,
20,
1,
5
],
[
1746390953.285405,
20,
1,
5
],
[
1746390955.448565,
20,
2,
10
],
[
1746390956.8576114,
20,
2,
10
],
[
1746390970.7641754,
20,
1,
5
],
[
1746390970.895416,
20,
1,
5
],
[
1746391400.2936199,
20,
1,
5
],
[
1746391400.960612,
20,
1,
5
],
[
1746391402.8013282,
20,
2,
10
],
[
1746391404.2484152,
20,
2,
10
],
[
1746391419.4414165,
20,
1,
5
],
[
1746391419.6228719,
20,
1,
5
],
[
1746391880.2807586,
20,
1,
5
],
[
1746391880.9455705,
20,
1,
5
],
[
1746391882.7619164,
20,
2,
10
],
[
1746391884.0625665,
20,
2,
10
],
[
1746391897.4482865,
20,
1,
5
],
[
1746391897.5573108,
20,
1,
5
],
[
1746392300.3797197,
20,
1,
5
],
[
1746392301.2576246,
20,
1,
5
],
[
1746392303.506848,
20,
2,
10
],
[
1746392305.1584046,
20,
2,
10
],
[
1746392320.6637754,
20,
1,
5
],
[
1746392320.907209,
20,
1,
5
],
[
1746394824.567402,
20,
1,
5
],
[
1746394825.3017817,
20,
1,
5
],
[
1746394827.547508,
20,
2,
10
],
[
1746394829.067303,
20,
2,
10
],
[
1746394843.8321326,
20,
1,
5
],
[
1746394844.0729125,
20,
1,
5
],
[
1746395193.429388,
20,
1,
5
],
[
1746395194.2506506,
20,
1,
5
],
[
1746395196.3157842,
20,
2,
10
],
[
1746395197.6304798,
20,
2,
10
],
[
1746395211.1966207,
20,
1,
5
],
[
1746395211.301028,
20,
1,
5
],
[
1746398230.3636017,
20,
1,
5
],
[
1746398231.1988754,
20,
1,
5
],
[
1746398233.2635572,
20,
2,
10
],
[
1746398234.5084326,
20,
2,
10
],
[
1746398247.575926,
20,
1,
5
],
[
1746398247.6987567,
20,
1,
5
],
[
1746399561.8677874,
20,
1,
5
],
[
1746399562.4234302,
20,
1,
5
],
[
1746399564.4446967,
20,
2,
10
],
[
1746399565.7376766,
20,
2,
10
],
[
1746399579.5255377,
20,
1,
5
],
[
1746399579.6702993,
20,
1,
5
],
[
1746400087.545406,
20,
1,
5
],
[
1746400088.318669,
20,
1,
5
],
[
1746400090.4695685,
20,
2,
10
],
[
1746400091.935248,
20,
2,
10
],
[
1746400105.4875581,
20,
1,
5
],
[
1746400105.609455,
20,
1,
5
],
[
1746400616.772581,
20,
1,
5
],
[
1746400617.3707778,
20,
1,
5
],
[
1746400619.4049585,
20,
2,
10
],
[
1746400620.8336427,
20,
2,
10
],
[
1746400634.914918,
20,
1,
5
],
[
1746400635.0447638,
20,
1,
5
],
[
1746402166.2530959,
20,
1,
5
],
[
1746402166.8447216,
20,
1,
5
],
[
1746402168.6913323,
20,
2,
10
],
[
1746402170.049905,
20,
2,
10
],
[
1746402182.4833863,
20,
1,
5
],
[
1746402182.591388,
20,
1,
5
],
[
1746402559.477485,
20,
1,
5
],
[
1746402560.324122,
20,
1,
5
],
[
1746402562.5167427,
20,
2,
10
],
[
1746402564.1333292,
20,
2,
10
],
[
1746402579.950855,
20,
1,
5
],
[
1746402580.21014,
20,
1,
5
],
[
1746403371.1767042,
20,
1,
5
],
[
1746403371.904974,
20,
1,
5
],
[
1746403373.8611703,
20,
2,
10
],
[
1746403375.4656467,
20,
2,
10
],
[
1746403390.7004733,
20,
1,
5
],
[
1746403390.9266667,
20,
1,
5
],
[
1746403844.446558,
20,
1,
5
],
[
1746403845.3184934,
20,
1,
5
],
[
1746403847.5314422,
20,
2,
10
],
[
1746403849.1079252,
20,
2,
10
],
[
1746403864.6662197,
20,
1,
5
],
[
1746403864.8040674,
20,
1,
5
],
[
1746404210.68687,
20,
1,
5
],
[
1746404211.2098768,
20,
1,
5
],
[
1746404213.223102,
20,
2,
10
],
[
1746404214.325562,
20,
2,
10
],
[
1746404227.3292644,
20,
1,
5
],
[
1746404227.6705198,
20,
1,
5
],
[
1746404237.272215,
20,
1,
5
],
[
1746404243.616194,
20,
1,
5
],
[
1746404252.750424,
20,
0,
0
],
[
1746404265.179064,
20,
0,
0
],
[
1746406505.5539114,
20,
0,
0
],
[
1746406506.123383,
20,
0,
0
],
[
1746406508.2975764,
20,
1,
5
],
[
1746406517.4121509,
20,
1,
5
],
[
1746408370.145192,
20,
1,
5
],
[
1746408370.7164843,
20,
1,
5
],
[
1746408372.6849148,
20,
2,
10
],
[
1746408374.0744343,
20,
2,
10
],
[
1746408387.3013256,
20,
1,
5
],
[
1746408387.404842,
20,
1,
5
],
[
1746410460.0181487,
20,
1,
5
],
[
1746410460.6011176,
20,
1,
5
],
[
1746410463.7384138,
20,
2,
10
],
[
1746410465.1013267,
20,
2,
10
],
[
1746410478.8344612,
20,
1,
5
],
[
1746410478.9765744,
20,
1,
5
],
[
1746411036.2753685,
20,
1,
5
],
[
1746411036.876819,
20,
1,
5
],
[
1746411038.729531,
20,
2,
10
],
[
1746411040.2242334,
20,
2,
10
],
[
1746411053.4352598,
20,
1,
5
],
[
1746411053.8927388,
20,
1,
5
],
[
1746417757.6747563,
20,
1,
5
],
[
1746417758.3357112,
20,
1,
5
],
[
1746417760.7544162,
20,
2,
10
],
[
1746417762.1506956,
20,
2,
10
],
[
1746417775.4827735,
20,
1,
5
],
[
1746417775.8985507,
20,
1,
5
],
[
1746420256.105833,
20,
1,
5
],
[
1746420256.74543,
20,
1,
5
],
[
1746420258.6400626,
20,
2,
10
],
[
1746420260.1298075,
20,
2,
10
],
[
1746420273.8513885,
20,
1,
5
],
[
1746420274.1068327,
20,
1,
5
],
[
1746423312.6054432,
20,
1,
5
],
[
1746423313.4011705,
20,
1,
5
],
[
1746423315.5986693,
20,
2,
10
],
[
1746423317.1133304,
20,
2,
10
],
[
1746423329.6825364,
20,
1,
5
],
[
1746423329.791111,
20,
1,
5
],
[
1746423718.7408736,
20,
1,
5
],
[
1746423719.3101957,
20,
1,
5
],
[
1746423721.4446383,
20,
2,
10
],
[
1746423722.6735,
20,
2,
10
],
[
1746423736.4239938,
20,
1,
5
],
[
1746423736.535104,
20,
1,
5
],
[
1746430760.8257325,
20,
1,
5
],
[
1746430761.6647127,
20,
1,
5
],
[
1746430763.5751488,
20,
2,
10
],
[
1746430765.236406,
20,
2,
10
],
[
1746430780.425909,
20,
1,
5
],
[
1746430780.5734134,
20,
1,
5
],
[
1746431599.043543,
20,
1,
5
],
[
1746431599.7117057,
20,
1,
5
],
[
1746431601.4972486,
20,
2,
10
],
[
1746431603.0183158,
20,
2,
10
],
[
1746431616.581026,
20,
1,
5
],
[
1746431616.6983962,
20,
1,
5
],
[
1746434048.4930947,
20,
1,
5
],
[
1746434049.1555436,
20,
1,
5
],
[
1746434051.0553093,
20,
2,
10
],
[
1746434052.0484786,
20,
2,
10
],
[
1746434063.8543475,
20,
1,
5
],
[
1746434063.9573538,
20,
1,
5
],
[
1746436473.579033,
20,
1,
5
],
[
1746436474.2686377,
20,
1,
5
],
[
1746436476.5910723,
20,
2,
10
],
[
1746436477.9759378,
20,
2,
10
],
[
1746436492.2838216,
20,
1,
5
],
[
1746436492.9433212,
20,
1,
5
],
[
1746440125.646919,
20,
1,
5
],
[
1746440126.3895943,
20,
1,
5
],
[
1746440128.3835566,
20,
2,
10
],
[
1746440129.9922388,
20,
2,
10
],
[
1746440145.7770936,
20,
1,
5
],
[
1746440145.907707,
20,
1,
5
],
[
1746441423.5044374,
20,
1,
5
],
[
1746441424.3052692,
20,
1,
5
],
[
1746441426.276545,
20,
2,
10
],
[
1746441427.520616,
20,
2,
10
],
[
1746441441.3994522,
20,
1,
5
],
[
1746441441.5197499,
20,
1,
5
],
[
1746442222.9739323,
20,
1,
5
],
[
1746442223.6483288,
20,
1,
5
],
[
1746442225.4637218,
20,
2,
10
],
[
1746442227.1132915,
20,
2,
10
],
[
1746442242.97242,
20,
1,
5
],
[
1746442243.1271546,
20,
1,
5
],
[
1746443614.1828415,
20,
1,
5
],
[
1746443614.77197,
20,
1,
5
],
[
1746443616.4656153,
20,
2,
10
],
[
1746443617.8294222,
20,
2,
10
],
[
1746443632.1806386,
20,
1,
5
],
[
1746443632.313235,
20,
1,
5
],
[
1746446711.8179848,
20,
1,
5
],
[
1746446712.3661215,
20,
1,
5
],
[
1746446715.2799125,
20,
2,
10
],
[
1746446716.3418918,
20,
2,
10
],
[
1746446728.899072,
20,
1,
5
],
[
1746446729.0055566,
20,
1,
5
],
[
1746448776.7558026,
20,
1,
5
],
[
1746448777.2439516,
20,
1,
5
],
[
1746448779.1292424,
20,
2,
10
],
[
1746448780.2032652,
20,
2,
10
],
[
1746448792.5614822,
20,
1,
5
],
[
1746448792.656169,
20,
1,
5
],
[
1746452631.1627607,
20,
1,
5
],
[
1746452631.786683,
20,
1,
5
],
[
1746452633.485915,
20,
2,
10
],
[
1746452634.8596306,
20,
2,
10
],
[
1746452651.4399526,
20,
1,
5
],
[
1746452651.5589182,
20,
1,
5
],
[
1746453443.795875,
20,
1,
5
],
[
1746453444.417708,
20,
1,
5
],
[
1746453446.3291163,
20,
2,
10
],
[
1746453447.595832,
20,
2,
10
],
[
1746453461.9327798,
20,
1,
5
],
[
1746453462.2876742,
20,
1,
5
],
[
1746453472.0253708,
20,
1,
5
],
[
1746453485.418126,
20,
1,
5
],
[
1746453491.6546125,
20,
1,
5
],
[
1746453500.6651316,
20,
0,
0
],
[
1746453511.46303,
20,
0,
0
],
[
1746457945.884406,
20,
0,
0
],
[
1746457946.4085371,
20,
0,
0
],
[
1746457948.4078,
20,
1,
5
],
[
1746457956.868118,
20,
1,
5
],
[
1746463830.464258,
20,
1,
5
],
[
1746463831.2433877,
20,
1,
5
],
[
1746463833.3297293,
20,
2,
10
],
[
1746463834.6593013,
20,
2,
10
],
[
1746463847.7316172,
20,
1,
5
],
[
1746463847.964549,
20,
1,
5
],
[
1746464387.185819,
20,
1,
5
],
[
1746464387.7837226,
20,
1,
5
],
[
1746464389.4800704,
20,
2,
10
],
[
1746464390.8729696,
20,
2,
10
],
[
1746464405.4430325,
20,
1,
5
],
[
1746464405.872665,
20,
1,
5
],
[
1746464721.691258,
20,
1,
5
],
[
1746464722.1752236,
20,
1,
5
],
[
1746464723.9623945,
20,
2,
10
],
[
1746464725.0314105,
20,
2,
10
],
[
1746464736.4433427,
20,
1,
5
],
[
1746464737.872671,
20,
1,
5
],
[
1746465070.2362537,
20,
1,
5
],
[
1746465070.8013747,
20,
1,
5
],
[
1746465072.4609485,
20,
2,
10
],
[
1746465073.7288392,
20,
2,
10
],
[
1746465088.1936111,
20,
1,
5
],
[
1746465088.317559,
20,
1,
5
],
[
1746465473.773508,
20,
1,
5
],
[
1746465474.3322427,
20,
1,
5
],
[
1746465476.273306,
20,
2,
10
],
[
1746465477.526934,
20,
2,
10
],
[
1746465490.9629505,
20,
1,
5
],
[
1746465491.0757747,
20,
1,
5
],
[
1746466775.3586993,
20,
1,
5
],
[
1746466776.1450293,
20,
1,
5
],
[
1746466777.7667887,
20,
2,
10
],
[
1746466778.917453,
20,
2,
10
],
[
1746466791.6302688,
20,
1,
5
],
[
1746466791.7569335,
20,
1,
5
],
[
1746467147.9838748,
20,
1,
5
],
[
1746467148.6043441,
20,
1,
5
],
[
1746467150.3420289,
20,
2,
10
],
[
1746467151.7231617,
20,
2,
10
],
[
1746467166.2607648,
20,
1,
5
],
[
1746467166.3915763,
20,
1,
5
],
[
1746467524.1458611,
20,
1,
5
],
[
1746467524.7132432,
20,
1,
5
],
[
1746467526.3596385,
20,
2,
10
],
[
1746467527.6166806,
20,
2,
10
],
[
1746467540.9427962,
20,
1,
5
],
[
1746467541.0550733,
20,
1,
5
],
[
1746469464.2728527,
20,
1,
5
],
[
1746469465.0308158,
20,
1,
5
],
[
1746469466.771952,
20,
2,
10
],
[
1746469468.1420634,
20,
2,
10
],
[
1746469483.0175362,
20,
1,
5
],
[
1746469483.1614683,
20,
1,
5
],
[
1746472113.83179,
20,
1,
5
],
[
1746472114.5541003,
20,
1,
5
],
[
1746472116.4238238,
20,
2,
10
],
[
1746472118.2575006,
20,
2,
10
],
[
1746472132.8999188,
20,
1,
5
],
[
1746472133.142045,
20,
1,
5
],
[
1746472721.9686449,
20,
1,
5
],
[
1746472722.5858157,
20,
1,
5
],
[
1746472724.3811982,
20,
2,
10
],
[
1746472725.8445122,
20,
2,
10
],
[
1746472741.882692,
20,
1,
5
],
[
1746472742.0460477,
20,
1,
5
],
[
1746475135.9838703,
20,
1,
5
],
[
1746475136.6592631,
20,
1,
5
],
[
1746475138.4532976,
20,
2,
10
],
[
1746475139.9943242,
20,
2,
10
],
[
1746475156.1017964,
20,
1,
5
],
[
1746475156.2609873,
20,
1,
5
],
[
1746475719.0437145,
20,
1,
5
],
[
1746475719.6655147,
20,
1,
5
],
[
1746475721.6236153,
20,
2,
10
],
[
1746475723.0857801,
20,
2,
10
],
[
1746475738.8196955,
20,
1,
5
],
[
1746475738.9548182,
20,
1,
5
],
[
1746480130.9274907,
20,
1,
5
],
[
1746480131.5767615,
20,
1,
5
],
[
1746480133.377399,
20,
2,
10
],
[
1746480134.7338083,
20,
2,
10
],
[
1746480148.7791672,
20,
1,
5
],
[
1746480148.886448,
20,
1,
5
],
[
1746484315.591586,
20,
1,
5
],
[
1746484316.2604303,
20,
1,
5
],
[
1746484318.3779862,
20,
2,
10
],
[
1746484319.745156,
20,
2,
10
],
[
1746484334.1329894,
20,
1,
5
],
[
1746484334.2779691,
20,
1,
5
],
[
1746484714.7932773,
20,
1,
5
],
[
1746484715.4124246,
20,
1,
5
],
[
1746484717.3783715,
20,
2,
10
],
[
1746484718.8561256,
20,
2,
10
],
[
1746484734.6282647,
20,
1,
5
],
[
1746484734.7506883,
20,
1,
5
],
[
1746486156.5876274,
20,
1,
5
],
[
1746486157.2552238,
20,
1,
5
],
[
1746486159.276667,
20,
2,
10
],
[
1746486160.5963485,
20,
2,
10
],
[
1746486173.4364054,
20,
1,
5
],
[
1746486173.8644593,
20,
1,
5
],
[
1746486525.68569,
20,
1,
5
],
[
1746486526.2588675,
20,
1,
5
],
[
1746486528.292703,
20,
2,
10
],
[
1746486529.6170862,
20,
2,
10
],
[
1746486544.6390615,
20,
1,
5
],
[
1746486544.7685838,
20,
1,
5
],
[
1746488670.781274,
20,
1,
5
],
[
1746488671.4314773,
20,
1,
5
],
[
1746488673.3953695,
20,
2,
10
],
[
1746488674.8839695,
20,
2,
10
],
[
1746488691.1095235,
20,
1,
5
],
[
1746488691.4213219,
20,
1,
5
],
[
1746488702.6037736,
20,
1,
5
],
[
1746488709.0819645,
20,
1,
5
],
[
1746488719.6907325,
20,
0,
0
],
[
1746488732.608393,
20,
0,
0
],
[
1746489123.0536554,
20,
0,
0
],
[
1746489123.5580785,
20,
0,
0
],
[
1746489125.3809128,
20,
1,
5
],
[
1746489134.8878522,
20,
1,
5
],
[
1746490119.3994467,
20,
1,
5
],
[
1746490120.1790721,
20,
1,
5
],
[
1746490121.9983454,
20,
2,
10
],
[
1746490123.2956328,
20,
2,
10
],
[
1746490137.602063,
20,
1,
5
],
[
1746490137.8933973,
20,
1,
5
],
[
1746492133.3738232,
20,
1,
5
],
[
1746492134.2032697,
20,
1,
5
],
[
1746492136.2522428,
20,
2,
10
],
[
1746492137.589342,
20,
2,
10
],
[
1746492152.7314456,
20,
1,
5
],
[
1746492152.837922,
20,
1,
5
],
[
1746492507.43166,
20,
1,
5
],
[
1746492508.1955214,
20,
1,
5
],
[
1746492510.1115766,
20,
2,
10
],
[
1746492511.4564903,
20,
2,
10
],
[
1746492526.680806,
20,
1,
5
],
[
1746492526.9013672,
20,
1,
5
],
[
1746493472.258125,
20,
1,
5
],
[
1746493472.8227496,
20,
1,
5
],
[
1746493474.4619122,
20,
2,
10
],
[
1746493475.657246,
20,
2,
10
],
[
1746493489.4512372,
20,
1,
5
],
[
1746493489.5720458,
20,
1,
5
],
[
1746494234.210446,
20,
1,
5
],
[
1746494234.7314024,
20,
1,
5
],
[
1746494236.4295745,
20,
2,
10
],
[
1746494237.680819,
20,
2,
10
],
[
1746494251.4786894,
20,
1,
5
],
[
1746494251.860086,
20,
1,
5
],
[
1746495195.5776703,
20,
1,
5
],
[
1746495196.262788,
20,
1,
5
],
[
1746495198.3216789,
20,
2,
10
],
[
1746495199.670175,
20,
2,
10
],
[
1746495215.098895,
20,
1,
5
],
[
1746495215.227875,
20,
1,
5
],
[
1746495661.9763143,
20,
1,
5
],
[
1746495662.5291631,
20,
1,
5
],
[
1746495664.3095381,
20,
2,
10
],
[
1746495665.5368824,
20,
2,
10
],
[
1746495678.3629282,
20,
1,
5
],
[
1746495678.799035,
20,
1,
5
],
[
1746496189.6032813,
20,
1,
5
],
[
1746496190.1912358,
20,
1,
5
],
[
1746496191.8805819,
20,
2,
10
],
[
1746496193.0975063,
20,
2,
10
],
[
1746496206.6987772,
20,
1,
5
],
[
1746496206.796352,
20,
1,
5
],
[
1746496830.8831656,
20,
1,
5
],
[
1746496831.4602842,
20,
1,
5
],
[
1746496833.286456,
20,
2,
10
],
[
1746496834.5941982,
20,
2,
10
],
[
1746496849.9064827,
20,
1,
5
],
[
1746496850.137128,
20,
1,
5
],
[
1746497461.8810859,
20,
1,
5
],
[
1746497462.498275,
20,
1,
5
],
[
1746497464.342159,
20,
2,
10
],
[
1746497465.7982364,
20,
2,
10
],
[
1746497480.2039297,
20,
1,
5
],
[
1746497480.4385872,
20,
1,
5
],
[
1746498153.5760202,
20,
1,
5
],
[
1746498154.1080446,
20,
1,
5
],
[
1746498155.8313575,
20,
2,
10
],
[
1746498157.1111352,
20,
2,
10
],
[
1746498171.0820427,
20,
1,
5
],
[
1746498171.1881843,
20,
1,
5
],
[
1746498851.5045803,
20,
1,
5
],
[
1746498852.2124424,
20,
1,
5
],
[
1746498853.9465675,
20,
2,
10
],
[
1746498855.2835763,
20,
2,
10
],
[
1746498870.068356,
20,
1,
5
],
[
1746498870.1976266,
20,
1,
5
],
[
1746504461.1365774,
20,
1,
5
],
[
1746504461.7019114,
20,
1,
5
],
[
1746504463.4145103,
20,
2,
10
],
[
1746504464.655072,
20,
2,
10
],
[
1746504477.2266188,
20,
1,
5
],
[
1746504477.4462788,
20,
1,
5
],
[
1746510746.811082,
20,
1,
5
],
[
1746510747.4727376,
20,
1,
5
],
[
1746510749.4206412,
20,
2,
10
],
[
1746510750.8068254,
20,
2,
10
],
[
1746510765.3689091,
20,
1,
5
],
[
1746510765.8064966,
20,
1,
5
],
[
1746511283.6492777,
20,
1,
5
],
[
1746511284.2399065,
20,
1,
5
],
[
1746511286.278385,
20,
2,
10
],
[
1746511287.612435,
20,
2,
10
],
[
1746511301.9789937,
20,
1,
5
],
[
1746511302.0912166,
20,
1,
5
],
[
1746515262.77929,
20,
1,
5
],
[
1746515263.3422353,
20,
1,
5
],
[
1746515265.3203351,
20,
2,
10
],
[
1746515266.5374644,
20,
2,
10
],
[
1746515280.7273285,
20,
1,
5
],
[
1746515280.8438942,
20,
1,
5
],
[
1746515807.4589984,
20,
1,
5
],
[
1746515808.161978,
20,
1,
5
],
[
1746515809.9002805,
20,
2,
10
],
[
1746515811.176746,
20,
2,
10
],
[
1746515825.068575,
20,
1,
5
],
[
1746515825.1774085,
20,
1,
5
],
[
1746516892.2181022,
20,
1,
5
],
[
1746516892.850639,
20,
1,
5
],
[
1746516894.5781574,
20,
2,
10
],
[
1746516896.060447,
20,
2,
10
],
[
1746516911.4499013,
20,
1,
5
],
[
1746516911.8617167,
20,
1,
5
],
[
1746519227.645815,
20,
1,
5
],
[
1746519228.3203611,
20,
1,
5
],
[
1746519230.3537924,
20,
2,
10
],
[
1746519231.692497,
20,
2,
10
],
[
1746519246.580454,
20,
1,
5
],
[
1746519247.0429776,
20,
1,
5
],
[
1746519258.0466938,
20,
1,
5
],
[
1746519273.1102502,
20,
1,
5
],
[
1746519287.8733869,
20,
1,
5
],
[
1746519294.1909122,
20,
1,
5
],
[
1746519306.3746774,
20,
0,
0
],
[
1746519319.305719,
20,
0,
0
],
[
1746519917.7204835,
20,
0,
0
],
[
1746519918.162103,
20,
0,
0
],
[
1746519919.8886113,
20,
1,
5
],
[
1746519928.2994912,
20,
1,
5
],
[
1746520456.7341647,
20,
1,
5
],
[
1746520457.37887,
20,
1,
5
],
[
1746520459.3157601,
20,
2,
10
],
[
1746520460.7194445,
20,
2,
10
],
[
1746520476.7451692,
20,
1,
5
],
[
1746520476.8788195,
20,
1,
5
],
[
1746523142.955126,
20,
1,
5
],
[
1746523143.5476756,
20,
1,
5
],
[
1746523145.3881128,
20,
2,
10
],
[
1746523146.8670974,
20,
2,
10
],
[
1746523163.027044,
20,
1,
5
],
[
1746523163.1322093,
20,
1,
5
],
[
1746523733.0230713,
20,
1,
5
],
[
1746523733.6327968,
20,
1,
5
],
[
1746523735.3153827,
20,
2,
10
],
[
1746523736.5351443,
20,
2,
10
],
[
1746523751.0599096,
20,
1,
5
],
[
1746523751.1825833,
20,
1,
5
],
[
1746524406.1401298,
20,
1,
5
],
[
1746524406.7206457,
20,
1,
5
],
[
1746524408.4452786,
20,
2,
10
],
[
1746524409.8039112,
20,
2,
10
],
[
1746524425.5879645,
20,
1,
5
],
[
1746524425.706573,
20,
1,
5
],
[
1746525371.3671165,
20,
1,
5
],
[
1746525372.2523553,
20,
1,
5
],
[
1746525374.3164499,
20,
2,
10
],
[
1746525375.7729452,
20,
2,
10
],
[
1746525391.987943,
20,
1,
5
],
[
1746525392.1228595,
20,
1,
5
],
[
1746527085.9814835,
20,
1,
5
],
[
1746527086.4055436,
20,
1,
5
],
[
1746527088.2696662,
20,
2,
10
],
[
1746527089.3804936,
20,
2,
10
],
[
1746527103.0674171,
20,
1,
5
],
[
1746527103.1789095,
20,
1,
5
],
[
1746527574.5532296,
20,
1,
5
],
[
1746527575.3368022,
20,
1,
5
],
[
1746527577.3574748,
20,
2,
10
],
[
1746527578.8908575,
20,
2,
10
],
[
1746527595.8928685,
20,
1,
5
],
[
1746527596.0694933,
20,
1,
5
],
[
1746528413.7966037,
20,
1,
5
],
[
1746528414.39178,
20,
1,
5
],
[
1746528416.3189828,
20,
2,
10
],
[
1746528417.733436,
20,
2,
10
],
[
1746528431.5869644,
20,
1,
5
],
[
1746528431.912993,
20,
1,
5
],
[
1746528934.1558304,
20,
1,
5
],
[
1746528934.7119591,
20,
1,
5
],
[
1746528936.4033039,
20,
2,
10
],
[
1746528937.740127,
20,
2,
10
],
[
1746528951.5065439,
20,
1,
5
],
[
1746528951.9085042,
20,
1,
5
],
[
1746530799.2298136,
20,
1,
5
],
[
1746530799.8614118,
20,
1,
5
],
[
1746530801.6111155,
20,
2,
10
],
[
1746530802.9310365,
20,
2,
10
],
[
1746530818.746434,
20,
1,
5
],
[
1746530818.8856173,
20,
1,
5
],
[
1746532148.650441,
20,
1,
5
],
[
1746532149.2495017,
20,
1,
5
],
[
1746532151.2673774,
20,
2,
10
],
[
1746532152.571058,
20,
2,
10
],
[
1746532168.6712365,
20,
1,
5
],
[
1746532168.932599,
20,
1,
5
],
[
1746533782.2559474,
20,
1,
5
],
[
1746533782.8801756,
20,
1,
5
],
[
1746533784.59246,
20,
2,
10
],
[
1746533785.9367902,
20,
2,
10
],
[
1746533800.3428164,
20,
1,
5
],
[
1746533800.8341258,
20,
1,
5
],
[
1746535901.6099656,
20,
1,
5
],
[
1746535902.2219348,
20,
1,
5
],
[
1746535904.1170921,
20,
2,
10
],
[
1746535905.307881,
20,
2,
10
],
[
1746535920.9667222,
20,
1,
5
],
[
1746535921.076179,
20,
1,
5
],
[
1746536823.5847065,
20,
1,
5
],
[
1746536824.2024505,
20,
1,
5
],
[
1746536826.007964,
20,
2,
10
],
[
1746536827.1589553,
20,
2,
10
],
[
1746536840.8737597,
20,
1,
5
],
[
1746536840.9706023,
20,
1,
5
],
[
1746537697.827459,
20,
1,
5
],
[
1746537698.4436977,
20,
1,
5
],
[
1746537700.3561544,
20,
2,
10
],
[
1746537701.7799776,
20,
2,
10
],
[
1746537716.8913617,
20,
1,
5
],
[
1746537717.0020232,
20,
1,
5
],
[
1746538640.6003535,
20,
1,
5
],
[
1746538641.232078,
20,
1,
5
],
[
1746538643.1735969,
20,
2,
10
],
[
1746538644.4601774,
20,
2,
10
],
[
1746538660.0434515,
20,
1,
5
],
[
1746538660.1719532,
20,
1,
5
],
[
1746539196.218389,
20,
1,
5
],
[
1746539196.6807647,
20,
1,
5
],
[
1746539198.3448668,
20,
2,
10
],
[
1746539199.3115134,
20,
2,
10
],
[
1746539214.2160583,
20,
1,
5
],
[
1746539214.3302639,
20,
1,
5
],
[
1746540824.1383412,
20,
1,
5
],
[
1746540824.6761603,
20,
1,
5
],
[
1746540826.5173535,
20,
2,
10
],
[
1746540827.891687,
20,
2,
10
],
[
1746540843.0378916,
20,
1,
5
],
[
1746540843.15992,
20,
1,
5
],
[
1746541640.2763693,
20,
1,
5
],
[
1746541640.9652636,
20,
1,
5
],
[
1746541642.809172,
20,
2,
10
],
[
1746541644.1590323,
20,
2,
10
],
[
1746541661.5525632,
20,
1,
5
],
[
1746541661.8473797,
20,
1,
5
],
[
1746541673.2924562,
20,
1,
5
],
[
1746541690.0627325,
20,
1,
5
],
[
1746541705.2046359,
20,
1,
5
],
[
1746541720.5820982,
20,
1,
5
],
[
1746541735.8016672,
20,
1,
5
],
[
1746541750.6786475,
20,
1,
5
],
[
1746541765.445288,
20,
1,
5
],
[
1746541780.383463,
20,
1,
5
],
[
1746541794.2240586,
20,
1,
5
],
[
1746541807.9116697,
20,
1,
5
],
[
1746541814.114822,
20,
1,
5
],
[
1746541824.6826289,
20,
0,
0
],
[
1746541835.8843803,
20,
0,
0
],
[
1746543699.7171273,
20,
0,
0
],
[
1746543700.2181292,
20,
0,
0
],
[
1746543702.2860146,
20,
1,
5
],
[
1746543711.9517696,
20,
1,
5
],
[
1746544761.983068,
20,
1,
5
],
[
1746544762.5447204,
20,
1,
5
],
[
1746544764.3136823,
20,
2,
10
],
[
1746544765.6196826,
20,
2,
10
],
[
1746544780.0995035,
20,
1,
5
],
[
1746544780.209669,
20,
1,
5
],
[
1746547690.5203588,
20,
1,
5
],
[
1746547691.2478611,
20,
1,
5
],
[
1746547693.3177295,
20,
2,
10
],
[
1746547694.6417224,
20,
2,
10
],
[
1746547709.7893367,
20,
1,
5
],
[
1746547709.920253,
20,
1,
5
],
[
1746548121.9233124,
20,
1,
5
],
[
1746548122.4621081,
20,
1,
5
],
[
1746548124.3091154,
20,
2,
10
],
[
1746548125.5342813,
20,
2,
10
],
[
1746548139.788179,
20,
1,
5
],
[
1746548139.900941,
20,
1,
5
],
[
1746548524.1944506,
20,
1,
5
],
[
1746548524.6908448,
20,
1,
5
],
[
1746548526.241955,
20,
2,
10
],
[
1746548527.0209243,
20,
2,
10
],
[
1746548539.5389366,
20,
1,
5
],
[
1746548539.6382072,
20,
1,
5
],
[
1746549178.7412865,
20,
1,
5
],
[
1746549179.349163,
20,
1,
5
],
[
1746549181.3563979,
20,
2,
10
],
[
1746549182.7124412,
20,
2,
10
],
[
1746549198.25725,
20,
1,
5
],
[
1746549198.8580382,
20,
1,
5
],
[
1746552229.7463439,
20,
1,
5
],
[
1746552230.3181274,
20,
1,
5
],
[
1746552232.4106004,
20,
2,
10
],
[
1746552233.7070396,
20,
2,
10
],
[
1746552247.777616,
20,
1,
5
],
[
1746552247.8973312,
20,
1,
5
],
[
1746553476.0563128,
20,
1,
5
],
[
1746553476.5969126,
20,
1,
5
],
[
1746553478.3301718,
20,
2,
10
],
[
1746553479.574929,
20,
2,
10
],
[
1746553494.029305,
20,
1,
5
],
[
1746553494.1441712,
20,
1,
5
],
[
1746553943.4244401,
20,
1,
5
],
[
1746553944.2458234,
20,
1,
5
],
[
1746553946.3020082,
20,
2,
10
],
[
1746553947.5795398,
20,
2,
10
],
[
1746553961.8901792,
20,
1,
5
],
[
1746553962.0992289,
20,
1,
5
],
[
1746555592.5435226,
20,
1,
5
],
[
1746555593.1920705,
20,
1,
5
],
[
1746555594.8983295,
20,
2,
10
],
[
1746555596.0153852,
20,
2,
10
],
[
1746555609.4659212,
20,
1,
5
],
[
1746555609.565031,
20,
1,
5
],
[
1746560446.8678372,
20,
1,
5
],
[
1746560447.560134,
20,
1,
5
],
[
1746560449.4825594,
20,
2,
10
],
[
1746560450.9699502,
20,
2,
10
],
[
1746560467.4034007,
20,
1,
5
],
[
1746560467.5448904,
20,
1,
5
],
[
1746563320.2445722,
20,
1,
5
],
[
1746563320.813783,
20,
1,
5
],
[
1746563322.5515819,
20,
2,
10
],
[
1746563323.8954666,
20,
2,
10
],
[
1746563338.57294,
20,
1,
5
],
[
1746563338.8922288,
20,
1,
5
],
[
1746567961.376779,
20,
1,
5
],
[
1746567962.2882638,
20,
1,
5
],
[
1746567964.42751,
20,
2,
10
],
[
1746567965.7381692,
20,
2,
10
],
[
1746567981.1342976,
20,
1,
5
],
[
1746567981.247534,
20,
1,
5
],
[
1746569884.305457,
20,
1,
5
],
[
1746569885.3159835,
20,
1,
5
],
[
1746569887.3573713,
20,
2,
10
],
[
1746569888.8271933,
20,
2,
10
],
[
1746569905.5545962,
20,
1,
5
],
[
1746569905.934736,
20,
1,
5
],
[
1746570519.2721076,
20,
1,
5
],
[
1746570519.8316529,
20,
1,
5
],
[
1746570521.455852,
20,
2,
10
],
[
1746570522.6220362,
20,
2,
10
],
[
1746570536.2397726,
20,
1,
5
],
[
1746570536.3415327,
20,
1,
5
],
[
1746574013.6741197,
20,
1,
5
],
[
1746574014.43344,
20,
1,
5
],
[
1746574016.4774544,
20,
2,
10
],
[
1746574018.0824745,
20,
2,
10
],
[
1746574035.501493,
20,
1,
5
],
[
1746574035.9419627,
20,
1,
5
],
[
1746576035.275383,
20,
1,
5
],
[
1746576036.0136724,
20,
1,
5
],
[
1746576037.8095164,
20,
2,
10
],
[
1746576039.4152575,
20,
2,
10
],
[
1746576057.3345616,
20,
1,
5
],
[
1746576057.5081007,
20,
1,
5
],
[
1746578385.0956237,
20,
1,
5
],
[
1746578385.764378,
20,
1,
5
],
[
1746578387.6132362,
20,
2,
10
],
[
1746578389.1703248,
20,
2,
10
],
[
1746578406.378965,
20,
1,
5
],
[
1746578406.5172591,
20,
1,
5
],
[
1746579529.4469888,
20,
1,
5
],
[
1746579530.3252065,
20,
1,
5
],
[
1746579533.0713894,
20,
2,
10
],
[
1746579534.6652305,
20,
2,
10
],
[
1746579553.1860287,
20,
1,
5
],
[
1746579553.3365803,
20,
1,
5
],
[
1746581757.5216346,
20,
1,
5
],
[
1746581758.325378,
20,
1,
5
],
[
1746581760.375721,
20,
2,
10
],
[
1746581761.7462137,
20,
2,
10
],
[
1746581778.6680448,
20,
1,
5
],
[
1746581778.9348276,
20,
1,
5
],
[
1746581790.3656008,
20,
1,
5
],
[
1746581796.7136312,
20,
1,
5
],
[
1746581809.1364422,
20,
0,
0
],
[
1746581821.399268,
20,
0,
0
],
[
1746585392.1985464,
20,
0,
0
],
[
1746585392.7317657,
20,
0,
0
],
[
1746585394.5088348,
20,
1,
5
],
[
1746585405.2432332,
20,
1,
5
],
[
1746586411.921964,
20,
1,
5
],
[
1746586412.4061694,
20,
1,
5
],
[
1746586414.2354798,
20,
2,
10
],
[
1746586415.3039732,
20,
2,
10
],
[
1746586428.4085317,
20,
1,
5
],
[
1746586428.5049293,
20,
1,
5
],
[
1746590658.0839097,
20,
1,
5
],
[
1746590658.6964214,
20,
1,
5
],
[
1746590660.4465845,
20,
2,
10
],
[
1746590661.7446783,
20,
2,
10
],
[
1746590676.112603,
20,
1,
5
],
[
1746590676.2369118,
20,
1,
5
],
[
1746595535.8763156,
20,
1,
5
],
[
1746595536.57939,
20,
1,
5
],
[
1746595538.4812748,
20,
2,
10
],
[
1746595540.0370548,
20,
2,
10
],
[
1746595557.1352,
20,
1,
5
],
[
1746595557.290596,
20,
1,
5
],
[
1746598171.5274656,
20,
1,
5
],
[
1746598172.3396583,
20,
1,
5
],
[
1746598174.488742,
20,
2,
10
],
[
1746598175.8453143,
20,
2,
10
],
[
1746598191.083136,
20,
1,
5
],
[
1746598191.19054,
20,
1,
5
],
[
1746601510.8957603,
20,
1,
5
],
[
1746601511.6125836,
20,
1,
5
],
[
1746601513.4457667,
20,
2,
10
],
[
1746601514.9717655,
20,
2,
10
],
[
1746601532.6178787,
20,
1,
5
],
[
1746601532.9158976,
20,
1,
5
],
[
1746604884.358715,
20,
1,
5
],
[
1746604885.2268224,
20,
1,
5
],
[
1746604887.3251762,
20,
2,
10
],
[
1746604888.6216674,
20,
2,
10
],
[
1746604903.9524403,
20,
1,
5
],
[
1746604904.073261,
20,
1,
5
],
[
1746609782.5689032,
20,
1,
5
],
[
1746609783.3962893,
20,
1,
5
],
[
1746609785.7179067,
20,
2,
10
],
[
1746609787.189967,
20,
2,
10
],
[
1746609804.2343407,
20,
1,
5
],
[
1746609804.3726733,
20,
1,
5
],
[
1746613747.4887543,
20,
1,
5
],
[
1746613748.4312835,
20,
1,
5
],
[
1746613751.0065546,
20,
2,
10
],
[
1746613752.512028,
20,
2,
10
],
[
1746613769.8346326,
20,
1,
5
],
[
1746613770.0174813,
20,
1,
5
],
[
1746617340.0211775,
20,
1,
5
],
[
1746617340.6173935,
20,
1,
5
],
[
1746617342.4210718,
20,
2,
10
],
[
1746617343.7447314,
20,
2,
10
],
[
1746617358.95805,
20,
1,
5
],
[
1746617359.1066723,
20,
1,
5
],
[
1746619676.4811652,
20,
1,
5
],
[
1746619677.299716,
20,
1,
5
],
[
1746619679.3529222,
20,
2,
10
],
[
1746619680.7435558,
20,
2,
10
],
[
1746619697.4493961,
20,
1,
5
],
[
1746619697.9510174,
20,
1,
5
],
[
1746622912.7706826,
20,
1,
5
],
[
1746622913.3464031,
20,
1,
5
],
[
1746622915.3583643,
20,
2,
10
],
[
1746622916.688378,
20,
2,
10
],
[
1746622931.9294987,
20,
1,
5
],
[
1746622932.0643795,
20,
1,
5
],
[
1746624705.4061666,
20,
1,
5
],
[
1746624706.1356516,
20,
1,
5
],
[
1746624707.868024,
20,
2,
10
],
[
1746624709.0254247,
20,
2,
10
],
[
1746624722.776041,
20,
1,
5
],
[
1746624722.9107015,
20,
1,
5
],
[
1746625141.6780462,
20,
1,
5
],
[
1746625142.2062716,
20,
1,
5
],
[
1746625143.929156,
20,
2,
10
],
[
1746625145.1178138,
20,
2,
10
],
[
1746625158.9411812,
20,
1,
5
],
[
1746625159.0715964,
20,
1,
5
],
[
1746627685.5632265,
20,
1,
5
],
[
1746627686.2065268,
20,
1,
5
],
[
1746627688.088744,
20,
2,
10
],
[
1746627689.2679436,
20,
2,
10
],
[
1746627702.9745524,
20,
1,
5
],
[
1746627703.3139162,
20,
1,
5
],
[
1746630397.5827303,
20,
1,
5
],
[
1746630398.1674974,
20,
1,
5
],
[
1746630399.8381307,
20,
2,
10
],
[
1746630400.8755352,
20,
2,
10
],
[
1746630413.4455786,
20,
1,
5
],
[
1746630413.8800688,
20,
1,
5
],
[
1746631474.7907646,
20,
1,
5
],
[
1746631475.3320174,
20,
1,
5
],
[
1746631477.317518,
20,
2,
10
],
[
1746631478.5319142,
20,
2,
10
],
[
1746631493.1564207,
20,
1,
5
],
[
1746631493.2801754,
20,
1,
5
],
[
1746631988.3444693,
20,
1,
5
],
[
1746631989.2563825,
20,
1,
5
],
[
1746631991.3767338,
20,
2,
10
],
[
1746631992.829517,
20,
2,
10
],
[
1746632009.4827702,
20,
1,
5
],
[
1746632009.6337974,
20,
1,
5
],
[
1746634660.1850853,
20,
1,
5
],
[
1746634660.776514,
20,
1,
5
],
[
1746634662.4542263,
20,
2,
10
],
[
1746634663.7807648,
20,
2,
10
],
[
1746634678.416964,
20,
1,
5
],
[
1746634678.5406888,
20,
1,
5
],
[
1746638405.08009,
20,
1,
5
],
[
1746638405.7362535,
20,
1,
5
],
[
1746638407.5047526,
20,
2,
10
],
[
1746638408.8011236,
20,
2,
10
],
[
1746638423.5464284,
20,
1,
5
],
[
1746638423.8087566,
20,
1,
5
],
[
1746638435.2407706,
20,
1,
5
],
[
1746638441.3583996,
20,
1,
5
],
[
1746638450.9457853,
20,
0,
0
],
[
1746638462.1686325,
20,
0,
0
],
[
1746641555.8172934,
20,
0,
0
],
[
1746641556.2929761,
20,
0,
0
],
[
1746641558.2848678,
20,
1,
5
],
[
1746641568.3093045,
20,
1,
5
],
[
1746642017.6009223,
20,
1,
5
],
[
1746642018.21428,
20,
1,
5
],
[
1746642020.1373453,
20,
2,
10
],
[
1746642021.428944,
20,
2,
10
],
[
1746642036.4546542,
20,
1,
5
],
[
1746642036.90219,
20,
1,
5
],
[
1746645431.7718635,
20,
1,
5
],
[
1746645432.361141,
20,
1,
5
],
[
1746645434.3376498,
20,
2,
10
],
[
1746645435.675619,
20,
2,
10
],
[
1746645451.194317,
20,
1,
5
],
[
1746645451.4189067,
20,
1,
5
],
[
1746649138.8206408,
20,
1,
5
],
[
1746649139.4273655,
20,
1,
5
],
[
1746649141.471903,
20,
2,
10
],
[
1746649142.8927622,
20,
2,
10
],
[
1746649156.7296052,
20,
1,
5
],
[
1746649156.9752853,
20,
1,
5
],
[
1746652981.4395063,
20,
1,
5
],
[
1746652983.3617406,
20,
1,
5
],
[
1746652985.4456832,
20,
2,
10
],
[
1746652986.8871856,
20,
2,
10
],
[
1746653003.7937713,
20,
1,
5
],
[
1746653003.9370334,
20,
1,
5
],
[
1746655330.0947666,
20,
1,
5
],
[
1746655330.5329282,
20,
1,
5
],
[
1746655332.2190723,
20,
2,
10
],
[
1746655333.2297354,
20,
2,
10
],
[
1746655346.1556823,
20,
1,
5
],
[
1746655346.2562468,
20,
1,
5
],
[
1746659586.608735,
20,
1,
5
],
[
1746659587.304347,
20,
1,
5
],
[
1746659589.3917217,
20,
2,
10
],
[
1746659590.761711,
20,
2,
10
],
[
1746659606.4210958,
20,
1,
5
],
[
1746659606.5573072,
20,
1,
5
],
[
1746660479.222114,
20,
1,
5
],
[
1746660479.7880585,
20,
1,
5
],
[
1746660481.4979277,
20,
2,
10
],
[
1746660482.7095942,
20,
2,
10
],
[
1746660497.109243,
20,
1,
5
],
[
1746660497.2285645,
20,
1,
5
],
[
1746662002.0988812,
20,
1,
5
],
[
1746662002.6834335,
20,
1,
5
],
[
1746662004.4054236,
20,
2,
10
],
[
1746662005.760165,
20,
2,
10
],
[
1746662021.58785,
20,
1,
5
],
[
1746662021.7090607,
20,
1,
5
],
[
1746666156.6942532,
20,
1,
5
],
[
1746666157.300291,
20,
1,
5
],
[
1746666159.3994532,
20,
2,
10
],
[
1746666160.6775355,
20,
2,
10
],
[
1746666175.687103,
20,
1,
5
],
[
1746666175.8072855,
20,
1,
5
],
[
1746669448.6870255,
20,
1,
5
],
[
1746669449.3644707,
20,
1,
5
],
[
1746669451.358251,
20,
2,
10
],
[
1746669452.875471,
20,
2,
10
],
[
1746669470.1356854,
20,
1,
5
],
[
1746669470.3792794,
20,
1,
5
],
[
1746673639.5982165,
20,
1,
5
],
[
1746673640.3668633,
20,
1,
5
],
[
1746673642.4263308,
20,
2,
10
],
[
1746673643.880669,
20,
2,
10
],
[
1746673661.2300608,
20,
1,
5
],
[
1746673661.92248,
20,
1,
5
],
[
1746676954.7507477,
20,
1,
5
],
[
1746676955.278465,
20,
1,
5
],
[
1746676957.2772498,
20,
2,
10
],
[
1746676958.5091972,
20,
2,
10
],
[
1746676973.366868,
20,
1,
5
],
[
1746676973.4881995,
20,
1,
5
],
[
1746679309.7828574,
20,
1,
5
],
[
1746679310.2514682,
20,
1,
5
],
[
1746679312.3396318,
20,
2,
10
],
[
1746679313.484589,
20,
2,
10
],
[
1746679328.5286415,
20,
1,
5
],
[
1746679328.648101,
20,
1,
5
],
[
1746682729.5808647,
20,
1,
5
],
[
1746682730.2592504,
20,
1,
5
],
[
1746682732.3019812,
20,
2,
10
],
[
1746682733.5684164,
20,
2,
10
],
[
1746682748.5882988,
20,
1,
5
],
[
1746682748.7220967,
20,
1,
5
],
[
1746685970.8253968,
20,
1,
5
],
[
1746685971.4731903,
20,
1,
5
],
[
1746685973.5868719,
20,
2,
10
],
[
1746685975.0529573,
20,
2,
10
],
[
1746685992.277049,
20,
1,
5
],
[
1746685992.4145286,
20,
1,
5
],
[
1746688054.764523,
20,
1,
5
],
[
1746688055.2980936,
20,
1,
5
],
[
1746688057.3442738,
20,
2,
10
],
[
1746688058.6089845,
20,
2,
10
],
[
1746688073.7618284,
20,
1,
5
],
[
1746688073.85526,
20,
1,
5
],
[
1746689763.1807766,
20,
1,
5
],
[
1746689763.9834816,
20,
1,
5
],
[
1746689765.7312582,
20,
2,
10
],
[
1746689767.216443,
20,
2,
10
],
[
1746689785.0457976,
20,
1,
5
],
[
1746689785.1932566,
20,
1,
5
],
[
1746694925.660842,
20,
1,
5
],
[
1746694926.4667537,
20,
1,
5
],
[
1746694928.4154973,
20,
2,
10
],
[
1746694929.8718023,
20,
2,
10
],
[
1746694946.8357008,
20,
1,
5
],
[
1746694946.9626663,
20,
1,
5
],
[
1746699092.6504488,
20,
1,
5
],
[
1746699093.350773,
20,
1,
5
],
[
1746699095.408508,
20,
2,
10
],
[
1746699096.7179573,
20,
2,
10
],
[
1746699113.9678392,
20,
1,
5
],
[
1746699114.3576417,
20,
1,
5
],
[
1746699126.0002182,
20,
1,
5
],
[
1746699132.3310475,
20,
1,
5
],
[
1746699145.1572294,
20,
0,
0
],
[
1746699158.5546656,
20,
0,
0
],
[
1746704202.277037,
20,
0,
0
],
[
1746704202.7372754,
20,
0,
0
],
[
1746704204.3652122,
20,
1,
5
],
[
1746704212.8695989,
20,
1,
5
],
[
1746707746.6262383,
20,
1,
5
],
[
1746707747.2366064,
20,
1,
5
],
[
1746707749.321502,
20,
2,
10
],
[
1746707750.6074145,
20,
2,
10
],
[
1746707766.332379,
20,
1,
5
],
[
1746707766.4531775,
20,
1,
5
],
[
1746710847.2567408,
20,
1,
5
],
[
1746710847.8840296,
20,
1,
5
],
[
1746710849.6736798,
20,
2,
10
],
[
1746710851.0899696,
20,
2,
10
],
[
1746710871.1120515,
20,
1,
5
],
[
1746710871.4055972,
20,
1,
5
],
[
1746714769.7660875,
20,
1,
5
],
[
1746714770.382531,
20,
1,
5
],
[
1746714772.3112223,
20,
2,
10
],
[
1746714773.6474335,
20,
2,
10
],
[
1746714789.6845949,
20,
1,
5
],
[
1746714789.8103633,
20,
1,
5
],
[
1746718303.889708,
20,
1,
5
],
[
1746718304.494677,
20,
1,
5
],
[
1746718306.3768835,
20,
2,
10
],
[
1746718307.798191,
20,
2,
10
],
[
1746718323.5606866,
20,
1,
5
],
[
1746718323.9057446,
20,
1,
5
],
[
1746721862.0846138,
20,
1,
5
],
[
1746721863.562246,
20,
1,
5
],
[
1746721865.494627,
20,
2,
10
],
[
1746721867.079309,
20,
2,
10
],
[
1746721886.555823,
20,
1,
5
],
[
1746721886.965319,
20,
1,
5
],
[
1746728220.4511628,
20,
1,
5
],
[
1746728221.4229007,
20,
1,
5
],
[
1746728223.5532148,
20,
2,
10
],
[
1746728225.162399,
20,
2,
10
],
[
1746728244.6392388,
20,
1,
5
],
[
1746728244.9345057,
20,
1,
5
],
[
1746731668.7919652,
20,
1,
5
],
[
1746731669.4877098,
20,
1,
5
],
[
1746731672.4263535,
20,
2,
10
],
[
1746731674.0268447,
20,
2,
10
],
[
1746731693.0858748,
20,
1,
5
],
[
1746731693.2407877,
20,
1,
5
],
[
1746736456.5931053,
20,
1,
5
],
[
1746736457.3289442,
20,
1,
5
],
[
1746736459.3861678,
20,
2,
10
],
[
1746736460.8338976,
20,
2,
10
],
[
1746736476.663303,
20,
1,
5
],
[
1746736476.9105988,
20,
1,
5
],
[
1746737517.402574,
20,
1,
5
],
[
1746737517.8526464,
20,
1,
5
],
[
1746737519.5280862,
20,
2,
10
],
[
1746737520.8265228,
20,
2,
10
],
[
1746737538.1827528,
20,
1,
5
],
[
1746737538.4268277,
20,
1,
5
],
[
1746743753.030149,
20,
1,
5
],
[
1746743753.8223588,
20,
1,
5
],
[
1746743755.794606,
20,
2,
10
],
[
1746743757.3955653,
20,
2,
10
],
[
1746743776.9807239,
20,
1,
5
],
[
1746743777.1343155,
20,
1,
5
],
[
1746750971.9241562,
20,
1,
5
],
[
1746750972.6146948,
20,
1,
5
],
[
1746750974.4356816,
20,
2,
10
],
[
1746750975.8904343,
20,
2,
10
],
[
1746750993.552927,
20,
1,
5
],
[
1746750993.779235,
20,
1,
5
],
[
1746754708.1059613,
20,
1,
5
],
[
1746754708.604773,
20,
1,
5
],
[
1746754710.2813566,
20,
2,
10
],
[
1746754711.4229136,
20,
2,
10
],
[
1746754728.264336,
20,
1,
5
],
[
1746754728.524314,
20,
1,
5
],
[
1746759817.6461844,
20,
1,
5
],
[
1746759818.388633,
20,
1,
5
],
[
1746759820.3757377,
20,
2,
10
],
[
1746759821.778527,
20,
2,
10
],
[
1746759839.0985951,
20,
1,
5
],
[
1746759839.359588,
20,
1,
5
],
[
1746764302.4657145,
20,
1,
5
],
[
1746764303.255604,
20,
1,
5
],
[
1746764305.234839,
20,
2,
10
],
[
1746764306.235452,
20,
2,
10
],
[
1746764321.808888,
20,
1,
5
],
[
1746764321.9053469,
20,
1,
5
],
[
1746768954.6168547,
20,
1,
5
],
[
1746768955.4073806,
20,
1,
5
],
[
1746768957.4588943,
20,
2,
10
],
[
1746768959.0960684,
20,
2,
10
],
[
1746768976.8460605,
20,
1,
5
],
[
1746768977.0859315,
20,
1,
5
],
[
1746771305.381548,
20,
1,
5
],
[
1746771306.3431668,
20,
1,
5
],
[
1746771308.4442353,
20,
2,
10
],
[
1746771310.0506735,
20,
2,
10
],
[
1746771329.7674234,
20,
1,
5
],
[
1746771330.006886,
20,
1,
5
],
[
1746772485.3069565,
20,
1,
5
],
[
1746772485.866709,
20,
1,
5
],
[
1746772487.6272874,
20,
2,
10
],
[
1746772489.1858914,
20,
2,
10
],
[
1746772509.4269652,
20,
1,
5
],
[
1746772509.5654428,
20,
1,
5
],
[
1746777190.4300451,
20,
1,
5
],
[
1746777191.0631382,
20,
1,
5
],
[
1746777193.827994,
20,
2,
10
],
[
1746777195.4241743,
20,
2,
10
],
[
1746777216.2601535,
20,
1,
5
],
[
1746777216.4017138,
20,
1,
5
],
[
1746781749.6141276,
20,
1,
5
],
[
1746781750.386456,
20,
1,
5
],
[
1746781752.45385,
20,
2,
10
],
[
1746781753.8045294,
20,
2,
10
],
[
1746781772.6863062,
20,
1,
5
],
[
1746781773.001696,
20,
1,
5
]
];
var tab_main_worker_cpu_ram_csv_json = [
[
1746192418,
618.67578125,
31.8
],
[
1746192418,
614.24609375,
32.2
],
[
1746192418,
614.24609375,
32.5
],
[
1746192418,
614.24609375,
22.9
],
[
1746192418,
614.24609375,
34.1
],
[
1746192418,
614.24609375,
31.7
],
[
1746192418,
614.24609375,
38.1
],
[
1746194638,
761.5546875,
41.1
],
[
1746194638,
761.5546875,
37.7
],
[
1746194639,
761.5546875,
41.4
],
[
1746194639,
761.5546875,
38.6
],
[
1746199116,
734.76953125,
40.3
],
[
1746199116,
734.76953125,
39.6
],
[
1746199116,
734.76953125,
40
],
[
1746199116,
734.76953125,
38.9
],
[
1746201128,
771.05859375,
39.5
],
[
1746201128,
771.05859375,
42.1
],
[
1746201128,
771.05859375,
40.2
],
[
1746201128,
771.05859375,
41.2
],
[
1746207105,
789.4609375,
36.4
],
[
1746207105,
789.4609375,
34.5
],
[
1746207105,
789.4609375,
34.5
],
[
1746207105,
789.4609375,
37.2
],
[
1746209771,
834.94921875,
32.6
],
[
1746209771,
834.94921875,
32
],
[
1746209771,
834.94921875,
30.4
],
[
1746209771,
834.94921875,
31.2
],
[
1746213118,
809.46484375,
29.5
],
[
1746213118,
809.46484375,
27.5
],
[
1746213118,
809.46484375,
27.5
],
[
1746213118,
809.46484375,
26.5
],
[
1746217039,
859.61328125,
25.1
],
[
1746217039,
859.61328125,
21
],
[
1746217039,
859.61328125,
20.9
],
[
1746217039,
859.61328125,
23.9
],
[
1746221318,
837.98046875,
19.7
],
[
1746221318,
837.98046875,
16.4
],
[
1746221318,
837.98046875,
16.3
],
[
1746221318,
837.98046875,
16.4
],
[
1746227037,
896.140625,
17
],
[
1746227037,
896.140625,
16.4
],
[
1746227037,
896.140625,
16
],
[
1746227037,
896.140625,
17.8
],
[
1746234044,
917.578125,
16.2
],
[
1746234044,
917.578125,
14.8
],
[
1746234044,
917.578125,
14.3
],
[
1746234044,
917.578125,
14.5
],
[
1746245309,
896.9453125,
15.7
],
[
1746245309,
896.9453125,
14.9
],
[
1746245309,
896.9453125,
14.3
],
[
1746245309,
896.9453125,
15.6
],
[
1746262308,
912.62109375,
16.1
],
[
1746262308,
912.62109375,
17.3
],
[
1746262308,
912.62109375,
16.6
],
[
1746262308,
912.62109375,
10.3
],
[
1746274781,
982.2421875,
16.4
],
[
1746274781,
982.2421875,
14.9
],
[
1746274781,
982.2421875,
15.2
],
[
1746274781,
982.2421875,
16.3
],
[
1746290750,
982.60546875,
18.9
],
[
1746290750,
982.60546875,
18.7
],
[
1746290750,
982.60546875,
18.5
],
[
1746290750,
982.60546875,
18.2
],
[
1746309470,
1021.890625,
20.2
],
[
1746309470,
1021.890625,
19.7
],
[
1746309470,
1021.890625,
20.1
],
[
1746309470,
1021.890625,
20
],
[
1746340234,
1059.40625,
20.1
],
[
1746340234,
1059.40625,
22.3
],
[
1746340234,
1059.40625,
22.6
],
[
1746340234,
1059.40625,
26.1
],
[
1746356869,
1140.77734375,
20.4
],
[
1746356869,
1140.77734375,
17.4
],
[
1746356869,
1140.77734375,
17.4
],
[
1746356869,
1140.77734375,
25
],
[
1746381606,
1138.4375,
25.3
],
[
1746381606,
1138.4375,
30.9
],
[
1746381607,
1138.4375,
31.3
],
[
1746381607,
1138.4375,
33.3
],
[
1746404236,
1282.02734375,
26.6
],
[
1746404236,
1282.02734375,
23.9
],
[
1746404236,
1282.02734375,
24.4
],
[
1746404236,
1282.02734375,
25.8
],
[
1746453471,
1130.76953125,
20.8
],
[
1746453471,
1130.76953125,
22.8
],
[
1746453471,
1130.76953125,
21.3
],
[
1746453471,
1130.76953125,
25.8
],
[
1746488702,
1165.0625,
20.5
],
[
1746488702,
1165.0625,
18.6
],
[
1746488702,
1165.0625,
18.9
],
[
1746488702,
1165.0625,
15.9
],
[
1746519257,
1206.00390625,
20.2
],
[
1746519257,
1206.00390625,
21.7
],
[
1746519257,
1206.00390625,
20.9
],
[
1746519257,
1206.00390625,
20.2
],
[
1746541672,
1203.22265625,
20.4
],
[
1746541672,
1203.22265625,
17.6
],
[
1746541673,
1203.22265625,
18.9
],
[
1746541673,
1203.22265625,
23
],
[
1746581789,
1231.6328125,
16.2
],
[
1746581790,
1231.6328125,
14.1
],
[
1746581790,
1231.6328125,
14.3
],
[
1746581790,
1231.6328125,
15.3
],
[
1746638434,
1247.671875,
14.2
],
[
1746638434,
1247.671875,
11.5
],
[
1746638435,
1247.671875,
11.2
],
[
1746638435,
1247.671875,
14.8
],
[
1746699125,
1316.0703125,
12.2
],
[
1746699125,
1316.0703125,
15
],
[
1746699125,
1316.0703125,
15.5
],
[
1746699125,
1316.0703125,
13.1
],
[
1746781785,
1342.37109375,
21.3
],
[
1746781785,
1342.37109375,
22.3
],
[
1746781785,
1342.37109375,
20.3
],
[
1746781785,
1342.37109375,
19.3
]
];
var tab_main_worker_cpu_ram_headers_json = [
"timestamp",
"ram_usage_mb",
"cpu_usage_percent"
];
"use strict";
function add_default_layout_data (layout, no_height = 0) {
layout["width"] = get_graph_width();
if (!no_height) {
layout["height"] = get_graph_height();
}
layout["paper_bgcolor"] = 'rgba(0,0,0,0)';
layout["plot_bgcolor"] = 'rgba(0,0,0,0)';
return layout;
}
function get_marker_size() {
return 12;
}
function get_text_color() {
return theme == "dark" ? "white" : "black";
}
function get_font_size() {
return 14;
}
function get_graph_height() {
return 800;
}
function get_font_data() {
return {
size: get_font_size(),
color: get_text_color()
}
}
function get_axis_title_data(name, axis_type = "") {
if(axis_type) {
return {
text: name,
type: axis_type,
font: get_font_data()
};
}
return {
text: name,
font: get_font_data()
};
}
function get_graph_width() {
var width = document.body.clientWidth || window.innerWidth || document.documentElement.clientWidth;
return Math.max(800, Math.floor(width * 0.9));
}
function createTable(data, headers, table_name) {
if (!$("#" + table_name).length) {
console.error("#" + table_name + " not found");
return;
}
new gridjs.Grid({
columns: headers,
data: data,
search: true,
sort: true,
ellipsis: false
}).render(document.getElementById(table_name));
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
colorize_table_entries();
add_colorize_to_gridjs_table();
}
function download_as_file(id, filename) {
var text = $("#" + id).text();
var blob = new Blob([text], {
type: "text/plain"
});
var link = document.createElement("a");
link.href = URL.createObjectURL(blob);
link.download = filename;
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
}
function copy_to_clipboard_from_id (id) {
var text = $("#" + id).text();
copy_to_clipboard(text);
}
function copy_to_clipboard(text) {
if (!navigator.clipboard) {
let textarea = document.createElement("textarea");
textarea.value = text;
document.body.appendChild(textarea);
textarea.select();
try {
document.execCommand("copy");
} catch (err) {
console.error("Copy failed:", err);
}
document.body.removeChild(textarea);
return;
}
navigator.clipboard.writeText(text).then(() => {
console.log("Text copied to clipboard");
}).catch(err => {
console.error("Failed to copy text:", err);
});
}
function filterNonEmptyRows(data) {
var new_data = [];
for (var row_idx = 0; row_idx < data.length; row_idx++) {
var line = data[row_idx];
var line_has_empty_data = false;
for (var col_idx = 0; col_idx < line.length; col_idx++) {
var col_header_name = tab_results_headers_json[col_idx];
var single_data_point = line[col_idx];
if(single_data_point === "" && !special_col_names.includes(col_header_name)) {
line_has_empty_data = true;
continue;
}
}
if(!line_has_empty_data) {
new_data.push(line);
}
}
return new_data;
}
function make_text_in_parallel_plot_nicer() {
$(".parcoords g > g > text").each(function() {
if (theme == "dark") {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "white")
.css("stroke", "black")
.css("stroke-width", "2px")
.css("paint-order", "stroke fill");
} else {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "black")
.css("stroke", "unset")
.css("stroke-width", "unset")
.css("paint-order", "stroke fill");
}
});
}
function createParallelPlot(dataArray, headers, resultNames, ignoreColumns = []) {
if ($("#parallel-plot").data("loaded") == "true") {
return;
}
dataArray = filterNonEmptyRows(dataArray);
const ignoreSet = new Set(ignoreColumns);
const numericalCols = [];
const categoricalCols = [];
const categoryMappings = {};
headers.forEach((header, colIndex) => {
if (ignoreSet.has(header)) return;
const values = dataArray.map(row => row[colIndex]);
if (values.every(val => !isNaN(parseFloat(val)))) {
numericalCols.push({ name: header, index: colIndex });
} else {
categoricalCols.push({ name: header, index: colIndex });
const uniqueValues = [...new Set(values)];
categoryMappings[header] = Object.fromEntries(uniqueValues.map((val, i) => [val, i]));
}
});
const dimensions = [];
numericalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => parseFloat(row[col.index])),
range: [
Math.min(...dataArray.map(row => parseFloat(row[col.index]))),
Math.max(...dataArray.map(row => parseFloat(row[col.index])))
]
});
});
categoricalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => categoryMappings[col.name][row[col.index]]),
tickvals: Object.values(categoryMappings[col.name]),
ticktext: Object.keys(categoryMappings[col.name])
});
});
let colorScale = null;
let colorValues = null;
if (resultNames.length > 1) {
let selectBox = '<select id="result-select" style="margin-bottom: 10px;">';
selectBox += '<option value="none">No color</option>';
var k = 0;
resultNames.forEach(resultName => {
var minMax = result_min_max[k];
if(minMax === undefined) {
minMax = "min [automatically chosen]"
}
selectBox += `<option value="${resultName}">${resultName} (${minMax})</option>`;
k = k + 1;
});
selectBox += '</select>';
$("#parallel-plot").before(selectBox);
$("#result-select").change(function() {
const selectedResult = $(this).val();
if (selectedResult === "none") {
colorValues = null;
colorScale = null;
} else {
const resultCol = numericalCols.find(col => col.name.toLowerCase() === selectedResult.toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
let minResult = Math.min(...colorValues);
let maxResult = Math.max(...colorValues);
var _result_min_max_idx = result_names.indexOf(selectedResult);
let invertColor = false;
if (result_min_max.length > _result_min_max_idx) {
invertColor = result_min_max[_result_min_max_idx] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
}
updatePlot();
});
} else {
let invertColor = false;
if (Object.keys(result_min_max).length == 1) {
invertColor = result_min_max[0] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
const resultCol = numericalCols.find(col => col.name.toLowerCase() === resultNames[0].toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
}
function updatePlot() {
const trace = {
type: 'parcoords',
dimensions: dimensions,
line: colorValues ? { color: colorValues, colorscale: colorScale } : {},
unselected: {
line: {
color: get_text_color(),
opacity: 0
}
},
};
dimensions.forEach(dim => {
if (!dim.line) {
dim.line = {};
}
if (!dim.line.color) {
dim.line.color = 'rgba(169,169,169, 0.01)';
}
});
Plotly.newPlot('parallel-plot', [trace], add_default_layout_data({}));
make_text_in_parallel_plot_nicer();
}
updatePlot();
$("#parallel-plot").data("loaded", "true");
make_text_in_parallel_plot_nicer();
}
function plotWorkerUsage() {
if($("#workerUsagePlot").data("loaded") == "true") {
return;
}
var data = tab_worker_usage_csv_json;
if (!Array.isArray(data) || data.length === 0) {
console.error("Invalid or empty data provided.");
return;
}
let timestamps = [];
let desiredWorkers = [];
let realWorkers = [];
for (let i = 0; i < data.length; i++) {
let entry = data[i];
if (!Array.isArray(entry) || entry.length < 3) {
console.warn("Skipping invalid entry:", entry);
continue;
}
let unixTime = parseFloat(entry[0]);
let desired = parseInt(entry[1], 10);
let real = parseInt(entry[2], 10);
if (isNaN(unixTime) || isNaN(desired) || isNaN(real)) {
console.warn("Skipping invalid numerical values:", entry);
continue;
}
timestamps.push(new Date(unixTime * 1000).toISOString());
desiredWorkers.push(desired);
realWorkers.push(real);
}
let trace1 = {
x: timestamps,
y: desiredWorkers,
mode: 'lines+markers',
name: 'Desired Workers',
line: {
color: 'blue'
}
};
let trace2 = {
x: timestamps,
y: realWorkers,
mode: 'lines+markers',
name: 'Real Workers',
line: {
color: 'red'
}
};
let layout = {
title: "Worker Usage Over Time",
xaxis: {
title: get_axis_title_data("Time", "date")
},
yaxis: {
title: get_axis_title_data("Number of Workers")
},
legend: {
x: 0,
y: 1
}
};
Plotly.newPlot('workerUsagePlot', [trace1, trace2], add_default_layout_data(layout));
$("#workerUsagePlot").data("loaded", "true");
}
function plotCPUAndRAMUsage() {
if($("#mainWorkerCPURAM").data("loaded") == "true") {
return;
}
var timestamps = tab_main_worker_cpu_ram_csv_json.map(row => new Date(row[0] * 1000));
var ramUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[1]);
var cpuUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[2]);
var trace1 = {
x: timestamps,
y: cpuUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'CPU Usage (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: ramUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'RAM Usage (MB)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'CPU and RAM Usage Over Time',
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
overlaying: 'y',
side: 'right',
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var data = [trace1, trace2];
Plotly.newPlot('mainWorkerCPURAM', data, add_default_layout_data(layout));
$("#mainWorkerCPURAM").data("loaded", "true");
}
function plotScatter2d() {
if ($("#plotScatter2d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter2d");
var minInput = document.getElementById("minValue");
var maxInput = document.getElementById("maxValue");
if (!minInput || !maxInput) {
minInput = document.createElement("input");
minInput.id = "minValue";
minInput.type = "number";
minInput.placeholder = "Min Value";
minInput.step = "any";
maxInput = document.createElement("input");
maxInput.id = "maxValue";
maxInput.type = "number";
maxInput.placeholder = "Max Value";
maxInput.step = "any";
var inputContainer = document.createElement("div");
inputContainer.style.marginBottom = "10px";
inputContainer.appendChild(minInput);
inputContainer.appendChild(maxInput);
plotDiv.appendChild(inputContainer);
}
var resultSelect = document.getElementById("resultSelect");
if (result_names.length > 1 && !resultSelect) {
resultSelect = document.createElement("select");
resultSelect.id = "resultSelect";
resultSelect.style.marginBottom = "10px";
var sortedResults = [...result_names].sort();
sortedResults.forEach(result => {
var option = document.createElement("option");
option.value = result;
option.textContent = result;
resultSelect.appendChild(option);
});
var selectContainer = document.createElement("div");
selectContainer.style.marginBottom = "10px";
selectContainer.appendChild(resultSelect);
plotDiv.appendChild(selectContainer);
}
minInput.addEventListener("input", updatePlots);
maxInput.addEventListener("input", updatePlots);
if (resultSelect) {
resultSelect.addEventListener("change", updatePlots);
}
updatePlots();
async function updatePlots() {
var minValue = parseFloat(minInput.value);
var maxValue = parseFloat(maxInput.value);
if (isNaN(minValue)) minValue = -Infinity;
if (isNaN(maxValue)) maxValue = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var selectedResult = resultSelect ? resultSelect.value : result_names[0];
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue !== -Infinity) minResult = Math.max(minResult, minValue);
if (maxValue !== Infinity) maxResult = Math.min(maxResult, maxValue);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
!col.startsWith("OO_Info") &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 2) {
console.error("Not enough columns for Scatter-Plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
showlegend: false
};
let subDiv = document.createElement("div");
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
symbol: data.map(d => d.result === null ? 'x' : 'circle'),
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter',
showlegend: false
};
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
$("#plotScatter2d").data("loaded", "true");
}
function plotScatter3d() {
if ($("#plotScatter3d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter3d");
if (!plotDiv) {
console.error("Div element with id 'plotScatter3d' not found");
return;
}
plotDiv.innerHTML = "";
var minInput3d = document.getElementById("minValue3d");
var maxInput3d = document.getElementById("maxValue3d");
if (!minInput3d || !maxInput3d) {
minInput3d = document.createElement("input");
minInput3d.id = "minValue3d";
minInput3d.type = "number";
minInput3d.placeholder = "Min Value";
minInput3d.step = "any";
maxInput3d = document.createElement("input");
maxInput3d.id = "maxValue3d";
maxInput3d.type = "number";
maxInput3d.placeholder = "Max Value";
maxInput3d.step = "any";
var inputContainer3d = document.createElement("div");
inputContainer3d.style.marginBottom = "10px";
inputContainer3d.appendChild(minInput3d);
inputContainer3d.appendChild(maxInput3d);
plotDiv.appendChild(inputContainer3d);
}
var select3d = document.getElementById("select3dScatter");
if (result_names.length > 1 && !select3d) {
if (!select3d) {
select3d = document.createElement("select");
select3d.id = "select3dScatter";
select3d.style.marginBottom = "10px";
select3d.innerHTML = result_names.map(name => `<option value="${name}">${name}</option>`).join("");
select3d.addEventListener("change", updatePlots3d);
plotDiv.appendChild(select3d);
}
}
minInput3d.addEventListener("input", updatePlots3d);
maxInput3d.addEventListener("input", updatePlots3d);
updatePlots3d();
async function updatePlots3d() {
var selectedResult = select3d ? select3d.value : result_names[0];
var minValue3d = parseFloat(minInput3d.value);
var maxValue3d = parseFloat(maxInput3d.value);
if (isNaN(minValue3d)) minValue3d = -Infinity;
if (isNaN(maxValue3d)) maxValue3d = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue3d !== -Infinity) minResult = Math.max(minResult, minValue3d);
if (maxValue3d !== Infinity) maxResult = Math.min(maxResult, maxValue3d);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
!col.startsWith("OO_Info") &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 3) {
console.error("Not enough columns for 3D scatter plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
for (let k = j + 1; k < numericColumns.length; k++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let zCol = numericColumns[k];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let zIndex = tab_results_headers_json.indexOf(zCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
z: parseFloat(row[zIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y) vs ${zCol} (z), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
scene: {
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
zaxis: {
title: get_axis_title_data(zCol)
}
},
showlegend: false
};
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
z: data.map(d => d.z),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter3d',
showlegend: false
};
let subDiv = document.createElement("div");
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
}
$("#plotScatter3d").data("loaded", "true");
}
async function plot_worker_cpu_ram() {
if($("#worker_cpu_ram_pre").data("loaded") == "true") {
return;
}
const logData = $("#worker_cpu_ram_pre").text();
const regex = /^Unix-Timestamp: (\d+), Hostname: ([\w-]+), CPU: ([\d.]+)%, RAM: ([\d.]+) MB \/ ([\d.]+) MB$/;
const hostData = {};
logData.split("\n").forEach(line => {
line = line.trim();
const match = line.match(regex);
if (match) {
const timestamp = new Date(parseInt(match[1]) * 1000);
const hostname = match[2];
const cpu = parseFloat(match[3]);
const ram = parseFloat(match[4]);
if (!hostData[hostname]) {
hostData[hostname] = { timestamps: [], cpuUsage: [], ramUsage: [] };
}
hostData[hostname].timestamps.push(timestamp);
hostData[hostname].cpuUsage.push(cpu);
hostData[hostname].ramUsage.push(ram);
}
});
if (!Object.keys(hostData).length) {
console.log("No valid data found");
return;
}
const container = document.getElementById("cpuRamWorkerChartContainer");
container.innerHTML = "";
var i = 1;
Object.entries(hostData).forEach(([hostname, { timestamps, cpuUsage, ramUsage }], index) => {
const chartId = `workerChart_${index}`;
const chartDiv = document.createElement("div");
chartDiv.id = chartId;
chartDiv.style.marginBottom = "40px";
container.appendChild(chartDiv);
const cpuTrace = {
x: timestamps,
y: cpuUsage,
mode: "lines+markers",
name: "CPU Usage (%)",
yaxis: "y1",
line: {
color: "red"
}
};
const ramTrace = {
x: timestamps,
y: ramUsage,
mode: "lines+markers",
name: "RAM Usage (MB)",
yaxis: "y2",
line: {
color: "blue"
}
};
const layout = {
title: `Worker CPU and RAM Usage - ${hostname}`,
xaxis: {
title: get_axis_title_data("Timestamp", "date")
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
side: "left",
color: "red"
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
side: "right",
overlaying: "y",
color: "blue"
},
showlegend: true
};
Plotly.newPlot(chartId, [cpuTrace, ramTrace], add_default_layout_data(layout));
i++;
});
$("#plot_worker_cpu_ram_button").remove();
$("#worker_cpu_ram_pre").data("loaded", "true");
}
function load_log_file(log_nr, filename) {
var pre_id = `single_run_${log_nr}_pre`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}&filename=${filename}`;
fetch(url)
.then(response => response.json())
.then(data => {
if (data.data) {
$("#" + pre_id).html(data.data);
$("#" + pre_id).data("loaded", true);
} else {
log(`No 'data' key found in response.`);
}
$("#spinner_log_" + log_nr).remove();
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#spinner_log_" + log_nr).remove();
});
}
}
function load_debug_log () {
var pre_id = `here_debuglogs_go`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_debug_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}`;
fetch(url)
.then(response => response.json())
.then(data => {
$("#debug_log_spinner").remove();
if (data.data) {
try {
$("#" + pre_id).html(data.data);
} catch (err) {
$("#" + pre_id).text(`Error loading data: ${err}`);
}
$("#" + pre_id).data("loaded", true);
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
} else {
log(`No 'data' key found in response.`);
}
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#debug_log_spinner").remove();
});
}
}
function plotBoxplot() {
if ($("#plotBoxplot").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
!col.startsWith("OO_Info") &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough numeric columns for Boxplot");
return;
}
var resultIndex = tab_results_headers_json.findIndex(function(header) {
return result_names.includes(header.toLowerCase());
});
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
var plotDiv = document.getElementById("plotBoxplot");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'box',
name: col,
boxmean: 'sd',
marker: {
color: 'rgb(0, 255, 0)'
},
};
});
let layout = {
title: 'Boxplot of Numerical Columns',
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Value")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotBoxplot").data("loaded", "true");
}
function plotHeatmap() {
if ($("#plotHeatmap").data("loaded") === "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col => {
if (special_col_names.includes(col) || result_names.includes(col)) {
return false;
}
if (!col.startsWith("OO_Info")) {
return;
}
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.every(row => {
let value = parseFloat(row[index]);
return !isNaN(value) && isFinite(value);
});
});
if (numericColumns.length < 2) {
console.error("Not enough valid numeric columns for Heatmap");
return;
}
var columnData = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.map(row => parseFloat(row[index]));
});
var dataMatrix = numericColumns.map((_, i) =>
numericColumns.map((_, j) => {
let values = columnData[i].map((val, index) => (val + columnData[j][index]) / 2);
return values.reduce((a, b) => a + b, 0) / values.length;
})
);
var trace = {
z: dataMatrix,
x: numericColumns,
y: numericColumns,
colorscale: 'Viridis',
type: 'heatmap'
};
var layout = {
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
var plotDiv = document.getElementById("plotHeatmap");
plotDiv.innerHTML = "";
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotHeatmap").data("loaded", "true");
}
function plotHistogram() {
if ($("#plotHistogram").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
!col.startsWith("OO_Info") &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Histogram");
return;
}
var plotDiv = document.getElementById("plotHistogram");
plotDiv.innerHTML = "";
const colorPalette = ['#ff9999', '#66b3ff', '#99ff99', '#ffcc99', '#c2c2f0', '#ffb3e6'];
let traces = numericColumns.map((col, index) => {
let data = tab_results_csv_json.map(row => parseFloat(row[tab_results_headers_json.indexOf(col)]));
return {
x: data,
type: 'histogram',
name: col,
opacity: 0.7,
marker: {
color: colorPalette[index % colorPalette.length]
},
autobinx: true
};
});
let layout = {
title: 'Histogram of Numerical Columns',
xaxis: {
title: get_axis_title_data("Value")
},
yaxis: {
title: get_axis_title_data("Frequency")
},
showlegend: true,
barmode: 'overlay'
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotHistogram").data("loaded", "true");
}
function plotViolin() {
if ($("#plotViolin").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
!col.startsWith("OO_Info") &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Violin Plot");
return;
}
var plotDiv = document.getElementById("plotViolin");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'violin',
name: col,
box: {
visible: true
},
line: {
color: 'rgb(0, 255, 0)'
},
marker: {
color: 'rgb(0, 255, 0)'
},
meanline: {
visible: true
},
};
});
let layout = {
title: 'Violin Plot of Numerical Columns',
yaxis: {
title: get_axis_title_data("Value")
},
xaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotViolin").data("loaded", "true");
}
function plotExitCodesPieChart() {
if ($("#plotExitCodesPieChart").data("loaded") == "true") {
return;
}
var exitCodes = tab_job_infos_csv_json.map(row => row[tab_job_infos_headers_json.indexOf("exit_code")]);
var exitCodeCounts = exitCodes.reduce(function(counts, exitCode) {
counts[exitCode] = (counts[exitCode] || 0) + 1;
return counts;
}, {});
var labels = Object.keys(exitCodeCounts);
var values = Object.values(exitCodeCounts);
var plotDiv = document.getElementById("plotExitCodesPieChart");
plotDiv.innerHTML = "";
var trace = {
labels: labels,
values: values,
type: 'pie',
hoverinfo: 'label+percent',
textinfo: 'label+value',
marker: {
colors: ['#ff9999','#66b3ff','#99ff99','#ffcc99','#c2c2f0']
}
};
var layout = {
title: 'Exit Code Distribution',
showlegend: true
};
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotExitCodesPieChart").data("loaded", "true");
}
function plotResultEvolution() {
if ($("#plotResultEvolution").data("loaded") == "true") {
return;
}
result_names.forEach(resultName => {
var relevantColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !col.startsWith("OO_Info") && col.toLowerCase() !== resultName.toLowerCase()
);
var xColumnIndex = tab_results_headers_json.indexOf("trial_index");
var resultIndex = tab_results_headers_json.indexOf(resultName);
let data = tab_results_csv_json.map(row => ({
x: row[xColumnIndex],
y: parseFloat(row[resultIndex])
}));
data.sort((a, b) => a.x - b.x);
let xData = data.map(item => item.x);
let yData = data.map(item => item.y);
let trace = {
x: xData,
y: yData,
mode: 'lines+markers',
name: resultName,
line: {
shape: 'linear'
},
marker: {
size: get_marker_size()
}
};
let layout = {
title: `Evolution of ${resultName} over time`,
xaxis: {
title: get_axis_title_data("Trial-Index")
},
yaxis: {
title: get_axis_title_data(resultName)
},
showlegend: true
};
let subDiv = document.createElement("div");
document.getElementById("plotResultEvolution").appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
});
$("#plotResultEvolution").data("loaded", "true");
}
function plotResultPairs() {
if ($("#plotResultPairs").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotResultPairs");
plotDiv.innerHTML = "";
for (let i = 0; i < result_names.length; i++) {
for (let j = i + 1; j < result_names.length; j++) {
let xName = result_names[i];
let yName = result_names[j];
let xIndex = tab_results_headers_json.indexOf(xName);
let yIndex = tab_results_headers_json.indexOf(yName);
let data = tab_results_csv_json
.filter(row => row[xIndex] !== "" && row[yIndex] !== "")
.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
status: row[tab_results_headers_json.indexOf("trial_status")]
}));
let colors = data.map(d => d.status === "COMPLETED" ? 'green' : (d.status === "FAILED" ? 'red' : 'gray'));
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: colors
},
text: data.map(d => `Status: ${d.status}`),
type: 'scatter',
showlegend: false
};
let layout = {
xaxis: {
title: get_axis_title_data(xName)
},
yaxis: {
title: get_axis_title_data(yName)
},
showlegend: false
};
let subDiv = document.createElement("div");
plotDiv.appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
$("#plotResultPairs").data("loaded", "true");
}
function add_up_down_arrows_for_scrolling () {
const upArrow = document.createElement('div');
const downArrow = document.createElement('div');
const style = document.createElement('style');
style.innerHTML = `
.scroll-arrow {
position: fixed;
right: 10px;
z-index: 100;
cursor: pointer;
font-size: 25px;
display: none;
background-color: green;
color: white;
padding: 5px;
outline: 2px solid white;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.5);
transition: background-color 0.3s, transform 0.3s;
}
.scroll-arrow:hover {
background-color: darkgreen;
transform: scale(1.1);
}
#up-arrow {
top: 10px;
}
#down-arrow {
bottom: 10px;
}
`;
document.head.appendChild(style);
upArrow.id = "up-arrow";
upArrow.classList.add("scroll-arrow");
upArrow.classList.add("invert_in_dark_mode");
upArrow.innerHTML = "↑";
downArrow.id = "down-arrow";
downArrow.classList.add("scroll-arrow");
downArrow.classList.add("invert_in_dark_mode");
downArrow.innerHTML = "↓";
document.body.appendChild(upArrow);
document.body.appendChild(downArrow);
function checkScrollPosition() {
const scrollPosition = window.scrollY;
const pageHeight = document.documentElement.scrollHeight;
const windowHeight = window.innerHeight;
if (scrollPosition > 0) {
upArrow.style.display = "block";
} else {
upArrow.style.display = "none";
}
if (scrollPosition + windowHeight < pageHeight) {
downArrow.style.display = "block";
} else {
downArrow.style.display = "none";
}
}
window.addEventListener("scroll", checkScrollPosition);
upArrow.addEventListener("click", function () {
window.scrollTo({ top: 0, behavior: 'smooth' });
});
downArrow.addEventListener("click", function () {
window.scrollTo({ top: document.documentElement.scrollHeight, behavior: 'smooth' });
});
checkScrollPosition();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
function plotGPUUsage() {
if ($("#tab_gpu_usage").data("loaded") === "true") {
return;
}
Object.keys(gpu_usage).forEach(node => {
const nodeData = gpu_usage[node];
var timestamps = [];
var gpuUtilizations = [];
var temperatures = [];
nodeData.forEach(entry => {
try {
var timestamp = new Date(entry[0]* 1000);
var utilization = parseFloat(entry[1]);
var temperature = parseFloat(entry[2]);
if (!isNaN(timestamp) && !isNaN(utilization) && !isNaN(temperature)) {
timestamps.push(timestamp);
gpuUtilizations.push(utilization);
temperatures.push(temperature);
} else {
console.warn("Invalid data point:", entry);
}
} catch (error) {
console.error("Error processing GPU data entry:", error, entry);
}
});
var trace1 = {
x: timestamps,
y: gpuUtilizations,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Utilization (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: temperatures,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Temperature (°C)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'GPU Usage Over Time - ' + node,
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("GPU Utilization (%)"),
overlaying: 'y',
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("GPU Temperature (°C)"),
overlaying: 'y',
side: 'right',
position: 0.85,
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var divId = 'gpu_usage_plot_' + node;
if (!document.getElementById(divId)) {
var div = document.createElement('div');
div.id = divId;
div.className = 'gpu-usage-plot';
document.getElementById('tab_gpu_usage').appendChild(div);
}
var plotData = [trace1, trace2];
Plotly.newPlot(divId, plotData, add_default_layout_data(layout));
});
$("#tab_gpu_usage").data("loaded", "true");
}
function plotResultsDistributionByGenerationMethod() {
if ("true" === $("#plotResultsDistributionByGenerationMethod").data("loaded")) {
return;
}
var res_col = result_names[0];
var gen_method_col = "generation_node";
var data = {};
tab_results_csv_json.forEach(row => {
var gen_method = row[tab_results_headers_json.indexOf(gen_method_col)];
var result = row[tab_results_headers_json.indexOf(res_col)];
if (!data[gen_method]) {
data[gen_method] = [];
}
data[gen_method].push(result);
});
var traces = Object.keys(data).map(method => {
return {
y: data[method],
type: 'box',
name: method,
boxpoints: 'outliers',
jitter: 0.5,
pointpos: 0
};
});
var layout = {
title: 'Distribution of Results by Generation Method',
yaxis: {
title: get_axis_title_data(res_col)
},
xaxis: {
title: get_axis_title_data("Generation Method")
},
boxmode: 'group'
};
Plotly.newPlot("plotResultsDistributionByGenerationMethod", traces, add_default_layout_data(layout));
$("#plotResultsDistributionByGenerationMethod").data("loaded", "true");
}
function plotJobStatusDistribution() {
if ($("#plotJobStatusDistribution").data("loaded") === "true") {
return;
}
var status_col = "trial_status";
var status_counts = {};
tab_results_csv_json.forEach(row => {
var status = row[tab_results_headers_json.indexOf(status_col)];
if (status) {
status_counts[status] = (status_counts[status] || 0) + 1;
}
});
var statuses = Object.keys(status_counts);
var counts = Object.values(status_counts);
var colors = statuses.map((status, i) =>
status === "FAILED" ? "#FF0000" : `hsl(${30 + ((i * 137) % 330)}, 70%, 50%)`
);
var trace = {
x: statuses,
y: counts,
type: 'bar',
marker: { color: colors }
};
var layout = {
title: 'Distribution of Job Status',
xaxis: { title: 'Trial Status' },
yaxis: { title: 'Nr. of jobs' }
};
Plotly.newPlot("plotJobStatusDistribution", [trace], add_default_layout_data(layout));
$("#plotJobStatusDistribution").data("loaded", "true");
}
function _colorize_table_entries_by_generation_method () {
document.querySelectorAll('[data-column-id="generation_node"]').forEach(el => {
let text = el.textContent.toLowerCase();
let color = text.includes("manual") ? "green" :
text.includes("sobol") ? "orange" :
text.includes("saasbo") ? "pink" :
text.includes("uniform") ? "lightblue" :
text.includes("legacy_gpei") ? "sienna" :
text.includes("bo_mixed") ? "aqua" :
text.includes("randomforest") ? "darkseagreen" :
text.includes("external_generator") ? "purple" :
text.includes("botorch") ? "yellow" : "";
if (color !== "") {
el.style.backgroundColor = color;
}
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_trial_status () {
document.querySelectorAll('[data-column-id="trial_status"]').forEach(el => {
let color = el.textContent.includes("COMPLETED") ? "lightgreen" :
el.textContent.includes("RUNNING") ? "orange" :
el.textContent.includes("FAILED") ? "red" :
el.textContent.includes("ABANDONED") ? "yellow" : "";
if (color) el.style.backgroundColor = color;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_run_time() {
let cells = [...document.querySelectorAll('[data-column-id="run_time"]')];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => !isNaN(v));
if (values.length === 0) return;
let min = Math.min(...values);
let max = Math.max(...values);
let range = max - min || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value)) return;
let ratio = (value - min) / range;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_results() {
result_names.forEach((name, index) => {
let minMax = result_min_max[index];
let selector_query = `[data-column-id="${name}"]`;
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => v > 0 && !isNaN(v));
if (values.length === 0) return;
let logValues = values.map(v => Math.log(v));
let logMin = Math.min(...logValues);
let logMax = Math.max(...logValues);
let logRange = logMax - logMin || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value) || value <= 0) return;
let logValue = Math.log(value);
let ratio = (logValue - logMin) / logRange;
if (minMax === "max") ratio = 1 - ratio;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
});
}
function _colorize_table_entries_by_generation_node_or_hostname() {
["hostname", "generation_node"].forEach(element => {
let selector_query = '[data-column-id="' + element + '"]:not(.gridjs-th)';
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let uniqueValues = [...new Set(cells.map(el => el.textContent.trim()))];
let colorMap = {};
uniqueValues.forEach((value, index) => {
let hue = Math.round((360 / uniqueValues.length) * index);
colorMap[value] = `hsl(${hue}, 70%, 60%)`;
});
cells.forEach(el => {
let value = el.textContent.trim();
if (colorMap[value]) {
el.style.backgroundColor = colorMap[value];
el.classList.add("invert_in_dark_mode");
}
});
});
}
function colorize_table_entries () {
setTimeout(() => {
if (typeof result_names !== "undefined" && Array.isArray(result_names) && result_names.length > 0) {
_colorize_table_entries_by_trial_status();
_colorize_table_entries_by_results();
_colorize_table_entries_by_run_time();
_colorize_table_entries_by_generation_method();
_colorize_table_entries_by_generation_node_or_hostname();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
}, 300);
}
function add_colorize_to_gridjs_table () {
let searchInput = document.querySelector(".gridjs-search-input");
if (searchInput) {
searchInput.addEventListener("input", colorize_table_entries);
}
}
function updatePreWidths() {
var width = window.innerWidth * 0.95;
var pres = document.getElementsByTagName('pre');
for (var i = 0; i < pres.length; i++) {
pres[i].style.width = width + 'px';
}
}
function demo_mode(nr_sec = 3) {
let i = 0;
let tabs = $('menu[role="tablist"] > button');
setInterval(() => {
tabs.attr('aria-selected', 'false').removeClass('active');
let tab = tabs.eq(i % tabs.length);
tab.attr('aria-selected', 'true').addClass('active');
tab.trigger('click');
i++;
}, nr_sec * 1000);
}
function resizePlotlyCharts() {
const plotlyElements = document.querySelectorAll('.js-plotly-plot');
if (plotlyElements.length) {
const windowWidth = window.innerWidth;
const windowHeight = window.innerHeight;
const newWidth = windowWidth * 0.9;
const newHeight = windowHeight * 0.9;
plotlyElements.forEach(function(element, index) {
const layout = {
width: newWidth,
height: newHeight,
plot_bgcolor: 'rgba(0, 0, 0, 0)',
paper_bgcolor: 'rgba(0, 0, 0, 0)',
};
Plotly.relayout(element, layout)
});
}
make_text_in_parallel_plot_nicer();
apply_theme_based_on_system_preferences();
}
function plotTimelineFromGlobals() {
if (
typeof tab_results_headers_json === "undefined" ||
typeof tab_results_csv_json === "undefined" ||
!Array.isArray(tab_results_headers_json) ||
!Array.isArray(tab_results_csv_json)
) {
console.warn("Global variables 'tab_results_headers_json' or 'tab_results_csv_json' missing or invalid.");
return null;
}
const headers = tab_results_headers_json;
const data = tab_results_csv_json;
const col = name => headers.indexOf(name);
const ix_trial_index = col("trial_index");
const ix_start_time = col("start_time");
const ix_end_time = col("end_time");
const ix_status = col("trial_status");
if ([ix_trial_index, ix_start_time, ix_end_time, ix_status].some(ix => ix === -1)) {
console.warn("One or more needed columns missing");
return null;
}
const traces = [];
// Add dummy traces for legend
traces.push({
type: "scatter",
mode: "lines",
x: [null, null],
y: [null, null],
line: { color: "green", width: 4 },
name: "COMPLETED",
showlegend: true,
hoverinfo: "none"
});
traces.push({
type: "scatter",
mode: "lines",
x: [null, null],
y: [null, null],
line: { color: "yellow", width: 4 },
name: "RUNNING",
showlegend: true,
hoverinfo: "none"
});
traces.push({
type: "scatter",
mode: "lines",
x: [null, null],
y: [null, null],
line: { color: "red", width: 4 },
name: "FAILED/OTHER",
showlegend: true,
hoverinfo: "none"
});
for (const row of data) {
const trial_index = row[ix_trial_index];
const start = row[ix_start_time];
const end = row[ix_end_time];
const status = row[ix_status];
if (
trial_index === "" || start === "" || end === "" ||
isNaN(start) || isNaN(end)
) continue;
let color = "red"; // default
if (status === "COMPLETED") color = "green";
else if (status === "RUNNING") color = "yellow";
traces.push({
type: "scatter",
mode: "lines",
x: [new Date(start * 1000), new Date(end * 1000)],
y: [trial_index, trial_index],
line: { color: color, width: 4 },
name: `Trial ${trial_index} (${status})`,
showlegend: false,
hoverinfo: "x+y+name"
});
}
if (traces.length <= 3) { // only dummy traces added
console.warn("No valid data for plotting found.");
return null;
}
const layout = {
title: "Trial Timeline",
xaxis: {
title: "Time",
type: "date"
},
yaxis: {
title: "Trial Index",
autorange: "reversed"
},
margin: { t: 50 }
};
Plotly.newPlot('plot_timeline', traces, add_default_layout_data(layout));
return true;
}
window.addEventListener('load', updatePreWidths);
window.addEventListener('resize', updatePreWidths);
$(document).ready(function() {
colorize_table_entries();
add_up_down_arrows_for_scrolling();
add_colorize_to_gridjs_table();
});
window.addEventListener('resize', function() {
resizePlotlyCharts();
});
"use strict";
function get_row_by_index(idx) {
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
var trial_index_col_idx = tab_results_headers_json.indexOf("trial_index");
if(trial_index_col_idx == -1) {
error(`"trial_index" could not be found in tab_results_headers_json. Cannot continue`);
return null;
}
for (var i = 0; i < tab_results_csv_json.length; i++) {
var row = tab_results_csv_json[i];
var trial_index = row[trial_index_col_idx];
if (trial_index == idx) {
return row;
}
}
return null;
}
function load_pareto_graph_from_idxs () {
if (!Object.keys(window).includes("pareto_idxs")) {
error("pareto_idxs is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
if(pareto_idxs === null) {
var err_msg = "pareto_idxs is null. Cannot plot or create tables from empty data. This can be caused by a defective <tt>pareto_idxs.json</tt> file. Please try reloading, or re-calculating the pareto-front and re-submitting if this problem persists.";
$("#pareto_from_idxs_table").html(`<div class="caveat alarm">${err_msg}</div>`);
return;
}
var table = get_pareto_table_data_from_idx();
var html_tables = createParetoTablesFromData(table);
$("#pareto_from_idxs_table").html(html_tables);
renderParetoFrontPlots(table);
apply_theme_based_on_system_preferences();
}
function renderParetoFrontPlots(data) {
try {
let container = document.getElementById("pareto_front_idxs_plot_container");
if (!container) {
console.error("DIV with id 'pareto_front_idxs_plot_container' not found.");
return;
}
container.innerHTML = "";
if(data === undefined || data === null) {
var err_msg = "There was an error getting the data for Pareto-Fronts. See the developer's console to see further details.";
$("#pareto_from_idxs_table").html(`<div class="caveat alarm">${err_msg}</div>`);
return;
}
Object.keys(data).forEach((key, idx) => {
if (!key.startsWith("Pareto front for ")) return;
let label = key.replace("Pareto front for ", "");
let [xKey, yKey] = label.split("/");
if (!xKey || !yKey) {
console.warn("Could not extract two objectives from key:", key);
return;
}
let entries = data[key];
let x = [];
let y = [];
let hoverTexts = [];
entries.forEach((entry) => {
let results = entry.results || {};
let values = entry.values || {};
let xVal = (results[xKey] || [])[0];
let yVal = (results[yKey] || [])[0];
if (xVal === undefined || yVal === undefined) {
console.warn("Missing values for", xKey, yKey, "in", entry);
return;
}
x.push(xVal);
y.push(yVal);
let hoverInfo = [];
if ("trial_index" in values) {
hoverInfo.push(`<b>Trial Index:</b> ${values.trial_index[0]}`);
}
Object.keys(values)
.filter(k => k !== "trial_index")
.sort()
.forEach(k => {
hoverInfo.push(`<b>${k}:</b> ${values[k][0]}`);
});
Object.keys(results)
.sort()
.forEach(k => {
hoverInfo.push(`<b>${k}:</b> ${results[k][0]}`);
});
hoverTexts.push(hoverInfo.join("<br>"));
});
let wrapper = document.createElement("div");
wrapper.style.marginBottom = "30px";
let titleEl = document.createElement("h3");
titleEl.textContent = `Pareto Front: ${xKey} (${getMinMaxByResultName(xKey)}) vs ${yKey} (${getMinMaxByResultName(yKey)})`;
wrapper.appendChild(titleEl);
let divId = `pareto_plot_${idx}`;
let plotDiv = document.createElement("div");
plotDiv.id = divId;
plotDiv.style.width = "100%";
plotDiv.style.height = "400px";
wrapper.appendChild(plotDiv);
container.appendChild(wrapper);
let trace = {
x: x,
y: y,
text: hoverTexts,
hoverinfo: "text",
mode: "markers",
type: "scatter",
marker: {
size: 8,
color: 'rgb(31, 119, 180)',
line: {
width: 1,
color: 'black'
}
},
name: label
};
let layout = {
xaxis: { title: { text: xKey } },
yaxis: { title: { text: yKey } },
margin: { t: 10, l: 60, r: 20, b: 50 },
hovermode: "closest",
showlegend: false
};
Plotly.newPlot(divId, [trace], add_default_layout_data(layout, 1));
});
} catch (e) {
console.error("Error while rendering Pareto front plots:", e);
}
}
function createParetoTablesFromData(data) {
try {
var container = document.createElement("div");
var parsedData;
try {
parsedData = typeof data === "string" ? JSON.parse(data) : data;
} catch (e) {
console.error("JSON parsing failed:", e);
return container;
}
for (var sectionTitle in parsedData) {
if (!parsedData.hasOwnProperty(sectionTitle)) {
continue;
}
var sectionData = parsedData[sectionTitle];
var heading = document.createElement("h2");
heading.textContent = sectionTitle;
container.appendChild(heading);
var table = document.createElement("table");
table.style.borderCollapse = "collapse";
table.style.marginBottom = "2em";
table.style.width = "100%";
var thead = document.createElement("thead");
var headerRow = document.createElement("tr");
var allValueKeys = new Set();
var allResultKeys = new Set();
sectionData.forEach(entry => {
var values = entry.values || {};
var results = entry.results || {};
Object.keys(values).forEach(key => {
allValueKeys.add(key);
});
Object.keys(results).forEach(key => {
allResultKeys.add(key);
});
});
var sortedValueKeys = Array.from(allValueKeys).sort();
var sortedResultKeys = Array.from(allResultKeys).sort();
if (sortedValueKeys.includes("trial_index")) {
sortedValueKeys = sortedValueKeys.filter(k => k !== "trial_index");
sortedValueKeys.unshift("trial_index");
}
var allColumns = [...sortedValueKeys, ...sortedResultKeys];
allColumns.forEach(col => {
var th = document.createElement("th");
th.textContent = col;
th.style.border = "1px solid black";
th.style.padding = "4px";
headerRow.appendChild(th);
});
thead.appendChild(headerRow);
table.appendChild(thead);
var tbody = document.createElement("tbody");
sectionData.forEach(entry => {
var tr = document.createElement("tr");
allColumns.forEach(col => {
var td = document.createElement("td");
td.style.border = "1px solid black";
td.style.padding = "4px";
var value = null;
if (col in entry.values) {
value = entry.values[col];
} else if (col in entry.results) {
value = entry.results[col];
}
if (Array.isArray(value)) {
td.textContent = value.join(", ");
} else {
td.textContent = value !== null && value !== undefined ? value : "";
}
tr.appendChild(td);
});
tbody.appendChild(tr);
});
table.appendChild(tbody);
container.appendChild(table);
}
return container;
} catch (err) {
console.error("Unexpected error:", err);
var errorDiv = document.createElement("div");
errorDiv.textContent = "Error generating tables.";
return errorDiv;
}
}
function get_pareto_table_data_from_idx () {
if (!Object.keys(window).includes("pareto_idxs")) {
error("pareto_idxs is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_csv_json")) {
error("tab_results_csv_json is not defined");
return;
}
if (!Object.keys(window).includes("tab_results_headers_json")) {
error("tab_results_headers_json is not defined");
return;
}
var x_keys = Object.keys(pareto_idxs);
var tables = {};
for (var i = 0; i < x_keys.length; i++) {
var x_key = x_keys[i];
var y_keys = Object.keys(pareto_idxs[x_key]);
for (var j = 0; j < y_keys.length; j++) {
var y_key = y_keys[j];
var indices = pareto_idxs[x_key][y_key];
for (var k = 0; k < indices.length; k++) {
var idx = indices[k];
var row = get_row_by_index(idx);
if(row === null) {
error(`Error getting the row for index ${idx}`);
return;
}
var row_dict = {
"results": {},
"values": {},
};
for (var l = 0; l < tab_results_headers_json.length; l++) {
var header = tab_results_headers_json[l];
if (!special_col_names.includes(header) || header == "trial_index") {
var val = row[l];
if (result_names.includes(header)) {
if (!Object.keys(row_dict["results"]).includes(header)) {
row_dict["results"][header] = [];
}
row_dict["results"][header].push(val);
} else {
if (!Object.keys(row_dict["values"]).includes(header)) {
row_dict["values"][header] = [];
}
row_dict["values"][header].push(val);
}
}
}
var table_key = `Pareto front for ${x_key}/${y_key}`;
if(!Object.keys(tables).includes(table_key)) {
tables[table_key] = [];
}
tables[table_key].push(row_dict);
}
}
}
return tables;
}
function getMinMaxByResultName(resultName) {
try {
if (typeof resultName !== "string") {
error("Parameter resultName must be a string");
return;
}
if (!Array.isArray(result_names)) {
error("Global variable result_names is not an array or undefined");
return;
}
if (!Array.isArray(result_min_max)) {
error("Global variable result_min_max is not an array or undefined");
return;
}
if (result_names.length !== result_min_max.length) {
error("Global arrays result_names and result_min_max must have the same length");
return;
}
var index = result_names.indexOf(resultName);
if (index === -1) {
error("Result name '" + resultName + "' not found in result_names");
return;
}
var minMaxValue = result_min_max[index];
if (minMaxValue !== "min" && minMaxValue !== "max") {
error("Value for result name '" + resultName + "' is invalid: expected 'min' or 'max'");
return;
}
return minMaxValue;
} catch (e) {
error("Unexpected error: " + e.message);
}
}
$(document).ready(function() {
colorize_table_entries();;
plotWorkerUsage();;
plotCPUAndRAMUsage();;
createParallelPlot(tab_results_csv_json, tab_results_headers_json, result_names, special_col_names);;
plotScatter2d();;
plotScatter3d();
plotJobStatusDistribution();;
plotBoxplot();;
plotViolin();;
plotHistogram();;
plotHeatmap();;
plotResultPairs();
colorize_table_entries();
});
</script>
<h1> Overview</h1>
<h2>Experiment overview: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Setting</th><th>Value </th></tr></thead><tbody><tr><td> Max. nr. evaluations</td><td>50178 </td></tr><tr><td> Max. nr. evaluations (from arguments)</td><td>50000 </td></tr><tr><td> Number random steps</td><td>20 </td></tr><tr><td> Nr. of workers (parameter)</td><td>20 </td></tr><tr><td> Main process memory (GB)</td><td>8 </td></tr><tr><td> Worker memory (GB)</td><td>32 </td></tr><tr><td> Nr. imported jobs</td><td>178 </td></tr></tbody></table><h2>Experiment parameters: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Name</th><th>Type</th><th>Lower bound</th><th>Upper bound</th><th>Values</th><th>Type</th><th>Log Scale? </th></tr></thead><tbody><tr><td> recent_samples_size</td><td>int</td><td>1</td><td>5000</td><td></td><td>int</td><td>No </td></tr><tr><td> n_samples</td><td>int</td><td>1</td><td>5000</td><td></td><td>int</td><td>No </td></tr><tr><td> confidence</td><td>choice</td><td></td><td></td><td>0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.001</td><td></td><td></td></tr><tr><td> feature_proportion</td><td>float</td><td>0.001</td><td>0.999</td><td></td><td>float</td><td>No </td></tr><tr><td> n_clusters</td><td>int</td><td>1</td><td>50</td><td></td><td>int</td><td>No </td></tr></tbody></table><h2>Number of evaluations</h2>
<table>
<tbody>
<tr>
<th>Failed</th>
<th>Succeeded</th>
<th>Running</th>
<th>Total</th>
</tr>
<tr>
<td>3</td>
<td>719</td>
<td>1</td>
<td>723</td>
</tr>
</tbody>
</table>
<h2>Result names and types</h2>
<table>
<tr><th>name</th><th>min/max</th></tr>
<tr>
<td>ACCURACY</td>
<td>max</td>
</tr>
<tr>
<td>RUNTIME</td>
<td>min</td>
</tr>
</table>
<br>
<h2>Git-Version</h2>
<tt>Commit: 2223ae6553abdd3e288f4b391080b763a7a48477
</tt>
<h1> Results</h1>
<div id='tab_results_csv_table'></div>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<pre id='tab_results_csv_table_pre'>trial_index,arm_name,trial_status,generation_method,generation_node,ACCURACY,RUNTIME,recent_samples_size,n_samples,feature_proportion,n_clusters,confidence
0,0_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,56,2133,0.907259360432624784031929721095,32,0.025
1,1_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,4103,4414,0.124460176372900604979676586481,25,0.005
2,2_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,3090,1193,0.319580248478800066358473941364,12,0.01
3,3_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,1543,3473,0.649674842679873076889407457202,45,0.001
4,4_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,1954,596,0.168745982611551881280576026256,2,0.025
5,5_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,3533,2866,0.861998965267091965536394582159,43,0.05
6,6_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,4863,1529,0.573226927066221803030998671602,30,0.01
7,7_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,785,3800,0.395053554717451349542756133815,15,0.005
8,8_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,999,720,0.696638312369585066541333162604,18,0.01
9,9_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,4453,3283,0.272616767635568968408676937543,27,0.001
10,10_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,3434,2284,0.046795531719923018354467814106,40,0.1
11,11_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,2482,4848,0.984924014380201717777651992947,5,0.05
12,12_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,1680,1712,0.441530807187780760525441792197,48,0.05
13,13_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,2601,4285,0.526749663442373283750441714801,9,0.1
14,14_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,4.000000000000000000000000000000,3927,150,0.783847865452989900347802176839,22,0.25
15,15_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,505,2723,0.246897071272134782660145901900,35,0.001
16,16_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,1.000000000000000000000000000000,391,268,0.840995983406901403967026453756,37,0.001
17,17_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,3812,2530,0.128257163321599365612968313144,20,0.05
18,18_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,2794,1827,0.432626297578215579520133360347,8,0.25
19,19_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,1872,4088,0.599095122313126893232038128190,50,0.01
20,20_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,2288,2480,0.079098250722512600252578351956,4,0.1
21,21_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,3242,4731,0.889180286630988137019926398352,41,0.005
22,22_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,4567,914,0.678466925537213660923896441091,28,0.025
23,23_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,1115,3166,0.352279884979128821154148454298,16,0.25
24,24_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,665,1336,0.552619014937430597100842533109,13,0.05
25,25_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,4744,3919,0.479102416107431039460351485104,31,0.005
26,26_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,3730,399,0.206409051317721609075661604038,44,0.001
27,27_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,2153,2982,0.762844106564298241046628845652,1,0.1
28,28_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,1345,1076,0.305315389165654760272872181304,46,0.1
29,29_0,COMPLETED,Sobol,SOBOL,0.910000000000000031086244689504,0.000000000000000000000000000000,2892,3669,0.725431432504206941125346475019,11,0.025
30,30_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3031,2310,0.410648088323371851515730668325,50,0.025
31,31_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,332,519,0.001000000000000000020816681712,50,0.05
32,32_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,357,533,0.001000000000000000020816681712,50,0.01
33,33_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1735,4629,0.504367503070486167260355614417,1,0.05
34,34_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3712,524,0.001000000000000000020816681712,50,0.005
35,35_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,387,4906,0.405216946884738582479457136287,1,0.01
36,36_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,3120,530,0.001000000000000000020816681712,50,0.001
37,37_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1234,4647,0.458761514967712724644144373087,1,0.001
38,38_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4970,4401,0.426149395773129324727079847435,1,0.025
39,39_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3671,515,0.001000000000000000020816681712,50,0.05
40,40_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,434,4959,0.416822253360663474985869925149,50,0.001
41,41_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,691,2346,0.409608387628946857272893566915,49,0.1
42,42_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4809,527,0.001000000000000000020816681712,50,0.025
43,43_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3831,504,0.001000000000000000020816681712,50,0.01
44,44_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,134,4942,0.402919999505675030526674618159,1,0.1
45,45_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,693,3825,0.156651646235273139806665199103,1,0.001
46,46_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3527,4988,0.405896803403646311281249836611,1,0.001
47,47_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,670,2398,0.428495562660972106883150445356,50,0.005
48,48_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4919,2368,0.409235479302551441449509184167,50,0.01
49,49_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3952,2345,0.409083442075431957807296612373,1,0.005
50,50_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3636,531,0.001000000000000000020816681712,50,0.1
51,51_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,225,2374,0.418489747002363243755240773680,50,0.025
52,52_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2162,502,0.001000000000000000020816681712,50,0.005
53,53_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4728,2402,0.427437286076262634715305921418,50,0.005
54,54_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3984,2371,0.417154050541576948418764914095,50,0.05
55,55_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1930,5000,0.474042019622373134168924480036,50,0.05
56,56_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1982,3994,0.376140485444798333691807101786,1,0.025
57,57_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,86,533,0.001000000000000000020816681712,50,0.005
58,58_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4508,2388,0.411510504703580082264124939684,50,0.001
59,59_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2347,5000,0.336117220805509708814184932635,1,0.025
60,60_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,620,2411,0.445456744443849861347928253963,5,0.25
61,61_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4997,917,0.998999999999999999111821580300,1,0.025
62,62_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,5000,685,0.826152900160659231509896471835,1,0.1
63,63_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2855,2454,0.327783455075729757144387122025,1,0.25
64,64_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,5000,695,0.998999999999999999111821580300,1,0.05
65,65_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,643,2365,0.524432330414942748930684501829,31,0.25
66,66_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1810,2397,0.830442780958586812545263455831,50,0.25
67,67_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4353,2435,0.001000000000000000020816681712,1,0.25
68,68_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1777,3735,0.001000000000000000020816681712,50,0.05
69,69_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,5000,845,0.998999999999999999111821580300,1,0.005
70,70_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,5000,779,0.998999999999999999111821580300,1,0.1
71,71_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1690,2428,0.001000000000000000020816681712,1,0.25
72,72_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3959,4617,0.727606753843260678493720661208,1,0.01
73,73_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2541,1210,0.998999999999999999111821580300,1,0.005
74,74_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4940,5000,0.001000000000000000020816681712,50,0.01
75,75_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4111,2475,0.001000000000000000020816681712,47,0.25
76,76_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4978,885,0.998999999999999999111821580300,1,0.1
77,77_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,363,2415,0.001000000000000000020816681712,1,0.25
78,78_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3832,3043,0.998999999999999999111821580300,50,0.01
79,79_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4858,3133,0.001000000000000000020816681712,1,0.05
80,80_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2515,4483,0.998999999999999999111821580300,50,0.1
81,81_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,217,2400,0.001000000000000000020816681712,1,0.01
82,82_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1155,2400,0.773222890199214307749286945182,1,0.05
83,83_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2099,1346,0.001000000000000000020816681712,1,0.005
84,84_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1238,1446,0.998999999999999999111821580300,1,0.005
85,85_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4556,2451,0.975400670712937345463444671623,1,0.05
86,86_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2465,2739,0.998999999999999999111821580300,1,0.01
87,87_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2342,1340,0.998999999999999999111821580300,1,0.1
88,88_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,85,3830,0.998999999999999999111821580300,50,0.005
89,89_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3675,3138,0.001000000000000000020816681712,50,0.1
90,90_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4529,2281,0.998999999999999999111821580300,50,0.25
91,91_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3840,2199,0.001000000000000000020816681712,1,0.01
92,92_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,5000,838,0.001000000000000000020816681712,50,0.05
93,93_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,673,2843,0.993776073383993985288498151931,1,0.01
94,94_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4726,4714,0.998999999999999999111821580300,50,0.025
95,95_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1613,4386,0.998999999999999999111821580300,1,0.005
96,96_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,862,2227,0.998999999999999999111821580300,1,0.01
97,97_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4143,3083,0.998999999999999999111821580300,50,0.001
98,98_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1104,3577,0.001000000000000000020816681712,1,0.25
99,99_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,424,4409,0.001000000000000000020816681712,50,0.01
100,100_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,94,3064,0.498549903806251304416718994617,50,0.01
101,101_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4650,784,0.001000000000000000020816681712,1,0.1
102,102_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4150,2786,0.998999999999999999111821580300,50,0.025
103,103_0,FAILED,BoTorch,BOTORCH_MODULAR,,,5000,1,0.029528221133456031277653153211,1,0.05
104,104_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1555,4874,0.998999999999999999111821580300,50,0.1
105,105_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,626,4875,0.001000000000000000020816681712,1,0.1
106,106_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,5000,634,0.001000000000000000020816681712,1,0.025
107,107_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4873,2500,0.001000000000000000020816681712,1,0.001
108,108_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,963,4307,0.001000000000000000020816681712,50,0.05
109,109_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,530,4582,0.998999999999999999111821580300,50,0.025
110,110_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3594,3986,0.998999999999999999111821580300,1,0.25
111,111_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4956,3832,0.998999999999999999111821580300,12,0.25
112,112_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1591,3232,0.001000000000000000020816681712,1,0.01
113,113_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4637,2198,0.998999999999999999111821580300,11,0.25
114,114_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3428,1851,0.001000000000000000020816681712,50,0.005
115,115_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,342,3928,0.623725597864921765811629938980,50,0.25
116,116_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3516,3765,0.998999999999999999111821580300,1,0.05
117,117_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,613,2241,0.998999999999999999111821580300,1,0.25
118,118_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1035,4245,0.998999999999999999111821580300,50,0.25
119,119_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2097,3050,0.001000000000000000020816681712,50,0.025
120,120_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,183,2845,0.998999999999999999111821580300,50,0.1
121,121_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,895,4568,0.001000000000000000020816681712,4,0.005
122,122_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1438,3452,0.001000000000000000020816681712,1,0.025
123,123_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,907,3703,0.998999999999999999111821580300,50,0.025
124,124_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,568,1036,0.998999999999999999111821580300,1,0.005
125,125_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,97,1026,0.998999999999999999111821580300,1,0.05
126,126_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3594,3834,0.001000000000000000020816681712,50,0.01
127,127_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,784,3700,0.001000000000000000020816681712,50,0.1
128,128_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4439,1061,0.001000000000000000020816681712,1,0.005
129,129_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,435,3797,0.998999999999999999111821580300,50,0.01
130,130_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1968,3872,0.001000000000000000020816681712,50,0.025
131,131_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4936,1045,0.001000000000000000020816681712,1,0.025
132,132_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1260,3769,0.001000000000000000020816681712,50,0.005
133,133_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4648,1111,0.001000000000000000020816681712,1,0.05
134,134_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4011,3352,0.001000000000000000020816681712,46,0.025
135,135_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1710,3381,0.998999999999999999111821580300,50,0.05
136,136_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,528,4796,0.001023555401851655244707672843,50,0.005
137,137_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4669,3360,0.001000000000000000020816681712,48,0.1
138,138_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4954,2816,0.998999999999999999111821580300,50,0.1
139,139_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1934,3879,0.001000000000000000020816681712,1,0.01
140,140_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3450,2242,0.001000000000000000020816681712,1,0.025
141,141_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2205,5000,0.001000000000000000020816681712,1,0.25
142,142_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,741,1026,0.998999999999999999111821580300,1,0.1
143,143_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3095,3884,0.998999999999999999111821580300,1,0.01
144,144_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4859,4608,0.998999999999999999111821580300,1,0.05
145,145_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2792,1060,0.001000000000000000020816681712,1,0.025
146,146_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4775,3796,0.998999999999999999111821580300,50,0.1
147,147_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,189,3831,0.001000000000000000020816681712,50,0.025
148,148_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,53,4114,0.998999999999999999111821580300,1,0.025
149,149_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,713,1347,0.998999999999999999111821580300,50,0.1
150,150_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,4921,510,0.998999999999999999111821580300,13,0.001
151,151_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1216,733,0.998999999999999999111821580300,1,0.01
152,152_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1932,797,0.001000000000000000020816681712,43,0.01
153,153_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2875,4542,0.001000000000000000020816681712,1,0.001
154,154_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,3.000000000000000000000000000000,1933,144,0.001000000000000000888178419700,38,0.025
155,155_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1953,748,0.001000000000000000020816681712,35,0.01
156,156_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4700,1251,0.998999999999999999111821580300,1,0.001
157,157_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,4.000000000000000000000000000000,4995,178,0.998999999999999999111821580300,50,0.025
158,158_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,2.000000000000000000000000000000,4922,196,0.001000000000000000020816681712,1,0.001
159,159_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1500,1727,0.001000000000000000020816681712,50,0.25
160,160_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,62.000000000000000000000000000000,4896,121,0.998999999999999999111821580300,50,0.001
161,161_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,3427,199,0.998999999999999999111821580300,50,0.1
162,162_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,287,1704,0.998999999999999999111821580300,50,0.25
163,163_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1701,1378,0.998999999999999999111821580300,50,0.005
164,164_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4490,4433,0.998999999999999999111821580300,10,0.25
165,165_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,300,3098,0.998999999999999999111821580300,50,0.001
166,166_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,937,815,0.998999999999999999111821580300,1,0.25
167,167_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,4644,471,0.001000000000000000020816681712,19,0.001
168,168_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,427,4552,0.001000000000000000020816681712,32,0.25
169,169_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,2124,323,0.998999999999999999111821580300,50,0.01
170,170_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,3972,323,0.998999999999999999111821580300,50,0.05
171,171_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,748,697,0.001000000000000000020816681712,33,0.25
172,172_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1549,1198,0.001000000000000000020816681712,1,0.01
173,173_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,2431,340,0.001000000000000000020816681712,26,0.01
174,174_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,349,4561,0.001000000000000000020816681712,50,0.25
175,175_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1082,393,0.001000000000000000020816681712,1,0.01
176,176_0,FAILED,BoTorch,BOTORCH_MODULAR,,,1649,53,0.998999999999999999111821580300,1,0.01
177,177_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4428,2477,0.001000000000000000020816681712,50,0.001
178,178_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4429,4844,0.998999999999999999111821580300,28,0.001
179,179_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2054,4989,0.998999999999999999111821580300,50,0.001
180,180_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4100,661,0.001000000000000000020816681712,44,0.001
181,181_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1730,651,0.998999999999999999111821580300,44,0.001
182,182_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,111,451,0.954255471125037058044426885317,37,0.005
183,183_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4793,1780,0.001000000000000000020816681712,49,0.001
184,184_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3626,3097,0.001000000000000000020816681712,20,0.25
185,185_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,1072,434,0.001000000000000000020816681712,36,0.001
186,186_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2339,4364,0.001000000000000000020816681712,29,0.1
187,187_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,118,312,0.001000000000000000020816681712,23,0.001
188,188_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3862,1700,0.998999999999999999111821580300,1,0.025
189,189_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3101,1987,0.001000000000000000020816681712,2,0.001
190,190_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3104,1206,0.001000000000000000020816681712,7,0.05
191,191_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3057,3462,0.001000000000000000020816681712,1,0.1
192,192_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,917,2160,0.618993178852436432002548372111,42,0.001
193,193_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4603,553,0.998999999999999999111821580300,46,0.25
194,194_0,FAILED,BoTorch,BOTORCH_MODULAR,,,3376,1,0.001000000000000000020816681712,10,0.005
195,195_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2008,1141,0.025647193782838063891293955976,50,0.001
196,196_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3428,4455,0.910378696508596374492583436222,28,0.001
197,197_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,791,1568,0.998999999999999999111821580300,5,0.25
198,198_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2136,3097,0.077964846129927753426436254358,14,0.001
199,199_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3398,3174,0.001000000000000000020816681712,33,0.001
200,200_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,425,2430,0.157725582542756204151856991302,35,0.025
201,201_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2266,2819,0.576329302001366672314475181338,22,0.001
202,202_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4036,4203,0.950132257887275288865680522576,50,0.001
203,203_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1504,1983,0.001000000000000000020816681712,30,0.025
204,204_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1194,2728,0.998999999999999999111821580300,43,0.001
205,205_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3372,3941,0.001000000000000000020816681712,45,0.005
206,206_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,161,2908,0.001000000000000000020816681712,18,0.025
207,207_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,659,4650,0.001000000000000000020816681712,41,0.001
208,208_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2436,2812,0.001000000000000000020816681712,29,0.25
209,209_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3551,3658,0.998999999999999999111821580300,31,0.01
210,210_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1917,4626,0.001000000000000000020816681712,22,0.005
211,211_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,4275,246,0.001000000000000000020816681712,39,0.01
212,212_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4108,730,0.001000000000000000020816681712,50,0.001
213,213_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,997,2849,0.998999999999999999111821580300,24,0.1
214,214_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,354,4237,0.998999999999999999111821580300,39,0.005
215,215_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3712,4218,0.001000000000000000020816681712,39,0.01
216,216_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3095,5000,0.001000000000000000020816681712,39,0.25
217,217_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3915,350,0.963488666825792039460907290049,43,0.001
218,218_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,868,3474,0.998999999999999999111821580300,7,0.001
219,219_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.001000000000000000020816681712,2,0.001
220,220_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2138,5000,0.001000000000000000020816681712,1,0.001
221,221_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,251,4911,0.001000000000000000020816681712,1,0.05
222,222_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,717,619,0.001000000000000000020816681712,1,0.1
223,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.25
224,224_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3331,4804,0.001000000000000000020816681712,1,0.025
225,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.005
226,226_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.025
227,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.01
228,228_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2897,5000,0.001000000000000000020816681712,1,0.1
229,229_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.001
230,230_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4904,4599,0.001000000000000000020816681712,5,0.025
231,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.05
232,232_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,3.000000000000000000000000000000,483,130,0.001000000000000000020816681712,1,0.1
233,233_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.1
234,229_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.001
235,235_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,28,446,0.001000000000000000020816681712,1,0.025
236,236_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2601,649,0.998999999999999999111821580300,26,0.025
237,237_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3973,2641,0.001000000000000000020816681712,1,0.005
238,233_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.1
239,229_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.001
240,240_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,2.000000000000000000000000000000,943,228,0.998999999999999999111821580300,1,0.05
241,241_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,2.000000000000000000000000000000,3022,238,0.998999999999999999111821580300,1,0.005
242,242_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,2531,545,0.001000000000000000020816681712,50,0.05
243,243_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2863,2263,0.001000000000000000020816681712,1,0.001
244,244_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,667,5000,0.001000000000000000020816681712,28,0.01
245,245_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3084,1005,0.001000000000000000020816681712,50,0.25
246,246_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1753,426,0.001000000000000000020816681712,16,0.05
247,247_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,862,625,0.001000000000000000020816681712,50,0.001
248,248_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1466,1233,0.001000000000000000020816681712,35,0.05
249,249_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3380,2117,0.998999999999999999111821580300,19,0.001
250,250_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4053,1468,0.001000000000000000020816681712,50,0.01
251,251_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,54,5000,0.001000000000000000020816681712,32,0.001
252,252_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,71,1838,0.001000000000000000020816681712,5,0.01
253,253_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1801,3550,0.998999999999999999111821580300,26,0.05
254,254_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4656,3439,0.998999999999999999111821580300,27,0.01
255,255_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,4283,319,0.998999999999999999111821580300,34,0.001
256,256_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1089,3230,0.001000000000000000020816681712,16,0.005
257,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.05
258,226_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.025
259,259_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.001000000000000000020816681712,37,0.1
260,260_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.001000000000000000020816681712,18,0.01
261,261_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4932,3735,0.001000000000000000020816681712,19,0.01
262,262_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3460,2583,0.001000000000000000020816681712,50,0.1
263,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.25
264,264_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3519,5000,0.001000000000000000020816681712,50,0.025
265,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.05
266,266_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3218,5000,0.001000000000000000020816681712,1,0.005
267,267_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,135,628,0.001000000000000000020816681712,17,0.025
268,268_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.001000000000000000020816681712,19,0.005
269,269_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4877,4792,0.001000000000000000020816681712,20,0.025
270,270_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,75,5000,0.001000000000000000020816681712,18,0.001
271,226_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.025
272,272_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4789,1481,0.001000000000000000020816681712,14,0.01
273,273_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,636,4475,0.001000000000000000020816681712,13,0.025
274,274_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,812,4867,0.001000000000000000020816681712,18,0.025
275,275_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,3033,318,0.001000000000000000020816681712,11,0.025
276,276_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,2.000000000000000000000000000000,806,113,0.001000000000000000020816681712,15,0.025
277,277_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1604,5000,0.001000000000000000020816681712,1,0.05
278,278_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1712,4645,0.001000000000000000020816681712,18,0.025
279,279_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,258,4803,0.001000000000000000020816681712,15,0.025
280,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.005
281,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.01
282,282_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,319,133,0.001000000000000000020816681712,10,0.025
283,283_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1506,4858,0.001000000000000000020816681712,3,0.025
284,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.25
285,285_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3058,2059,0.227644254177949895145971481725,42,0.005
286,286_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4695,4504,0.001000000000000000020816681712,8,0.1
287,287_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1807,1813,0.001000000000000000020816681712,16,0.025
288,288_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3437,4811,0.001000000000000000020816681712,15,0.025
289,289_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,309,4998,0.001000000000000000020816681712,20,0.025
290,233_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.1
291,291_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4076,5000,0.001000000000000000020816681712,1,0.1
292,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.25
293,293_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1375,663,0.365925380004171352243957926476,1,0.1
294,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.01
295,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.005
296,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.05
297,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.25
298,298_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4384,3015,0.001000000000000000020816681712,7,0.025
299,299_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4518,3519,0.001000000000000000020816681712,1,0.25
300,300_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3957,891,0.001000000000000000020816681712,14,0.025
301,301_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,185,524,0.001000000000000000020816681712,16,0.025
302,302_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4949,4821,0.001000000000000000020816681712,15,0.025
303,303_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4976,3025,0.001000000000000000020816681712,20,0.025
304,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.25
305,305_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,151,2349,0.001000000000000000020816681712,10,0.025
306,229_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.001
307,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.05
308,308_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,12.000000000000000000000000000000,4128,53,0.001000000000000000020816681712,19,0.025
309,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.005
310,310_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,5000,294,0.001000000000000000020816681712,1,0.001
311,226_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.025
312,312_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3755,5000,0.001000000000000000020816681712,1,0.01
313,313_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,2.000000000000000000000000000000,1286,224,0.001000000000000000020816681712,17,0.01
314,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.05
315,315_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3024,5000,0.001000000000000000020816681712,1,0.05
316,316_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3270,584,0.001000000000000000020816681712,16,0.1
317,317_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,84,4921,0.998999999999999999111821580300,1,0.25
318,318_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3523,4987,0.001000000000000000020816681712,17,0.001
319,319_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,57,1017,0.001000000000000000020816681712,19,0.025
320,226_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.025
321,321_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1524,5000,0.001000000000000000020816681712,1,0.25
322,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.005
323,323_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,21,2022,0.001000000000000000020816681712,17,0.025
324,324_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4973,1891,0.001000000000000000020816681712,18,0.025
325,325_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4323,4652,0.001000000000000000020816681712,18,0.05
326,326_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4003,5000,0.001000000000000000020816681712,1,0.25
327,327_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3924,5000,0.001000000000000000020816681712,1,0.05
328,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.01
329,329_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3596,417,0.001000000000000000020816681712,8,0.005
330,330_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,598,416,0.998999999999999999111821580300,41,0.001
331,331_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1633,5000,0.001000000000000000020816681712,1,0.001
332,332_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.001000000000000000020816681712,20,0.05
333,333_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,83,4187,0.001000000000000000020816681712,20,0.025
334,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.05
335,335_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,57,2754,0.001000000000000000020816681712,17,0.025
336,336_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,2316,474,0.001000000000000000020816681712,17,0.25
337,337_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.001970830807579385546973727017,20,0.025
338,338_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,300,607,0.001000000000000000020816681712,19,0.005
339,339_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,52,397,0.001000000000000000020816681712,9,0.1
340,340_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3732,3261,0.186061170250099910949970194451,28,0.1
341,341_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1487,3477,0.245110189329323047147113356914,7,0.005
342,342_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2431,883,0.001000000000000000020816681712,44,0.05
343,343_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3433,2708,0.537972709732545184557750417298,50,0.1
344,229_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.001
345,345_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4309,5000,0.001000000000000000020816681712,1,0.005
346,346_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.001000000000000000020816681712,26,0.025
347,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.005
348,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.05
349,349_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2261,5000,0.200962360288820918174934604394,24,0.025
350,350_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3032,1362,0.998999999999999999111821580300,25,0.05
351,351_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,531,2349,0.998999999999999999111821580300,13,0.001
352,352_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,370,1350,0.001000000000000000020816681712,20,0.01
353,353_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2966,4413,0.001000000000000000020816681712,42,0.25
354,354_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3774,4853,0.001000000000000000020816681712,22,0.01
355,355_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4159,688,0.001000000000000000020816681712,1,0.01
356,356_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2707,5000,0.001000000000000000020816681712,18,0.005
357,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.005
358,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.05
359,359_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.001000000000000000020816681712,4,0.001
360,360_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,731,0.001000000000000000020816681712,23,0.005
361,361_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2222,635,0.001000000000000000020816681712,10,0.025
362,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.01
363,363_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1131,1889,0.782650431945819513579465365183,49,0.001
364,364_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.326821413926715265141353938816,21,0.001
365,365_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.001000000000000000020816681712,19,0.25
366,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.01
367,367_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3464,5000,0.001000000000000000020816681712,1,0.001
368,368_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,836,1314,0.998999999999999999111821580300,43,0.01
369,369_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3053,4588,0.001000000000000000020816681712,16,0.001
370,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.005
371,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.01
372,372_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,653,1434,0.001000000000000000020816681712,1,0.005
373,373_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2784,4856,0.998999999999999999111821580300,39,0.01
374,374_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4842,2919,0.001000000000000000020816681712,35,0.25
375,375_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,532,5000,0.001000000000000000020816681712,1,0.001
376,376_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,550,1992,0.998999999999999999111821580300,33,0.001
377,377_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4550,1864,0.998999999999999999111821580300,37,0.01
378,378_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1373,2402,0.998999999999999999111821580300,37,0.001
379,379_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1763,887,0.998999999999999999111821580300,50,0.005
380,380_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1268,566,0.001000000000000000020816681712,31,0.001
381,381_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3026,4414,0.998999999999999999111821580300,44,0.001
382,382_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4471,1321,0.998999999999999999111821580300,42,0.001
383,383_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,747,1427,0.998999999999999999111821580300,6,0.001
384,384_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.001000000000000000020816681712,29,0.025
385,385_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,605,3302,0.001000000000000000020816681712,18,0.05
386,386_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1679,2516,0.001000000000000000020816681712,9,0.1
387,387_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,559,1193,0.001000000000000000020816681712,10,0.005
388,388_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4770,4606,0.001000000000000000020816681712,18,0.1
389,389_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4496,4991,0.001000000000000000020816681712,18,0.005
390,390_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,263,1262,0.001000000000000000020816681712,13,0.05
391,391_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,868,2595,0.001000000000000000020816681712,16,0.05
392,392_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3737,2595,0.998999999999999999111821580300,15,0.001
393,393_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3980,3119,0.998999999999999999111821580300,42,0.05
394,394_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,106,2133,0.998999999999999999111821580300,8,0.001
395,395_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1052,537,0.001000000000000000020816681712,42,0.005
396,396_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3754,1559,0.998999999999999999111821580300,1,0.1
397,397_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3985,1564,0.001000000000000000020816681712,50,0.1
398,398_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,945,4014,0.242386970744589730353268919316,25,0.05
399,399_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,840,765,0.998999999999999999111821580300,37,0.1
400,400_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4539,3341,0.998999999999999999111821580300,1,0.005
401,401_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2585,3994,0.998999999999999999111821580300,30,0.001
402,402_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3962,2417,0.028072625071366010679474456424,23,0.05
403,403_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1642,1338,0.001000000000000000020816681712,4,0.001
404,404_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,705,175,0.001000000000000000020816681712,12,0.05
405,405_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4620,3503,0.001000000000000000020816681712,32,0.25
406,406_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,46,2592,0.998999999999999999111821580300,50,0.1
407,407_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2544,4170,0.998999999999999999111821580300,12,0.025
408,408_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,205,1242,0.001000000000000000020816681712,10,0.005
409,409_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2497,1183,0.001000000000000000020816681712,50,0.005
410,410_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4341,3321,0.001000000000000000020816681712,40,0.25
411,411_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2038,2019,0.001000000000000000020816681712,13,0.05
412,412_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3964,1775,0.001000000000000000020816681712,6,0.001
413,413_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3328,2579,0.998999999999999999111821580300,39,0.1
414,414_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,4772,0.001000000000000000020816681712,18,0.001
415,415_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,792,1621,0.998999999999999999111821580300,30,0.1
416,416_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4963,4574,0.001000000000000000020816681712,13,0.1
417,417_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,5000,483,0.001000000000000000020816681712,44,0.005
418,418_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,910,2977,0.998999999999999999111821580300,34,0.05
419,419_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2912,2076,0.001000000000000000020816681712,50,0.01
420,420_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3289,2538,0.001000000000000000020816681712,28,0.1
421,421_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3285,2936,0.998999999999999999111821580300,35,0.001
422,422_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4766,1067,0.998999999999999999111821580300,22,0.25
423,423_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,357,1914,0.998999999999999999111821580300,17,0.001
424,424_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,3920,0.001000000000000000020816681712,14,0.001
425,425_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1066,3921,0.998999999999999999111821580300,14,0.005
426,426_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,746,1708,0.457305628645672812560007969296,50,0.025
427,427_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3005,3492,0.001000000000000000020816681712,17,0.01
428,428_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,97,2665,0.001000000000000000020816681712,14,0.01
429,429_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1152,2056,0.001000000000000000020816681712,8,0.1
430,430_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4538,1816,0.001000000000000000020816681712,3,0.01
431,431_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1841,3287,0.001000000000000000020816681712,10,0.25
432,432_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4711,4323,0.001000000000000000020816681712,23,0.005
433,433_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,4099,0.073444982240017595009895501335,13,0.025
434,434_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,372,1862,0.001000000000000000020816681712,17,0.005
435,435_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4943,3119,0.001000000000000000020816681712,7,0.1
436,436_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3539,763,0.998999999999999999111821580300,29,0.25
437,437_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,1744,184,0.001000000000000000020816681712,23,0.001
438,438_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4514,4640,0.998999999999999999111821580300,29,0.001
439,439_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,3317,0.001000000000000000020816681712,15,0.001
440,440_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,5000,637,0.753848219509133166127412550850,1,0.001
441,441_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4086,4233,0.958258887404792147890475462191,38,0.005
442,442_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,5000,363,0.998999999999999999111821580300,1,0.001
443,443_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,146,4129,0.145714704776781139861085989651,16,0.001
444,444_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4526,3196,0.001000000000000000020816681712,9,0.05
445,445_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,927,3275,0.703520179293418257415737571137,50,0.005
446,446_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4859,4546,0.998999999999999999111821580300,46,0.005
447,447_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1149,1551,0.001000000000000000020816681712,34,0.01
448,448_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,1,173,0.001000000000000000020816681712,15,0.001
449,449_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,2869,330,0.354084138437586626313446913628,50,0.001
450,450_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,367,2242,0.001000000000000000020816681712,8,0.05
451,451_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4962,1785,0.001000000000000000020816681712,6,0.01
452,452_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3395,4842,0.009998748776895428208577598639,20,0.001
453,453_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2973,1620,0.001000000000000000020816681712,1,0.25
454,454_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,55,3245,0.001000000000000000020816681712,8,0.001
455,455_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4180,906,0.001000000000000000020816681712,14,0.01
456,456_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,875,4084,0.146518643708753421028845309593,20,0.005
457,457_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,94,3577,0.023277738511124319159550921654,19,0.1
458,458_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1276,2806,0.029994820202927173491413981310,12,0.01
459,459_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,579,641,0.001000000000000000020816681712,6,0.005
460,460_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,279,4611,0.335924808303884214755186121693,19,0.005
461,461_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,431,1077,0.001000000000000000020816681712,9,0.1
462,462_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4930,3803,0.096681056966562081700367059511,11,0.01
463,463_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4075,4796,0.009785618276395097181463711422,21,0.1
464,464_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4384,4771,0.539646316189925645545599763864,50,0.05
465,465_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4010,1408,0.998999999999999999111821580300,50,0.001
466,466_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,362,1243,0.665238145537450309419114091725,33,0.1
467,467_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,174,4346,0.001000000000000000020816681712,13,0.05
468,468_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4734,3045,0.542668424281901762284974211070,50,0.05
469,469_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,101,1390,0.001000000000000000020816681712,1,0.005
470,470_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,4737,413,0.001000000000000000020816681712,1,0.01
471,471_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,392,319,0.998999999999999999111821580300,23,0.001
472,472_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3716,2269,0.998999999999999999111821580300,27,0.025
473,473_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,3331,0.001000000000000000020816681712,1,0.025
474,474_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4380,3755,0.001000000000000000020816681712,1,0.005
475,475_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,338,348,0.001000000000000000020816681712,1,0.025
476,476_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4336,3597,0.001000000000000000020816681712,1,0.025
477,477_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4198,2926,0.998999999999999999111821580300,1,0.025
478,478_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2032,1276,0.998999999999999999111821580300,50,0.01
479,479_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,5000,617,0.998999999999999999111821580300,38,0.1
480,480_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,203,4805,0.998999999999999999111821580300,50,0.01
481,481_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,543,0.766711639273163769736640915653,29,0.001
482,482_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,218,319,0.998999999999999999111821580300,37,0.001
483,483_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3651,4031,0.001000000000000000020816681712,21,0.001
484,484_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,452,525,0.998999999999999999111821580300,34,0.01
485,485_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,2393,413,0.001000000000000000020816681712,1,0.005
486,486_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2738,1598,0.998999999999999999111821580300,29,0.25
487,487_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,2288,384,0.998999999999999999111821580300,50,0.001
488,488_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,6,827,0.998999999999999999111821580300,6,0.001
489,489_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,2446,194,0.001000000000000000020816681712,1,0.001
490,490_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,156,515,0.001000000000000000020816681712,9,0.1
491,491_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,723,1975,0.449235465817694246126734469726,31,0.05
492,492_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,2178,263,0.001000000000000000020816681712,20,0.001
493,493_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4706,915,0.998999999999999999111821580300,50,0.05
494,494_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2943,587,0.998999999999999999111821580300,50,0.001
495,495_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1023,4149,0.001000000000000000020816681712,1,0.001
496,496_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1053,5000,0.001000000000000000020816681712,1,0.1
497,497_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4178,4721,0.001000000000000000020816681712,1,0.01
498,498_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4733,5000,0.001000000000000000020816681712,1,0.1
499,499_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4530,5000,0.001000000000000000020816681712,1,0.005
500,500_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2689,729,0.998999999999999999111821580300,1,0.001
501,501_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,5000,4772,0.998999999999999999111821580300,50,0.001
502,502_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1858,5000,0.001000000000000000020816681712,1,0.005
503,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.005
504,504_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,607,1651,0.094729494193063062956738917819,28,0.001
505,505_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,540,0.998999999999999999111821580300,40,0.001
506,506_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2578,5000,0.001000000000000000020816681712,1,0.001
507,507_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4647,5000,0.001000000000000000020816681712,1,0.25
508,508_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4132,5000,0.001000000000000000020816681712,1,0.05
509,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.25
510,510_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,78,379,0.001000000000000000020816681712,50,0.05
511,511_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4134,641,0.998999999999999999111821580300,15,0.01
512,512_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,1,225,0.998999999999999999111821580300,26,0.05
513,513_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2262,5000,0.001000000000000000020816681712,1,0.025
514,514_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,5000,5000,0.001000000000000000020816681712,1,0.25
515,515_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4473,5000,0.001000000000000000020816681712,1,0.025
516,516_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4503,769,0.410357799257734967568467254750,6,0.01
517,517_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,448,5000,0.001000000000000000020816681712,1,0.005
518,518_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4545,5000,0.001000000000000000020816681712,1,0.01
519,519_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4773,5000,0.001000000000000000020816681712,1,0.025
520,520_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1462,846,0.001000000000000000020816681712,21,0.01
521,521_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,1629,438,0.001000000000000000020816681712,50,0.05
522,522_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,4117,0.001000000000000000020816681712,1,0.001
523,523_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,982,0.001000000000000000020816681712,50,0.25
524,524_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1954,3399,0.478762638425315578682983641556,25,0.005
525,525_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,564,3781,0.001000000000000000020816681712,28,0.25
526,526_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,5000,378,0.998999999999999999111821580300,13,0.01
527,527_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1857,4699,0.268869996452955228871672943569,1,0.1
528,528_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4068,3371,0.001000000000000000020816681712,1,0.05
529,529_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4494,5000,0.001000000000000000020816681712,1,0.01
530,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.01
531,531_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,3892,0.001000000000000000020816681712,1,0.005
532,532_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1655,2532,0.001000000000000000020816681712,1,0.1
533,533_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,1,253,0.001000000000000000020816681712,50,0.05
534,534_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1658,1026,0.916824156432970882590893779707,13,0.001
535,535_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2228,3391,0.001000000000000000020816681712,25,0.001
536,536_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4099,4829,0.998999999999999999111821580300,50,0.05
537,537_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4851,5000,0.001000000000000000020816681712,1,0.05
538,538_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4818,2753,0.998999999999999999111821580300,33,0.005
539,539_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2207,5000,0.001000000000000000020816681712,1,0.01
540,540_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3191,1860,0.001000000000000000020816681712,29,0.01
541,541_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,118,3651,0.001000000000000000020816681712,27,0.05
542,542_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4374,4157,0.001000000000000000020816681712,50,0.005
543,543_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3245,4635,0.998999999999999999111821580300,1,0.005
544,544_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2118,625,0.795236415101528981708156607056,22,0.05
545,545_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,4780,0.001000000000000000020816681712,1,0.1
546,546_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3308,4034,0.998999999999999999111821580300,1,0.1
547,547_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3284,1725,0.001000000000000000020816681712,1,0.05
548,548_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4977,4042,0.001000000000000000020816681712,1,0.005
549,549_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1392,1674,0.998999999999999999111821580300,1,0.25
550,550_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,4135,0.001000000000000000020816681712,1,0.05
551,551_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2169,3093,0.690686002361980855290823910764,29,0.25
552,552_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3259,1303,0.998999999999999999111821580300,17,0.001
553,553_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,956,3075,0.001000000000000000020816681712,1,0.005
554,554_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,47,1243,0.001000000000000000020816681712,1,0.01
555,555_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,1,445,0.001000000000000000020816681712,18,0.001
556,556_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,385,4927,0.001000000000000000020816681712,1,0.025
557,557_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,532,3192,0.001000000000000000020816681712,16,0.001
558,558_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,4350,0.001000000000000000020816681712,1,0.025
559,559_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4174,3827,0.001000000000000000020816681712,1,0.01
560,560_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4489,3536,0.001000000000000000020816681712,50,0.25
561,561_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2146,2736,0.998999999999999999111821580300,3,0.001
562,562_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3108,1604,0.001000000000000000020816681712,14,0.001
563,563_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2770,3102,0.067001562593041005810867716264,41,0.001
564,564_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3037,710,0.998999999999999999111821580300,50,0.25
565,565_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,2561,0.998999999999999999111821580300,50,0.001
566,566_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4958,4930,0.001000000000000000020816681712,50,0.1
567,567_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4936,3508,0.001000000000000000020816681712,1,0.001
568,568_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,228,840,0.998999999999999999111821580300,10,0.1
569,569_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,781,4544,0.128796837409278414066093887413,1,0.025
570,570_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4705,846,0.998999999999999999111821580300,38,0.001
571,571_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,246,1774,0.001000000000000000020816681712,32,0.05
572,572_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3955,2774,0.998999999999999999111821580300,10,0.25
573,573_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2173,1232,0.235861427531870226914634258719,19,0.001
574,574_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,3205,0.001000000000000000020816681712,1,0.25
575,575_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,649,0.001000000000000000020816681712,1,0.05
576,576_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3975,1723,0.998999999999999999111821580300,32,0.05
577,577_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,3508,477,0.342238344420146500812762724308,1,0.005
578,578_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,3491,466,0.217337252131078129124830411456,1,0.025
579,579_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,1936,0.001000000000000000020816681712,1,0.1
580,580_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,5000,374,0.998999999999999999111821580300,28,0.001
581,581_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,1,472,0.001000000000000000020816681712,50,0.005
582,582_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,827,5000,0.858303192645753165734845424595,1,0.001
583,583_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1856,2303,0.001000000000000000020816681712,12,0.01
584,584_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2843,3647,0.001000000000000000020816681712,8,0.01
585,585_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1214,5000,0.001000000000000000020816681712,1,0.001
586,586_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2790,5000,0.001000000000000000020816681712,11,0.025
587,587_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4723,3672,0.001000000000000000020816681712,4,0.01
588,588_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3597,3107,0.001000000000000000020816681712,1,0.01
589,589_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,989,5000,0.388213653746085463058790310242,14,0.025
590,590_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,351,5000,0.364688572363445762114508852392,18,0.1
591,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.05
592,592_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,2.000000000000000000000000000000,1788,256,0.262722902039570271881530061364,1,0.005
593,593_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1406,5000,0.001000000000000000020816681712,1,0.001
594,594_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3937,761,0.998999999999999999111821580300,50,0.25
595,595_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,238,5000,0.520798730918246355336975739192,14,0.025
596,596_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3191,4098,0.001000000000000000020816681712,1,0.01
597,597_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1799,5000,0.001000000000000000020816681712,14,0.001
598,598_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4794,4977,0.001000000000000000020816681712,20,0.25
599,599_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,93,5000,0.295224538255842827716435294860,26,0.001
600,600_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4302,1567,0.001000000000000000020816681712,8,0.025
601,601_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4629,3200,0.331358987033368690422463487266,2,0.01
602,602_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4150,4271,0.998999999999999999111821580300,18,0.005
603,603_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4756,4493,0.001000000000000000020816681712,11,0.025
604,604_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,65,4840,0.001000000000000000020816681712,24,0.001
605,605_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4074,5000,0.135716129704172572267850682692,1,0.1
606,606_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,244,2814,0.998999999999999999111821580300,39,0.025
607,229_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.001
608,608_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.998999999999999999111821580300,1,0.001
609,609_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,4261,0.001000000000000000020816681712,1,0.25
610,610_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4932,4546,0.998999999999999999111821580300,20,0.1
611,611_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,5000,5000,0.998999999999999999111821580300,50,0.005
612,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.05
613,613_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4369,4128,0.001000000000000000020816681712,29,0.05
614,614_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4650,4063,0.998999999999999999111821580300,47,0.005
615,615_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,4371,0.001000000000000000020816681712,1,0.001
616,616_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,1,399,0.001000000000000000020816681712,17,0.005
617,617_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,88,2215,0.998999999999999999111821580300,49,0.005
618,618_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4529,2604,0.977543092354533071919320263987,1,0.01
619,619_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1182,4977,0.614446202020560106049629212066,9,0.025
620,620_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,5000,0.998999999999999999111821580300,1,0.01
621,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,,,1,5000,0.001000000000000000020816681712,1,0.005
622,622_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1146,5000,0.105959830135073165835457587036,20,0.001
623,623_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1416,1732,0.001000000000000000020816681712,8,0.01
624,624_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3133,4372,0.074568819581094986093106058433,12,0.005
625,625_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2045,5000,0.001000000000000000020816681712,17,0.025
626,626_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2287,4833,0.177590362132080320511917648219,9,0.025
627,627_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,74,563,0.001000000000000000020816681712,1,0.01
628,628_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,485,551,0.001000000000000000020816681712,27,0.1
629,629_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4942,2926,0.001000000000000000020816681712,1,0.05
630,630_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,63,2151,0.149745189482437063288600143096,17,0.025
631,631_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,3840,532,0.001000000000000000020816681712,1,0.01
632,632_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1557,5000,0.174930118650364757604265264490,12,0.025
633,633_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2259,5000,0.809453889120597458450845351763,17,0.025
634,634_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1713,5000,0.001000000000000000020816681712,9,0.001
635,635_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3516,5000,0.001000000000000000020816681712,11,0.025
636,636_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,728,5000,0.998999999999999999111821580300,20,0.025
637,637_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1798,5000,0.001000000000000000020816681712,18,0.025
638,638_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2677,5000,0.307238158292429563989145435698,5,0.025
639,639_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4857,1042,0.001000000000000000020816681712,1,0.1
640,640_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2609,559,0.468093389101246704075975912929,4,0.01
641,641_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1210,5000,0.001000000000000000020816681712,20,0.001
642,642_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1849,5000,0.123464296106546744802301418531,22,0.01
643,643_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,2135,361,0.001000000000000000020816681712,7,0.1
644,644_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1222,549,0.001000000000000000020816681712,9,0.01
645,645_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3403,3739,0.001000000000000000020816681712,16,0.01
646,646_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3329,5000,0.106842527768747794225667746559,28,0.025
647,647_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,652,2904,0.100053923131186009443105433547,10,0.01
648,648_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,4.000000000000000000000000000000,2667,93,0.001000000000000000020816681712,1,0.1
649,649_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,210,4023,0.126151197020795025061090655072,21,0.05
650,650_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1272,5000,0.241231540172424652190841243282,20,0.025
651,651_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2028,5000,0.473063930262329401799092920555,7,0.025
652,652_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2476,5000,0.159559094565313253077931676671,22,0.25
653,653_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4968,4676,0.001000000000000000020816681712,11,0.025
654,654_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4899,3714,0.001000000000000000020816681712,1,0.05
655,655_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2913,5000,0.747516861572941060387620382244,12,0.025
656,656_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1517,3227,0.327201407723147930095564106523,13,0.025
657,657_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,574,5000,0.264556846874987927620281880081,11,0.001
658,658_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3311,1336,0.001000000000000000020816681712,13,0.01
659,659_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,657,4979,0.495372053092728303891334462605,29,0.025
660,660_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,673,4949,0.741503098348371025849701254629,22,0.001
661,661_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1955,5000,0.001000000000000000020816681712,13,0.001
662,662_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1245,5000,0.425305396701382176782857413855,21,0.1
663,663_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2162,5000,0.752714927741594097554411746387,19,0.005
664,664_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3274,5000,0.001000000000000000020816681712,10,0.005
665,665_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,736,5000,0.481592824073293901410153239340,31,0.005
666,666_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1126,4865,0.424332079738818090941521177228,17,0.025
667,667_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2611,5000,0.198114299454139580758393890392,15,0.025
668,668_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1537,4960,0.998999999999999999111821580300,22,0.025
669,669_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2044,5000,0.993855626900997379813418319827,20,0.025
670,670_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4562,3046,0.001000000000000000020816681712,9,0.01
671,671_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2411,5000,0.001000000000000000020816681712,22,0.01
672,672_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4555,4454,0.001000000000000000020816681712,8,0.05
673,673_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,380,2861,0.001000000000000000020816681712,21,0.025
674,674_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1433,5000,0.763703781566298589567054477811,26,0.1
675,675_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,676,881,0.043261196518891799345229998153,6,0.25
676,676_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1585,4942,0.001000000000000000020816681712,17,0.025
677,677_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4727,2479,0.001000000000000000020816681712,1,0.005
678,678_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2695,5000,0.282771124097183912393660421003,25,0.1
679,679_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2331,5000,0.353725886773052389244753612729,17,0.05
680,680_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1010,4908,0.572824104680273005207880032685,20,0.025
681,681_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4797,4510,0.001000000000000000020816681712,11,0.01
682,682_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,702,1955,0.361081684593412666206546646208,24,0.005
683,683_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2027,4982,0.001000000000000000020816681712,15,0.05
684,684_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1999,5000,0.255788637444802846587776912202,17,0.025
685,685_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4537,4502,0.321389319446044763317615888809,26,0.1
686,686_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1,3005,0.998999999999999999111821580300,12,0.1
687,687_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4990,3061,0.001000000000000000020816681712,1,0.01
688,688_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2423,4996,0.001000000000000000020816681712,18,0.025
689,689_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,3596,357,0.998999999999999999111821580300,30,0.001
690,690_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,1.000000000000000000000000000000,953,5000,0.191472077651495070638176798639,20,0.001
691,691_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1640,4855,0.221191214704768684962132851979,22,0.025
692,692_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2203,4831,0.423513504055821554672434103850,20,0.025
693,693_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1161,5000,0.001000000000000000020816681712,25,0.001
694,694_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2209,5000,0.330881751619774566730569631545,15,0.025
695,695_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1511,3964,0.120356624861996858166790502764,23,0.01
696,696_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,570,1431,0.001000000000000000020816681712,43,0.1
697,697_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1561,4278,0.556857330703790287529386660026,44,0.001
698,698_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,475,1007,0.998999999999999999111821580300,35,0.005
699,699_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2604,5000,0.102917067001672093984332434502,21,0.025
700,700_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2005,3618,0.998999999999999999111821580300,41,0.05
701,701_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2369,1109,0.998999999999999999111821580300,34,0.01
702,702_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,214,2706,0.590592009879165824592917033442,36,0.1
703,703_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,511,2688,0.998999999999999999111821580300,32,0.25
704,704_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4699,1576,0.001000000000000000020816681712,43,0.1
705,705_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4338,4702,0.001000000000000000020816681712,32,0.25
706,706_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2640,2979,0.998999999999999999111821580300,20,0.1
707,707_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4508,2957,0.998999999999999999111821580300,16,0.25
708,708_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2950,4106,0.998999999999999999111821580300,40,0.025
709,709_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1764,4782,0.998999999999999999111821580300,42,0.001
710,710_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3171,2713,0.998999999999999999111821580300,14,0.1
711,711_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4462,999,0.998999999999999999111821580300,35,0.005
712,712_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1191,4931,0.001000000000000000020816681712,39,0.01
713,713_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,617,2248,0.998999999999999999111821580300,28,0.25
714,714_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1410,3022,0.998999999999999999111821580300,14,0.025
715,715_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,1849,4821,0.122382118953908769487526342346,20,0.001
716,716_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,2226,2979,0.001000000000000000020816681712,7,0.01
717,717_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,864,4918,0.004755343779967529348196020322,24,0.025
718,718_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4199,1747,0.998999999999999999111821580300,20,0.005
719,719_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,3962,3819,0.001000000000000000020816681712,38,0.005
720,720_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4061,2000,0.001000000000000000020816681712,46,0.1
721,721_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.910000000000000031086244689504,0.000000000000000000000000000000,4920,4819,0.001000000000000000020816681712,29,0.005
722,722_0,RUNNING,BoTorch,BOTORCH_MODULAR,,,1200,258,0.001000000000000000020816681712,32,0.25
</pre>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<script>
createTable(tab_results_csv_json, tab_results_headers_json, 'tab_results_csv_table');</script>
<h1> Errors</h1>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_errors")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_errors", "oo_errors.txt")'> Download »oo_errors.txt« as file</button>
<pre id='simple_pre_tab_tab_errors'><span style="background-color: black; color: white">
/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Ozone_HoeffdingTreeClassifier_ACCURACY-RUNTIME/1/single_runs/4903457/4903457_0_log.err not found
</span></pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_errors")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_errors", "oo_errors.txt")'> Download »oo_errors.txt« as file</button>
<h1> Args Overview</h1>
<h2>Arguments Overview: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Key</th><th>Value </th></tr></thead><tbody><tr><td> config_yaml</td><td>None </td></tr><tr><td> config_toml</td><td>None </td></tr><tr><td> config_json</td><td>None </td></tr><tr><td> num_random_steps</td><td>20 </td></tr><tr><td> max_eval</td><td>50000 </td></tr><tr><td> run_program</td><td>None </td></tr><tr><td> experiment_name</td><td>None </td></tr><tr><td> mem_gb</td><td>32 </td></tr><tr><td> parameter</td><td>None </td></tr><tr><td> continue_previous_job</td><td>/data/horse/ws/s4122485-compPerfDD/benchmark/dfki/benchmarkdd/runs/CSDDM_Ozone_HoeffdingTreeClassifier_ACCURACY-RUNTIME/0/ </td></tr><tr><td> experiment_constraints</td><td>None </td></tr><tr><td> run_dir</td><td>runs </td></tr><tr><td> seed</td><td>None </td></tr><tr><td> decimalrounding</td><td>4 </td></tr><tr><td> enforce_sequential_optimization</td><td>False </td></tr><tr><td> verbose_tqdm</td><td>False </td></tr><tr><td> model</td><td>None </td></tr><tr><td> gridsearch</td><td>False </td></tr><tr><td> occ</td><td>False </td></tr><tr><td> show_sixel_scatter</td><td>False </td></tr><tr><td> show_sixel_general</td><td>False </td></tr><tr><td> show_sixel_trial_index_result</td><td>False </td></tr><tr><td> follow</td><td>False </td></tr><tr><td> send_anonymized_usage_stats</td><td>False </td></tr><tr><td> ui_url</td><td>None </td></tr><tr><td> root_venv_dir</td><td>/home/s4122485 </td></tr><tr><td> exclude</td><td>None </td></tr><tr><td> main_process_gb</td><td>8 </td></tr><tr><td> pareto_front_confidence</td><td>1 </td></tr><tr><td> max_nr_of_zero_results</td><td>10 </td></tr><tr><td> abbreviate_job_names</td><td>False </td></tr><tr><td> orchestrator_file</td><td>None </td></tr><tr><td> checkout_to_latest_tested_version</td><td>False </td></tr><tr><td> live_share</td><td>False </td></tr><tr><td> disable_tqdm</td><td>False </td></tr><tr><td> workdir</td><td>False </td></tr><tr><td> occ_type</td><td>euclid </td></tr><tr><td> result_names</td><td>['RESULT=min'] </td></tr><tr><td> minkowski_p</td><td>2 </td></tr><tr><td> signed_weighted_euclidean_weights</td><td></td></tr><tr><td> generation_strategy</td><td>None </td></tr><tr><td> generate_all_jobs_at_once</td><td>False </td></tr><tr><td> revert_to_random_when_seemingly_exhausted</td><td>True </td></tr><tr><td> load_data_from_existing_jobs</td><td>[] </td></tr><tr><td> n_estimators_randomforest</td><td>100 </td></tr><tr><td> external_generator</td><td>None </td></tr><tr><td> username</td><td>None </td></tr><tr><td> max_failed_jobs</td><td>None </td></tr><tr><td> num_parallel_jobs</td><td>20 </td></tr><tr><td> worker_timeout</td><td>120 </td></tr><tr><td> slurm_use_srun</td><td>False </td></tr><tr><td> time</td><td></td></tr><tr><td> partition</td><td></td></tr><tr><td> reservation</td><td>None </td></tr><tr><td> force_local_execution</td><td>False </td></tr><tr><td> slurm_signal_delay_s</td><td>0 </td></tr><tr><td> nodes_per_job</td><td>1 </td></tr><tr><td> cpus_per_task</td><td>1 </td></tr><tr><td> account</td><td>None </td></tr><tr><td> gpus</td><td>0 </td></tr><tr><td> run_mode</td><td>local </td></tr><tr><td> verbose</td><td>False </td></tr><tr><td> verbose_break_run_search_table</td><td>False </td></tr><tr><td> debug</td><td>False </td></tr><tr><td> no_sleep</td><td>False </td></tr><tr><td> tests</td><td>False </td></tr><tr><td> show_worker_percentage_table_at_end</td><td>False </td></tr><tr><td> auto_exclude_defective_hosts</td><td>False </td></tr><tr><td> run_tests_that_fail_on_taurus</td><td>False </td></tr><tr><td> raise_in_eval</td><td>False </td></tr><tr><td> show_ram_every_n_seconds</td><td>False </td></tr></tbody></table>
<h1> Worker-Usage</h1>
<div class='invert_in_dark_mode' id='workerUsagePlot'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_worker_usage")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_worker_usage", "worker_usage.csv")'> Download »worker_usage.csv« as file</button>
<pre id="pre_tab_worker_usage">1746192418.5891068,20,0,0
1746192424.0814054,20,0,0
1746192475.7604,20,0,0
1746192476.1702986,20,0,0
1746192479.2394361,20,1,5
1746192482.3325105,20,1,5
1746192547.642257,20,1,5
1746192548.3738027,20,1,5
1746192550.5890994,20,2,10
1746192552.324501,20,2,10
1746192558.038599,20,1,5
1746192558.3388422,20,1,5
1746192697.7532015,20,1,5
1746192698.4755135,20,1,5
1746192700.509905,20,2,10
1746192702.1443086,20,2,10
1746192707.5070393,20,1,5
1746192707.9154053,20,1,5
1746192823.5095055,20,1,5
1746192824.4125526,20,1,5
1746192826.5247633,20,2,10
1746192828.2614963,20,2,10
1746192833.814799,20,1,5
1746192834.0374527,20,1,5
1746192953.7737796,20,1,5
1746192954.5197947,20,1,5
1746192956.5232964,20,2,10
1746192958.228226,20,2,10
1746192965.316812,20,1,5
1746192965.8134124,20,1,5
1746193092.8588278,20,1,5
1746193093.5834901,20,1,5
1746193095.5174417,20,2,10
1746193097.2907526,20,2,10
1746193103.3257205,20,1,5
1746193103.8242972,20,1,5
1746193201.2290704,20,1,5
1746193201.9038222,20,1,5
1746193203.814404,20,2,10
1746193205.4722364,20,2,10
1746193210.9393027,20,1,5
1746193211.1525607,20,1,5
1746193355.7156222,20,1,5
1746193356.3555405,20,1,5
1746193358.4604573,20,2,10
1746193360.1120355,20,2,10
1746193365.7936072,20,1,5
1746193365.9949684,20,1,5
1746193440.035482,20,1,5
1746193440.765197,20,1,5
1746193443.0619512,20,2,10
1746193444.8474145,20,2,10
1746193450.4768436,20,1,5
1746193450.8988955,20,1,5
1746193569.5453777,20,1,5
1746193570.3434675,20,1,5
1746193572.5465076,20,2,10
1746193574.1136837,20,2,10
1746193579.4114447,20,1,5
1746193579.8994548,20,1,5
1746193662.9415467,20,1,5
1746193663.6555495,20,1,5
1746193665.5562901,20,2,10
1746193667.2821996,20,2,10
1746193673.401454,20,1,5
1746193674.89087,20,1,5
1746193727.9107902,20,1,5
1746193728.664952,20,1,5
1746193730.6131577,20,2,10
1746193732.4462047,20,2,10
1746193738.7898512,20,1,5
1746193738.994249,20,1,5
1746193847.1987083,20,1,5
1746193847.87735,20,1,5
1746193849.7665067,20,2,10
1746193851.4893243,20,2,10
1746193857.4562082,20,1,5
1746193857.9025273,20,1,5
1746193963.4927833,20,1,5
1746193964.3239021,20,1,5
1746193966.4411502,20,2,10
1746193968.0954027,20,2,10
1746193973.673402,20,1,5
1746193973.877328,20,1,5
1746194040.5881948,20,1,5
1746194041.744938,20,1,5
1746194043.6418173,20,2,10
1746194045.2344093,20,2,10
1746194050.5737824,20,1,5
1746194050.8749511,20,1,5
1746194120.2910259,20,1,5
1746194120.9882867,20,1,5
1746194122.7558868,20,2,10
1746194123.7314067,20,2,10
1746194130.7276428,20,1,5
1746194130.827915,20,1,5
1746194229.2080774,20,1,5
1746194229.9216967,20,1,5
1746194231.8450983,20,2,10
1746194233.5991004,20,2,10
1746194239.511424,20,1,5
1746194239.8958588,20,1,5
1746194365.2437348,20,1,5
1746194365.9861429,20,1,5
1746194368.0205104,20,2,10
1746194369.8478284,20,2,10
1746194375.7027721,20,1,5
1746194375.9438326,20,1,5
1746194498.047392,20,1,5
1746194498.7213256,20,1,5
1746194500.6539621,20,2,10
1746194502.2931693,20,2,10
1746194508.4181612,20,1,5
1746194508.9365013,20,1,5
1746194622.6946948,20,1,5
1746194623.4736502,20,1,5
1746194625.599631,20,2,10
1746194627.2967982,20,2,10
1746194633.4242606,20,1,5
1746194634.13695,20,1,5
1746194639.338065,20,1,5
1746194648.9527059,20,1,5
1746194657.6452103,20,1,5
1746194664.3495803,20,1,5
1746194668.7248116,20,0,0
1746194676.5915215,20,0,0
1746194783.2074478,20,0,0
1746194783.7606676,20,0,0
1746194785.6335645,20,1,5
1746194789.5543454,20,1,5
1746194906.8672862,20,1,5
1746194907.5613115,20,1,5
1746194909.6419811,20,2,10
1746194911.4459677,20,2,10
1746194917.680794,20,1,5
1746194917.9268658,20,1,5
1746195473.7240405,20,1,5
1746195474.3637154,20,1,5
1746195476.5239344,20,2,10
1746195478.057931,20,2,10
1746195483.5095193,20,1,5
1746195483.9182851,20,1,5
1746195933.78611,20,1,5
1746195934.5267906,20,1,5
1746195936.501389,20,2,10
1746195938.3225105,20,2,10
1746195944.6419816,20,1,5
1746195944.9287608,20,1,5
1746196029.1055017,20,1,5
1746196029.8248281,20,1,5
1746196031.7567658,20,2,10
1746196033.6157866,20,2,10
1746196039.739912,20,1,5
1746196039.9722993,20,1,5
1746196173.3513474,20,1,5
1746196174.3470821,20,1,5
1746196176.4687335,20,2,10
1746196178.1597228,20,2,10
1746196184.5048382,20,1,5
1746196184.905489,20,1,5
1746196348.6016743,20,1,5
1746196349.3702526,20,1,5
1746196351.5421033,20,2,10
1746196353.158035,20,2,10
1746196358.8748262,20,1,5
1746196359.118838,20,1,5
1746196508.0661354,20,1,5
1746196508.6657164,20,1,5
1746196510.518923,20,2,10
1746196511.887621,20,2,10
1746196517.6546822,20,1,5
1746196517.9646873,20,1,5
1746196634.2303736,20,1,5
1746196635.000661,20,1,5
1746196636.9570332,20,2,10
1746196638.6626878,20,2,10
1746196644.7732687,20,1,5
1746196644.9815078,20,1,5
1746196765.591572,20,1,5
1746196766.3304327,20,1,5
1746196768.5351267,20,2,10
1746196770.0945232,20,2,10
1746196775.7953184,20,1,5
1746196775.9966564,20,1,5
1746196882.922925,20,1,5
1746196883.6219585,20,1,5
1746196885.5881686,20,2,10
1746196887.2752016,20,2,10
1746196893.57393,20,1,5
1746196893.9227726,20,1,5
1746197080.7046044,20,1,5
1746197081.3868015,20,1,5
1746197083.462854,20,2,10
1746197085.0488544,20,2,10
1746197090.783144,20,1,5
1746197091.0177128,20,1,5
1746197199.3703125,20,1,5
1746197200.3672993,20,1,5
1746197202.6783152,20,2,10
1746197204.4911373,20,2,10
1746197211.2649987,20,1,5
1746197211.5407205,20,1,5
1746197923.9969344,20,1,5
1746197924.7162914,20,1,5
1746197926.621358,20,2,10
1746197928.3735733,20,2,10
1746197935.6647663,20,1,5
1746197935.902247,20,1,5
1746198100.7834184,20,1,5
1746198101.518583,20,1,5
1746198103.5418782,20,2,10
1746198105.284473,20,2,10
1746198112.1528502,20,1,5
1746198112.385691,20,1,5
1746198352.437256,20,1,5
1746198353.3743699,20,1,5
1746198356.641612,20,2,10
1746198358.4773746,20,2,10
1746198365.1318786,20,1,5
1746198365.3996603,20,1,5
1746198473.3683474,20,1,5
1746198474.2694576,20,1,5
1746198476.4126332,20,2,10
1746198477.938457,20,2,10
1746198484.2638357,20,1,5
1746198484.6004634,20,1,5
1746198612.0431373,20,1,5
1746198612.6800795,20,1,5
1746198614.5343888,20,2,10
1746198616.0651567,20,2,10
1746198621.9961805,20,1,5
1746198622.1902723,20,1,5
1746198810.2723575,20,1,5
1746198811.0056412,20,1,5
1746198812.839087,20,2,10
1746198814.5222285,20,2,10
1746198821.1669118,20,1,5
1746198821.4018116,20,1,5
1746199100.5201302,20,1,5
1746199101.3306198,20,1,5
1746199103.5198405,20,2,10
1746199104.9714541,20,2,10
1746199111.005302,20,1,5
1746199111.3899505,20,1,5
1746199116.5589163,20,1,5
1746199125.9899328,20,1,5
1746199132.4170363,20,1,5
1746199136.7346456,20,0,0
1746199144.1873653,20,0,0
1746199206.4541893,20,0,0
1746199207.0307553,20,0,0
1746199209.5768375,20,1,5
1746199213.9650598,20,1,5
1746199267.6288242,20,1,5
1746199268.3942816,20,1,5
1746199270.577125,20,2,10
1746199272.6938848,20,2,10
1746199279.2925193,20,1,5
1746199279.4482188,20,1,5
1746199356.7376637,20,1,5
1746199357.3421624,20,1,5
1746199360.4688065,20,2,10
1746199361.9970274,20,2,10
1746199368.0397763,20,1,5
1746199368.2718625,20,1,5
1746199440.8756256,20,1,5
1746199441.5319176,20,1,5
1746199443.5193343,20,2,10
1746199445.1771195,20,2,10
1746199452.2157986,20,1,5
1746199452.4961667,20,1,5
1746199518.7018673,20,1,5
1746199519.411174,20,1,5
1746199521.5170732,20,2,10
1746199523.2821143,20,2,10
1746199530.1926188,20,1,5
1746199530.4467196,20,1,5
1746199624.6507804,20,1,5
1746199625.314124,20,1,5
1746199627.5284333,20,2,10
1746199629.0744991,20,2,10
1746199635.3074045,20,1,5
1746199635.747279,20,1,5
1746199721.035748,20,1,5
1746199721.6854963,20,1,5
1746199723.6120448,20,2,10
1746199725.2098737,20,2,10
1746199731.8014357,20,1,5
1746199732.035258,20,1,5
1746199824.017614,20,1,5
1746199824.7474005,20,1,5
1746199826.7444503,20,2,10
1746199828.3911564,20,2,10
1746199835.192821,20,1,5
1746199835.4272,20,1,5
1746199930.8063946,20,1,5
1746199931.4654963,20,1,5
1746199933.495556,20,2,10
1746199935.0918043,20,2,10
1746199941.6747,20,1,5
1746199941.899696,20,1,5
1746200018.6089664,20,1,5
1746200019.234939,20,1,5
1746200021.1959972,20,2,10
1746200022.3773613,20,2,10
1746200028.359835,20,1,5
1746200028.9017437,20,1,5
1746200092.4199214,20,1,5
1746200093.300649,20,1,5
1746200095.544091,20,2,10
1746200097.0791767,20,2,10
1746200103.5554745,20,1,5
1746200103.8955812,20,1,5
1746200225.7405467,20,1,5
1746200226.4347222,20,1,5
1746200228.5440276,20,2,10
1746200230.2096052,20,2,10
1746200237.140273,20,1,5
1746200237.4158664,20,1,5
1746200323.7663696,20,1,5
1746200324.4450312,20,1,5
1746200326.523169,20,2,10
1746200328.140254,20,2,10
1746200335.5739362,20,1,5
1746200335.922788,20,1,5
1746200427.5194666,20,1,5
1746200428.3458574,20,1,5
1746200430.4247308,20,2,10
1746200431.9169598,20,2,10
1746200438.3034642,20,1,5
1746200438.7646904,20,1,5
1746200530.737295,20,1,5
1746200531.349927,20,1,5
1746200533.45449,20,2,10
1746200534.8634458,20,2,10
1746200541.06748,20,1,5
1746200541.2948692,20,1,5
1746200596.785387,20,1,5
1746200597.3077617,20,1,5
1746200599.5207126,20,2,10
1746200600.7126508,20,2,10
1746200606.963665,20,1,5
1746200607.198482,20,1,5
1746200778.4494548,20,1,5
1746200779.3232367,20,1,5
1746200781.5678377,20,2,10
1746200783.1436558,20,2,10
1746200789.6762695,20,1,5
1746200789.9434392,20,1,5
1746200875.4799006,20,1,5
1746200876.3619416,20,1,5
1746200878.4697855,20,2,10
1746200879.977087,20,2,10
1746200886.603626,20,1,5
1746200886.9098227,20,1,5
1746201005.9859571,20,1,5
1746201006.6374714,20,1,5
1746201008.4577022,20,2,10
1746201009.960709,20,2,10
1746201016.3941758,20,1,5
1746201016.8655365,20,1,5
1746201110.7418911,20,1,5
1746201111.4594245,20,1,5
1746201113.5903502,20,2,10
1746201115.1669416,20,2,10
1746201122.8361733,20,1,5
1746201123.2401226,20,1,5
1746201128.468625,20,1,5
1746201138.4471576,20,1,5
1746201145.153389,20,1,5
1746201150.333205,20,0,0
1746201158.8531277,20,0,0
1746201309.1621106,20,0,0
1746201309.710388,20,0,0
1746201311.5243025,20,1,5
1746201315.2662334,20,1,5
1746201434.6519434,20,1,5
1746201435.3166258,20,1,5
1746201437.4969604,20,2,10
1746201439.0185378,20,2,10
1746201445.708975,20,1,5
1746201445.9365592,20,1,5
1746202281.556792,20,1,5
1746202282.2715652,20,1,5
1746202284.4229069,20,2,10
1746202285.8827522,20,2,10
1746202292.166603,20,1,5
1746202292.371206,20,1,5
1746202729.8605747,20,1,5
1746202730.4696484,20,1,5
1746202732.5439322,20,2,10
1746202734.207339,20,2,10
1746202741.8935,20,1,5
1746202742.1364841,20,1,5
1746203039.4002368,20,1,5
1746203040.2227192,20,1,5
1746203042.3343246,20,2,10
1746203043.642717,20,2,10
1746203049.8103728,20,1,5
1746203050.016301,20,1,5
1746203206.6723719,20,1,5
1746203207.3627527,20,1,5
1746203209.942136,20,2,10
1746203211.5674605,20,2,10
1746203218.9156108,20,1,5
1746203219.1567676,20,1,5
1746203410.8847911,20,1,5
1746203411.5636678,20,1,5
1746203413.4918675,20,2,10
1746203415.0908413,20,2,10
1746203422.1892962,20,1,5
1746203422.4123993,20,1,5
1746203622.5340831,20,1,5
1746203623.2683966,20,1,5
1746203625.4327447,20,2,10
1746203626.8178985,20,2,10
1746203633.8722432,20,1,5
1746203634.0665057,20,1,5
1746204006.5950575,20,1,5
1746204007.3098412,20,1,5
1746204009.4773767,20,2,10
1746204010.8984754,20,2,10
1746204017.5126717,20,1,5
1746204017.8918548,20,1,5
1746204203.9908702,20,1,5
1746204204.6380281,20,1,5
1746204206.442055,20,2,10
1746204207.8750453,20,2,10
1746204214.440188,20,1,5
1746204214.902146,20,1,5
1746205250.3921416,20,1,5
1746205251.2005522,20,1,5
1746205253.134679,20,2,10
1746205254.465263,20,2,10
1746205260.7404494,20,1,5
1746205260.9402082,20,1,5
1746205420.0171645,20,1,5
1746205420.7196858,20,1,5
1746205423.6140954,20,2,10
1746205425.2727907,20,2,10
1746205432.6751947,20,1,5
1746205432.9453044,20,1,5
1746205685.739096,20,1,5
1746205686.4854643,20,1,5
1746205688.5270293,20,2,10
1746205690.1195579,20,2,10
1746205697.2212646,20,1,5
1746205697.4631715,20,1,5
1746205886.4583306,20,1,5
1746205887.222305,20,1,5
1746205889.137806,20,2,10
1746205890.2116528,20,2,10
1746205896.5097146,20,1,5
1746205896.8709793,20,1,5
1746206198.687417,20,1,5
1746206199.3586721,20,1,5
1746206201.5251162,20,2,10
1746206203.2143047,20,2,10
1746206210.5698557,20,1,5
1746206210.883426,20,1,5
1746206409.1984425,20,1,5
1746206409.8193035,20,1,5
1746206411.609122,20,2,10
1746206413.1060905,20,2,10
1746206420.653057,20,1,5
1746206420.8793101,20,1,5
1746206602.1412816,20,1,5
1746206602.7863183,20,1,5
1746206604.655547,20,2,10
1746206606.2532694,20,2,10
1746206613.5077207,20,1,5
1746206613.911883,20,1,5
1746206745.9986982,20,1,5
1746206746.6206088,20,1,5
1746206748.4697814,20,2,10
1746206749.9989848,20,2,10
1746206757.0854886,20,1,5
1746206757.3016493,20,1,5
1746206895.355495,20,1,5
1746206896.2561893,20,1,5
1746206898.8411314,20,2,10
1746206900.3645546,20,2,10
1746206907.6675055,20,1,5
1746206907.919851,20,1,5
1746207087.1594725,20,1,5
1746207087.8425553,20,1,5
1746207089.7300808,20,2,10
1746207091.2107966,20,2,10
1746207098.768574,20,1,5
1746207099.2379823,20,1,5
1746207105.505057,20,1,5
1746207112.3377285,20,1,5
1746207117.784891,20,0,0
1746207125.7363126,20,0,0
1746207437.8047352,20,0,0
1746207438.3043978,20,0,0
1746207440.4115386,20,1,5
1746207444.9426093,20,1,5
1746207522.0886877,20,1,5
1746207522.7485728,20,1,5
1746207524.646793,20,2,10
1746207526.230429,20,2,10
1746207533.110851,20,1,5
1746207533.3148885,20,1,5
1746207796.8902907,20,1,5
1746207797.5327723,20,1,5
1746207799.4779508,20,2,10
1746207800.968386,20,2,10
1746207808.119532,20,1,5
1746207808.3316338,20,1,5
1746207941.8663516,20,1,5
1746207942.4683151,20,1,5
1746207944.4251757,20,2,10
1746207946.595485,20,2,10
1746207953.6003978,20,1,5
1746207953.9183338,20,1,5
1746208096.6108172,20,1,5
1746208097.3325107,20,1,5
1746208099.4852183,20,2,10
1746208101.1399093,20,2,10
1746208108.636891,20,1,5
1746208108.9089918,20,1,5
1746208247.717226,20,1,5
1746208248.3543675,20,1,5
1746208250.4628682,20,2,10
1746208251.8946378,20,2,10
1746208258.7143185,20,1,5
1746208258.9097915,20,1,5
1746208329.9704523,20,1,5
1746208330.303168,20,1,5
1746208332.3485463,20,2,10
1746208333.3990455,20,2,10
1746208340.062575,20,1,5
1746208340.2505348,20,1,5
1746208404.1461928,20,1,5
1746208404.8034282,20,1,5
1746208406.6782053,20,2,10
1746208408.3419209,20,2,10
1746208416.2394943,20,1,5
1746208416.4623718,20,1,5
1746208511.818845,20,1,5
1746208512.3937778,20,1,5
1746208514.3731294,20,2,10
1746208515.7383301,20,2,10
1746208522.81093,20,1,5
1746208522.9194798,20,1,5
1746208591.227483,20,1,5
1746208591.8848333,20,1,5
1746208593.8095682,20,2,10
1746208595.3701422,20,2,10
1746208603.8819897,20,1,5
1746208604.0981236,20,1,5
1746208826.805308,20,1,5
1746208827.4091501,20,1,5
1746208829.4358475,20,2,10
1746208830.8699281,20,2,10
1746208837.7578323,20,1,5
1746208838.020563,20,1,5
1746208957.2595637,20,1,5
1746208957.9465182,20,1,5
1746208959.7509017,20,2,10
1746208961.233781,20,2,10
1746208969.1394744,20,1,5
1746208969.403239,20,1,5
1746209120.0633304,20,1,5
1746209120.6884842,20,1,5
1746209122.4925194,20,2,10
1746209123.9906476,20,2,10
1746209131.6442742,20,1,5
1746209131.7458344,20,1,5
1746209200.1732793,20,1,5
1746209200.734813,20,1,5
1746209202.4783762,20,2,10
1746209203.8613162,20,2,10
1746209211.5608473,20,1,5
1746209211.6582043,20,1,5
1746209265.6332848,20,1,5
1746209266.165342,20,1,5
1746209268.1403472,20,2,10
1746209269.4910576,20,2,10
1746209276.3376431,20,1,5
1746209276.8667834,20,1,5
1746209340.0267568,20,1,5
1746209340.6805668,20,1,5
1746209342.5015311,20,2,10
1746209344.0055509,20,2,10
1746209351.3582976,20,1,5
1746209351.871742,20,1,5
1746209419.9897108,20,1,5
1746209420.6621814,20,1,5
1746209422.4695024,20,2,10
1746209423.9821656,20,2,10
1746209431.3030465,20,1,5
1746209431.662556,20,1,5
1746209574.4467788,20,1,5
1746209576.3252735,20,1,5
1746209578.4751954,20,2,10
1746209580.031262,20,2,10
1746209588.602343,20,1,5
1746209588.7428427,20,1,5
1746209666.8645957,20,1,5
1746209667.4939787,20,1,5
1746209669.4021366,20,2,10
1746209670.9124007,20,2,10
1746209678.4133258,20,1,5
1746209678.8855584,20,1,5
1746209753.95491,20,1,5
1746209754.5825922,20,1,5
1746209756.4219627,20,2,10
1746209757.7991579,20,2,10
1746209765.3056855,20,1,5
1746209766.0299575,20,1,5
1746209771.388862,20,1,5
1746209781.5655892,20,1,5
1746209787.9581738,20,1,5
1746209793.034592,20,0,0
1746209800.80634,20,0,0
1746209952.0868783,20,0,0
1746209952.595067,20,0,0
1746209954.4576406,20,1,5
1746209958.4338253,20,1,5
1746210110.646747,20,1,5
1746210111.3309617,20,1,5
1746210113.4722207,20,2,10
1746210115.0200927,20,2,10
1746210122.7382946,20,1,5
1746210122.992993,20,1,5
1746210202.481921,20,1,5
1746210203.2907097,20,1,5
1746210205.5065732,20,2,10
1746210206.9998355,20,2,10
1746210214.7402203,20,1,5
1746210214.8699932,20,1,5
1746210305.7870212,20,1,5
1746210306.3973637,20,1,5
1746210308.5001223,20,2,10
1746210309.925038,20,2,10
1746210317.3668628,20,1,5
1746210317.8701243,20,1,5
1746210479.598524,20,1,5
1746210480.2941976,20,1,5
1746210483.7323031,20,2,10
1746210485.1935675,20,2,10
1746210495.22467,20,1,5
1746210495.3793302,20,1,5
1746210734.1530888,20,1,5
1746210734.7929316,20,1,5
1746210736.6206582,20,2,10
1746210738.154153,20,2,10
1746210745.8459706,20,1,5
1746210746.0774221,20,1,5
1746210831.916401,20,1,5
1746210832.555725,20,1,5
1746210834.4897635,20,2,10
1746210836.0423903,20,2,10
1746210843.7480333,20,1,5
1746210843.9776893,20,1,5
1746210914.5591655,20,1,5
1746210915.0790324,20,1,5
1746210916.7022882,20,2,10
1746210917.4346826,20,2,10
1746210924.0613768,20,1,5
1746210924.260799,20,1,5
1746210981.9976313,20,1,5
1746210982.5985262,20,1,5
1746210984.4111352,20,2,10
1746210985.7734902,20,2,10
1746210993.006235,20,1,5
1746210993.252016,20,1,5
1746211076.2700858,20,1,5
1746211076.974287,20,1,5
1746211078.7352343,20,2,10
1746211080.2879887,20,2,10
1746211088.1950407,20,1,5
1746211088.4335184,20,1,5
1746211265.076933,20,1,5
1746211265.651472,20,1,5
1746211267.459125,20,2,10
1746211268.84281,20,2,10
1746211275.9616811,20,1,5
1746211276.1682475,20,1,5
1746211452.498308,20,1,5
1746211453.2925396,20,1,5
1746211455.4935114,20,2,10
1746211456.996403,20,2,10
1746211464.76296,20,1,5
1746211464.9933941,20,1,5
1746211627.3182688,20,1,5
1746211628.3864784,20,1,5
1746211630.49407,20,2,10
1746211632.0028343,20,2,10
1746211639.8383622,20,1,5
1746211640.067365,20,1,5
1746212177.8173132,20,1,5
1746212178.4655108,20,1,5
1746212181.4824314,20,2,10
1746212182.8659883,20,2,10
1746212190.0092897,20,1,5
1746212190.2471037,20,1,5
1746212381.4546893,20,1,5
1746212382.2991543,20,1,5
1746212384.5057552,20,2,10
1746212386.019152,20,2,10
1746212393.8345404,20,1,5
1746212394.0507176,20,1,5
1746212563.3396244,20,1,5
1746212564.0293899,20,1,5
1746212565.6513798,20,2,10
1746212566.7108984,20,2,10
1746212573.3014095,20,1,5
1746212573.6538599,20,1,5
1746212690.4237542,20,1,5
1746212691.2415352,20,1,5
1746212693.3564231,20,2,10
1746212694.7230296,20,2,10
1746212702.1691325,20,1,5
1746212702.406735,20,1,5
1746212876.6315973,20,1,5
1746212877.3015473,20,1,5
1746212879.4591143,20,2,10
1746212880.924704,20,2,10
1746212888.7740252,20,1,5
1746212889.0250626,20,1,5
1746212962.8033078,20,1,5
1746212963.4256396,20,1,5
1746212965.3647552,20,2,10
1746212966.8417706,20,2,10
1746212974.959659,20,1,5
1746212975.0726886,20,1,5
1746213101.3993745,20,1,5
1746213102.2462275,20,1,5
1746213104.365377,20,2,10
1746213105.5923822,20,2,10
1746213113.0455554,20,1,5
1746213113.3920872,20,1,5
1746213119.0380855,20,1,5
1746213128.7952106,20,1,5
1746213138.291124,20,1,5
1746213144.522018,20,1,5
1746213149.4823658,20,0,0
1746213157.3061664,20,0,0
1746213233.9037094,20,0,0
1746213234.4113572,20,0,0
1746213236.5029888,20,1,5
1746213241.4324586,20,1,5
1746213314.31012,20,1,5
1746213315.034396,20,1,5
1746213316.8866227,20,2,10
1746213318.1993861,20,2,10
1746213325.7095523,20,1,5
1746213325.923334,20,1,5
1746213397.8693373,20,1,5
1746213398.468051,20,1,5
1746213400.3846202,20,2,10
1746213401.937269,20,2,10
1746213413.4274757,20,1,5
1746213413.5671217,20,1,5
1746213510.5275812,20,1,5
1746213511.2895272,20,1,5
1746213513.4009447,20,2,10
1746213514.8759394,20,2,10
1746213523.3697214,20,1,5
1746213523.477459,20,1,5
1746213667.3134146,20,1,5
1746213668.0697246,20,1,5
1746213670.1570687,20,2,10
1746213671.324349,20,2,10
1746213678.4598534,20,1,5
1746213678.882402,20,1,5
1746213739.6022704,20,1,5
1746213740.2653,20,1,5
1746213742.3403478,20,2,10
1746213743.646732,20,2,10
1746213751.1649504,20,1,5
1746213751.366471,20,1,5
1746213927.93836,20,1,5
1746213928.5237842,20,1,5
1746213930.3746767,20,2,10
1746213931.6629958,20,2,10
1746213938.989928,20,1,5
1746213939.1841497,20,1,5
1746214103.51984,20,1,5
1746214104.1349635,20,1,5
1746214106.1224463,20,2,10
1746214107.0862231,20,2,10
1746214113.802898,20,1,5
1746214114.0132384,20,1,5
1746214178.1914701,20,1,5
1746214178.76206,20,1,5
1746214180.4975095,20,2,10
1746214181.7448256,20,2,10
1746214189.1022115,20,1,5
1746214189.2867205,20,1,5
1746214376.6583905,20,1,5
1746214377.2265666,20,1,5
1746214379.2223876,20,2,10
1746214380.4858403,20,2,10
1746214387.9545329,20,1,5
1746214388.1494756,20,1,5
1746215273.31536,20,1,5
1746215274.1391356,20,1,5
1746215276.060161,20,2,10
1746215277.4219337,20,2,10
1746215285.1102262,20,1,5
1746215285.3211224,20,1,5
1746215402.6229591,20,1,5
1746215403.2472477,20,1,5
1746215405.3465312,20,2,10
1746215406.6385164,20,2,10
1746215414.0291576,20,1,5
1746215414.219506,20,1,5
1746215545.8207424,20,1,5
1746215546.378563,20,1,5
1746215548.3510375,20,2,10
1746215549.6826189,20,2,10
1746215557.3531857,20,1,5
1746215557.4793515,20,1,5
1746215921.0574281,20,1,5
1746215921.661532,20,1,5
1746215923.4698122,20,2,10
1746215924.94947,20,2,10
1746215932.2115617,20,1,5
1746215932.4223835,20,1,5
1746216091.6133637,20,1,5
1746216092.2637465,20,1,5
1746216094.4411428,20,2,10
1746216095.8377929,20,2,10
1746216103.268516,20,1,5
1746216103.5114868,20,1,5
1746216272.0398285,20,1,5
1746216272.6605082,20,1,5
1746216274.5929196,20,2,10
1746216276.080634,20,2,10
1746216284.6607714,20,1,5
1746216284.7877772,20,1,5
1746216364.4747198,20,1,5
1746216365.2764528,20,1,5
1746216367.4113855,20,2,10
1746216368.805726,20,2,10
1746216377.215181,20,1,5
1746216377.3462358,20,1,5
1746216797.5605848,20,1,5
1746216798.2400348,20,1,5
1746216800.364117,20,2,10
1746216801.6428359,20,2,10
1746216808.961477,20,1,5
1746216809.1715138,20,1,5
1746216941.9000592,20,1,5
1746216942.5067847,20,1,5
1746216944.4311023,20,2,10
1746216945.9591749,20,2,10
1746216954.5607624,20,1,5
1746216954.6865568,20,1,5
1746217023.9387276,20,1,5
1746217024.4947176,20,1,5
1746217026.322985,20,2,10
1746217027.2692647,20,2,10
1746217033.6749523,20,1,5
1746217034.0285509,20,1,5
1746217039.4045584,20,1,5
1746217049.070463,20,1,5
1746217059.1179357,20,1,5
1746217069.1636443,20,1,5
1746217075.3975708,20,1,5
1746217080.4588606,20,0,0
1746217088.6645658,20,0,0
1746217292.4063056,20,0,0
1746217292.7542129,20,0,0
1746217294.4126115,20,1,5
1746217298.856135,20,1,5
1746217402.9406655,20,1,5
1746217403.5576947,20,1,5
1746217405.4606073,20,2,10
1746217407.036617,20,2,10
1746217415.615364,20,1,5
1746217415.742666,20,1,5
1746217572.9643004,20,1,5
1746217573.5569956,20,1,5
1746217575.4552033,20,2,10
1746217576.9165838,20,2,10
1746217585.1740944,20,1,5
1746217585.265119,20,1,5
1746217790.1004922,20,1,5
1746217790.726352,20,1,5
1746217792.5559468,20,2,10
1746217794.0532982,20,2,10
1746217801.857786,20,1,5
1746217802.0657587,20,1,5
1746217880.88781,20,1,5
1746217881.3510294,20,1,5
1746217883.2498822,20,2,10
1746217884.1843655,20,2,10
1746217891.193177,20,1,5
1746217891.2603912,20,1,5
1746217997.859677,20,1,5
1746217998.5512252,20,1,5
1746218000.4718688,20,2,10
1746218001.9321554,20,2,10
1746218009.6628397,20,1,5
1746218009.900068,20,1,5
1746218170.6560547,20,1,5
1746218171.3390412,20,1,5
1746218173.4476376,20,2,10
1746218174.8859062,20,2,10
1746218182.8097038,20,1,5
1746218183.0678716,20,1,5
1746218347.7669556,20,1,5
1746218348.357618,20,1,5
1746218350.3943398,20,2,10
1746218351.75292,20,2,10
1746218359.3292036,20,1,5
1746218359.8273866,20,1,5
1746218492.7274702,20,1,5
1746218493.312734,20,1,5
1746218495.4851038,20,2,10
1746218496.7898302,20,2,10
1746218503.8678596,20,1,5
1746218504.0635078,20,1,5
1746219174.377848,20,1,5
1746219175.3237932,20,1,5
1746219177.472567,20,2,10
1746219178.994069,20,2,10
1746219187.566973,20,1,5
1746219187.6726751,20,1,5
1746219384.3640444,20,1,5
1746219385.1657193,20,1,5
1746219387.1541102,20,2,10
1746219388.3856504,20,2,10
1746219395.998799,20,1,5
1746219396.1794295,20,1,5
1746219561.8294792,20,1,5
1746219562.4676373,20,1,5
1746219564.499052,20,2,10
1746219566.049836,20,2,10
1746219573.9287527,20,1,5
1746219574.1563826,20,1,5
1746219923.7952764,20,1,5
1746219924.39729,20,1,5
1746219926.4053843,20,2,10
1746219927.8539267,20,2,10
1746219936.416967,20,1,5
1746219936.8755105,20,1,5
1746220028.6056876,20,1,5
1746220029.2946844,20,1,5
1746220031.4686363,20,2,10
1746220032.9618435,20,2,10
1746220041.6348388,20,1,5
1746220041.755026,20,1,5
1746220170.8488684,20,1,5
1746220171.4812655,20,1,5
1746220173.4704123,20,2,10
1746220174.9835207,20,2,10
1746220183.0361059,20,1,5
1746220183.2873101,20,1,5
1746220276.787028,20,1,5
1746220277.379464,20,1,5
1746220279.5644178,20,2,10
1746220281.0035965,20,2,10
1746220289.585418,20,1,5
1746220289.68958,20,1,5
1746220373.7132149,20,1,5
1746220374.148325,20,1,5
1746220375.964098,20,2,10
1746220377.0985205,20,2,10
1746220384.5918434,20,1,5
1746220384.6992557,20,1,5
1746220922.690688,20,1,5
1746220923.204792,20,1,5
1746220925.2213616,20,2,10
1746220926.4947777,20,2,10
1746220933.543829,20,1,5
1746220933.9151027,20,1,5
1746221149.251267,20,1,5
1746221149.8772516,20,1,5
1746221151.674593,20,2,10
1746221153.076401,20,2,10
1746221161.7678232,20,1,5
1746221161.86755,20,1,5
1746221301.0360942,20,1,5
1746221301.642338,20,1,5
1746221303.5425918,20,2,10
1746221304.8979864,20,2,10
1746221312.2228477,20,1,5
1746221312.6748111,20,1,5
1746221318.6998987,20,1,5
1746221324.9921072,20,1,5
1746221330.2478125,20,0,0
1746221337.698238,20,0,0
1746221571.489845,20,0,0
1746221571.9897618,20,0,0
1746221573.7992637,20,1,5
1746221579.0693045,20,1,5
1746221805.5616143,20,1,5
1746221806.1980398,20,1,5
1746221808.3363605,20,2,10
1746221809.6441941,20,2,10
1746221817.4852054,20,1,5
1746221817.6059594,20,1,5
1746222091.3876133,20,1,5
1746222092.2507532,20,1,5
1746222094.4113371,20,2,10
1746222095.8815973,20,2,10
1746222104.847677,20,1,5
1746222104.9523697,20,1,5
1746222415.5042431,20,1,5
1746222416.1741717,20,1,5
1746222418.1148536,20,2,10
1746222419.239159,20,2,10
1746222426.4623995,20,1,5
1746222426.8979797,20,1,5
1746222589.0090363,20,1,5
1746222589.566331,20,1,5
1746222591.4442627,20,2,10
1746222592.778426,20,2,10
1746222600.3875456,20,1,5
1746222600.8640294,20,1,5
1746222763.6792126,20,1,5
1746222764.2451913,20,1,5
1746222766.411906,20,2,10
1746222767.820995,20,2,10
1746222776.0303686,20,1,5
1746222776.242753,20,1,5
1746223244.5231857,20,1,5
1746223245.2446742,20,1,5
1746223247.208307,20,2,10
1746223248.5093522,20,2,10
1746223256.805422,20,1,5
1746223256.9059024,20,1,5
1746223439.6798964,20,1,5
1746223440.3076727,20,1,5
1746223442.4470334,20,2,10
1746223443.8867671,20,2,10
1746223451.2739844,20,1,5
1746223451.5609574,20,1,5
1746223651.9810953,20,1,5
1746223652.585074,20,1,5
1746223654.4790435,20,2,10
1746223655.9277685,20,2,10
1746223664.0296044,20,1,5
1746223664.1351898,20,1,5
1746224396.687168,20,1,5
1746224397.2351182,20,1,5
1746224399.3680565,20,2,10
1746224400.6198397,20,2,10
1746224408.8205473,20,1,5
1746224409.00618,20,1,5
1746225202.393873,20,1,5
1746225203.105433,20,1,5
1746225205.1374753,20,2,10
1746225206.2125638,20,2,10
1746225213.8189793,20,1,5
1746225214.0481777,20,1,5
1746225467.2576075,20,1,5
1746225467.8610702,20,1,5
1746225469.7083127,20,2,10
1746225471.0865204,20,2,10
1746225478.7535214,20,1,5
1746225478.9548013,20,1,5
1746225587.230193,20,1,5
1746225587.8245704,20,1,5
1746225589.6528575,20,2,10
1746225591.105627,20,2,10
1746225600.2319136,20,1,5
1746225600.341844,20,1,5
1746225858.4638221,20,1,5
1746225859.2567022,20,1,5
1746225861.427035,20,2,10
1746225862.7834163,20,2,10
1746225871.2483385,20,1,5
1746225871.3560374,20,1,5
1746225988.7121038,20,1,5
1746225989.2522552,20,1,5
1746225991.2011328,20,2,10
1746225992.4531522,20,2,10
1746226000.1385922,20,1,5
1746226000.3501506,20,1,5
1746226174.4172044,20,1,5
1746226175.2873676,20,1,5
1746226177.4015334,20,2,10
1746226178.869185,20,2,10
1746226188.0650635,20,1,5
1746226188.161832,20,1,5
1746226432.9476948,20,1,5
1746226433.5038257,20,1,5
1746226435.3459892,20,2,10
1746226436.587998,20,2,10
1746226444.5460558,20,1,5
1746226444.8872285,20,1,5
1746226615.452652,20,1,5
1746226616.2898588,20,1,5
1746226618.4140291,20,2,10
1746226619.8925898,20,2,10
1746226628.1156228,20,1,5
1746226628.376317,20,1,5
1746226838.1246083,20,1,5
1746226838.6063364,20,1,5
1746226840.2872064,20,2,10
1746226841.3527286,20,2,10
1746226848.510242,20,1,5
1746226848.8578725,20,1,5
1746227017.6739666,20,1,5
1746227018.2826076,20,1,5
1746227020.402142,20,2,10
1746227021.6959014,20,2,10
1746227030.9658272,20,1,5
1746227031.2035704,20,1,5
1746227038.1522763,20,1,5
1746227048.2204351,20,1,5
1746227054.4013827,20,1,5
1746227059.849074,20,0,0
1746227067.3195744,20,0,0
1746227724.4535284,20,0,0
1746227724.943103,20,0,0
1746227726.7054873,20,1,5
1746227732.0504925,20,1,5
1746228168.7938154,20,1,5
1746228169.379859,20,1,5
1746228171.3972075,20,2,10
1746228172.8747177,20,2,10
1746228180.9484675,20,1,5
1746228181.1534128,20,1,5
1746228364.4371321,20,1,5
1746228365.2518497,20,1,5
1746228367.3196402,20,2,10
1746228368.594622,20,2,10
1746228376.2346685,20,1,5
1746228376.4686804,20,1,5
1746228682.776948,20,1,5
1746228683.3765914,20,1,5
1746228685.4008002,20,2,10
1746228686.756842,20,2,10
1746228695.876426,20,1,5
1746228695.969416,20,1,5
1746229297.572185,20,1,5
1746229298.2434633,20,1,5
1746229300.239639,20,2,10
1746229301.5163908,20,2,10
1746229309.4755247,20,1,5
1746229309.892977,20,1,5
1746229494.051503,20,1,5
1746229494.618323,20,1,5
1746229496.3491,20,2,10
1746229497.6808465,20,2,10
1746229505.7171237,20,1,5
1746229505.9434655,20,1,5
1746229678.3961957,20,1,5
1746229679.2567785,20,1,5
1746229681.323388,20,2,10
1746229682.7274003,20,2,10
1746229691.8738859,20,1,5
1746229691.983699,20,1,5
1746229811.4089835,20,1,5
1746229812.1838765,20,1,5
1746229814.1399977,20,2,10
1746229815.310237,20,2,10
1746229822.7111404,20,1,5
1746229822.961191,20,1,5
1746230078.7740586,20,1,5
1746230079.3852477,20,1,5
1746230081.3738017,20,2,10
1746230082.7892745,20,2,10
1746230091.899506,20,1,5
1746230092.0065656,20,1,5
1746230499.088966,20,1,5
1746230499.6604595,20,1,5
1746230501.385374,20,2,10
1746230502.6793065,20,2,10
1746230510.775145,20,1,5
1746230510.995986,20,1,5
1746230687.7757342,20,1,5
1746230688.303265,20,1,5
1746230690.4195185,20,2,10
1746230691.588721,20,2,10
1746230699.7856836,20,1,5
1746230699.872237,20,1,5
1746230871.4047184,20,1,5
1746230872.1568775,20,1,5
1746230874.1530902,20,2,10
1746230875.363832,20,2,10
1746230883.083964,20,1,5
1746230883.2907417,20,1,5
1746231000.4926693,20,1,5
1746231001.165132,20,1,5
1746231003.2760699,20,2,10
1746231004.4175582,20,2,10
1746231011.933033,20,1,5
1746231012.1206772,20,1,5
1746231368.8023524,20,1,5
1746231369.3483453,20,1,5
1746231371.4125545,20,2,10
1746231372.7456596,20,2,10
1746231381.0020273,20,1,5
1746231381.2121346,20,1,5
1746232131.0209088,20,1,5
1746232132.5829046,20,1,5
1746232134.3967369,20,2,10
1746232135.729252,20,2,10
1746232144.032437,20,1,5
1746232144.1915014,20,1,5
1746232251.8984396,20,1,5
1746232252.3965225,20,1,5
1746232254.334673,20,2,10
1746232255.5192986,20,2,10
1746232263.6555235,20,1,5
1746232263.751777,20,1,5
1746232646.0624778,20,1,5
1746232646.5635135,20,1,5
1746232648.3115668,20,2,10
1746232649.4827504,20,2,10
1746232657.0435512,20,1,5
1746232657.2417324,20,1,5
1746233009.6088116,20,1,5
1746233010.186287,20,1,5
1746233012.1865685,20,2,10
1746233013.3714592,20,2,10
1746233021.8043413,20,1,5
1746233021.9965386,20,1,5
1746233394.4123526,20,1,5
1746233395.2539952,20,1,5
1746233398.447049,20,2,10
1746233399.7311344,20,2,10
1746233407.763572,20,1,5
1746233407.9555347,20,1,5
1746234025.837779,20,1,5
1746234026.3522277,20,1,5
1746234028.4152777,20,2,10
1746234029.564139,20,2,10
1746234038.1087353,20,1,5
1746234038.310665,20,1,5
1746234045.303082,20,1,5
1746234055.4480321,20,1,5
1746234061.5473373,20,1,5
1746234067.3000293,20,0,0
1746234074.96018,20,0,0
1746234444.8573492,20,0,0
1746234445.285157,20,0,0
1746234447.3658957,20,1,5
1746234452.3357732,20,1,5
1746234973.5920703,20,1,5
1746234974.263259,20,1,5
1746234976.3828316,20,2,10
1746234977.7365763,20,2,10
1746234986.0574872,20,1,5
1746234986.2745051,20,1,5
1746236245.6506205,20,1,5
1746236246.208485,20,1,5
1746236248.1775548,20,2,10
1746236249.3956268,20,2,10
1746236258.661394,20,1,5
1746236258.7446814,20,1,5
1746236551.9780633,20,1,5
1746236552.5300784,20,1,5
1746236554.4050713,20,2,10
1746236555.6702716,20,2,10
1746236563.769939,20,1,5
1746236563.978511,20,1,5
1746236841.3974528,20,1,5
1746236842.2657406,20,1,5
1746236844.449513,20,2,10
1746236845.8777153,20,2,10
1746236855.7994854,20,1,5
1746236855.9049907,20,1,5
1746236955.8632433,20,1,5
1746236956.3877006,20,1,5
1746236958.3192098,20,2,10
1746236959.5281363,20,2,10
1746236969.1285794,20,1,5
1746236969.2422495,20,1,5
1746237131.4190652,20,1,5
1746237132.2884471,20,1,5
1746237134.4026859,20,2,10
1746237135.787967,20,2,10
1746237145.6858518,20,1,5
1746237145.7833586,20,1,5
1746237267.0717633,20,1,5
1746237267.5913339,20,1,5
1746237269.390786,20,2,10
1746237270.62826,20,2,10
1746237279.858244,20,1,5
1746237279.9666421,20,1,5
1746237523.967491,20,1,5
1746237524.5428762,20,1,5
1746237526.355242,20,2,10
1746237527.6323426,20,2,10
1746237536.987685,20,1,5
1746237537.0740445,20,1,5
1746237882.749903,20,1,5
1746237883.382774,20,1,5
1746237885.496438,20,2,10
1746237886.9894073,20,2,10
1746237897.6682022,20,1,5
1746237897.7793005,20,1,5
1746238158.8058467,20,1,5
1746238159.5491986,20,1,5
1746238161.4942226,20,2,10
1746238162.9220147,20,2,10
1746238171.7983499,20,1,5
1746238171.8905802,20,1,5
1746238292.9172688,20,1,5
1746238294.5642717,20,1,5
1746238296.4128394,20,2,10
1746238297.8791463,20,2,10
1746238307.5032518,20,1,5
1746238307.583823,20,1,5
1746239084.3754222,20,1,5
1746239085.3043056,20,1,5
1746239087.4015052,20,2,10
1746239088.8352954,20,2,10
1746239097.711258,20,1,5
1746239097.9180489,20,1,5
1746239806.2823982,20,1,5
1746239806.8462274,20,1,5
1746239808.4857156,20,2,10
1746239809.701068,20,2,10
1746239817.8703153,20,1,5
1746239817.9731371,20,1,5
1746240394.5699055,20,1,5
1746240395.2760508,20,1,5
1746240397.3883023,20,2,10
1746240398.7629025,20,2,10
1746240407.5906188,20,1,5
1746240407.8947399,20,1,5
1746241872.3092568,20,1,5
1746241873.1805534,20,1,5
1746241875.3141878,20,2,10
1746241876.8325083,20,2,10
1746241887.8338144,20,1,5
1746241887.9550848,20,1,5
1746242254.2339914,20,1,5
1746242254.8528569,20,1,5
1746242256.6701002,20,2,10
1746242258.1682234,20,2,10
1746242267.642638,20,1,5
1746242267.7844257,20,1,5
1746242502.222825,20,1,5
1746242502.8946452,20,1,5
1746242504.7831445,20,2,10
1746242506.335128,20,2,10
1746242516.299309,20,1,5
1746242516.644691,20,1,5
1746243746.416764,20,1,5
1746243747.2336047,20,1,5
1746243749.3550649,20,2,10
1746243750.6951027,20,2,10
1746243759.667878,20,1,5
1746243759.877406,20,1,5
1746245289.833989,20,1,5
1746245290.4030538,20,1,5
1746245292.3379784,20,2,10
1746245293.4117427,20,2,10
1746245302.0381954,20,1,5
1746245302.3861234,20,1,5
1746245309.432736,20,1,5
1746245320.5395896,20,1,5
1746245330.2251964,20,1,5
1746245336.54468,20,1,5
1746245342.6633742,20,0,0
1746245350.8983893,20,0,0
1746246404.75538,20,0,0
1746246405.2628288,20,0,0
1746246407.5296638,20,1,5
1746246413.9078846,20,1,5
1746247007.5402677,20,1,5
1746247008.2290876,20,1,5
1746247010.2725923,20,2,10
1746247011.6329174,20,2,10
1746247021.7412426,20,1,5
1746247021.8714821,20,1,5
1746247401.5586002,20,1,5
1746247402.2535186,20,1,5
1746247404.3746545,20,2,10
1746247405.728436,20,2,10
1746247415.6201158,20,1,5
1746247415.7316132,20,1,5
1746247675.8969438,20,1,5
1746247676.5053425,20,1,5
1746247678.5734224,20,2,10
1746247680.0661263,20,2,10
1746247689.614954,20,1,5
1746247689.738623,20,1,5
1746247838.344486,20,1,5
1746247839.1686893,20,1,5
1746247841.1486375,20,2,10
1746247842.3567116,20,2,10
1746247851.1424377,20,1,5
1746247851.2504213,20,1,5
1746248315.0076647,20,1,5
1746248315.551429,20,1,5
1746248317.381341,20,2,10
1746248318.7146373,20,2,10
1746248328.5991912,20,1,5
1746248328.714363,20,1,5
1746249857.1380336,20,1,5
1746249857.607513,20,1,5
1746249859.3228986,20,2,10
1746249860.359234,20,2,10
1746249868.0388832,20,1,5
1746249868.1119397,20,1,5
1746250724.8444312,20,1,5
1746250725.3563302,20,1,5
1746250727.3213105,20,2,10
1746250728.4744654,20,2,10
1746250736.9853451,20,1,5
1746250737.0716054,20,1,5
1746251022.9130788,20,1,5
1746251023.4280636,20,1,5
1746251025.3641887,20,2,10
1746251026.5492277,20,2,10
1746251035.3218746,20,1,5
1746251035.7987764,20,1,5
1746251708.3453207,20,1,5
1746251709.1139107,20,1,5
1746251711.1113338,20,2,10
1746251712.2292302,20,2,10
1746251720.4190361,20,1,5
1746251720.8737817,20,1,5
1746252962.2055404,20,1,5
1746252962.7566807,20,1,5
1746252964.4863117,20,2,10
1746252965.8028014,20,2,10
1746252975.2481456,20,1,5
1746252975.3422697,20,1,5
1746254959.200577,20,1,5
1746254959.7483518,20,1,5
1746254961.5251586,20,2,10
1746254962.8223681,20,2,10
1746254971.8218343,20,1,5
1746254971.9441519,20,1,5
1746255703.2336664,20,1,5
1746255703.8519738,20,1,5
1746255705.6520386,20,2,10
1746255707.0258994,20,2,10
1746255716.7496023,20,1,5
1746255716.87526,20,1,5
1746256310.4920282,20,1,5
1746256311.3051014,20,1,5
1746256313.394352,20,2,10
1746256314.860371,20,2,10
1746256325.0009859,20,1,5
1746256325.1287858,20,1,5
1746256898.5427039,20,1,5
1746256899.2650335,20,1,5
1746256901.396189,20,2,10
1746256902.7717927,20,2,10
1746256912.7788525,20,1,5
1746256912.8805196,20,1,5
1746258586.7175004,20,1,5
1746258587.2616365,20,1,5
1746258589.383699,20,2,10
1746258590.6445901,20,2,10
1746258599.9507964,20,1,5
1746258600.041381,20,1,5
1746258848.996427,20,1,5
1746258849.6110494,20,1,5
1746258851.388747,20,2,10
1746258852.8556004,20,2,10
1746258863.3240433,20,1,5
1746258863.4491153,20,1,5
1746260700.574062,20,1,5
1746260701.2593746,20,1,5
1746260703.384017,20,2,10
1746260704.6923826,20,2,10
1746260713.7053874,20,1,5
1746260713.9074848,20,1,5
1746261715.3125453,20,1,5
1746261716.1115098,20,1,5
1746261718.0683312,20,2,10
1746261719.419199,20,2,10
1746261730.0057328,20,1,5
1746261730.2211528,20,1,5
1746262287.6370807,20,1,5
1746262288.2849548,20,1,5
1746262290.437264,20,2,10
1746262291.7944865,20,2,10
1746262300.995014,20,1,5
1746262301.3015165,20,1,5
1746262309.1731358,20,1,5
1746262315.3271177,20,1,5
1746262321.333296,20,0,0
1746262329.042101,20,0,0
1746263465.474946,20,0,0
1746263465.9003146,20,0,0
1746263467.6994479,20,1,5
1746263473.1091392,20,1,5
1746264402.2217968,20,1,5
1746264403.366524,20,1,5
1746264405.500768,20,2,10
1746264407.0012095,20,2,10
1746264417.8469045,20,1,5
1746264417.97679,20,1,5
1746265436.6534517,20,1,5
1746265437.346341,20,1,5
1746265439.3911154,20,2,10
1746265440.8146875,20,2,10
1746265450.7378109,20,1,5
1746265450.8441129,20,1,5
1746266043.626395,20,1,5
1746266044.2766397,20,1,5
1746266046.413977,20,2,10
1746266047.7237487,20,2,10
1746266057.9210184,20,1,5
1746266058.0460317,20,1,5
1746266409.015985,20,1,5
1746266409.5947602,20,1,5
1746266411.362085,20,2,10
1746266412.6368403,20,2,10
1746266422.3488777,20,1,5
1746266422.465032,20,1,5
1746267066.5868006,20,1,5
1746267067.1704106,20,1,5
1746267069.0684216,20,2,10
1746267070.0565326,20,2,10
1746267078.6961257,20,1,5
1746267078.7686622,20,1,5
1746267982.0296264,20,1,5
1746267982.5422099,20,1,5
1746267984.2997417,20,2,10
1746267985.4815726,20,2,10
1746267995.05895,20,1,5
1746267995.1819582,20,1,5
1746268254.8654544,20,1,5
1746268255.3909106,20,1,5
1746268257.3574116,20,2,10
1746268258.5864832,20,2,10
1746268268.5269072,20,1,5
1746268268.9084413,20,1,5
1746268819.7108834,20,1,5
1746268820.296805,20,1,5
1746268822.432904,20,2,10
1746268823.834455,20,2,10
1746268834.1774604,20,1,5
1746268834.2917447,20,1,5
1746269240.2672968,20,1,5
1746269240.808939,20,1,5
1746269242.5540745,20,2,10
1746269243.6933374,20,2,10
1746269253.0792692,20,1,5
1746269253.1906538,20,1,5
1746269485.9960775,20,1,5
1746269486.5659397,20,1,5
1746269488.3934307,20,2,10
1746269489.683902,20,2,10
1746269499.6549075,20,1,5
1746269499.7633533,20,1,5
1746270583.7459342,20,1,5
1746270584.3061533,20,1,5
1746270586.372449,20,2,10
1746270587.6502793,20,2,10
1746270597.6935785,20,1,5
1746270597.8139515,20,1,5
1746270880.894774,20,1,5
1746270881.465589,20,1,5
1746270883.3796055,20,2,10
1746270884.6824694,20,2,10
1746270894.7354379,20,1,5
1746270894.8452964,20,1,5
1746271821.7028615,20,1,5
1746271822.205291,20,1,5
1746271824.1492107,20,2,10
1746271825.2001064,20,2,10
1746271833.6143324,20,1,5
1746271833.7275212,20,1,5
1746272037.3128102,20,1,5
1746272038.0766382,20,1,5
1746272040.236346,20,2,10
1746272041.5598085,20,2,10
1746272051.7458918,20,1,5
1746272051.8661852,20,1,5
1746272300.633355,20,1,5
1746272301.2456028,20,1,5
1746272303.253621,20,2,10
1746272304.5390406,20,2,10
1746272314.596981,20,1,5
1746272314.7005105,20,1,5
1746273654.2590551,20,1,5
1746273654.8694773,20,1,5
1746273656.6092932,20,2,10
1746273657.9383628,20,2,10
1746273668.295315,20,1,5
1746273668.4423435,20,1,5
1746274102.7710416,20,1,5
1746274103.3612523,20,1,5
1746274105.4001458,20,2,10
1746274106.5764782,20,2,10
1746274116.1328464,20,1,5
1746274116.2257915,20,1,5
1746274404.380491,20,1,5
1746274405.2083788,20,1,5
1746274407.2967994,20,2,10
1746274408.6749532,20,2,10
1746274419.1354263,20,1,5
1746274419.262203,20,1,5
1746274761.3869402,20,1,5
1746274762.1647522,20,1,5
1746274764.1473548,20,2,10
1746274765.2207744,20,2,10
1746274774.3569062,20,1,5
1746274774.592449,20,1,5
1746274781.4059753,20,1,5
1746274791.9549901,20,1,5
1746274798.1182082,20,1,5
1746274804.9114323,20,0,0
1746274812.8143818,20,0,0
1746275694.5247111,20,0,0
1746275694.923194,20,0,0
1746275696.6648836,20,1,5
1746275702.1217933,20,1,5
1746276399.4981732,20,1,5
1746276400.2523308,20,1,5
1746276402.4639187,20,2,10
1746276403.84161,20,2,10
1746276414.4391663,20,1,5
1746276414.54699,20,1,5
1746276854.2034214,20,1,5
1746276854.812995,20,1,5
1746276856.6025398,20,2,10
1746276857.9685173,20,2,10
1746276868.9594996,20,1,5
1746276869.1046624,20,1,5
1746277567.9515994,20,1,5
1746277568.5548062,20,1,5
1746277570.4876227,20,2,10
1746277571.9333773,20,2,10
1746277583.0754201,20,1,5
1746277583.236736,20,1,5
1746277825.1878476,20,1,5
1746277825.7772121,20,1,5
1746277827.643223,20,2,10
1746277828.985918,20,2,10
1746277839.956868,20,1,5
1746277840.06765,20,1,5
1746278417.171498,20,1,5
1746278417.8127015,20,1,5
1746278419.6042423,20,2,10
1746278420.9603467,20,2,10
1746278431.344659,20,1,5
1746278431.4738097,20,1,5
1746279909.8923073,20,1,5
1746279910.549861,20,1,5
1746279912.4796972,20,2,10
1746279913.9813375,20,2,10
1746279925.2159245,20,1,5
1746279925.3674688,20,1,5
1746281170.9177086,20,1,5
1746281171.536173,20,1,5
1746281173.4940143,20,2,10
1746281174.9928694,20,2,10
1746281186.2529027,20,1,5
1746281186.5142984,20,1,5
1746282527.2414072,20,1,5
1746282527.8238168,20,1,5
1746282529.675563,20,2,10
1746282531.0139463,20,2,10
1746282541.4612148,20,1,5
1746282541.608797,20,1,5
1746284095.4041462,20,1,5
1746284099.3079445,20,1,5
1746284101.5016441,20,2,10
1746284103.0677428,20,2,10
1746284114.0332806,20,1,5
1746284114.170046,20,1,5
1746284482.2480829,20,1,5
1746284482.869871,20,1,5
1746284484.742217,20,2,10
1746284486.2597303,20,2,10
1746284497.701259,20,1,5
1746284497.8446434,20,1,5
1746284818.3539338,20,1,5
1746284819.1691432,20,1,5
1746284821.2529933,20,2,10
1746284822.612835,20,2,10
1746284833.5332875,20,1,5
1746284833.7880223,20,1,5
1746285876.1923182,20,1,5
1746285876.776963,20,1,5
1746285878.5580332,20,2,10
1746285879.841818,20,2,10
1746285890.8116295,20,1,5
1746285890.912092,20,1,5
1746286268.7858403,20,1,5
1746286269.421965,20,1,5
1746286271.4358659,20,2,10
1746286272.8659525,20,2,10
1746286284.5879824,20,1,5
1746286284.9361415,20,1,5
1746286845.639841,20,1,5
1746286846.247294,20,1,5
1746286848.2356305,20,2,10
1746286849.6144538,20,2,10
1746286859.5743957,20,1,5
1746286859.6650302,20,1,5
1746287034.4409368,20,1,5
1746287035.2936366,20,1,5
1746287037.472054,20,2,10
1746287038.9240768,20,2,10
1746287050.5758595,20,1,5
1746287050.6855114,20,1,5
1746288278.4397044,20,1,5
1746288279.344697,20,1,5
1746288281.4816353,20,2,10
1746288282.9363387,20,2,10
1746288294.9074922,20,1,5
1746288295.0190928,20,1,5
1746289196.553685,20,1,5
1746289197.174978,20,1,5
1746289199.024121,20,2,10
1746289200.1473095,20,2,10
1746289209.7898326,20,1,5
1746289209.8616261,20,1,5
1746289956.6487544,20,1,5
1746289957.363412,20,1,5
1746289959.472328,20,2,10
1746289960.9328067,20,2,10
1746289972.9015021,20,1,5
1746289973.1486647,20,1,5
1746290728.11339,20,1,5
1746290728.6725454,20,1,5
1746290730.46656,20,2,10
1746290731.66831,20,2,10
1746290742.835302,20,1,5
1746290743.249214,20,1,5
1746290751.2391157,20,1,5
1746290757.5543838,20,1,5
1746290765.269084,20,0,0
1746290775.0841775,20,0,0
1746292491.7947586,20,0,0
1746292492.2157493,20,0,0
1746292494.2215354,20,1,5
1746292500.550314,20,1,5
1746293007.2723758,20,1,5
1746293007.875291,20,1,5
1746293009.69062,20,2,10
1746293011.0378354,20,2,10
1746293022.6264818,20,1,5
1746293022.7567468,20,1,5
1746293867.5677667,20,1,5
1746293868.2714596,20,1,5
1746293870.3714786,20,2,10
1746293871.5785954,20,2,10
1746293882.1869705,20,1,5
1746293882.2753866,20,1,5
1746294501.2769396,20,1,5
1746294501.9429367,20,1,5
1746294503.8279626,20,2,10
1746294505.2340786,20,2,10
1746294516.7893317,20,1,5
1746294516.937091,20,1,5
1746294989.6676364,20,1,5
1746294990.301117,20,1,5
1746294992.4207752,20,2,10
1746294993.845554,20,2,10
1746295005.5040593,20,1,5
1746295005.63467,20,1,5
1746296622.6896644,20,1,5
1746296623.3258042,20,1,5
1746296625.3885932,20,2,10
1746296626.8384511,20,2,10
1746296638.23266,20,1,5
1746296638.3819242,20,1,5
1746296968.981829,20,1,5
1746296969.4913802,20,1,5
1746296971.4792166,20,2,10
1746296972.6547837,20,2,10
1746296983.6442251,20,1,5
1746296983.7815936,20,1,5
1746298488.087261,20,1,5
1746298488.7375154,20,1,5
1746298490.636725,20,2,10
1746298492.1673725,20,2,10
1746298504.3728073,20,1,5
1746298504.5106304,20,1,5
1746299326.9869835,20,1,5
1746299327.6141968,20,1,5
1746299329.443126,20,2,10
1746299330.969893,20,2,10
1746299343.5969217,20,1,5
1746299343.7428844,20,1,5
1746299593.513706,20,1,5
1746299594.3339257,20,1,5
1746299596.496227,20,2,10
1746299597.966426,20,2,10
1746299609.1935928,20,1,5
1746299609.364648,20,1,5
1746301242.2071912,20,1,5
1746301242.8085365,20,1,5
1746301244.7067387,20,2,10
1746301246.263184,20,2,10
1746301257.91108,20,1,5
1746301258.074674,20,1,5
1746302076.0713477,20,1,5
1746302076.6375263,20,1,5
1746302078.4174902,20,2,10
1746302079.8097835,20,2,10
1746302090.35327,20,1,5
1746302090.477125,20,1,5
1746303505.8866017,20,1,5
1746303506.4101083,20,1,5
1746303508.3440273,20,2,10
1746303509.6133723,20,2,10
1746303520.920136,20,1,5
1746303521.075205,20,1,5
1746303803.2596781,20,1,5
1746303804.0340524,20,1,5
1746303805.8624601,20,2,10
1746303807.3770335,20,2,10
1746303820.2688413,20,1,5
1746303820.4109797,20,1,5
1746304064.9866984,20,1,5
1746304065.577364,20,1,5
1746304067.4026418,20,2,10
1746304068.893437,20,2,10
1746304081.0785365,20,1,5
1746304081.1881676,20,1,5
1746305550.1236935,20,1,5
1746305550.7042372,20,1,5
1746305552.5632775,20,2,10
1746305553.9708037,20,2,10
1746305565.2638934,20,1,5
1746305565.36025,20,1,5
1746305876.0433414,20,1,5
1746305876.568878,20,1,5
1746305878.3496442,20,2,10
1746305879.6062725,20,2,10
1746305889.6283479,20,1,5
1746305889.7056515,20,1,5
1746306736.4302347,20,1,5
1746306737.264326,20,1,5
1746306739.5298386,20,2,10
1746306740.785484,20,2,10
1746306751.093167,20,1,5
1746306751.2897556,20,1,5
1746307909.5360694,20,1,5
1746307910.2517295,20,1,5
1746307912.4568665,20,2,10
1746307913.8296945,20,2,10
1746307924.8038027,20,1,5
1746307924.959478,20,1,5
1746309445.8575053,20,1,5
1746309446.436502,20,1,5
1746309448.4593005,20,2,10
1746309449.74552,20,2,10
1746309461.772826,20,1,5
1746309462.0948188,20,1,5
1746309470.5234756,20,1,5
1746309482.7719858,20,1,5
1746309495.019361,20,1,5
1746309501.3256369,20,1,5
1746309509.274178,20,0,0
1746309519.4751668,20,0,0
1746310080.86694,20,0,0
1746310081.3302467,20,0,0
1746310083.4983199,20,1,5
1746310089.956797,20,1,5
1746311885.1701448,20,1,5
1746311885.7740273,20,1,5
1746311887.5563521,20,2,10
1746311888.9555805,20,2,10
1746311898.9663498,20,1,5
1746311899.0627985,20,1,5
1746315171.6267679,20,1,5
1746315172.3131142,20,1,5
1746315174.4873946,20,2,10
1746315175.9207582,20,2,10
1746315187.976636,20,1,5
1746315188.1037118,20,1,5
1746315585.762697,20,1,5
1746315586.3358386,20,1,5
1746315588.4197083,20,2,10
1746315589.8161123,20,2,10
1746315601.8929234,20,1,5
1746315602.0315585,20,1,5
1746316482.3506763,20,1,5
1746316483.3675914,20,1,5
1746316485.3721793,20,2,10
1746316486.5928547,20,2,10
1746316496.9320722,20,1,5
1746316497.0318542,20,1,5
1746319101.1559954,20,1,5
1746319101.7288663,20,1,5
1746319103.5317929,20,2,10
1746319104.8292718,20,2,10
1746319116.1111782,20,1,5
1746319116.2483578,20,1,5
1746320496.4599013,20,1,5
1746320497.2817185,20,1,5
1746320499.3984,20,2,10
1746320500.9922862,20,2,10
1746320511.6313336,20,1,5
1746320511.7481542,20,1,5
1746325115.9337857,20,1,5
1746325116.6307697,20,1,5
1746325118.7671115,20,2,10
1746325120.385861,20,2,10
1746325133.6144533,20,1,5
1746325133.7376792,20,1,5
1746326154.5636153,20,1,5
1746326155.2226338,20,1,5
1746326157.2359607,20,2,10
1746326158.5129745,20,2,10
1746326170.2543705,20,1,5
1746326170.373783,20,1,5
1746329218.8112895,20,1,5
1746329219.4208453,20,1,5
1746329221.5376775,20,2,10
1746329223.0781763,20,2,10
1746329234.9936843,20,1,5
1746329235.1204717,20,1,5
1746330833.4000225,20,1,5
1746330834.2105775,20,1,5
1746330836.1958292,20,2,10
1746330837.3581,20,2,10
1746330848.3011026,20,1,5
1746330848.3960965,20,1,5
1746331643.1202433,20,1,5
1746331643.7231297,20,1,5
1746331645.582694,20,2,10
1746331647.0848877,20,2,10
1746331659.209599,20,1,5
1746331659.34426,20,1,5
1746335520.5612497,20,1,5
1746335521.3115394,20,1,5
1746335523.4890602,20,2,10
1746335524.7489786,20,2,10
1746335536.118251,20,1,5
1746335536.20754,20,1,5
1746337499.0334542,20,1,5
1746337499.610523,20,1,5
1746337501.380681,20,2,10
1746337502.6626348,20,2,10
1746337513.6993182,20,1,5
1746337513.7933815,20,1,5
1746338468.4740858,20,1,5
1746338469.2327626,20,1,5
1746338471.335945,20,2,10
1746338472.6026702,20,2,10
1746338484.8743954,20,1,5
1746338485.0006616,20,1,5
1746338758.9757535,20,1,5
1746338759.5127406,20,1,5
1746338761.3684137,20,2,10
1746338762.6333086,20,2,10
1746338773.6033401,20,1,5
1746338773.702364,20,1,5
1746339020.4727387,20,1,5
1746339021.1658132,20,1,5
1746339023.0849733,20,2,10
1746339024.1207662,20,2,10
1746339034.6893766,20,1,5
1746339034.7685657,20,1,5
1746339523.3996885,20,1,5
1746339524.2384381,20,1,5
1746339526.222043,20,2,10
1746339527.4242916,20,2,10
1746339538.3153756,20,1,5
1746339538.4435983,20,1,5
1746339841.6402137,20,1,5
1746339842.2567608,20,1,5
1746339844.445569,20,2,10
1746339845.7867732,20,2,10
1746339858.1635692,20,1,5
1746339858.2717948,20,1,5
1746340209.2452223,20,1,5
1746340209.9000845,20,1,5
1746340211.7480545,20,2,10
1746340212.9971976,20,2,10
1746340225.5889242,20,1,5
1746340225.911087,20,1,5
1746340234.670038,20,1,5
1746340240.9373775,20,1,5
1746340249.2315931,20,0,0
1746340259.775219,20,0,0
1746340859.937141,20,0,0
1746340860.4405508,20,0,0
1746340862.8454916,20,1,5
1746340870.5309873,20,1,5
1746341869.1206083,20,1,5
1746341869.645423,20,1,5
1746341871.4522185,20,2,10
1746341872.7975826,20,2,10
1746341884.372749,20,1,5
1746341884.4816256,20,1,5
1746342138.7394388,20,1,5
1746342139.3101115,20,1,5
1746342141.3403597,20,2,10
1746342142.5775912,20,2,10
1746342154.495126,20,1,5
1746342154.6246738,20,1,5
1746342433.8939643,20,1,5
1746342434.5432587,20,1,5
1746342436.4806206,20,2,10
1746342437.9330764,20,2,10
1746342450.5707238,20,1,5
1746342450.6739347,20,1,5
1746344358.2003696,20,1,5
1746344358.809244,20,1,5
1746344360.7016933,20,2,10
1746344362.2528186,20,2,10
1746344375.7219622,20,1,5
1746344375.8252919,20,1,5
1746345499.1395326,20,1,5
1746345499.7682285,20,1,5
1746345501.6114585,20,2,10
1746345503.0182538,20,2,10
1746345516.4034,20,1,5
1746345516.5203793,20,1,5
1746346057.2140875,20,1,5
1746346057.8405259,20,1,5
1746346059.6649873,20,2,10
1746346061.022018,20,2,10
1746346073.4898546,20,1,5
1746346073.9330382,20,1,5
1746346341.8517168,20,1,5
1746346342.358381,20,1,5
1746346344.3047357,20,2,10
1746346345.4904182,20,2,10
1746346356.4278336,20,1,5
1746346356.51507,20,1,5
1746346672.5785272,20,1,5
1746346673.3307142,20,1,5
1746346675.4357471,20,2,10
1746346676.9427505,20,2,10
1746346690.9481528,20,1,5
1746346691.091645,20,1,5
1746347008.8076606,20,1,5
1746347009.441265,20,1,5
1746347011.6394148,20,2,10
1746347013.0711744,20,2,10
1746347026.2529008,20,1,5
1746347026.3636055,20,1,5
1746348359.2874875,20,1,5
1746348359.9451113,20,1,5
1746348361.718225,20,2,10
1746348363.0192733,20,2,10
1746348375.124684,20,1,5
1746348375.34554,20,1,5
1746351477.276143,20,1,5
1746351478.0733302,20,1,5
1746351480.2752278,20,2,10
1746351481.5455446,20,2,10
1746351492.736287,20,1,5
1746351492.8392084,20,1,5
1746353891.9414465,20,1,5
1746353892.5275562,20,1,5
1746353894.4533725,20,2,10
1746353895.7519011,20,2,10
1746353908.3569317,20,1,5
1746353908.4634552,20,1,5
1746354245.8959842,20,1,5
1746354246.4644856,20,1,5
1746354248.4440584,20,2,10
1746354249.8122878,20,2,10
1746354262.6916847,20,1,5
1746354262.8151789,20,1,5
1746354507.0914204,20,1,5
1746354507.6971018,20,1,5
1746354509.481734,20,2,10
1746354510.9727685,20,2,10
1746354523.838277,20,1,5
1746354524.069759,20,1,5
1746354772.9013455,20,1,5
1746354773.557613,20,1,5
1746354775.4405718,20,2,10
1746354776.8762448,20,2,10
1746354789.6469128,20,1,5
1746354789.7664003,20,1,5
1746355775.2276418,20,1,5
1746355775.7709627,20,1,5
1746355777.5588634,20,2,10
1746355778.8776834,20,2,10
1746355789.761652,20,1,5
1746355789.9561927,20,1,5
1746356133.3598135,20,1,5
1746356134.2139423,20,1,5
1746356136.2472498,20,2,10
1746356137.6827893,20,2,10
1746356151.7061427,20,1,5
1746356151.8251784,20,1,5
1746356483.0633492,20,1,5
1746356483.686974,20,1,5
1746356485.5042868,20,2,10
1746356486.9864247,20,2,10
1746356499.7239974,20,1,5
1746356499.8422,20,1,5
1746356846.4324548,20,1,5
1746356848.1762028,20,1,5
1746356850.1658454,20,2,10
1746356851.0564485,20,2,10
1746356862.4390101,20,1,5
1746356862.684386,20,1,5
1746356869.848526,20,1,5
1746356875.8572764,20,1,5
1746356883.335243,20,0,0
1746356893.3491116,20,0,0
1746359544.1469479,20,0,0
1746359544.661326,20,0,0
1746359546.4280918,20,1,5
1746359553.9713397,20,1,5
1746362695.9017873,20,1,5
1746362696.5292964,20,1,5
1746362698.5647714,20,2,10
1746362699.9921958,20,2,10
1746362714.1231024,20,1,5
1746362714.2623596,20,1,5
1746362993.5937388,20,1,5
1746362994.2780693,20,1,5
1746362996.3787324,20,2,10
1746362997.7555392,20,2,10
1746363011.8909,20,1,5
1746363011.9999833,20,1,5
1746364559.776702,20,1,5
1746364560.394191,20,1,5
1746364563.7719367,20,2,10
1746364565.1709201,20,2,10
1746364578.019339,20,1,5
1746364578.317528,20,1,5
1746366895.6556847,20,1,5
1746366896.3634958,20,1,5
1746366898.4077237,20,2,10
1746366900.0556042,20,2,10
1746366915.5140455,20,1,5
1746366915.6597526,20,1,5
1746368708.3479984,20,1,5
1746368709.2282286,20,1,5
1746368711.2698448,20,2,10
1746368712.6605606,20,2,10
1746368725.3646722,20,1,5
1746368725.4729664,20,1,5
1746370802.322673,20,1,5
1746370803.2231712,20,1,5
1746370805.2849464,20,2,10
1746370806.7864118,20,2,10
1746370821.9354465,20,1,5
1746370822.0465465,20,1,5
1746371223.018938,20,1,5
1746371223.5714195,20,1,5
1746371225.359481,20,2,10
1746371226.6443229,20,2,10
1746371239.2254345,20,1,5
1746371239.3302898,20,1,5
1746371577.2731874,20,1,5
1746371577.9895358,20,1,5
1746371579.8369274,20,2,10
1746371581.4002657,20,2,10
1746371595.284243,20,1,5
1746371595.402773,20,1,5
1746371907.417058,20,1,5
1746371908.4583218,20,1,5
1746371910.4422665,20,2,10
1746371912.1074548,20,2,10
1746371926.630389,20,1,5
1746371926.7584162,20,1,5
1746372375.466112,20,1,5
1746372376.297028,20,1,5
1746372378.4284277,20,2,10
1746372379.9011507,20,2,10
1746372392.9665813,20,1,5
1746372393.0989943,20,1,5
1746372739.5622334,20,1,5
1746372740.2910593,20,1,5
1746372742.440099,20,2,10
1746372743.8594294,20,2,10
1746372756.7560837,20,1,5
1746372756.8712404,20,1,5
1746373082.520416,20,1,5
1746373083.3328865,20,1,5
1746373085.5070324,20,2,10
1746373087.0685294,20,2,10
1746373101.3682415,20,1,5
1746373101.4960968,20,1,5
1746374464.369321,20,1,5
1746374465.3255787,20,1,5
1746374467.5754344,20,2,10
1746374469.1167393,20,2,10
1746374483.7352574,20,1,5
1746374483.8777795,20,1,5
1746376722.7283218,20,1,5
1746376723.4071596,20,1,5
1746376725.5638921,20,2,10
1746376727.1157808,20,2,10
1746376742.0267184,20,1,5
1746376742.1470406,20,1,5
1746377626.3907762,20,1,5
1746377627.3571665,20,1,5
1746377629.5181227,20,2,10
1746377631.0341434,20,2,10
1746377645.1483302,20,1,5
1746377645.2731733,20,1,5
1746378062.2246635,20,1,5
1746378062.8037925,20,1,5
1746378064.6399155,20,2,10
1746378065.9938366,20,2,10
1746378079.2641115,20,1,5
1746378079.5665133,20,1,5
1746378501.8070602,20,1,5
1746378502.4952672,20,1,5
1746378504.5435271,20,2,10
1746378506.0003371,20,2,10
1746378520.2451587,20,1,5
1746378520.3925016,20,1,5
1746381203.63839,20,1,5
1746381204.4045868,20,1,5
1746381206.5406532,20,2,10
1746381208.0839152,20,2,10
1746381222.6584861,20,1,5
1746381222.7767382,20,1,5
1746381575.4129415,20,1,5
1746381577.3787193,20,1,5
1746381580.5457149,20,2,10
1746381581.8884246,20,2,10
1746381596.7778914,20,1,5
1746381597.1503606,20,1,5
1746381608.7442534,20,1,5
1746381615.2227404,20,1,5
1746381624.8921633,20,0,0
1746381637.3580728,20,0,0
1746385155.7766137,20,0,0
1746385156.4141154,20,0,0
1746385158.7610943,20,1,5
1746385168.4811194,20,1,5
1746388699.529868,20,1,5
1746388700.3086812,20,1,5
1746388702.7400637,20,2,10
1746388704.202621,20,2,10
1746388718.6840272,20,1,5
1746388718.8049078,20,1,5
1746389150.2086315,20,1,5
1746389150.7689784,20,1,5
1746389152.6323721,20,2,10
1746389153.942564,20,2,10
1746389167.1201835,20,1,5
1746389167.2171826,20,1,5
1746389621.4359589,20,1,5
1746389622.2626798,20,1,5
1746389624.5553079,20,2,10
1746389626.050766,20,2,10
1746389640.2956119,20,1,5
1746389640.410272,20,1,5
1746390472.625333,20,1,5
1746390473.2555523,20,1,5
1746390475.5031753,20,2,10
1746390476.9274163,20,2,10
1746390490.6651328,20,1,5
1746390490.922644,20,1,5
1746390952.6230783,20,1,5
1746390953.285405,20,1,5
1746390955.448565,20,2,10
1746390956.8576114,20,2,10
1746390970.7641754,20,1,5
1746390970.895416,20,1,5
1746391400.2936199,20,1,5
1746391400.960612,20,1,5
1746391402.8013282,20,2,10
1746391404.2484152,20,2,10
1746391419.4414165,20,1,5
1746391419.6228719,20,1,5
1746391880.2807586,20,1,5
1746391880.9455705,20,1,5
1746391882.7619164,20,2,10
1746391884.0625665,20,2,10
1746391897.4482865,20,1,5
1746391897.5573108,20,1,5
1746392300.3797197,20,1,5
1746392301.2576246,20,1,5
1746392303.506848,20,2,10
1746392305.1584046,20,2,10
1746392320.6637754,20,1,5
1746392320.907209,20,1,5
1746394824.567402,20,1,5
1746394825.3017817,20,1,5
1746394827.547508,20,2,10
1746394829.067303,20,2,10
1746394843.8321326,20,1,5
1746394844.0729125,20,1,5
1746395193.429388,20,1,5
1746395194.2506506,20,1,5
1746395196.3157842,20,2,10
1746395197.6304798,20,2,10
1746395211.1966207,20,1,5
1746395211.301028,20,1,5
1746398230.3636017,20,1,5
1746398231.1988754,20,1,5
1746398233.2635572,20,2,10
1746398234.5084326,20,2,10
1746398247.575926,20,1,5
1746398247.6987567,20,1,5
1746399561.8677874,20,1,5
1746399562.4234302,20,1,5
1746399564.4446967,20,2,10
1746399565.7376766,20,2,10
1746399579.5255377,20,1,5
1746399579.6702993,20,1,5
1746400087.545406,20,1,5
1746400088.318669,20,1,5
1746400090.4695685,20,2,10
1746400091.935248,20,2,10
1746400105.4875581,20,1,5
1746400105.609455,20,1,5
1746400616.772581,20,1,5
1746400617.3707778,20,1,5
1746400619.4049585,20,2,10
1746400620.8336427,20,2,10
1746400634.914918,20,1,5
1746400635.0447638,20,1,5
1746402166.2530959,20,1,5
1746402166.8447216,20,1,5
1746402168.6913323,20,2,10
1746402170.049905,20,2,10
1746402182.4833863,20,1,5
1746402182.591388,20,1,5
1746402559.477485,20,1,5
1746402560.324122,20,1,5
1746402562.5167427,20,2,10
1746402564.1333292,20,2,10
1746402579.950855,20,1,5
1746402580.21014,20,1,5
1746403371.1767042,20,1,5
1746403371.904974,20,1,5
1746403373.8611703,20,2,10
1746403375.4656467,20,2,10
1746403390.7004733,20,1,5
1746403390.9266667,20,1,5
1746403844.446558,20,1,5
1746403845.3184934,20,1,5
1746403847.5314422,20,2,10
1746403849.1079252,20,2,10
1746403864.6662197,20,1,5
1746403864.8040674,20,1,5
1746404210.68687,20,1,5
1746404211.2098768,20,1,5
1746404213.223102,20,2,10
1746404214.325562,20,2,10
1746404227.3292644,20,1,5
1746404227.6705198,20,1,5
1746404237.272215,20,1,5
1746404243.616194,20,1,5
1746404252.750424,20,0,0
1746404265.179064,20,0,0
1746406505.5539114,20,0,0
1746406506.123383,20,0,0
1746406508.2975764,20,1,5
1746406517.4121509,20,1,5
1746408370.145192,20,1,5
1746408370.7164843,20,1,5
1746408372.6849148,20,2,10
1746408374.0744343,20,2,10
1746408387.3013256,20,1,5
1746408387.404842,20,1,5
1746410460.0181487,20,1,5
1746410460.6011176,20,1,5
1746410463.7384138,20,2,10
1746410465.1013267,20,2,10
1746410478.8344612,20,1,5
1746410478.9765744,20,1,5
1746411036.2753685,20,1,5
1746411036.876819,20,1,5
1746411038.729531,20,2,10
1746411040.2242334,20,2,10
1746411053.4352598,20,1,5
1746411053.8927388,20,1,5
1746417757.6747563,20,1,5
1746417758.3357112,20,1,5
1746417760.7544162,20,2,10
1746417762.1506956,20,2,10
1746417775.4827735,20,1,5
1746417775.8985507,20,1,5
1746420256.105833,20,1,5
1746420256.74543,20,1,5
1746420258.6400626,20,2,10
1746420260.1298075,20,2,10
1746420273.8513885,20,1,5
1746420274.1068327,20,1,5
1746423312.6054432,20,1,5
1746423313.4011705,20,1,5
1746423315.5986693,20,2,10
1746423317.1133304,20,2,10
1746423329.6825364,20,1,5
1746423329.791111,20,1,5
1746423718.7408736,20,1,5
1746423719.3101957,20,1,5
1746423721.4446383,20,2,10
1746423722.6735,20,2,10
1746423736.4239938,20,1,5
1746423736.535104,20,1,5
1746430760.8257325,20,1,5
1746430761.6647127,20,1,5
1746430763.5751488,20,2,10
1746430765.236406,20,2,10
1746430780.425909,20,1,5
1746430780.5734134,20,1,5
1746431599.043543,20,1,5
1746431599.7117057,20,1,5
1746431601.4972486,20,2,10
1746431603.0183158,20,2,10
1746431616.581026,20,1,5
1746431616.6983962,20,1,5
1746434048.4930947,20,1,5
1746434049.1555436,20,1,5
1746434051.0553093,20,2,10
1746434052.0484786,20,2,10
1746434063.8543475,20,1,5
1746434063.9573538,20,1,5
1746436473.579033,20,1,5
1746436474.2686377,20,1,5
1746436476.5910723,20,2,10
1746436477.9759378,20,2,10
1746436492.2838216,20,1,5
1746436492.9433212,20,1,5
1746440125.646919,20,1,5
1746440126.3895943,20,1,5
1746440128.3835566,20,2,10
1746440129.9922388,20,2,10
1746440145.7770936,20,1,5
1746440145.907707,20,1,5
1746441423.5044374,20,1,5
1746441424.3052692,20,1,5
1746441426.276545,20,2,10
1746441427.520616,20,2,10
1746441441.3994522,20,1,5
1746441441.5197499,20,1,5
1746442222.9739323,20,1,5
1746442223.6483288,20,1,5
1746442225.4637218,20,2,10
1746442227.1132915,20,2,10
1746442242.97242,20,1,5
1746442243.1271546,20,1,5
1746443614.1828415,20,1,5
1746443614.77197,20,1,5
1746443616.4656153,20,2,10
1746443617.8294222,20,2,10
1746443632.1806386,20,1,5
1746443632.313235,20,1,5
1746446711.8179848,20,1,5
1746446712.3661215,20,1,5
1746446715.2799125,20,2,10
1746446716.3418918,20,2,10
1746446728.899072,20,1,5
1746446729.0055566,20,1,5
1746448776.7558026,20,1,5
1746448777.2439516,20,1,5
1746448779.1292424,20,2,10
1746448780.2032652,20,2,10
1746448792.5614822,20,1,5
1746448792.656169,20,1,5
1746452631.1627607,20,1,5
1746452631.786683,20,1,5
1746452633.485915,20,2,10
1746452634.8596306,20,2,10
1746452651.4399526,20,1,5
1746452651.5589182,20,1,5
1746453443.795875,20,1,5
1746453444.417708,20,1,5
1746453446.3291163,20,2,10
1746453447.595832,20,2,10
1746453461.9327798,20,1,5
1746453462.2876742,20,1,5
1746453472.0253708,20,1,5
1746453485.418126,20,1,5
1746453491.6546125,20,1,5
1746453500.6651316,20,0,0
1746453511.46303,20,0,0
1746457945.884406,20,0,0
1746457946.4085371,20,0,0
1746457948.4078,20,1,5
1746457956.868118,20,1,5
1746463830.464258,20,1,5
1746463831.2433877,20,1,5
1746463833.3297293,20,2,10
1746463834.6593013,20,2,10
1746463847.7316172,20,1,5
1746463847.964549,20,1,5
1746464387.185819,20,1,5
1746464387.7837226,20,1,5
1746464389.4800704,20,2,10
1746464390.8729696,20,2,10
1746464405.4430325,20,1,5
1746464405.872665,20,1,5
1746464721.691258,20,1,5
1746464722.1752236,20,1,5
1746464723.9623945,20,2,10
1746464725.0314105,20,2,10
1746464736.4433427,20,1,5
1746464737.872671,20,1,5
1746465070.2362537,20,1,5
1746465070.8013747,20,1,5
1746465072.4609485,20,2,10
1746465073.7288392,20,2,10
1746465088.1936111,20,1,5
1746465088.317559,20,1,5
1746465473.773508,20,1,5
1746465474.3322427,20,1,5
1746465476.273306,20,2,10
1746465477.526934,20,2,10
1746465490.9629505,20,1,5
1746465491.0757747,20,1,5
1746466775.3586993,20,1,5
1746466776.1450293,20,1,5
1746466777.7667887,20,2,10
1746466778.917453,20,2,10
1746466791.6302688,20,1,5
1746466791.7569335,20,1,5
1746467147.9838748,20,1,5
1746467148.6043441,20,1,5
1746467150.3420289,20,2,10
1746467151.7231617,20,2,10
1746467166.2607648,20,1,5
1746467166.3915763,20,1,5
1746467524.1458611,20,1,5
1746467524.7132432,20,1,5
1746467526.3596385,20,2,10
1746467527.6166806,20,2,10
1746467540.9427962,20,1,5
1746467541.0550733,20,1,5
1746469464.2728527,20,1,5
1746469465.0308158,20,1,5
1746469466.771952,20,2,10
1746469468.1420634,20,2,10
1746469483.0175362,20,1,5
1746469483.1614683,20,1,5
1746472113.83179,20,1,5
1746472114.5541003,20,1,5
1746472116.4238238,20,2,10
1746472118.2575006,20,2,10
1746472132.8999188,20,1,5
1746472133.142045,20,1,5
1746472721.9686449,20,1,5
1746472722.5858157,20,1,5
1746472724.3811982,20,2,10
1746472725.8445122,20,2,10
1746472741.882692,20,1,5
1746472742.0460477,20,1,5
1746475135.9838703,20,1,5
1746475136.6592631,20,1,5
1746475138.4532976,20,2,10
1746475139.9943242,20,2,10
1746475156.1017964,20,1,5
1746475156.2609873,20,1,5
1746475719.0437145,20,1,5
1746475719.6655147,20,1,5
1746475721.6236153,20,2,10
1746475723.0857801,20,2,10
1746475738.8196955,20,1,5
1746475738.9548182,20,1,5
1746480130.9274907,20,1,5
1746480131.5767615,20,1,5
1746480133.377399,20,2,10
1746480134.7338083,20,2,10
1746480148.7791672,20,1,5
1746480148.886448,20,1,5
1746484315.591586,20,1,5
1746484316.2604303,20,1,5
1746484318.3779862,20,2,10
1746484319.745156,20,2,10
1746484334.1329894,20,1,5
1746484334.2779691,20,1,5
1746484714.7932773,20,1,5
1746484715.4124246,20,1,5
1746484717.3783715,20,2,10
1746484718.8561256,20,2,10
1746484734.6282647,20,1,5
1746484734.7506883,20,1,5
1746486156.5876274,20,1,5
1746486157.2552238,20,1,5
1746486159.276667,20,2,10
1746486160.5963485,20,2,10
1746486173.4364054,20,1,5
1746486173.8644593,20,1,5
1746486525.68569,20,1,5
1746486526.2588675,20,1,5
1746486528.292703,20,2,10
1746486529.6170862,20,2,10
1746486544.6390615,20,1,5
1746486544.7685838,20,1,5
1746488670.781274,20,1,5
1746488671.4314773,20,1,5
1746488673.3953695,20,2,10
1746488674.8839695,20,2,10
1746488691.1095235,20,1,5
1746488691.4213219,20,1,5
1746488702.6037736,20,1,5
1746488709.0819645,20,1,5
1746488719.6907325,20,0,0
1746488732.608393,20,0,0
1746489123.0536554,20,0,0
1746489123.5580785,20,0,0
1746489125.3809128,20,1,5
1746489134.8878522,20,1,5
1746490119.3994467,20,1,5
1746490120.1790721,20,1,5
1746490121.9983454,20,2,10
1746490123.2956328,20,2,10
1746490137.602063,20,1,5
1746490137.8933973,20,1,5
1746492133.3738232,20,1,5
1746492134.2032697,20,1,5
1746492136.2522428,20,2,10
1746492137.589342,20,2,10
1746492152.7314456,20,1,5
1746492152.837922,20,1,5
1746492507.43166,20,1,5
1746492508.1955214,20,1,5
1746492510.1115766,20,2,10
1746492511.4564903,20,2,10
1746492526.680806,20,1,5
1746492526.9013672,20,1,5
1746493472.258125,20,1,5
1746493472.8227496,20,1,5
1746493474.4619122,20,2,10
1746493475.657246,20,2,10
1746493489.4512372,20,1,5
1746493489.5720458,20,1,5
1746494234.210446,20,1,5
1746494234.7314024,20,1,5
1746494236.4295745,20,2,10
1746494237.680819,20,2,10
1746494251.4786894,20,1,5
1746494251.860086,20,1,5
1746495195.5776703,20,1,5
1746495196.262788,20,1,5
1746495198.3216789,20,2,10
1746495199.670175,20,2,10
1746495215.098895,20,1,5
1746495215.227875,20,1,5
1746495661.9763143,20,1,5
1746495662.5291631,20,1,5
1746495664.3095381,20,2,10
1746495665.5368824,20,2,10
1746495678.3629282,20,1,5
1746495678.799035,20,1,5
1746496189.6032813,20,1,5
1746496190.1912358,20,1,5
1746496191.8805819,20,2,10
1746496193.0975063,20,2,10
1746496206.6987772,20,1,5
1746496206.796352,20,1,5
1746496830.8831656,20,1,5
1746496831.4602842,20,1,5
1746496833.286456,20,2,10
1746496834.5941982,20,2,10
1746496849.9064827,20,1,5
1746496850.137128,20,1,5
1746497461.8810859,20,1,5
1746497462.498275,20,1,5
1746497464.342159,20,2,10
1746497465.7982364,20,2,10
1746497480.2039297,20,1,5
1746497480.4385872,20,1,5
1746498153.5760202,20,1,5
1746498154.1080446,20,1,5
1746498155.8313575,20,2,10
1746498157.1111352,20,2,10
1746498171.0820427,20,1,5
1746498171.1881843,20,1,5
1746498851.5045803,20,1,5
1746498852.2124424,20,1,5
1746498853.9465675,20,2,10
1746498855.2835763,20,2,10
1746498870.068356,20,1,5
1746498870.1976266,20,1,5
1746504461.1365774,20,1,5
1746504461.7019114,20,1,5
1746504463.4145103,20,2,10
1746504464.655072,20,2,10
1746504477.2266188,20,1,5
1746504477.4462788,20,1,5
1746510746.811082,20,1,5
1746510747.4727376,20,1,5
1746510749.4206412,20,2,10
1746510750.8068254,20,2,10
1746510765.3689091,20,1,5
1746510765.8064966,20,1,5
1746511283.6492777,20,1,5
1746511284.2399065,20,1,5
1746511286.278385,20,2,10
1746511287.612435,20,2,10
1746511301.9789937,20,1,5
1746511302.0912166,20,1,5
1746515262.77929,20,1,5
1746515263.3422353,20,1,5
1746515265.3203351,20,2,10
1746515266.5374644,20,2,10
1746515280.7273285,20,1,5
1746515280.8438942,20,1,5
1746515807.4589984,20,1,5
1746515808.161978,20,1,5
1746515809.9002805,20,2,10
1746515811.176746,20,2,10
1746515825.068575,20,1,5
1746515825.1774085,20,1,5
1746516892.2181022,20,1,5
1746516892.850639,20,1,5
1746516894.5781574,20,2,10
1746516896.060447,20,2,10
1746516911.4499013,20,1,5
1746516911.8617167,20,1,5
1746519227.645815,20,1,5
1746519228.3203611,20,1,5
1746519230.3537924,20,2,10
1746519231.692497,20,2,10
1746519246.580454,20,1,5
1746519247.0429776,20,1,5
1746519258.0466938,20,1,5
1746519273.1102502,20,1,5
1746519287.8733869,20,1,5
1746519294.1909122,20,1,5
1746519306.3746774,20,0,0
1746519319.305719,20,0,0
1746519917.7204835,20,0,0
1746519918.162103,20,0,0
1746519919.8886113,20,1,5
1746519928.2994912,20,1,5
1746520456.7341647,20,1,5
1746520457.37887,20,1,5
1746520459.3157601,20,2,10
1746520460.7194445,20,2,10
1746520476.7451692,20,1,5
1746520476.8788195,20,1,5
1746523142.955126,20,1,5
1746523143.5476756,20,1,5
1746523145.3881128,20,2,10
1746523146.8670974,20,2,10
1746523163.027044,20,1,5
1746523163.1322093,20,1,5
1746523733.0230713,20,1,5
1746523733.6327968,20,1,5
1746523735.3153827,20,2,10
1746523736.5351443,20,2,10
1746523751.0599096,20,1,5
1746523751.1825833,20,1,5
1746524406.1401298,20,1,5
1746524406.7206457,20,1,5
1746524408.4452786,20,2,10
1746524409.8039112,20,2,10
1746524425.5879645,20,1,5
1746524425.706573,20,1,5
1746525371.3671165,20,1,5
1746525372.2523553,20,1,5
1746525374.3164499,20,2,10
1746525375.7729452,20,2,10
1746525391.987943,20,1,5
1746525392.1228595,20,1,5
1746527085.9814835,20,1,5
1746527086.4055436,20,1,5
1746527088.2696662,20,2,10
1746527089.3804936,20,2,10
1746527103.0674171,20,1,5
1746527103.1789095,20,1,5
1746527574.5532296,20,1,5
1746527575.3368022,20,1,5
1746527577.3574748,20,2,10
1746527578.8908575,20,2,10
1746527595.8928685,20,1,5
1746527596.0694933,20,1,5
1746528413.7966037,20,1,5
1746528414.39178,20,1,5
1746528416.3189828,20,2,10
1746528417.733436,20,2,10
1746528431.5869644,20,1,5
1746528431.912993,20,1,5
1746528934.1558304,20,1,5
1746528934.7119591,20,1,5
1746528936.4033039,20,2,10
1746528937.740127,20,2,10
1746528951.5065439,20,1,5
1746528951.9085042,20,1,5
1746530799.2298136,20,1,5
1746530799.8614118,20,1,5
1746530801.6111155,20,2,10
1746530802.9310365,20,2,10
1746530818.746434,20,1,5
1746530818.8856173,20,1,5
1746532148.650441,20,1,5
1746532149.2495017,20,1,5
1746532151.2673774,20,2,10
1746532152.571058,20,2,10
1746532168.6712365,20,1,5
1746532168.932599,20,1,5
1746533782.2559474,20,1,5
1746533782.8801756,20,1,5
1746533784.59246,20,2,10
1746533785.9367902,20,2,10
1746533800.3428164,20,1,5
1746533800.8341258,20,1,5
1746535901.6099656,20,1,5
1746535902.2219348,20,1,5
1746535904.1170921,20,2,10
1746535905.307881,20,2,10
1746535920.9667222,20,1,5
1746535921.076179,20,1,5
1746536823.5847065,20,1,5
1746536824.2024505,20,1,5
1746536826.007964,20,2,10
1746536827.1589553,20,2,10
1746536840.8737597,20,1,5
1746536840.9706023,20,1,5
1746537697.827459,20,1,5
1746537698.4436977,20,1,5
1746537700.3561544,20,2,10
1746537701.7799776,20,2,10
1746537716.8913617,20,1,5
1746537717.0020232,20,1,5
1746538640.6003535,20,1,5
1746538641.232078,20,1,5
1746538643.1735969,20,2,10
1746538644.4601774,20,2,10
1746538660.0434515,20,1,5
1746538660.1719532,20,1,5
1746539196.218389,20,1,5
1746539196.6807647,20,1,5
1746539198.3448668,20,2,10
1746539199.3115134,20,2,10
1746539214.2160583,20,1,5
1746539214.3302639,20,1,5
1746540824.1383412,20,1,5
1746540824.6761603,20,1,5
1746540826.5173535,20,2,10
1746540827.891687,20,2,10
1746540843.0378916,20,1,5
1746540843.15992,20,1,5
1746541640.2763693,20,1,5
1746541640.9652636,20,1,5
1746541642.809172,20,2,10
1746541644.1590323,20,2,10
1746541661.5525632,20,1,5
1746541661.8473797,20,1,5
1746541673.2924562,20,1,5
1746541690.0627325,20,1,5
1746541705.2046359,20,1,5
1746541720.5820982,20,1,5
1746541735.8016672,20,1,5
1746541750.6786475,20,1,5
1746541765.445288,20,1,5
1746541780.383463,20,1,5
1746541794.2240586,20,1,5
1746541807.9116697,20,1,5
1746541814.114822,20,1,5
1746541824.6826289,20,0,0
1746541835.8843803,20,0,0
1746543699.7171273,20,0,0
1746543700.2181292,20,0,0
1746543702.2860146,20,1,5
1746543711.9517696,20,1,5
1746544761.983068,20,1,5
1746544762.5447204,20,1,5
1746544764.3136823,20,2,10
1746544765.6196826,20,2,10
1746544780.0995035,20,1,5
1746544780.209669,20,1,5
1746547690.5203588,20,1,5
1746547691.2478611,20,1,5
1746547693.3177295,20,2,10
1746547694.6417224,20,2,10
1746547709.7893367,20,1,5
1746547709.920253,20,1,5
1746548121.9233124,20,1,5
1746548122.4621081,20,1,5
1746548124.3091154,20,2,10
1746548125.5342813,20,2,10
1746548139.788179,20,1,5
1746548139.900941,20,1,5
1746548524.1944506,20,1,5
1746548524.6908448,20,1,5
1746548526.241955,20,2,10
1746548527.0209243,20,2,10
1746548539.5389366,20,1,5
1746548539.6382072,20,1,5
1746549178.7412865,20,1,5
1746549179.349163,20,1,5
1746549181.3563979,20,2,10
1746549182.7124412,20,2,10
1746549198.25725,20,1,5
1746549198.8580382,20,1,5
1746552229.7463439,20,1,5
1746552230.3181274,20,1,5
1746552232.4106004,20,2,10
1746552233.7070396,20,2,10
1746552247.777616,20,1,5
1746552247.8973312,20,1,5
1746553476.0563128,20,1,5
1746553476.5969126,20,1,5
1746553478.3301718,20,2,10
1746553479.574929,20,2,10
1746553494.029305,20,1,5
1746553494.1441712,20,1,5
1746553943.4244401,20,1,5
1746553944.2458234,20,1,5
1746553946.3020082,20,2,10
1746553947.5795398,20,2,10
1746553961.8901792,20,1,5
1746553962.0992289,20,1,5
1746555592.5435226,20,1,5
1746555593.1920705,20,1,5
1746555594.8983295,20,2,10
1746555596.0153852,20,2,10
1746555609.4659212,20,1,5
1746555609.565031,20,1,5
1746560446.8678372,20,1,5
1746560447.560134,20,1,5
1746560449.4825594,20,2,10
1746560450.9699502,20,2,10
1746560467.4034007,20,1,5
1746560467.5448904,20,1,5
1746563320.2445722,20,1,5
1746563320.813783,20,1,5
1746563322.5515819,20,2,10
1746563323.8954666,20,2,10
1746563338.57294,20,1,5
1746563338.8922288,20,1,5
1746567961.376779,20,1,5
1746567962.2882638,20,1,5
1746567964.42751,20,2,10
1746567965.7381692,20,2,10
1746567981.1342976,20,1,5
1746567981.247534,20,1,5
1746569884.305457,20,1,5
1746569885.3159835,20,1,5
1746569887.3573713,20,2,10
1746569888.8271933,20,2,10
1746569905.5545962,20,1,5
1746569905.934736,20,1,5
1746570519.2721076,20,1,5
1746570519.8316529,20,1,5
1746570521.455852,20,2,10
1746570522.6220362,20,2,10
1746570536.2397726,20,1,5
1746570536.3415327,20,1,5
1746574013.6741197,20,1,5
1746574014.43344,20,1,5
1746574016.4774544,20,2,10
1746574018.0824745,20,2,10
1746574035.501493,20,1,5
1746574035.9419627,20,1,5
1746576035.275383,20,1,5
1746576036.0136724,20,1,5
1746576037.8095164,20,2,10
1746576039.4152575,20,2,10
1746576057.3345616,20,1,5
1746576057.5081007,20,1,5
1746578385.0956237,20,1,5
1746578385.764378,20,1,5
1746578387.6132362,20,2,10
1746578389.1703248,20,2,10
1746578406.378965,20,1,5
1746578406.5172591,20,1,5
1746579529.4469888,20,1,5
1746579530.3252065,20,1,5
1746579533.0713894,20,2,10
1746579534.6652305,20,2,10
1746579553.1860287,20,1,5
1746579553.3365803,20,1,5
1746581757.5216346,20,1,5
1746581758.325378,20,1,5
1746581760.375721,20,2,10
1746581761.7462137,20,2,10
1746581778.6680448,20,1,5
1746581778.9348276,20,1,5
1746581790.3656008,20,1,5
1746581796.7136312,20,1,5
1746581809.1364422,20,0,0
1746581821.399268,20,0,0
1746585392.1985464,20,0,0
1746585392.7317657,20,0,0
1746585394.5088348,20,1,5
1746585405.2432332,20,1,5
1746586411.921964,20,1,5
1746586412.4061694,20,1,5
1746586414.2354798,20,2,10
1746586415.3039732,20,2,10
1746586428.4085317,20,1,5
1746586428.5049293,20,1,5
1746590658.0839097,20,1,5
1746590658.6964214,20,1,5
1746590660.4465845,20,2,10
1746590661.7446783,20,2,10
1746590676.112603,20,1,5
1746590676.2369118,20,1,5
1746595535.8763156,20,1,5
1746595536.57939,20,1,5
1746595538.4812748,20,2,10
1746595540.0370548,20,2,10
1746595557.1352,20,1,5
1746595557.290596,20,1,5
1746598171.5274656,20,1,5
1746598172.3396583,20,1,5
1746598174.488742,20,2,10
1746598175.8453143,20,2,10
1746598191.083136,20,1,5
1746598191.19054,20,1,5
1746601510.8957603,20,1,5
1746601511.6125836,20,1,5
1746601513.4457667,20,2,10
1746601514.9717655,20,2,10
1746601532.6178787,20,1,5
1746601532.9158976,20,1,5
1746604884.358715,20,1,5
1746604885.2268224,20,1,5
1746604887.3251762,20,2,10
1746604888.6216674,20,2,10
1746604903.9524403,20,1,5
1746604904.073261,20,1,5
1746609782.5689032,20,1,5
1746609783.3962893,20,1,5
1746609785.7179067,20,2,10
1746609787.189967,20,2,10
1746609804.2343407,20,1,5
1746609804.3726733,20,1,5
1746613747.4887543,20,1,5
1746613748.4312835,20,1,5
1746613751.0065546,20,2,10
1746613752.512028,20,2,10
1746613769.8346326,20,1,5
1746613770.0174813,20,1,5
1746617340.0211775,20,1,5
1746617340.6173935,20,1,5
1746617342.4210718,20,2,10
1746617343.7447314,20,2,10
1746617358.95805,20,1,5
1746617359.1066723,20,1,5
1746619676.4811652,20,1,5
1746619677.299716,20,1,5
1746619679.3529222,20,2,10
1746619680.7435558,20,2,10
1746619697.4493961,20,1,5
1746619697.9510174,20,1,5
1746622912.7706826,20,1,5
1746622913.3464031,20,1,5
1746622915.3583643,20,2,10
1746622916.688378,20,2,10
1746622931.9294987,20,1,5
1746622932.0643795,20,1,5
1746624705.4061666,20,1,5
1746624706.1356516,20,1,5
1746624707.868024,20,2,10
1746624709.0254247,20,2,10
1746624722.776041,20,1,5
1746624722.9107015,20,1,5
1746625141.6780462,20,1,5
1746625142.2062716,20,1,5
1746625143.929156,20,2,10
1746625145.1178138,20,2,10
1746625158.9411812,20,1,5
1746625159.0715964,20,1,5
1746627685.5632265,20,1,5
1746627686.2065268,20,1,5
1746627688.088744,20,2,10
1746627689.2679436,20,2,10
1746627702.9745524,20,1,5
1746627703.3139162,20,1,5
1746630397.5827303,20,1,5
1746630398.1674974,20,1,5
1746630399.8381307,20,2,10
1746630400.8755352,20,2,10
1746630413.4455786,20,1,5
1746630413.8800688,20,1,5
1746631474.7907646,20,1,5
1746631475.3320174,20,1,5
1746631477.317518,20,2,10
1746631478.5319142,20,2,10
1746631493.1564207,20,1,5
1746631493.2801754,20,1,5
1746631988.3444693,20,1,5
1746631989.2563825,20,1,5
1746631991.3767338,20,2,10
1746631992.829517,20,2,10
1746632009.4827702,20,1,5
1746632009.6337974,20,1,5
1746634660.1850853,20,1,5
1746634660.776514,20,1,5
1746634662.4542263,20,2,10
1746634663.7807648,20,2,10
1746634678.416964,20,1,5
1746634678.5406888,20,1,5
1746638405.08009,20,1,5
1746638405.7362535,20,1,5
1746638407.5047526,20,2,10
1746638408.8011236,20,2,10
1746638423.5464284,20,1,5
1746638423.8087566,20,1,5
1746638435.2407706,20,1,5
1746638441.3583996,20,1,5
1746638450.9457853,20,0,0
1746638462.1686325,20,0,0
1746641555.8172934,20,0,0
1746641556.2929761,20,0,0
1746641558.2848678,20,1,5
1746641568.3093045,20,1,5
1746642017.6009223,20,1,5
1746642018.21428,20,1,5
1746642020.1373453,20,2,10
1746642021.428944,20,2,10
1746642036.4546542,20,1,5
1746642036.90219,20,1,5
1746645431.7718635,20,1,5
1746645432.361141,20,1,5
1746645434.3376498,20,2,10
1746645435.675619,20,2,10
1746645451.194317,20,1,5
1746645451.4189067,20,1,5
1746649138.8206408,20,1,5
1746649139.4273655,20,1,5
1746649141.471903,20,2,10
1746649142.8927622,20,2,10
1746649156.7296052,20,1,5
1746649156.9752853,20,1,5
1746652981.4395063,20,1,5
1746652983.3617406,20,1,5
1746652985.4456832,20,2,10
1746652986.8871856,20,2,10
1746653003.7937713,20,1,5
1746653003.9370334,20,1,5
1746655330.0947666,20,1,5
1746655330.5329282,20,1,5
1746655332.2190723,20,2,10
1746655333.2297354,20,2,10
1746655346.1556823,20,1,5
1746655346.2562468,20,1,5
1746659586.608735,20,1,5
1746659587.304347,20,1,5
1746659589.3917217,20,2,10
1746659590.761711,20,2,10
1746659606.4210958,20,1,5
1746659606.5573072,20,1,5
1746660479.222114,20,1,5
1746660479.7880585,20,1,5
1746660481.4979277,20,2,10
1746660482.7095942,20,2,10
1746660497.109243,20,1,5
1746660497.2285645,20,1,5
1746662002.0988812,20,1,5
1746662002.6834335,20,1,5
1746662004.4054236,20,2,10
1746662005.760165,20,2,10
1746662021.58785,20,1,5
1746662021.7090607,20,1,5
1746666156.6942532,20,1,5
1746666157.300291,20,1,5
1746666159.3994532,20,2,10
1746666160.6775355,20,2,10
1746666175.687103,20,1,5
1746666175.8072855,20,1,5
1746669448.6870255,20,1,5
1746669449.3644707,20,1,5
1746669451.358251,20,2,10
1746669452.875471,20,2,10
1746669470.1356854,20,1,5
1746669470.3792794,20,1,5
1746673639.5982165,20,1,5
1746673640.3668633,20,1,5
1746673642.4263308,20,2,10
1746673643.880669,20,2,10
1746673661.2300608,20,1,5
1746673661.92248,20,1,5
1746676954.7507477,20,1,5
1746676955.278465,20,1,5
1746676957.2772498,20,2,10
1746676958.5091972,20,2,10
1746676973.366868,20,1,5
1746676973.4881995,20,1,5
1746679309.7828574,20,1,5
1746679310.2514682,20,1,5
1746679312.3396318,20,2,10
1746679313.484589,20,2,10
1746679328.5286415,20,1,5
1746679328.648101,20,1,5
1746682729.5808647,20,1,5
1746682730.2592504,20,1,5
1746682732.3019812,20,2,10
1746682733.5684164,20,2,10
1746682748.5882988,20,1,5
1746682748.7220967,20,1,5
1746685970.8253968,20,1,5
1746685971.4731903,20,1,5
1746685973.5868719,20,2,10
1746685975.0529573,20,2,10
1746685992.277049,20,1,5
1746685992.4145286,20,1,5
1746688054.764523,20,1,5
1746688055.2980936,20,1,5
1746688057.3442738,20,2,10
1746688058.6089845,20,2,10
1746688073.7618284,20,1,5
1746688073.85526,20,1,5
1746689763.1807766,20,1,5
1746689763.9834816,20,1,5
1746689765.7312582,20,2,10
1746689767.216443,20,2,10
1746689785.0457976,20,1,5
1746689785.1932566,20,1,5
1746694925.660842,20,1,5
1746694926.4667537,20,1,5
1746694928.4154973,20,2,10
1746694929.8718023,20,2,10
1746694946.8357008,20,1,5
1746694946.9626663,20,1,5
1746699092.6504488,20,1,5
1746699093.350773,20,1,5
1746699095.408508,20,2,10
1746699096.7179573,20,2,10
1746699113.9678392,20,1,5
1746699114.3576417,20,1,5
1746699126.0002182,20,1,5
1746699132.3310475,20,1,5
1746699145.1572294,20,0,0
1746699158.5546656,20,0,0
1746704202.277037,20,0,0
1746704202.7372754,20,0,0
1746704204.3652122,20,1,5
1746704212.8695989,20,1,5
1746707746.6262383,20,1,5
1746707747.2366064,20,1,5
1746707749.321502,20,2,10
1746707750.6074145,20,2,10
1746707766.332379,20,1,5
1746707766.4531775,20,1,5
1746710847.2567408,20,1,5
1746710847.8840296,20,1,5
1746710849.6736798,20,2,10
1746710851.0899696,20,2,10
1746710871.1120515,20,1,5
1746710871.4055972,20,1,5
1746714769.7660875,20,1,5
1746714770.382531,20,1,5
1746714772.3112223,20,2,10
1746714773.6474335,20,2,10
1746714789.6845949,20,1,5
1746714789.8103633,20,1,5
1746718303.889708,20,1,5
1746718304.494677,20,1,5
1746718306.3768835,20,2,10
1746718307.798191,20,2,10
1746718323.5606866,20,1,5
1746718323.9057446,20,1,5
1746721862.0846138,20,1,5
1746721863.562246,20,1,5
1746721865.494627,20,2,10
1746721867.079309,20,2,10
1746721886.555823,20,1,5
1746721886.965319,20,1,5
1746728220.4511628,20,1,5
1746728221.4229007,20,1,5
1746728223.5532148,20,2,10
1746728225.162399,20,2,10
1746728244.6392388,20,1,5
1746728244.9345057,20,1,5
1746731668.7919652,20,1,5
1746731669.4877098,20,1,5
1746731672.4263535,20,2,10
1746731674.0268447,20,2,10
1746731693.0858748,20,1,5
1746731693.2407877,20,1,5
1746736456.5931053,20,1,5
1746736457.3289442,20,1,5
1746736459.3861678,20,2,10
1746736460.8338976,20,2,10
1746736476.663303,20,1,5
1746736476.9105988,20,1,5
1746737517.402574,20,1,5
1746737517.8526464,20,1,5
1746737519.5280862,20,2,10
1746737520.8265228,20,2,10
1746737538.1827528,20,1,5
1746737538.4268277,20,1,5
1746743753.030149,20,1,5
1746743753.8223588,20,1,5
1746743755.794606,20,2,10
1746743757.3955653,20,2,10
1746743776.9807239,20,1,5
1746743777.1343155,20,1,5
1746750971.9241562,20,1,5
1746750972.6146948,20,1,5
1746750974.4356816,20,2,10
1746750975.8904343,20,2,10
1746750993.552927,20,1,5
1746750993.779235,20,1,5
1746754708.1059613,20,1,5
1746754708.604773,20,1,5
1746754710.2813566,20,2,10
1746754711.4229136,20,2,10
1746754728.264336,20,1,5
1746754728.524314,20,1,5
1746759817.6461844,20,1,5
1746759818.388633,20,1,5
1746759820.3757377,20,2,10
1746759821.778527,20,2,10
1746759839.0985951,20,1,5
1746759839.359588,20,1,5
1746764302.4657145,20,1,5
1746764303.255604,20,1,5
1746764305.234839,20,2,10
1746764306.235452,20,2,10
1746764321.808888,20,1,5
1746764321.9053469,20,1,5
1746768954.6168547,20,1,5
1746768955.4073806,20,1,5
1746768957.4588943,20,2,10
1746768959.0960684,20,2,10
1746768976.8460605,20,1,5
1746768977.0859315,20,1,5
1746771305.381548,20,1,5
1746771306.3431668,20,1,5
1746771308.4442353,20,2,10
1746771310.0506735,20,2,10
1746771329.7674234,20,1,5
1746771330.006886,20,1,5
1746772485.3069565,20,1,5
1746772485.866709,20,1,5
1746772487.6272874,20,2,10
1746772489.1858914,20,2,10
1746772509.4269652,20,1,5
1746772509.5654428,20,1,5
1746777190.4300451,20,1,5
1746777191.0631382,20,1,5
1746777193.827994,20,2,10
1746777195.4241743,20,2,10
1746777216.2601535,20,1,5
1746777216.4017138,20,1,5
1746781749.6141276,20,1,5
1746781750.386456,20,1,5
1746781752.45385,20,2,10
1746781753.8045294,20,2,10
1746781772.6863062,20,1,5
1746781773.001696,20,1,5
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_worker_usage")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_worker_usage", "worker_usage.csv")'> Download »worker_usage.csv« as file</button>
<h1> CPU/RAM-Usage (main)</h1>
<div class='invert_in_dark_mode' id='mainWorkerCPURAM'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<pre id="pre_tab_main_worker_cpu_ram">timestamp,ram_usage_mb,cpu_usage_percent
1746192418,618.67578125,31.8
1746192418,614.24609375,32.2
1746192418,614.24609375,32.5
1746192418,614.24609375,22.9
1746192418,614.24609375,34.1
1746192418,614.24609375,31.7
1746192418,614.24609375,38.1
1746194638,761.5546875,41.1
1746194638,761.5546875,37.7
1746194639,761.5546875,41.4
1746194639,761.5546875,38.6
1746199116,734.76953125,40.3
1746199116,734.76953125,39.6
1746199116,734.76953125,40.0
1746199116,734.76953125,38.9
1746201128,771.05859375,39.5
1746201128,771.05859375,42.1
1746201128,771.05859375,40.2
1746201128,771.05859375,41.2
1746207105,789.4609375,36.4
1746207105,789.4609375,34.5
1746207105,789.4609375,34.5
1746207105,789.4609375,37.2
1746209771,834.94921875,32.6
1746209771,834.94921875,32.0
1746209771,834.94921875,30.4
1746209771,834.94921875,31.2
1746213118,809.46484375,29.5
1746213118,809.46484375,27.5
1746213118,809.46484375,27.5
1746213118,809.46484375,26.5
1746217039,859.61328125,25.1
1746217039,859.61328125,21.0
1746217039,859.61328125,20.9
1746217039,859.61328125,23.9
1746221318,837.98046875,19.7
1746221318,837.98046875,16.4
1746221318,837.98046875,16.3
1746221318,837.98046875,16.4
1746227037,896.140625,17.0
1746227037,896.140625,16.4
1746227037,896.140625,16.0
1746227037,896.140625,17.8
1746234044,917.578125,16.2
1746234044,917.578125,14.8
1746234044,917.578125,14.3
1746234044,917.578125,14.5
1746245309,896.9453125,15.7
1746245309,896.9453125,14.9
1746245309,896.9453125,14.3
1746245309,896.9453125,15.6
1746262308,912.62109375,16.1
1746262308,912.62109375,17.3
1746262308,912.62109375,16.6
1746262308,912.62109375,10.3
1746274781,982.2421875,16.4
1746274781,982.2421875,14.9
1746274781,982.2421875,15.2
1746274781,982.2421875,16.3
1746290750,982.60546875,18.9
1746290750,982.60546875,18.7
1746290750,982.60546875,18.5
1746290750,982.60546875,18.2
1746309470,1021.890625,20.2
1746309470,1021.890625,19.7
1746309470,1021.890625,20.1
1746309470,1021.890625,20.0
1746340234,1059.40625,20.1
1746340234,1059.40625,22.3
1746340234,1059.40625,22.6
1746340234,1059.40625,26.1
1746356869,1140.77734375,20.4
1746356869,1140.77734375,17.4
1746356869,1140.77734375,17.4
1746356869,1140.77734375,25.0
1746381606,1138.4375,25.3
1746381606,1138.4375,30.9
1746381607,1138.4375,31.3
1746381607,1138.4375,33.3
1746404236,1282.02734375,26.6
1746404236,1282.02734375,23.9
1746404236,1282.02734375,24.4
1746404236,1282.02734375,25.8
1746453471,1130.76953125,20.8
1746453471,1130.76953125,22.8
1746453471,1130.76953125,21.3
1746453471,1130.76953125,25.8
1746488702,1165.0625,20.5
1746488702,1165.0625,18.6
1746488702,1165.0625,18.9
1746488702,1165.0625,15.9
1746519257,1206.00390625,20.2
1746519257,1206.00390625,21.7
1746519257,1206.00390625,20.9
1746519257,1206.00390625,20.2
1746541672,1203.22265625,20.4
1746541672,1203.22265625,17.6
1746541673,1203.22265625,18.9
1746541673,1203.22265625,23.0
1746581789,1231.6328125,16.2
1746581790,1231.6328125,14.1
1746581790,1231.6328125,14.3
1746581790,1231.6328125,15.3
1746638434,1247.671875,14.2
1746638434,1247.671875,11.5
1746638435,1247.671875,11.2
1746638435,1247.671875,14.8
1746699125,1316.0703125,12.2
1746699125,1316.0703125,15.0
1746699125,1316.0703125,15.5
1746699125,1316.0703125,13.1
1746781785,1342.37109375,21.3
1746781785,1342.37109375,22.3
1746781785,1342.37109375,20.3
1746781785,1342.37109375,19.3
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<h1> Parallel Plot</h1>
<div class="invert_in_dark_mode" id="parallel-plot"></div>
<h1> Scatter-2D</h1>
<div class='invert_in_dark_mode' id='plotScatter2d'></div>
<h1> Scatter-3D</h1>
<div class='invert_in_dark_mode' id='plotScatter3d'></div>
<h1> Job Status Distribution</h1>
<div class="invert_in_dark_mode" id="plotJobStatusDistribution"></div>
<h1> Boxplots</h1>
<div class="invert_in_dark_mode" id="plotBoxplot"></div>
<h1> Violin</h1>
<div class="invert_in_dark_mode" id="plotViolin"></div>
<h1> Histogram</h1>
<div class="invert_in_dark_mode" id="plotHistogram"></div>
<h1> Heatmap</h1>
<div class="invert_in_dark_mode" id="plotHeatmap"></div><br>
<h1>Correlation Heatmap Explanation</h1>
<p>
This is a heatmap that visualizes the correlation between numerical columns in a dataset. The values represented in the heatmap show the strength and direction of relationships between different variables.
</p>
<h2>How It Works</h2>
<p>
The heatmap uses a matrix to represent correlations between each pair of numerical columns. The calculation behind this is based on the concept of "correlation," which measures how strongly two variables are related. A correlation can be positive, negative, or zero:
</p>
<ul>
<li><strong>Positive correlation</strong>: Both variables increase or decrease together (e.g., if the temperature rises, ice cream sales increase).</li>
<li><strong>Negative correlation</strong>: As one variable increases, the other decreases (e.g., as the price of a product rises, the demand for it decreases).</li>
<li><strong>Zero correlation</strong>: There is no relationship between the two variables (e.g., height and shoe size might show zero correlation in some contexts).</li>
</ul>
<h2>Color Scale: Yellow to Purple (Viridis)</h2>
<p>
The heatmap uses a color scale called "Viridis," which ranges from yellow to purple. Here's what the colors represent:
</p>
<ul>
<li><strong>Yellow (brightest)</strong>: A strong positive correlation (close to +1). This indicates that as one variable increases, the other increases in a very predictable manner.</li>
<li><strong>Green</strong>: A moderate positive correlation. Variables are still positively related, but the relationship is not as strong.</li>
<li><strong>Blue</strong>: A weak or near-zero correlation. There is a small or no discernible relationship between the variables.</li>
<li><strong>Purple (darkest)</strong>: A strong negative correlation (close to -1). This indicates that as one variable increases, the other decreases in a very predictable manner.</li>
</ul>
<h2>What the Heatmap Shows</h2>
<p>
In the heatmap, each cell represents the correlation between two numerical columns. The color of the cell is determined by the correlation coefficient: from yellow for strong positive correlations, through green and blue for weaker correlations, to purple for strong negative correlations.
</p>
<h1> Result-Pairs</h1>
<div class="invert_in_dark_mode" id="plotResultPairs"></div>
</body>
</html>
Copy raw data to clipboard
Download »export.html« as file