Skipped tabs:
Job-Infos
Main-Log
Debug-Logs
Single Logs
Copy raw data to clipboard
Download »export.html« as file
<!DOCTYPE html>
<html lang='en'>
<head>
<meta charset='UTF-8'>
<meta name='viewport' content='width=device-width, initial-scale=1.0'>
<title>Exported »pwinkler/vergl_botorch/0« from OmniOpt2-Share</title>
<script src='https://code.jquery.com/jquery-3.7.1.js'></script>
<script src='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/gridjs.production.min.js'></script>
<script src='https://cdn.jsdelivr.net/npm/plotly.js-dist@3.0.1/plotly.min.js'></script>
<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/theme/mermaid.css'>
<style>
#share_path {
color: black;
}
.debug_log_pre {
min-width: 300px;
}
body.dark-mode {
background-color: #1e1e1e; color: #fff;
}
.plot-container {
margin-bottom: 2rem;
}
.spinner {
border: 4px solid #f3f3f3;
border-top: 4px solid #3498db;
border-radius: 50%;
width: 40px;
height: 40px;
animation: spin 2s linear infinite;
margin: auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.tabs {
margin-bottom: 20px;
}
.tab-content {
display: none;
}
.tab-content.active {
display: block;
}
pre {
color: #00CC00 !important;
background-color: black !important;
font-family: monospace !important;
line-break: anywhere;
}
menu[role="tablist"] {
display: flex;
flex-wrap: wrap;
gap: 4px;
max-width: 100%;
max-height: 100px;
overflow: scroll;
}
menu[role="tablist"] button {
white-space: nowrap;
min-width: 100px;
}
.container {
max-width: 100% !important;
}
.gridjs-sort {
min-width: 1px !important;
}
td.gridjs-td {
overflow: clip;
}
.title-bar-text {
font-size: 22px;
display: block ruby;
}
.title-bar {
height: fit-content;
}
.window {
width: fit-content;
min-width: 100%;
}
.top_link {
display: inline-block;
padding: 5px 5px;
background-color: #007bff; /* Blau, kannst du anpassen */
color: white;
text-decoration: none;
font-size: 16px;
font-weight: bold;
border-radius: 6px;
border: 2px solid #0056b3;
text-align: center;
transition: all 0.3s ease-in-out;
}
.top_link:hover {
background-color: #0056b3;
border-color: #004494;
}
.top_link:active {
background-color: #003366;
border-color: #002244;
}
button {
color: black;
}
.share_folder_buttons {
width: fit-content;
}
button {
background: #fcfcfe;
border-color: #919b9c;
border-top-color: rgb(145, 155, 156);
border-bottom-color: rgb(145, 155, 156);
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c;
}
button {
padding-bottom: 2px;
margin-top: -2px;
background-color: #ece9d8;
position: relative;
z-index: 8;
margin-left: -3px;
margin-bottom: 1px;
}
.window {
min-width: 1100px;
}
.error_text {
color: red;
}
[role="tab"] {
padding: 10px !important;
}
[role="tabpanel"] {
min-width: fit-content;
}
select {
border: 1px solid #7f9db9;
background-image: url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 -0.5 15 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e6eefc' d='M0 0h1'/%3E%3Cpath stroke='%23d1e0fd' d='M1 0h1M0 1h1m3 0h2M2 3h1M2 4h1'/%3E%3Cpath stroke='%23cad8f9' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23c4d3f7' d='M3 0h1M0 3h1M0 4h1'/%3E%3Cpath stroke='%23bfd0f8' d='M4 0h2M0 5h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 0h1M0 6h1'/%3E%3Cpath stroke='%23baccf4' d='M7 0h1m6 2h1m-1 5h1m-1 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M8 0h1M0 7h1M0 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M9 0h2M0 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 0h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 0h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 0h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 0h1'/%3E%3Cpath stroke='%23e1eafe' d='M1 1h1'/%3E%3Cpath stroke='%23dae6fe' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23d4e1fc' d='M3 1h1M1 3h1M1 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 1h1M1 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 1h1M4 2h2'/%3E%3Cpath stroke='%23cad9fd' d='M8 1h1M6 2h1M3 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M9 1h2'/%3E%3Cpath stroke='%23c5d6fc' d='M11 1h1M2 11h4'/%3E%3Cpath stroke='%23c2d3fc' d='M12 1h1m-2 1h1M1 11h1m0 1h2m-2 1h2'/%3E%3Cpath stroke='%23bccefa' d='M13 1h1m-1 1h1m-1 1h1m-1 1h1M3 15h4'/%3E%3Cpath stroke='%23b9c9f3' d='M14 1h1M3 16h4'/%3E%3Cpath stroke='%23d8e3fc' d='M2 2h1'/%3E%3Cpath stroke='%23d1defd' d='M3 2h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 2h1M4 3h3M4 4h3M3 6h1m1 0h2M1 7h1M1 8h1'/%3E%3Cpath stroke='%23c5d5fc' d='M8 2h1m-8 8h5'/%3E%3Cpath stroke='%23c5d3fc' d='M9 2h2'/%3E%3Cpath stroke='%23bed0fc' d='M12 2h1M8 3h1M8 4h1m-8 8h1m-1 1h1m0 1h1m1 0h3'/%3E%3Cpath stroke='%23cddbfc' d='M3 3h1M3 4h1M1 6h2'/%3E%3Cpath stroke='%23c8d5fb' d='M7 3h1M7 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M9 3h4M9 4h4M8 5h1M7 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 3h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23ceddfd' d='M2 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M4 5h4M1 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M9 5h2m1 0h2M1 14h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M8 6h2m2 0h2m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%234d6185' d='M4 6h1m5 0h1M3 7h3m3 0h3M4 8h3m1 0h3M5 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1m-1 1h1'/%3E%3Cpath stroke='%23cad8fd' d='M2 7h1M2 8h2'/%3E%3Cpath stroke='%23c1d3fb' d='M6 7h2M7 8h1M4 9h1'/%3E%3Cpath stroke='%23b6cefb' d='M8 7h1m2 1h1m-2 1h3m-2 1h2'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-6 6h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b4c8f6' d='M0 10h1'/%3E%3Cpath stroke='%23bdd3fb' d='M9 10h2m-4 4h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 10h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 10h1'/%3E%3Cpath stroke='%23b1c7f6' d='M0 11h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M8 11h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M9 11h4m-2 3h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 11h1m-3 4h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 11h1m-7 5h3'/%3E%3Cpath stroke='%23adc3f6' d='M0 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c2d5fc' d='M4 12h4m-4 1h4'/%3E%3Cpath stroke='%23b7d3fc' d='M9 12h2m-2 1h2m-3 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 12h1m-1 1h1'/%3E%3Cpath stroke='%23afcdfb' d='M12 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afcbfa' d='M13 12h1m-1 1h1'/%3E%3Cpath stroke='%23b2c8f4' d='M14 12h1m-1 1h1m-4 3h1'/%3E%3Cpath stroke='%23c1d2fb' d='M3 14h1'/%3E%3Cpath stroke='%23b6d1fb' d='M9 14h2'/%3E%3Cpath stroke='%23adc9f9' d='M13 14h1m-2 1h1'/%3E%3Cpath stroke='%23b1c6f3' d='M14 14h1m-3 2h1'/%3E%3Cpath stroke='%23abc1f4' d='M0 15h1'/%3E%3Cpath stroke='%23b7cbf9' d='M1 15h1'/%3E%3Cpath stroke='%23b9cefb' d='M2 15h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 15h1'/%3E%3Cpath stroke='%23b2cdfb' d='M9 15h2'/%3E%3Cpath stroke='%23aec8f7' d='M13 15h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 15h1m-2 1h1'/%3E%3Cpath stroke='%23dbe3f8' d='M0 16h1'/%3E%3Cpath stroke='%23b7c6f1' d='M1 16h1'/%3E%3Cpath stroke='%23b8c9f2' d='M2 16h1m4 0h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 16h1'/%3E%3C/svg%3E");
background-size: 15px;
font-size: 11px;
border: none;
background-color: #fff;
box-sizing: border-box;
height: 21px;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
position: relative;
padding: 5px 32px 32px 5px;
background-position: top 50% right 2px;
background-repeat: no-repeat;
border-radius: 0;
border: 1px solid black;
}
body {
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
background-color: #fafafa;
font-variant: oldstyle-nums;
text-shadow: 0 0.05em 0.1em rgba(0,0,0,0.2);
scroll-behavior: smooth;
text-wrap: balance;
text-rendering: optimizeLegibility;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
font-feature-settings: "ss02", "liga", "onum";
}
.marked_text {
background-color: yellow;
}
.time_picker_container {
font-variant: small-caps;
width: 100%;
}
.time_picker_container > input {
width: 50px;
}
#loader {
display: grid;
justify-content: center;
align-items: center;
height: 100%;
}
.no_linebreak {
line-break: auto;
}
.dark_code_bg {
background-color: #363636;
color: white;
}
.code_bg {
background-color: #C0C0C0;
}
#commands {
line-break: anywhere;
}
.color_red {
color: red;
}
.color_orange {
color: orange;
}
table > tbody > tr:nth-child(odd) {
background-color: #fafafa;
}
table > tbody > tr:nth-child(even) {
background-color: #ddd;
}
table {
border-collapse: collapse;
margin: 25px 0;
min-width: 200px;
}
th {
background-color: #4eae46;
color: #ffffff;
text-align: left;
border: 0px;
}
.error_element {
background-color: #e57373;
border-radius: 10px;
padding: 4px;
display: none;
}
button {
background-color: #4eae46;
border: 1px solid #2A8387;
border-radius: 4px;
box-shadow: rgba(0, 0, 0, 0.12) 0 1px 1px;
cursor: pointer;
display: block;
line-height: 100%;
outline: 0;
padding: 11px 15px 12px;
text-align: center;
transition: box-shadow .05s ease-in-out, opacity .05s ease-in-out;
user-select: none;
-webkit-user-select: none;
touch-action: manipulation;
}
button:hover {
box-shadow: rgba(255, 255, 255, 0.3) 0 0 2px inset, rgba(0, 0, 0, 0.4) 0 1px 2px;
text-decoration: none;
transition-duration: .15s, .15s;
}
button:active {
box-shadow: rgba(0, 0, 0, 0.15) 0 2px 4px inset, rgba(0, 0, 0, 0.4) 0 1px 1px;
}
button:disabled {
cursor: not-allowed;
opacity: .6;
}
button:disabled:active {
pointer-events: none;
}
button:disabled:hover {
box-shadow: none;
}
.half_width_td {
vertical-align: baseline;
width: 50%;
}
#scads_bar {
width: 100%;
min-height: 80px;
margin: 0;
padding: 0;
user-select: none;
user-drag: none;
-webkit-user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-select: none;
-ms-user-select: none;
display: -webkit-box;
}
.tab {
display: inline-block;
padding: 0px;
margin: 0px;
font-size: 16px;
font-weight: bold;
text-align: center;
border-radius: 25px;
text-decoration: none !important;
transition: background-color 0.3s, color 0.3s;
color: unset !important;
}
.tooltipster-base {
border: 1px solid black;
position: absolute;
border-radius: 8px;
padding: 2px;
color: white;
background-color: #61686f;
width: 70%;
min-width: 200px;
pointer-events: none;
}
td {
padding-top: 3px;
padding-bottom: 3px;
}
.left_side {
text-align: right;
}
.right_side {
text-align: left;
}
.spinner {
border: 8px solid rgba(0, 0, 0, 0.1);
border-left: 8px solid #3498db;
border-radius: 50%;
width: 50px;
height: 50px;
animation: spin 1s linear infinite;
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
#spinner-overlay {
-webkit-text-stroke: 1px black;
white !important;
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
display: flex;
justify-content: center;
align-items: center;
z-index: 9999;
}
#spinner-container {
text-align: center;
color: #fff;
display: contents;
}
#spinner-text {
font-size: 3vw;
margin-left: 10px;
}
a, a:visited, a:active, a:hover, a:link {
color: #007bff;
text-decoration: none;
}
.copy-container {
display: inline-block;
position: relative;
cursor: pointer;
margin-left: 10px;
color: blue;
}
.copy-container:hover {
text-decoration: underline;
}
.clipboard-icon {
position: absolute;
top: 5px;
right: 5px;
font-size: 1.5em;
}
#main_tab {
overflow: scroll;
width: max-content;
}
.ui-tabs .ui-tabs-nav li {
user-select: none;
}
.stacktrace_table {
background-color: black !important;
color: white !important;
}
#breadcrumb {
user-select: none;
}
#statusBar {
user-select: none;
}
.error_line {
background-color: red !important;
color: white !important;
}
.header_table {
border: 0px !important;
padding: 0px !important;
width: revert !important;
min-width: revert !important;
}
.img_auto_width {
max-width: revert !important;
}
#main_dir_or_plot_view {
display: inline-grid;
}
#refresh_button {
width: 300px;
}
._share_link {
color: black !important;
}
#footer_element {
height: 30px;
background-color: #f8f9fa;
padding: 0px;
text-align: center;
border-top: 1px solid #dee2e6;
width: 100%;
box-sizing: border-box;
position: fixed;
bottom: 0;
z-index: 2;
margin-left: -9px;
z-index: 99;
}
.switch {
position: relative;
display: inline-block;
width: 50px;
height: 26px;
}
.switch input {
opacity: 0;
width: 0;
height: 0;
}
.slider {
position: absolute;
cursor: pointer;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #ccc;
transition: .4s;
border-radius: 26px;
}
.slider:before {
position: absolute;
content: "";
height: 20px;
width: 20px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #444;
}
input:checked + .slider:before {
transform: translateX(24px);
}
.mode-text {
position: absolute;
top: 5px;
left: 65px;
font-size: 14px;
color: black;
transition: .4s;
width: 60px;
display: block;
font-size: 0.7rem;
text-align: center;
}
input:checked + .slider .mode-text {
content: "Dark Mode";
color: white;
}
#mainContent {
height: fit-content;
min-height: 100%;
}
li {
text-align: left;
}
#share_path {
margin-bottom: 20px;
margin-top: 20px;
}
#sortForm {
margin-bottom: 20px;
}
.share_folder_buttons {
margin-top: 10px;
margin-bottom: 10px;
}
.nav_tab_button {
margin: 10px;
}
.header_table {
margin: 10px;
}
.no_border {
border: unset !important;
}
.gui_table {
padding: 5px !important;
}
.gui_parameter_row {
}
.gui_parameter_row_cell {
border: unset !important;
}
.gui_param_table {
width: 95%;
margin: unset !important;
}
table td, table tr,
.parameterRow table {
padding: 2px !important;
}
.parameterRow table {
margin: 0px;
border: unset;
}
.parameterRow > td {
border: 0px !important;
}
.parameter_config_table td, .parameter_config_table tr, #config_table th, #config_table td, #hidden_config_table th, #hidden_config_table td {
border: 0px !important;
}
.green_text {
color: green;
}
.remove_parameter {
white-space: pre;
}
select {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
background-color: #fff;
color: #222;
padding: 5px 30px 5px 5px;
border: 1px solid #555;
border-radius: 5px;
cursor: pointer;
outline: none;
transition: all 0.3s ease;
background:
url("data:image/svg+xml;charset=UTF-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 10 6'%3E%3Cpath fill='%23888' d='M0 0l5 6 5-6z'/%3E%3C/svg%3E")
no-repeat right 10px center,
linear-gradient(180deg, #fff, #ecebe5 86%, #d8d0c4);
background-size: 12px, auto;
}
select:hover {
border-color: #888;
}
select:focus {
border-color: #4caf50;
box-shadow: 0 0 5px rgba(76, 175, 80, 0.5);
}
select::-ms-expand {
display: none;
}
input, textarea {
border-radius: 5px;
}
#search {
width: 200px;
max-width: 70%;
background-image: url(images/search.svg);
background-repeat: no-repeat;
background-size: auto 40px;
height: 40px;
line-height: 40px;
padding-left: 40px;
box-sizing: border-box;
}
input[type="checkbox"] {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
width: 25px;
height: 25px;
border: 2px solid #3498db;
border-radius: 5px;
background-color: #fff;
position: relative;
cursor: pointer;
transition: all 0.3s ease;
width: 25px !important;
}
input[type="checkbox"]:checked {
background-color: #3498db;
border-color: #2980b9;
}
input[type="checkbox"]:checked::before {
content: '✔';
position: absolute;
left: 4px;
top: 2px;
color: #fff;
}
input[type="checkbox"]:hover {
border-color: #2980b9;
background-color: #3caffc;
}
.toc {
margin-bottom: 20px;
}
.toc li {
margin-bottom: 5px;
}
.toc a {
text-decoration: none;
color: #007bff;
}
.toc a:hover {
text-decoration: underline;
}
.table-container {
width: 100%;
overflow-x: auto;
}
.section-header {
background-color: #1d6f9a !important;
color: white;
}
.warning {
color: red;
}
.li_list a {
text-decoration: none;
color: #007bff;
}
.gridjs-td {
white-space: nowrap;
}
th, td {
border: 1px solid gray !important;
}
.no_border {
border: 0px !important;
}
.no_break {
}
img {
user-select: none;
pointer-events: none;
}
#config_table, #hidden_config_table {
user-select: none;
}
.copy_clipboard_button {
margin-bottom: 10px;
}
.badge_table {
background-color: unset !important;
}
.make_markable {
user-select: text;
}
.header-container {
display: flex;
flex-wrap: wrap;
align-items: center;
justify-content: space-between;
gap: 1rem;
padding: 10px;
background: var(--header-bg, #fff);
border-bottom: 1px solid #ccc;
}
.header-logo-group {
display: flex;
gap: 1rem;
align-items: center;
flex: 1 1 auto;
min-width: 200px;
}
.logo-img {
max-height: 45px;
height: auto;
width: auto;
object-fit: contain;
pointer-events: unset;
}
.header-badges {
flex-direction: column;
gap: 5px;
align-items: flex-start;
flex: 0 1 auto;
margin-top: auto;
margin-bottom: auto;
}
.badge-img {
height: auto;
max-width: 130px;
}
.header-tabs {
margin-top: 10px;
display: flex;
flex-wrap: wrap;
gap: 10px;
flex: 2 1 100%;
justify-content: center;
}
.nav-tab {
display: inline-block;
text-decoration: none;
padding: 8px 16px;
border-radius: 20px;
background: linear-gradient(to right, #4a90e2, #357ABD);
color: white;
font-weight: bold;
white-space: nowrap;
transition: background 0.2s ease-in-out, transform 0.2s;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
}
.nav-tab:hover {
background: linear-gradient(to right, #5aa0f2, #4a90e2);
transform: translateY(-2px);
}
.current-tag {
padding-left: 10px;
font-size: 0.9rem;
color: #666;
}
.header-theme-toggle {
flex: 1 1 auto;
align-items: center;
margin-top: 20px;
min-width: 120px;
}
.switch {
position: relative;
display: inline-block;
width: 60px;
height: 30px;
}
.switch input {
display: none;
}
.slider {
position: absolute;
top: 0; left: 0; right: 0; bottom: 0;
background-color: #ccc;
border-radius: 34px;
cursor: pointer;
}
.slider::before {
content: "";
position: absolute;
height: 24px;
width: 24px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #2196F3;
}
input:checked + .slider::before {
transform: translateX(30px);
}
@media (max-width: 768px) {
.header-logo-group,
.header-badges,
.header-theme-toggle {
justify-content: center;
flex: 1 1 100%;
text-align: center;
}
.logo-img {
max-height: 50px;
pointer-events: unset;
}
.badge-img {
max-width: 100px;
}
.nav-tab {
font-size: 0.9rem;
padding: 6px 12px;
}
.header_button {
font-size: 2em;
}
}
.header_button {
margin-top: 20px;
margin: 5px;
}
.line_break_anywhere {
line-break: anywhere;
}
.responsive-container {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
gap: 20px;
}
.responsive-container .half {
flex: 1 1 48%;
box-sizing: border-box;
min-width: 500px;
}
.config-section table {
width: 100%;
border-collapse: collapse;
}
@media (max-width: 768px) {
.responsive-container .half {
flex: 1 1 100%;
}
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
.rotate {
animation: spin 2s linear infinite;
display: inline-block;
}
/*! XP.css v0.2.6 - https: //botoxparty.github.io/XP.css/ */
body{
color: #222
}
.surface{
background: #ece9d8
}
u{
text-decoration: none;
border-bottom: .5px solid #222
}
a{
color: #00f
}
a: focus{
outline: 1px dotted #00f
}
code,code *{
font-family: monospace
}
pre{
display: block;
padding: 12px 8px;
background-color: #000;
color: silver;
font-size: 1rem;
margin: 0;
overflow: scroll;
}
summary: focus{
outline: 1px dotted #000
}
: :-webkit-scrollbar{
width: 16px
}
: :-webkit-scrollbar: horizontal{
height: 17px
}
: :-webkit-scrollbar-track{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='2' height='2' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 0H0v1h1v1h1V1H1V0z' fill='silver'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 0H1v1H0v1h1V1h1V0z' fill='%23fff'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-color: #dfdfdf;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
: :-webkit-scrollbar-button: horizontal: end: increment,: :-webkit-scrollbar-button: horizontal: start: decrement,: :-webkit-scrollbar-button: vertical: end: increment,: :-webkit-scrollbar-button: vertical: start: decrement{
display: block
}
: :-webkit-scrollbar-button: vertical: start{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 6H7v1H6v1H5v1H4v1h7V9h-1V8H9V7H8V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 6H4v1h1v1h1v1h1v1h1V9h1V8h1V7h1V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 4H8v1H7v1H6v1H5v1h1v1h1v1h1v1h1V4z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M7 4H6v7h1v-1h1V9h1V8h1V7H9V6H8V5H7V4z' fill='%23000'/%3E%3C/svg%3E")
}
button{
border: none;
background: #ece9d8;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf;
border-radius: 0;
min-width: 75px;
min-height: 23px;
padding: 0 12px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: inset -1px -1px #fff,inset 1px 1px #0a0a0a,inset -2px -2px #dfdfdf,inset 2px 2px grey
}
button.focused,button: focus{
outline: 1px dotted #000;
outline-offset: -4px
}
label{
display: inline-flex;
align-items: center
}
textarea{
padding: 3px 4px;
border: none;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0
}
textarea: focus{
outline: none
}
select: focus option{
color: #000;
background-color: #fff
}
.vertical-bar{
width: 4px;
height: 20px;
background: silver;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
&: disabled,&: disabled+label{
color: grey;
text-shadow: 1px 1px 0 #fff
}
input[type=radio]+label{
line-height: 13px;
position: relative;
margin-left: 19px
}
input[type=radio]+label: before{
content: "";
position: absolute;
top: 0;
left: -19px;
display: inline-block;
width: 13px;
height: 13px;
margin-right: 6px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='%23fff'/%3E%3C/svg%3E")
}
input[type=radio]: active+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio]: checked+label: after{
content: "";
display: block;
width: 5px;
height: 5px;
top: 5px;
left: -14px;
position: absolute;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=radio][disabled]+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='gray'/%3E%3C/svg%3E")
}
input[type=email],input[type=password]{
padding: 3px 4px;
border: 1px solid #7f9db9;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0;
height: 21px;
line-height: 2
}
input[type=email]: focus,input[type=password]: focus{
outline: none
}
input[type=range]{
-webkit-appearance: none;
width: 100%;
background: transparent
}
input[type=range]: focus{
outline: none
}
input[type=range]: :-webkit-slider-thumb{
-webkit-appearance: none;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-webkit-slider-runnable-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range]: :-moz-range-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
.is-vertical{
display: inline-block;
width: 4px;
height: 150px;
transform: translateY(50%)
}
.is-vertical>input[type=range]{
width: 150px;
height: 4px;
margin: 0 16px 0 10px;
transform-origin: left;
transform: rotate(270deg) translateX(calc(-50% + 8px))
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-webkit-slider-thumb{
transform: translateY(-8px) scaleX(-1)
}
.is-vertical>input[type=range]: :-moz-range-thumb{
transform: translateY(2px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-webkit-slider-thumb{
transform: translateY(-10px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-moz-range-thumb{
transform: translateY(0) scaleX(-1)
}
.window{
font-size: 11px;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #dfdfdf,inset -2px -2px grey,inset 2px 2px #fff;
background: #ece9d8;
padding: 3px
}
.window fieldset{
margin-bottom: 9px
}
.title-bar{
background: #000;
padding: 3px 2px 3px 3px;
display: flex;
justify-content: space-between;
align-items: center
}
.title-bar-text{
font-weight: 700;
color: #fff;
letter-spacing: 0;
margin-right: 24px
}
.title-bar-controls button{
padding: 0;
display: block;
min-width: 16px;
min-height: 14px
}
.title-bar-controls button: focus{
outline: none
}
.window-body{
margin: 8px
}
.window-body pre{
margin: -8px
}
.status-bar{
margin: 0 1px;
display: flex;
gap: 1px
}
.status-bar-field{
box-shadow: inset -1px -1px #dfdfdf,inset 1px 1px grey;
flex-grow: 1;
padding: 2px 3px;
margin: 0
}
ul.tree-view{
display: block;
background: #fff;
padding: 6px;
margin: 0
}
ul.tree-view li{
list-style-type: none;
margin-top: 3px
}
ul.tree-view a{
text-decoration: none;
color: #000
}
ul.tree-view a: focus{
background-color: #2267cb;
color: #fff
}
ul.tree-view ul{
margin-top: 3px;
margin-left: 16px;
padding-left: 16px;
border-left: 1px dotted grey
}
ul.tree-view ul>li{
position: relative
}
ul.tree-view ul>li: before{
content: "";
display: block;
position: absolute;
left: -16px;
top: 6px;
width: 12px;
border-bottom: 1px dotted grey
}
ul.tree-view ul>li: last-child: after{
content: "";
display: block;
position: absolute;
left: -20px;
top: 7px;
bottom: 0;
width: 8px;
background: #fff
}
ul.tree-view ul details>summary: before{
margin-left: -22px;
position: relative;
z-index: 1
}
ul.tree-view details{
margin-top: 0
}
ul.tree-view details>summary: before{
text-align: center;
display: block;
float: left;
content: "+";
border: 1px solid grey;
width: 8px;
height: 9px;
line-height: 9px;
margin-right: 5px;
padding-left: 1px;
background-color: #fff
}
ul.tree-view details[open] summary{
margin-bottom: 0
}
ul.tree-view details[open]>summary: before{
content: "-"
}
fieldset{
border-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='5' height='5' fill='gray' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h5v5H0V2h2v1h1V2H0' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h4v4H0V1h1v2h2V1H0'/%3E%3C/svg%3E") 2;
padding: 10px;
padding-block-start: 8px;
margin: 0
}
legend{
background: #ece9d8
}
menu[role=tablist]{
position: relative;
margin: 0 0 -2px;
text-indent: 0;
list-style-type: none;
display: flex;
padding-left: 3px
}
menu[role=tablist] button{
z-index: 1;
display: block;
color: #222;
text-decoration: none;
min-width: unset
}
menu[role=tablist] button[aria-selected=true]{
padding-bottom: 2px;margin-top: -2px;background-color: #ece9d8;position: relative;z-index: 8;margin-left: -3px;margin-bottom: 1px
}
menu[role=tablist] button: focus{
outline: 1px dotted #222;outline-offset: -4px
}
menu[role=tablist].justified button{
flex-grow: 1;text-align: center
}
[role=tabpanel]{
padding: 14px;clear: both;background: linear-gradient(180deg,#fcfcfe,#f4f3ee);border: 1px solid #919b9c;position: relative;z-index: 2;margin-bottom: 9px
}
: :-webkit-scrollbar{
width: 17px
}
: :-webkit-scrollbar-corner{
background: #dfdfdf
}
: :-webkit-scrollbar-track: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 1' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1'/%3E%3Cpath stroke='%23f3f1ec' d='M1 0h1'/%3E%3Cpath stroke='%23f4f1ec' d='M2 0h1'/%3E%3Cpath stroke='%23f4f3ee' d='M3 0h1'/%3E%3Cpath stroke='%23f5f4ef' d='M4 0h1'/%3E%3Cpath stroke='%23f6f5f0' d='M5 0h1'/%3E%3Cpath stroke='%23f7f7f3' d='M6 0h1'/%3E%3Cpath stroke='%23f9f8f4' d='M7 0h1'/%3E%3Cpath stroke='%23f9f9f7' d='M8 0h1'/%3E%3Cpath stroke='%23fbfbf8' d='M9 0h1'/%3E%3Cpath stroke='%23fbfbf9' d='M10 0h2'/%3E%3Cpath stroke='%23fdfdfa' d='M12 0h1'/%3E%3Cpath stroke='%23fefefb' d='M13 0h3'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-track: horizontal{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 1 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1M0 16h1'/%3E%3Cpath stroke='%23f3f1ec' d='M0 1h1'/%3E%3Cpath stroke='%23f4f1ec' d='M0 2h1'/%3E%3Cpath stroke='%23f4f3ee' d='M0 3h1'/%3E%3Cpath stroke='%23f5f4ef' d='M0 4h1'/%3E%3Cpath stroke='%23f6f5f0' d='M0 5h1'/%3E%3Cpath stroke='%23f7f7f3' d='M0 6h1'/%3E%3Cpath stroke='%23f9f8f4' d='M0 7h1'/%3E%3Cpath stroke='%23f9f9f7' d='M0 8h1'/%3E%3Cpath stroke='%23fbfbf8' d='M0 9h1'/%3E%3Cpath stroke='%23fbfbf9' d='M0 10h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 12h1'/%3E%3Cpath stroke='%23fefefb' d='M0 13h1m-1 1h1m-1 1h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-position: 50%;
background-repeat: no-repeat;
background-color: #c8d6fb;
background-size: 7px;
border: 1px solid #fff;
border-radius: 2px;
box-shadow: inset -3px 0 #bad1fc,inset 1px 1px #b7caf5
}
: :-webkit-scrollbar-thumb: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 7 8' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h6M0 2h6M0 4h6M0 6h6'/%3E%3Cpath stroke='%23bad1fc' d='M6 0h1M6 2h1M6 4h1'/%3E%3Cpath stroke='%23c8d6fb' d='M0 1h1M0 3h1M0 5h1M0 7h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h6M1 3h6M1 5h6M1 7h6'/%3E%3Cpath stroke='%23bad3fc' d='M6 6h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb: horizontal{
background-size: 8px;background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 8 7' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h1m1 0h1m1 0h1m1 0h1M0 1h1m1 0h1m1 0h1m1 0h1M0 2h1m1 0h1m1 0h1m1 0h1M0 3h1m1 0h1m1 0h1m1 0h1M0 4h1m1 0h1m1 0h1m1 0h1M0 5h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23c8d6fb' d='M1 0h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h1m1 0h1m1 0h1m1 0h1M1 2h1m1 0h1m1 0h1m1 0h1M1 3h1m1 0h1m1 0h1m1 0h1M1 4h1m1 0h1m1 0h1m1 0h1M1 5h1m1 0h1m1 0h1m1 0h1M1 6h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23bad1fc' d='M0 6h1m1 0h1'/%3E%3Cpath stroke='%23bad3fc' d='M4 6h1m1 0h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: start{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h1m1 0h1'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M5 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h1m3 0h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h2M3 8h2'/%3E%3Cpath stroke='%234d6185' d='M8 5h1M7 6h3M6 7h5M5 8h3m1 0h3M4 9h3m3 0h3m-8 1h1m5 0h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1m-2 1h1m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23cad8fd' d='M4 7h2'/%3E%3Cpath stroke='%23b6cefb' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23c1d3fb' d='M8 8h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M8 9h1m-1 1h1m-3 1h2'/%3E%3Cpath stroke='%23bdd3fb' d='M9 9h1m-2 3h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M7 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h1m1 0h1m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c1d5fb' d='M8 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M6 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h3'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1M8 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h3M3 8h2'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M9 6h2m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%234d6185' d='M5 6h1m5 0h1M4 7h3m3 0h3M5 8h3m1 0h3M6 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 7h2M8 8h1'/%3E%3Cpath stroke='%23b6cefb' d='M9 7h1m2 1h1m-2 1h2'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M6 11h2'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23bdd3fb' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1M1 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 4h1M5 5h2M4 7h1M2 8h1'/%3E%3Cpath stroke='%234d6185' d='M8 4h1M7 5h3M6 6h3M5 7h3M4 8h3M5 9h3m-2 1h3m-2 1h3m-2 1h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M2 11h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M9 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23c8d6fb' d='M5 6h1M2 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1M8 7h3m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 8h2'/%3E%3Cpath stroke='%23b6cefb' d='M9 8h3M9 9h4'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 1h1m-1 4h1'/%3E%3Cpath stroke='%23bdd3fb' d='M8 9h1m-2 3h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-5 4h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%239fb5d2' d='M16 10h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M5 11h2'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%234d6185' d='M7 4h1M6 5h3M7 6h3M8 7h3M9 8h3M8 9h3m-4 1h3m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23c8d6fb' d='M8 4h1M5 6h2'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1M2 9h5'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M9 5h1m-8 6h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23c9d8fc' d='M5 5h1M4 7h3M2 8h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M7 7h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1m0 1h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h3'/%3E%3Cpath stroke='%23c1d3fb' d='M6 8h3'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 5h1'/%3E%3Cpath stroke='%23b4c8f6' d='M1 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M7 9h1m-3 2h1'/%3E%3Cpath stroke='%23b6cefb' d='M11 9h2'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23bbd3fd' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b6cdfb' d='M9 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
.window{
box-shadow: inset -1px -1px #00138c,inset 1px 1px #0831d9,inset -2px -2px #001ea0,inset 2px 2px #166aee,inset -3px -3px #003bda,inset 3px 3px #0855dd;
border-top-left-radius: 8px;
border-top-right-radius: 8px;
padding: 0 0 3px;
-webkit-font-smoothing: antialiased
}
.title-bar{
background: linear-gradient(180deg,#0997ff,#0053ee 8%,#0050ee 40%,#06f 88%,#06f 93%,#005bff 95%,#003dd7 96%,#003dd7);
padding: 3px 5px 3px 3px;
border-top: 1px solid #0831d9;
border-left: 1px solid #0831d9;
border-right: 1px solid #001ea0;
border-top-left-radius: 8px;
border-top-right-radius: 7px;
font-size: 13px;
text-shadow: 1px 1px #0f1089;
height: 21px
}
.title-bar-text{
padding-left: 3px
}
.title-bar-controls{
display: flex
}
.title-bar-controls button{
min-width: 21px;
min-height: 21px;
margin-left: 2px;
background-repeat: no-repeat;
background-position: 50%;
box-shadow: none;
background-color: #0050ee;
transition: background .1s;
border: none
}
.title-bar-controls button: active,.title-bar-controls button: focus,.title-bar-controls button: hover{
box-shadow: none!important
}
.title-bar-controls button[aria-label=Minimize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%235985f7' d='M7 5h1'/%3E%3Cpath stroke='%235381f6' d='M8 5h1M6 9h1'/%3E%3Cpath stroke='%234d7bf6' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%234677f5' d='M10 5h1'/%3E%3Cpath stroke='%234173f5' d='M11 5h1'/%3E%3Cpath stroke='%233a6ff4' d='M12 5h1'/%3E%3Cpath stroke='%23386ef4' d='M13 5h1'/%3E%3Cpath stroke='%23346cf4' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%235480f7' d='M7 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%233a6ff5' d='M11 6h1'/%3E%3Cpath stroke='%23346df4' d='M12 6h1'/%3E%3Cpath stroke='%23306bf4' d='M13 6h1'/%3E%3Cpath stroke='%232d69f4' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23507ef6' d='M7 7h1'/%3E%3Cpath stroke='%234a79f6' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236694eb' d='M19 0h1'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1m-6 6h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23427ff6' d='M9 13h1'/%3E%3Cpath stroke='%233c7ff6' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23366ef4' d='M2 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%236699f3' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23afc2ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h1'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1m-5 6h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M6 13h1'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23539fff' d='M9 13h1'/%3E%3Cpath stroke='%234fa4ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-7 7h1m-3 1h1'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m-7 7h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-1 1h1m-1 1h1M7 12h1m-2 1h1m-3 1h1m1 0h1m-3 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 5h11M5 6h11M5 7h11M5 8h1m9 0h1M5 9h1m9 0h1M5 10h1m9 0h1M5 11h1m9 0h1M5 12h1m9 0h1M5 13h1m9 0h1M5 14h1m9 0h1M5 15h11'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%23004fb4' d='M16 7h2m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1'/%3E%3Cpath stroke='%230049ae' d='M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M10 8h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 2h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h1m-6 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230051b6' d='M18 9h1m0 2h1m-1 1h1M8 14h1m10 3h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 1h1m-1 3h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h1m-4 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230049ac' d='M4 11h1m-2 1h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h1m-3 1h1m4 0h1m-7 2h1m0 3h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-1 2h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 3h1'/%3E%3Cpath stroke='%23005ec3' d='M13 13h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230060c5' d='M14 14h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23b2c3ee' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 5h1M8 5h1M6 9h1M9 5h1M8 6h1M10 5h1M11 5h1M12 5h1M13 5h1M14 5h1M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%23FFF' d='M7 6h1M8 6h1M9 6h1M10 6h1M11 6h1M12 6h1M13 6h1M14 6h1M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23FFF' d='M7 7h1'/%3E%3Cpath stroke='%234375f5' d='M8 7h1M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%23FFF' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 8h1'/%3E%3Cpath stroke='%234174f5' d='M8 8h1M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%23FFF' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%23FFF' d='M5 9h1M6 9h1M7 9h1M8 9h1M9 9h1M10 9h1M11 9h1M12 9h1M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%23FFF' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1M4 10h1'/%3E%3Cpath stroke='%23FFF' d='M5 10h1M6 10h1M7 10h1M8 10h1M9 10h1M10 10h1M11 10h1M12 10h1M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%23FFF' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%23FFF' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232673f7' d='M12 11h1'/%3E%3Cpath stroke='%23FFF' d='M13 11h1M14 11h1M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%23FFF' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232677f7' d='M12 12h1'/%3E%3Cpath stroke='%23FFF' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1M6 13h1M7 13h1'/%3E%3Cpath stroke='%23437ff6' d='M8 13h1'/%3E%3Cpath stroke='%232d7df7' d='M9 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M10 13h1M11 13h1'/%3E%3Cpath stroke='%232679f8' d='M12 13h1'/%3E%3Cpath stroke='%23FFF' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1M6 14h1'/%3E%3Cpath stroke='%232d7df7' d='M7 14h1M8 14h1M9 14h1M10 14h1M11 14h1'/%3E%3Cpath stroke='%23257af8' d='M12 14h1'/%3E%3Cpath stroke='%23FFF' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23FFF' d='M11 15h1M12 15h1M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%23FFF' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23548DFF' d='M5 13h1'/%3E%3Cpath stroke='%235991FF' d='M6 13h1'/%3E%3Cpath stroke='%235792FF' d='M7 13h1'/%3E%3Cpath stroke='%235496FF' d='M8 13h1'/%3E%3Cpath stroke='%23539CFF' d='M9 13h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 13h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23548DFF' d='M5 14h1'/%3E%3Cpath stroke='%235991FF' d='M6 14h1'/%3E%3Cpath stroke='%235792FF' d='M7 14h1'/%3E%3Cpath stroke='%235496FF' d='M8 14h1'/%3E%3Cpath stroke='%23539CFF' d='M9 14h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 14h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M12 12h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7M5 13h1'/%3E%3Cpath stroke='%23004BB0' d='M6 13h1'/%3E%3Cpath stroke='%23004DB1' d='M7 13h1'/%3E%3Cpath stroke='%23004FB4' d='M8 13h1'/%3E%3Cpath stroke='%230052B7' d='M9 13h1'/%3E%3Cpath stroke='%230055B9' d='M10 13h1'/%3E%3Cpath stroke='%230157BC' d='M11 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m1 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23004BB0' d='M6 14h1'/%3E%3Cpath stroke='%23004DB1' d='M7 14h1'/%3E%3Cpath stroke='%23004FB4' d='M8 14h1'/%3E%3Cpath stroke='%230052B7' d='M9 14h1'/%3E%3Cpath stroke='%230055B9' d='M10 14h1'/%3E%3Cpath stroke='%230157BC' d='M11 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 14h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M12 15h1M13 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1M5 14h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%2392aff9' d='M7 4h1'/%3E%3Cpath stroke='%23e1e9fd' d='M8 4h1'/%3E%3Cpath stroke='%23e0e8fd' d='M12 4h1'/%3E%3Cpath stroke='%2381a4f8' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%238eacf9' d='M6 5h1'/%3E%3Cpath stroke='%23f3f6fe' d='M7 5h1'/%3E%3Cpath stroke='%23d8e2fd' d='M9 5h1'/%3E%3Cpath stroke='%23cfdcfc' d='M10 5h1'/%3E%3Cpath stroke='%23ecf1fe' d='M11 5h1'/%3E%3Cpath stroke='%23eff4fe' d='M13 5h1'/%3E%3Cpath stroke='%23749af7' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%23d3dffd' d='M6 6h1'/%3E%3Cpath stroke='%23b2c6fb' d='M8 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%234a7bf6' d='M11 6h1'/%3E%3Cpath stroke='%23c8d7fc' d='M12 6h1'/%3E%3Cpath stroke='%23c6d6fc' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%23e6edfe' d='M6 7h1'/%3E%3Cpath stroke='%23e5ecfe' d='M7 7h1'/%3E%3Cpath stroke='%235a85f7' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%236c97f8' d='M12 7h1'/%3E%3Cpath stroke='%23cfddfd' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%2385a9f9' d='M12 8h1'/%3E%3Cpath stroke='%23cbdbfd' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235986f7' d='M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%2396b6fa' d='M11 9h1'/%3E%3Cpath stroke='%23f2f6fe' d='M12 9h1'/%3E%3Cpath stroke='%2393b6fb' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234e82f7' d='M9 10h1'/%3E%3Cpath stroke='%23cadafc' d='M10 10h1'/%3E%3Cpath stroke='%23a0c0fb' d='M13 10h1'/%3E%3Cpath stroke='%232a72f6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23bcd1fc' d='M9 11h1'/%3E%3Cpath stroke='%23dde8fd' d='M11 11h1'/%3E%3Cpath stroke='%235f97f8' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23dfe9fd' d='M9 12h1'/%3E%3Cpath stroke='%234687f7' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%235081f6' d='M5 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23d2e0fd' d='M9 13h1'/%3E%3Cpath stroke='%23edf3fe' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23467af5' d='M5 15h1'/%3E%3Cpath stroke='%23457af6' d='M6 15h1'/%3E%3Cpath stroke='%23437bf6' d='M7 15h1'/%3E%3Cpath stroke='%23417cf6' d='M8 15h1'/%3E%3Cpath stroke='%23cbdcfd' d='M9 15h1'/%3E%3Cpath stroke='%23327df7' d='M11 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%23f5f8fe' d='M9 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ee' d='M1 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b1ed' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m2 5h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2393b0ed' d='M20 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1m7 1h1'/%3E%3Cpath stroke='%239bbdff' d='M7 4h1'/%3E%3Cpath stroke='%23e3edff' d='M8 4h1'/%3E%3Cpath stroke='%23e1ebff' d='M12 4h1'/%3E%3Cpath stroke='%2387afff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1m-6 9h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%239bf' d='M6 5h1'/%3E%3Cpath stroke='%23f4f7ff' d='M7 5h1'/%3E%3Cpath stroke='%23dbe7ff' d='M9 5h1'/%3E%3Cpath stroke='%23d2e1ff' d='M10 5h1'/%3E%3Cpath stroke='%23edf3ff' d='M11 5h1'/%3E%3Cpath stroke='%23f0f5ff' d='M13 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%23548dff' d='M1 6h1m2 7h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%23d8e5ff' d='M6 6h1'/%3E%3Cpath stroke='%23b9d0ff' d='M8 6h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%23538dff' d='M11 6h1'/%3E%3Cpath stroke='%23cbdcff' d='M12 6h1'/%3E%3Cpath stroke='%23c9dbff' d='M14 6h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23e8f0ff' d='M6 7h1'/%3E%3Cpath stroke='%23e7efff' d='M7 7h1'/%3E%3Cpath stroke='%23679aff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%2374a5ff' d='M12 7h1'/%3E%3Cpath stroke='%23d1e1ff' d='M14 7h1'/%3E%3Cpath stroke='%23317aff' d='M15 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%238cb7ff' d='M12 8h1'/%3E%3Cpath stroke='%23cde0ff' d='M14 8h1'/%3E%3Cpath stroke='%232f7fff' d='M15 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%239dc5ff' d='M11 9h1'/%3E%3Cpath stroke='%23f3f8ff' d='M12 9h1'/%3E%3Cpath stroke='%239ac5ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%236297ff' d='M5 10h1'/%3E%3Cpath stroke='%235f95ff' d='M6 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235c9aff' d='M9 10h1'/%3E%3Cpath stroke='%23cee2ff' d='M10 10h1'/%3E%3Cpath stroke='%23a7d0ff' d='M13 10h1'/%3E%3Cpath stroke='%233897ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%23c2dbff' d='M9 11h1'/%3E%3Cpath stroke='%23e0efff' d='M11 11h1'/%3E%3Cpath stroke='%236eb6ff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23e2eeff' d='M9 12h1'/%3E%3Cpath stroke='%2359adff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M5 13h2'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23d6e8ff' d='M9 13h1'/%3E%3Cpath stroke='%23eef6ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528cff' d='M5 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%234d89ff' d='M6 15h1'/%3E%3Cpath stroke='%234c8cff' d='M7 15h1'/%3E%3Cpath stroke='%234d94ff' d='M8 15h1'/%3E%3Cpath stroke='%23cfe4ff' d='M9 15h1'/%3E%3Cpath stroke='%2347aaff' d='M11 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%23f6faff' d='M9 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%2393b2f1' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bdef' d='M1 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h1m5 0h9'/%3E%3Cpath stroke='%23a7bdee' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23a7bcee' d='M20 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230a4aa5' d='M7 4h1'/%3E%3Cpath stroke='%234e7ec0' d='M8 4h1'/%3E%3Cpath stroke='%23789ed1' d='M9 4h1'/%3E%3Cpath stroke='%23789ed3' d='M10 4h1'/%3E%3Cpath stroke='%23789fd4' d='M11 4h1m0 1h1'/%3E%3Cpath stroke='%235184c7' d='M12 4h1'/%3E%3Cpath stroke='%230b54b3' d='M13 4h1m0 1h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-2 1h2M7 12h1m-2 1h1m-3 1h3m-3 1h2m-2 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230949a4' d='M6 5h1'/%3E%3Cpath stroke='%23668ec8' d='M7 5h1'/%3E%3Cpath stroke='%23789dd1' d='M8 5h1M7 6h1'/%3E%3Cpath stroke='%23497cc1' d='M9 5h1'/%3E%3Cpath stroke='%234178c0' d='M10 5h1'/%3E%3Cpath stroke='%23608dcb' d='M11 5h1'/%3E%3Cpath stroke='%236693cf' d='M13 5h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230042a1' d='M5 6h1'/%3E%3Cpath stroke='%234073bb' d='M6 6h1'/%3E%3Cpath stroke='%232661b6' d='M8 6h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1'/%3E%3Cpath stroke='%230049ad' d='M10 6h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M11 6h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%234077c4' d='M12 6h1'/%3E%3Cpath stroke='%2378a1d6' d='M13 6h1'/%3E%3Cpath stroke='%234079c4' d='M14 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%235684c6' d='M6 7h1'/%3E%3Cpath stroke='%235686c8' d='M7 7h1'/%3E%3Cpath stroke='%230049ac' d='M8 7h1m-4 3h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230a53b5' d='M12 7h1'/%3E%3Cpath stroke='%2378a1d7' d='M13 7h1'/%3E%3Cpath stroke='%234881c8' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m0 1h1m0 1h1M8 12h1m-2 3h1m0 3h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230046a8' d='M5 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%23145db9' d='M12 8h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 8h1'/%3E%3Cpath stroke='%23457fc8' d='M14 8h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1M8 14h1m-1 1h1m10 2h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%230050b5' d='M16 8h2m1 2h1M8 13h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230047a8' d='M4 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1m-2 1h1'/%3E%3Cpath stroke='%231b62bd' d='M11 9h1'/%3E%3Cpath stroke='%236899d4' d='M12 9h1'/%3E%3Cpath stroke='%2378a4d9' d='M13 9h1'/%3E%3Cpath stroke='%231f68c1' d='M14 9h1'/%3E%3Cpath stroke='%230054b9' d='M15 9h1m-7 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230053b8' d='M16 9h2m0 1h1m0 4h1m-1 2h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230048ab' d='M4 10h1'/%3E%3Cpath stroke='%23407cc7' d='M10 10h1'/%3E%3Cpath stroke='%2378a3d9' d='M11 10h1m-2 1h1'/%3E%3Cpath stroke='%2378a5da' d='M12 10h1m-3 2h1'/%3E%3Cpath stroke='%23256ec4' d='M13 10h1'/%3E%3Cpath stroke='%230057bb' d='M14 10h1'/%3E%3Cpath stroke='%230057bc' d='M15 10h1m-5 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%230056bb' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%230055ba' d='M17 10h1m0 1h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%23004cb0' d='M7 11h1m-4 2h1'/%3E%3Cpath stroke='%233272c4' d='M9 11h1'/%3E%3Cpath stroke='%23538cd0' d='M11 11h1'/%3E%3Cpath stroke='%23065cbf' d='M12 11h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%230058bd' d='M17 11h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%23538ace' d='M9 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 2h1m-1 1h1'/%3E%3Cpath stroke='%234581cb' d='M9 13h1'/%3E%3Cpath stroke='%236297d5' d='M10 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230052b7' d='M19 13h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23407fca' d='M9 15h1'/%3E%3Cpath stroke='%2378a6dc' d='M10 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%236c9bd5' d='M9 16h1'/%3E%3Cpath stroke='%2378a6db' d='M10 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M4 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M5 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M6 20h1'/%3E%3Cpath stroke='%23a7bdf0' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23fae1dc' d='M1 1h1'/%3E%3Cpath stroke='%23eb8b73' d='M2 1h1'/%3E%3Cpath stroke='%23e97b60' d='M3 1h1'/%3E%3Cpath stroke='%23e77155' d='M4 1h1'/%3E%3Cpath stroke='%23e66a4d' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23e56648' d='M6 1h1'/%3E%3Cpath stroke='%23e46142' d='M7 1h1'/%3E%3Cpath stroke='%23e46344' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%23e45f3e' d='M9 1h2'/%3E%3Cpath stroke='%23e35c3b' d='M11 1h2'/%3E%3Cpath stroke='%23e25633' d='M13 1h2'/%3E%3Cpath stroke='%23e25330' d='M15 1h1'/%3E%3Cpath stroke='%23e04d28' d='M16 1h1'/%3E%3Cpath stroke='%23dc451f' d='M17 1h1'/%3E%3Cpath stroke='%23d05334' d='M18 1h1'/%3E%3Cpath stroke='%23efd8d2' d='M19 1h1'/%3E%3Cpath stroke='%23ec8d76' d='M1 2h1'/%3E%3Cpath stroke='%23efa390' d='M2 2h1'/%3E%3Cpath stroke='%23f0a694' d='M3 2h1'/%3E%3Cpath stroke='%23ee9a85' d='M4 2h1'/%3E%3Cpath stroke='%23eb8d75' d='M5 2h1'/%3E%3Cpath stroke='%23ea876e' d='M6 2h1'/%3E%3Cpath stroke='%23ea8168' d='M7 2h1'/%3E%3Cpath stroke='%23e97f66' d='M8 2h1'/%3E%3Cpath stroke='%23e97c62' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%23e8795f' d='M10 2h1'/%3E%3Cpath stroke='%23e8795e' d='M11 2h1'/%3E%3Cpath stroke='%23e87559' d='M12 2h1'/%3E%3Cpath stroke='%23e77256' d='M13 2h1'/%3E%3Cpath stroke='%23e66e50' d='M14 2h1'/%3E%3Cpath stroke='%23e56849' d='M15 2h1'/%3E%3Cpath stroke='%23e4603f' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23e05532' d='M17 2h1'/%3E%3Cpath stroke='%23d04623' d='M18 2h1'/%3E%3Cpath stroke='%23b64b30' d='M19 2h1'/%3E%3Cpath stroke='%23e97f65' d='M1 3h1'/%3E%3Cpath stroke='%23f0a997' d='M2 3h1'/%3E%3Cpath stroke='%23f1ac9a' d='M3 3h1'/%3E%3Cpath stroke='%23ee9d89' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%23ec917a' d='M5 3h1'/%3E%3Cpath stroke='%23eb8b72' d='M6 3h1'/%3E%3Cpath stroke='%23ea856d' d='M7 3h1'/%3E%3Cpath stroke='%23e98168' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23e87e65' d='M9 3h1'/%3E%3Cpath stroke='%23e97b61' d='M11 3h1'/%3E%3Cpath stroke='%23e8775d' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%23e87459' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%23e66f52' d='M14 3h1'/%3E%3Cpath stroke='%23e56a4c' d='M15 3h1'/%3E%3Cpath stroke='%23e46343' d='M16 3h1'/%3E%3Cpath stroke='%23e15937' d='M17 3h1'/%3E%3Cpath stroke='%23d24a28' d='M18 3h1'/%3E%3Cpath stroke='%23aa3315' d='M19 3h1'/%3E%3Cpath stroke='%23e87458' d='M1 4h1'/%3E%3Cpath stroke='%23efa18d' d='M3 4h1'/%3E%3Cpath stroke='%23ed957f' d='M4 4h1'/%3E%3Cpath stroke='%23eb8a71' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%23ea836a' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23e97d64' d='M7 4h1'/%3E%3Cpath stroke='%23e8785e' d='M8 4h1'/%3E%3Cpath stroke='%23e77359' d='M9 4h1'/%3E%3Cpath stroke='%23e76f54' d='M10 4h1'/%3E%3Cpath stroke='%23e66d51' d='M11 4h1'/%3E%3Cpath stroke='%23e5684b' d='M12 4h1'/%3E%3Cpath stroke='%23e5684a' d='M13 4h1'/%3E%3Cpath stroke='%23e35c3a' d='M16 4h1m-7 4h1m-8 7h1'/%3E%3Cpath stroke='%23e05634' d='M17 4h1'/%3E%3Cpath stroke='%23d24c2a' d='M18 4h1'/%3E%3Cpath stroke='%23ac3618' d='M19 4h1'/%3E%3Cpath stroke='%23e76f52' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23ec9179' d='M2 5h1'/%3E%3Cpath stroke='%23ec937c' d='M3 5h1'/%3E%3Cpath stroke='%23f7ccc2' d='M5 5h1'/%3E%3Cpath stroke='%23e77259' d='M7 5h1M5 9h1'/%3E%3Cpath stroke='%23e76d53' d='M8 5h1'/%3E%3Cpath stroke='%23e5684d' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%23e46446' d='M10 5h1'/%3E%3Cpath stroke='%23e45f41' d='M11 5h1'/%3E%3Cpath stroke='%23e35b3a' d='M12 5h1m-2 1h1'/%3E%3Cpath stroke='%23e35938' d='M13 5h1'/%3E%3Cpath stroke='%23f3bbad' d='M15 5h1'/%3E%3Cpath stroke='%23e25531' d='M16 5h1'/%3E%3Cpath stroke='%23df5330' d='M17 5h1'/%3E%3Cpath stroke='%23d34e2c' d='M18 5h1'/%3E%3Cpath stroke='%23ad3a1d' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%23eb876e' d='M2 6h1'/%3E%3Cpath stroke='%23eb8a70' d='M3 6h1'/%3E%3Cpath stroke='%23e46447' d='M9 6h1'/%3E%3Cpath stroke='%23e45f40' d='M10 6h1'/%3E%3Cpath stroke='%23e25634' d='M12 6h1'/%3E%3Cpath stroke='%23e2522d' d='M16 6h1'/%3E%3Cpath stroke='%23df522e' d='M17 6h1'/%3E%3Cpath stroke='%23d34d2c' d='M18 6h1'/%3E%3Cpath stroke='%23e56546' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23e97e65' d='M4 7h1'/%3E%3Cpath stroke='%23e8775e' d='M5 7h1'/%3E%3Cpath stroke='%23e46143' d='M9 7h1'/%3E%3Cpath stroke='%23e45d3d' d='M10 7h1'/%3E%3Cpath stroke='%23e35836' d='M11 7h1'/%3E%3Cpath stroke='%23e24e27' d='M15 7h1'/%3E%3Cpath stroke='%23e2502a' d='M16 7h1'/%3E%3Cpath stroke='%23e0512c' d='M17 7h1'/%3E%3Cpath stroke='%23d34d2a' d='M18 7h1'/%3E%3Cpath stroke='%23ad391c' d='M19 7h1'/%3E%3Cpath stroke='%23e87a60' d='M2 8h1m1 0h1'/%3E%3Cpath stroke='%23e87c62' d='M3 8h1'/%3E%3Cpath stroke='%23e8745b' d='M5 8h1'/%3E%3Cpath stroke='%23e76e54' d='M6 8h1'/%3E%3Cpath stroke='%23e24d24' d='M14 8h1'/%3E%3Cpath stroke='%23e24b22' d='M15 8h1'/%3E%3Cpath stroke='%23e24d25' d='M16 8h1'/%3E%3Cpath stroke='%23e05029' d='M17 8h1'/%3E%3Cpath stroke='%23d44c29' d='M18 8h1'/%3E%3Cpath stroke='%23ae391b' d='M19 8h1'/%3E%3Cpath stroke='%23e35d3c' d='M1 9h1'/%3E%3Cpath stroke='%23e8765d' d='M4 9h1'/%3E%3Cpath stroke='%23e66f53' d='M6 9h1'/%3E%3Cpath stroke='%23e56b4e' d='M7 9h1'/%3E%3Cpath stroke='%23e45127' d='M13 9h1'/%3E%3Cpath stroke='%23e44f23' d='M14 9h1'/%3E%3Cpath stroke='%23e34c20' d='M15 9h1'/%3E%3Cpath stroke='%23e34d22' d='M16 9h1'/%3E%3Cpath stroke='%23e14f25' d='M17 9h1'/%3E%3Cpath stroke='%23d54a25' d='M18 9h1'/%3E%3Cpath stroke='%23af3719' d='M19 9h1'/%3E%3Cpath stroke='%23e35937' d='M1 10h1'/%3E%3Cpath stroke='%23e76d51' d='M2 10h1'/%3E%3Cpath stroke='%23e87257' d='M3 10h1'/%3E%3Cpath stroke='%23e87359' d='M4 10h1'/%3E%3Cpath stroke='%23e77157' d='M5 10h1'/%3E%3Cpath stroke='%23e66e52' d='M6 10h1'/%3E%3Cpath stroke='%23e56747' d='M8 10h1'/%3E%3Cpath stroke='%23e5572c' d='M12 10h1'/%3E%3Cpath stroke='%23e55326' d='M13 10h1'/%3E%3Cpath stroke='%23e55022' d='M14 10h1'/%3E%3Cpath stroke='%23e54d1e' d='M15 10h1'/%3E%3Cpath stroke='%23e54d1f' d='M16 10h1'/%3E%3Cpath stroke='%23e24e21' d='M17 10h1'/%3E%3Cpath stroke='%23d64921' d='M18 10h1'/%3E%3Cpath stroke='%23af3516' d='M19 10h1'/%3E%3Cpath stroke='%23e25432' d='M1 11h1'/%3E%3Cpath stroke='%23e5694b' d='M2 11h1'/%3E%3Cpath stroke='%23e77054' d='M3 11h1'/%3E%3Cpath stroke='%23e77156' d='M4 11h1'/%3E%3Cpath stroke='%23e87055' d='M5 11h1'/%3E%3Cpath stroke='%23e66c4d' d='M7 11h1'/%3E%3Cpath stroke='%23e75526' d='M13 11h1'/%3E%3Cpath stroke='%23e75221' d='M14 11h1'/%3E%3Cpath stroke='%23e64e1c' d='M15 11h1'/%3E%3Cpath stroke='%23e64d1c' d='M16 11h1'/%3E%3Cpath stroke='%23e34c1c' d='M17 11h1'/%3E%3Cpath stroke='%23d6461c' d='M18 11h1'/%3E%3Cpath stroke='%23b03312' d='M19 11h1'/%3E%3Cpath stroke='%23e14f2b' d='M1 12h1'/%3E%3Cpath stroke='%23e66b4e' d='M3 12h1'/%3E%3Cpath stroke='%23e76f53' d='M5 12h1'/%3E%3Cpath stroke='%23e66e51' d='M6 12h1'/%3E%3Cpath stroke='%23e7653d' d='M10 12h1'/%3E%3Cpath stroke='%23fef5f1' d='M13 12h1'/%3E%3Cpath stroke='%23e85421' d='M14 12h1'/%3E%3Cpath stroke='%23e8501b' d='M15 12h1'/%3E%3Cpath stroke='%23e74d18' d='M16 12h1'/%3E%3Cpath stroke='%23e44a18' d='M17 12h1'/%3E%3Cpath stroke='%23d74216' d='M18 12h1'/%3E%3Cpath stroke='%23b2310f' d='M19 12h1'/%3E%3Cpath stroke='%23e04b25' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23e35e3d' d='M2 13h1'/%3E%3Cpath stroke='%23e56748' d='M3 13h1'/%3E%3Cpath stroke='%23e66c4e' d='M4 13h1'/%3E%3Cpath stroke='%23e66d50' d='M5 13h1'/%3E%3Cpath stroke='%23e76842' d='M9 13h1'/%3E%3Cpath stroke='%23e7653c' d='M10 13h1'/%3E%3Cpath stroke='%23e86236' d='M11 13h1'/%3E%3Cpath stroke='%23e95019' d='M15 13h1m-2 3h1'/%3E%3Cpath stroke='%23e84c16' d='M16 13h1'/%3E%3Cpath stroke='%23e44713' d='M17 13h1'/%3E%3Cpath stroke='%23d83f10' d='M18 13h1'/%3E%3Cpath stroke='%23b12d0a' d='M19 13h1'/%3E%3Cpath stroke='%23df451e' d='M1 14h1'/%3E%3Cpath stroke='%23e25836' d='M2 14h1'/%3E%3Cpath stroke='%23e46242' d='M3 14h1m0 1h1'/%3E%3Cpath stroke='%23e56749' d='M4 14h1'/%3E%3Cpath stroke='%23e66845' d='M8 14h1'/%3E%3Cpath stroke='%23e76741' d='M9 14h1'/%3E%3Cpath stroke='%23e7643b' d='M10 14h1'/%3E%3Cpath stroke='%23e86235' d='M11 14h1'/%3E%3Cpath stroke='%23ea5e2d' d='M12 14h1'/%3E%3Cpath stroke='%23e94a11' d='M16 14h1m-2 2h1'/%3E%3Cpath stroke='%23e6440d' d='M17 14h1'/%3E%3Cpath stroke='%23d73b0b' d='M18 14h1'/%3E%3Cpath stroke='%23b12b06' d='M19 14h1'/%3E%3Cpath stroke='%23de4018' d='M1 15h1'/%3E%3Cpath stroke='%23e1512e' d='M2 15h1'/%3E%3Cpath stroke='%23f5c1b5' d='M5 15h1'/%3E%3Cpath stroke='%23e66543' d='M7 15h1'/%3E%3Cpath stroke='%23e66541' d='M8 15h1'/%3E%3Cpath stroke='%23e6643d' d='M9 15h1'/%3E%3Cpath stroke='%23e76238' d='M10 15h1'/%3E%3Cpath stroke='%23e86032' d='M11 15h1'/%3E%3Cpath stroke='%23e95c2a' d='M12 15h1'/%3E%3Cpath stroke='%23ea5924' d='M13 15h1'/%3E%3Cpath stroke='%23f7b8a1' d='M15 15h1'/%3E%3Cpath stroke='%23e9480e' d='M16 15h1'/%3E%3Cpath stroke='%23e54009' d='M17 15h1'/%3E%3Cpath stroke='%23d73605' d='M18 15h1'/%3E%3Cpath stroke='%23b02702' d='M19 15h1'/%3E%3Cpath stroke='%23dd3c14' d='M1 16h1'/%3E%3Cpath stroke='%23e15431' d='M3 16h1'/%3E%3Cpath stroke='%23e35b39' d='M4 16h1'/%3E%3Cpath stroke='%23e45e3d' d='M5 16h1'/%3E%3Cpath stroke='%23e45f3d' d='M6 16h1'/%3E%3Cpath stroke='%23e45e3b' d='M7 16h1'/%3E%3Cpath stroke='%23e55e39' d='M8 16h1'/%3E%3Cpath stroke='%23e55e37' d='M9 16h1'/%3E%3Cpath stroke='%23e65d32' d='M10 16h1'/%3E%3Cpath stroke='%23e75b2c' d='M11 16h1'/%3E%3Cpath stroke='%23e85725' d='M12 16h1'/%3E%3Cpath stroke='%23e9541f' d='M13 16h1'/%3E%3Cpath stroke='%23e8440b' d='M16 16h1'/%3E%3Cpath stroke='%23e43d05' d='M17 16h1'/%3E%3Cpath stroke='%23d63302' d='M18 16h1'/%3E%3Cpath stroke='%23af2601' d='M19 16h1'/%3E%3Cpath stroke='%23d8370e' d='M1 17h1'/%3E%3Cpath stroke='%23db431c' d='M2 17h1'/%3E%3Cpath stroke='%23dd4c28' d='M3 17h1'/%3E%3Cpath stroke='%23de522f' d='M4 17h1'/%3E%3Cpath stroke='%23df5533' d='M5 17h1'/%3E%3Cpath stroke='%23e05734' d='M6 17h1'/%3E%3Cpath stroke='%23e05531' d='M7 17h1'/%3E%3Cpath stroke='%23e05631' d='M8 17h1'/%3E%3Cpath stroke='%23e1562e' d='M9 17h1'/%3E%3Cpath stroke='%23e2552a' d='M10 17h1'/%3E%3Cpath stroke='%23e45325' d='M11 17h1'/%3E%3Cpath stroke='%23e4501f' d='M12 17h1'/%3E%3Cpath stroke='%23e54c19' d='M13 17h1'/%3E%3Cpath stroke='%23e54813' d='M14 17h1'/%3E%3Cpath stroke='%23e5430d' d='M15 17h1'/%3E%3Cpath stroke='%23e43e07' d='M16 17h1'/%3E%3Cpath stroke='%23e03802' d='M17 17h1'/%3E%3Cpath stroke='%23d12f00' d='M18 17h1'/%3E%3Cpath stroke='%23aa2300' d='M19 17h1'/%3E%3Cpath stroke='%23cd4928' d='M1 18h1'/%3E%3Cpath stroke='%23cc3813' d='M2 18h1'/%3E%3Cpath stroke='%23cc3e1b' d='M3 18h1'/%3E%3Cpath stroke='%23cf4421' d='M4 18h1'/%3E%3Cpath stroke='%23cf4725' d='M5 18h1'/%3E%3Cpath stroke='%23cf4726' d='M6 18h1'/%3E%3Cpath stroke='%23cf4624' d='M7 18h1'/%3E%3Cpath stroke='%23d04723' d='M8 18h1'/%3E%3Cpath stroke='%23d14621' d='M9 18h1'/%3E%3Cpath stroke='%23d2451e' d='M10 18h1'/%3E%3Cpath stroke='%23d5451b' d='M11 18h1'/%3E%3Cpath stroke='%23d54216' d='M12 18h1'/%3E%3Cpath stroke='%23d64013' d='M13 18h1'/%3E%3Cpath stroke='%23d53d0e' d='M14 18h1'/%3E%3Cpath stroke='%23d63909' d='M15 18h1'/%3E%3Cpath stroke='%23d53504' d='M16 18h1'/%3E%3Cpath stroke='%23d13001' d='M17 18h1'/%3E%3Cpath stroke='%23c22a00' d='M18 18h1'/%3E%3Cpath stroke='%23ab3c1f' d='M19 18h1'/%3E%3Cpath stroke='%23eed6d0' d='M1 19h1'/%3E%3Cpath stroke='%23b54428' d='M2 19h1'/%3E%3Cpath stroke='%23a62b0d' d='M3 19h1'/%3E%3Cpath stroke='%23ac3011' d='M4 19h1'/%3E%3Cpath stroke='%23ab3112' d='M5 19h1'/%3E%3Cpath stroke='%23a93214' d='M6 19h1'/%3E%3Cpath stroke='%23a93012' d='M7 19h1'/%3E%3Cpath stroke='%23ac3213' d='M8 19h1'/%3E%3Cpath stroke='%23ad3213' d='M9 19h1'/%3E%3Cpath stroke='%23ae3110' d='M10 19h1'/%3E%3Cpath stroke='%23b1300d' d='M11 19h1'/%3E%3Cpath stroke='%23b22e0a' d='M12 19h1'/%3E%3Cpath stroke='%23b42d08' d='M13 19h1'/%3E%3Cpath stroke='%23b12a06' d='M14 19h1'/%3E%3Cpath stroke='%23b12803' d='M15 19h1'/%3E%3Cpath stroke='%23b42701' d='M16 19h1'/%3E%3Cpath stroke='%23ae2400' d='M17 19h1'/%3E%3Cpath stroke='%23ac3c1f' d='M18 19h1'/%3E%3Cpath stroke='%23ead4cf' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h3m5 0h7'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23ffe4e1' d='M1 1h1'/%3E%3Cpath stroke='%23ff9285' d='M2 1h1m4 3h1M2 7h1'/%3E%3Cpath stroke='%23ff8c7f' d='M3 1h1'/%3E%3Cpath stroke='%23ff8375' d='M4 1h1m5 3h1'/%3E%3Cpath stroke='%23ff7b6c' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23ff7868' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%23ff7362' d='M7 1h1'/%3E%3Cpath stroke='%23ff7363' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%23ff705f' d='M9 1h1M6 16h1'/%3E%3Cpath stroke='%23ff6f5f' d='M10 1h1'/%3E%3Cpath stroke='%23ff6e5d' d='M11 1h1m4 1h1m-5 3h1M2 13h1'/%3E%3Cpath stroke='%23ff6b5a' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%23f65' d='M13 1h2'/%3E%3Cpath stroke='%23ff6250' d='M15 1h1M2 15h1'/%3E%3Cpath stroke='%23ff5d4a' d='M16 1h1'/%3E%3Cpath stroke='%23fa5643' d='M17 1h1'/%3E%3Cpath stroke='%23eb6151' d='M18 1h1'/%3E%3Cpath stroke='%23f5dad7' d='M19 1h1'/%3E%3Cpath stroke='%23ff9386' d='M1 2h1'/%3E%3Cpath stroke='%23ffaea5' d='M2 2h1'/%3E%3Cpath stroke='%23ffb2a9' d='M3 2h1'/%3E%3Cpath stroke='%23ffa99f' d='M4 2h1'/%3E%3Cpath stroke='%23ff9e93' d='M5 2h1m0 1h1M5 4h1'/%3E%3Cpath stroke='%23ff998d' d='M6 2h1M4 6h1'/%3E%3Cpath stroke='%23ff9488' d='M7 2h1m0 1h1'/%3E%3Cpath stroke='%23ff9083' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%23ff8e80' d='M9 2h1'/%3E%3Cpath stroke='%23ff8b7d' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%23ff887a' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%23ff8475' d='M12 2h1M8 5h1'/%3E%3Cpath stroke='%23ff8172' d='M13 2h1M7 9h1m-3 3h1'/%3E%3Cpath stroke='%23ff7c6d' d='M14 2h1'/%3E%3Cpath stroke='%23ff7666' d='M15 2h1M1 7h1m1 6h1m0 1h1'/%3E%3Cpath stroke='%23fc6352' d='M17 2h1'/%3E%3Cpath stroke='%23e54' d='M18 2h1'/%3E%3Cpath stroke='%23d3594b' d='M19 2h1'/%3E%3Cpath stroke='%23ff8d80' d='M1 3h1'/%3E%3Cpath stroke='%23ffb3ab' d='M2 3h1'/%3E%3Cpath stroke='%23ffb8b0' d='M3 3h1'/%3E%3Cpath stroke='%23ffb0a6' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23ffa49a' d='M5 3h1'/%3E%3Cpath stroke='%23ff988d' d='M7 3h1M6 4h1'/%3E%3Cpath stroke='%23ff9184' d='M9 3h1'/%3E%3Cpath stroke='%23ff8e81' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23ff8c7e' d='M11 3h1M2 8h1'/%3E%3Cpath stroke='%23ff8576' d='M13 3h1M6 9h1m-4 1h1'/%3E%3Cpath stroke='%23ff7f70' d='M14 3h1M1 5h1m0 5h1m1 2h1'/%3E%3Cpath stroke='%23ff796a' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%23ff7161' d='M16 3h1M3 14h1'/%3E%3Cpath stroke='%23fc6857' d='M17 3h1'/%3E%3Cpath stroke='%23ed5948' d='M18 3h1M6 18h1'/%3E%3Cpath stroke='%23cb4233' d='M19 3h1'/%3E%3Cpath stroke='%23ff8577' d='M1 4h1m0 5h1'/%3E%3Cpath stroke='%23ffaaa0' d='M2 4h1'/%3E%3Cpath stroke='%23ffa89e' d='M4 4h1'/%3E%3Cpath stroke='%23ff8d7f' d='M8 4h1'/%3E%3Cpath stroke='%23ff8879' d='M9 4h1'/%3E%3Cpath stroke='%23ff8071' d='M11 4h1M8 6h1'/%3E%3Cpath stroke='%23ff7a6b' d='M12 4h1M1 6h1m7 0h1m-6 7h1'/%3E%3Cpath stroke='%23ff7969' d='M13 4h1'/%3E%3Cpath stroke='%23ff7464' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%23ff7060' d='M15 4h1'/%3E%3Cpath stroke='%23ff6c5b' d='M16 4h1m-4 1h1'/%3E%3Cpath stroke='%23fc6655' d='M17 4h1'/%3E%3Cpath stroke='%23ef5c4b' d='M18 4h1'/%3E%3Cpath stroke='%23cc4636' d='M19 4h1'/%3E%3Cpath stroke='%23ffa095' d='M2 5h1'/%3E%3Cpath stroke='%23ffa59b' d='M3 5h1'/%3E%3Cpath stroke='%23ff9f94' d='M4 5h1'/%3E%3Cpath stroke='%23ffd5d1' d='M5 5h1'/%3E%3Cpath stroke='%23ff8a7c' d='M7 5h1'/%3E%3Cpath stroke='%23ff7e6f' d='M9 5h1'/%3E%3Cpath stroke='%23ffc2bb' d='M15 5h1'/%3E%3Cpath stroke='%23ff6554' d='M16 5h1'/%3E%3Cpath stroke='%23fc6453' d='M17 5h1'/%3E%3Cpath stroke='%23ee5d4d' d='M18 5h1'/%3E%3Cpath stroke='%23cd4939' d='M19 5h1'/%3E%3Cpath stroke='%23ff998e' d='M2 6h1'/%3E%3Cpath stroke='%23ff9d92' d='M3 6h1'/%3E%3Cpath stroke='%23ff6f5e' d='M11 6h1'/%3E%3Cpath stroke='%23ff6a58' d='M12 6h1'/%3E%3Cpath stroke='%23ff6451' d='M16 6h1'/%3E%3Cpath stroke='%23fd6451' d='M17 6h1'/%3E%3Cpath stroke='%23ee5e4d' d='M18 6h1'/%3E%3Cpath stroke='%23ce4a3a' d='M19 6h1'/%3E%3Cpath stroke='%23ff968a' d='M3 7h1'/%3E%3Cpath stroke='%23ff9487' d='M4 7h1'/%3E%3Cpath stroke='%23ff8f82' d='M5 7h1'/%3E%3Cpath stroke='%23ff7968' d='M9 7h1m-3 8h1'/%3E%3Cpath stroke='%23ff7463' d='M10 7h1'/%3E%3Cpath stroke='%23ff6f5d' d='M11 7h1'/%3E%3Cpath stroke='%23ff6450' d='M15 7h1'/%3E%3Cpath stroke='%23ff6552' d='M16 7h1'/%3E%3Cpath stroke='%23fd6653' d='M17 7h1'/%3E%3Cpath stroke='%23f0604e' d='M18 7h1'/%3E%3Cpath stroke='%23ce4a3b' d='M19 7h1'/%3E%3Cpath stroke='%23ff7565' d='M1 8h1'/%3E%3Cpath stroke='%23ff8677' d='M6 8h1m-2 2h1'/%3E%3Cpath stroke='%23ff7664' d='M10 8h1'/%3E%3Cpath stroke='%23ff6a53' d='M14 8h1'/%3E%3Cpath stroke='%23ff6953' d='M15 8h1'/%3E%3Cpath stroke='%23ff6b55' d='M16 8h1'/%3E%3Cpath stroke='%23fd6b56' d='M17 8h1'/%3E%3Cpath stroke='%23f06350' d='M18 8h1'/%3E%3Cpath stroke='%23cf4c3b' d='M19 8h1'/%3E%3Cpath stroke='%23ff6d5d' d='M1 9h1'/%3E%3Cpath stroke='%23ff8b7c' d='M4 9h1'/%3E%3Cpath stroke='%23ff775d' d='M13 9h1'/%3E%3Cpath stroke='%23ff745a' d='M14 9h1'/%3E%3Cpath stroke='%23ff7359' d='M15 9h1'/%3E%3Cpath stroke='%23ff735a' d='M16 9h1'/%3E%3Cpath stroke='%23fd715a' d='M17 9h1'/%3E%3Cpath stroke='%23f16752' d='M18 9h1'/%3E%3Cpath stroke='%23d24e3c' d='M19 9h1'/%3E%3Cpath stroke='%23ff6a59' d='M1 10h1m2 6h1'/%3E%3Cpath stroke='%23ff8778' d='M4 10h1'/%3E%3Cpath stroke='%23ff8374' d='M6 10h1m-3 1h2'/%3E%3Cpath stroke='%23ff8171' d='M7 10h1m-5 1h1'/%3E%3Cpath stroke='%23ff8271' d='M8 10h1m-2 1h1'/%3E%3Cpath stroke='%23ff8369' d='M12 10h1'/%3E%3Cpath stroke='%23ff8165' d='M13 10h1'/%3E%3Cpath stroke='%23ff7e61' d='M14 10h1'/%3E%3Cpath stroke='%23ff7d5f' d='M15 10h1'/%3E%3Cpath stroke='%23ff7b5f' d='M16 10h1'/%3E%3Cpath stroke='%23fd775d' d='M17 10h1'/%3E%3Cpath stroke='%23f36a53' d='M18 10h1'/%3E%3Cpath stroke='%23d34e3c' d='M19 10h1'/%3E%3Cpath stroke='%23ff6553' d='M1 11h1'/%3E%3Cpath stroke='%23ff8273' d='M6 11h1'/%3E%3Cpath stroke='%23ff8c6c' d='M13 11h1'/%3E%3Cpath stroke='%23ff8969' d='M14 11h1'/%3E%3Cpath stroke='%23ff8665' d='M15 11h1'/%3E%3Cpath stroke='%23ff8262' d='M16 11h1'/%3E%3Cpath stroke='%23fd7c5e' d='M17 11h1'/%3E%3Cpath stroke='%23f46d54' d='M18 11h1'/%3E%3Cpath stroke='%23d64f3b' d='M19 11h1'/%3E%3Cpath stroke='%23ff5f4d' d='M1 12h1'/%3E%3Cpath stroke='%23ff8070' d='M6 12h1'/%3E%3Cpath stroke='%23ff9279' d='M10 12h1'/%3E%3Cpath stroke='%23fff8f6' d='M13 12h1'/%3E%3Cpath stroke='%23ff936f' d='M14 12h1'/%3E%3Cpath stroke='%23ff906c' d='M15 12h1'/%3E%3Cpath stroke='%23ff8967' d='M16 12h1'/%3E%3Cpath stroke='%23fe7f5f' d='M17 12h1'/%3E%3Cpath stroke='%23f56e52' d='M18 12h1'/%3E%3Cpath stroke='%23d84f39' d='M19 12h1'/%3E%3Cpath stroke='%23ff5c4a' d='M1 13h1'/%3E%3Cpath stroke='%23ff7d6e' d='M5 13h1'/%3E%3Cpath stroke='%23ff907a' d='M9 13h1'/%3E%3Cpath stroke='%23ff957c' d='M10 13h1'/%3E%3Cpath stroke='%23ff9a7e' d='M11 13h1'/%3E%3Cpath stroke='%23ff9670' d='M15 13h1'/%3E%3Cpath stroke='%23ff8e68' d='M16 13h1'/%3E%3Cpath stroke='%23fe815e' d='M17 13h1'/%3E%3Cpath stroke='%23f66c4f' d='M18 13h1'/%3E%3Cpath stroke='%23da4d36' d='M19 13h1'/%3E%3Cpath stroke='%23ff5744' d='M1 14h1'/%3E%3Cpath stroke='%23ff6857' d='M2 14h1'/%3E%3Cpath stroke='%23ff8672' d='M8 14h1'/%3E%3Cpath stroke='%23ff8f78' d='M9 14h1'/%3E%3Cpath stroke='%23ff967c' d='M10 14h1'/%3E%3Cpath stroke='%23ff9c7e' d='M11 14h1'/%3E%3Cpath stroke='%23ffa07e' d='M12 14h1'/%3E%3Cpath stroke='%23ff8e66' d='M16 14h1'/%3E%3Cpath stroke='%23fe7f5a' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%23f76a4b' d='M18 14h1'/%3E%3Cpath stroke='%23da4a33' d='M19 14h1'/%3E%3Cpath stroke='%23ff523f' d='M1 15h1'/%3E%3Cpath stroke='%23ff7160' d='M4 15h1'/%3E%3Cpath stroke='%23ffc7c1' d='M5 15h1'/%3E%3Cpath stroke='%23ff836f' d='M8 15h1'/%3E%3Cpath stroke='%23ff8b74' d='M9 15h1'/%3E%3Cpath stroke='%23ff9379' d='M10 15h1'/%3E%3Cpath stroke='%23ff9a7c' d='M11 15h1'/%3E%3Cpath stroke='%23ff9e7c' d='M12 15h1'/%3E%3Cpath stroke='%23ffa07a' d='M13 15h1'/%3E%3Cpath stroke='%23ffd5c5' d='M15 15h1'/%3E%3Cpath stroke='%23ff8b62' d='M16 15h1'/%3E%3Cpath stroke='%23fe7c56' d='M17 15h1'/%3E%3Cpath stroke='%23f76545' d='M18 15h1'/%3E%3Cpath stroke='%23db4931' d='M19 15h1'/%3E%3Cpath stroke='%23ff4f3a' d='M1 16h1'/%3E%3Cpath stroke='%23ff5c49' d='M2 16h1'/%3E%3Cpath stroke='%23ff6452' d='M3 16h1'/%3E%3Cpath stroke='%23ff6e5e' d='M5 16h1'/%3E%3Cpath stroke='%23ff7462' d='M7 16h1'/%3E%3Cpath stroke='%23ff7c68' d='M8 16h1'/%3E%3Cpath stroke='%23ff846d' d='M9 16h1'/%3E%3Cpath stroke='%23ff8b71' d='M10 16h1'/%3E%3Cpath stroke='%23ff9174' d='M11 16h1'/%3E%3Cpath stroke='%23ff9674' d='M12 16h1'/%3E%3Cpath stroke='%23ff9571' d='M13 16h1'/%3E%3Cpath stroke='%23ff946d' d='M14 16h1'/%3E%3Cpath stroke='%23ff8d66' d='M15 16h1'/%3E%3Cpath stroke='%23ff855c' d='M16 16h1'/%3E%3Cpath stroke='%23fe7650' d='M17 16h1'/%3E%3Cpath stroke='%23f66141' d='M18 16h1'/%3E%3Cpath stroke='%23da462f' d='M19 16h1'/%3E%3Cpath stroke='%23fa4935' d='M1 17h1'/%3E%3Cpath stroke='%23fb5441' d='M2 17h1'/%3E%3Cpath stroke='%23fc5c4a' d='M3 17h1'/%3E%3Cpath stroke='%23fb6150' d='M4 17h1'/%3E%3Cpath stroke='%23fc6554' d='M5 17h1'/%3E%3Cpath stroke='%23fc6756' d='M6 17h1'/%3E%3Cpath stroke='%23fc6a58' d='M7 17h1'/%3E%3Cpath stroke='%23fc715c' d='M8 17h1'/%3E%3Cpath stroke='%23fc7761' d='M9 17h1'/%3E%3Cpath stroke='%23fd7e64' d='M10 17h1'/%3E%3Cpath stroke='%23fd8367' d='M11 17h1'/%3E%3Cpath stroke='%23fe8566' d='M12 17h1'/%3E%3Cpath stroke='%23fe8664' d='M13 17h1'/%3E%3Cpath stroke='%23fe8460' d='M14 17h1'/%3E%3Cpath stroke='%23fe7651' d='M16 17h1'/%3E%3Cpath stroke='%23fc6b47' d='M17 17h1'/%3E%3Cpath stroke='%23f2573a' d='M18 17h1'/%3E%3Cpath stroke='%23d4402a' d='M19 17h1'/%3E%3Cpath stroke='%23e85848' d='M1 18h1'/%3E%3Cpath stroke='%23ed4a37' d='M2 18h1'/%3E%3Cpath stroke='%23ec4f3d' d='M3 18h1'/%3E%3Cpath stroke='%23ee5443' d='M4 18h1'/%3E%3Cpath stroke='%23ed5746' d='M5 18h1'/%3E%3Cpath stroke='%23ee5a48' d='M7 18h1'/%3E%3Cpath stroke='%23ef5e4b' d='M8 18h1'/%3E%3Cpath stroke='%23f0644e' d='M9 18h1'/%3E%3Cpath stroke='%23f16750' d='M10 18h1'/%3E%3Cpath stroke='%23f46c52' d='M11 18h1'/%3E%3Cpath stroke='%23f66d51' d='M12 18h1'/%3E%3Cpath stroke='%23f66e51' d='M13 18h1'/%3E%3Cpath stroke='%23f66c4e' d='M14 18h1'/%3E%3Cpath stroke='%23f86a4a' d='M15 18h1'/%3E%3Cpath stroke='%23f76343' d='M16 18h1'/%3E%3Cpath stroke='%23f3583a' d='M17 18h1'/%3E%3Cpath stroke='%23e54930' d='M18 18h1'/%3E%3Cpath stroke='%23cd5140' d='M19 18h1'/%3E%3Cpath stroke='%23f6d9d6' d='M1 19h1'/%3E%3Cpath stroke='%23d25344' d='M2 19h1'/%3E%3Cpath stroke='%23c93c2b' d='M3 19h1'/%3E%3Cpath stroke='%23ca3f2f' d='M4 19h1'/%3E%3Cpath stroke='%23ca4131' d='M5 19h1'/%3E%3Cpath stroke='%23ca4333' d='M6 19h1'/%3E%3Cpath stroke='%23cc4332' d='M7 19h1'/%3E%3Cpath stroke='%23cf4434' d='M8 19h1'/%3E%3Cpath stroke='%23d24936' d='M9 19h1'/%3E%3Cpath stroke='%23d34936' d='M10 19h1'/%3E%3Cpath stroke='%23d84b37' d='M11 19h1'/%3E%3Cpath stroke='%23da4c36' d='M12 19h1'/%3E%3Cpath stroke='%23dc4d36' d='M13 19h1'/%3E%3Cpath stroke='%23d94933' d='M14 19h1'/%3E%3Cpath stroke='%23de4a32' d='M15 19h1'/%3E%3Cpath stroke='%23dd482f' d='M16 19h1'/%3E%3Cpath stroke='%23d6402a' d='M17 19h1'/%3E%3Cpath stroke='%23cf5140' d='M18 19h1'/%3E%3Cpath stroke='%23f1d8d5' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M6 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M7 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M8 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bced' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7baec' d='M19 0h1m0 1h1'/%3E%3Cpath stroke='%23dad2d0' d='M1 1h1'/%3E%3Cpath stroke='%23643529' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%235a1d0d' d='M3 1h1'/%3E%3Cpath stroke='%235d1e0d' d='M4 1h1'/%3E%3Cpath stroke='%235f1e0e' d='M5 1h1'/%3E%3Cpath stroke='%2363200e' d='M6 1h1'/%3E%3Cpath stroke='%2368210f' d='M7 1h1'/%3E%3Cpath stroke='%236f2310' d='M8 1h1'/%3E%3Cpath stroke='%23732511' d='M9 1h1'/%3E%3Cpath stroke='%23752511' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%237c2712' d='M11 1h1'/%3E%3Cpath stroke='%23822912' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%23852a13' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%23892b13' d='M14 1h1'/%3E%3Cpath stroke='%238a2b14' d='M15 1h1M6 2h1'/%3E%3Cpath stroke='%238e2d14' d='M16 1h1M7 2h1'/%3E%3Cpath stroke='%238c2c14' d='M17 1h1M2 6h1'/%3E%3Cpath stroke='%239d4732' d='M18 1h1M1 18h1'/%3E%3Cpath stroke='%23ebd8d3' d='M19 1h1'/%3E%3Cpath stroke='%2369220f' d='M2 2h1'/%3E%3Cpath stroke='%23782611' d='M3 2h1'/%3E%3Cpath stroke='%237e2812' d='M4 2h1'/%3E%3Cpath stroke='%23932e15' d='M8 2h1'/%3E%3Cpath stroke='%239a3016' d='M9 2h1'/%3E%3Cpath stroke='%239c3116' d='M10 2h1'/%3E%3Cpath stroke='%23a03217' d='M11 2h1'/%3E%3Cpath stroke='%23a43418' d='M12 2h1'/%3E%3Cpath stroke='%23a73518' d='M13 2h1'/%3E%3Cpath stroke='%23aa3618' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%23ab3618' d='M15 2h1'/%3E%3Cpath stroke='%23ad3719' d='M16 2h1m1 0h1M2 16h1m-1 1h1'/%3E%3Cpath stroke='%23ac3618' d='M17 2h1'/%3E%3Cpath stroke='%23b24e35' d='M19 2h1'/%3E%3Cpath stroke='%23591c0d' d='M1 3h1M1 4h1'/%3E%3Cpath stroke='%23792711' d='M2 3h1'/%3E%3Cpath stroke='%238d2c14' d='M3 3h1'/%3E%3Cpath stroke='%23962e15' d='M4 3h1'/%3E%3Cpath stroke='%239a2f16' d='M5 3h1'/%3E%3Cpath stroke='%23a13117' d='M6 3h1'/%3E%3Cpath stroke='%23a63317' d='M7 3h1'/%3E%3Cpath stroke='%23aa3418' d='M8 3h1'/%3E%3Cpath stroke='%23af3619' d='M9 3h1'/%3E%3Cpath stroke='%23b23719' d='M10 3h1M8 4h1M4 8h1'/%3E%3Cpath stroke='%23b5391a' d='M11 3h1'/%3E%3Cpath stroke='%23b73a1b' d='M12 3h1'/%3E%3Cpath stroke='%23b93b1b' d='M13 3h1'/%3E%3Cpath stroke='%23ba3b1b' d='M14 3h2m3 0h1M3 13h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23bb3b1b' d='M16 3h3M3 15h1'/%3E%3Cpath stroke='%23802812' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23962f15' d='M3 4h1'/%3E%3Cpath stroke='%239e3016' d='M4 4h1'/%3E%3Cpath stroke='%23a43216' d='M5 4h1'/%3E%3Cpath stroke='%23aa3317' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%23ae3518' d='M7 4h1'/%3E%3Cpath stroke='%23b5381a' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%23b8391a' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%23ba3a1b' d='M11 4h1m-8 7h2'/%3E%3Cpath stroke='%23bc3b1c' d='M12 4h1m-9 8h1'/%3E%3Cpath stroke='%23bd3c1c' d='M13 4h1m-1 1h1m-2 1h1m-7 6h1m-3 1h2'/%3E%3Cpath stroke='%23be3d1c' d='M14 4h3m-1 1h1m-1 1h1M4 14h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23bf3d1c' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1M4 17h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%235b1d0d' d='M1 5h1'/%3E%3Cpath stroke='%239c3016' d='M3 5h1'/%3E%3Cpath stroke='%23a43217' d='M4 5h1'/%3E%3Cpath stroke='%23b8553e' d='M5 5h1'/%3E%3Cpath stroke='%23d59485' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%23b33619' d='M7 5h1'/%3E%3Cpath stroke='%23b53719' d='M8 5h1'/%3E%3Cpath stroke='%23b8381a' d='M9 5h1M6 8h1'/%3E%3Cpath stroke='%23b9391b' d='M10 5h1'/%3E%3Cpath stroke='%23ba391b' d='M11 5h1M6 9h1m-2 1h1'/%3E%3Cpath stroke='%23bc3b1b' d='M12 5h1m-2 1h1m-6 5h1m-2 1h1'/%3E%3Cpath stroke='%23dc9887' d='M14 5h1'/%3E%3Cpath stroke='%23c85d42' d='M15 5h1M5 15h1'/%3E%3Cpath stroke='%23611f0e' d='M1 6h1'/%3E%3Cpath stroke='%23a23217' d='M3 6h1'/%3E%3Cpath stroke='%23d79585' d='M6 6h1'/%3E%3Cpath stroke='%23d89585' d='M7 6h1'/%3E%3Cpath stroke='%23b8371a' d='M8 6h1'/%3E%3Cpath stroke='%23ba391a' d='M9 6h1'/%3E%3Cpath stroke='%23bb3a1b' d='M10 6h1m-5 4h1'/%3E%3Cpath stroke='%23dd9887' d='M13 6h3m-4 1h1m-2 1h1M9 9h1m-2 2h1m-2 1h1m-2 1h1m-2 1h2'/%3E%3Cpath stroke='%23c03e1d' d='M17 6h1m-2 1h3m0 1h1m-1 1h1M7 16h1m-2 1h2m0 1h1'/%3E%3Cpath stroke='%2365200e' d='M1 7h1'/%3E%3Cpath stroke='%23902d15' d='M2 7h1'/%3E%3Cpath stroke='%23a73418' d='M3 7h1'/%3E%3Cpath stroke='%23af3518' d='M4 7h1'/%3E%3Cpath stroke='%23b43619' d='M5 7h1'/%3E%3Cpath stroke='%23d99585' d='M6 7h1'/%3E%3Cpath stroke='%23da9686' d='M7 7h1'/%3E%3Cpath stroke='%23db9686' d='M8 7h1M7 8h1'/%3E%3Cpath stroke='%23bc3a1b' d='M9 7h1M7 9h1'/%3E%3Cpath stroke='%23bd3b1b' d='M10 7h1m-4 3h1'/%3E%3Cpath stroke='%23be3c1c' d='M11 7h1m-2 1h1m-3 2h1m-2 1h1'/%3E%3Cpath stroke='%23de9987' d='M13 7h2m-3 1h2m-4 1h2m-3 1h1m-2 2h1m-2 2h1'/%3E%3Cpath stroke='%23c03f1d' d='M15 7h1m-9 8h1'/%3E%3Cpath stroke='%236a220f' d='M1 8h1'/%3E%3Cpath stroke='%23952f15' d='M2 8h1'/%3E%3Cpath stroke='%23ac3518' d='M3 8h1'/%3E%3Cpath stroke='%23b63719' d='M5 8h1'/%3E%3Cpath stroke='%23dc9786' d='M8 8h2M8 9h1'/%3E%3Cpath stroke='%23c2401d' d='M14 8h1m2 0h1m1 3h1M8 14h1m-1 2h1m-1 1h1m0 1h1m1 1h1'/%3E%3Cpath stroke='%23c2401e' d='M15 8h2m1 1h1M8 15h1'/%3E%3Cpath stroke='%23c13f1d' d='M18 8h1m0 2h1M9 19h2'/%3E%3Cpath stroke='%23702410' d='M1 9h1'/%3E%3Cpath stroke='%239b3016' d='M2 9h1'/%3E%3Cpath stroke='%23b03619' d='M3 9h1'/%3E%3Cpath stroke='%23b9381a' d='M5 9h1'/%3E%3Cpath stroke='%23df9a88' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23c4421e' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1m-1 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h3'/%3E%3Cpath stroke='%23c5431e' d='M14 9h1'/%3E%3Cpath stroke='%23c5431f' d='M15 9h1m-4 1h1m5 1h1m-9 1h1m-2 2h1m-1 1h1m0 2h1m0 1h1m6 0h1'/%3E%3Cpath stroke='%239e3217' d='M2 10h1'/%3E%3Cpath stroke='%23b4381a' d='M3 10h1'/%3E%3Cpath stroke='%23df9a87' d='M10 10h1m-2 1h1m-2 2h1'/%3E%3Cpath stroke='%23c6441f' d='M13 10h1m3 0h1m-8 3h1m-1 3h1'/%3E%3Cpath stroke='%23c74520' d='M14 10h2m-6 4h1m-1 1h1m7 2h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23c7451f' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%237b2711' d='M1 11h1'/%3E%3Cpath stroke='%23a13217' d='M2 11h1'/%3E%3Cpath stroke='%23b7391a' d='M3 11h1'/%3E%3Cpath stroke='%23e09b88' d='M11 11h1'/%3E%3Cpath stroke='%23e29d89' d='M12 11h1'/%3E%3Cpath stroke='%23c94621' d='M13 11h1m-3 2h1'/%3E%3Cpath stroke='%23ca4721' d='M14 11h1m2 1h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%23ca4821' d='M15 11h1m1 6h1'/%3E%3Cpath stroke='%23c94620' d='M16 11h1m1 3h1m-8 2h1m6 0h1'/%3E%3Cpath stroke='%23c84620' d='M17 11h1m0 2h1'/%3E%3Cpath stroke='%23a53418' d='M2 12h1'/%3E%3Cpath stroke='%23b83a1b' d='M3 12h1'/%3E%3Cpath stroke='%23e19d89' d='M11 12h1'/%3E%3Cpath stroke='%23e39e89' d='M12 12h1'/%3E%3Cpath stroke='%23e0947c' d='M13 12h1'/%3E%3Cpath stroke='%23cc4a22' d='M14 12h1m-3 2h1m4 0h1m-6 1h1'/%3E%3Cpath stroke='%23cd4a22' d='M15 12h1m0 1h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23cb4922' d='M16 12h1m0 1h1m-5 4h1'/%3E%3Cpath stroke='%23c3411e' d='M19 12h1m-1 1h1m-1 4h1m-8 2h2m3 0h1'/%3E%3Cpath stroke='%23a93618' d='M2 13h1'/%3E%3Cpath stroke='%23dd9987' d='M7 13h1m-2 2h1'/%3E%3Cpath stroke='%23e39f8a' d='M12 13h1'/%3E%3Cpath stroke='%23e59f8b' d='M13 13h1'/%3E%3Cpath stroke='%23e5a08b' d='M14 13h1m-2 1h1'/%3E%3Cpath stroke='%23ce4c23' d='M15 13h1m0 3h1'/%3E%3Cpath stroke='%23882b13' d='M1 14h1'/%3E%3Cpath stroke='%23e6a08b' d='M14 14h1'/%3E%3Cpath stroke='%23e6a18b' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23ce4b23' d='M16 14h1m-4 1h1'/%3E%3Cpath stroke='%238b2c14' d='M1 15h1m-1 1h1'/%3E%3Cpath stroke='%23ac3619' d='M2 15h1'/%3E%3Cpath stroke='%23d76b48' d='M15 15h1'/%3E%3Cpath stroke='%23cf4c23' d='M16 15h1m-2 1h1'/%3E%3Cpath stroke='%23c94721' d='M18 15h1m-3 3h1'/%3E%3Cpath stroke='%23bb3c1b' d='M3 16h1'/%3E%3Cpath stroke='%23bf3e1d' d='M6 16h1'/%3E%3Cpath stroke='%23cb4821' d='M12 16h1'/%3E%3Cpath stroke='%23cd4b23' d='M14 16h1'/%3E%3Cpath stroke='%23cc4922' d='M17 16h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%238d2d14' d='M1 17h1'/%3E%3Cpath stroke='%23bc3c1b' d='M3 17h1m-1 1h1'/%3E%3Cpath stroke='%23c84520' d='M11 17h1m1 1h1'/%3E%3Cpath stroke='%23ae3719' d='M2 18h1'/%3E%3Cpath stroke='%23c94720' d='M14 18h1'/%3E%3Cpath stroke='%23c95839' d='M19 18h1'/%3E%3Cpath stroke='%23a7bdf0' d='M0 19h1m0 1h1'/%3E%3Cpath stroke='%23ead7d3' d='M1 19h1'/%3E%3Cpath stroke='%23b34e35' d='M2 19h1'/%3E%3Cpath stroke='%23c03e1c' d='M8 19h1'/%3E%3Cpath stroke='%23c9583a' d='M18 19h1'/%3E%3Cpath stroke='%23f3dbd4' d='M19 19h1'/%3E%3Cpath stroke='%23a7bcef' d='M20 19h1m-2 1h1'/%3E%3C/svg%3E")
}
.status-bar{
margin: 0 3px;
box-shadow: inset 0 1px 2px grey;
padding: 2px 1px;
gap: 0
}
.status-bar-field{
-webkit-font-smoothing: antialiased;
box-shadow: none;
padding: 1px 2px;
border-right: 1px solid rgba(208,206,191,.75);
border-left: 1px solid hsla(0,0%,100%,.75)
}
.status-bar-field: first-of-type{
border-left: none
}
.status-bar-field: last-of-type{
border-right: none
}
button{
-webkit-font-smoothing: antialiased;
box-sizing: border-box;
border: 1px solid #003c74;
background: linear-gradient(180deg,#fff,#ecebe5 86%,#d8d0c4);
box-shadow: none;
border-radius: 3px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: none;
background: linear-gradient(180deg,#cdcac3,#e3e3db 8%,#e5e5de 94%,#f2f2f1)
}
button: not(: disabled): hover{
box-shadow: inset -1px 1px #fff0cf,inset 1px 2px #fdd889,inset -2px 2px #fbc761,inset 2px -2px #e5a01a
}
button.focused,button: focus{
box-shadow: inset -1px 1px #cee7ff,inset 1px 2px #98b8ea,inset -2px 2px #bcd4f6,inset 1px -1px #89ade4,inset 2px -2px #89ade4
}
button: :-moz-focus-inner{
border: 0
}
input,label,option,select,textarea{
-webkit-font-smoothing: antialiased
}
input[type=radio]{
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
margin: 0;
background: 0;
position: fixed;
opacity: 0;
border: none
}
input[type=radio]+label{
line-height: 16px
}
input[type=radio]+label: before{
background: linear-gradient(135deg,#dcdcd7,#fff);
border-radius: 50%;
border: 1px solid #1d5281
}
input[type=radio]: not([disabled]): not(: active)+label: hover: before{
box-shadow: inset -2px -2px #f8b636,inset 2px 2px #fedf9c
}
input[type=radio]: active+label: before{
background: linear-gradient(135deg,#b0b0a7,#e3e1d2)
}
input[type=radio]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a9dca6' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%234dbf4a' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23a0d29e' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%2355d551' d='M1 1h1'/%3E%3Cpath stroke='%2343c33f' d='M2 1h1'/%3E%3Cpath stroke='%2329a826' d='M3 1h1'/%3E%3Cpath stroke='%239acc98' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%2342c33f' d='M1 2h1'/%3E%3Cpath stroke='%2338b935' d='M2 2h1'/%3E%3Cpath stroke='%2321a121' d='M3 2h1'/%3E%3Cpath stroke='%23269623' d='M4 2h1'/%3E%3Cpath stroke='%232aa827' d='M1 3h1'/%3E%3Cpath stroke='%2322a220' d='M2 3h1'/%3E%3Cpath stroke='%23139210' d='M3 3h1'/%3E%3Cpath stroke='%2398c897' d='M4 3h1'/%3E%3Cpath stroke='%23249624' d='M2 4h1'/%3E%3Cpath stroke='%2398c997' d='M3 4h1'/%3E%3C/svg%3E")
}
input[type=radio]: focus+label{
outline: 1px dotted #000
}
input[type=radio][disabled]+label: before{
border: 1px solid #cac8bb;
background: #fff
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e8e6da' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23d2ceb5' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23e5e3d4' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%23d7d3bd' d='M1 1h1'/%3E%3Cpath stroke='%23d0ccb2' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23c7c2a2' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%23e2dfd0' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%23cdc8ac' d='M2 2h1'/%3E%3Cpath stroke='%23c5bf9f' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%23c3bd9c' d='M4 2h1'/%3E%3Cpath stroke='%23bfb995' d='M3 3h1'/%3E%3Cpath stroke='%23e2dfcf' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23c4be9d' d='M2 4h1'/%3E%3C/svg%3E")
}
input[type=email],input[type=password],textarea: :selection{
background: #2267cb;
color: #fff
}
input[type=range]: :-webkit-slider-thumb{
height: 21px;
width: 11px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(-8px)
}
input[type=range]: :-moz-range-thumb{
height: 21px;
width: 11px;
border: 0;
border-radius: 0;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(2px)
}
input[type=range]: :-webkit-slider-runnable-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range]: :-moz-range-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(-10px)
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(0)
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
fieldset{
box-shadow: none;
background: #fff;
border: 1px solid #d0d0bf;
border-radius: 4px;
padding-top: 10px
}
legend{
background: transparent;
color: #0046d5
}
.field-row{
display: flex;
align-items: center
}
.field-row>*+*{
margin-left: 6px
}
[class^=field-row]+[class^=field-row]{
margin-top: 6px
}
.field-row-stacked{
display: flex;
flex-direction: column
}
.field-row-stacked *+*{
margin-top: 6px
}
menu[role=tablist] button{
background: linear-gradient(180deg,#fff,#fafaf9 26%,#f0f0ea 95%,#ecebe5);
margin-left: -1px;
margin-right: 2px;
border-radius: 0;
border-color: #91a7b4;
border-top-right-radius: 3px;
border-top-left-radius: 3px;
padding: 0 12px 3px
}
menu[role=tablist] button: hover{
box-shadow: unset;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]{
border-color: #919b9c;
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]: first-of-type: before{
content: "";
display: block;
position: absolute;
z-index: -1;
top: 100%;
left: -1px;
height: 2px;
width: 0;
border-left: 1px solid #919b9c
}
[role=tabpanel]{
box-shadow: inset 1px 1px #fcfcfe,inset -1px -1px #fcfcfe,1px 2px 2px 0 rgba(208,206,191,.75)
}
ul.tree-view{
-webkit-font-smoothing: auto;
border: 1px solid #7f9db9;
padding: 2px 5px
}
@keyframes sliding{
0%{
transform: translateX(-30px)
}
to{
transform: translateX(100%)
}
}
progress{
box-sizing: border-box;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
height: 14px;
border: 1px solid #686868;
border-radius: 4px;
padding: 1px 2px 1px 0;
overflow: hidden;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress,progress: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px
}
progress[value]: :-webkit-progress-bar{
background-color: transparent
}
progress[value]: :-webkit-progress-value{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress[value]: :-moz-progress-bar{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-webkit-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-webkit-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]){
position: relative
}
progress: not([value]): before{
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before,progress: not([value]): before: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): after{
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): after,progress: not([value]): after: not([value]){
animation: sliding 2s linear 0s infinite
}
progress: not([value]): after: not([value]){
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-moz-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-moz-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
</style>
</head>
<body>
<script>
var log = console.log;
var theme = 'light';
var special_col_names = ["trial_index","arm_name","trial_status","generation_method","generation_node","hostname","run_time","start_time","exit_code","signal","end_time","program_string"]
var result_names = [
"RESULT"
];
var result_min_max = [
"min"
];
var tab_results_headers_json = [
"trial_index",
"arm_name",
"trial_status",
"generation_method",
"generation_node",
"RESULT",
"epochs",
"lr",
"bsz",
"da",
"db"
];
var tab_results_csv_json = [
[
0,
"0_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.21578947368421053,
182,
0.004086844545602799,
5,
15,
85
],
[
1,
"1_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.35789473684210527,
93,
0.005281418676208706,
20,
87,
29
],
[
2,
"2_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.37368421052631584,
47,
0.0019218563959002496,
16,
50,
53
],
[
3,
"3_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2789473684210526,
149,
0.008066364510636777,
31,
76,
64
],
[
4,
"4_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.4368421052631579,
114,
0.00027066318364813926,
22,
65,
74
],
[
5,
"5_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2894736842105263,
13,
0.00901540286783129,
7,
39,
40
],
[
6,
"6_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3421052631578947,
76,
0.0030556096081621946,
25,
98,
18
],
[
7,
"7_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2210526315789474,
166,
0.006850415381975472,
11,
27,
99
],
[
8,
"8_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3052631578947368,
155,
0.0021232641564682127,
28,
33,
22
],
[
9,
"9_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2789473684210526,
65,
0.008402737917471677,
14,
59,
78
],
[
10,
"10_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.4789473684210527,
27,
0.004908276228047908,
25,
22,
60
],
[
11,
"11_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2789473684210526,
129,
0.006237683899421246,
10,
93,
49
],
[
12,
"12_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3526315789473684,
136,
0.00346932606426999,
16,
81,
33
],
[
13,
"13_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3894736842105263,
34,
0.007129166191816331,
30,
10,
68
],
[
14,
"14_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3421052631578947,
103,
0.001304272636305541,
5,
70,
95
],
[
15,
"15_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.30000000000000004,
192,
0.009914178853482008,
19,
44,
14
],
[
16,
"16_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.33684210526315794,
199,
0.0008248308267444374,
13,
97,
63
],
[
17,
"17_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2578947368421053,
97,
0.009395421993639321,
28,
32,
51
],
[
18,
"18_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.30000000000000004,
40,
0.003608634402230382,
10,
63,
30
],
[
19,
"19_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.31052631578947365,
129,
0.007229159479495139,
24,
43,
88
],
[
20,
"20_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3526315789473684,
122,
0.004501324065867812,
30,
54,
97
],
[
21,
"21_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.31052631578947365,
32,
0.005791419010423125,
15,
74,
18
],
[
22,
"22_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3631578947368421,
60,
0.0023350621418096124,
19,
20,
42
],
[
23,
"23_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2315789473684211,
161,
0.008575223175995052,
4,
86,
75
],
[
24,
"24_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3263157894736842,
171,
0.0026510931549593806,
21,
68,
44
],
[
25,
"25_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2684210526315789,
70,
0.006406586238835008,
7,
48,
56
],
[
26,
"26_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3421052631578947,
19,
0.00048489658292382955,
32,
80,
83
],
[
27,
"27_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.27368421052631575,
109,
0.00919032357716933,
18,
15,
25
],
[
28,
"28_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.28421052631578947,
144,
0.0014351445979438723,
8,
26,
10
],
[
29,
"29_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.35789473684210527,
54,
0.007540337625518442,
23,
92,
89
],
[
30,
"30_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2947368421052632,
86,
0.004218882526364178,
12,
37,
71
],
[
31,
"31_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2947368421052632,
187,
0.005374141643568874,
26,
57,
37
],
[
32,
"32_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.38421052631578945,
184,
0.0017577933239750565,
25,
85,
99
],
[
33,
"33_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.20526315789473681,
83,
0.007843690539896489,
10,
19,
20
],
[
34,
"34_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3526315789473684,
57,
0.003922780809830875,
28,
72,
39
],
[
35,
"35_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.28421052631578947,
147,
0.005058744115382433,
14,
52,
72
],
[
36,
"36_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.2894736842105263,
106,
0.0029495738031342627,
5,
41,
66
],
[
37,
"37_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3631578947368421,
17,
0.0067244382296688865,
19,
61,
54
],
[
38,
"38_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.4736842105263158,
73,
0.0001646279687061906,
16,
31,
27
],
[
39,
"39_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3157894736842105,
174,
0.008889426305610687,
30,
96,
84
],
[
40,
"40_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.32105263157894737,
164,
0.0048022221487946815,
17,
55,
14
],
[
41,
"41_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.39473684210526316,
63,
0.006111688436008991,
31,
36,
93
],
[
42,
"42_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3789473684210526,
29,
0.0020172094871290028,
6,
90,
68
],
[
43,
"43_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3263157894736842,
119,
0.008276741863973439,
21,
25,
35
],
[
44,
"44_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.30000000000000004,
133,
0.0011402278386056423,
26,
13,
47
],
[
45,
"45_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.22631578947368425,
42,
0.009691523193847388,
12,
79,
59
],
[
46,
"46_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.33684210526315794,
94,
0.003305281856656075,
22,
47,
80
],
[
47,
"47_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.24736842105263157,
195,
0.006906511122267694,
8,
67,
23
],
[
48,
"48_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.3315789473684211,
189,
0.0037920127770863475,
32,
28,
78
],
[
49,
"49_0",
"COMPLETED",
"Sobol",
"SOBOL",
0.30000000000000004,
99,
0.007432481561973692,
18,
99,
43
],
[
50,
"50_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
133,
0.008577504456510274,
9,
21,
14
],
[
51,
"51_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
121,
0.009818272291073205,
10,
86,
12
],
[
52,
"52_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
142,
0.007137340016123907,
7,
10,
42
],
[
53,
"53_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21052631578947367,
125,
0.009744594475476721,
9,
32,
18
],
[
54,
"54_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
166,
0.006950327656025008,
4,
14,
84
],
[
55,
"55_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
139,
0.008798112083856105,
7,
11,
69
],
[
56,
"56_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3421052631578947,
120,
0.01,
10,
100,
83
],
[
57,
"57_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
48,
0.01,
12,
75,
12
],
[
58,
"58_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
79,
0.00925826775024842,
9,
91,
22
],
[
59,
"59_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
196,
0.005556302825780697,
9,
12,
88
],
[
60,
"60_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
103,
0.01,
10,
10,
40
],
[
61,
"61_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
160,
0.008001981087390761,
6,
13,
35
],
[
62,
"62_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
125,
0.008515341535115644,
8,
56,
12
],
[
63,
"63_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
116,
0.009648653744496277,
9,
65,
29
],
[
64,
"64_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
116,
0.01,
10,
50,
56
],
[
65,
"65_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
114,
0.009279508125766304,
9,
97,
36
],
[
66,
"66_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
187,
0.00519354003753549,
6,
15,
12
],
[
67,
"67_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
116,
0.008813640999560576,
9,
50,
15
],
[
68,
"68_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
68,
0.01,
12,
32,
20
],
[
69,
"69_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
112,
0.00900806600324778,
10,
10,
12
],
[
70,
"70_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
99,
0.01,
8,
95,
34
],
[
71,
"71_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
175,
0.008982729676910994,
6,
37,
13
],
[
72,
"72_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
96,
0.01,
10,
63,
12
],
[
73,
"73_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3157894736842105,
26,
0.01,
15,
90,
20
],
[
74,
"74_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3157894736842105,
138,
0.009313386529547548,
8,
54,
49
],
[
75,
"75_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.1947368421052632,
166,
0.009214396673853867,
9,
12,
12
],
[
76,
"76_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
163,
0.00954655230160426,
9,
76,
94
],
[
77,
"77_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.368421052631579,
147,
0.006954417456552954,
4,
14,
21
],
[
78,
"78_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
74,
0.009640987831256973,
10,
25,
47
],
[
79,
"79_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
126,
0.009737317249339197,
9,
59,
35
],
[
80,
"80_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
134,
0.01,
11,
77,
22
],
[
81,
"81_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
136,
0.009714152980487143,
7,
94,
38
],
[
82,
"82_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
130,
0.005989085553031036,
7,
17,
10
],
[
83,
"83_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
93,
0.008907503300410438,
10,
95,
11
],
[
84,
"84_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
155,
0.009489672677845194,
8,
90,
68
],
[
85,
"85_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
133,
0.007919025068734422,
5,
31,
10
],
[
86,
"86_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
170,
0.007093616379362982,
9,
11,
11
],
[
87,
"87_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
145,
0.01,
8,
13,
26
],
[
88,
"88_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
198,
0.008744131195503633,
6,
11,
96
],
[
89,
"89_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
158,
0.01,
9,
54,
16
],
[
90,
"90_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
165,
0.009780347900098872,
10,
31,
94
],
[
91,
"91_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.19999999999999996,
165,
0.01,
10,
21,
61
],
[
92,
"92_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
125,
0.008824063502547264,
5,
34,
14
],
[
93,
"93_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.4157894736842105,
17,
0.01,
14,
27,
23
],
[
94,
"94_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
76,
0.01,
6,
90,
84
],
[
95,
"95_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.19999999999999996,
180,
0.0019437732732098352,
4,
15,
80
],
[
96,
"96_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
90,
0.01,
11,
43,
37
],
[
97,
"97_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
136,
0.009872329444681192,
9,
35,
80
],
[
98,
"98_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.34736842105263155,
100,
0.01,
9,
63,
82
],
[
99,
"99_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3526315789473684,
147,
0.008498460640559985,
4,
10,
55
],
[
100,
"100_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
128,
0.007328165143666879,
11,
10,
48
],
[
101,
"101_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
199,
0.0035800589436201387,
7,
34,
66
],
[
102,
"102_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2894736842105263,
173,
0.007354887547036353,
12,
13,
42
],
[
103,
"103_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2894736842105263,
196,
0.0006805500228581438,
5,
10,
63
],
[
104,
"104_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
190,
0.005528909705012397,
9,
70,
71
],
[
105,
"105_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
189,
0.003570749819384346,
9,
13,
52
],
[
106,
"106_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
196,
0.003750095933055425,
5,
82,
77
],
[
107,
"107_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
141,
0.0085696525555267,
13,
14,
54
],
[
108,
"108_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
198,
0.0038520117148937425,
9,
10,
44
],
[
109,
"109_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
65,
0.00706361744514923,
10,
13,
69
],
[
110,
"110_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
200,
0.005628487729766808,
7,
95,
95
],
[
111,
"111_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.33684210526315794,
200,
0.0013008159004080566,
4,
42,
35
],
[
112,
"112_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
186,
0.006164225392213051,
6,
85,
95
],
[
113,
"113_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
198,
0.006288258460588526,
9,
92,
71
],
[
114,
"114_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.37368421052631584,
199,
0.0009050373628743542,
5,
43,
68
],
[
115,
"115_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
165,
0.008388896327259952,
13,
39,
60
],
[
116,
"116_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
167,
0.01,
30,
14,
29
],
[
117,
"117_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3526315789473684,
138,
0.003544362072843389,
9,
10,
92
],
[
118,
"118_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
191,
0.007007867855856318,
13,
19,
64
],
[
119,
"119_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
138,
0.01,
27,
78,
18
],
[
120,
"120_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.33684210526315794,
121,
0.005714763782904381,
10,
10,
68
],
[
121,
"121_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
144,
0.006895473797321892,
12,
11,
33
],
[
122,
"122_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
164,
0.01,
27,
43,
24
],
[
123,
"123_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.31052631578947365,
194,
0.003040045886165568,
6,
64,
37
],
[
124,
"124_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
195,
0.01,
27,
76,
34
],
[
125,
"125_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.31052631578947365,
190,
0.0021203168045013,
9,
12,
96
],
[
126,
"126_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3263157894736842,
191,
0.0001,
5,
14,
77
],
[
127,
"127_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
180,
0.005267571433207469,
9,
40,
53
],
[
128,
"128_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3157894736842105,
115,
0.007758164796308052,
12,
10,
46
],
[
129,
"129_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3421052631578947,
170,
0.0037628729884976743,
9,
27,
77
],
[
130,
"130_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
190,
0.007947880364360022,
12,
36,
44
],
[
131,
"131_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
192,
0.004951282663584588,
9,
42,
65
],
[
132,
"132_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
198,
0.0038960300354105516,
6,
36,
65
],
[
133,
"133_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
149,
0.007881764468139452,
13,
55,
36
],
[
134,
"134_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3263157894736842,
168,
0.009222464332006793,
28,
25,
75
],
[
135,
"135_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
196,
0.003806215445926704,
6,
89,
50
],
[
136,
"136_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
191,
0.007021442597610894,
9,
58,
71
],
[
137,
"137_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
191,
0.007128999541857152,
12,
18,
24
],
[
138,
"138_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
182,
0.008026985369642109,
12,
46,
33
],
[
139,
"139_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
194,
0.0033061355774116224,
6,
78,
59
],
[
140,
"140_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
182,
0.004323422961681195,
6,
85,
70
],
[
141,
"141_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
141,
0.007719074453487567,
13,
19,
62
],
[
142,
"142_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
144,
0.01,
31,
72,
15
],
[
143,
"143_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3421052631578947,
193,
0.0008573459036007534,
9,
20,
82
],
[
144,
"144_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
188,
0.0012818278168676355,
9,
27,
85
],
[
145,
"145_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2894736842105263,
178,
0.005897926953008805,
11,
57,
57
],
[
146,
"146_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
158,
0.0053381815387486976,
10,
10,
64
],
[
147,
"147_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
197,
0.0037311413182600215,
8,
29,
95
],
[
148,
"148_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
106,
0.01,
30,
17,
21
],
[
149,
"149_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
136,
0.009874131838474345,
26,
69,
39
],
[
150,
"150_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.1947368421052632,
200,
0.01,
15,
10,
100
],
[
151,
"151_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21052631578947367,
200,
0.01,
15,
13,
34
],
[
152,
"152_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
138,
0.01,
15,
12,
95
],
[
153,
"153_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
192,
0.01,
16,
100,
100
],
[
154,
"154_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
196,
0.007730263524140228,
13,
96,
25
],
[
155,
"155_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.4631578947368421,
200,
0.0001,
32,
10,
10
],
[
156,
"156_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3789473684210526,
200,
0.0001,
32,
100,
10
],
[
157,
"157_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3157894736842105,
177,
0.0013135455033262706,
32,
52,
23
],
[
158,
"158_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
198,
0.008014373080690435,
12,
20,
93
],
[
159,
"159_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
191,
0.0016085384676854944,
31,
96,
68
],
[
160,
"160_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.31052631578947365,
199,
0.01,
20,
20,
78
],
[
161,
"161_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
171,
0.01,
13,
16,
100
],
[
162,
"162_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3894736842105263,
42,
0.0001,
32,
59,
46
],
[
163,
"163_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.31052631578947365,
198,
0.004294366743974311,
30,
90,
20
],
[
164,
"164_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
159,
0.006007570117257619,
28,
31,
81
],
[
165,
"165_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
193,
0.01,
32,
10,
97
],
[
166,
"166_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3263157894736842,
180,
0.0015436283836473379,
31,
48,
12
],
[
167,
"167_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.4052631578947369,
112,
0.0001,
32,
77,
26
],
[
168,
"168_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
199,
0.00890340807086038,
16,
53,
70
],
[
169,
"169_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
98,
0.0001,
32,
88,
10
],
[
170,
"170_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.39473684210526316,
61,
0.0026756727181576553,
32,
91,
11
],
[
171,
"171_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
194,
0.009483950817449809,
14,
49,
85
],
[
172,
"172_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.4789473684210527,
194,
0.0031122443973679967,
31,
48,
62
],
[
173,
"173_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3263157894736842,
144,
0.0022417435970178284,
31,
25,
25
],
[
174,
"174_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3526315789473684,
192,
0.00819880515004494,
18,
14,
13
],
[
175,
"175_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3315789473684211,
122,
0.002513119276252128,
28,
23,
35
],
[
176,
"176_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
132,
0.0006291394447839428,
30,
33,
20
],
[
177,
"177_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
195,
0.01,
13,
87,
80
],
[
178,
"178_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
192,
0.008371381953704056,
15,
11,
25
],
[
179,
"179_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
184,
0.0022418826067417768,
30,
56,
34
],
[
180,
"180_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
136,
0.0023201957765181945,
27,
13,
26
],
[
181,
"181_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
172,
0.0011475437179547336,
31,
74,
14
],
[
182,
"182_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3894736842105263,
180,
0.005813898878096229,
28,
14,
92
],
[
183,
"183_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
95,
0.005906303250325943,
7,
13,
99
],
[
184,
"184_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
199,
0.00810365210272251,
12,
14,
24
],
[
185,
"185_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
195,
0.007648087627267045,
14,
92,
92
],
[
186,
"186_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.27368421052631575,
173,
0.00523845495639525,
29,
14,
70
],
[
187,
"187_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2684210526315789,
159,
0.001032169478795734,
32,
25,
14
],
[
188,
"188_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3421052631578947,
172,
0.0023772666849346145,
30,
55,
16
],
[
189,
"189_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
191,
0.007451484272620453,
32,
60,
24
],
[
190,
"190_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.368421052631579,
120,
0.0008150323024199932,
32,
42,
25
],
[
191,
"191_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
200,
0.007960593673277542,
28,
20,
74
],
[
192,
"192_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3157894736842105,
182,
0.006262168295360941,
31,
51,
58
],
[
193,
"193_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.34736842105263155,
185,
0.001676929286724987,
30,
27,
12
],
[
194,
"194_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3157894736842105,
200,
0.004849079563059101,
10,
48,
11
],
[
195,
"195_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
149,
0.005553668164979487,
25,
39,
81
],
[
196,
"196_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3526315789473684,
158,
0.0006996163967714181,
25,
96,
79
],
[
197,
"197_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
198,
0.007649381166543605,
19,
28,
79
],
[
198,
"198_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
196,
0.0013485576318083955,
30,
59,
13
],
[
199,
"199_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.34736842105263155,
186,
0.007058599013385699,
30,
81,
90
],
[
200,
"200_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.368421052631579,
78,
0.01,
4,
10,
100
],
[
201,
"201_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.30000000000000004,
92,
0.01,
13,
10,
100
],
[
202,
"202_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
196,
0.01,
4,
100,
100
],
[
203,
"203_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
74,
0.01,
4,
12,
42
],
[
204,
"204_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
67,
0.00799608040204725,
4,
10,
81
],
[
205,
"205_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.18947368421052635,
169,
0.006708814873979876,
4,
100,
100
],
[
206,
"206_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
164,
0.0021694135653958237,
4,
100,
100
],
[
207,
"207_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
200,
0.01,
11,
50,
100
],
[
208,
"208_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
90,
0.01,
4,
10,
70
],
[
209,
"209_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
79,
0.01,
4,
10,
10
],
[
210,
"210_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
200,
0.009749012337050042,
4,
59,
22
],
[
211,
"211_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
82,
0.01,
13,
10,
59
],
[
212,
"212_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
83,
0.01,
8,
10,
25
],
[
213,
"213_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.01,
4,
55,
95
],
[
214,
"214_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.33684210526315794,
72,
0.009472401634708067,
5,
16,
81
],
[
215,
"215_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
78,
0.007481519651620194,
4,
11,
12
],
[
216,
"216_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
93,
0.01,
15,
14,
57
],
[
217,
"217_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
64,
0.01,
4,
11,
51
],
[
218,
"218_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
96,
0.009694800616111379,
16,
19,
87
],
[
219,
"219_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.33684210526315794,
10,
0.01,
4,
100,
69
],
[
220,
"220_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
54,
0.01,
4,
14,
100
],
[
221,
"221_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
46,
0.009440972924177704,
4,
24,
80
],
[
222,
"222_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
175,
0.01,
15,
95,
95
],
[
223,
"223_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3315789473684211,
17,
0.01,
6,
95,
54
],
[
224,
"224_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.34736842105263155,
94,
0.009343742192117206,
10,
19,
95
],
[
225,
"225_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.34736842105263155,
70,
0.008955403214434799,
18,
14,
64
],
[
226,
"226_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2789473684210526,
164,
0.007264409825752541,
13,
94,
98
],
[
227,
"227_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
28,
0.01,
24,
98,
27
],
[
228,
"228_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
178,
0.01,
7,
98,
57
],
[
229,
"229_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
69,
0.01,
17,
15,
79
],
[
230,
"230_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
140,
0.005010466861507651,
6,
92,
87
],
[
231,
"231_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
41,
0.01,
4,
41,
32
],
[
232,
"232_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3421052631578947,
17,
0.007055760108174731,
4,
95,
62
],
[
233,
"233_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
99,
0.009194321504287672,
12,
20,
83
],
[
234,
"234_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
67,
0.003364656865678124,
6,
93,
79
],
[
235,
"235_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
52,
0.0056851926552788454,
5,
98,
85
],
[
236,
"236_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
200,
0.01,
11,
100,
64
],
[
237,
"237_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
12,
0.01,
4,
49,
73
],
[
238,
"238_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
121,
0.01,
14,
16,
100
],
[
239,
"239_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
100,
0.01,
23,
26,
83
],
[
240,
"240_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
198,
0.007731675252046769,
6,
45,
94
],
[
241,
"241_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
86,
0.01,
22,
19,
91
],
[
242,
"242_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.33684210526315794,
51,
0.01,
5,
20,
64
],
[
243,
"243_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2421052631578947,
200,
0.01,
9,
34,
32
],
[
244,
"244_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3315789473684211,
71,
0.0092803445219943,
10,
14,
89
],
[
245,
"245_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
27,
0.01,
4,
51,
90
],
[
246,
"246_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
87,
0.006955764471627999,
5,
25,
35
],
[
247,
"247_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
79,
0.009402314477485484,
20,
13,
84
],
[
248,
"248_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.23684210526315785,
19,
0.0081742875071797,
9,
96,
94
],
[
249,
"249_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.19999999999999996,
87,
0.008685049338473319,
12,
16,
100
],
[
250,
"250_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.19999999999999996,
200,
0.007291676439191521,
9,
10,
100
],
[
251,
"251_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2684210526315789,
200,
0.00792998551830642,
10,
59,
95
],
[
252,
"252_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
199,
0.008195248509410299,
10,
76,
100
],
[
253,
"253_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
193,
0.007931655319971117,
11,
90,
74
],
[
254,
"254_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
193,
0.009594192945999062,
11,
22,
96
],
[
255,
"255_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
200,
0.007055811264348119,
9,
77,
100
],
[
256,
"256_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
200,
0.01,
12,
10,
72
],
[
257,
"257_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
200,
0.01,
12,
93,
100
],
[
258,
"258_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.33684210526315794,
200,
0.00542518374349528,
4,
100,
100
],
[
259,
"259_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
200,
0.008440358256238074,
10,
17,
89
],
[
260,
"260_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
168,
0.0068266462270954315,
7,
85,
100
],
[
261,
"261_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
200,
0.008151733417899107,
12,
85,
97
],
[
262,
"262_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.41052631578947374,
55,
0.0001,
4,
76,
12
],
[
263,
"263_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
200,
0.01,
22,
20,
95
],
[
264,
"264_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.1842105263157895,
189,
0.006015229369388398,
7,
14,
66
],
[
265,
"265_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
195,
0.0031283227599953494,
4,
90,
28
],
[
266,
"266_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.34736842105263155,
200,
0.01,
11,
10,
100
],
[
267,
"267_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2947368421052632,
196,
0.01,
15,
58,
32
],
[
268,
"268_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
199,
0.007625260542159144,
22,
12,
17
],
[
269,
"269_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
195,
0.01,
25,
47,
98
],
[
270,
"270_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
198,
0.0062011902764453316,
6,
31,
93
],
[
271,
"271_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
195,
0.00829618705413135,
24,
100,
17
],
[
272,
"272_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.22631578947368425,
200,
0.006883295264170377,
10,
77,
99
],
[
273,
"273_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2315789473684211,
192,
0.007434520055481418,
7,
77,
99
],
[
274,
"274_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.1947368421052632,
197,
0.008846428018668237,
17,
31,
56
],
[
275,
"275_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
199,
0.01,
21,
47,
98
],
[
276,
"276_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
198,
0.008938719527159,
21,
94,
92
],
[
277,
"277_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
197,
0.01,
16,
85,
22
],
[
278,
"278_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
200,
0.007962235188536336,
9,
96,
100
],
[
279,
"279_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
194,
0.00873430106359886,
25,
16,
18
],
[
280,
"280_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2210526315789474,
175,
0.008487945627539824,
27,
77,
31
],
[
281,
"281_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
200,
0.0095377375923727,
19,
78,
83
],
[
282,
"282_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3263157894736842,
117,
0.0025613362790592536,
4,
18,
100
],
[
283,
"283_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
199,
0.01,
23,
79,
28
],
[
284,
"284_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.28421052631578947,
179,
0.0033901132753968773,
4,
59,
18
],
[
285,
"285_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.20526315789473681,
198,
0.01,
27,
11,
11
],
[
286,
"286_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3052631578947368,
175,
0.00934927245961503,
26,
97,
49
],
[
287,
"287_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.34736842105263155,
36,
0.005056488906256527,
9,
12,
12
],
[
288,
"288_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.25263157894736843,
191,
0.00983656002521225,
27,
21,
57
],
[
289,
"289_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
187,
0.008391866727533774,
10,
12,
90
],
[
290,
"290_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21578947368421053,
199,
0.008772779087706203,
13,
16,
76
],
[
291,
"291_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.21052631578947367,
199,
0.01,
25,
20,
49
],
[
292,
"292_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.32105263157894737,
170,
0.007863181618209196,
27,
98,
32
],
[
293,
"293_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2578947368421053,
187,
0.00766426483092941,
25,
63,
37
],
[
294,
"294_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.24736842105263157,
188,
0.00850577383509249,
23,
28,
22
],
[
295,
"295_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2894736842105263,
199,
0.00812776976845186,
15,
11,
69
],
[
296,
"296_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.2894736842105263,
136,
0.008573263979629783,
26,
93,
26
],
[
297,
"297_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
184,
0.00876655064495856,
12,
18,
68
],
[
298,
"298_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.26315789473684215,
198,
0.006391300842046438,
4,
37,
95
],
[
299,
"299_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.3631578947368421,
193,
0.008208469928146254,
27,
47,
11
],
[
300,
"300_0",
"COMPLETED",
"BoTorch",
"BOTORCH_MODULAR",
0.35789473684210527,
200,
0.01,
23,
10,
41
],
[
301,
"301_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
191,
0.008690228343366134,
16,
13,
99
],
[
302,
"302_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
151,
0.008214996255335755,
11,
88,
99
],
[
303,
"303_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
200,
0.00720095990167795,
13,
47,
100
],
[
304,
"304_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
200,
0.005081474352885097,
6,
94,
11
],
[
305,
"305_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
200,
0.004392889949584496,
4,
82,
27
],
[
306,
"306_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
200,
0.004433710192649272,
4,
15,
72
],
[
307,
"307_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
193,
0.00602682532251555,
10,
96,
90
],
[
308,
"308_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
200,
0.01,
23,
10,
10
],
[
309,
"309_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
197,
0.005826684793629684,
8,
59,
60
],
[
310,
"310_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
137,
0.006825591395611478,
10,
94,
99
],
[
311,
"311_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
199,
0.0057388446225537385,
8,
14,
21
],
[
312,
"312_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
26,
0.006196918380796845,
9,
24,
90
],
[
313,
"313_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
170,
0.006861978646614733,
9,
86,
100
],
[
314,
"314_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
197,
0.01,
32,
10,
44
],
[
315,
"315_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
91,
0.01,
15,
74,
100
],
[
316,
"316_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
200,
0.006487832008299584,
8,
94,
100
],
[
317,
"317_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
189,
0.006594452433289562,
18,
31,
28
],
[
318,
"318_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
184,
0.008788193223409001,
28,
11,
17
],
[
319,
"319_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
185,
0.009706456536513294,
19,
12,
100
],
[
320,
"320_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
179,
0.01,
32,
95,
10
],
[
321,
"321_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
124,
0.007660351672229674,
10,
19,
88
],
[
322,
"322_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
199,
0.007697847625975126,
19,
33,
97
],
[
323,
"323_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
189,
0.007080508871516898,
11,
17,
98
],
[
324,
"324_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
195,
0.006347464730234358,
11,
98,
91
],
[
325,
"325_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
152,
0.0070536870182139845,
9,
40,
98
],
[
326,
"326_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
196,
0.0067338226856165345,
8,
12,
36
],
[
327,
"327_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
200,
0.005330177068560809,
4,
11,
92
],
[
328,
"328_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
167,
0.007082479005346094,
10,
96,
90
],
[
329,
"329_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
192,
0.008223181018541026,
22,
10,
75
],
[
330,
"330_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
181,
0.007530052111167857,
13,
10,
100
],
[
331,
"331_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
197,
0.005755042939312985,
23,
11,
18
],
[
332,
"332_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
198,
0.008448069330515475,
22,
16,
88
],
[
333,
"333_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
192,
0.006854246695185101,
11,
95,
24
],
[
334,
"334_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
198,
0.006760587303112119,
9,
99,
68
],
[
335,
"335_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
191,
0.00999900215698292,
31,
37,
44
],
[
336,
"336_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
191,
0.006767322079922044,
11,
10,
67
],
[
337,
"337_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
200,
0.009130179879195661,
24,
100,
19
],
[
338,
"338_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
198,
0.01,
19,
19,
20
],
[
339,
"339_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
199,
0.0061207156789596425,
9,
36,
94
],
[
340,
"340_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
166,
0.006052328243896888,
9,
51,
100
],
[
341,
"341_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
199,
0.007480037307678853,
19,
10,
63
],
[
342,
"342_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
134,
0.006649065335040426,
13,
94,
98
],
[
343,
"343_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
171,
0.006060800778925074,
6,
88,
41
],
[
344,
"344_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
199,
0.007390091014643067,
10,
13,
78
],
[
345,
"345_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
172,
0.005118832947024147,
5,
16,
95
],
[
346,
"346_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
196,
0.006318060363255504,
14,
10,
77
],
[
347,
"347_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
200,
0.003110382722629967,
4,
88,
76
],
[
348,
"348_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
160,
0.007329839398934116,
16,
15,
33
],
[
349,
"349_0",
"RUNNING",
"BoTorch",
"BOTORCH_MODULAR",
"",
152,
0.007336594368444059,
9,
97,
87
]
];
var tab_job_infos_headers_json = [
"start_time",
"end_time",
"run_time",
"program_string",
"epochs",
"lr",
"bsz",
"da",
"db",
"RESULT",
"exit_code",
"signal",
"hostname",
"OO_Info_SLURM_JOB_ID"
];
var tab_job_infos_csv_json = [
[
1746533719,
1746533811,
92,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 93 0.005281418676208706 20 87 29",
93,
0.005281418676208706,
20,
87,
29,
0.35789473684210527,
0,
"None",
"n1719",
16897993
],
[
1746533775,
1746533812,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 114 0.00027066318364813926 22 65 74",
114,
0.00027066318364813926,
22,
65,
74,
0.4368421052631579,
0,
"None",
"n1719",
16898020
],
[
1746533775,
1746533812,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 13 0.00901540286783129 7 39 40",
13,
0.00901540286783129,
7,
39,
40,
0.2894736842105263,
0,
"None",
"n1719",
16898021
],
[
1746533715,
1746533813,
98,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 47 0.0019218563959002496 16 50 53",
47,
0.0019218563959002496,
16,
50,
53,
0.37368421052631584,
0,
"None",
"n1719",
16897996
],
[
1746533747,
1746533814,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 149 0.008066364510636777 31 76 64",
149,
0.008066364510636777,
31,
76,
64,
0.2789473684210526,
0,
"None",
"n1719",
16898009
],
[
1746533684,
1746533825,
141,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 182 0.004086844545602799 5 15 85",
182,
0.004086844545602799,
5,
15,
85,
0.21578947368421053,
0,
"None",
"n1719",
16897981
],
[
1746533806,
1746533830,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 76 0.0030556096081621946 25 98 18",
76,
0.0030556096081621946,
25,
98,
18,
0.3421052631578947,
0,
"None",
"n1719",
16898033
],
[
1746533834,
1746533859,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 155 0.0021232641564682127 28 33 22",
155,
0.0021232641564682127,
28,
33,
22,
0.3052631578947368,
0,
"None",
"n1719",
16898045
],
[
1746533834,
1746533871,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 166 0.006850415381975472 11 27 99",
166,
0.006850415381975472,
11,
27,
99,
0.2210526315789474,
0,
"None",
"n1719",
16898044
],
[
1746533871,
1746533889,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 27 0.004908276228047908 25 22 60",
27,
0.004908276228047908,
25,
22,
60,
0.4789473684210527,
0,
"None",
"n1719",
16898059
],
[
1746533867,
1746533891,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 65 0.008402737917471677 14 59 78",
65,
0.008402737917471677,
14,
59,
78,
0.2789473684210526,
0,
"None",
"n1719",
16898056
],
[
1746533898,
1746533923,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 136 0.00346932606426999 16 81 33",
136,
0.00346932606426999,
16,
81,
33,
0.3526315789473684,
0,
"None",
"n1719",
16898072
],
[
1746533898,
1746533929,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 129 0.006237683899421246 10 93 49",
129,
0.006237683899421246,
10,
93,
49,
0.2789473684210526,
0,
"None",
"n1719",
16898070
],
[
1746533957,
1746534000,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 192 0.009914178853482008 19 44 14",
192,
0.009914178853482008,
19,
44,
14,
0.30000000000000004,
0,
"None",
"n1719",
16898097
],
[
1746533940,
1746534001,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 34 0.007129166191816331 30 10 68",
34,
0.007129166191816331,
30,
10,
68,
0.3894736842105263,
0,
"None",
"n1714",
16898083
],
[
1746533957,
1746534006,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 103 0.001304272636305541 5 70 95",
103,
0.001304272636305541,
5,
70,
95,
0.3421052631578947,
0,
"None",
"n1719",
16898095
],
[
1746533989,
1746534013,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.0008248308267444374 13 97 63",
199,
0.0008248308267444374,
13,
97,
63,
0.33684210526315794,
0,
"None",
"n1719",
16898108
],
[
1746534050,
1746534081,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 129 0.007229159479495139 24 43 88",
129,
0.007229159479495139,
24,
43,
88,
0.31052631578947365,
0,
"None",
"n1719",
16898133
],
[
1746534050,
1746534087,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 40 0.003608634402230382 10 63 30",
40,
0.003608634402230382,
10,
63,
30,
0.30000000000000004,
0,
"None",
"n1719",
16898131
],
[
1746534079,
1746534103,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 122 0.004501324065867812 30 54 97",
122,
0.004501324065867812,
30,
54,
97,
0.3526315789473684,
0,
"None",
"n1719",
16898161
],
[
1746534034,
1746534108,
74,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 97 0.009395421993639321 28 32 51",
97,
0.009395421993639321,
28,
32,
51,
0.2578947368421053,
0,
"None",
"n1720",
16898119
],
[
1746534084,
1746534109,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 32 0.005791419010423125 15 74 18",
32,
0.005791419010423125,
15,
74,
18,
0.31052631578947365,
0,
"None",
"n1719",
16898176
],
[
1746534114,
1746534138,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 60 0.0023350621418096124 19 20 42",
60,
0.0023350621418096124,
19,
20,
42,
0.3631578947368421,
0,
"None",
"n1720",
16898202
],
[
1746534144,
1746534163,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 171 0.0026510931549593806 21 68 44",
171,
0.0026510931549593806,
21,
68,
44,
0.3263157894736842,
0,
"None",
"n1719",
16898215
],
[
1746534140,
1746534177,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 161 0.008575223175995052 4 86 75",
161,
0.008575223175995052,
4,
86,
75,
0.2315789473684211,
0,
"None",
"n1719",
16898214
],
[
1746534169,
1746534187,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 19 0.00048489658292382955 32 80 83",
19,
0.00048489658292382955,
32,
80,
83,
0.3421052631578947,
0,
"None",
"n1719",
16898228
],
[
1746534173,
1746534192,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 70 0.006406586238835008 7 48 56",
70,
0.006406586238835008,
7,
48,
56,
0.2684210526315789,
0,
"None",
"n1719",
16898227
],
[
1746534201,
1746534226,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 109 0.00919032357716933 18 15 25",
109,
0.00919032357716933,
18,
15,
25,
0.27368421052631575,
0,
"None",
"n1719",
16898242
],
[
1746534206,
1746534231,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 144 0.0014351445979438723 8 26 10",
144,
0.0014351445979438723,
8,
26,
10,
0.28421052631578947,
0,
"None",
"n1719",
16898246
],
[
1746534230,
1746534249,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 54 0.007540337625518442 23 92 89",
54,
0.007540337625518442,
23,
92,
89,
0.35789473684210527,
0,
"None",
"n1719",
16898257
],
[
1746534261,
1746534286,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 86 0.004218882526364178 12 37 71",
86,
0.004218882526364178,
12,
37,
71,
0.2947368421052632,
0,
"None",
"n1719",
16898271
],
[
1746534266,
1746534290,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 187 0.005374141643568874 26 57 37",
187,
0.005374141643568874,
26,
57,
37,
0.2947368421052632,
0,
"None",
"n1719",
16898272
],
[
1746534290,
1746534309,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 83 0.007843690539896489 10 19 20",
83,
0.007843690539896489,
10,
19,
20,
0.20526315789473681,
0,
"None",
"n1719",
16898285
],
[
1746534296,
1746534314,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 184 0.0017577933239750565 25 85 99",
184,
0.0017577933239750565,
25,
85,
99,
0.38421052631578945,
0,
"None",
"n1719",
16898283
],
[
1746534321,
1746534339,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 57 0.003922780809830875 28 72 39",
57,
0.003922780809830875,
28,
72,
39,
0.3526315789473684,
0,
"None",
"n1719",
16898295
],
[
1746534321,
1746534340,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 147 0.005058744115382433 14 52 72",
147,
0.005058744115382433,
14,
52,
72,
0.28421052631578947,
0,
"None",
"n1719",
16898297
],
[
1746534352,
1746534376,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 106 0.0029495738031342627 5 41 66",
106,
0.0029495738031342627,
5,
41,
66,
0.2894736842105263,
0,
"None",
"n1719",
16898299
],
[
1746534384,
1746534402,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 17 0.0067244382296688865 19 61 54",
17,
0.0067244382296688865,
19,
61,
54,
0.3631578947368421,
0,
"None",
"n1719",
16898301
],
[
1746534389,
1746534407,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 73 0.0001646279687061906 16 31 27",
73,
0.0001646279687061906,
16,
31,
27,
0.4736842105263158,
0,
"None",
"n1719",
16898303
],
[
1746534412,
1746534430,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 174 0.008889426305610687 30 96 84",
174,
0.008889426305610687,
30,
96,
84,
0.3157894736842105,
0,
"None",
"n1719",
16898304
],
[
1746534412,
1746534430,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 164 0.0048022221487946815 17 55 14",
164,
0.0048022221487946815,
17,
55,
14,
0.32105263157894737,
0,
"None",
"n1719",
16898307
],
[
1746534442,
1746534461,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 63 0.006111688436008991 31 36 93",
63,
0.006111688436008991,
31,
36,
93,
0.39473684210526316,
0,
"None",
"n1719",
16898308
],
[
1746534442,
1746534461,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 29 0.0020172094871290028 6 90 68",
29,
0.0020172094871290028,
6,
90,
68,
0.3789473684210526,
0,
"None",
"n1719",
16898309
],
[
1746534474,
1746534492,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 119 0.008276741863973439 21 25 35",
119,
0.008276741863973439,
21,
25,
35,
0.3263157894736842,
0,
"None",
"n1719",
16898310
],
[
1746534503,
1746534522,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 133 0.0011402278386056423 26 13 47",
133,
0.0011402278386056423,
26,
13,
47,
0.30000000000000004,
0,
"None",
"n1719",
16898314
],
[
1746534503,
1746534522,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 42 0.009691523193847388 12 79 59",
42,
0.009691523193847388,
12,
79,
59,
0.22631578947368425,
0,
"None",
"n1719",
16898315
],
[
1746534534,
1746534552,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 94 0.003305281856656075 22 47 80",
94,
0.003305281856656075,
22,
47,
80,
0.33684210526315794,
0,
"None",
"n1719",
16898317
],
[
1746534534,
1746534565,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 195 0.006906511122267694 8 67 23",
195,
0.006906511122267694,
8,
67,
23,
0.24736842105263157,
0,
"None",
"n1719",
16898321
],
[
1746534564,
1746534589,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 99 0.007432481561973692 18 99 43",
99,
0.007432481561973692,
18,
99,
43,
0.30000000000000004,
0,
"None",
"n1719",
16898327
],
[
1746534564,
1746534589,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 189 0.0037920127770863475 32 28 78",
189,
0.0037920127770863475,
32,
28,
78,
0.3315789473684211,
0,
"None",
"n1719",
16898323
],
[
1746535978,
1746536045,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 121 0.009818272291073205 10 86 12",
121,
0.009818272291073205,
10,
86,
12,
0.28421052631578947,
0,
"None",
"n1695",
16899099
],
[
1746536000,
1746536049,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 142 0.007137340016123907 7 10 42",
142,
0.007137340016123907,
7,
10,
42,
0.26315789473684215,
0,
"None",
"n1695",
16899101
],
[
1746535953,
1746536105,
152,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 133 0.008577504456510274 9 21 14",
133,
0.008577504456510274,
9,
21,
14,
0.3631578947368421,
0,
"None",
"n1718",
16899096
],
[
1746536040,
1746536114,
74,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 125 0.009744594475476721 9 32 18",
125,
0.009744594475476721,
9,
32,
18,
0.21052631578947367,
0,
"None",
"n1693",
16899104
],
[
1746536089,
1746536138,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 166 0.006950327656025008 4 14 84",
166,
0.006950327656025008,
4,
14,
84,
0.3631578947368421,
0,
"None",
"n1695",
16899106
],
[
1746536121,
1746536145,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 139 0.008798112083856105 7 11 69",
139,
0.008798112083856105,
7,
11,
69,
0.22631578947368425,
0,
"None",
"n1695",
16899109
],
[
1746536181,
1746536206,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 120 0.01 10 100 83",
120,
0.01,
10,
100,
83,
0.3421052631578947,
0,
"None",
"n1695",
16899112
],
[
1746536213,
1746536237,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 48 0.01 12 75 12",
48,
0.01,
12,
75,
12,
0.3631578947368421,
0,
"None",
"n1695",
16899115
],
[
1746536245,
1746536264,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 79 0.00925826775024842 9 91 22",
79,
0.00925826775024842,
9,
91,
22,
0.3631578947368421,
0,
"None",
"n1695",
16899118
],
[
1746536272,
1746536297,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.005556302825780697 9 12 88",
196,
0.005556302825780697,
9,
12,
88,
0.22631578947368425,
0,
"None",
"n1695",
16899120
],
[
1746536302,
1746536321,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 103 0.01 10 10 40",
103,
0.01,
10,
10,
40,
0.2315789473684211,
0,
"None",
"n1695",
16899122
],
[
1746536333,
1746536358,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 160 0.008001981087390761 6 13 35",
160,
0.008001981087390761,
6,
13,
35,
0.28421052631578947,
0,
"None",
"n1695",
16899124
],
[
1746536364,
1746536389,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 125 0.008515341535115644 8 56 12",
125,
0.008515341535115644,
8,
56,
12,
0.3631578947368421,
0,
"None",
"n1693",
16899126
],
[
1746536400,
1746536418,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 116 0.01 10 50 56",
116,
0.01,
10,
50,
56,
0.25263157894736843,
0,
"None",
"n1695",
16899129
],
[
1746536395,
1746536419,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 116 0.009648653744496277 9 65 29",
116,
0.009648653744496277,
9,
65,
29,
0.25263157894736843,
0,
"None",
"n1695",
16899127
],
[
1746536425,
1746536443,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 114 0.009279508125766304 9 97 36",
114,
0.009279508125766304,
9,
97,
36,
0.28421052631578947,
0,
"None",
"n1695",
16899131
],
[
1746536456,
1746536486,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 187 0.00519354003753549 6 15 12",
187,
0.00519354003753549,
6,
15,
12,
0.2210526315789474,
0,
"None",
"n1695",
16899140
],
[
1746536487,
1746536505,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 116 0.008813640999560576 9 50 15",
116,
0.008813640999560576,
9,
50,
15,
0.2315789473684211,
0,
"None",
"n1695",
16899142
],
[
1746536518,
1746536537,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 68 0.01 12 32 20",
68,
0.01,
12,
32,
20,
0.30000000000000004,
0,
"None",
"n1695",
16899143
],
[
1746536548,
1746536566,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 112 0.00900806600324778 10 10 12",
112,
0.00900806600324778,
10,
10,
12,
0.2210526315789474,
0,
"None",
"n1693",
16899145
],
[
1746536578,
1746536603,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 99 0.01 8 95 34",
99,
0.01,
8,
95,
34,
0.3631578947368421,
0,
"None",
"n1693",
16899146
],
[
1746536609,
1746536640,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 175 0.008982729676910994 6 37 13",
175,
0.008982729676910994,
6,
37,
13,
0.3631578947368421,
0,
"None",
"n1693",
16899147
],
[
1746536621,
1746536688,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 96 0.01 10 63 12",
96,
0.01,
10,
63,
12,
0.3631578947368421,
0,
"None",
"n1672",
16899149
],
[
1746536670,
1746536695,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 138 0.009313386529547548 8 54 49",
138,
0.009313386529547548,
8,
54,
49,
0.3157894736842105,
0,
"None",
"n1693",
16899156
],
[
1746536700,
1746536725,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 166 0.009214396673853867 9 12 12",
166,
0.009214396673853867,
9,
12,
12,
0.1947368421052632,
0,
"None",
"n1693",
16899159
],
[
1746536658,
1746536738,
80,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 26 0.01 15 90 20",
26,
0.01,
15,
90,
20,
0.3157894736842105,
0,
"None",
"n1663",
16899153
],
[
1746536731,
1746536756,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 163 0.00954655230160426 9 76 94",
163,
0.00954655230160426,
9,
76,
94,
0.2210526315789474,
0,
"None",
"n1693",
16899161
],
[
1746536793,
1746536811,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 74 0.009640987831256973 10 25 47",
74,
0.009640987831256973,
10,
25,
47,
0.21578947368421053,
0,
"None",
"n1693",
16899167
],
[
1746536769,
1746536837,
68,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 147 0.006954417456552954 4 14 21",
147,
0.006954417456552954,
4,
14,
21,
0.368421052631579,
0,
"None",
"n1672",
16899164
],
[
1746536822,
1746536841,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 126 0.009737317249339197 9 59 35",
126,
0.009737317249339197,
9,
59,
35,
0.22631578947368425,
0,
"None",
"n1693",
16899168
],
[
1746536824,
1746536861,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 134 0.01 11 77 22",
134,
0.01,
11,
77,
22,
0.2789473684210526,
0,
"None",
"n1663",
16899169
],
[
1746536854,
1746536879,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 136 0.009714152980487143 7 94 38",
136,
0.009714152980487143,
7,
94,
38,
0.3631578947368421,
0,
"None",
"n1693",
16899173
],
[
1746536915,
1746536934,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 93 0.008907503300410438 10 95 11",
93,
0.008907503300410438,
10,
95,
11,
0.3631578947368421,
0,
"None",
"n1693",
16899178
],
[
1746536893,
1746536955,
62,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 130 0.005989085553031036 7 17 10",
130,
0.005989085553031036,
7,
17,
10,
0.25263157894736843,
0,
"None",
"n1672",
16899176
],
[
1746536945,
1746536970,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 155 0.009489672677845194 8 90 68",
155,
0.009489672677845194,
8,
90,
68,
0.2421052631578947,
0,
"None",
"n1693",
16899179
],
[
1746536977,
1746537001,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 133 0.007919025068734422 5 31 10",
133,
0.007919025068734422,
5,
31,
10,
0.3631578947368421,
0,
"None",
"n1693",
16899183
],
[
1746537007,
1746537026,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 170 0.007093616379362982 9 11 11",
170,
0.007093616379362982,
9,
11,
11,
0.26315789473684215,
0,
"None",
"n1693",
16899184
],
[
1746537039,
1746537063,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 145 0.01 8 13 26",
145,
0.01,
8,
13,
26,
0.35789473684210527,
0,
"None",
"n1693",
16899185
],
[
1746537131,
1746537155,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 158 0.01 9 54 16",
158,
0.01,
9,
54,
16,
0.3631578947368421,
0,
"None",
"n1693",
16899189
],
[
1746537222,
1746537246,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 165 0.01 10 21 61",
165,
0.01,
10,
21,
61,
0.19999999999999996,
0,
"None",
"n1695",
16899191
],
[
1746537251,
1746537276,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 125 0.008824063502547264 5 34 14",
125,
0.008824063502547264,
5,
34,
14,
0.3631578947368421,
0,
"None",
"n1695",
16899195
],
[
1746537121,
1746537285,
164,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.008744131195503633 6 11 96",
198,
0.008744131195503633,
6,
11,
96,
0.3631578947368421,
0,
"None",
"n1709",
16899187
],
[
1746537283,
1746537295,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 17 0.01 14 27 23",
17,
0.01,
14,
27,
23,
0.4157894736842105,
0,
"None",
"n1695",
16899196
],
[
1746537214,
1746537330,
116,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 165 0.009780347900098872 10 31 94",
165,
0.009780347900098872,
10,
31,
94,
0.3631578947368421,
0,
"None",
"n1704",
16899190
],
[
1746537317,
1746537378,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 76 0.01 6 90 84",
76,
0.01,
6,
90,
84,
0.35789473684210527,
0,
"None",
"n1709",
16899197
],
[
1746537380,
1746537398,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 90 0.01 11 43 37",
90,
0.01,
11,
43,
37,
0.2421052631578947,
0,
"None",
"n1695",
16899215
],
[
1746537374,
1746537399,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 136 0.009872329444681192 9 35 80",
136,
0.009872329444681192,
9,
35,
80,
0.23684210526315785,
0,
"None",
"n1695",
16899218
],
[
1746537347,
1746537420,
73,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 180 0.0019437732732098352 4 15 80",
180,
0.0019437732732098352,
4,
15,
80,
0.19999999999999996,
0,
"None",
"n1704",
16899213
],
[
1746537412,
1746537497,
85,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 100 0.01 9 63 82",
100,
0.01,
9,
63,
82,
0.34736842105263155,
0,
"None",
"n1709",
16899219
],
[
1746537470,
1746537519,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 147 0.008498460640559985 4 10 55",
147,
0.008498460640559985,
4,
10,
55,
0.3526315789473684,
0,
"None",
"n1719",
16899223
],
[
1746539223,
1746539315,
92,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 128 0.007328165143666879 11 10 48",
128,
0.007328165143666879,
11,
10,
48,
0.35789473684210527,
0,
"None",
"n1720",
16899329
],
[
1746539278,
1746539345,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 173 0.007354887547036353 12 13 42",
173,
0.007354887547036353,
12,
13,
42,
0.2894736842105263,
0,
"None",
"n1718",
16899332
],
[
1746539259,
1746539351,
92,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.0035800589436201387 7 34 66",
199,
0.0035800589436201387,
7,
34,
66,
0.3052631578947368,
0,
"None",
"n1718",
16899330
],
[
1746539310,
1746539371,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.0006805500228581438 5 10 63",
196,
0.0006805500228581438,
5,
10,
63,
0.2894736842105263,
0,
"None",
"n1718",
16899334
],
[
1746539373,
1746539435,
62,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 190 0.005528909705012397 9 70 71",
190,
0.005528909705012397,
9,
70,
71,
0.26315789473684215,
0,
"None",
"n1720",
16899386
],
[
1746539415,
1746539525,
110,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 189 0.003570749819384346 9 13 52",
189,
0.003570749819384346,
9,
13,
52,
0.3052631578947368,
0,
"None",
"n1713",
16899387
],
[
1746539465,
1746539533,
68,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.003750095933055425 5 82 77",
196,
0.003750095933055425,
5,
82,
77,
0.2315789473684211,
0,
"None",
"n1720",
16899391
],
[
1746539497,
1746539637,
140,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 141 0.0085696525555267 13 14 54",
141,
0.0085696525555267,
13,
14,
54,
0.2210526315789474,
0,
"None",
"n1709",
16899399
],
[
1746539554,
1746539653,
99,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.0038520117148937425 9 10 44",
198,
0.0038520117148937425,
9,
10,
44,
0.23684210526315785,
0,
"None",
"n1720",
16899401
],
[
1746539613,
1746539686,
73,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 65 0.00706361744514923 10 13 69",
65,
0.00706361744514923,
10,
13,
69,
0.32105263157894737,
0,
"None",
"n1713",
16899404
],
[
1746539706,
1746539805,
99,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0013008159004080566 4 42 35",
200,
0.0013008159004080566,
4,
42,
35,
0.33684210526315794,
0,
"None",
"n1720",
16899429
],
[
1746539765,
1746539851,
86,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 186 0.006164225392213051 6 85 95",
186,
0.006164225392213051,
6,
85,
95,
0.2421052631578947,
0,
"None",
"n1713",
16899431
],
[
1746539648,
1746539856,
208,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005628487729766808 7 95 95",
200,
0.005628487729766808,
7,
95,
95,
0.30000000000000004,
0,
"None",
"n1709",
16899425
],
[
1746539827,
1746539895,
68,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.006288258460588526 9 92 71",
198,
0.006288258460588526,
9,
92,
71,
0.3052631578947368,
0,
"None",
"n1720",
16899441
],
[
1746539887,
1746539948,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.0009050373628743542 5 43 68",
199,
0.0009050373628743542,
5,
43,
68,
0.37368421052631584,
0,
"None",
"n1718",
16899446
],
[
1746539949,
1746540035,
86,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 165 0.008388896327259952 13 39 60",
165,
0.008388896327259952,
13,
39,
60,
0.2789473684210526,
0,
"None",
"n1720",
16899448
],
[
1746540007,
1746540067,
60,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 167 0.01 30 14 29",
167,
0.01,
30,
14,
29,
0.2947368421052632,
0,
"None",
"n1718",
16899450
],
[
1746540036,
1746540085,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 138 0.003544362072843389 9 10 92",
138,
0.003544362072843389,
9,
10,
92,
0.3526315789473684,
0,
"None",
"n1718",
16899469
],
[
1746540107,
1746540217,
110,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 191 0.007007867855856318 13 19 64",
191,
0.007007867855856318,
13,
19,
64,
0.27368421052631575,
0,
"None",
"n1720",
16899470
],
[
1746540160,
1746540227,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 138 0.01 27 78 18",
138,
0.01,
27,
78,
18,
0.3631578947368421,
0,
"None",
"n1718",
16899473
],
[
1746540190,
1746540239,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 121 0.005714763782904381 10 10 68",
121,
0.005714763782904381,
10,
10,
68,
0.33684210526315794,
0,
"None",
"n1718",
16899475
],
[
1746540253,
1746540370,
117,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 144 0.006895473797321892 12 11 33",
144,
0.006895473797321892,
12,
11,
33,
0.24736842105263157,
0,
"None",
"n1720",
16899479
],
[
1746540313,
1746540405,
92,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 164 0.01 27 43 24",
164,
0.01,
27,
43,
24,
0.2947368421052632,
0,
"None",
"n1718",
16899483
],
[
1746540408,
1746540513,
105,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 194 0.003040045886165568 6 64 37",
194,
0.003040045886165568,
6,
64,
37,
0.31052631578947365,
0,
"None",
"n1720",
16899484
],
[
1746540465,
1746540538,
73,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 195 0.01 27 76 34",
195,
0.01,
27,
76,
34,
0.2315789473684211,
0,
"None",
"n1718",
16899486
],
[
1746540659,
1746540837,
178,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 191 0.0001 5 14 77",
191,
0.0001,
5,
14,
77,
0.3263157894736842,
0,
"None",
"n1719",
16899523
],
[
1746540537,
1746540911,
374,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 190 0.0021203168045013 9 12 96",
190,
0.0021203168045013,
9,
12,
96,
0.31052631578947365,
0,
"None",
"n1720",
16899496
],
[
1746540756,
1746541091,
335,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 180 0.005267571433207469 9 40 53",
180,
0.005267571433207469,
9,
40,
53,
0.27368421052631575,
0,
"None",
"n1718",
16899531
],
[
1746541002,
1746541137,
135,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 190 0.007947880364360022 12 36 44",
190,
0.007947880364360022,
12,
36,
44,
0.23684210526315785,
0,
"None",
"n1719",
16899553
],
[
1746540850,
1746541156,
306,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 115 0.007758164796308052 12 10 46",
115,
0.007758164796308052,
12,
10,
46,
0.3157894736842105,
0,
"None",
"n1718",
16899540
],
[
1746540938,
1746541239,
301,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 170 0.0037628729884976743 9 27 77",
170,
0.0037628729884976743,
9,
27,
77,
0.3421052631578947,
0,
"None",
"n1720",
16899547
],
[
1746541180,
1746541413,
233,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.0038960300354105516 6 36 65",
198,
0.0038960300354105516,
6,
36,
65,
0.22631578947368425,
0,
"None",
"n1719",
16899556
],
[
1746541090,
1746541565,
475,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 192 0.004951282663584588 9 42 65",
192,
0.004951282663584588,
9,
42,
65,
0.32105263157894737,
0,
"None",
"n1718",
16899555
],
[
1746541285,
1746541623,
338,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 149 0.007881764468139452 13 55 36",
149,
0.007881764468139452,
13,
55,
36,
0.2315789473684211,
0,
"None",
"n1720",
16899558
],
[
1746542115,
1746542244,
129,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.003806215445926704 6 89 50",
196,
0.003806215445926704,
6,
89,
50,
0.2578947368421053,
0,
"None",
"n1719",
16899573
],
[
1746542310,
1746542422,
112,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 144 0.01 31 72 15",
144,
0.01,
31,
72,
15,
0.3631578947368421,
0,
"None",
"n1719",
16899628
],
[
1746542167,
1746542527,
360,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 191 0.007128999541857152 12 18 24",
191,
0.007128999541857152,
12,
18,
24,
0.2421052631578947,
0,
"None",
"n1718",
16899586
],
[
1746542167,
1746542527,
360,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 182 0.008026985369642109 12 46 33",
182,
0.008026985369642109,
12,
46,
33,
0.3052631578947368,
0,
"None",
"n1718",
16899604
],
[
1746542159,
1746542527,
368,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 168 0.009222464332006793 28 25 75",
168,
0.009222464332006793,
28,
25,
75,
0.3263157894736842,
0,
"None",
"n1718",
16899565
],
[
1746542176,
1746542531,
355,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 182 0.004323422961681195 6 85 70",
182,
0.004323422961681195,
6,
85,
70,
0.27368421052631575,
0,
"None",
"n1718",
16899612
],
[
1746542167,
1746542533,
366,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 194 0.0033061355774116224 6 78 59",
194,
0.0033061355774116224,
6,
78,
59,
0.2578947368421053,
0,
"None",
"n1718",
16899609
],
[
1746542168,
1746542589,
421,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 191 0.007021442597610894 9 58 71",
191,
0.007021442597610894,
9,
58,
71,
0.2421052631578947,
0,
"None",
"n1720",
16899580
],
[
1746542235,
1746542612,
377,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 141 0.007719074453487567 13 19 62",
141,
0.007719074453487567,
13,
19,
62,
0.27368421052631575,
0,
"None",
"n1718",
16899619
],
[
1746542470,
1746542635,
165,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 188 0.0012818278168676355 9 27 85",
188,
0.0012818278168676355,
9,
27,
85,
0.30000000000000004,
0,
"None",
"n1719",
16899651
],
[
1746542390,
1746542827,
437,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 193 0.0008573459036007534 9 20 82",
193,
0.0008573459036007534,
9,
20,
82,
0.3421052631578947,
0,
"None",
"n1718",
16899642
],
[
1746542543,
1746543024,
481,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 178 0.005897926953008805 11 57 57",
178,
0.005897926953008805,
11,
57,
57,
0.2894736842105263,
0,
"None",
"n1718",
16899762
],
[
1746542844,
1746543045,
201,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 106 0.01 30 17 21",
106,
0.01,
30,
17,
21,
0.27368421052631575,
0,
"None",
"n1719",
16899824
],
[
1746542680,
1746543152,
472,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 158 0.0053381815387486976 10 10 64",
158,
0.0053381815387486976,
10,
10,
64,
0.25263157894736843,
0,
"None",
"n1718",
16899810
],
[
1746542772,
1746543164,
392,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.0037311413182600215 8 29 95",
197,
0.0037311413182600215,
8,
29,
95,
0.2789473684210526,
0,
"None",
"n1718",
16899814
],
[
1746542948,
1746543510,
562,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 136 0.009874131838474345 26 69 39",
136,
0.009874131838474345,
26,
69,
39,
0.3631578947368421,
0,
"None",
"n1718",
16899830
],
[
1746547167,
1746547216,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 15 10 100",
200,
0.01,
15,
10,
100,
0.1947368421052632,
0,
"None",
"n1718",
16910360
],
[
1746547231,
1746547292,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 15 13 34",
200,
0.01,
15,
13,
34,
0.21052631578947367,
0,
"None",
"n1718",
16910363
],
[
1746547261,
1746547304,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 138 0.01 15 12 95",
138,
0.01,
15,
12,
95,
0.3052631578947368,
0,
"None",
"n1718",
16910566
],
[
1746547325,
1746547386,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 192 0.01 16 100 100",
192,
0.01,
16,
100,
100,
0.2315789473684211,
0,
"None",
"n1718",
16910567
],
[
1746547388,
1746547431,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.007730263524140228 13 96 25",
196,
0.007730263524140228,
13,
96,
25,
0.30000000000000004,
0,
"None",
"n1718",
16910569
],
[
1746547451,
1746547499,
48,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0001 32 10 10",
200,
0.0001,
32,
10,
10,
0.4631578947368421,
0,
"None",
"n1718",
16910572
],
[
1746547482,
1746547518,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0001 32 100 10",
200,
0.0001,
32,
100,
10,
0.3789473684210526,
0,
"None",
"n1718",
16910574
],
[
1746547546,
1746547583,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 177 0.0013135455033262706 32 52 23",
177,
0.0013135455033262706,
32,
52,
23,
0.3157894736842105,
0,
"None",
"n1718",
16910575
],
[
1746547610,
1746547659,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.008014373080690435 12 20 93",
198,
0.008014373080690435,
12,
20,
93,
0.2421052631578947,
0,
"None",
"n1718",
16910577
],
[
1746547640,
1746547670,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 191 0.0016085384676854944 31 96 68",
191,
0.0016085384676854944,
31,
96,
68,
0.3052631578947368,
0,
"None",
"n1718",
16910680
],
[
1746547671,
1746547701,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.01 20 20 78",
199,
0.01,
20,
20,
78,
0.31052631578947365,
0,
"None",
"n1718",
16910681
],
[
1746547766,
1746547803,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 42 0.0001 32 59 46",
42,
0.0001,
32,
59,
46,
0.3894736842105263,
0,
"None",
"n1704",
16910689
],
[
1746547747,
1746547814,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 171 0.01 13 16 100",
171,
0.01,
13,
16,
100,
0.2789473684210526,
0,
"None",
"n1708",
16910683
],
[
1746547831,
1746547916,
85,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.004294366743974311 30 90 20",
198,
0.004294366743974311,
30,
90,
20,
0.31052631578947365,
0,
"None",
"n1704",
16910695
],
[
1746547896,
1746547969,
73,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 159 0.006007570117257619 28 31 81",
159,
0.006007570117257619,
28,
31,
81,
0.35789473684210527,
0,
"None",
"n1704",
16910704
],
[
1746547958,
1746548026,
68,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 193 0.01 32 10 97",
193,
0.01,
32,
10,
97,
0.3631578947368421,
0,
"None",
"n1704",
16910710
],
[
1746548053,
1746548132,
79,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 180 0.0015436283836473379 31 48 12",
180,
0.0015436283836473379,
31,
48,
12,
0.3263157894736842,
0,
"None",
"n1704",
16910712
],
[
1746548149,
1746548216,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 112 0.0001 32 77 26",
112,
0.0001,
32,
77,
26,
0.4052631578947369,
0,
"None",
"n1704",
16910714
],
[
1746548212,
1746548255,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.00890340807086038 16 53 70",
199,
0.00890340807086038,
16,
53,
70,
0.28421052631578947,
0,
"None",
"n1704",
16910716
],
[
1746548307,
1746548374,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 98 0.0001 32 88 10",
98,
0.0001,
32,
88,
10,
0.3631578947368421,
0,
"None",
"n1704",
16910718
],
[
1746548401,
1746548450,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 61 0.0026756727181576553 32 91 11",
61,
0.0026756727181576553,
32,
91,
11,
0.39473684210526316,
0,
"None",
"n1704",
16910720
],
[
1746548766,
1746548851,
85,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 194 0.0031122443973679967 31 48 62",
194,
0.0031122443973679967,
31,
48,
62,
0.4789473684210527,
0,
"None",
"n1704",
16910726
],
[
1746548536,
1746549017,
481,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 194 0.009483950817449809 14 49 85",
194,
0.009483950817449809,
14,
49,
85,
0.20526315789473681,
0,
"None",
"n1701",
16910723
],
[
1746549467,
1746549595,
128,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 144 0.0022417435970178284 31 25 25",
144,
0.0022417435970178284,
31,
25,
25,
0.3263157894736842,
0,
"None",
"n1704",
16910734
],
[
1746549726,
1746549835,
109,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 192 0.00819880515004494 18 14 13",
192,
0.00819880515004494,
18,
14,
13,
0.3526315789473684,
0,
"None",
"n1704",
16910739
],
[
1746550010,
1746550071,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 172 0.0011475437179547336 31 74 14",
172,
0.0011475437179547336,
31,
74,
14,
0.3631578947368421,
0,
"None",
"n1704",
16910875
],
[
1746550011,
1746550072,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 180 0.005813898878096229 28 14 92",
180,
0.005813898878096229,
28,
14,
92,
0.3894736842105263,
0,
"None",
"n1704",
16910885
],
[
1746550007,
1746550074,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 122 0.002513119276252128 28 23 35",
122,
0.002513119276252128,
28,
23,
35,
0.3315789473684211,
0,
"None",
"n1704",
16910741
],
[
1746550008,
1746550075,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 132 0.0006291394447839428 30 33 20",
132,
0.0006291394447839428,
30,
33,
20,
0.2947368421052632,
0,
"None",
"n1704",
16910747
],
[
1746550009,
1746550077,
68,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 184 0.0022418826067417768 30 56 34",
184,
0.0022418826067417768,
30,
56,
34,
0.35789473684210527,
0,
"None",
"n1704",
16910859
],
[
1746550009,
1746550077,
68,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 136 0.0023201957765181945 27 13 26",
136,
0.0023201957765181945,
27,
13,
26,
0.2789473684210526,
0,
"None",
"n1704",
16910867
],
[
1746550012,
1746550079,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 95 0.005906303250325943 7 13 99",
95,
0.005906303250325943,
7,
13,
99,
0.20526315789473681,
0,
"None",
"n1704",
16910890
],
[
1746550015,
1746550119,
104,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 195 0.01 13 87 80",
195,
0.01,
13,
87,
80,
0.2947368421052632,
0,
"None",
"n1703",
16910751
],
[
1746550015,
1746550119,
104,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 192 0.008371381953704056 15 11 25",
192,
0.008371381953704056,
15,
11,
25,
0.35789473684210527,
0,
"None",
"n1703",
16910756
],
[
1746550113,
1746550180,
67,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 195 0.007648087627267045 14 92 92",
195,
0.007648087627267045,
14,
92,
92,
0.25263157894736843,
0,
"None",
"n1704",
16910999
],
[
1746550208,
1746550269,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 173 0.00523845495639525 29 14 70",
173,
0.00523845495639525,
29,
14,
70,
0.27368421052631575,
0,
"None",
"n1704",
16911002
],
[
1746550072,
1746550299,
227,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.00810365210272251 12 14 24",
199,
0.00810365210272251,
12,
14,
24,
0.21578947368421053,
0,
"None",
"n1696",
16910995
],
[
1746550273,
1746550347,
74,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 159 0.001032169478795734 32 25 14",
159,
0.001032169478795734,
32,
25,
14,
0.2684210526315789,
0,
"None",
"n1704",
16911004
],
[
1746550367,
1746550416,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 172 0.0023772666849346145 30 55 16",
172,
0.0023772666849346145,
30,
55,
16,
0.3421052631578947,
0,
"None",
"n1703",
16911007
],
[
1746550464,
1746550525,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 191 0.007451484272620453 32 60 24",
191,
0.007451484272620453,
32,
60,
24,
0.3052631578947368,
0,
"None",
"n1704",
16911008
],
[
1746550527,
1746550576,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 120 0.0008150323024199932 32 42 25",
120,
0.0008150323024199932,
32,
42,
25,
0.368421052631579,
0,
"None",
"n1703",
16911011
],
[
1746550590,
1746550645,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007960593673277542 28 20 74",
200,
0.007960593673277542,
28,
20,
74,
0.21578947368421053,
0,
"None",
"n1703",
16911013
],
[
1746550684,
1746550745,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 182 0.006262168295360941 31 51 58",
182,
0.006262168295360941,
31,
51,
58,
0.3157894736842105,
0,
"None",
"n1703",
16911014
],
[
1746550747,
1746550790,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 185 0.001676929286724987 30 27 12",
185,
0.001676929286724987,
30,
27,
12,
0.34736842105263155,
0,
"None",
"n1703",
16911016
],
[
1746550843,
1746550898,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.004849079563059101 10 48 11",
200,
0.004849079563059101,
10,
48,
11,
0.3157894736842105,
0,
"None",
"n1703",
16911019
],
[
1746550940,
1746550995,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 149 0.005553668164979487 25 39 81",
149,
0.005553668164979487,
25,
39,
81,
0.24736842105263157,
0,
"None",
"n1703",
16911022
],
[
1746551001,
1746551032,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 158 0.0006996163967714181 25 96 79",
158,
0.0006996163967714181,
25,
96,
79,
0.3526315789473684,
0,
"None",
"n1703",
16911025
],
[
1746551063,
1746551106,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.007649381166543605 19 28 79",
198,
0.007649381166543605,
19,
28,
79,
0.2315789473684211,
0,
"None",
"n1703",
16911027
],
[
1746551127,
1746551170,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.0013485576318083955 30 59 13",
196,
0.0013485576318083955,
30,
59,
13,
0.30000000000000004,
0,
"None",
"n1703",
16911029
],
[
1746551191,
1746551228,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 186 0.007058599013385699 30 81 90",
186,
0.007058599013385699,
30,
81,
90,
0.34736842105263155,
0,
"None",
"n1703",
16911033
],
[
1746554485,
1746554510,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 78 0.01 4 10 100",
78,
0.01,
4,
10,
100,
0.368421052631579,
0,
"None",
"n1704",
16911123
],
[
1746554547,
1746554559,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 92 0.01 13 10 100",
92,
0.01,
13,
10,
100,
0.30000000000000004,
0,
"None",
"n1704",
16911125
],
[
1746554578,
1746554608,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.01 4 100 100",
196,
0.01,
4,
100,
100,
0.25263157894736843,
0,
"None",
"n1704",
16911126
],
[
1746554640,
1746554658,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 74 0.01 4 12 42",
74,
0.01,
4,
12,
42,
0.3631578947368421,
0,
"None",
"n1704",
16911128
],
[
1746554670,
1746554688,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 67 0.00799608040204725 4 10 81",
67,
0.00799608040204725,
4,
10,
81,
0.3631578947368421,
0,
"None",
"n1704",
16911129
],
[
1746554702,
1746554726,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 169 0.006708814873979876 4 100 100",
169,
0.006708814873979876,
4,
100,
100,
0.18947368421052635,
0,
"None",
"n1704",
16911131
],
[
1746554764,
1746554789,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 164 0.0021694135653958237 4 100 100",
164,
0.0021694135653958237,
4,
100,
100,
0.3052631578947368,
0,
"None",
"n1704",
16911132
],
[
1746554795,
1746554813,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 11 50 100",
200,
0.01,
11,
50,
100,
0.2578947368421053,
0,
"None",
"n1704",
16911134
],
[
1746554826,
1746554844,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 90 0.01 4 10 70",
90,
0.01,
4,
10,
70,
0.3631578947368421,
0,
"None",
"n1704",
16911139
],
[
1746554857,
1746554875,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 79 0.01 4 10 10",
79,
0.01,
4,
10,
10,
0.3631578947368421,
0,
"None",
"n1704",
16911141
],
[
1746554920,
1746554945,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.009749012337050042 4 59 22",
200,
0.009749012337050042,
4,
59,
22,
0.3631578947368421,
0,
"None",
"n1704",
16911146
],
[
1746554951,
1746554963,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 82 0.01 13 10 59",
82,
0.01,
13,
10,
59,
0.35789473684210527,
0,
"None",
"n1704",
16911148
],
[
1746554982,
1746554995,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 83 0.01 8 10 25",
83,
0.01,
8,
10,
25,
0.3631578947368421,
0,
"None",
"n1704",
16911149
],
[
1746555014,
1746555038,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 4 55 95",
200,
0.01,
4,
55,
95,
0.2421052631578947,
0,
"None",
"n1704",
16911156
],
[
1746555076,
1746555094,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 72 0.009472401634708067 5 16 81",
72,
0.009472401634708067,
5,
16,
81,
0.33684210526315794,
0,
"None",
"n1704",
16911159
],
[
1746555107,
1746555125,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 78 0.007481519651620194 4 11 12",
78,
0.007481519651620194,
4,
11,
12,
0.35789473684210527,
0,
"None",
"n1704",
16911169
],
[
1746555139,
1746555158,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 93 0.01 15 14 57",
93,
0.01,
15,
14,
57,
0.22631578947368425,
0,
"None",
"n1704",
16911173
],
[
1746555202,
1746555221,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 64 0.01 4 11 51",
64,
0.01,
4,
11,
51,
0.3631578947368421,
0,
"None",
"n1704",
16911176
],
[
1746555232,
1746555245,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 96 0.009694800616111379 16 19 87",
96,
0.009694800616111379,
16,
19,
87,
0.24736842105263157,
0,
"None",
"n1704",
16911178
],
[
1746555295,
1746555307,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 10 0.01 4 100 69",
10,
0.01,
4,
100,
69,
0.33684210526315794,
0,
"None",
"n1704",
16911180
],
[
1746555325,
1746555344,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 54 0.01 4 14 100",
54,
0.01,
4,
14,
100,
0.3631578947368421,
0,
"None",
"n1704",
16911182
],
[
1746555389,
1746555407,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 46 0.009440972924177704 4 24 80",
46,
0.009440972924177704,
4,
24,
80,
0.23684210526315785,
0,
"None",
"n1704",
16911184
],
[
1746555419,
1746555438,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 175 0.01 15 95 95",
175,
0.01,
15,
95,
95,
0.32105263157894737,
0,
"None",
"n1704",
16911186
],
[
1746555484,
1746555496,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 17 0.01 6 95 54",
17,
0.01,
6,
95,
54,
0.3315789473684211,
0,
"None",
"n1704",
16911187
],
[
1746555513,
1746555525,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 94 0.009343742192117206 10 19 95",
94,
0.009343742192117206,
10,
19,
95,
0.34736842105263155,
0,
"None",
"n1704",
16911189
],
[
1746555577,
1746555589,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 70 0.008955403214434799 18 14 64",
70,
0.008955403214434799,
18,
14,
64,
0.34736842105263155,
0,
"None",
"n1704",
16911191
],
[
1746555608,
1746555627,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 164 0.007264409825752541 13 94 98",
164,
0.007264409825752541,
13,
94,
98,
0.2789473684210526,
0,
"None",
"n1704",
16911193
],
[
1746555671,
1746555689,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 28 0.01 24 98 27",
28,
0.01,
24,
98,
27,
0.35789473684210527,
0,
"None",
"n1704",
16911195
],
[
1746555702,
1746555726,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 178 0.01 7 98 57",
178,
0.01,
7,
98,
57,
0.2315789473684211,
0,
"None",
"n1704",
16911198
],
[
1746555815,
1746555840,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 69 0.01 17 15 79",
69,
0.01,
17,
15,
79,
0.22631578947368425,
0,
"None",
"n1704",
16911200
],
[
1746555897,
1746555934,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 140 0.005010466861507651 6 92 87",
140,
0.005010466861507651,
6,
92,
87,
0.26315789473684215,
0,
"None",
"n1704",
16911203
],
[
1746556159,
1746556191,
32,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 17 0.007055760108174731 4 95 62",
17,
0.007055760108174731,
4,
95,
62,
0.3421052631578947,
0,
"None",
"n1704",
16911208
],
[
1746556159,
1746556191,
32,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 41 0.01 4 41 32",
41,
0.01,
4,
41,
32,
0.3631578947368421,
0,
"None",
"n1704",
16911205
],
[
1746556501,
1746556532,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 99 0.009194321504287672 12 20 83",
99,
0.009194321504287672,
12,
20,
83,
0.28421052631578947,
0,
"None",
"n1704",
16911213
],
[
1746556546,
1746556570,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 86 0.01 22 19 91",
86,
0.01,
22,
19,
91,
0.3052631578947368,
0,
"None",
"n1704",
16911234
],
[
1746556544,
1746556574,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 52 0.0056851926552788454 5 98 85",
52,
0.0056851926552788454,
5,
98,
85,
0.3631578947368421,
0,
"None",
"n1704",
16911218
],
[
1746556544,
1746556574,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 11 100 64",
200,
0.01,
11,
100,
64,
0.2210526315789474,
0,
"None",
"n1704",
16911219
],
[
1746556544,
1746556574,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 67 0.003364656865678124 6 93 79",
67,
0.003364656865678124,
6,
93,
79,
0.28421052631578947,
0,
"None",
"n1704",
16911216
],
[
1746556544,
1746556575,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 12 0.01 4 49 73",
12,
0.01,
4,
49,
73,
0.3052631578947368,
0,
"None",
"n1704",
16911222
],
[
1746556544,
1746556575,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 121 0.01 14 16 100",
121,
0.01,
14,
16,
100,
0.2421052631578947,
0,
"None",
"n1704",
16911226
],
[
1746556545,
1746556575,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 100 0.01 23 26 83",
100,
0.01,
23,
26,
83,
0.3052631578947368,
0,
"None",
"n1704",
16911229
],
[
1746556546,
1746556577,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 51 0.01 5 20 64",
51,
0.01,
5,
20,
64,
0.33684210526315794,
0,
"None",
"n1704",
16911238
],
[
1746556547,
1746556578,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 9 34 32",
200,
0.01,
9,
34,
32,
0.2421052631578947,
0,
"None",
"n1704",
16911241
],
[
1746556546,
1746556582,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.007731675252046769 6 45 94",
198,
0.007731675252046769,
6,
45,
94,
0.21578947368421053,
0,
"None",
"n1704",
16911232
],
[
1746556579,
1746556604,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 71 0.0092803445219943 10 14 89",
71,
0.0092803445219943,
10,
14,
89,
0.3315789473684211,
0,
"None",
"n1704",
16911243
],
[
1746556640,
1746556653,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 27 0.01 4 51 90",
27,
0.01,
4,
51,
90,
0.3631578947368421,
0,
"None",
"n1704",
16911246
],
[
1746556672,
1746556697,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 87 0.006955764471627999 5 25 35",
87,
0.006955764471627999,
5,
25,
35,
0.2315789473684211,
0,
"None",
"n1704",
16911248
],
[
1746556737,
1746556761,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 79 0.009402314477485484 20 13 84",
79,
0.009402314477485484,
20,
13,
84,
0.35789473684210527,
0,
"None",
"n1704",
16911251
],
[
1746556798,
1746556811,
13,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 19 0.0081742875071797 9 96 94",
19,
0.0081742875071797,
9,
96,
94,
0.23684210526315785,
0,
"None",
"n1704",
16911252
],
[
1746556860,
1746556891,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 87 0.008685049338473319 12 16 100",
87,
0.008685049338473319,
12,
16,
100,
0.19999999999999996,
0,
"None",
"n1704",
16911257
],
[
1746560269,
1746560293,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007291676439191521 9 10 100",
200,
0.007291676439191521,
9,
10,
100,
0.19999999999999996,
0,
"None",
"n1704",
16911347
],
[
1746560328,
1746560346,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00792998551830642 10 59 95",
200,
0.00792998551830642,
10,
59,
95,
0.2684210526315789,
0,
"None",
"n1704",
16911349
],
[
1746560359,
1746560383,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.008195248509410299 10 76 100",
199,
0.008195248509410299,
10,
76,
100,
0.28421052631578947,
0,
"None",
"n1704",
16911351
],
[
1746560420,
1746560445,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 193 0.007931655319971117 11 90 74",
193,
0.007931655319971117,
11,
90,
74,
0.24736842105263157,
0,
"None",
"n1704",
16911352
],
[
1746560482,
1746560500,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 193 0.009594192945999062 11 22 96",
193,
0.009594192945999062,
11,
22,
96,
0.26315789473684215,
0,
"None",
"n1704",
16911354
],
[
1746560512,
1746560531,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007055811264348119 9 77 100",
200,
0.007055811264348119,
9,
77,
100,
0.20526315789473681,
0,
"None",
"n1704",
16911356
],
[
1746560575,
1746560599,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 12 10 72",
200,
0.01,
12,
10,
72,
0.35789473684210527,
0,
"None",
"n1718",
16911357
],
[
1746560608,
1746560651,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 12 93 100",
200,
0.01,
12,
93,
100,
0.26315789473684215,
0,
"None",
"n1720",
16911359
],
[
1746560668,
1746560724,
56,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00542518374349528 4 100 100",
200,
0.00542518374349528,
4,
100,
100,
0.33684210526315794,
0,
"None",
"n1720",
16911361
],
[
1746560729,
1746560779,
50,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008440358256238074 10 17 89",
200,
0.008440358256238074,
10,
17,
89,
0.2210526315789474,
0,
"None",
"n1720",
16911363
],
[
1746560761,
1746560804,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 168 0.0068266462270954315 7 85 100",
168,
0.0068266462270954315,
7,
85,
100,
0.24736842105263157,
0,
"None",
"n1720",
16911364
],
[
1746560823,
1746560879,
56,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.008151733417899107 12 85 97",
200,
0.008151733417899107,
12,
85,
97,
0.2578947368421053,
0,
"None",
"n1720",
16911366
],
[
1746560853,
1746560902,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 55 0.0001 4 76 12",
55,
0.0001,
4,
76,
12,
0.41052631578947374,
0,
"None",
"n1720",
16911368
],
[
1746560915,
1746560958,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 22 20 95",
200,
0.01,
22,
20,
95,
0.26315789473684215,
0,
"None",
"n1720",
16911370
],
[
1746560976,
1746561013,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 189 0.006015229369388398 7 14 66",
189,
0.006015229369388398,
7,
14,
66,
0.1842105263157895,
0,
"None",
"n1720",
16911372
],
[
1746561037,
1746561099,
62,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 195 0.0031283227599953494 4 90 28",
195,
0.0031283227599953494,
4,
90,
28,
0.22631578947368425,
0,
"None",
"n1720",
16911376
],
[
1746561100,
1746561143,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 11 10 100",
200,
0.01,
11,
10,
100,
0.34736842105263155,
0,
"None",
"n1720",
16911382
],
[
1746561128,
1746561171,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.01 15 58 32",
196,
0.01,
15,
58,
32,
0.2947368421052632,
0,
"None",
"n1720",
16911386
],
[
1746561191,
1746561234,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.007625260542159144 22 12 17",
199,
0.007625260542159144,
22,
12,
17,
0.20526315789473681,
0,
"None",
"n1720",
16911391
],
[
1746561251,
1746561282,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 195 0.01 25 47 98",
195,
0.01,
25,
47,
98,
0.2578947368421053,
0,
"None",
"n1720",
16911395
],
[
1746561282,
1746561331,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.0062011902764453316 6 31 93",
198,
0.0062011902764453316,
6,
31,
93,
0.3631578947368421,
0,
"None",
"n1720",
16911397
],
[
1746561345,
1746561388,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 195 0.00829618705413135 24 100 17",
195,
0.00829618705413135,
24,
100,
17,
0.3631578947368421,
0,
"None",
"n1720",
16911400
],
[
1746561405,
1746561442,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006883295264170377 10 77 99",
200,
0.006883295264170377,
10,
77,
99,
0.22631578947368425,
0,
"None",
"n1720",
16911401
],
[
1746561468,
1746561523,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 192 0.007434520055481418 7 77 99",
192,
0.007434520055481418,
7,
77,
99,
0.2315789473684211,
0,
"None",
"n1720",
16911403
],
[
1746561496,
1746561533,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.008846428018668237 17 31 56",
197,
0.008846428018668237,
17,
31,
56,
0.1947368421052632,
0,
"None",
"n1720",
16911405
],
[
1746561560,
1746561609,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.01 21 47 98",
199,
0.01,
21,
47,
98,
0.28421052631578947,
0,
"None",
"n1720",
16911407
],
[
1746561621,
1746561658,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.008938719527159 21 94 92",
198,
0.008938719527159,
21,
94,
92,
0.25263157894736843,
0,
"None",
"n1720",
16911409
],
[
1746561682,
1746561725,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.01 16 85 22",
197,
0.01,
16,
85,
22,
0.3631578947368421,
0,
"None",
"n1720",
16911411
],
[
1746561743,
1746561786,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.007962235188536336 9 96 100",
200,
0.007962235188536336,
9,
96,
100,
0.3052631578947368,
0,
"None",
"n1720",
16911414
],
[
1746561773,
1746561804,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 194 0.00873430106359886 25 16 18",
194,
0.00873430106359886,
25,
16,
18,
0.3052631578947368,
0,
"None",
"n1720",
16911417
],
[
1746561835,
1746561866,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 175 0.008487945627539824 27 77 31",
175,
0.008487945627539824,
27,
77,
31,
0.2210526315789474,
0,
"None",
"n1720",
16911418
],
[
1746561897,
1746561941,
44,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.0095377375923727 19 78 83",
200,
0.0095377375923727,
19,
78,
83,
0.28421052631578947,
0,
"None",
"n1720",
16911420
],
[
1746561928,
1746561965,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 117 0.0025613362790592536 4 18 100",
117,
0.0025613362790592536,
4,
18,
100,
0.3263157894736842,
0,
"None",
"n1720",
16911424
],
[
1746561991,
1746562028,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.01 23 79 28",
199,
0.01,
23,
79,
28,
0.25263157894736843,
0,
"None",
"n1720",
16911426
],
[
1746562053,
1746562115,
62,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 179 0.0033901132753968773 4 59 18",
179,
0.0033901132753968773,
4,
59,
18,
0.28421052631578947,
0,
"None",
"n1720",
16911428
],
[
1746562115,
1746562165,
50,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.01 27 11 11",
198,
0.01,
27,
11,
11,
0.20526315789473681,
0,
"None",
"n1720",
16911429
],
[
1746562175,
1746562224,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 175 0.00934927245961503 26 97 49",
175,
0.00934927245961503,
26,
97,
49,
0.3052631578947368,
0,
"None",
"n1720",
16911431
],
[
1746562206,
1746562249,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 36 0.005056488906256527 9 12 12",
36,
0.005056488906256527,
9,
12,
12,
0.34736842105263155,
0,
"None",
"n1720",
16911432
],
[
1746562268,
1746562317,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 191 0.00983656002521225 27 21 57",
191,
0.00983656002521225,
27,
21,
57,
0.25263157894736843,
0,
"None",
"n1720",
16911434
],
[
1746562331,
1746562392,
61,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 187 0.008391866727533774 10 12 90",
187,
0.008391866727533774,
10,
12,
90,
0.24736842105263157,
0,
"None",
"n1720",
16911441
],
[
1746562388,
1746562412,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.008772779087706203 13 16 76",
199,
0.008772779087706203,
13,
16,
76,
0.21578947368421053,
0,
"None",
"n1718",
16911454
],
[
1746562480,
1746562498,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.01 25 20 49",
199,
0.01,
25,
20,
49,
0.21052631578947367,
0,
"None",
"n1718",
16911457
],
[
1746562510,
1746562528,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 170 0.007863181618209196 27 98 32",
170,
0.007863181618209196,
27,
98,
32,
0.32105263157894737,
0,
"None",
"n1718",
16911460
],
[
1746562572,
1746562591,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 187 0.00766426483092941 25 63 37",
187,
0.00766426483092941,
25,
63,
37,
0.2578947368421053,
0,
"None",
"n1718",
16911462
],
[
1746562666,
1746562684,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 188 0.00850577383509249 23 28 22",
188,
0.00850577383509249,
23,
28,
22,
0.24736842105263157,
0,
"None",
"n1718",
16911465
],
[
1746562727,
1746562752,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.00812776976845186 15 11 69",
199,
0.00812776976845186,
15,
11,
69,
0.2894736842105263,
0,
"None",
"n1718",
16911467
],
[
1746562789,
1746562814,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 136 0.008573263979629783 26 93 26",
136,
0.008573263979629783,
26,
93,
26,
0.2894736842105263,
0,
"None",
"n1718",
16911472
],
[
1746562851,
1746562875,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 184 0.00876655064495856 12 18 68",
184,
0.00876655064495856,
12,
18,
68,
0.35789473684210527,
0,
"None",
"n1718",
16911475
],
[
1746562912,
1746562950,
38,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.006391300842046438 4 37 95",
198,
0.006391300842046438,
4,
37,
95,
0.26315789473684215,
0,
"None",
"n1718",
16911477
],
[
1746562977,
1746562996,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 193 0.008208469928146254 27 47 11",
193,
0.008208469928146254,
27,
47,
11,
0.3631578947368421,
0,
"None",
"n1718",
16911479
],
[
1746566644,
1746566693,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 191 0.008690228343366134 16 13 99",
191,
0.008690228343366134,
16,
13,
99,
0.21578947368421053,
0,
"None",
"n1697",
16913117
],
[
1746566587,
1746566697,
110,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 23 10 41",
200,
0.01,
23,
10,
41,
0.35789473684210527,
0,
"None",
"n1709",
16913107
],
[
1746566707,
1746566743,
36,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 151 0.008214996255335755 11 88 99",
151,
0.008214996255335755,
11,
88,
99,
0.3052631578947368,
0,
"None",
"n1678",
16913119
],
[
1746566766,
1746566822,
56,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.00720095990167795 13 47 100",
200,
0.00720095990167795,
13,
47,
100,
0.2684210526315789,
0,
"None",
"n1720",
16913120
],
[
1746566822,
1746566877,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005081474352885097 6 94 11",
200,
0.005081474352885097,
6,
94,
11,
0.3631578947368421,
0,
"None",
"n1709",
16913122
],
[
1746566885,
1746566922,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.004392889949584496 4 82 27",
200,
0.004392889949584496,
4,
82,
27,
0.3631578947368421,
0,
"None",
"n1697",
16913124
],
[
1746566944,
1746567017,
73,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.004433710192649272 4 15 72",
200,
0.004433710192649272,
4,
15,
72,
0.3631578947368421,
0,
"None",
"n1709",
16913126
],
[
1746567004,
1746567034,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 193 0.00602682532251555 10 96 90",
193,
0.00602682532251555,
10,
96,
90,
0.2421052631578947,
0,
"None",
"n1697",
16913129
],
[
1746567067,
1746567122,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.01 23 10 10",
200,
0.01,
23,
10,
10,
0.25263157894736843,
0,
"None",
"n1709",
16913130
],
[
1746567130,
1746567185,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.005826684793629684 8 59 60",
197,
0.005826684793629684,
8,
59,
60,
0.25263157894736843,
0,
"None",
"n1720",
16913132
],
[
1746567223,
1746567278,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 137 0.006825591395611478 10 94 99",
137,
0.006825591395611478,
10,
94,
99,
0.35789473684210527,
0,
"None",
"n1709",
16913134
],
[
1746567278,
1746567309,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.0057388446225537385 8 14 21",
199,
0.0057388446225537385,
8,
14,
21,
0.21052631578947367,
0,
"None",
"n1697",
16913136
],
[
1746567342,
1746567385,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 26 0.006196918380796845 9 24 90",
26,
0.006196918380796845,
9,
24,
90,
0.26315789473684215,
0,
"None",
"n1709",
16913138
],
[
1746567371,
1746567408,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 170 0.006861978646614733 9 86 100",
170,
0.006861978646614733,
9,
86,
100,
0.22631578947368425,
0,
"None",
"n1697",
16913140
],
[
1746567435,
1746567490,
55,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.01 32 10 44",
197,
0.01,
32,
10,
44,
0.35789473684210527,
0,
"None",
"n1709",
16913144
],
[
1746567500,
1746567549,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 91 0.01 15 74 100",
91,
0.01,
15,
74,
100,
0.27368421052631575,
0,
"None",
"n1697",
16913151
],
[
1746567558,
1746567595,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.006487832008299584 8 94 100",
200,
0.006487832008299584,
8,
94,
100,
0.25263157894736843,
0,
"None",
"n1709",
16913156
],
[
1746567615,
1746567627,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 189 0.006594452433289562 18 31 28",
189,
0.006594452433289562,
18,
31,
28,
0.3052631578947368,
0,
"None",
"n1718",
16913161
],
[
1746567679,
1746567710,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 184 0.008788193223409001 28 11 17",
184,
0.008788193223409001,
28,
11,
17,
0.2421052631578947,
0,
"None",
"n1720",
16913165
],
[
1746567707,
1746567719,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 185 0.009706456536513294 19 12 100",
185,
0.009706456536513294,
19,
12,
100,
0.3631578947368421,
0,
"None",
"n1718",
16913171
],
[
1746567771,
1746567796,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 179 0.01 32 95 10",
179,
0.01,
32,
95,
10,
0.3631578947368421,
0,
"None",
"n1720",
16913173
],
[
1746567830,
1746567848,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 124 0.007660351672229674 10 19 88",
124,
0.007660351672229674,
10,
19,
88,
0.3631578947368421,
0,
"None",
"n1718",
16913175
],
[
1746567891,
1746567909,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.007697847625975126 19 33 97",
199,
0.007697847625975126,
19,
33,
97,
0.3157894736842105,
0,
"None",
"n1718",
16913177
],
[
1746567924,
1746567949,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 189 0.007080508871516898 11 17 98",
189,
0.007080508871516898,
11,
17,
98,
0.2421052631578947,
0,
"None",
"n1720",
16913179
],
[
1746567983,
1746568001,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 195 0.006347464730234358 11 98 91",
195,
0.006347464730234358,
11,
98,
91,
0.26315789473684215,
0,
"None",
"n1718",
16913181
],
[
1746568044,
1746568064,
20,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 152 0.0070536870182139845 9 40 98",
152,
0.0070536870182139845,
9,
40,
98,
0.3263157894736842,
0,
"None",
"n1718",
16913182
],
[
1746568074,
1746568092,
18,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.0067338226856165345 8 12 36",
196,
0.0067338226856165345,
8,
12,
36,
0.2421052631578947,
0,
"None",
"n1718",
16913187
],
[
1746568136,
1746568166,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.005330177068560809 4 11 92",
200,
0.005330177068560809,
4,
11,
92,
0.34736842105263155,
0,
"None",
"n1718",
16913189
],
[
1746568197,
1746568216,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 167 0.007082479005346094 10 96 90",
167,
0.007082479005346094,
10,
96,
90,
0.2578947368421053,
0,
"None",
"n1718",
16913202
],
[
1746568227,
1746568239,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 192 0.008223181018541026 22 10 75",
192,
0.008223181018541026,
22,
10,
75,
0.3631578947368421,
0,
"None",
"n1718",
16913205
],
[
1746568289,
1746568301,
12,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 181 0.007530052111167857 13 10 100",
181,
0.007530052111167857,
13,
10,
100,
0.2684210526315789,
0,
"None",
"n1718",
16913207
],
[
1746568352,
1746568371,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 197 0.005755042939312985 23 11 18",
197,
0.005755042939312985,
23,
11,
18,
0.2789473684210526,
0,
"None",
"n1720",
16913222
],
[
1746568382,
1746568401,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.008448069330515475 22 16 88",
198,
0.008448069330515475,
22,
16,
88,
0.2684210526315789,
0,
"None",
"n1720",
16913229
],
[
1746568445,
1746568469,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 192 0.006854246695185101 11 95 24",
192,
0.006854246695185101,
11,
95,
24,
0.3631578947368421,
0,
"None",
"n1720",
16913231
],
[
1746568506,
1746568531,
25,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.006760587303112119 9 99 68",
198,
0.006760587303112119,
9,
99,
68,
0.2947368421052632,
0,
"None",
"n1720",
16913298
],
[
1746568569,
1746568593,
24,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 191 0.00999900215698292 31 37 44",
191,
0.00999900215698292,
31,
37,
44,
0.2894736842105263,
0,
"None",
"n1720",
16913353
],
[
1746568631,
1746568668,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 191 0.006767322079922044 11 10 67",
191,
0.006767322079922044,
11,
10,
67,
0.3631578947368421,
0,
"None",
"n1720",
16913517
],
[
1746568690,
1746568709,
19,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.009130179879195661 24 100 19",
200,
0.009130179879195661,
24,
100,
19,
0.3631578947368421,
0,
"None",
"n1718",
16913547
],
[
1746568754,
1746568784,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 198 0.01 19 19 20",
198,
0.01,
19,
19,
20,
0.2315789473684211,
0,
"None",
"n1720",
16913549
],
[
1746568784,
1746568821,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.0061207156789596425 9 36 94",
199,
0.0061207156789596425,
9,
36,
94,
0.23684210526315785,
0,
"None",
"n1720",
16913554
],
[
1746568847,
1746568896,
49,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 166 0.006052328243896888 9 51 100",
166,
0.006052328243896888,
9,
51,
100,
0.2421052631578947,
0,
"None",
"n1720",
16913956
],
[
1746568910,
1746568941,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.007480037307678853 19 10 63",
199,
0.007480037307678853,
19,
10,
63,
0.3631578947368421,
0,
"None",
"n1720",
16913958
],
[
1746568970,
1746569001,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 134 0.006649065335040426 13 94 98",
134,
0.006649065335040426,
13,
94,
98,
0.28421052631578947,
0,
"None",
"n1720",
16913960
],
[
1746569032,
1746569069,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 171 0.006060800778925074 6 88 41",
171,
0.006060800778925074,
6,
88,
41,
0.22631578947368425,
0,
"None",
"n1720",
16913962
],
[
1746569093,
1746569130,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 199 0.007390091014643067 10 13 78",
199,
0.007390091014643067,
10,
13,
78,
0.2210526315789474,
0,
"None",
"n1720",
16913964
],
[
1746569154,
1746569191,
37,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 172 0.005118832947024147 5 16 95",
172,
0.005118832947024147,
5,
16,
95,
0.19999999999999996,
0,
"None",
"n1720",
16913967
],
[
1746569216,
1746569247,
31,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 196 0.006318060363255504 14 10 77",
196,
0.006318060363255504,
14,
10,
77,
0.21578947368421053,
0,
"None",
"n1720",
16913969
],
[
1746569278,
1746569321,
43,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 200 0.003110382722629967 4 88 76",
200,
0.003110382722629967,
4,
88,
76,
0.28421052631578947,
0,
"None",
"n1720",
16913970
],
[
1746569341,
1746569371,
30,
"bash \/data\/horse\/ws\/pwinkler-oopt\/run.sh 160 0.007329839398934116 16 15 33",
160,
0.007329839398934116,
16,
15,
33,
0.21578947368421053,
0,
"None",
"n1720",
16913972
]
];
var tab_worker_usage_csv_json = [
[
1746533469.7129881,
50,
0,
0
],
[
1746533477.1006575,
50,
0,
0
],
[
1746533480.506698,
50,
0,
0
],
[
1746533483.8369796,
50,
0,
0
],
[
1746533486.66073,
50,
0,
0
],
[
1746533491.4957435,
50,
0,
0
],
[
1746533497.4876556,
50,
0,
0
],
[
1746533501.6640644,
50,
0,
0
],
[
1746533505.623999,
50,
0,
0
],
[
1746533509.3890522,
50,
0,
0
],
[
1746533512.4488194,
50,
0,
0
],
[
1746533515.5987937,
50,
0,
0
],
[
1746533519.2019722,
50,
0,
0
],
[
1746533522.2948287,
50,
0,
0
],
[
1746533526.414911,
50,
0,
0
],
[
1746533529.4414902,
50,
0,
0
],
[
1746533532.4306839,
50,
0,
0
],
[
1746533535.934414,
50,
0,
0
],
[
1746533539.3583317,
50,
0,
0
],
[
1746533542.5209835,
50,
0,
0
],
[
1746533546.2443917,
50,
0,
0
],
[
1746533550.48382,
50,
0,
0
],
[
1746533555.6006434,
50,
0,
0
],
[
1746533561.4186018,
50,
0,
0
],
[
1746533564.9048533,
50,
0,
0
],
[
1746533567.9178004,
50,
0,
0
],
[
1746533571.1257794,
50,
0,
0
],
[
1746533574.295126,
50,
0,
0
],
[
1746533578.5650866,
50,
0,
0
],
[
1746533583.6705663,
50,
0,
0
],
[
1746533586.320773,
50,
0,
0
],
[
1746533589.5453846,
50,
0,
0
],
[
1746533594.2689786,
50,
0,
0
],
[
1746533598.1433365,
50,
0,
0
],
[
1746533601.245872,
50,
0,
0
],
[
1746533603.9938898,
50,
0,
0
],
[
1746533606.7179084,
50,
0,
0
],
[
1746533609.8346395,
50,
0,
0
],
[
1746533615.990922,
50,
0,
0
],
[
1746533621.637593,
50,
0,
0
],
[
1746533624.4416368,
50,
0,
0
],
[
1746533627.801397,
50,
0,
0
],
[
1746533631.2691054,
50,
0,
0
],
[
1746533633.8707032,
50,
0,
0
],
[
1746533636.604095,
50,
0,
0
],
[
1746533639.3981886,
50,
0,
0
],
[
1746533641.8939435,
50,
0,
0
],
[
1746533644.4899979,
50,
0,
0
],
[
1746533647.2465408,
50,
0,
0
],
[
1746533650.507465,
50,
0,
0
],
[
1746533653.7956502,
50,
0,
0
],
[
1746533657.7365413,
50,
0,
0
],
[
1746533662.6130426,
50,
0,
0
],
[
1746533668.476896,
50,
1,
2
],
[
1746533671.643203,
50,
1,
2
],
[
1746533677.6131225,
50,
1,
2
],
[
1746533684.861381,
50,
2,
4
],
[
1746533690.6044095,
50,
2,
4
],
[
1746533696.6088896,
50,
2,
4
],
[
1746533703.5932837,
50,
3,
6
],
[
1746533708.7397106,
50,
3,
6
],
[
1746533716.2083752,
50,
3,
6
],
[
1746533725.2934806,
50,
4,
8
],
[
1746533731.5235696,
50,
4,
8
],
[
1746533737.7227402,
50,
4,
8
],
[
1746533748.5110712,
50,
5,
10
],
[
1746533755.4924643,
50,
5,
10
],
[
1746533760.9511247,
50,
5,
10
],
[
1746533767.4474502,
50,
6,
12
],
[
1746533773.3305087,
50,
6,
12
],
[
1746533779.456639,
50,
6,
12
],
[
1746533786.6961312,
50,
7,
14
],
[
1746533791.870954,
50,
7,
14
],
[
1746533797.2622354,
50,
7,
14
],
[
1746533806.2343907,
50,
8,
16
],
[
1746533812.6459198,
50,
8,
16
],
[
1746533817.663453,
50,
8,
16
],
[
1746533823.169878,
50,
9,
18
],
[
1746533827.5218709,
50,
9,
18
],
[
1746533832.195744,
50,
9,
18
],
[
1746533838.3429155,
50,
10,
20
],
[
1746533844.2508655,
50,
10,
20
],
[
1746533849.749716,
50,
10,
20
],
[
1746533855.3774567,
50,
11,
22
],
[
1746533859.5701087,
50,
11,
22
],
[
1746533868.3611138,
50,
11,
22
],
[
1746533875.3753345,
50,
12,
24
],
[
1746533879.8073285,
50,
12,
24
],
[
1746533885.0859735,
50,
12,
24
],
[
1746533890.226558,
50,
13,
26
],
[
1746533899.1743593,
50,
13,
26
],
[
1746533905.4733288,
50,
13,
26
],
[
1746533911.9141293,
50,
14,
28
],
[
1746533917.36381,
50,
14,
28
],
[
1746533923.1465116,
50,
14,
28
],
[
1746533931.870728,
50,
15,
30
],
[
1746533937.7723382,
50,
15,
30
],
[
1746533943.6438951,
50,
15,
30
],
[
1746533950.2467012,
50,
16,
32
],
[
1746533957.0984964,
50,
16,
32
],
[
1746533966.4369102,
50,
16,
32
],
[
1746533975.06236,
50,
17,
34
],
[
1746533983.7931852,
50,
17,
34
],
[
1746533992.1031358,
50,
17,
34
],
[
1746533999.6245546,
50,
18,
36
],
[
1746534004.6732938,
50,
18,
36
],
[
1746534009.6726089,
50,
18,
36
],
[
1746534015.2627635,
50,
19,
38
],
[
1746534019.3842607,
50,
19,
38
],
[
1746534024.112767,
50,
19,
38
],
[
1746534030.8612385,
50,
20,
40
],
[
1746534035.2933593,
50,
20,
40
],
[
1746534041.4876032,
50,
20,
40
],
[
1746534051.2146516,
50,
21,
42
],
[
1746534058.4899929,
50,
21,
42
],
[
1746534066.046533,
50,
21,
42
],
[
1746534073.390434,
50,
22,
44
],
[
1746534082.8514802,
50,
22,
44
],
[
1746534089.089627,
50,
22,
44
],
[
1746534096.4177969,
50,
23,
46
],
[
1746534100.7950487,
50,
23,
46
],
[
1746534107.4176154,
50,
23,
46
],
[
1746534114.4404655,
50,
24,
48
],
[
1746534117.9202719,
50,
24,
48
],
[
1746534121.9782414,
50,
24,
48
],
[
1746534127.1627345,
50,
25,
50
],
[
1746534130.7404006,
50,
25,
50
],
[
1746534134.5007014,
50,
25,
50
],
[
1746534140.500521,
50,
26,
52
],
[
1746534145.244975,
50,
26,
52
],
[
1746534151.0773215,
50,
26,
52
],
[
1746534158.571673,
50,
27,
54
],
[
1746534163.712041,
50,
27,
54
],
[
1746534171.2030628,
50,
27,
54
],
[
1746534177.2082155,
50,
28,
56
],
[
1746534182.1263041,
50,
28,
56
],
[
1746534186.4116583,
50,
28,
56
],
[
1746534193.2530682,
50,
29,
58
],
[
1746534199.5794544,
50,
29,
58
],
[
1746534205.9393337,
50,
29,
58
],
[
1746534212.6747928,
50,
30,
60
],
[
1746534217.691538,
50,
30,
60
],
[
1746534223.236522,
50,
30,
60
],
[
1746534231.934073,
50,
31,
62
],
[
1746534236.0002859,
50,
31,
62
],
[
1746534240.7210062,
50,
31,
62
],
[
1746534246.4473755,
50,
32,
64
],
[
1746534250.6581783,
50,
32,
64
],
[
1746534254.6641748,
50,
32,
64
],
[
1746534260.2023225,
50,
33,
66
],
[
1746534265.8421443,
50,
33,
66
],
[
1746534271.7528346,
50,
33,
66
],
[
1746534279.5701995,
50,
34,
68
],
[
1746534286.5572462,
50,
34,
68
],
[
1746534292.196118,
50,
34,
68
],
[
1746534299.0063276,
50,
35,
70
],
[
1746534304.521989,
50,
35,
70
],
[
1746534310.093791,
50,
35,
70
],
[
1746534315.4599423,
50,
36,
72
],
[
1746534320.0961277,
50,
36,
72
],
[
1746534325.9030468,
50,
36,
72
],
[
1746534332.36571,
50,
37,
74
],
[
1746534337.8596487,
50,
37,
74
],
[
1746534344.6083763,
50,
37,
74
],
[
1746534351.6582212,
50,
38,
76
],
[
1746534358.579306,
50,
38,
76
],
[
1746534363.5640984,
50,
38,
76
],
[
1746534369.3080912,
50,
39,
78
],
[
1746534373.3870847,
50,
39,
78
],
[
1746534379.5084534,
50,
39,
78
],
[
1746534386.645501,
50,
40,
80
],
[
1746534392.282939,
50,
40,
80
],
[
1746534397.6087976,
50,
40,
80
],
[
1746534404.7460206,
50,
41,
82
],
[
1746534409.0838337,
50,
41,
82
],
[
1746534414.868319,
50,
41,
82
],
[
1746534422.1118565,
50,
42,
84
],
[
1746534427.8698072,
50,
42,
84
],
[
1746534432.207405,
50,
42,
84
],
[
1746534437.7567563,
50,
43,
86
],
[
1746534442.9630582,
50,
43,
86
],
[
1746534448.318378,
50,
43,
86
],
[
1746534454.6852744,
50,
44,
88
],
[
1746534460.842351,
50,
44,
88
],
[
1746534465.7749681,
50,
44,
88
],
[
1746534472.0443394,
50,
45,
90
],
[
1746534477.7876601,
50,
45,
90
],
[
1746534483.4208724,
50,
45,
90
],
[
1746534489.5904148,
50,
46,
92
],
[
1746534494.1100273,
50,
46,
92
],
[
1746534498.7930295,
50,
46,
92
],
[
1746534505.3007734,
50,
47,
94
],
[
1746534510.8095849,
50,
47,
94
],
[
1746534518.2748456,
50,
47,
94
],
[
1746534524.231801,
50,
48,
96
],
[
1746534528.7657745,
50,
48,
96
],
[
1746534533.9070718,
50,
48,
96
],
[
1746534541.7255876,
50,
49,
98
],
[
1746534547.3635707,
50,
49,
98
],
[
1746534552.1173682,
50,
49,
98
],
[
1746534558.3256457,
50,
50,
100
],
[
1746534563.6620505,
50,
50,
100
],
[
1746534581.572394,
50,
49,
98
],
[
1746534593.5486486,
50,
48,
96
],
[
1746534603.1547463,
50,
47,
94
],
[
1746534612.928481,
50,
46,
92
],
[
1746534623.4094605,
50,
45,
90
],
[
1746534635.1567335,
50,
44,
88
],
[
1746534647.3704205,
50,
43,
86
],
[
1746534658.2883108,
50,
42,
84
],
[
1746534668.1261024,
50,
41,
82
],
[
1746534677.480526,
50,
40,
80
],
[
1746534687.622852,
50,
39,
78
],
[
1746534702.2245169,
50,
38,
76
],
[
1746534718.1630294,
50,
37,
74
],
[
1746534728.341374,
50,
36,
72
],
[
1746534739.2116337,
50,
35,
70
],
[
1746534753.3875852,
50,
34,
68
],
[
1746534764.4158046,
50,
33,
66
],
[
1746534775.2817464,
50,
32,
64
],
[
1746534788.0866725,
50,
31,
62
],
[
1746534803.3843093,
50,
30,
60
],
[
1746534825.5023253,
50,
29,
58
],
[
1746534841.5736947,
50,
28,
56
],
[
1746534856.3402004,
50,
27,
54
],
[
1746534869.0141392,
50,
26,
52
],
[
1746534880.8734531,
50,
25,
50
],
[
1746534891.0592709,
50,
24,
48
],
[
1746534902.7679164,
50,
23,
46
],
[
1746534913.7914557,
50,
22,
44
],
[
1746534927.4201593,
50,
21,
42
],
[
1746534945.5265305,
50,
20,
40
],
[
1746534956.5385635,
50,
19,
38
],
[
1746534968.1525714,
50,
18,
36
],
[
1746534980.5637887,
50,
17,
34
],
[
1746534995.599937,
50,
16,
32
],
[
1746535015.3649573,
50,
15,
30
],
[
1746535033.8067937,
50,
14,
28
],
[
1746535053.370955,
50,
13,
26
],
[
1746535073.4630013,
50,
12,
24
],
[
1746535098.021907,
50,
11,
22
],
[
1746535121.1008706,
50,
10,
20
],
[
1746535136.145031,
50,
9,
18
],
[
1746535147.4716,
50,
8,
16
],
[
1746535159.2906792,
50,
7,
14
],
[
1746535171.5289204,
50,
6,
12
],
[
1746535188.2491527,
50,
5,
10
],
[
1746535200.49138,
50,
4,
8
],
[
1746535216.3935485,
50,
3,
6
],
[
1746535244.3165214,
50,
2,
4
],
[
1746535259.4223022,
50,
1,
2
],
[
1746535272.2741957,
50,
0,
0
],
[
1746535280.7824667,
50,
0,
0
],
[
1746535304.4767134,
50,
0,
0
],
[
1746535313.776924,
50,
0,
0
],
[
1746535328.6424227,
50,
0,
0
],
[
1746535336.6677096,
50,
0,
0
],
[
1746535343.4830542,
50,
0,
0
],
[
1746535353.1790547,
50,
0,
0
],
[
1746535367.081289,
50,
0,
0
],
[
1746535374.8464632,
50,
0,
0
],
[
1746535382.7177498,
50,
0,
0
],
[
1746535390.8932486,
50,
0,
0
],
[
1746535400.8211052,
50,
0,
0
],
[
1746535413.7725751,
50,
0,
0
],
[
1746535422.5916178,
50,
0,
0
],
[
1746535430.8547764,
50,
0,
0
],
[
1746535439.0765762,
50,
0,
0
],
[
1746535446.9903095,
50,
0,
0
],
[
1746535455.289565,
50,
0,
0
],
[
1746535465.9934685,
50,
0,
0
],
[
1746535476.9854414,
50,
0,
0
],
[
1746535489.976535,
50,
0,
0
],
[
1746535499.1133783,
50,
0,
0
],
[
1746535515.4080539,
50,
0,
0
],
[
1746535525.6899254,
50,
0,
0
],
[
1746535538.413045,
50,
0,
0
],
[
1746535550.968603,
50,
0,
0
],
[
1746535561.3259356,
50,
0,
0
],
[
1746535572.6937206,
50,
0,
0
],
[
1746535586.5683212,
50,
0,
0
],
[
1746535599.5658798,
50,
0,
0
],
[
1746535610.6492484,
50,
0,
0
],
[
1746535625.872122,
50,
0,
0
],
[
1746535639.2439325,
50,
0,
0
],
[
1746535653.1218393,
50,
0,
0
],
[
1746535663.3017466,
50,
0,
0
],
[
1746535674.658162,
50,
0,
0
],
[
1746535687.0865178,
50,
0,
0
],
[
1746535708.3146756,
50,
0,
0
],
[
1746535723.7504985,
50,
0,
0
],
[
1746535733.83532,
50,
0,
0
],
[
1746535746.0506349,
50,
0,
0
],
[
1746535761.9139748,
50,
0,
0
],
[
1746535777.6514823,
50,
0,
0
],
[
1746535790.146199,
50,
0,
0
],
[
1746535803.5398853,
50,
0,
0
],
[
1746535820.0104973,
50,
0,
0
],
[
1746535832.5996935,
50,
0,
0
],
[
1746535852.1711342,
50,
0,
0
],
[
1746535866.6309927,
50,
0,
0
],
[
1746535883.5747035,
50,
0,
0
],
[
1746535898.4282215,
50,
0,
0
],
[
1746535908.692251,
50,
0,
0
],
[
1746535920.1825218,
50,
1,
2
],
[
1746535927.5281112,
50,
1,
2
],
[
1746535944.512151,
50,
1,
2
],
[
1746535954.3393836,
50,
2,
4
],
[
1746535964.4969208,
50,
2,
4
],
[
1746535974.6200697,
50,
2,
4
],
[
1746535984.797531,
50,
3,
6
],
[
1746535999.446326,
50,
3,
6
],
[
1746536011.2751782,
50,
3,
6
],
[
1746536020.0563743,
50,
4,
8
],
[
1746536030.320322,
50,
4,
8
],
[
1746536048.065145,
50,
4,
8
],
[
1746536061.5346594,
50,
5,
10
],
[
1746536071.030407,
50,
5,
10
],
[
1746536080.194881,
50,
5,
10
],
[
1746536101.5291874,
50,
6,
12
],
[
1746536129.5830119,
50,
6,
12
],
[
1746536143.4687235,
50,
6,
12
],
[
1746536156.090576,
50,
7,
14
],
[
1746536175.270972,
50,
7,
14
],
[
1746536189.9221103,
50,
7,
14
],
[
1746536204.074316,
50,
8,
16
],
[
1746536215.9418712,
50,
8,
16
],
[
1746536228.8478146,
50,
8,
16
],
[
1746536237.9817753,
50,
9,
18
],
[
1746536246.865788,
50,
9,
18
],
[
1746536253.9832706,
50,
9,
18
],
[
1746536263.3550453,
50,
10,
20
],
[
1746536271.7782817,
50,
10,
20
],
[
1746536282.657962,
50,
10,
20
],
[
1746536292.487743,
50,
11,
22
],
[
1746536299.1999407,
50,
11,
22
],
[
1746536306.771779,
50,
11,
22
],
[
1746536314.3104236,
50,
12,
24
],
[
1746536321.4140956,
50,
12,
24
],
[
1746536328.6983824,
50,
12,
24
],
[
1746536340.615121,
50,
13,
26
],
[
1746536349.0726717,
50,
13,
26
],
[
1746536356.6114078,
50,
13,
26
],
[
1746536365.3159163,
50,
14,
28
],
[
1746536372.6435218,
50,
14,
28
],
[
1746536380.0249915,
50,
14,
28
],
[
1746536388.50843,
50,
15,
30
],
[
1746536397.982179,
50,
15,
30
],
[
1746536408.3169575,
50,
15,
30
],
[
1746536416.6051326,
50,
16,
32
],
[
1746536424.4108355,
50,
16,
32
],
[
1746536436.389813,
50,
16,
32
],
[
1746536444.690327,
50,
17,
34
],
[
1746536453.3323407,
50,
17,
34
],
[
1746536472.6316261,
50,
17,
34
],
[
1746536482.764335,
50,
18,
36
],
[
1746536491.729613,
50,
18,
36
],
[
1746536498.5962124,
50,
18,
36
],
[
1746536507.1410718,
50,
19,
38
],
[
1746536516.6974514,
50,
19,
38
],
[
1746536523.4559484,
50,
19,
38
],
[
1746536532.1576374,
50,
20,
40
],
[
1746536540.1320167,
50,
20,
40
],
[
1746536546.272004,
50,
20,
40
],
[
1746536554.2046547,
50,
21,
42
],
[
1746536559.9476209,
50,
21,
42
],
[
1746536565.9484353,
50,
21,
42
],
[
1746536575.6988404,
50,
22,
44
],
[
1746536583.3426933,
50,
22,
44
],
[
1746536590.0217412,
50,
22,
44
],
[
1746536599.0968294,
50,
23,
46
],
[
1746536605.5456316,
50,
23,
46
],
[
1746536615.1079316,
50,
23,
46
],
[
1746536625.083695,
50,
24,
48
],
[
1746536633.976646,
50,
24,
48
],
[
1746536643.838848,
50,
24,
48
],
[
1746536657.2712924,
50,
25,
50
],
[
1746536665.2881818,
50,
25,
50
],
[
1746536672.6624832,
50,
25,
50
],
[
1746536682.7201054,
50,
26,
52
],
[
1746536692.933377,
50,
26,
52
],
[
1746536703.3018992,
50,
26,
52
],
[
1746536714.0103016,
50,
27,
54
],
[
1746536720.878227,
50,
27,
54
],
[
1746536728.6871786,
50,
27,
54
],
[
1746536742.2390554,
50,
28,
56
],
[
1746536751.2948089,
50,
28,
56
],
[
1746536760.4855778,
50,
28,
56
],
[
1746536770.549747,
50,
29,
58
],
[
1746536777.8267436,
50,
29,
58
],
[
1746536785.364265,
50,
29,
58
],
[
1746536794.5300531,
50,
30,
60
],
[
1746536802.7765152,
50,
30,
60
],
[
1746536810.8565328,
50,
30,
60
],
[
1746536819.312953,
50,
31,
62
],
[
1746536829.2269475,
50,
31,
62
],
[
1746536839.253215,
50,
31,
62
],
[
1746536848.9142354,
50,
32,
64
],
[
1746536859.542809,
50,
32,
64
],
[
1746536870.8486261,
50,
32,
64
],
[
1746536880.6903188,
50,
33,
66
],
[
1746536889.510329,
50,
33,
66
],
[
1746536897.166515,
50,
33,
66
],
[
1746536907.4143167,
50,
34,
68
],
[
1746536916.3493533,
50,
34,
68
],
[
1746536929.739277,
50,
34,
68
],
[
1746536939.9759777,
50,
35,
70
],
[
1746536949.0709994,
50,
35,
70
],
[
1746536958.6259952,
50,
35,
70
],
[
1746536969.401813,
50,
36,
72
],
[
1746536979.569233,
50,
36,
72
],
[
1746536990.6482854,
50,
36,
72
],
[
1746537000.0876915,
50,
37,
74
],
[
1746537010.3244143,
50,
37,
74
],
[
1746537018.9773033,
50,
37,
74
],
[
1746537029.0065756,
50,
38,
76
],
[
1746537040.8047786,
50,
38,
76
],
[
1746537052.4326663,
50,
38,
76
],
[
1746537066.725076,
50,
39,
78
],
[
1746537087.3533762,
50,
39,
78
],
[
1746537103.2104933,
50,
39,
78
],
[
1746537124.621516,
50,
40,
80
],
[
1746537141.4595308,
50,
40,
80
],
[
1746537150.5062687,
50,
40,
80
],
[
1746537161.7139447,
50,
41,
82
],
[
1746537170.0371706,
50,
41,
82
],
[
1746537179.3127003,
50,
41,
82
],
[
1746537189.490179,
50,
42,
84
],
[
1746537199.7088368,
50,
42,
84
],
[
1746537209.008884,
50,
42,
84
],
[
1746537222.2892675,
50,
43,
86
],
[
1746537232.0350044,
50,
43,
86
],
[
1746537242.142215,
50,
43,
86
],
[
1746537254.120279,
50,
44,
88
],
[
1746537264.8504786,
50,
44,
88
],
[
1746537274.9322865,
50,
44,
88
],
[
1746537285.8104491,
50,
45,
90
],
[
1746537295.0598981,
50,
45,
90
],
[
1746537302.8946033,
50,
45,
90
],
[
1746537311.4659343,
50,
46,
92
],
[
1746537321.1617393,
50,
46,
92
],
[
1746537330.317385,
50,
46,
92
],
[
1746537342.0501077,
50,
47,
94
],
[
1746537352.4536915,
50,
47,
94
],
[
1746537361.1289315,
50,
47,
94
],
[
1746537370.3477633,
50,
48,
96
],
[
1746537378.769645,
50,
48,
96
],
[
1746537388.6569285,
50,
48,
96
],
[
1746537402.473606,
50,
49,
98
],
[
1746537417.1129963,
50,
49,
98
],
[
1746537425.716728,
50,
49,
98
],
[
1746537436.8937693,
50,
50,
100
],
[
1746537453.5798337,
50,
50,
100
],
[
1746537480.3238206,
50,
49,
98
],
[
1746537503.8528552,
50,
48,
96
],
[
1746537526.8052592,
50,
47,
94
],
[
1746537548.5409136,
50,
46,
92
],
[
1746537566.7200139,
50,
45,
90
],
[
1746537593.0377407,
50,
44,
88
],
[
1746537610.6073027,
50,
43,
86
],
[
1746537628.3082025,
50,
42,
84
],
[
1746537648.6222181,
50,
41,
82
],
[
1746537670.8598537,
50,
40,
80
],
[
1746537687.2966113,
50,
39,
78
],
[
1746537707.376948,
50,
38,
76
],
[
1746537724.3156998,
50,
37,
74
],
[
1746537740.5694408,
50,
36,
72
],
[
1746537758.6982384,
50,
35,
70
],
[
1746537773.3536532,
50,
34,
68
],
[
1746537790.878397,
50,
33,
66
],
[
1746537809.6551368,
50,
32,
64
],
[
1746537826.430078,
50,
31,
62
],
[
1746537844.6833665,
50,
30,
60
],
[
1746537863.9540768,
50,
29,
58
],
[
1746537883.9179194,
50,
28,
56
],
[
1746537899.8772464,
50,
27,
54
],
[
1746537919.5185957,
50,
26,
52
],
[
1746537940.7348971,
50,
25,
50
],
[
1746537963.9952998,
50,
24,
48
],
[
1746537988.3108554,
50,
23,
46
],
[
1746538006.1314569,
50,
22,
44
],
[
1746538025.917936,
50,
21,
42
],
[
1746538048.8973122,
50,
20,
40
],
[
1746538072.1669505,
50,
19,
38
],
[
1746538093.5116138,
50,
18,
36
],
[
1746538120.7216208,
50,
17,
34
],
[
1746538136.9485207,
50,
16,
32
],
[
1746538151.7486937,
50,
15,
30
],
[
1746538168.4766405,
50,
14,
28
],
[
1746538185.230573,
50,
13,
26
],
[
1746538201.8013668,
50,
12,
24
],
[
1746538224.2887275,
50,
11,
22
],
[
1746538240.6651511,
50,
10,
20
],
[
1746538257.225245,
50,
9,
18
],
[
1746538281.9508207,
50,
8,
16
],
[
1746538298.3479826,
50,
7,
14
],
[
1746538318.5966961,
50,
6,
12
],
[
1746538342.1892385,
50,
5,
10
],
[
1746538361.9688995,
50,
4,
8
],
[
1746538384.3689332,
50,
3,
6
],
[
1746538404.0452762,
50,
2,
4
],
[
1746538420.3261623,
50,
1,
2
],
[
1746538435.2486262,
50,
0,
0
],
[
1746538444.6013384,
50,
0,
0
],
[
1746538474.4406579,
50,
0,
0
],
[
1746538484.5362105,
50,
0,
0
],
[
1746538495.371062,
50,
0,
0
],
[
1746538505.3457916,
50,
0,
0
],
[
1746538516.7150006,
50,
0,
0
],
[
1746538527.7194407,
50,
0,
0
],
[
1746538538.3597586,
50,
0,
0
],
[
1746538550.2462873,
50,
0,
0
],
[
1746538560.69571,
50,
0,
0
],
[
1746538571.7635822,
50,
0,
0
],
[
1746538583.119091,
50,
0,
0
],
[
1746538593.8691301,
50,
0,
0
],
[
1746538605.2956932,
50,
0,
0
],
[
1746538620.2553911,
50,
0,
0
],
[
1746538633.865929,
50,
0,
0
],
[
1746538644.773361,
50,
0,
0
],
[
1746538656.2505898,
50,
0,
0
],
[
1746538669.524791,
50,
0,
0
],
[
1746538681.0447533,
50,
0,
0
],
[
1746538694.2360098,
50,
0,
0
],
[
1746538706.3973308,
50,
0,
0
],
[
1746538717.2460163,
50,
0,
0
],
[
1746538730.8991644,
50,
0,
0
],
[
1746538742.6390016,
50,
0,
0
],
[
1746538758.015088,
50,
0,
0
],
[
1746538770.178498,
50,
0,
0
],
[
1746538784.2997954,
50,
0,
0
],
[
1746538798.1574643,
50,
0,
0
],
[
1746538813.3119028,
50,
0,
0
],
[
1746538825.672122,
50,
0,
0
],
[
1746538840.168195,
50,
0,
0
],
[
1746538854.1565733,
50,
0,
0
],
[
1746538874.2151406,
50,
0,
0
],
[
1746538888.6027577,
50,
0,
0
],
[
1746538901.6152155,
50,
0,
0
],
[
1746538915.4339368,
50,
0,
0
],
[
1746538931.0035374,
50,
0,
0
],
[
1746538944.4759886,
50,
0,
0
],
[
1746538962.6111987,
50,
0,
0
],
[
1746538977.840349,
50,
0,
0
],
[
1746538993.0816905,
50,
0,
0
],
[
1746539016.125312,
50,
0,
0
],
[
1746539031.0891547,
50,
0,
0
],
[
1746539048.8019629,
50,
0,
0
],
[
1746539069.402556,
50,
0,
0
],
[
1746539086.5168543,
50,
0,
0
],
[
1746539108.3094802,
50,
0,
0
],
[
1746539132.266248,
50,
0,
0
],
[
1746539146.398116,
50,
0,
0
],
[
1746539161.6847596,
50,
0,
0
],
[
1746539170.6450832,
50,
0,
0
],
[
1746539182.369351,
50,
1,
2
],
[
1746539195.7370944,
50,
1,
2
],
[
1746539207.89265,
50,
1,
2
],
[
1746539220.950517,
50,
2,
4
],
[
1746539233.4849856,
50,
2,
4
],
[
1746539245.0263536,
50,
2,
4
],
[
1746539259.7337925,
50,
3,
6
],
[
1746539267.988632,
50,
3,
6
],
[
1746539277.0940163,
50,
3,
6
],
[
1746539296.9171302,
50,
4,
8
],
[
1746539314.4632373,
50,
4,
8
],
[
1746539329.1082633,
50,
4,
8
],
[
1746539348.6965404,
50,
5,
10
],
[
1746539360.1680958,
50,
5,
10
],
[
1746539375.8265696,
50,
5,
10
],
[
1746539392.2932737,
50,
6,
12
],
[
1746539402.4526749,
50,
6,
12
],
[
1746539419.5238302,
50,
6,
12
],
[
1746539437.6618214,
50,
7,
14
],
[
1746539453.4012132,
50,
7,
14
],
[
1746539469.2276788,
50,
7,
14
],
[
1746539483.055035,
50,
8,
16
],
[
1746539496.2767766,
50,
8,
16
],
[
1746539511.5888696,
50,
8,
16
],
[
1746539526.6660526,
50,
9,
18
],
[
1746539543.0561686,
50,
9,
18
],
[
1746539566.4831722,
50,
9,
18
],
[
1746539583.1688192,
50,
10,
20
],
[
1746539600.843219,
50,
10,
20
],
[
1746539616.6886125,
50,
10,
20
],
[
1746539634.210507,
50,
11,
22
],
[
1746539651.6264217,
50,
11,
22
],
[
1746539667.0722573,
50,
11,
22
],
[
1746539690.9787657,
50,
12,
24
],
[
1746539710.3973222,
50,
12,
24
],
[
1746539731.0176551,
50,
12,
24
],
[
1746539750.1606607,
50,
13,
26
],
[
1746539767.794427,
50,
13,
26
],
[
1746539789.7049282,
50,
13,
26
],
[
1746539815.854614,
50,
14,
28
],
[
1746539831.7451608,
50,
14,
28
],
[
1746539844.3951492,
50,
14,
28
],
[
1746539864.0685358,
50,
15,
30
],
[
1746539887.3647025,
50,
15,
30
],
[
1746539901.1273859,
50,
15,
30
],
[
1746539914.9227598,
50,
16,
32
],
[
1746539930.4479704,
50,
16,
32
],
[
1746539950.048842,
50,
16,
32
],
[
1746539970.7680545,
50,
17,
34
],
[
1746539988.2869668,
50,
17,
34
],
[
1746540006.1090336,
50,
17,
34
],
[
1746540023.6695054,
50,
18,
36
],
[
1746540039.4425082,
50,
18,
36
],
[
1746540062.769956,
50,
18,
36
],
[
1746540078.5821457,
50,
19,
38
],
[
1746540094.8581796,
50,
19,
38
],
[
1746540110.3453543,
50,
19,
38
],
[
1746540133.4530816,
50,
20,
40
],
[
1746540147.0781116,
50,
20,
40
],
[
1746540160.8262446,
50,
20,
40
],
[
1746540177.828738,
50,
21,
42
],
[
1746540199.0479465,
50,
21,
42
],
[
1746540217.8510509,
50,
21,
42
],
[
1746540237.8897812,
50,
22,
44
],
[
1746540264.8131626,
50,
22,
44
],
[
1746540283.5052464,
50,
22,
44
],
[
1746540306.8070455,
50,
23,
46
],
[
1746540331.4141686,
50,
23,
46
],
[
1746540354.0572598,
50,
23,
46
],
[
1746540376.2133222,
50,
24,
48
],
[
1746540397.300531,
50,
24,
48
],
[
1746540414.2382736,
50,
24,
48
],
[
1746540437.6404507,
50,
25,
50
],
[
1746540457.402449,
50,
25,
50
],
[
1746540485.6715996,
50,
25,
50
],
[
1746540520.414385,
50,
26,
52
],
[
1746540549.5454729,
50,
26,
52
],
[
1746540585.2008934,
50,
26,
52
],
[
1746540613.5158305,
50,
27,
54
],
[
1746540642.9313936,
50,
27,
54
],
[
1746540685.0050852,
50,
27,
54
],
[
1746540716.0232894,
50,
28,
56
],
[
1746540747.5503366,
50,
28,
56
],
[
1746540772.7471344,
50,
28,
56
],
[
1746540803.660504,
50,
29,
58
],
[
1746540829.7624397,
50,
29,
58
],
[
1746540864.986714,
50,
29,
58
],
[
1746540899.3074083,
50,
30,
60
],
[
1746540927.9497225,
50,
30,
60
],
[
1746540948.141497,
50,
30,
60
],
[
1746540969.6243627,
50,
31,
62
],
[
1746541011.96106,
50,
31,
62
],
[
1746541038.3525891,
50,
31,
62
],
[
1746541066.2603362,
50,
32,
64
],
[
1746541095.328024,
50,
32,
64
],
[
1746541118.2119458,
50,
32,
64
],
[
1746541148.9291384,
50,
33,
66
],
[
1746541177.072193,
50,
33,
66
],
[
1746541214.8651252,
50,
33,
66
],
[
1746541244.567232,
50,
34,
68
],
[
1746541285.2332757,
50,
34,
68
],
[
1746541320.855433,
50,
34,
68
],
[
1746541362.3910906,
50,
35,
70
],
[
1746541407.0317273,
50,
35,
70
],
[
1746541442.0739174,
50,
35,
70
],
[
1746541501.2337303,
50,
36,
72
],
[
1746541552.9003444,
50,
36,
72
],
[
1746541588.3472157,
50,
36,
72
],
[
1746541635.0170007,
50,
37,
74
],
[
1746541676.2273138,
50,
37,
74
],
[
1746541714.947667,
50,
37,
74
],
[
1746541746.9173343,
50,
38,
76
],
[
1746541778.246792,
50,
38,
76
],
[
1746541837.3012714,
50,
38,
76
],
[
1746541922.4031365,
50,
39,
78
],
[
1746541956.9955192,
50,
39,
78
],
[
1746541992.4587173,
50,
39,
78
],
[
1746542028.095385,
50,
40,
80
],
[
1746542054.4871294,
50,
40,
80
],
[
1746542093.2300014,
50,
40,
80
],
[
1746542126.280432,
50,
41,
82
],
[
1746542152.5834925,
50,
41,
82
],
[
1746542170.4113572,
50,
41,
82
],
[
1746542196.2814887,
50,
42,
84
],
[
1746542228.4425156,
50,
42,
84
],
[
1746542256.3747044,
50,
42,
84
],
[
1746542282.677739,
50,
43,
86
],
[
1746542304.2275002,
50,
43,
86
],
[
1746542329.5659003,
50,
43,
86
],
[
1746542355.5993621,
50,
44,
88
],
[
1746542381.1443996,
50,
44,
88
],
[
1746542407.4957843,
50,
44,
88
],
[
1746542435.2623425,
50,
45,
90
],
[
1746542456.240685,
50,
45,
90
],
[
1746542488.000656,
50,
45,
90
],
[
1746542508.889974,
50,
46,
92
],
[
1746542542.0332382,
50,
46,
92
],
[
1746542583.3496332,
50,
46,
92
],
[
1746542617.6987855,
50,
47,
94
],
[
1746542644.9378753,
50,
47,
94
],
[
1746542669.4084983,
50,
47,
94
],
[
1746542709.6609554,
50,
48,
96
],
[
1746542752.5574687,
50,
48,
96
],
[
1746542789.1062737,
50,
48,
96
],
[
1746542825.8279698,
50,
49,
98
],
[
1746542855.7284753,
50,
49,
98
],
[
1746542890.5859423,
50,
49,
98
],
[
1746542921.1077027,
50,
50,
100
],
[
1746542960.7077951,
50,
50,
100
],
[
1746543056.1653128,
50,
49,
98
],
[
1746543175.9351792,
50,
48,
96
],
[
1746543256.6991844,
50,
47,
94
],
[
1746543338.8578613,
50,
46,
92
],
[
1746543440.626084,
50,
45,
90
],
[
1746543534.8153007,
50,
44,
88
],
[
1746543632.9531434,
50,
43,
86
],
[
1746543737.6703782,
50,
42,
84
],
[
1746543850.3378692,
50,
41,
82
],
[
1746543960.1044781,
50,
40,
80
],
[
1746544026.1572185,
50,
39,
78
],
[
1746544087.564161,
50,
38,
76
],
[
1746544147.484092,
50,
37,
74
],
[
1746544197.8238926,
50,
36,
72
],
[
1746544244.8555074,
50,
35,
70
],
[
1746544299.4491737,
50,
34,
68
],
[
1746544359.4295409,
50,
33,
66
],
[
1746544418.9359493,
50,
32,
64
],
[
1746544471.2657843,
50,
31,
62
],
[
1746544520.7534313,
50,
30,
60
],
[
1746544586.5430343,
50,
29,
58
],
[
1746544638.4577174,
50,
28,
56
],
[
1746544688.3629787,
50,
27,
54
],
[
1746544728.1858525,
50,
26,
52
],
[
1746544772.1750908,
50,
25,
50
],
[
1746544824.379164,
50,
24,
48
],
[
1746544894.2386718,
50,
23,
46
],
[
1746544957.215025,
50,
22,
44
],
[
1746545005.9622622,
50,
21,
42
],
[
1746545050.5457346,
50,
20,
40
],
[
1746545096.2860794,
50,
19,
38
],
[
1746545133.06788,
50,
18,
36
],
[
1746545177.2026393,
50,
17,
34
],
[
1746545231.1769001,
50,
16,
32
],
[
1746545284.227206,
50,
15,
30
],
[
1746545345.0244927,
50,
14,
28
],
[
1746545414.9461186,
50,
13,
26
],
[
1746545467.8612635,
50,
12,
24
],
[
1746545528.7672246,
50,
11,
22
],
[
1746545579.7772994,
50,
10,
20
],
[
1746545623.5943923,
50,
9,
18
],
[
1746545665.06204,
50,
8,
16
],
[
1746545706.8283474,
50,
7,
14
],
[
1746545745.8746164,
50,
6,
12
],
[
1746545782.59218,
50,
5,
10
],
[
1746545819.7714033,
50,
4,
8
],
[
1746545859.1753452,
50,
3,
6
],
[
1746545889.8315697,
50,
2,
4
],
[
1746545924.0515473,
50,
1,
2
],
[
1746545960.261598,
50,
0,
0
],
[
1746545978.7671556,
50,
0,
0
],
[
1746546008.6793249,
50,
0,
0
],
[
1746546031.4241679,
50,
0,
0
],
[
1746546052.0677223,
50,
0,
0
],
[
1746546076.0763023,
50,
0,
0
],
[
1746546097.1751006,
50,
0,
0
],
[
1746546124.9806962,
50,
0,
0
],
[
1746546145.0518572,
50,
0,
0
],
[
1746546173.2420828,
50,
0,
0
],
[
1746546197.1668987,
50,
0,
0
],
[
1746546219.8637683,
50,
0,
0
],
[
1746546242.125771,
50,
0,
0
],
[
1746546263.6906068,
50,
0,
0
],
[
1746546293.7118568,
50,
0,
0
],
[
1746546317.8536816,
50,
0,
0
],
[
1746546342.733743,
50,
0,
0
],
[
1746546370.8588777,
50,
0,
0
],
[
1746546402.8760688,
50,
0,
0
],
[
1746546425.482334,
50,
0,
0
],
[
1746546445.289149,
50,
0,
0
],
[
1746546467.1790974,
50,
0,
0
],
[
1746546486.5950854,
50,
0,
0
],
[
1746546503.48424,
50,
0,
0
],
[
1746546522.787966,
50,
0,
0
],
[
1746546543.3192382,
50,
0,
0
],
[
1746546568.1966124,
50,
0,
0
],
[
1746546590.2461448,
50,
0,
0
],
[
1746546607.2615414,
50,
0,
0
],
[
1746546624.6119883,
50,
0,
0
],
[
1746546643.933918,
50,
0,
0
],
[
1746546661.5031676,
50,
0,
0
],
[
1746546680.9337652,
50,
0,
0
],
[
1746546709.2453604,
50,
0,
0
],
[
1746546725.5358822,
50,
0,
0
],
[
1746546746.927259,
50,
0,
0
],
[
1746546764.6553254,
50,
0,
0
],
[
1746546783.9868953,
50,
0,
0
],
[
1746546809.3430774,
50,
0,
0
],
[
1746546827.424699,
50,
0,
0
],
[
1746546847.1950421,
50,
0,
0
],
[
1746546871.377993,
50,
0,
0
],
[
1746546894.256327,
50,
0,
0
],
[
1746546916.893805,
50,
0,
0
],
[
1746546946.5325608,
50,
0,
0
],
[
1746546972.4295466,
50,
0,
0
],
[
1746546996.8062842,
50,
0,
0
],
[
1746547015.329012,
50,
0,
0
],
[
1746547035.567827,
50,
0,
0
],
[
1746547057.6979964,
50,
0,
0
],
[
1746547081.775668,
50,
0,
0
],
[
1746547103.6184733,
50,
0,
0
],
[
1746547120.5357893,
50,
0,
0
],
[
1746547140.222476,
50,
1,
2
],
[
1746547162.981737,
50,
1,
2
],
[
1746547182.8515904,
50,
1,
2
],
[
1746547201.3924053,
50,
2,
4
],
[
1746547221.2210567,
50,
2,
4
],
[
1746547237.9639416,
50,
2,
4
],
[
1746547252.8383706,
50,
3,
6
],
[
1746547276.085714,
50,
3,
6
],
[
1746547291.9447203,
50,
3,
6
],
[
1746547309.849398,
50,
4,
8
],
[
1746547329.5869825,
50,
4,
8
],
[
1746547347.6536472,
50,
4,
8
],
[
1746547372.748522,
50,
5,
10
],
[
1746547396.168331,
50,
5,
10
],
[
1746547410.0438828,
50,
5,
10
],
[
1746547427.3495078,
50,
6,
12
],
[
1746547442.0876842,
50,
6,
12
],
[
1746547456.8298414,
50,
6,
12
],
[
1746547472.7387636,
50,
7,
14
],
[
1746547490.206135,
50,
7,
14
],
[
1746547509.707774,
50,
7,
14
],
[
1746547527.1663816,
50,
8,
16
],
[
1746547540.5765421,
50,
8,
16
],
[
1746547558.7444015,
50,
8,
16
],
[
1746547573.6236064,
50,
9,
18
],
[
1746547583.9210792,
50,
9,
18
],
[
1746547595.7089067,
50,
9,
18
],
[
1746547615.5301244,
50,
10,
20
],
[
1746547628.5913928,
50,
10,
20
],
[
1746547641.3620448,
50,
10,
20
],
[
1746547655.589708,
50,
11,
22
],
[
1746547674.001156,
50,
11,
22
],
[
1746547690.129626,
50,
11,
22
],
[
1746547704.3601859,
50,
12,
24
],
[
1746547715.9033384,
50,
12,
24
],
[
1746547734.7614796,
50,
12,
24
],
[
1746547752.4471538,
50,
13,
26
],
[
1746547766.6918986,
50,
13,
26
],
[
1746547784.5094125,
50,
13,
26
],
[
1746547806.177761,
50,
14,
28
],
[
1746547827.9047475,
50,
14,
28
],
[
1746547849.5503652,
50,
14,
28
],
[
1746547873.114199,
50,
15,
30
],
[
1746547896.5970242,
50,
15,
30
],
[
1746547923.7312686,
50,
15,
30
],
[
1746547949.3455908,
50,
16,
32
],
[
1746547975.072771,
50,
16,
32
],
[
1746547998.9755657,
50,
16,
32
],
[
1746548025.2163205,
50,
17,
34
],
[
1746548053.6761572,
50,
17,
34
],
[
1746548084.6388233,
50,
17,
34
],
[
1746548114.6592355,
50,
18,
36
],
[
1746548144.5680218,
50,
18,
36
],
[
1746548167.3988965,
50,
18,
36
],
[
1746548198.114894,
50,
19,
38
],
[
1746548228.0958197,
50,
19,
38
],
[
1746548256.1972852,
50,
19,
38
],
[
1746548286.8497074,
50,
20,
40
],
[
1746548314.7914379,
50,
20,
40
],
[
1746548344.444395,
50,
20,
40
],
[
1746548381.8661664,
50,
21,
42
],
[
1746548413.7413573,
50,
21,
42
],
[
1746548435.9911737,
50,
21,
42
],
[
1746548462.1126378,
50,
22,
44
],
[
1746548485.7237353,
50,
22,
44
],
[
1746548514.012134,
50,
22,
44
],
[
1746548561.3484175,
50,
23,
46
],
[
1746548598.9277232,
50,
23,
46
],
[
1746548646.4072113,
50,
23,
46
],
[
1746548690.992805,
50,
24,
48
],
[
1746548725.2434676,
50,
24,
48
],
[
1746548766.9622014,
50,
24,
48
],
[
1746548801.091006,
50,
25,
50
],
[
1746548839.5790398,
50,
25,
50
],
[
1746548885.707689,
50,
25,
50
],
[
1746548934.18325,
50,
26,
52
],
[
1746548977.0953054,
50,
26,
52
],
[
1746549014.5209072,
50,
26,
52
],
[
1746549058.2579064,
50,
27,
54
],
[
1746549102.5461345,
50,
27,
54
],
[
1746549146.7797902,
50,
27,
54
],
[
1746549200.8538246,
50,
28,
56
],
[
1746549265.4467134,
50,
28,
56
],
[
1746549311.3107355,
50,
28,
56
],
[
1746549352.3397985,
50,
29,
58
],
[
1746549404.1249204,
50,
29,
58
],
[
1746549458.8287277,
50,
29,
58
],
[
1746549504.7104993,
50,
30,
60
],
[
1746549533.758304,
50,
30,
60
],
[
1746549561.520099,
50,
30,
60
],
[
1746549592.2474637,
50,
31,
62
],
[
1746549613.6209967,
50,
31,
62
],
[
1746549650.253028,
50,
31,
62
],
[
1746549687.1554155,
50,
32,
64
],
[
1746549712.7183173,
50,
32,
64
],
[
1746549745.180674,
50,
32,
64
],
[
1746549826.292508,
50,
33,
66
],
[
1746549854.2436702,
50,
33,
66
],
[
1746549885.9216142,
50,
33,
66
],
[
1746549908.8258317,
50,
34,
68
],
[
1746549939.4276156,
50,
34,
68
],
[
1746549972.3329387,
50,
34,
68
],
[
1746550022.475632,
50,
35,
70
],
[
1746550049.4347017,
50,
35,
70
],
[
1746550073.736801,
50,
35,
70
],
[
1746550102.462704,
50,
36,
72
],
[
1746550126.1311295,
50,
36,
72
],
[
1746550152.3604429,
50,
36,
72
],
[
1746550175.7691548,
50,
37,
74
],
[
1746550200.6754875,
50,
37,
74
],
[
1746550226.5340755,
50,
37,
74
],
[
1746550255.4513958,
50,
38,
76
],
[
1746550288.760519,
50,
38,
76
],
[
1746550312.1819494,
50,
38,
76
],
[
1746550337.667139,
50,
39,
78
],
[
1746550362.2486196,
50,
39,
78
],
[
1746550391.3027337,
50,
39,
78
],
[
1746550424.7398238,
50,
40,
80
],
[
1746550456.2496018,
50,
40,
80
],
[
1746550477.063626,
50,
40,
80
],
[
1746550501.6059897,
50,
41,
82
],
[
1746550528.5256085,
50,
41,
82
],
[
1746550552.071387,
50,
41,
82
],
[
1746550577.9098778,
50,
42,
84
],
[
1746550599.328185,
50,
42,
84
],
[
1746550621.4255962,
50,
42,
84
],
[
1746550651.6660364,
50,
43,
86
],
[
1746550677.4675395,
50,
43,
86
],
[
1746550705.4189677,
50,
43,
86
],
[
1746550729.6764803,
50,
44,
88
],
[
1746550760.1114304,
50,
44,
88
],
[
1746550793.8643079,
50,
44,
88
],
[
1746550826.5980217,
50,
45,
90
],
[
1746550847.53085,
50,
45,
90
],
[
1746550868.9629831,
50,
45,
90
],
[
1746550903.4008899,
50,
46,
92
],
[
1746550931.8995235,
50,
46,
92
],
[
1746550960.2195294,
50,
46,
92
],
[
1746550979.9066355,
50,
47,
94
],
[
1746551000.3763587,
50,
47,
94
],
[
1746551025.7289083,
50,
47,
94
],
[
1746551046.3085132,
50,
48,
96
],
[
1746551065.808146,
50,
48,
96
],
[
1746551092.9944663,
50,
48,
96
],
[
1746551109.8619747,
50,
49,
98
],
[
1746551129.0906312,
50,
49,
98
],
[
1746551156.2451737,
50,
49,
98
],
[
1746551175.5306745,
50,
50,
100
],
[
1746551210.6427367,
50,
50,
100
],
[
1746551262.4989767,
50,
49,
98
],
[
1746551302.2415192,
50,
48,
96
],
[
1746551345.1754541,
50,
47,
94
],
[
1746551389.3072376,
50,
46,
92
],
[
1746551431.1833851,
50,
45,
90
],
[
1746551481.4771554,
50,
44,
88
],
[
1746551532.2754967,
50,
43,
86
],
[
1746551578.4494486,
50,
42,
84
],
[
1746551638.076214,
50,
41,
82
],
[
1746551678.7468836,
50,
40,
80
],
[
1746551715.6336675,
50,
39,
78
],
[
1746551755.1525195,
50,
38,
76
],
[
1746551788.6661499,
50,
37,
74
],
[
1746551822.3163738,
50,
36,
72
],
[
1746551851.7628202,
50,
35,
70
],
[
1746551887.719801,
50,
34,
68
],
[
1746551930.029264,
50,
33,
66
],
[
1746551961.5245366,
50,
32,
64
],
[
1746552000.9194524,
50,
31,
62
],
[
1746552038.8102677,
50,
30,
60
],
[
1746552079.5979853,
50,
29,
58
],
[
1746552122.493073,
50,
28,
56
],
[
1746552168.3593974,
50,
27,
54
],
[
1746552209.389579,
50,
26,
52
],
[
1746552255.4467173,
50,
25,
50
],
[
1746552289.8084323,
50,
24,
48
],
[
1746552323.2124412,
50,
23,
46
],
[
1746552359.7090108,
50,
22,
44
],
[
1746552397.8487613,
50,
21,
42
],
[
1746552430.8182447,
50,
20,
40
],
[
1746552473.5742357,
50,
19,
38
],
[
1746552519.242942,
50,
18,
36
],
[
1746552561.536264,
50,
17,
34
],
[
1746552602.98525,
50,
16,
32
],
[
1746552639.444207,
50,
15,
30
],
[
1746552677.480965,
50,
14,
28
],
[
1746552711.312603,
50,
13,
26
],
[
1746552748.7483623,
50,
12,
24
],
[
1746552786.6318061,
50,
11,
22
],
[
1746552822.121778,
50,
10,
20
],
[
1746552855.6677597,
50,
9,
18
],
[
1746552890.9191132,
50,
8,
16
],
[
1746552928.0880644,
50,
7,
14
],
[
1746552961.6571236,
50,
6,
12
],
[
1746552992.1865468,
50,
5,
10
],
[
1746553025.246342,
50,
4,
8
],
[
1746553052.6384153,
50,
3,
6
],
[
1746553083.9280992,
50,
2,
4
],
[
1746553111.0644083,
50,
1,
2
],
[
1746553141.5593717,
50,
0,
0
],
[
1746553156.4685154,
50,
0,
0
],
[
1746553186.2904878,
50,
0,
0
],
[
1746553213.6267736,
50,
0,
0
],
[
1746553239.5823913,
50,
0,
0
],
[
1746553265.3947334,
50,
0,
0
],
[
1746553288.064008,
50,
0,
0
],
[
1746553312.8417947,
50,
0,
0
],
[
1746553334.3900347,
50,
0,
0
],
[
1746553355.2849636,
50,
0,
0
],
[
1746553374.651137,
50,
0,
0
],
[
1746553395.640217,
50,
0,
0
],
[
1746553416.921146,
50,
0,
0
],
[
1746553437.133974,
50,
0,
0
],
[
1746553460.5663075,
50,
0,
0
],
[
1746553481.8893366,
50,
0,
0
],
[
1746553506.8759055,
50,
0,
0
],
[
1746553539.6089315,
50,
0,
0
],
[
1746553567.1713858,
50,
0,
0
],
[
1746553593.9535732,
50,
0,
0
],
[
1746553618.212266,
50,
0,
0
],
[
1746553648.4981515,
50,
0,
0
],
[
1746553671.5452302,
50,
0,
0
],
[
1746553698.6121702,
50,
0,
0
],
[
1746553721.9464664,
50,
0,
0
],
[
1746553747.7394104,
50,
0,
0
],
[
1746553772.1630309,
50,
0,
0
],
[
1746553796.7150114,
50,
0,
0
],
[
1746553820.2755065,
50,
0,
0
],
[
1746553843.206653,
50,
0,
0
],
[
1746553868.909474,
50,
0,
0
],
[
1746553893.1503315,
50,
0,
0
],
[
1746553918.318236,
50,
0,
0
],
[
1746553942.481174,
50,
0,
0
],
[
1746553973.1878572,
50,
0,
0
],
[
1746554001.1135218,
50,
0,
0
],
[
1746554026.3784509,
50,
0,
0
],
[
1746554053.0268807,
50,
0,
0
],
[
1746554076.9951768,
50,
0,
0
],
[
1746554108.0849965,
50,
0,
0
],
[
1746554131.2792366,
50,
0,
0
],
[
1746554154.7262592,
50,
0,
0
],
[
1746554180.8594728,
50,
0,
0
],
[
1746554207.4857323,
50,
0,
0
],
[
1746554235.7898295,
50,
0,
0
],
[
1746554262.1525345,
50,
0,
0
],
[
1746554292.9023488,
50,
0,
0
],
[
1746554318.4000022,
50,
0,
0
],
[
1746554345.559473,
50,
0,
0
],
[
1746554369.9933603,
50,
0,
0
],
[
1746554394.200284,
50,
0,
0
],
[
1746554422.8738372,
50,
0,
0
],
[
1746554437.7709897,
50,
0,
0
],
[
1746554464.5691383,
50,
1,
2
],
[
1746554482.7664826,
50,
1,
2
],
[
1746554501.6348674,
50,
1,
2
],
[
1746554519.1657884,
50,
2,
4
],
[
1746554534.4308448,
50,
2,
4
],
[
1746554549.8760085,
50,
2,
4
],
[
1746554569.5338166,
50,
3,
6
],
[
1746554584.2411425,
50,
3,
6
],
[
1746554597.892474,
50,
3,
6
],
[
1746554611.1996667,
50,
4,
8
],
[
1746554623.7447636,
50,
4,
8
],
[
1746554636.150679,
50,
4,
8
],
[
1746554650.1156871,
50,
5,
10
],
[
1746554662.4823737,
50,
5,
10
],
[
1746554675.5297663,
50,
5,
10
],
[
1746554690.9342442,
50,
6,
12
],
[
1746554703.3180885,
50,
6,
12
],
[
1746554716.2446887,
50,
6,
12
],
[
1746554730.3694189,
50,
7,
14
],
[
1746554742.958636,
50,
7,
14
],
[
1746554754.7263372,
50,
7,
14
],
[
1746554768.4622438,
50,
8,
16
],
[
1746554781.4997191,
50,
8,
16
],
[
1746554794.7251928,
50,
8,
16
],
[
1746554808.3683412,
50,
9,
18
],
[
1746554819.92243,
50,
9,
18
],
[
1746554833.2732656,
50,
9,
18
],
[
1746554848.1806953,
50,
10,
20
],
[
1746554859.9294202,
50,
10,
20
],
[
1746554873.163302,
50,
10,
20
],
[
1746554886.738963,
50,
11,
22
],
[
1746554898.554802,
50,
11,
22
],
[
1746554911.4863734,
50,
11,
22
],
[
1746554925.0110683,
50,
12,
24
],
[
1746554937.0661542,
50,
12,
24
],
[
1746554953.124793,
50,
12,
24
],
[
1746554967.6215305,
50,
13,
26
],
[
1746554979.427242,
50,
13,
26
],
[
1746554992.5732355,
50,
13,
26
],
[
1746555006.879536,
50,
14,
28
],
[
1746555020.52669,
50,
14,
28
],
[
1746555033.5127196,
50,
14,
28
],
[
1746555046.9712281,
50,
15,
30
],
[
1746555059.037726,
50,
15,
30
],
[
1746555071.8590539,
50,
15,
30
],
[
1746555085.7412455,
50,
16,
32
],
[
1746555098.1405342,
50,
16,
32
],
[
1746555110.5993087,
50,
16,
32
],
[
1746555126.4931293,
50,
17,
34
],
[
1746555140.6080549,
50,
17,
34
],
[
1746555157.6277974,
50,
17,
34
],
[
1746555173.7688112,
50,
18,
36
],
[
1746555187.685248,
50,
18,
36
],
[
1746555202.1313107,
50,
18,
36
],
[
1746555217.5439541,
50,
19,
38
],
[
1746555232.071386,
50,
19,
38
],
[
1746555247.3512235,
50,
19,
38
],
[
1746555263.2637045,
50,
20,
40
],
[
1746555276.2775981,
50,
20,
40
],
[
1746555292.4947586,
50,
20,
40
],
[
1746555308.815907,
50,
21,
42
],
[
1746555322.2190018,
50,
21,
42
],
[
1746555336.31667,
50,
21,
42
],
[
1746555355.1192646,
50,
22,
44
],
[
1746555370.8144002,
50,
22,
44
],
[
1746555385.530855,
50,
22,
44
],
[
1746555402.181373,
50,
23,
46
],
[
1746555418.907878,
50,
23,
46
],
[
1746555436.6657512,
50,
23,
46
],
[
1746555454.1919816,
50,
24,
48
],
[
1746555470.6918085,
50,
24,
48
],
[
1746555484.8572083,
50,
24,
48
],
[
1746555500.1398735,
50,
25,
50
],
[
1746555513.778389,
50,
25,
50
],
[
1746555531.4352956,
50,
25,
50
],
[
1746555545.9782643,
50,
26,
52
],
[
1746555559.7059715,
50,
26,
52
],
[
1746555573.5999222,
50,
26,
52
],
[
1746555590.6458375,
50,
27,
54
],
[
1746555608.6725037,
50,
27,
54
],
[
1746555625.6648178,
50,
27,
54
],
[
1746555642.3072486,
50,
28,
56
],
[
1746555659.650903,
50,
28,
56
],
[
1746555674.8739238,
50,
28,
56
],
[
1746555694.1740656,
50,
29,
58
],
[
1746555712.1680465,
50,
29,
58
],
[
1746555727.6610296,
50,
29,
58
],
[
1746555745.7795932,
50,
30,
60
],
[
1746555764.2765987,
50,
30,
60
],
[
1746555788.8294485,
50,
30,
60
],
[
1746555804.4318237,
50,
31,
62
],
[
1746555825.1059759,
50,
31,
62
],
[
1746555841.7289085,
50,
31,
62
],
[
1746555859.0086699,
50,
32,
64
],
[
1746555874.7113383,
50,
32,
64
],
[
1746555895.515611,
50,
32,
64
],
[
1746555912.699454,
50,
33,
66
],
[
1746555932.4627361,
50,
33,
66
],
[
1746555951.5057764,
50,
33,
66
],
[
1746555967.0399437,
50,
34,
68
],
[
1746555981.0052352,
50,
34,
68
],
[
1746555997.8293562,
50,
34,
68
],
[
1746556020.5490181,
50,
35,
70
],
[
1746556036.7238097,
50,
35,
70
],
[
1746556053.7965655,
50,
35,
70
],
[
1746556074.3365347,
50,
36,
72
],
[
1746556090.311175,
50,
36,
72
],
[
1746556109.0696826,
50,
36,
72
],
[
1746556129.7861674,
50,
37,
74
],
[
1746556145.7623584,
50,
37,
74
],
[
1746556162.3722162,
50,
37,
74
],
[
1746556184.3995242,
50,
38,
76
],
[
1746556202.3044271,
50,
38,
76
],
[
1746556219.399741,
50,
38,
76
],
[
1746556239.62365,
50,
39,
78
],
[
1746556256.539626,
50,
39,
78
],
[
1746556271.2437222,
50,
39,
78
],
[
1746556291.5393322,
50,
40,
80
],
[
1746556306.5075839,
50,
40,
80
],
[
1746556321.3357742,
50,
40,
80
],
[
1746556340.208338,
50,
41,
82
],
[
1746556355.5690105,
50,
41,
82
],
[
1746556371.1820798,
50,
41,
82
],
[
1746556389.8602784,
50,
42,
84
],
[
1746556405.8837686,
50,
42,
84
],
[
1746556425.5056934,
50,
42,
84
],
[
1746556444.1026587,
50,
43,
86
],
[
1746556462.9905167,
50,
43,
86
],
[
1746556479.507711,
50,
43,
86
],
[
1746556495.9848714,
50,
44,
88
],
[
1746556512.6174166,
50,
44,
88
],
[
1746556529.5444922,
50,
44,
88
],
[
1746556551.0293963,
50,
45,
90
],
[
1746556570.9510858,
50,
45,
90
],
[
1746556588.7080014,
50,
45,
90
],
[
1746556606.52664,
50,
46,
92
],
[
1746556627.8671489,
50,
46,
92
],
[
1746556643.458403,
50,
46,
92
],
[
1746556662.9719918,
50,
47,
94
],
[
1746556679.049147,
50,
47,
94
],
[
1746556698.7737632,
50,
47,
94
],
[
1746556714.9062955,
50,
48,
96
],
[
1746556731.4569173,
50,
48,
96
],
[
1746556751.332411,
50,
48,
96
],
[
1746556773.1905103,
50,
49,
98
],
[
1746556792.9697397,
50,
49,
98
],
[
1746556812.80882,
50,
49,
98
],
[
1746556831.200855,
50,
50,
100
],
[
1746556852.68704,
50,
50,
100
],
[
1746556892.6835089,
50,
49,
98
],
[
1746556929.2202406,
50,
48,
96
],
[
1746556962.655907,
50,
47,
94
],
[
1746556996.9922311,
50,
46,
92
],
[
1746557031.9311807,
50,
45,
90
],
[
1746557065.3389933,
50,
44,
88
],
[
1746557098.8144572,
50,
43,
86
],
[
1746557129.6837065,
50,
42,
84
],
[
1746557160.8121798,
50,
41,
82
],
[
1746557190.8331134,
50,
40,
80
],
[
1746557223.4408991,
50,
39,
78
],
[
1746557258.9275954,
50,
38,
76
],
[
1746557289.6462154,
50,
37,
74
],
[
1746557321.0841124,
50,
36,
72
],
[
1746557354.0981383,
50,
35,
70
],
[
1746557392.448202,
50,
34,
68
],
[
1746557425.032063,
50,
33,
66
],
[
1746557464.409275,
50,
32,
64
],
[
1746557497.9256063,
50,
31,
62
],
[
1746557536.4848747,
50,
30,
60
],
[
1746557575.9362507,
50,
29,
58
],
[
1746557610.858593,
50,
28,
56
],
[
1746557650.1915696,
50,
27,
54
],
[
1746557684.3811028,
50,
26,
52
],
[
1746557736.28609,
50,
25,
50
],
[
1746557779.0621507,
50,
24,
48
],
[
1746557819.0791948,
50,
23,
46
],
[
1746557874.0957944,
50,
22,
44
],
[
1746557923.7004685,
50,
21,
42
],
[
1746557976.3039024,
50,
20,
40
],
[
1746558031.0823634,
50,
19,
38
],
[
1746558090.7053084,
50,
18,
36
],
[
1746558149.8929865,
50,
17,
34
],
[
1746558198.1643212,
50,
16,
32
],
[
1746558238.3797061,
50,
15,
30
],
[
1746558275.7427285,
50,
14,
28
],
[
1746558312.6181371,
50,
13,
26
],
[
1746558346.6659794,
50,
12,
24
],
[
1746558385.136596,
50,
11,
22
],
[
1746558423.6478808,
50,
10,
20
],
[
1746558456.0792873,
50,
9,
18
],
[
1746558491.4709508,
50,
8,
16
],
[
1746558526.6352725,
50,
7,
14
],
[
1746558563.646303,
50,
6,
12
],
[
1746558598.4767733,
50,
5,
10
],
[
1746558634.3817499,
50,
4,
8
],
[
1746558675.4672585,
50,
3,
6
],
[
1746558717.6778548,
50,
2,
4
],
[
1746558758.16545,
50,
1,
2
],
[
1746558794.2779772,
50,
0,
0
],
[
1746558814.4311473,
50,
0,
0
],
[
1746558852.3531244,
50,
0,
0
],
[
1746558877.4280598,
50,
0,
0
],
[
1746558903.2005725,
50,
0,
0
],
[
1746558928.0702653,
50,
0,
0
],
[
1746558960.7948995,
50,
0,
0
],
[
1746558988.235982,
50,
0,
0
],
[
1746559016.1101656,
50,
0,
0
],
[
1746559041.4554045,
50,
0,
0
],
[
1746559074.5266695,
50,
0,
0
],
[
1746559102.7877357,
50,
0,
0
],
[
1746559133.1081278,
50,
0,
0
],
[
1746559160.4823804,
50,
0,
0
],
[
1746559191.729854,
50,
0,
0
],
[
1746559217.0293987,
50,
0,
0
],
[
1746559252.206439,
50,
0,
0
],
[
1746559281.0641565,
50,
0,
0
],
[
1746559312.4199047,
50,
0,
0
],
[
1746559340.2242148,
50,
0,
0
],
[
1746559372.6335611,
50,
0,
0
],
[
1746559402.9116578,
50,
0,
0
],
[
1746559431.6103718,
50,
0,
0
],
[
1746559458.6839516,
50,
0,
0
],
[
1746559486.1243591,
50,
0,
0
],
[
1746559510.6068609,
50,
0,
0
],
[
1746559540.0599077,
50,
0,
0
],
[
1746559564.3500378,
50,
0,
0
],
[
1746559590.6721392,
50,
0,
0
],
[
1746559615.7096918,
50,
0,
0
],
[
1746559641.263482,
50,
0,
0
],
[
1746559670.194712,
50,
0,
0
],
[
1746559696.6169112,
50,
0,
0
],
[
1746559726.8381913,
50,
0,
0
],
[
1746559751.8002443,
50,
0,
0
],
[
1746559780.057597,
50,
0,
0
],
[
1746559805.3833034,
50,
0,
0
],
[
1746559833.494304,
50,
0,
0
],
[
1746559860.4769464,
50,
0,
0
],
[
1746559889.5180159,
50,
0,
0
],
[
1746559915.6488097,
50,
0,
0
],
[
1746559944.8331916,
50,
0,
0
],
[
1746559972.883017,
50,
0,
0
],
[
1746560003.0727506,
50,
0,
0
],
[
1746560028.4566953,
50,
0,
0
],
[
1746560060.3769274,
50,
0,
0
],
[
1746560085.726563,
50,
0,
0
],
[
1746560111.79901,
50,
0,
0
],
[
1746560137.6257744,
50,
0,
0
],
[
1746560165.0564594,
50,
0,
0
],
[
1746560189.2505262,
50,
0,
0
],
[
1746560215.214648,
50,
0,
0
],
[
1746560229.5896254,
50,
0,
0
],
[
1746560245.3042731,
50,
1,
2
],
[
1746560259.5035336,
50,
1,
2
],
[
1746560277.5893345,
50,
1,
2
],
[
1746560294.9319284,
50,
2,
4
],
[
1746560309.9293914,
50,
2,
4
],
[
1746560327.6317422,
50,
2,
4
],
[
1746560344.4690175,
50,
3,
6
],
[
1746560359.2723963,
50,
3,
6
],
[
1746560376.4847715,
50,
3,
6
],
[
1746560394.83529,
50,
4,
8
],
[
1746560409.6996655,
50,
4,
8
],
[
1746560426.9775357,
50,
4,
8
],
[
1746560449.09194,
50,
5,
10
],
[
1746560464.412513,
50,
5,
10
],
[
1746560479.7418375,
50,
5,
10
],
[
1746560497.4474735,
50,
6,
12
],
[
1746560515.1943731,
50,
6,
12
],
[
1746560530.990147,
50,
6,
12
],
[
1746560548.383142,
50,
7,
14
],
[
1746560567.713221,
50,
7,
14
],
[
1746560584.321738,
50,
7,
14
],
[
1746560600.9801989,
50,
8,
16
],
[
1746560618.6604052,
50,
8,
16
],
[
1746560634.331097,
50,
8,
16
],
[
1746560650.1289957,
50,
9,
18
],
[
1746560666.0985062,
50,
9,
18
],
[
1746560683.278447,
50,
9,
18
],
[
1746560700.7738435,
50,
10,
20
],
[
1746560716.186615,
50,
10,
20
],
[
1746560731.669018,
50,
10,
20
],
[
1746560750.0241904,
50,
11,
22
],
[
1746560764.8954296,
50,
11,
22
],
[
1746560780.421059,
50,
11,
22
],
[
1746560798.8165386,
50,
12,
24
],
[
1746560813.7224753,
50,
12,
24
],
[
1746560828.7601035,
50,
12,
24
],
[
1746560845.7838829,
50,
13,
26
],
[
1746560865.2037754,
50,
13,
26
],
[
1746560884.319409,
50,
13,
26
],
[
1746560905.3740163,
50,
14,
28
],
[
1746560926.5889082,
50,
14,
28
],
[
1746560943.0852485,
50,
14,
28
],
[
1746560961.1191092,
50,
15,
30
],
[
1746560979.1134293,
50,
15,
30
],
[
1746560995.3987286,
50,
15,
30
],
[
1746561012.5728292,
50,
16,
32
],
[
1746561028.0372992,
50,
16,
32
],
[
1746561045.4995844,
50,
16,
32
],
[
1746561063.2884,
50,
17,
34
],
[
1746561078.8185036,
50,
17,
34
],
[
1746561095.5308414,
50,
17,
34
],
[
1746561115.4120517,
50,
18,
36
],
[
1746561131.549795,
50,
18,
36
],
[
1746561149.7788997,
50,
18,
36
],
[
1746561169.620734,
50,
19,
38
],
[
1746561188.3549504,
50,
19,
38
],
[
1746561205.5373845,
50,
19,
38
],
[
1746561222.8194401,
50,
20,
40
],
[
1746561239.3937755,
50,
20,
40
],
[
1746561256.4581532,
50,
20,
40
],
[
1746561273.9727042,
50,
21,
42
],
[
1746561292.6560023,
50,
21,
42
],
[
1746561308.8108258,
50,
21,
42
],
[
1746561327.0700514,
50,
22,
44
],
[
1746561342.8846617,
50,
22,
44
],
[
1746561361.3917186,
50,
22,
44
],
[
1746561379.8710396,
50,
23,
46
],
[
1746561395.7475219,
50,
23,
46
],
[
1746561415.110208,
50,
23,
46
],
[
1746561433.116248,
50,
24,
48
],
[
1746561450.053395,
50,
24,
48
],
[
1746561467.8197463,
50,
24,
48
],
[
1746561488.9602127,
50,
25,
50
],
[
1746561505.5091472,
50,
25,
50
],
[
1746561521.4574594,
50,
25,
50
],
[
1746561542.534335,
50,
26,
52
],
[
1746561560.1209135,
50,
26,
52
],
[
1746561578.5381198,
50,
26,
52
],
[
1746561599.2888038,
50,
27,
54
],
[
1746561615.7016177,
50,
27,
54
],
[
1746561634.1723242,
50,
27,
54
],
[
1746561655.94982,
50,
28,
56
],
[
1746561671.7112794,
50,
28,
56
],
[
1746561688.5461664,
50,
28,
56
],
[
1746561707.0898006,
50,
29,
58
],
[
1746561725.6210525,
50,
29,
58
],
[
1746561742.2962408,
50,
29,
58
],
[
1746561759.645343,
50,
30,
60
],
[
1746561777.1760252,
50,
30,
60
],
[
1746561795.190377,
50,
30,
60
],
[
1746561813.0683067,
50,
31,
62
],
[
1746561830.0866525,
50,
31,
62
],
[
1746561848.2903197,
50,
31,
62
],
[
1746561865.7753525,
50,
32,
64
],
[
1746561883.6947055,
50,
32,
64
],
[
1746561900.4047432,
50,
32,
64
],
[
1746561918.8774889,
50,
33,
66
],
[
1746561936.5216968,
50,
33,
66
],
[
1746561953.9048722,
50,
33,
66
],
[
1746561971.0023844,
50,
34,
68
],
[
1746561987.192251,
50,
34,
68
],
[
1746562006.4754026,
50,
34,
68
],
[
1746562025.3751564,
50,
35,
70
],
[
1746562041.680086,
50,
35,
70
],
[
1746562064.133024,
50,
35,
70
],
[
1746562083.1294231,
50,
36,
72
],
[
1746562098.8387113,
50,
36,
72
],
[
1746562120.470144,
50,
36,
72
],
[
1746562140.201284,
50,
37,
74
],
[
1746562158.8603032,
50,
37,
74
],
[
1746562179.3560297,
50,
37,
74
],
[
1746562198.4534714,
50,
38,
76
],
[
1746562216.526343,
50,
38,
76
],
[
1746562239.5335686,
50,
38,
76
],
[
1746562259.4057002,
50,
39,
78
],
[
1746562277.5661924,
50,
39,
78
],
[
1746562298.3904293,
50,
39,
78
],
[
1746562319.4839306,
50,
40,
80
],
[
1746562339.1086905,
50,
40,
80
],
[
1746562360.2948012,
50,
40,
80
],
[
1746562379.9698398,
50,
41,
82
],
[
1746562400.3846304,
50,
41,
82
],
[
1746562423.8797648,
50,
41,
82
],
[
1746562446.223142,
50,
42,
84
],
[
1746562467.0114052,
50,
42,
84
],
[
1746562484.7724893,
50,
42,
84
],
[
1746562505.3581257,
50,
43,
86
],
[
1746562526.896331,
50,
43,
86
],
[
1746562546.2114346,
50,
43,
86
],
[
1746562567.8605254,
50,
44,
88
],
[
1746562589.6049087,
50,
44,
88
],
[
1746562609.849097,
50,
44,
88
],
[
1746562631.657505,
50,
45,
90
],
[
1746562656.238487,
50,
45,
90
],
[
1746562680.7065942,
50,
45,
90
],
[
1746562704.8876505,
50,
46,
92
],
[
1746562724.5127022,
50,
46,
92
],
[
1746562745.1030164,
50,
46,
92
],
[
1746562768.3409474,
50,
47,
94
],
[
1746562787.2378027,
50,
47,
94
],
[
1746562814.7521677,
50,
47,
94
],
[
1746562837.3901043,
50,
48,
96
],
[
1746562855.759093,
50,
48,
96
],
[
1746562874.892255,
50,
48,
96
],
[
1746562894.7430577,
50,
49,
98
],
[
1746562912.453704,
50,
49,
98
],
[
1746562932.172901,
50,
49,
98
],
[
1746562956.2374365,
50,
50,
100
],
[
1746562979.147943,
50,
50,
100
],
[
1746563024.1827323,
50,
49,
98
],
[
1746563060.7924445,
50,
48,
96
],
[
1746563096.772328,
50,
47,
94
],
[
1746563130.4286423,
50,
46,
92
],
[
1746563166.7356756,
50,
45,
90
],
[
1746563204.4157414,
50,
44,
88
],
[
1746563240.970277,
50,
43,
86
],
[
1746563276.379332,
50,
42,
84
],
[
1746563313.8920836,
50,
41,
82
],
[
1746563348.3542833,
50,
40,
80
],
[
1746563383.1414363,
50,
39,
78
],
[
1746563417.4686887,
50,
38,
76
],
[
1746563452.3762116,
50,
37,
74
],
[
1746563491.7065458,
50,
36,
72
],
[
1746563527.1521704,
50,
35,
70
],
[
1746563567.0661476,
50,
34,
68
],
[
1746563605.7113056,
50,
33,
66
],
[
1746563641.4993284,
50,
32,
64
],
[
1746563682.307408,
50,
31,
62
],
[
1746563723.854065,
50,
30,
60
],
[
1746563759.0226471,
50,
29,
58
],
[
1746563798.2178028,
50,
28,
56
],
[
1746563836.1733499,
50,
27,
54
],
[
1746563870.4180038,
50,
26,
52
],
[
1746563905.7318988,
50,
25,
50
],
[
1746563939.3602738,
50,
24,
48
],
[
1746563974.4832442,
50,
23,
46
],
[
1746564011.6926093,
50,
22,
44
],
[
1746564047.635378,
50,
21,
42
],
[
1746564092.7294805,
50,
20,
40
],
[
1746564136.0846293,
50,
19,
38
],
[
1746564179.7574878,
50,
18,
36
],
[
1746564217.7355425,
50,
17,
34
],
[
1746564256.6147902,
50,
16,
32
],
[
1746564291.7383335,
50,
15,
30
],
[
1746564332.4716787,
50,
14,
28
],
[
1746564371.1995785,
50,
13,
26
],
[
1746564406.066236,
50,
12,
24
],
[
1746564442.587112,
50,
11,
22
],
[
1746564479.6545825,
50,
10,
20
],
[
1746564514.567038,
50,
9,
18
],
[
1746564549.3796878,
50,
8,
16
],
[
1746564583.8735964,
50,
7,
14
],
[
1746564618.6337423,
50,
6,
12
],
[
1746564651.461022,
50,
5,
10
],
[
1746564685.218942,
50,
4,
8
],
[
1746564722.3917916,
50,
3,
6
],
[
1746564756.7353556,
50,
2,
4
],
[
1746564793.1183658,
50,
1,
2
],
[
1746564830.9023192,
50,
0,
0
]
];
var tab_main_worker_cpu_ram_csv_json = [
[
1746533465,
619.28515625,
34.3
],
[
1746533469,
619.54296875,
36.5
],
[
1746533473,
619.54296875,
35.2
],
[
1746533473,
619.54296875,
31.8
],
[
1746533473,
619.54296875,
28
],
[
1746533473,
619.54296875,
33.6
],
[
1746533473,
619.54296875,
48.4
],
[
1746535280,
641.20703125,
35.4
],
[
1746535280,
641.20703125,
28
],
[
1746535280,
641.20703125,
37
],
[
1746538443,
699.9921875,
42.6
],
[
1746538443,
699.9921875,
34
],
[
1746538443,
699.9921875,
32.6
],
[
1746538443,
699.9921875,
39.4
],
[
1746545977,
714.21484375,
33.6
],
[
1746545977,
714.21484375,
38.6
],
[
1746545977,
714.21484375,
39.1
],
[
1746545977,
714.21484375,
33.3
],
[
1746553154,
731.48828125,
37.6
],
[
1746553154,
731.48828125,
50
],
[
1746553154,
731.48828125,
37.5
],
[
1746553154,
731.48828125,
50
],
[
1746558812,
758.86328125,
39.7
],
[
1746558812,
758.86328125,
43.6
],
[
1746558812,
758.86328125,
40.3
],
[
1746558812,
758.86328125,
36.4
],
[
1746564851,
788.62890625,
39.4
],
[
1746564851,
788.62890625,
43.3
],
[
1746564851,
788.62890625,
38.3
],
[
1746564851,
788.62890625,
40.9
]
];
var tab_main_worker_cpu_ram_headers_json = [
"timestamp",
"ram_usage_mb",
"cpu_usage_percent"
];
"use strict";
function add_default_layout_data (layout) {
layout["width"] = get_graph_width();
layout["height"] = get_graph_height();
layout["paper_bgcolor"] = 'rgba(0,0,0,0)';
layout["plot_bgcolor"] = 'rgba(0,0,0,0)';
return layout;
}
function get_marker_size() {
return 12;
}
function get_text_color() {
return theme == "dark" ? "white" : "black";
}
function get_font_size() {
return 14;
}
function get_graph_height() {
return 800;
}
function get_font_data() {
return {
size: get_font_size(),
color: get_text_color()
}
}
function get_axis_title_data(name, axis_type = "") {
if(axis_type) {
return {
text: name,
type: axis_type,
font: get_font_data()
};
}
return {
text: name,
font: get_font_data()
};
}
function get_graph_width() {
var width = document.body.clientWidth || window.innerWidth || document.documentElement.clientWidth;
return Math.max(800, Math.floor(width * 0.9));
}
function createTable(data, headers, table_name) {
if (!$("#" + table_name).length) {
console.error("#" + table_name + " not found");
return;
}
new gridjs.Grid({
columns: headers,
data: data,
search: true,
sort: true
}).render(document.getElementById(table_name));
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
colorize_table_entries();
add_colorize_to_gridjs_table();
}
function download_as_file(id, filename) {
var text = $("#" + id).text();
var blob = new Blob([text], {
type: "text/plain"
});
var link = document.createElement("a");
link.href = URL.createObjectURL(blob);
link.download = filename;
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
}
function copy_to_clipboard_from_id (id) {
var text = $("#" + id).text();
copy_to_clipboard(text);
}
function copy_to_clipboard(text) {
if (!navigator.clipboard) {
let textarea = document.createElement("textarea");
textarea.value = text;
document.body.appendChild(textarea);
textarea.select();
try {
document.execCommand("copy");
} catch (err) {
console.error("Copy failed:", err);
}
document.body.removeChild(textarea);
return;
}
navigator.clipboard.writeText(text).then(() => {
console.log("Text copied to clipboard");
}).catch(err => {
console.error("Failed to copy text:", err);
});
}
function filterNonEmptyRows(data) {
var new_data = [];
for (var row_idx = 0; row_idx < data.length; row_idx++) {
var line = data[row_idx];
var line_has_empty_data = false;
for (var col_idx = 0; col_idx < line.length; col_idx++) {
var col_header_name = tab_results_headers_json[col_idx];
var single_data_point = line[col_idx];
if(single_data_point === "" && !special_col_names.includes(col_header_name)) {
line_has_empty_data = true;
continue;
}
}
if(!line_has_empty_data) {
new_data.push(line);
}
}
return new_data;
}
function make_text_in_parallel_plot_nicer() {
$(".parcoords g > g > text").each(function() {
if (theme == "dark") {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "white")
.css("stroke", "black")
.css("stroke-width", "2px")
.css("paint-order", "stroke fill");
} else {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "black")
.css("stroke", "unset")
.css("stroke-width", "unset")
.css("paint-order", "stroke fill");
}
});
}
function createParallelPlot(dataArray, headers, resultNames, ignoreColumns = []) {
if ($("#parallel-plot").data("loaded") == "true") {
return;
}
dataArray = filterNonEmptyRows(dataArray);
const ignoreSet = new Set(ignoreColumns);
const numericalCols = [];
const categoricalCols = [];
const categoryMappings = {};
headers.forEach((header, colIndex) => {
if (ignoreSet.has(header)) return;
const values = dataArray.map(row => row[colIndex]);
if (values.every(val => !isNaN(parseFloat(val)))) {
numericalCols.push({ name: header, index: colIndex });
} else {
categoricalCols.push({ name: header, index: colIndex });
const uniqueValues = [...new Set(values)];
categoryMappings[header] = Object.fromEntries(uniqueValues.map((val, i) => [val, i]));
}
});
const dimensions = [];
numericalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => parseFloat(row[col.index])),
range: [
Math.min(...dataArray.map(row => parseFloat(row[col.index]))),
Math.max(...dataArray.map(row => parseFloat(row[col.index])))
]
});
});
categoricalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => categoryMappings[col.name][row[col.index]]),
tickvals: Object.values(categoryMappings[col.name]),
ticktext: Object.keys(categoryMappings[col.name])
});
});
let colorScale = null;
let colorValues = null;
if (resultNames.length > 1) {
let selectBox = '<select id="result-select" style="margin-bottom: 10px;">';
selectBox += '<option value="none">No color</option>';
var k = 0;
resultNames.forEach(resultName => {
var minMax = result_min_max[k];
if(minMax === undefined) {
minMax = "min [automatically chosen]"
}
selectBox += `<option value="${resultName}">${resultName} (${minMax})</option>`;
k = k + 1;
});
selectBox += '</select>';
$("#parallel-plot").before(selectBox);
$("#result-select").change(function() {
const selectedResult = $(this).val();
if (selectedResult === "none") {
colorValues = null;
colorScale = null;
} else {
const resultCol = numericalCols.find(col => col.name.toLowerCase() === selectedResult.toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
let minResult = Math.min(...colorValues);
let maxResult = Math.max(...colorValues);
var _result_min_max_idx = result_names.indexOf(selectedResult);
let invertColor = false;
if (result_min_max.length > _result_min_max_idx) {
invertColor = result_min_max[_result_min_max_idx] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
}
updatePlot();
});
} else {
let invertColor = false;
if (Object.keys(result_min_max).length == 1) {
invertColor = result_min_max[0] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
const resultCol = numericalCols.find(col => col.name.toLowerCase() === resultNames[0].toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
}
function updatePlot() {
const trace = {
type: 'parcoords',
dimensions: dimensions,
line: colorValues ? { color: colorValues, colorscale: colorScale } : {},
unselected: {
line: {
color: get_text_color(),
opacity: 0
}
},
};
dimensions.forEach(dim => {
if (!dim.line) {
dim.line = {};
}
if (!dim.line.color) {
dim.line.color = 'rgba(169,169,169, 0.01)';
}
});
Plotly.newPlot('parallel-plot', [trace], add_default_layout_data({}));
make_text_in_parallel_plot_nicer();
}
updatePlot();
$("#parallel-plot").data("loaded", "true");
make_text_in_parallel_plot_nicer();
}
function plotWorkerUsage() {
if($("#workerUsagePlot").data("loaded") == "true") {
return;
}
var data = tab_worker_usage_csv_json;
if (!Array.isArray(data) || data.length === 0) {
console.error("Invalid or empty data provided.");
return;
}
let timestamps = [];
let desiredWorkers = [];
let realWorkers = [];
for (let i = 0; i < data.length; i++) {
let entry = data[i];
if (!Array.isArray(entry) || entry.length < 3) {
console.warn("Skipping invalid entry:", entry);
continue;
}
let unixTime = parseFloat(entry[0]);
let desired = parseInt(entry[1], 10);
let real = parseInt(entry[2], 10);
if (isNaN(unixTime) || isNaN(desired) || isNaN(real)) {
console.warn("Skipping invalid numerical values:", entry);
continue;
}
timestamps.push(new Date(unixTime * 1000).toISOString());
desiredWorkers.push(desired);
realWorkers.push(real);
}
let trace1 = {
x: timestamps,
y: desiredWorkers,
mode: 'lines+markers',
name: 'Desired Workers',
line: {
color: 'blue'
}
};
let trace2 = {
x: timestamps,
y: realWorkers,
mode: 'lines+markers',
name: 'Real Workers',
line: {
color: 'red'
}
};
let layout = {
title: "Worker Usage Over Time",
xaxis: {
title: get_axis_title_data("Time", "date")
},
yaxis: {
title: get_axis_title_data("Number of Workers")
},
legend: {
x: 0,
y: 1
}
};
Plotly.newPlot('workerUsagePlot', [trace1, trace2], add_default_layout_data(layout));
$("#workerUsagePlot").data("loaded", "true");
}
function plotCPUAndRAMUsage() {
if($("#mainWorkerCPURAM").data("loaded") == "true") {
return;
}
var timestamps = tab_main_worker_cpu_ram_csv_json.map(row => new Date(row[0] * 1000));
var ramUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[1]);
var cpuUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[2]);
var trace1 = {
x: timestamps,
y: cpuUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'CPU Usage (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: ramUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'RAM Usage (MB)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'CPU and RAM Usage Over Time',
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
overlaying: 'y',
side: 'right',
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var data = [trace1, trace2];
Plotly.newPlot('mainWorkerCPURAM', data, add_default_layout_data(layout));
$("#mainWorkerCPURAM").data("loaded", "true");
}
function plotScatter2d() {
if ($("#plotScatter2d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter2d");
var minInput = document.getElementById("minValue");
var maxInput = document.getElementById("maxValue");
if (!minInput || !maxInput) {
minInput = document.createElement("input");
minInput.id = "minValue";
minInput.type = "number";
minInput.placeholder = "Min Value";
minInput.step = "any";
maxInput = document.createElement("input");
maxInput.id = "maxValue";
maxInput.type = "number";
maxInput.placeholder = "Max Value";
maxInput.step = "any";
var inputContainer = document.createElement("div");
inputContainer.style.marginBottom = "10px";
inputContainer.appendChild(minInput);
inputContainer.appendChild(maxInput);
plotDiv.appendChild(inputContainer);
}
var resultSelect = document.getElementById("resultSelect");
if (result_names.length > 1 && !resultSelect) {
resultSelect = document.createElement("select");
resultSelect.id = "resultSelect";
resultSelect.style.marginBottom = "10px";
var sortedResults = [...result_names].sort();
sortedResults.forEach(result => {
var option = document.createElement("option");
option.value = result;
option.textContent = result;
resultSelect.appendChild(option);
});
var selectContainer = document.createElement("div");
selectContainer.style.marginBottom = "10px";
selectContainer.appendChild(resultSelect);
plotDiv.appendChild(selectContainer);
}
minInput.addEventListener("input", updatePlots);
maxInput.addEventListener("input", updatePlots);
if (resultSelect) {
resultSelect.addEventListener("change", updatePlots);
}
updatePlots();
async function updatePlots() {
var minValue = parseFloat(minInput.value);
var maxValue = parseFloat(maxInput.value);
if (isNaN(minValue)) minValue = -Infinity;
if (isNaN(maxValue)) maxValue = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var selectedResult = resultSelect ? resultSelect.value : result_names[0];
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue !== -Infinity) minResult = Math.max(minResult, minValue);
if (maxValue !== Infinity) maxResult = Math.min(maxResult, maxValue);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 2) {
console.error("Not enough columns for Scatter-Plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
showlegend: false
};
let subDiv = document.createElement("div");
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
symbol: data.map(d => d.result === null ? 'x' : 'circle'),
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter',
showlegend: false
};
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
$("#plotScatter2d").data("loaded", "true");
}
function plotScatter3d() {
if ($("#plotScatter3d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter3d");
if (!plotDiv) {
console.error("Div element with id 'plotScatter3d' not found");
return;
}
plotDiv.innerHTML = "";
var minInput3d = document.getElementById("minValue3d");
var maxInput3d = document.getElementById("maxValue3d");
if (!minInput3d || !maxInput3d) {
minInput3d = document.createElement("input");
minInput3d.id = "minValue3d";
minInput3d.type = "number";
minInput3d.placeholder = "Min Value";
minInput3d.step = "any";
maxInput3d = document.createElement("input");
maxInput3d.id = "maxValue3d";
maxInput3d.type = "number";
maxInput3d.placeholder = "Max Value";
maxInput3d.step = "any";
var inputContainer3d = document.createElement("div");
inputContainer3d.style.marginBottom = "10px";
inputContainer3d.appendChild(minInput3d);
inputContainer3d.appendChild(maxInput3d);
plotDiv.appendChild(inputContainer3d);
}
var select3d = document.getElementById("select3dScatter");
if (result_names.length > 1 && !select3d) {
if (!select3d) {
select3d = document.createElement("select");
select3d.id = "select3dScatter";
select3d.style.marginBottom = "10px";
select3d.innerHTML = result_names.map(name => `<option value="${name}">${name}</option>`).join("");
select3d.addEventListener("change", updatePlots3d);
plotDiv.appendChild(select3d);
}
}
minInput3d.addEventListener("input", updatePlots3d);
maxInput3d.addEventListener("input", updatePlots3d);
updatePlots3d();
async function updatePlots3d() {
var selectedResult = select3d ? select3d.value : result_names[0];
var minValue3d = parseFloat(minInput3d.value);
var maxValue3d = parseFloat(maxInput3d.value);
if (isNaN(minValue3d)) minValue3d = -Infinity;
if (isNaN(maxValue3d)) maxValue3d = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue3d !== -Infinity) minResult = Math.max(minResult, minValue3d);
if (maxValue3d !== Infinity) maxResult = Math.min(maxResult, maxValue3d);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 3) {
console.error("Not enough columns for 3D scatter plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
for (let k = j + 1; k < numericColumns.length; k++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let zCol = numericColumns[k];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let zIndex = tab_results_headers_json.indexOf(zCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
z: parseFloat(row[zIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y) vs ${zCol} (z), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
scene: {
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
zaxis: {
title: get_axis_title_data(zCol)
}
},
showlegend: false
};
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
z: data.map(d => d.z),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter3d',
showlegend: false
};
let subDiv = document.createElement("div");
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
}
$("#plotScatter3d").data("loaded", "true");
}
async function load_pareto_graph() {
if($("#tab_pareto_fronts").data("loaded") == "true") {
return;
}
var data = pareto_front_data;
if (!data || typeof data !== "object") {
console.error("Invalid data format for pareto_front_data");
return;
}
if (!Object.keys(data).length) {
console.warn("No data found in pareto_front_data");
return;
}
let categories = Object.keys(data);
let allMetrics = new Set();
function extractMetrics(obj, prefix = "") {
let keys = Object.keys(obj);
for (let key of keys) {
let newPrefix = prefix ? `${prefix} -> ${key}` : key;
if (typeof obj[key] === "object" && !Array.isArray(obj[key])) {
extractMetrics(obj[key], newPrefix);
} else {
if (!newPrefix.includes("param_dicts") && !newPrefix.includes(" -> sems -> ") && !newPrefix.includes("absolute_metrics")) {
allMetrics.add(newPrefix);
}
}
}
}
for (let cat of categories) {
extractMetrics(data[cat]);
}
allMetrics = Array.from(allMetrics);
function extractValues(obj, metricPath, values) {
let parts = metricPath.split(" -> ");
let data = obj;
for (let part of parts) {
if (data && typeof data === "object") {
data = data[part];
} else {
return;
}
}
if (Array.isArray(data)) {
values.push(...data);
}
}
let graphContainer = document.getElementById("pareto_front_graphs_container");
graphContainer.classList.add("invert_in_dark_mode");
graphContainer.innerHTML = "";
var already_plotted = [];
for (let i = 0; i < allMetrics.length; i++) {
for (let j = i + 1; j < allMetrics.length; j++) {
let xMetric = allMetrics[i];
let yMetric = allMetrics[j];
let xValues = [];
let yValues = [];
for (let cat of categories) {
let metricData = data[cat];
extractValues(metricData, xMetric, xValues);
extractValues(metricData, yMetric, yValues);
}
xValues = xValues.filter(v => v !== undefined && v !== null);
yValues = yValues.filter(v => v !== undefined && v !== null);
let cleanXMetric = xMetric.replace(/.* -> /g, "");
let cleanYMetric = yMetric.replace(/.* -> /g, "");
let plot_key = `${cleanXMetric}-${cleanYMetric}`;
if (xValues.length > 0 && yValues.length > 0 && xValues.length === yValues.length && !already_plotted.includes(plot_key)) {
let div = document.createElement("div");
div.id = `pareto_front_graph_${i}_${j}`;
div.style.marginBottom = "20px";
graphContainer.appendChild(div);
let layout = {
title: `${cleanXMetric} vs ${cleanYMetric}`,
xaxis: {
title: get_axis_title_data(cleanXMetric)
},
yaxis: {
title: get_axis_title_data(cleanYMetric)
},
hovermode: "closest"
};
let trace = {
x: xValues,
y: yValues,
mode: "markers",
marker: {
size: get_marker_size(),
},
type: "scatter",
name: `${cleanXMetric} vs ${cleanYMetric}`
};
Plotly.newPlot(div.id, [trace], add_default_layout_data(layout));
already_plotted.push(plot_key);
}
}
}
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
$("#tab_pareto_fronts").data("loaded", "true");
}
async function plot_worker_cpu_ram() {
if($("#worker_cpu_ram_pre").data("loaded") == "true") {
return;
}
const logData = $("#worker_cpu_ram_pre").text();
const regex = /^Unix-Timestamp: (\d+), Hostname: ([\w-]+), CPU: ([\d.]+)%, RAM: ([\d.]+) MB \/ ([\d.]+) MB$/;
const hostData = {};
logData.split("\n").forEach(line => {
line = line.trim();
const match = line.match(regex);
if (match) {
const timestamp = new Date(parseInt(match[1]) * 1000);
const hostname = match[2];
const cpu = parseFloat(match[3]);
const ram = parseFloat(match[4]);
if (!hostData[hostname]) {
hostData[hostname] = { timestamps: [], cpuUsage: [], ramUsage: [] };
}
hostData[hostname].timestamps.push(timestamp);
hostData[hostname].cpuUsage.push(cpu);
hostData[hostname].ramUsage.push(ram);
}
});
if (!Object.keys(hostData).length) {
console.log("No valid data found");
return;
}
const container = document.getElementById("cpuRamWorkerChartContainer");
container.innerHTML = "";
var i = 1;
Object.entries(hostData).forEach(([hostname, { timestamps, cpuUsage, ramUsage }], index) => {
const chartId = `workerChart_${index}`;
const chartDiv = document.createElement("div");
chartDiv.id = chartId;
chartDiv.style.marginBottom = "40px";
container.appendChild(chartDiv);
const cpuTrace = {
x: timestamps,
y: cpuUsage,
mode: "lines+markers",
name: "CPU Usage (%)",
yaxis: "y1",
line: {
color: "red"
}
};
const ramTrace = {
x: timestamps,
y: ramUsage,
mode: "lines+markers",
name: "RAM Usage (MB)",
yaxis: "y2",
line: {
color: "blue"
}
};
const layout = {
title: `Worker CPU and RAM Usage - ${hostname}`,
xaxis: {
title: get_axis_title_data("Timestamp", "date")
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
side: "left",
color: "red"
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
side: "right",
overlaying: "y",
color: "blue"
},
showlegend: true
};
Plotly.newPlot(chartId, [cpuTrace, ramTrace], add_default_layout_data(layout));
i++;
});
$("#plot_worker_cpu_ram_button").remove();
$("#worker_cpu_ram_pre").data("loaded", "true");
}
function load_log_file(log_nr, filename) {
var pre_id = `single_run_${log_nr}_pre`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}&filename=${filename}`;
fetch(url)
.then(response => response.json())
.then(data => {
if (data.data) {
$("#" + pre_id).html(data.data);
$("#" + pre_id).data("loaded", true);
} else {
log(`No 'data' key found in response.`);
}
$("#spinner_log_" + log_nr).remove();
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#spinner_log_" + log_nr).remove();
});
}
}
function load_debug_log () {
var pre_id = `here_debuglogs_go`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_debug_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}`;
fetch(url)
.then(response => response.json())
.then(data => {
$("#debug_log_spinner").remove();
if (data.data) {
try {
$("#" + pre_id).html(data.data);
} catch (err) {
$("#" + pre_id).text(`Error loading data: ${err}`);
}
$("#" + pre_id).data("loaded", true);
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
} else {
log(`No 'data' key found in response.`);
}
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#debug_log_spinner").remove();
});
}
}
function plotBoxplot() {
if ($("#plotBoxplot").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough numeric columns for Boxplot");
return;
}
var resultIndex = tab_results_headers_json.findIndex(function(header) {
return result_names.includes(header.toLowerCase());
});
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
var plotDiv = document.getElementById("plotBoxplot");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'box',
name: col,
boxmean: 'sd',
marker: {
color: 'rgb(0, 255, 0)'
},
};
});
let layout = {
title: 'Boxplot of Numerical Columns',
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Value")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotBoxplot").data("loaded", "true");
}
function plotHeatmap() {
if ($("#plotHeatmap").data("loaded") === "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col => {
if (special_col_names.includes(col) || result_names.includes(col)) {
return false;
}
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.every(row => {
let value = parseFloat(row[index]);
return !isNaN(value) && isFinite(value);
});
});
if (numericColumns.length < 2) {
console.error("Not enough valid numeric columns for Heatmap");
return;
}
var columnData = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.map(row => parseFloat(row[index]));
});
var dataMatrix = numericColumns.map((_, i) =>
numericColumns.map((_, j) => {
let values = columnData[i].map((val, index) => (val + columnData[j][index]) / 2);
return values.reduce((a, b) => a + b, 0) / values.length;
})
);
var trace = {
z: dataMatrix,
x: numericColumns,
y: numericColumns,
colorscale: 'Viridis',
type: 'heatmap'
};
var layout = {
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
var plotDiv = document.getElementById("plotHeatmap");
plotDiv.innerHTML = "";
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotHeatmap").data("loaded", "true");
}
function plotHistogram() {
if ($("#plotHistogram").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Histogram");
return;
}
var plotDiv = document.getElementById("plotHistogram");
plotDiv.innerHTML = "";
const colorPalette = ['#ff9999', '#66b3ff', '#99ff99', '#ffcc99', '#c2c2f0', '#ffb3e6'];
let traces = numericColumns.map((col, index) => {
let data = tab_results_csv_json.map(row => parseFloat(row[tab_results_headers_json.indexOf(col)]));
return {
x: data,
type: 'histogram',
name: col,
opacity: 0.7,
marker: {
color: colorPalette[index % colorPalette.length]
},
autobinx: true
};
});
let layout = {
title: 'Histogram of Numerical Columns',
xaxis: {
title: get_axis_title_data("Value")
},
yaxis: {
title: get_axis_title_data("Frequency")
},
showlegend: true,
barmode: 'overlay'
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotHistogram").data("loaded", "true");
}
function plotViolin() {
if ($("#plotViolin").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Violin Plot");
return;
}
var plotDiv = document.getElementById("plotViolin");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'violin',
name: col,
box: {
visible: true
},
line: {
color: 'rgb(0, 255, 0)'
},
marker: {
color: 'rgb(0, 255, 0)'
},
meanline: {
visible: true
},
};
});
let layout = {
title: 'Violin Plot of Numerical Columns',
yaxis: {
title: get_axis_title_data("Value")
},
xaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotViolin").data("loaded", "true");
}
function plotExitCodesPieChart() {
if ($("#plotExitCodesPieChart").data("loaded") == "true") {
return;
}
var exitCodes = tab_job_infos_csv_json.map(row => row[tab_job_infos_headers_json.indexOf("exit_code")]);
var exitCodeCounts = exitCodes.reduce(function(counts, exitCode) {
counts[exitCode] = (counts[exitCode] || 0) + 1;
return counts;
}, {});
var labels = Object.keys(exitCodeCounts);
var values = Object.values(exitCodeCounts);
var plotDiv = document.getElementById("plotExitCodesPieChart");
plotDiv.innerHTML = "";
var trace = {
labels: labels,
values: values,
type: 'pie',
hoverinfo: 'label+percent',
textinfo: 'label+value',
marker: {
colors: ['#ff9999','#66b3ff','#99ff99','#ffcc99','#c2c2f0']
}
};
var layout = {
title: 'Exit Code Distribution',
showlegend: true
};
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotExitCodesPieChart").data("loaded", "true");
}
function plotResultEvolution() {
if ($("#plotResultEvolution").data("loaded") == "true") {
return;
}
result_names.forEach(resultName => {
var relevantColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !col.startsWith("OO_Info") && col.toLowerCase() !== resultName.toLowerCase()
);
var xColumnIndex = tab_results_headers_json.indexOf("trial_index");
var resultIndex = tab_results_headers_json.indexOf(resultName);
let data = tab_results_csv_json.map(row => ({
x: row[xColumnIndex],
y: parseFloat(row[resultIndex])
}));
data.sort((a, b) => a.x - b.x);
let xData = data.map(item => item.x);
let yData = data.map(item => item.y);
let trace = {
x: xData,
y: yData,
mode: 'lines+markers',
name: resultName,
line: {
shape: 'linear'
},
marker: {
size: get_marker_size()
}
};
let layout = {
title: `Evolution of ${resultName} over time`,
xaxis: {
title: get_axis_title_data("Trial-Index")
},
yaxis: {
title: get_axis_title_data(resultName)
},
showlegend: true
};
let subDiv = document.createElement("div");
document.getElementById("plotResultEvolution").appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
});
$("#plotResultEvolution").data("loaded", "true");
}
function plotResultPairs() {
if ($("#plotResultPairs").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotResultPairs");
plotDiv.innerHTML = "";
for (let i = 0; i < result_names.length; i++) {
for (let j = i + 1; j < result_names.length; j++) {
let xName = result_names[i];
let yName = result_names[j];
let xIndex = tab_results_headers_json.indexOf(xName);
let yIndex = tab_results_headers_json.indexOf(yName);
let data = tab_results_csv_json
.filter(row => row[xIndex] !== "" && row[yIndex] !== "")
.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
status: row[tab_results_headers_json.indexOf("trial_status")]
}));
let colors = data.map(d => d.status === "COMPLETED" ? 'green' : (d.status === "FAILED" ? 'red' : 'gray'));
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: colors
},
text: data.map(d => `Status: ${d.status}`),
type: 'scatter',
showlegend: false
};
let layout = {
xaxis: {
title: get_axis_title_data(xName)
},
yaxis: {
title: get_axis_title_data(yName)
},
showlegend: false
};
let subDiv = document.createElement("div");
plotDiv.appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
$("#plotResultPairs").data("loaded", "true");
}
function add_up_down_arrows_for_scrolling () {
const upArrow = document.createElement('div');
const downArrow = document.createElement('div');
const style = document.createElement('style');
style.innerHTML = `
.scroll-arrow {
position: fixed;
right: 10px;
z-index: 100;
cursor: pointer;
font-size: 25px;
display: none;
background-color: green;
color: white;
padding: 5px;
outline: 2px solid white;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.5);
transition: background-color 0.3s, transform 0.3s;
}
.scroll-arrow:hover {
background-color: darkgreen;
transform: scale(1.1);
}
#up-arrow {
top: 10px;
}
#down-arrow {
bottom: 10px;
}
`;
document.head.appendChild(style);
upArrow.id = "up-arrow";
upArrow.classList.add("scroll-arrow");
upArrow.classList.add("invert_in_dark_mode");
upArrow.innerHTML = "↑";
downArrow.id = "down-arrow";
downArrow.classList.add("scroll-arrow");
downArrow.classList.add("invert_in_dark_mode");
downArrow.innerHTML = "↓";
document.body.appendChild(upArrow);
document.body.appendChild(downArrow);
function checkScrollPosition() {
const scrollPosition = window.scrollY;
const pageHeight = document.documentElement.scrollHeight;
const windowHeight = window.innerHeight;
if (scrollPosition > 0) {
upArrow.style.display = "block";
} else {
upArrow.style.display = "none";
}
if (scrollPosition + windowHeight < pageHeight) {
downArrow.style.display = "block";
} else {
downArrow.style.display = "none";
}
}
window.addEventListener("scroll", checkScrollPosition);
upArrow.addEventListener("click", function () {
window.scrollTo({ top: 0, behavior: 'smooth' });
});
downArrow.addEventListener("click", function () {
window.scrollTo({ top: document.documentElement.scrollHeight, behavior: 'smooth' });
});
checkScrollPosition();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
function plotGPUUsage() {
if ($("#tab_gpu_usage").data("loaded") === "true") {
return;
}
Object.keys(gpu_usage).forEach(node => {
const nodeData = gpu_usage[node];
var timestamps = [];
var gpuUtilizations = [];
var temperatures = [];
nodeData.forEach(entry => {
try {
var timestamp = new Date(entry[0]* 1000);
var utilization = parseFloat(entry[1]);
var temperature = parseFloat(entry[2]);
if (!isNaN(timestamp) && !isNaN(utilization) && !isNaN(temperature)) {
timestamps.push(timestamp);
gpuUtilizations.push(utilization);
temperatures.push(temperature);
} else {
console.warn("Invalid data point:", entry);
}
} catch (error) {
console.error("Error processing GPU data entry:", error, entry);
}
});
var trace1 = {
x: timestamps,
y: gpuUtilizations,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Utilization (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: temperatures,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Temperature (°C)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'GPU Usage Over Time - ' + node,
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("GPU Utilization (%)"),
overlaying: 'y',
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("GPU Temperature (°C)"),
overlaying: 'y',
side: 'right',
position: 0.85,
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var divId = 'gpu_usage_plot_' + node;
if (!document.getElementById(divId)) {
var div = document.createElement('div');
div.id = divId;
div.className = 'gpu-usage-plot';
document.getElementById('tab_gpu_usage').appendChild(div);
}
var plotData = [trace1, trace2];
Plotly.newPlot(divId, plotData, add_default_layout_data(layout));
});
$("#tab_gpu_usage").data("loaded", "true");
}
function plotResultsDistributionByGenerationMethod() {
if ("true" === $("#plotResultsDistributionByGenerationMethod").data("loaded")) {
return;
}
var res_col = result_names[0];
var gen_method_col = "generation_method";
var data = {};
tab_results_csv_json.forEach(row => {
var gen_method = row[tab_results_headers_json.indexOf(gen_method_col)];
var result = row[tab_results_headers_json.indexOf(res_col)];
if (!data[gen_method]) {
data[gen_method] = [];
}
data[gen_method].push(result);
});
var traces = Object.keys(data).map(method => {
return {
y: data[method],
type: 'box',
name: method,
boxpoints: 'outliers', // Zeigt nur Ausreißer außerhalb der Whiskers
jitter: 0.5, // Erhöht die Streuung der Punkte für bessere Sichtbarkeit
pointpos: 0 // Position der Punkte innerhalb der Box
};
});
var layout = {
title: 'Distribution of Results by Generation Method',
yaxis: {
title: get_axis_title_data(res_col)
},
xaxis: {
title: "Generation Method"
},
boxmode: 'group' // Gruppiert die Boxplots nach Generation Method
};
Plotly.newPlot("plotResultsDistributionByGenerationMethod", traces, add_default_layout_data(layout));
$("#plotResultsDistributionByGenerationMethod").data("loaded", "true");
}
function plotJobStatusDistribution() {
if ($("#plotJobStatusDistribution").data("loaded") === "true") {
return;
}
var status_col = "trial_status";
var status_counts = {};
tab_results_csv_json.forEach(row => {
var status = row[tab_results_headers_json.indexOf(status_col)];
if (status) {
status_counts[status] = (status_counts[status] || 0) + 1;
}
});
var statuses = Object.keys(status_counts);
var counts = Object.values(status_counts);
var colors = statuses.map((status, i) =>
status === "FAILED" ? "#FF0000" : `hsl(${30 + ((i * 137) % 330)}, 70%, 50%)`
);
var trace = {
x: statuses,
y: counts,
type: 'bar',
marker: { color: colors }
};
var layout = {
title: 'Distribution of Job Status',
xaxis: { title: 'Trial Status' },
yaxis: { title: 'Nr. of jobs' }
};
Plotly.newPlot("plotJobStatusDistribution", [trace], add_default_layout_data(layout));
$("#plotJobStatusDistribution").data("loaded", "true");
}
function _colorize_table_entries_by_generation_method () {
document.querySelectorAll('[data-column-id="generation_method"]').forEach(el => {
let color = el.textContent.includes("Manual") ? "green" :
el.textContent.includes("Sobol") ? "orange" :
el.textContent.includes("SAASBO") ? "pink" :
el.textContent.includes("Uniform") ? "lightblue" :
el.textContent.includes("Legacy_GPEI") ? "Sienna" :
el.textContent.includes("BO_MIXED") ? "Aqua" :
el.textContent.includes("RANDOMFOREST") ? "DarkSeaGreen" :
el.textContent.includes("EXTERNAL_GENERATOR") ? "Purple" :
el.textContent.includes("BoTorch") ? "yellow" : "";
if (color) el.style.backgroundColor = color;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_trial_status () {
document.querySelectorAll('[data-column-id="trial_status"]').forEach(el => {
let color = el.textContent.includes("COMPLETED") ? "lightgreen" :
el.textContent.includes("RUNNING") ? "orange" :
el.textContent.includes("FAILED") ? "red" : "";
if (color) el.style.backgroundColor = color;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_run_time() {
let cells = [...document.querySelectorAll('[data-column-id="run_time"]')];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => !isNaN(v));
if (values.length === 0) return;
let min = Math.min(...values);
let max = Math.max(...values);
let range = max - min || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value)) return;
let ratio = (value - min) / range;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_results() {
result_names.forEach((name, index) => {
let minMax = result_min_max[index];
let selector_query = `[data-column-id="${name}"]`;
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => v > 0 && !isNaN(v));
if (values.length === 0) return;
let logValues = values.map(v => Math.log(v));
let logMin = Math.min(...logValues);
let logMax = Math.max(...logValues);
let logRange = logMax - logMin || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value) || value <= 0) return;
let logValue = Math.log(value);
let ratio = (logValue - logMin) / logRange;
if (minMax === "max") ratio = 1 - ratio;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
});
}
function _colorize_table_entries_by_generation_node_or_hostname() {
["hostname", "generation_node"].forEach(element => {
let selector_query = '[data-column-id="' + element + '"]:not(.gridjs-th)';
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let uniqueValues = [...new Set(cells.map(el => el.textContent.trim()))];
let colorMap = {};
uniqueValues.forEach((value, index) => {
let hue = Math.round((360 / uniqueValues.length) * index);
colorMap[value] = `hsl(${hue}, 70%, 60%)`;
});
cells.forEach(el => {
let value = el.textContent.trim();
if (colorMap[value]) {
el.style.backgroundColor = colorMap[value];
el.classList.add("invert_in_dark_mode");
}
});
});
}
function colorize_table_entries () {
setTimeout(() => {
if (typeof result_names !== "undefined" && Array.isArray(result_names) && result_names.length > 0) {
_colorize_table_entries_by_trial_status();
_colorize_table_entries_by_results();
_colorize_table_entries_by_run_time();
_colorize_table_entries_by_generation_method();
_colorize_table_entries_by_generation_node_or_hostname();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
}, 300);
}
function add_colorize_to_gridjs_table () {
let searchInput = document.querySelector(".gridjs-search-input");
if (searchInput) {
searchInput.addEventListener("input", colorize_table_entries);
}
}
function updatePreWidths() {
var width = window.innerWidth * 0.95;
var pres = document.getElementsByTagName('pre');
for (var i = 0; i < pres.length; i++) {
pres[i].style.width = width + 'px';
}
}
window.addEventListener('load', updatePreWidths);
window.addEventListener('resize', updatePreWidths);
$(document).ready(function() {
colorize_table_entries();
add_up_down_arrows_for_scrolling();
add_colorize_to_gridjs_table();
});
$(document).ready(function() {
colorize_table_entries();;
plotWorkerUsage();;
plotCPUAndRAMUsage();;
createParallelPlot(tab_results_csv_json, tab_results_headers_json, result_names, special_col_names);;
plotScatter2d();;
plotScatter3d();
plotResultsDistributionByGenerationMethod();;
plotJobStatusDistribution();;
plotBoxplot();;
plotViolin();;
plotHistogram();;
plotHeatmap();;
plotResultEvolution();
colorize_table_entries();
});
</script>
<h1> Overview</h1>
<button onclick="window.open('https://imageseg.scads.de/omniax/gui?partition=barnard&experiment_name=vergl_botorch&reservation=&account=&mem_gb=10&time=600&worker_timeout=30&max_eval=2000&num_parallel_jobs=50&gpus=0&num_random_steps=50&follow=1&live_share=1&send_anonymized_usage_stats=1&checkout_to_latest_tested_version=1&constraints=&result_names=RESULT%3Dmin&run_program=bash%20%2Fdata%2Fhorse%2Fws%2Fpwinkler-oopt%2Frun.sh%20%25(epochs)%20%25(lr)%20%25(bsz)%20%25(da)%20%25(db)&cpus_per_task=1&nodes_per_job=1&seed=&verbose=0&generate_all_jobs_at_once=1&debug=0&revert_to_random_when_seemingly_exhausted=1&gridsearch=0&model=BOTORCH_MODULAR&external_generator=&n_estimators_randomforest=100&installation_method=clone&run_mode=local&decimalrounding=4&disable_tqdm=0&verbose_tqdm=0&force_local_execution=0&auto_exclude_defective_hosts=0&show_sixel_general=0&show_sixel_trial_index_result=0&show_sixel_scatter=0&show_worker_percentage_table_at_end=0&enforce_sequential_optimization=0&occ=0&occ_type=euclid&no_sleep=0&slurm_use_srun=0&verbose_break_run_search_table=0&abbreviate_job_names=0&main_process_gb=8&max_nr_of_zero_results=50&pareto_front_confidence=1&slurm_signal_delay_s=0&max_failed_jobs=0&exclude=&username=&generation_strategy=&root_venv_dir=&workdir=&parameter_0_name=epochs&parameter_0_type=range&parameter_0_min=10&parameter_0_max=200&parameter_0_number_type=int&parameter_0_log_scale=false&parameter_1_name=lr&parameter_1_type=range&parameter_1_min=0.0001&parameter_1_max=0.01&parameter_1_number_type=float&parameter_1_log_scale=false&parameter_2_name=bsz&parameter_2_type=range&parameter_2_min=4&parameter_2_max=32&parameter_2_number_type=int&parameter_2_log_scale=false&parameter_3_name=da&parameter_3_type=range&parameter_3_min=10&parameter_3_max=100&parameter_3_number_type=int&parameter_3_log_scale=false&parameter_4_name=db&parameter_4_type=range&parameter_4_min=10&parameter_4_max=100&parameter_4_number_type=int&parameter_4_log_scale=false&partition=barnard&num_parameters=5', '_blank')">GUI page with all the settings of this job</button><br><br><h2>Experiment overview: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Setting</th><th>Value </th></tr></thead><tbody><tr><td> Model for non-random steps</td><td>BOTORCH_MODULAR </td></tr><tr><td> Max. nr. evaluations</td><td>2000 </td></tr><tr><td> Number random steps</td><td>50 </td></tr><tr><td> Nr. of workers (parameter)</td><td>50 </td></tr><tr><td> Main process memory (GB)</td><td>8 </td></tr><tr><td> Worker memory (GB)</td><td>10 </td></tr></tbody></table><h2>Experiment parameters: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Name</th><th>Type</th><th>Lower bound</th><th>Upper bound</th><th>Type</th><th>Log Scale? </th></tr></thead><tbody><tr><td> epochs</td><td>range</td><td>10</td><td>200</td><td>int</td><td>No </td></tr><tr><td> lr</td><td>range</td><td>0.0001</td><td>0.01</td><td>float</td><td>No </td></tr><tr><td> bsz</td><td>range</td><td>4</td><td>32</td><td>int</td><td>No </td></tr><tr><td> da</td><td>range</td><td>10</td><td>100</td><td>int</td><td>No </td></tr><tr><td> db</td><td>range</td><td>10</td><td>100</td><td>int</td><td>No </td></tr></tbody></table><br><h2>Number of evaluations:</h2>
<table>
<tbody>
<tr>
<th>Failed</th>
<th>Succeeded</th>
<th>Running</th>
<th>Total</th>
</tr>
<tr>
<td>0</td>
<td>301</td>
<td>49</td>
<td>350</td>
</tr>
</tbody>
</table>
<h2>Result names and types:</h2>
<br><table>
<tr><th>name</th><th>min/max</th></tr>
<tr>
<td>RESULT</td>
<td>min</td>
</tr>
</table><br>
<h2>Last progressbar status:</h2>
<tt>2025-05-07 00:09:50: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 49/1 = ∑50/50, new result: 0.35789473684210527</tt><br>
<h2>Git-Version:</h2>
<tt>Commit: 239ad60f178b387e77b7a08ec08d8ede567899b7 (6091)
</tt>
<h1> Results</h1>
<div id='tab_results_csv_table'></div>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<pre id='tab_results_csv_table_pre'>trial_index,arm_name,trial_status,generation_method,generation_node,RESULT,epochs,lr,bsz,da,db
0,0_0,COMPLETED,Sobol,SOBOL,0.215789473684210530990412735264,182,0.004086844545602799118333425810,5,15,85
1,1_0,COMPLETED,Sobol,SOBOL,0.357894736842105265495206367632,93,0.005281418676208705746677463111,20,87,29
2,2_0,COMPLETED,Sobol,SOBOL,0.373684210526315840894540087902,47,0.001921856395900249647734625569,16,50,53
3,3_0,COMPLETED,Sobol,SOBOL,0.278947368421052610543142691313,149,0.008066364510636777132579489091,31,76,64
4,4_0,COMPLETED,Sobol,SOBOL,0.436842105263157920447270043951,114,0.000270663183648139264812076954,22,65,74
5,5_0,COMPLETED,Sobol,SOBOL,0.289473684210526327476031838160,13,0.009015402867831289954181350765,7,39,40
6,6_0,COMPLETED,Sobol,SOBOL,0.342105263157894690095872647362,76,0.003055609608162194578556691837,25,98,18
7,7_0,COMPLETED,Sobol,SOBOL,0.221052631578947389456857308687,166,0.006850415381975472409181726618,11,27,99
8,8_0,COMPLETED,Sobol,SOBOL,0.305263157894736791853063095914,155,0.002123264156468212659339966919,28,33,22
9,9_0,COMPLETED,Sobol,SOBOL,0.278947368421052610543142691313,65,0.008402737917471677156489029414,14,59,78
10,10_0,COMPLETED,Sobol,SOBOL,0.478947368421052677156524168822,27,0.004908276228047908293361523135,25,22,60
11,11_0,COMPLETED,Sobol,SOBOL,0.278947368421052610543142691313,129,0.006237683899421245757588305736,10,93,49
12,12_0,COMPLETED,Sobol,SOBOL,0.352631578947368407028761794209,136,0.003469326064269989944727212716,16,81,33
13,13_0,COMPLETED,Sobol,SOBOL,0.389473684210526305271571345656,34,0.007129166191816331196728917519,30,10,68
14,14_0,COMPLETED,Sobol,SOBOL,0.342105263157894690095872647362,103,0.001304272636305541009996145085,5,70,95
15,15_0,COMPLETED,Sobol,SOBOL,0.300000000000000044408920985006,192,0.009914178853482008210717957297,19,44,14
16,16_0,COMPLETED,Sobol,SOBOL,0.336842105263157942651730536454,199,0.000824830826744437370715012925,13,97,63
17,17_0,COMPLETED,Sobol,SOBOL,0.257894736842105287699666860135,97,0.009395421993639321150970644680,28,32,51
18,18_0,COMPLETED,Sobol,SOBOL,0.300000000000000044408920985006,40,0.003608634402230382134946218287,10,63,30
19,19_0,COMPLETED,Sobol,SOBOL,0.310526315789473650319507669337,129,0.007229159479495138665439135650,24,43,88
20,20_0,COMPLETED,Sobol,SOBOL,0.352631578947368407028761794209,122,0.004501324065867812196373165534,30,54,97
21,21_0,COMPLETED,Sobol,SOBOL,0.310526315789473650319507669337,32,0.005791419010423124943964801048,15,74,18
22,22_0,COMPLETED,Sobol,SOBOL,0.363157894736842123961650941055,60,0.002335062141809612391851747049,19,20,42
23,23_0,COMPLETED,Sobol,SOBOL,0.231578947368421106389746455534,161,0.008575223175995051738684793463,4,86,75
24,24_0,COMPLETED,Sobol,SOBOL,0.326315789473684225718841389607,171,0.002651093154959380596147333620,21,68,44
25,25_0,COMPLETED,Sobol,SOBOL,0.268421052631578893610253544466,70,0.006406586238835007898750895095,7,48,56
26,26_0,COMPLETED,Sobol,SOBOL,0.342105263157894690095872647362,19,0.000484896582923829554557376698,32,80,83
27,27_0,COMPLETED,Sobol,SOBOL,0.273684210526315752076698117889,109,0.009190323577169329932745611700,18,15,25
28,28_0,COMPLETED,Sobol,SOBOL,0.284210526315789469009587264736,144,0.001435144597943872326814562790,8,26,10
29,29_0,COMPLETED,Sobol,SOBOL,0.357894736842105265495206367632,54,0.007540337625518441985739137579,23,92,89
30,30_0,COMPLETED,Sobol,SOBOL,0.294736842105263185942476411583,86,0.004218882526364178126021542425,12,37,71
31,31_0,COMPLETED,Sobol,SOBOL,0.294736842105263185942476411583,187,0.005374141643568874221470466068,26,57,37
32,32_0,COMPLETED,Sobol,SOBOL,0.384210526315789446805126772233,184,0.001757793323975056533348126919,25,85,99
33,33_0,COMPLETED,Sobol,SOBOL,0.205263157894736814057523588417,83,0.007843690539896489011262303848,10,19,20
34,34_0,COMPLETED,Sobol,SOBOL,0.352631578947368407028761794209,57,0.003922780809830874945709489054,28,72,39
35,35_0,COMPLETED,Sobol,SOBOL,0.284210526315789469009587264736,147,0.005058744115382433209626711346,14,52,72
36,36_0,COMPLETED,Sobol,SOBOL,0.289473684210526327476031838160,106,0.002949573803134262692249301097,5,41,66
37,37_0,COMPLETED,Sobol,SOBOL,0.363157894736842123961650941055,17,0.006724438229668886456147358643,19,61,54
38,38_0,COMPLETED,Sobol,SOBOL,0.473684210526315818690079595399,73,0.000164627968706190601615863001,16,31,27
39,39_0,COMPLETED,Sobol,SOBOL,0.315789473684210508785952242761,174,0.008889426305610686682157073335,30,96,84
40,40_0,COMPLETED,Sobol,SOBOL,0.321052631578947367252396816184,164,0.004802222148794681524930361149,17,55,14
41,41_0,COMPLETED,Sobol,SOBOL,0.394736842105263163738015919080,63,0.006111688436008990733816492735,31,36,93
42,42_0,COMPLETED,Sobol,SOBOL,0.378947368421052588338682198810,29,0.002017209487129002776217845394,6,90,68
43,43_0,COMPLETED,Sobol,SOBOL,0.326315789473684225718841389607,119,0.008276741863973438584345387881,21,25,35
44,44_0,COMPLETED,Sobol,SOBOL,0.300000000000000044408920985006,133,0.001140227838605642344052548687,26,13,47
45,45_0,COMPLETED,Sobol,SOBOL,0.226315789473684247923301882111,42,0.009691523193847388292776479091,12,79,59
46,46_0,COMPLETED,Sobol,SOBOL,0.336842105263157942651730536454,94,0.003305281856656074827155444851,22,47,80
47,47_0,COMPLETED,Sobol,SOBOL,0.247368421052631570766777713288,195,0.006906511122267693959797529857,8,67,23
48,48_0,COMPLETED,Sobol,SOBOL,0.331578947368421084185285963031,189,0.003792012777086347513622044403,32,28,78
49,49_0,COMPLETED,Sobol,SOBOL,0.300000000000000044408920985006,99,0.007432481561973691870648384139,18,99,43
50,50_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,133,0.008577504456510273711522529538,9,21,14
51,51_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,121,0.009818272291073204885436531697,10,86,12
52,52_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,142,0.007137340016123906727418813034,7,10,42
53,53_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.210526315789473672523968161840,125,0.009744594475476721015527736824,9,32,18
54,54_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,166,0.006950327656025007821982697465,4,14,84
55,55_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,139,0.008798112083856104645440687761,7,11,69
56,56_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.342105263157894690095872647362,120,0.010000000000000000208166817117,10,100,83
57,57_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,48,0.010000000000000000208166817117,12,75,12
58,58_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,79,0.009258267750248419525327392421,9,91,22
59,59_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,196,0.005556302825780697236812688544,9,12,88
60,60_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,103,0.010000000000000000208166817117,10,10,40
61,61_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,160,0.008001981087390761318567378169,6,13,35
62,62_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,125,0.008515341535115643692432918499,8,56,12
63,63_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,116,0.009648653744496277218090085626,9,65,29
64,64_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,116,0.010000000000000000208166817117,10,50,56
65,65_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,114,0.009279508125766304169057541174,9,97,36
66,66_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,187,0.005193540037535490302977869703,6,15,12
67,67_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,116,0.008813640999560575992055611039,9,50,15
68,68_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,68,0.010000000000000000208166817117,12,32,20
69,69_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,112,0.009008066003247780853535608969,10,10,12
70,70_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,99,0.010000000000000000208166817117,8,95,34
71,71_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,175,0.008982729676910994331962001525,6,37,13
72,72_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,96,0.010000000000000000208166817117,10,63,12
73,73_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.315789473684210508785952242761,26,0.010000000000000000208166817117,15,90,20
74,74_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.315789473684210508785952242761,138,0.009313386529547548059460027048,8,54,49
75,75_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.194736842105263208146936904086,166,0.009214396673853866501224807450,9,12,12
76,76_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,163,0.009546552301604260479250818605,9,76,94
77,77_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.368421052631578982428095514479,147,0.006954417456552954360238238962,4,14,21
78,78_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,74,0.009640987831256973145110933388,10,25,47
79,79_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,126,0.009737317249339197400281875616,9,59,35
80,80_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,134,0.010000000000000000208166817117,11,77,22
81,81_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,136,0.009714152980487143068666355816,7,94,38
82,82_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,130,0.005989085553031035791260450196,7,17,10
83,83_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,93,0.008907503300410438487610953473,10,95,11
84,84_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,155,0.009489672677845194248558158279,8,90,68
85,85_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,133,0.007919025068734422342919820892,5,31,10
86,86_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,170,0.007093616379362981637368701371,9,11,11
87,87_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,145,0.010000000000000000208166817117,8,13,26
88,88_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,198,0.008744131195503632852927822228,6,11,96
89,89_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,158,0.010000000000000000208166817117,9,54,16
90,90_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,165,0.009780347900098872171437136558,10,31,94
91,91_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.199999999999999955591079014994,165,0.010000000000000000208166817117,10,21,61
92,92_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,125,0.008824063502547264264963544633,5,34,14
93,93_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.415789473684210486581491750258,17,0.010000000000000000208166817117,14,27,23
94,94_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,76,0.010000000000000000208166817117,6,90,84
95,95_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.199999999999999955591079014994,180,0.001943773273209835165953318636,4,15,80
96,96_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,90,0.010000000000000000208166817117,11,43,37
97,97_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,136,0.009872329444681192042732043035,9,35,80
98,98_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.347368421052631548562317220785,100,0.010000000000000000208166817117,9,63,82
99,99_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.352631578947368407028761794209,147,0.008498460640559984610731270038,4,10,55
100,100_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,128,0.007328165143666878940387210406,11,10,48
101,101_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,199,0.003580058943620138735969282706,7,34,66
102,102_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.289473684210526327476031838160,173,0.007354887547036352904439304723,12,13,42
103,103_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.289473684210526327476031838160,196,0.000680550022858143798323848905,5,10,63
104,104_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,190,0.005528909705012396806622643197,9,70,71
105,105_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,189,0.003570749819384346195744184271,9,13,52
106,106_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,196,0.003750095933055425188179521356,5,82,77
107,107_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,141,0.008569652555526699813648328075,13,14,54
108,108_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,198,0.003852011714893742531234943627,9,10,44
109,109_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,65,0.007063617445149230310297294722,10,13,69
110,110_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,200,0.005628487729766808340958750279,7,95,95
111,111_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.336842105263157942651730536454,200,0.001300815900408056578763105193,4,42,35
112,112_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,186,0.006164225392213050838674526233,6,85,95
113,113_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,198,0.006288258460588526214951610172,9,92,71
114,114_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.373684210526315840894540087902,199,0.000905037362874354183416014674,5,43,68
115,115_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,165,0.008388896327259951629651268945,13,39,60
116,116_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,167,0.010000000000000000208166817117,30,14,29
117,117_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.352631578947368407028761794209,138,0.003544362072843388992982038843,9,10,92
118,118_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,191,0.007007867855856318196894338968,13,19,64
119,119_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,138,0.010000000000000000208166817117,27,78,18
120,120_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.336842105263157942651730536454,121,0.005714763782904381389515791057,10,10,68
121,121_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,144,0.006895473797321891723521858353,12,11,33
122,122_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,164,0.010000000000000000208166817117,27,43,24
123,123_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.310526315789473650319507669337,194,0.003040045886165567909364959576,6,64,37
124,124_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,195,0.010000000000000000208166817117,27,76,34
125,125_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.310526315789473650319507669337,190,0.002120316804501299907254052712,9,12,96
126,126_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.326315789473684225718841389607,191,0.000100000000000000004792173602,5,14,77
127,127_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,180,0.005267571433207468567516684743,9,40,53
128,128_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.315789473684210508785952242761,115,0.007758164796308052169049318536,12,10,46
129,129_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.342105263157894690095872647362,170,0.003762872988497674344582355488,9,27,77
130,130_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,190,0.007947880364360022237280034574,12,36,44
131,131_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,192,0.004951282663584587878657927718,9,42,65
132,132_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,198,0.003896030035410551640301379805,6,36,65
133,133_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,149,0.007881764468139451987327426252,13,55,36
134,134_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.326315789473684225718841389607,168,0.009222464332006793247265008517,28,25,75
135,135_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,196,0.003806215445926703928175571789,6,89,50
136,136_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,191,0.007021442597610894065240927375,9,58,71
137,137_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,191,0.007128999541857151608925668995,12,18,24
138,138_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,182,0.008026985369642108958387893836,12,46,33
139,139_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,194,0.003306135577411622398363855169,6,78,59
140,140_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,182,0.004323422961681195123007093173,6,85,70
141,141_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,141,0.007719074453487567190335116862,13,19,62
142,142_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,144,0.010000000000000000208166817117,31,72,15
143,143_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.342105263157894690095872647362,193,0.000857345903600753383132226926,9,20,82
144,144_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,188,0.001281827816867635522549151439,9,27,85
145,145_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.289473684210526327476031838160,178,0.005897926953008805067701914027,11,57,57
146,146_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,158,0.005338181538748697566032497264,10,10,64
147,147_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,197,0.003731141318260021520064606548,8,29,95
148,148_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,106,0.010000000000000000208166817117,30,17,21
149,149_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,136,0.009874131838474345043699109681,26,69,39
150,150_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.194736842105263208146936904086,200,0.010000000000000000208166817117,15,10,100
151,151_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.210526315789473672523968161840,200,0.010000000000000000208166817117,15,13,34
152,152_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,138,0.010000000000000000208166817117,15,12,95
153,153_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,192,0.010000000000000000208166817117,16,100,100
154,154_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,196,0.007730263524140227986147788641,13,96,25
155,155_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.463157894736842101757190448552,200,0.000100000000000000004792173602,32,10,10
156,156_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.378947368421052588338682198810,200,0.000100000000000000004792173602,32,100,10
157,157_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.315789473684210508785952242761,177,0.001313545503326270583177581841,32,52,23
158,158_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,198,0.008014373080690435219297640401,12,20,93
159,159_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,191,0.001608538467685494350103980743,31,96,68
160,160_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.310526315789473650319507669337,199,0.010000000000000000208166817117,20,20,78
161,161_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,171,0.010000000000000000208166817117,13,16,100
162,162_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.389473684210526305271571345656,42,0.000100000000000000004792173602,32,59,46
163,163_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.310526315789473650319507669337,198,0.004294366743974310958453788345,30,90,20
164,164_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,159,0.006007570117257618816375419613,28,31,81
165,165_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,193,0.010000000000000000208166817117,32,10,97
166,166_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.326315789473684225718841389607,180,0.001543628383647337870554494543,31,48,12
167,167_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.405263157894736880670905065926,112,0.000100000000000000004792173602,32,77,26
168,168_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,199,0.008903408070860379872057954742,16,53,70
169,169_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,98,0.000100000000000000004792173602,32,88,10
170,170_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.394736842105263163738015919080,61,0.002675672718157655338711009563,32,91,11
171,171_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,194,0.009483950817449808903814023608,14,49,85
172,172_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.478947368421052677156524168822,194,0.003112244397367996701780912261,31,48,62
173,173_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.326315789473684225718841389607,144,0.002241743597017828437678588216,31,25,25
174,174_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.352631578947368407028761794209,192,0.008198805150044939996090143097,18,14,13
175,175_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.331578947368421084185285963031,122,0.002513119276252127800436175775,28,23,35
176,176_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,132,0.000629139444783942771745322009,30,33,20
177,177_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,195,0.010000000000000000208166817117,13,87,80
178,178_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,192,0.008371381953704055620124613313,15,11,25
179,179_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,184,0.002241882606741776775421959300,30,56,34
180,180_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,136,0.002320195776518194519938420584,27,13,26
181,181_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,172,0.001147543717954733642414022476,31,74,14
182,182_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.389473684210526305271571345656,180,0.005813898878096229044798448626,28,14,92
183,183_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,95,0.005906303250325943034193532100,7,13,99
184,184_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,199,0.008103652102722510436327851835,12,14,24
185,185_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,195,0.007648087627267045190970762292,14,92,92
186,186_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.273684210526315752076698117889,173,0.005238454956395250348977210564,29,14,70
187,187_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.268421052631578893610253544466,159,0.001032169478795734061590816388,32,25,14
188,188_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.342105263157894690095872647362,172,0.002377266684934614508761807627,30,55,16
189,189_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,191,0.007451484272620452660451650928,32,60,24
190,190_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.368421052631578982428095514479,120,0.000815032302419993167144629531,32,42,25
191,191_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,200,0.007960593673277541540422852506,28,20,74
192,192_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.315789473684210508785952242761,182,0.006262168295360940814542338728,31,51,58
193,193_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.347368421052631548562317220785,185,0.001676929286724987032061728875,30,27,12
194,194_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.315789473684210508785952242761,200,0.004849079563059101143085438679,10,48,11
195,195_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,149,0.005553668164979486988885870602,25,39,81
196,196_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.352631578947368407028761794209,158,0.000699616396771418147873533577,25,96,79
197,197_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,198,0.007649381166543604664009858851,19,28,79
198,198_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,196,0.001348557631808395542924450261,30,59,13
199,199_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.347368421052631548562317220785,186,0.007058599013385699269540474177,30,81,90
200,200_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.368421052631578982428095514479,78,0.010000000000000000208166817117,4,10,100
201,201_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.300000000000000044408920985006,92,0.010000000000000000208166817117,13,10,100
202,202_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,196,0.010000000000000000208166817117,4,100,100
203,203_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,74,0.010000000000000000208166817117,4,12,42
204,204_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,67,0.007996080402047250554331547789,4,10,81
205,205_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.189473684210526349680492330663,169,0.006708814873979875893772462092,4,100,100
206,206_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,164,0.002169413565395823719622603321,4,100,100
207,207_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,200,0.010000000000000000208166817117,11,50,100
208,208_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,90,0.010000000000000000208166817117,4,10,70
209,209_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,79,0.010000000000000000208166817117,4,10,10
210,210_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,200,0.009749012337050041998587346370,4,59,22
211,211_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,82,0.010000000000000000208166817117,13,10,59
212,212_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,83,0.010000000000000000208166817117,8,10,25
213,213_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.010000000000000000208166817117,4,55,95
214,214_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.336842105263157942651730536454,72,0.009472401634708067438839229624,5,16,81
215,215_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,78,0.007481519651620194277796827009,4,11,12
216,216_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,93,0.010000000000000000208166817117,15,14,57
217,217_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,64,0.010000000000000000208166817117,4,11,51
218,218_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,96,0.009694800616111378874228954317,16,19,87
219,219_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.336842105263157942651730536454,10,0.010000000000000000208166817117,4,100,69
220,220_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,54,0.010000000000000000208166817117,4,14,100
221,221_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,46,0.009440972924177703715087339731,4,24,80
222,222_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,175,0.010000000000000000208166817117,15,95,95
223,223_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.331578947368421084185285963031,17,0.010000000000000000208166817117,6,95,54
224,224_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.347368421052631548562317220785,94,0.009343742192117206191159795026,10,19,95
225,225_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.347368421052631548562317220785,70,0.008955403214434798711551799499,18,14,64
226,226_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.278947368421052610543142691313,164,0.007264409825752541315091459495,13,94,98
227,227_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,28,0.010000000000000000208166817117,24,98,27
228,228_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,178,0.010000000000000000208166817117,7,98,57
229,229_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,69,0.010000000000000000208166817117,17,15,79
230,230_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,140,0.005010466861507650686291537312,6,92,87
231,231_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,41,0.010000000000000000208166817117,4,41,32
232,232_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.342105263157894690095872647362,17,0.007055760108174730788066497666,4,95,62
233,233_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,99,0.009194321504287672475186354859,12,20,83
234,234_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,67,0.003364656865678123959934042730,6,93,79
235,235_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,52,0.005685192655278845444422053390,5,98,85
236,236_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,200,0.010000000000000000208166817117,11,100,64
237,237_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,12,0.010000000000000000208166817117,4,49,73
238,238_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,121,0.010000000000000000208166817117,14,16,100
239,239_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,100,0.010000000000000000208166817117,23,26,83
240,240_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,198,0.007731675252046769225566791306,6,45,94
241,241_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,86,0.010000000000000000208166817117,22,19,91
242,242_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.336842105263157942651730536454,51,0.010000000000000000208166817117,5,20,64
243,243_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.242105263157894712300333139865,200,0.010000000000000000208166817117,9,34,32
244,244_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.331578947368421084185285963031,71,0.009280344521994299614164880552,10,14,89
245,245_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,27,0.010000000000000000208166817117,4,51,90
246,246_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,87,0.006955764471627999372127515443,5,25,35
247,247_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,79,0.009402314477485483601437721290,20,13,84
248,248_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.236842105263157853833888566442,19,0.008174287507179699846515674722,9,96,94
249,249_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.199999999999999955591079014994,87,0.008685049338473319058273602877,12,16,100
250,250_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.199999999999999955591079014994,200,0.007291676439191521232052739521,9,10,100
251,251_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.268421052631578893610253544466,200,0.007929985518306420858025695964,10,59,95
252,252_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,199,0.008195248509410299128652432898,10,76,100
253,253_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,193,0.007931655319971116571697855591,11,90,74
254,254_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,193,0.009594192945999061722384126938,11,22,96
255,255_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,200,0.007055811264348119289657734754,9,77,100
256,256_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,200,0.010000000000000000208166817117,12,10,72
257,257_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,200,0.010000000000000000208166817117,12,93,100
258,258_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.336842105263157942651730536454,200,0.005425183743495280187796314664,4,100,100
259,259_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,200,0.008440358256238074396993198434,10,17,89
260,260_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,168,0.006826646227095431451736828876,7,85,100
261,261_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,200,0.008151733417899107228543620352,12,85,97
262,262_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.410526315789473739137349639350,55,0.000100000000000000004792173602,4,76,12
263,263_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,200,0.010000000000000000208166817117,22,20,95
264,264_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.184210526315789491214047757239,189,0.006015229369388397882845165299,7,14,66
265,265_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,195,0.003128322759995349425926614018,4,90,28
266,266_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.347368421052631548562317220785,200,0.010000000000000000208166817117,11,10,100
267,267_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.294736842105263185942476411583,196,0.010000000000000000208166817117,15,58,32
268,268_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,199,0.007625260542159143992146930202,22,12,17
269,269_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,195,0.010000000000000000208166817117,25,47,98
270,270_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,198,0.006201190276445331557575446624,6,31,93
271,271_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,195,0.008296187054131350449570625472,24,100,17
272,272_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.226315789473684247923301882111,200,0.006883295264170376757950631230,10,77,99
273,273_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.231578947368421106389746455534,192,0.007434520055481418088216827300,7,77,99
274,274_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.194736842105263208146936904086,197,0.008846428018668237025501355220,17,31,56
275,275_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,199,0.010000000000000000208166817117,21,47,98
276,276_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,198,0.008938719527158999964000507532,21,94,92
277,277_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,197,0.010000000000000000208166817117,16,85,22
278,278_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,200,0.007962235188536335647735420196,9,96,100
279,279_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,194,0.008734301063598860423442538092,25,16,18
280,280_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.221052631578947389456857308687,175,0.008487945627539824136609247773,27,77,31
281,281_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,200,0.009537737592372700495824133782,19,78,83
282,282_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.326315789473684225718841389607,117,0.002561336279059253564355236321,4,18,100
283,283_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,199,0.010000000000000000208166817117,23,79,28
284,284_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.284210526315789469009587264736,179,0.003390113275396877332013012563,4,59,18
285,285_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.205263157894736814057523588417,198,0.010000000000000000208166817117,27,11,11
286,286_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.305263157894736791853063095914,175,0.009349272459615030547719349840,26,97,49
287,287_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.347368421052631548562317220785,36,0.005056488906256526895399705523,9,12,12
288,288_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.252631578947368429233222286712,191,0.009836560025212250091275478781,27,21,57
289,289_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,187,0.008391866727533774106273511961,10,12,90
290,290_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.215789473684210530990412735264,199,0.008772779087706203057783760357,13,16,76
291,291_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.210526315789473672523968161840,199,0.010000000000000000208166817117,25,20,49
292,292_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.321052631578947367252396816184,170,0.007863181618209195977708958480,27,98,32
293,293_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.257894736842105287699666860135,187,0.007664264830929409973159227576,25,63,37
294,294_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.247368421052631570766777713288,188,0.008505773835092489409959171098,23,28,22
295,295_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.289473684210526327476031838160,199,0.008127769768451859402902393015,15,11,69
296,296_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.289473684210526327476031838160,136,0.008573263979629782913227664665,26,93,26
297,297_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,184,0.008766550644958560206676523308,12,18,68
298,298_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.263157894736842146166111433558,198,0.006391300842046437717669515877,4,37,95
299,299_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.363157894736842123961650941055,193,0.008208469928146253785650188206,27,47,11
300,300_0,COMPLETED,BoTorch,BOTORCH_MODULAR,0.357894736842105265495206367632,200,0.010000000000000000208166817117,23,10,41
301,301_0,RUNNING,BoTorch,BOTORCH_MODULAR,,191,0.008690228343366133631486825095,16,13,99
302,302_0,RUNNING,BoTorch,BOTORCH_MODULAR,,151,0.008214996255335754726800701064,11,88,99
303,303_0,RUNNING,BoTorch,BOTORCH_MODULAR,,200,0.007200959901677950018850093983,13,47,100
304,304_0,RUNNING,BoTorch,BOTORCH_MODULAR,,200,0.005081474352885096898435612900,6,94,11
305,305_0,RUNNING,BoTorch,BOTORCH_MODULAR,,200,0.004392889949584495752621382536,4,82,27
306,306_0,RUNNING,BoTorch,BOTORCH_MODULAR,,200,0.004433710192649271963905022176,4,15,72
307,307_0,RUNNING,BoTorch,BOTORCH_MODULAR,,193,0.006026825322515550267810091611,10,96,90
308,308_0,RUNNING,BoTorch,BOTORCH_MODULAR,,200,0.010000000000000000208166817117,23,10,10
309,309_0,RUNNING,BoTorch,BOTORCH_MODULAR,,197,0.005826684793629684049054429096,8,59,60
310,310_0,RUNNING,BoTorch,BOTORCH_MODULAR,,137,0.006825591395611478248706127658,10,94,99
311,311_0,RUNNING,BoTorch,BOTORCH_MODULAR,,199,0.005738844622553738485104535272,8,14,21
312,312_0,RUNNING,BoTorch,BOTORCH_MODULAR,,26,0.006196918380796844622038221928,9,24,90
313,313_0,RUNNING,BoTorch,BOTORCH_MODULAR,,170,0.006861978646614732592345919926,9,86,100
314,314_0,RUNNING,BoTorch,BOTORCH_MODULAR,,197,0.010000000000000000208166817117,32,10,44
315,315_0,RUNNING,BoTorch,BOTORCH_MODULAR,,91,0.010000000000000000208166817117,15,74,100
316,316_0,RUNNING,BoTorch,BOTORCH_MODULAR,,200,0.006487832008299583910759800176,8,94,100
317,317_0,RUNNING,BoTorch,BOTORCH_MODULAR,,189,0.006594452433289561994744776285,18,31,28
318,318_0,RUNNING,BoTorch,BOTORCH_MODULAR,,184,0.008788193223409001067492063441,28,11,17
319,319_0,RUNNING,BoTorch,BOTORCH_MODULAR,,185,0.009706456536513294319767908291,19,12,100
320,320_0,RUNNING,BoTorch,BOTORCH_MODULAR,,179,0.010000000000000000208166817117,32,95,10
321,321_0,RUNNING,BoTorch,BOTORCH_MODULAR,,124,0.007660351672229673974934271996,10,19,88
322,322_0,RUNNING,BoTorch,BOTORCH_MODULAR,,199,0.007697847625975125750164007599,19,33,97
323,323_0,RUNNING,BoTorch,BOTORCH_MODULAR,,189,0.007080508871516897825837411062,11,17,98
324,324_0,RUNNING,BoTorch,BOTORCH_MODULAR,,195,0.006347464730234357935256817029,11,98,91
325,325_0,RUNNING,BoTorch,BOTORCH_MODULAR,,152,0.007053687018213984465109245292,9,40,98
326,326_0,RUNNING,BoTorch,BOTORCH_MODULAR,,196,0.006733822685616534450825376723,8,12,36
327,327_0,RUNNING,BoTorch,BOTORCH_MODULAR,,200,0.005330177068560809118535903650,4,11,92
328,328_0,RUNNING,BoTorch,BOTORCH_MODULAR,,167,0.007082479005346094258488420792,10,96,90
329,329_0,RUNNING,BoTorch,BOTORCH_MODULAR,,192,0.008223181018541025899537544319,22,10,75
330,330_0,RUNNING,BoTorch,BOTORCH_MODULAR,,181,0.007530052111167856790374663944,13,10,100
331,331_0,RUNNING,BoTorch,BOTORCH_MODULAR,,197,0.005755042939312985175726034015,23,11,18
332,332_0,RUNNING,BoTorch,BOTORCH_MODULAR,,198,0.008448069330515475122700408406,22,16,88
333,333_0,RUNNING,BoTorch,BOTORCH_MODULAR,,192,0.006854246695185100927971699747,11,95,24
334,334_0,RUNNING,BoTorch,BOTORCH_MODULAR,,198,0.006760587303112118931491814067,9,99,68
335,335_0,RUNNING,BoTorch,BOTORCH_MODULAR,,191,0.009999002156982919609085058710,31,37,44
336,336_0,RUNNING,BoTorch,BOTORCH_MODULAR,,191,0.006767322079922043903676964760,11,10,67
337,337_0,RUNNING,BoTorch,BOTORCH_MODULAR,,200,0.009130179879195661138413520064,24,100,19
338,338_0,RUNNING,BoTorch,BOTORCH_MODULAR,,198,0.010000000000000000208166817117,19,19,20
339,339_0,RUNNING,BoTorch,BOTORCH_MODULAR,,199,0.006120715678959642511158811828,9,36,94
340,340_0,RUNNING,BoTorch,BOTORCH_MODULAR,,166,0.006052328243896887977060217167,9,51,100
341,341_0,RUNNING,BoTorch,BOTORCH_MODULAR,,199,0.007480037307678853025771914531,19,10,63
342,342_0,RUNNING,BoTorch,BOTORCH_MODULAR,,134,0.006649065335040425968327060247,13,94,98
343,343_0,RUNNING,BoTorch,BOTORCH_MODULAR,,171,0.006060800778925073614700202995,6,88,41
344,344_0,RUNNING,BoTorch,BOTORCH_MODULAR,,199,0.007390091014643066814893135330,10,13,78
345,345_0,RUNNING,BoTorch,BOTORCH_MODULAR,,172,0.005118832947024146845516057169,5,16,95
346,346_0,RUNNING,BoTorch,BOTORCH_MODULAR,,196,0.006318060363255504144341934136,14,10,77
347,347_0,RUNNING,BoTorch,BOTORCH_MODULAR,,200,0.003110382722629966793098654776,4,88,76
348,348_0,RUNNING,BoTorch,BOTORCH_MODULAR,,160,0.007329839398934116095896129650,16,15,33
349,349_0,RUNNING,BoTorch,BOTORCH_MODULAR,,152,0.007336594368444059217904129611,9,97,87
</pre>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<script>
createTable(tab_results_csv_json, tab_results_headers_json, 'tab_results_csv_table');</script>
<h1> Progressbar log</h1>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_progressbar_log")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_progressbar_log", "progressbar")'> Download »progressbar« as file</button>
<pre id='simple_pre_tab_tab_progressbar_log'>2025-05-06 14:11:09: SOBOL, Started OmniOpt2 run...
2025-05-06 14:11:17: SOBOL, getting new HP set #1/50
2025-05-06 14:11:20: Sobol, getting new HP set #2/50 | ETA: 13s
2025-05-06 14:11:23: Sobol, getting new HP set #3/50 | ETA: 11s
2025-05-06 14:11:26: Sobol, getting new HP set #4/50 | ETA: 9s
2025-05-06 14:11:31: Sobol, getting new HP set #5/50 | ETA: 9s
2025-05-06 14:11:37: Sobol, getting new HP set #6/50 | ETA: 8s
2025-05-06 14:11:41: Sobol, getting new HP set #7/50 | ETA: 7s
2025-05-06 14:11:45: Sobol, getting new HP set #8/50 | ETA: 7s
2025-05-06 14:11:49: Sobol, getting new HP set #9/50 | ETA: 7s
2025-05-06 14:11:52: Sobol, getting new HP set #10/50 | ETA: 7s
2025-05-06 14:11:55: Sobol, getting new HP set #11/50 | ETA: 6s
2025-05-06 14:11:59: Sobol, getting new HP set #12/50 | ETA: 6s
2025-05-06 14:12:02: Sobol, getting new HP set #13/50 | ETA: 6s
2025-05-06 14:12:06: Sobol, getting new HP set #14/50 | ETA: 6s
2025-05-06 14:12:09: Sobol, getting new HP set #15/50 | ETA: 5s
2025-05-06 14:12:12: Sobol, getting new HP set #16/50 | ETA: 5s
2025-05-06 14:12:15: Sobol, getting new HP set #17/50 | ETA: 5s
2025-05-06 14:12:19: Sobol, getting new HP set #18/50 | ETA: 5s
2025-05-06 14:12:22: Sobol, getting new HP set #19/50 | ETA: 5s
2025-05-06 14:12:26: Sobol, getting new HP set #20/50 | ETA: 5s
2025-05-06 14:12:30: Sobol, getting new HP set #21/50 | ETA: 4s
2025-05-06 14:12:35: Sobol, getting new HP set #22/50 | ETA: 4s
2025-05-06 14:12:41: Sobol, getting new HP set #23/50 | ETA: 4s
2025-05-06 14:12:44: Sobol, getting new HP set #24/50 | ETA: 4s
2025-05-06 14:12:47: Sobol, getting new HP set #25/50 | ETA: 4s
2025-05-06 14:12:51: Sobol, getting new HP set #26/50 | ETA: 4s
2025-05-06 14:12:54: Sobol, getting new HP set #27/50 | ETA: 3s
2025-05-06 14:12:58: Sobol, getting new HP set #28/50 | ETA: 3s
2025-05-06 14:13:03: Sobol, getting new HP set #29/50 | ETA: 3s
2025-05-06 14:13:06: Sobol, getting new HP set #30/50 | ETA: 3s
2025-05-06 14:13:09: Sobol, getting new HP set #31/50 | ETA: 3s
2025-05-06 14:13:14: Sobol, getting new HP set #32/50 | ETA: 3s
2025-05-06 14:13:18: Sobol, getting new HP set #33/50 | ETA: 3s
2025-05-06 14:13:21: Sobol, getting new HP set #34/50 | ETA: 2s
2025-05-06 14:13:23: Sobol, getting new HP set #35/50 | ETA: 2s
2025-05-06 14:13:26: Sobol, getting new HP set #36/50 | ETA: 2s
2025-05-06 14:13:29: Sobol, getting new HP set #37/50 | ETA: 2s
2025-05-06 14:13:35: Sobol, getting new HP set #38/50 | ETA: 2s
2025-05-06 14:13:41: Sobol, getting new HP set #39/50 | ETA: 2s
2025-05-06 14:13:44: Sobol, getting new HP set #40/50 | ETA: 1s
2025-05-06 14:13:47: Sobol, getting new HP set #41/50 | ETA: 1s
2025-05-06 14:13:51: Sobol, getting new HP set #42/50 | ETA: 1s
2025-05-06 14:13:53: Sobol, getting new HP set #43/50 | ETA: 1s
2025-05-06 14:13:56: Sobol, getting new HP set #44/50 | ETA: 1s
2025-05-06 14:13:59: Sobol, getting new HP set #45/50 | ETA: 1s
2025-05-06 14:14:01: Sobol, getting new HP set #46/50 | ETA: 0s
2025-05-06 14:14:04: Sobol, getting new HP set #47/50 | ETA: 0s
2025-05-06 14:14:07: Sobol, getting new HP set #48/50 | ETA: 0s
2025-05-06 14:14:10: Sobol, getting new HP set #49/50 | ETA: 0s
2025-05-06 14:14:13: Sobol, getting new HP set #50/50 | ETA: 0s
2025-05-06 14:14:17: Sobol, eval start
2025-05-06 14:14:22: Sobol, starting new job
2025-05-06 14:14:28: Sobol, unknown 1 = ∑1/50, started new job
2025-05-06 14:14:31: Sobol, pending 1 = ∑1/50, eval start
2025-05-06 14:14:37: Sobol, pending 1 = ∑1/50, starting new job
2025-05-06 14:14:44: Sobol, running/unknown 1/1 = ∑2/50, started new job
2025-05-06 14:14:50: Sobol, running/pending 1/1 = ∑2/50, eval start
2025-05-06 14:14:56: Sobol, running/pending 1/1 = ∑2/50, starting new job
2025-05-06 14:15:03: Sobol, running/pending/unknown 1/1/1 = ∑3/50, started new job
2025-05-06 14:15:08: Sobol, running/pending 1/2 = ∑3/50, eval start
2025-05-06 14:15:16: Sobol, running 3 = ∑3/50, starting new job
2025-05-06 14:15:25: Sobol, running/unknown 3/1 = ∑4/50, started new job
2025-05-06 14:15:31: Sobol, running/pending 3/1 = ∑4/50, eval start
2025-05-06 14:15:37: Sobol, running/pending 3/1 = ∑4/50, starting new job
2025-05-06 14:15:48: Sobol, running/unknown 4/1 = ∑5/50, started new job
2025-05-06 14:15:55: Sobol, running/pending 4/1 = ∑5/50, eval start
2025-05-06 14:16:00: Sobol, running/pending 4/1 = ∑5/50, starting new job
2025-05-06 14:16:07: Sobol, running/pending/unknown 4/1/1 = ∑6/50, started new job
2025-05-06 14:16:13: Sobol, running 6 = ∑6/50, eval start
2025-05-06 14:16:19: Sobol, running 6 = ∑6/50, starting new job
2025-05-06 14:16:26: Sobol, running/unknown 6/1 = ∑7/50, started new job
2025-05-06 14:16:31: Sobol, running/pending 6/1 = ∑7/50, eval start
2025-05-06 14:16:37: Sobol, running/pending 6/1 = ∑7/50, starting new job
2025-05-06 14:16:46: Sobol, running/unknown 7/1 = ∑8/50, started new job
2025-05-06 14:16:52: Sobol, running/pending 7/1 = ∑8/50, eval start
2025-05-06 14:16:57: Sobol, running/pending 7/1 = ∑8/50, starting new job
2025-05-06 14:17:03: Sobol, running/completed/pending/unknown 2/5/1/1 = ∑9/50, started new job
2025-05-06 14:17:07: Sobol, completed/running/pending 6/1/2 = ∑9/50, eval start
2025-05-06 14:17:12: Sobol, completed/running/pending 6/1/2 = ∑9/50, starting new job
2025-05-06 14:17:18: Sobol, completed/running/unknown 7/2/1 = ∑10/50, started new job
2025-05-06 14:17:24: Sobol, completed/running/pending 7/2/1 = ∑10/50, eval start
2025-05-06 14:17:29: Sobol, completed/running/pending 7/2/1 = ∑10/50, starting new job
2025-05-06 14:17:35: Sobol, completed/running/pending/unknown 7/2/1/1 = ∑11/50, started new job
2025-05-06 14:17:39: Sobol, completed/running/pending 7/2/2 = ∑11/50, eval start
2025-05-06 14:17:48: Sobol, completed/running 8/3 = ∑11/50, starting new job
2025-05-06 14:17:55: Sobol, completed/running/unknown 9/2/1 = ∑12/50, started new job
2025-05-06 14:17:59: Sobol, completed/running/pending 9/2/1 = ∑12/50, eval start
2025-05-06 14:18:05: Sobol, completed/running/pending 9/2/1 = ∑12/50, starting new job
2025-05-06 14:18:10: Sobol, completed/running/pending/unknown 9/2/1/1 = ∑13/50, started new job
2025-05-06 14:18:19: Sobol, completed/running 11/2 = ∑13/50, eval start
2025-05-06 14:18:25: Sobol, completed/running 11/2 = ∑13/50, starting new job
2025-05-06 14:18:31: Sobol, completed/running/unknown 11/2/1 = ∑14/50, started new job
2025-05-06 14:18:37: Sobol, completed/running/pending 11/2/1 = ∑14/50, eval start
2025-05-06 14:18:43: Sobol, completed/running/pending 11/2/1 = ∑14/50, starting new job
2025-05-06 14:18:51: Sobol, completed/running/unknown 12/2/1 = ∑15/50, started new job
2025-05-06 14:18:57: Sobol, completed/running/pending 13/1/1 = ∑15/50, eval start
2025-05-06 14:19:03: Sobol, completed/running/pending 13/1/1 = ∑15/50, starting new job
2025-05-06 14:19:10: Sobol, completed/running/pending/unknown 13/1/1/1 = ∑16/50, started new job
2025-05-06 14:19:17: Sobol, completed/running 13/3 = ∑16/50, eval start
2025-05-06 14:19:26: Sobol, completed/running 13/3 = ∑16/50, starting new job
2025-05-06 14:19:35: Sobol, completed/running/unknown 13/3/1 = ∑17/50, started new job
2025-05-06 14:19:43: Sobol, completed/running 13/4 = ∑17/50, eval start
2025-05-06 14:19:52: Sobol, completed/running 13/4 = ∑17/50, starting new job
2025-05-06 14:19:59: Sobol, completed/running/unknown 13/4/1 = ∑18/50, started new job
2025-05-06 14:20:04: Sobol, completed/running/pending 15/2/1 = ∑18/50, eval start
2025-05-06 14:20:09: Sobol, completed/running/pending 15/2/1 = ∑18/50, starting new job
2025-05-06 14:20:15: Sobol, completed/running/unknown 16/2/1 = ∑19/50, started new job
2025-05-06 14:20:19: Sobol, completed/running/unknown 17/1/1 = ∑19/50, eval start
2025-05-06 14:20:24: Sobol, completed/running/unknown 17/1/1 = ∑19/50, starting new job
2025-05-06 14:20:30: Sobol, completed/running/pending/unknown 17/1/1/1 = ∑20/50, started new job
2025-05-06 14:20:35: Sobol, completed/running/pending 17/1/2 = ∑20/50, eval start
2025-05-06 14:20:41: Sobol, completed/running/pending 17/1/2 = ∑20/50, starting new job
2025-05-06 14:20:51: Sobol, completed/running/unknown 17/3/1 = ∑21/50, started new job
2025-05-06 14:20:58: Sobol, completed/running/pending 17/3/1 = ∑21/50, eval start
2025-05-06 14:21:06: Sobol, completed/running/pending 17/3/1 = ∑21/50, starting new job
2025-05-06 14:21:13: Sobol, completed/running/pending/unknown 17/3/1/1 = ∑22/50, started new job
2025-05-06 14:21:22: Sobol, completed/running 18/4 = ∑22/50, eval start
2025-05-06 14:21:29: Sobol, completed/running 18/4 = ∑22/50, starting new job
2025-05-06 14:21:36: Sobol, completed/running/unknown 19/3/1 = ∑23/50, started new job
2025-05-06 14:21:40: Sobol, completed/running/pending 19/3/1 = ∑23/50, eval start
2025-05-06 14:21:47: Sobol, completed/running 20/3 = ∑23/50, starting new job
2025-05-06 14:21:54: Sobol, completed/running/unknown 22/1/1 = ∑24/50, started new job
2025-05-06 14:21:58: Sobol, completed/running/pending 22/1/1 = ∑24/50, eval start
2025-05-06 14:22:01: Sobol, completed/running/pending 22/1/1 = ∑24/50, starting new job
2025-05-06 14:22:07: Sobol, completed/running/pending/unknown 22/1/1/1 = ∑25/50, started new job
2025-05-06 14:22:10: Sobol, completed/running/pending 22/1/2 = ∑25/50, eval start
2025-05-06 14:22:14: Sobol, completed/running/pending 22/1/2 = ∑25/50, starting new job
2025-05-06 14:22:20: Sobol, completed/running/unknown 22/3/1 = ∑26/50, started new job
2025-05-06 14:22:25: Sobol, completed/running/pending 23/2/1 = ∑26/50, eval start
2025-05-06 14:22:31: Sobol, completed/running/pending 23/2/1 = ∑26/50, starting new job
2025-05-06 14:22:38: Sobol, completed/running/pending/unknown 23/2/1/1 = ∑27/50, started new job
2025-05-06 14:22:43: Sobol, completed/running/pending 23/2/2 = ∑27/50, eval start
2025-05-06 14:22:51: Sobol, completed/running 24/3 = ∑27/50, starting new job
2025-05-06 14:22:57: Sobol, completed/running/unknown 24/3/1 = ∑28/50, started new job
2025-05-06 14:23:02: Sobol, completed/running/pending 25/2/1 = ∑28/50, eval start
2025-05-06 14:23:06: Sobol, completed/running/pending 25/2/1 = ∑28/50, starting new job
2025-05-06 14:23:13: Sobol, completed/running/pending/unknown 26/1/1/1 = ∑29/50, started new job
2025-05-06 14:23:19: Sobol, completed/running 27/2 = ∑29/50, eval start
2025-05-06 14:23:25: Sobol, completed/running 27/2 = ∑29/50, starting new job
2025-05-06 14:23:32: Sobol, completed/running/unknown 27/2/1 = ∑30/50, started new job
2025-05-06 14:23:37: Sobol, completed/running/pending 27/2/1 = ∑30/50, eval start
2025-05-06 14:23:43: Sobol, completed/running/pending 27/2/1 = ∑30/50, starting new job
2025-05-06 14:23:51: Sobol, completed/running/unknown 28/2/1 = ∑31/50, started new job
2025-05-06 14:23:56: Sobol, completed/running/unknown 29/1/1 = ∑31/50, eval start
2025-05-06 14:24:00: Sobol, completed/running/unknown 29/1/1 = ∑31/50, starting new job
2025-05-06 14:24:06: Sobol, completed/running/pending/unknown 29/1/1/1 = ∑32/50, started new job
2025-05-06 14:24:10: Sobol, completed/pending 30/2 = ∑32/50, eval start
2025-05-06 14:24:14: Sobol, completed/pending 30/2 = ∑32/50, starting new job
2025-05-06 14:24:20: Sobol, completed/running/unknown 30/2/1 = ∑33/50, started new job
2025-05-06 14:24:25: Sobol, completed/running/pending 30/2/1 = ∑33/50, eval start
2025-05-06 14:24:31: Sobol, completed/running/pending 30/2/1 = ∑33/50, starting new job
2025-05-06 14:24:39: Sobol, completed/running/pending/unknown 30/2/1/1 = ∑34/50, started new job
2025-05-06 14:24:46: Sobol, completed/running 30/4 = ∑34/50, eval start
2025-05-06 14:24:52: Sobol, completed/running 30/4 = ∑34/50, starting new job
2025-05-06 14:24:59: Sobol, completed/running/unknown 32/2/1 = ∑35/50, started new job
2025-05-06 14:25:04: Sobol, completed/running/pending 32/2/1 = ∑35/50, eval start
2025-05-06 14:25:10: Sobol, completed/running/pending 32/2/1 = ∑35/50, starting new job
2025-05-06 14:25:15: Sobol, completed/running/pending/unknown 33/1/1/1 = ∑36/50, started new job
2025-05-06 14:25:20: Sobol, completed/running 34/2 = ∑36/50, eval start
2025-05-06 14:25:25: Sobol, completed/running 34/2 = ∑36/50, starting new job
2025-05-06 14:25:32: Sobol, completed/running/unknown 34/2/1 = ∑37/50, started new job
2025-05-06 14:25:37: Sobol, completed/running/pending 34/2/1 = ∑37/50, eval start
2025-05-06 14:25:44: Sobol, completed/running/pending 34/2/1 = ∑37/50, starting new job
2025-05-06 14:25:51: Sobol, completed/running/unknown 36/1/1 = ∑38/50, started new job
2025-05-06 14:25:58: Sobol, completed/running/pending 36/1/1 = ∑38/50, eval start
2025-05-06 14:26:03: Sobol, completed/running/pending 36/1/1 = ∑38/50, starting new job
2025-05-06 14:26:09: Sobol, completed/running/pending/unknown 36/1/1/1 = ∑39/50, started new job
2025-05-06 14:26:13: Sobol, completed/running/pending 36/1/2 = ∑39/50, eval start
2025-05-06 14:26:19: Sobol, completed/running 37/2 = ∑39/50, starting new job
2025-05-06 14:26:26: Sobol, completed/running/unknown 37/2/1 = ∑40/50, started new job
2025-05-06 14:26:32: Sobol, completed/running/pending 37/2/1 = ∑40/50, eval start
2025-05-06 14:26:37: Sobol, completed/running/pending 37/2/1 = ∑40/50, starting new job
2025-05-06 14:26:44: Sobol, completed/running/pending/unknown 38/1/1/1 = ∑41/50, started new job
2025-05-06 14:26:49: Sobol, completed/running 39/2 = ∑41/50, eval start
2025-05-06 14:26:54: Sobol, completed/running 39/2 = ∑41/50, starting new job
2025-05-06 14:27:02: Sobol, completed/running/unknown 39/2/1 = ∑42/50, started new job
2025-05-06 14:27:07: Sobol, completed/running/pending 39/2/1 = ∑42/50, eval start
2025-05-06 14:27:12: Sobol, completed/running/pending 39/2/1 = ∑42/50, starting new job
2025-05-06 14:27:17: Sobol, completed/pending/unknown 41/1/1 = ∑43/50, started new job
2025-05-06 14:27:23: Sobol, completed/running 41/2 = ∑43/50, eval start
2025-05-06 14:27:28: Sobol, completed/running 41/2 = ∑43/50, starting new job
2025-05-06 14:27:34: Sobol, completed/running/unknown 41/2/1 = ∑44/50, started new job
2025-05-06 14:27:40: Sobol, completed/running/pending 41/2/1 = ∑44/50, eval start
2025-05-06 14:27:45: Sobol, completed/running/pending 41/2/1 = ∑44/50, starting new job
2025-05-06 14:27:52: Sobol, completed/running/unknown 43/1/1 = ∑45/50, started new job
2025-05-06 14:27:57: Sobol, completed/running/pending 43/1/1 = ∑45/50, eval start
2025-05-06 14:28:03: Sobol, completed/running/pending 43/1/1 = ∑45/50, starting new job
2025-05-06 14:28:09: Sobol, completed/running/pending/unknown 43/1/1/1 = ∑46/50, started new job
2025-05-06 14:28:14: Sobol, completed/running/pending 43/1/2 = ∑46/50, eval start
2025-05-06 14:28:18: Sobol, completed/running/pending 43/1/2 = ∑46/50, starting new job
2025-05-06 14:28:25: Sobol, completed/running/unknown 44/2/1 = ∑47/50, started new job
2025-05-06 14:28:30: Sobol, completed/running/pending 44/2/1 = ∑47/50, eval start
2025-05-06 14:28:38: Sobol, completed/running/pending 44/2/1 = ∑47/50, starting new job
2025-05-06 14:28:44: Sobol, completed/pending/unknown 46/1/1 = ∑48/50, started new job
2025-05-06 14:28:48: Sobol, completed/pending 46/2 = ∑48/50, eval start
2025-05-06 14:28:53: Sobol, completed/pending 46/2 = ∑48/50, starting new job
2025-05-06 14:29:01: Sobol, completed/running/pending 46/2/1 = ∑49/50, started new job
2025-05-06 14:29:07: Sobol, completed/running/pending 46/2/1 = ∑49/50, eval start
2025-05-06 14:29:12: Sobol, completed/running/pending 46/2/1 = ∑49/50, starting new job
2025-05-06 14:29:18: Sobol, completed/running/pending/unknown 47/1/1/1 = ∑50/50, started new job
2025-05-06 14:29:23: Sobol, completed/running 47/3 = ∑50/50, new result: 0.21578947368421053
2025-05-06 14:29:41: Sobol, best RESULT: 0.21578947368421053, completed/running 47/2 = ∑49/50, new result: 0.35789473684210527
2025-05-06 14:29:53: Sobol, best RESULT: 0.21578947368421053, completed 48 = ∑48/50, new result: 0.37368421052631584
2025-05-06 14:30:03: Sobol, best RESULT: 0.21578947368421053, completed 47 = ∑47/50, new result: 0.2789473684210526
2025-05-06 14:30:12: Sobol, best RESULT: 0.21578947368421053, completed 46 = ∑46/50, new result: 0.4368421052631579
2025-05-06 14:30:23: Sobol, best RESULT: 0.21578947368421053, completed 45 = ∑45/50, new result: 0.2894736842105263
2025-05-06 14:30:35: Sobol, best RESULT: 0.21578947368421053, completed 44 = ∑44/50, new result: 0.3421052631578947
2025-05-06 14:30:47: Sobol, best RESULT: 0.21578947368421053, completed 43 = ∑43/50, new result: 0.2210526315789474
2025-05-06 14:30:58: Sobol, best RESULT: 0.21578947368421053, completed 42 = ∑42/50, new result: 0.3052631578947368
2025-05-06 14:31:08: Sobol, best RESULT: 0.21578947368421053, completed 41 = ∑41/50, new result: 0.2789473684210526
2025-05-06 14:31:17: Sobol, best RESULT: 0.21578947368421053, completed 40 = ∑40/50, new result: 0.4789473684210527
2025-05-06 14:31:27: Sobol, best RESULT: 0.21578947368421053, completed 39 = ∑39/50, new result: 0.2789473684210526
2025-05-06 14:31:42: Sobol, best RESULT: 0.21578947368421053, completed 38 = ∑38/50, new result: 0.3526315789473684
2025-05-06 14:31:58: Sobol, best RESULT: 0.21578947368421053, completed 37 = ∑37/50, new result: 0.3894736842105263
2025-05-06 14:32:08: Sobol, best RESULT: 0.21578947368421053, completed 36 = ∑36/50, new result: 0.3421052631578947
2025-05-06 14:32:19: Sobol, best RESULT: 0.21578947368421053, completed 35 = ∑35/50, new result: 0.30000000000000004
2025-05-06 14:32:33: Sobol, best RESULT: 0.21578947368421053, completed 34 = ∑34/50, new result: 0.33684210526315794
2025-05-06 14:32:44: Sobol, best RESULT: 0.21578947368421053, completed 33 = ∑33/50, new result: 0.2578947368421053
2025-05-06 14:32:55: Sobol, best RESULT: 0.21578947368421053, completed 32 = ∑32/50, new result: 0.30000000000000004
2025-05-06 14:33:08: Sobol, best RESULT: 0.21578947368421053, completed 31 = ∑31/50, new result: 0.31052631578947365
2025-05-06 14:33:23: Sobol, best RESULT: 0.21578947368421053, completed 30 = ∑30/50, new result: 0.3526315789473684
2025-05-06 14:33:45: Sobol, best RESULT: 0.21578947368421053, completed 29 = ∑29/50, new result: 0.31052631578947365
2025-05-06 14:34:01: Sobol, best RESULT: 0.21578947368421053, completed 28 = ∑28/50, new result: 0.3631578947368421
2025-05-06 14:34:16: Sobol, best RESULT: 0.21578947368421053, completed 27 = ∑27/50, new result: 0.2315789473684211
2025-05-06 14:34:29: Sobol, best RESULT: 0.21578947368421053, completed 26 = ∑26/50, new result: 0.3263157894736842
2025-05-06 14:34:40: Sobol, best RESULT: 0.21578947368421053, completed 25 = ∑25/50, new result: 0.2684210526315789
2025-05-06 14:34:51: Sobol, best RESULT: 0.21578947368421053, completed 24 = ∑24/50, new result: 0.3421052631578947
2025-05-06 14:35:02: Sobol, best RESULT: 0.21578947368421053, completed 23 = ∑23/50, new result: 0.27368421052631575
2025-05-06 14:35:13: Sobol, best RESULT: 0.21578947368421053, completed 22 = ∑22/50, new result: 0.28421052631578947
2025-05-06 14:35:27: Sobol, best RESULT: 0.21578947368421053, completed 21 = ∑21/50, new result: 0.35789473684210527
2025-05-06 14:35:45: Sobol, best RESULT: 0.21578947368421053, completed 20 = ∑20/50, new result: 0.2947368421052632
2025-05-06 14:35:56: Sobol, best RESULT: 0.21578947368421053, completed 19 = ∑19/50, new result: 0.2947368421052632
2025-05-06 14:36:08: Sobol, best RESULT: 0.21578947368421053, completed 18 = ∑18/50, new result: 0.38421052631578945
2025-05-06 14:36:20: Sobol, best RESULT: 0.21578947368421053, completed 17 = ∑17/50, new result: 0.20526315789473681
2025-05-06 14:36:35: Sobol, best RESULT: 0.20526315789473681, completed 16 = ∑16/50, new result: 0.3526315789473684
2025-05-06 14:36:55: Sobol, best RESULT: 0.20526315789473681, completed 15 = ∑15/50, new result: 0.28421052631578947
2025-05-06 14:37:13: Sobol, best RESULT: 0.20526315789473681, completed 14 = ∑14/50, new result: 0.2894736842105263
2025-05-06 14:37:33: Sobol, best RESULT: 0.20526315789473681, completed 13 = ∑13/50, new result: 0.3631578947368421
2025-05-06 14:37:53: Sobol, best RESULT: 0.20526315789473681, completed 12 = ∑12/50, new result: 0.4736842105263158
2025-05-06 14:38:18: Sobol, best RESULT: 0.20526315789473681, completed 11 = ∑11/50, new result: 0.3157894736842105
2025-05-06 14:38:41: Sobol, best RESULT: 0.20526315789473681, completed 10 = ∑10/50, new result: 0.32105263157894737
2025-05-06 14:38:56: Sobol, best RESULT: 0.20526315789473681, completed 9 = ∑9/50, new result: 0.39473684210526316
2025-05-06 14:39:07: Sobol, best RESULT: 0.20526315789473681, completed 8 = ∑8/50, new result: 0.3789473684210526
2025-05-06 14:39:19: Sobol, best RESULT: 0.20526315789473681, completed 7 = ∑7/50, new result: 0.3263157894736842
2025-05-06 14:39:31: Sobol, best RESULT: 0.20526315789473681, completed 6 = ∑6/50, new result: 0.30000000000000004
2025-05-06 14:39:48: Sobol, best RESULT: 0.20526315789473681, completed 5 = ∑5/50, new result: 0.22631578947368425
2025-05-06 14:40:00: Sobol, best RESULT: 0.20526315789473681, completed 4 = ∑4/50, new result: 0.33684210526315794
2025-05-06 14:40:16: Sobol, best RESULT: 0.20526315789473681, completed 3 = ∑3/50, new result: 0.24736842105263157
2025-05-06 14:40:44: Sobol, best RESULT: 0.20526315789473681, completed 2 = ∑2/50, new result: 0.3315789473684211
2025-05-06 14:40:59: Sobol, best RESULT: 0.20526315789473681, completed 1 = ∑1/50, new result: 0.30000000000000004
2025-05-06 14:41:12: Sobol, best RESULT: 0.20526315789473681, finishing jobs, finished 50 jobs
2025-05-06 14:41:20: Sobol, best RESULT: 0.20526315789473681, getting new HP set #1/50
2025-05-06 14:41:44: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #2/50 | ETA: 11m 4s
2025-05-06 14:41:53: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #3/50 | ETA: 6m 14s
2025-05-06 14:42:08: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #4/50 | ETA: 5m 19s
2025-05-06 14:42:16: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #5/50 | ETA: 4m 22s
2025-05-06 14:42:23: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #6/50 | ETA: 3m 40s
2025-05-06 14:42:33: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #7/50 | ETA: 3m 12s
2025-05-06 14:42:47: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #8/50 | ETA: 2m 53s
2025-05-06 14:42:54: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #9/50 | ETA: 2m 37s
2025-05-06 14:43:02: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #10/50 | ETA: 2m 26s
2025-05-06 14:43:10: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #11/50 | ETA: 2m 15s
2025-05-06 14:43:20: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #12/50 | ETA: 2m 7s
2025-05-06 14:43:33: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #13/50 | ETA: 2m 1s
2025-05-06 14:43:42: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #14/50 | ETA: 1m 54s
2025-05-06 14:43:50: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #15/50 | ETA: 1m 48s
2025-05-06 14:43:59: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #16/50 | ETA: 1m 44s
2025-05-06 14:44:06: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #17/50 | ETA: 1m 39s
2025-05-06 14:44:15: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #18/50 | ETA: 1m 36s
2025-05-06 14:44:25: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #19/50 | ETA: 1m 31s
2025-05-06 14:44:36: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #20/50 | ETA: 1m 27s
2025-05-06 14:44:49: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #21/50 | ETA: 1m 24s
2025-05-06 14:44:59: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #22/50 | ETA: 1m 21s
2025-05-06 14:45:15: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #23/50 | ETA: 1m 20s
2025-05-06 14:45:25: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #24/50 | ETA: 1m 18s
2025-05-06 14:45:38: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #25/50 | ETA: 1m 15s
2025-05-06 14:45:50: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #26/50 | ETA: 1m 13s
2025-05-06 14:46:01: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #27/50 | ETA: 1m 10s
2025-05-06 14:46:12: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #28/50 | ETA: 1m 8s
2025-05-06 14:46:26: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #29/50 | ETA: 1m 6s
2025-05-06 14:46:39: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #30/50 | ETA: 1m 3s
2025-05-06 14:46:50: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #31/50 | ETA: 1m 1s
2025-05-06 14:47:05: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #32/50 | ETA: 58s
2025-05-06 14:47:19: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #33/50 | ETA: 55s
2025-05-06 14:47:33: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #34/50 | ETA: 53s
2025-05-06 14:47:43: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #35/50 | ETA: 50s
2025-05-06 14:47:54: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #36/50 | ETA: 47s
2025-05-06 14:48:07: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #37/50 | ETA: 45s
2025-05-06 14:48:28: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #38/50 | ETA: 42s
2025-05-06 14:48:43: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #39/50 | ETA: 40s
2025-05-06 14:48:53: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #40/50 | ETA: 37s
2025-05-06 14:49:06: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #41/50 | ETA: 34s
2025-05-06 14:49:21: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #42/50 | ETA: 31s
2025-05-06 14:49:37: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #43/50 | ETA: 28s
2025-05-06 14:49:50: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #44/50 | ETA: 24s
2025-05-06 14:50:03: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #45/50 | ETA: 21s
2025-05-06 14:50:20: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #46/50 | ETA: 17s
2025-05-06 14:50:32: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #47/50 | ETA: 14s
2025-05-06 14:50:52: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #48/50 | ETA: 10s
2025-05-06 14:51:06: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #49/50 | ETA: 7s
2025-05-06 14:51:23: BoTorchModel, best RESULT: 0.20526315789473681, getting new HP set #50/50 | ETA: 3s
2025-05-06 14:51:38: BoTorchModel, best RESULT: 0.20526315789473681, eval start
2025-05-06 14:51:48: BoTorchModel, best RESULT: 0.20526315789473681, starting new job
2025-05-06 14:52:00: BoTorchModel, best RESULT: 0.20526315789473681, unknown 1 = ∑1/50, started new job
2025-05-06 14:52:07: BoTorchModel, best RESULT: 0.20526315789473681, pending 1 = ∑1/50, eval start
2025-05-06 14:52:24: BoTorchModel, best RESULT: 0.20526315789473681, running 1 = ∑1/50, starting new job
2025-05-06 14:52:34: BoTorchModel, best RESULT: 0.20526315789473681, running/unknown 1/1 = ∑2/50, started new job
2025-05-06 14:52:44: BoTorchModel, best RESULT: 0.20526315789473681, running 2 = ∑2/50, eval start
2025-05-06 14:52:54: BoTorchModel, best RESULT: 0.20526315789473681, running 2 = ∑2/50, starting new job
2025-05-06 14:53:04: BoTorchModel, best RESULT: 0.20526315789473681, running/unknown 2/1 = ∑3/50, started new job
2025-05-06 14:53:19: BoTorchModel, best RESULT: 0.20526315789473681, running 3 = ∑3/50, eval start
2025-05-06 14:53:31: BoTorchModel, best RESULT: 0.20526315789473681, running 3 = ∑3/50, starting new job
2025-05-06 14:53:40: BoTorchModel, best RESULT: 0.20526315789473681, running/unknown 3/1 = ∑4/50, started new job
2025-05-06 14:53:50: BoTorchModel, best RESULT: 0.20526315789473681, running 4 = ∑4/50, eval start
2025-05-06 14:54:08: BoTorchModel, best RESULT: 0.20526315789473681, running/completed 3/1 = ∑4/50, starting new job
2025-05-06 14:54:21: BoTorchModel, best RESULT: 0.20526315789473681, running/completed/unknown 2/2/1 = ∑5/50, started new job
2025-05-06 14:54:31: BoTorchModel, best RESULT: 0.20526315789473681, running/completed/pending 2/2/1 = ∑5/50, eval start
2025-05-06 14:54:40: BoTorchModel, best RESULT: 0.20526315789473681, running/completed/pending 2/2/1 = ∑5/50, starting new job
2025-05-06 14:55:01: BoTorchModel, best RESULT: 0.20526315789473681, running/completed/unknown 3/2/1 = ∑6/50, started new job
2025-05-06 14:55:29: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 4/2 = ∑6/50, eval start
2025-05-06 14:55:43: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 4/2 = ∑6/50, starting new job
2025-05-06 14:55:56: BoTorchModel, best RESULT: 0.20526315789473681, completed/unknown 6/1 = ∑7/50, started new job
2025-05-06 14:56:15: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 6/1 = ∑7/50, eval start
2025-05-06 14:56:29: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 6/1 = ∑7/50, starting new job
2025-05-06 14:56:44: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 6/1/1 = ∑8/50, started new job
2025-05-06 14:56:56: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 7/1 = ∑8/50, eval start
2025-05-06 14:57:08: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 7/1 = ∑8/50, starting new job
2025-05-06 14:57:17: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 7/1/1 = ∑9/50, started new job
2025-05-06 14:57:26: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 8/1 = ∑9/50, eval start
2025-05-06 14:57:33: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 8/1 = ∑9/50, starting new job
2025-05-06 14:57:43: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 8/1/1 = ∑10/50, started new job
2025-05-06 14:57:51: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 9/1 = ∑10/50, eval start
2025-05-06 14:58:02: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 9/1 = ∑10/50, starting new job
2025-05-06 14:58:12: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 9/1/1 = ∑11/50, started new job
2025-05-06 14:58:19: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 10/1 = ∑11/50, eval start
2025-05-06 14:58:26: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 10/1 = ∑11/50, starting new job
2025-05-06 14:58:34: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 10/1/1 = ∑12/50, started new job
2025-05-06 14:58:41: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 10/1/1 = ∑12/50, eval start
2025-05-06 14:58:48: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 10/1/1 = ∑12/50, starting new job
2025-05-06 14:59:00: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 11/1/1 = ∑13/50, started new job
2025-05-06 14:59:09: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 11/1/1 = ∑13/50, eval start
2025-05-06 14:59:16: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 11/1/1 = ∑13/50, starting new job
2025-05-06 14:59:25: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 12/1/1 = ∑14/50, started new job
2025-05-06 14:59:32: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 12/1/1 = ∑14/50, eval start
2025-05-06 14:59:40: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 12/1/1 = ∑14/50, starting new job
2025-05-06 14:59:48: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending/unknown 12/1/1/1 = ∑15/50, started new job
2025-05-06 14:59:58: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 13/2 = ∑15/50, eval start
2025-05-06 15:00:08: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 13/2 = ∑15/50, starting new job
2025-05-06 15:00:16: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 13/2/1 = ∑16/50, started new job
2025-05-06 15:00:24: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 15/1 = ∑16/50, eval start
2025-05-06 15:00:36: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 15/1 = ∑16/50, starting new job
2025-05-06 15:00:44: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 15/1/1 = ∑17/50, started new job
2025-05-06 15:00:53: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 16/1 = ∑17/50, eval start
2025-05-06 15:01:12: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 16/1 = ∑17/50, starting new job
2025-05-06 15:01:22: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 16/1/1 = ∑18/50, started new job
2025-05-06 15:01:31: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 17/1 = ∑18/50, eval start
2025-05-06 15:01:38: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 17/1 = ∑18/50, starting new job
2025-05-06 15:01:47: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 17/1/1 = ∑19/50, started new job
2025-05-06 15:01:56: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 18/1 = ∑19/50, eval start
2025-05-06 15:02:03: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 18/1 = ∑19/50, starting new job
2025-05-06 15:02:12: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 18/1/1 = ∑20/50, started new job
2025-05-06 15:02:20: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 19/1 = ∑20/50, eval start
2025-05-06 15:02:26: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 19/1 = ∑20/50, starting new job
2025-05-06 15:02:34: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 19/1/1 = ∑21/50, started new job
2025-05-06 15:02:40: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 19/1/1 = ∑21/50, eval start
2025-05-06 15:02:45: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 19/1/1 = ∑21/50, starting new job
2025-05-06 15:02:55: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending/unknown 20/1/1 = ∑22/50, started new job
2025-05-06 15:03:03: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 20/1/1 = ∑22/50, eval start
2025-05-06 15:03:10: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 20/1/1 = ∑22/50, starting new job
2025-05-06 15:03:19: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending/unknown 20/1/1/1 = ∑23/50, started new job
2025-05-06 15:03:25: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 21/2 = ∑23/50, eval start
2025-05-06 15:03:35: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 21/2 = ∑23/50, starting new job
2025-05-06 15:03:45: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 21/2/1 = ∑24/50, started new job
2025-05-06 15:03:54: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 21/2/1 = ∑24/50, eval start
2025-05-06 15:04:03: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 21/2/1 = ∑24/50, starting new job
2025-05-06 15:04:17: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 22/2/1 = ∑25/50, started new job
2025-05-06 15:04:25: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 22/2/1 = ∑25/50, eval start
2025-05-06 15:04:32: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 22/2/1 = ∑25/50, starting new job
2025-05-06 15:04:42: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 22/3/1 = ∑26/50, started new job
2025-05-06 15:04:53: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 23/2/1 = ∑26/50, eval start
2025-05-06 15:05:03: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 23/2/1 = ∑26/50, starting new job
2025-05-06 15:05:14: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 24/2/1 = ∑27/50, started new job
2025-05-06 15:05:20: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 24/2/1 = ∑27/50, eval start
2025-05-06 15:05:28: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 24/2/1 = ∑27/50, starting new job
2025-05-06 15:05:42: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 25/2/1 = ∑28/50, started new job
2025-05-06 15:05:51: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 26/1/1 = ∑28/50, eval start
2025-05-06 15:06:00: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 26/1/1 = ∑28/50, starting new job
2025-05-06 15:06:10: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 27/1/1 = ∑29/50, started new job
2025-05-06 15:06:17: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 27/1/1 = ∑29/50, eval start
2025-05-06 15:06:25: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 27/1/1 = ∑29/50, starting new job
2025-05-06 15:06:34: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 27/2/1 = ∑30/50, started new job
2025-05-06 15:06:42: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 27/2/1 = ∑30/50, eval start
2025-05-06 15:06:50: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 27/2/1 = ∑30/50, starting new job
2025-05-06 15:06:59: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending/unknown 28/1/1/1 = ∑31/50, started new job
2025-05-06 15:07:09: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 28/3 = ∑31/50, eval start
2025-05-06 15:07:19: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 28/3 = ∑31/50, starting new job
2025-05-06 15:07:28: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 30/1/1 = ∑32/50, started new job
2025-05-06 15:07:39: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 30/2 = ∑32/50, eval start
2025-05-06 15:07:50: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 30/2 = ∑32/50, starting new job
2025-05-06 15:08:00: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 31/1/1 = ∑33/50, started new job
2025-05-06 15:08:09: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 32/1 = ∑33/50, eval start
2025-05-06 15:08:17: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 32/1 = ∑33/50, starting new job
2025-05-06 15:08:27: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 32/1/1 = ∑34/50, started new job
2025-05-06 15:08:36: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 32/2 = ∑34/50, eval start
2025-05-06 15:08:49: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 32/2 = ∑34/50, starting new job
2025-05-06 15:08:59: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 33/1/1 = ∑35/50, started new job
2025-05-06 15:09:09: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 33/2 = ∑35/50, eval start
2025-05-06 15:09:18: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 33/2 = ∑35/50, starting new job
2025-05-06 15:09:29: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 34/1/1 = ∑36/50, started new job
2025-05-06 15:09:39: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 35/1 = ∑36/50, eval start
2025-05-06 15:09:50: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 35/1 = ∑36/50, starting new job
2025-05-06 15:10:00: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 35/1/1 = ∑37/50, started new job
2025-05-06 15:10:10: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 36/1 = ∑37/50, eval start
2025-05-06 15:10:18: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 36/1 = ∑37/50, starting new job
2025-05-06 15:10:29: BoTorchModel, best RESULT: 0.20526315789473681, completed/unknown 37/1 = ∑38/50, started new job
2025-05-06 15:10:40: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 37/1 = ∑38/50, eval start
2025-05-06 15:10:52: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 37/1 = ∑38/50, starting new job
2025-05-06 15:11:06: BoTorchModel, best RESULT: 0.20526315789473681, completed/unknown 38/1 = ∑39/50, started new job
2025-05-06 15:11:27: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 38/1 = ∑39/50, eval start
2025-05-06 15:11:43: BoTorchModel, best RESULT: 0.20526315789473681, completed/pending 38/1 = ∑39/50, starting new job
2025-05-06 15:12:04: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 38/1/1 = ∑40/50, started new job
2025-05-06 15:12:21: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 38/2 = ∑40/50, eval start
2025-05-06 15:12:30: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 38/2 = ∑40/50, starting new job
2025-05-06 15:12:41: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 39/1/1 = ∑41/50, started new job
2025-05-06 15:12:50: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 39/1/1 = ∑41/50, eval start
2025-05-06 15:12:59: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 39/1/1 = ∑41/50, starting new job
2025-05-06 15:13:09: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 39/2/1 = ∑42/50, started new job
2025-05-06 15:13:19: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 39/2/1 = ∑42/50, eval start
2025-05-06 15:13:29: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 39/2/1 = ∑42/50, starting new job
2025-05-06 15:13:42: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 39/3/1 = ∑43/50, started new job
2025-05-06 15:13:52: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 39/3/1 = ∑43/50, eval start
2025-05-06 15:14:02: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 39/3/1 = ∑43/50, starting new job
2025-05-06 15:14:14: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 40/3/1 = ∑44/50, started new job
2025-05-06 15:14:24: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 40/3/1 = ∑44/50, eval start
2025-05-06 15:14:34: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 40/3/1 = ∑44/50, starting new job
2025-05-06 15:14:45: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 41/3/1 = ∑45/50, started new job
2025-05-06 15:14:55: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 42/2/1 = ∑45/50, eval start
2025-05-06 15:15:02: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 42/2/1 = ∑45/50, starting new job
2025-05-06 15:15:11: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending/unknown 43/1/1/1 = ∑46/50, started new job
2025-05-06 15:15:21: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 43/2/1 = ∑46/50, eval start
2025-05-06 15:15:30: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 43/2/1 = ∑46/50, starting new job
2025-05-06 15:15:42: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 44/2/1 = ∑47/50, started new job
2025-05-06 15:15:52: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 44/2/1 = ∑47/50, eval start
2025-05-06 15:16:01: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 44/2/1 = ∑47/50, starting new job
2025-05-06 15:16:10: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending/unknown 44/2/1/1 = ∑48/50, started new job
2025-05-06 15:16:18: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 44/4 = ∑48/50, eval start
2025-05-06 15:16:28: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 44/4 = ∑48/50, starting new job
2025-05-06 15:16:42: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 47/1/1 = ∑49/50, started new job
2025-05-06 15:16:57: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 47/2 = ∑49/50, eval start
2025-05-06 15:17:05: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 47/2 = ∑49/50, starting new job
2025-05-06 15:17:16: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/unknown 48/1/1 = ∑50/50, started new job
2025-05-06 15:17:33: BoTorchModel, best RESULT: 0.20526315789473681, completed/running/pending 48/1/1 = ∑50/50, new result: 0.3631578947368421
2025-05-06 15:18:00: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 47/2 = ∑49/50, new result: 0.28421052631578947
2025-05-06 15:18:23: BoTorchModel, best RESULT: 0.20526315789473681, completed/running 46/2 = ∑48/50, new result: 0.26315789473684215
2025-05-06 15:18:46: BoTorchModel, best RESULT: 0.20526315789473681, completed 47 = ∑47/50, new result: 0.21052631578947367
2025-05-06 15:19:08: BoTorchModel, best RESULT: 0.20526315789473681, completed 46 = ∑46/50, new result: 0.3631578947368421
2025-05-06 15:19:26: BoTorchModel, best RESULT: 0.20526315789473681, completed 45 = ∑45/50, new result: 0.22631578947368425
2025-05-06 15:19:53: BoTorchModel, best RESULT: 0.20526315789473681, completed 44 = ∑44/50, new result: 0.3421052631578947
2025-05-06 15:20:10: BoTorchModel, best RESULT: 0.20526315789473681, completed 43 = ∑43/50, new result: 0.3631578947368421
2025-05-06 15:20:28: BoTorchModel, best RESULT: 0.20526315789473681, completed 42 = ∑42/50, new result: 0.3631578947368421
2025-05-06 15:20:48: BoTorchModel, best RESULT: 0.20526315789473681, completed 41 = ∑41/50, new result: 0.22631578947368425
2025-05-06 15:21:10: BoTorchModel, best RESULT: 0.20526315789473681, completed 40 = ∑40/50, new result: 0.2315789473684211
2025-05-06 15:21:27: BoTorchModel, best RESULT: 0.20526315789473681, completed 39 = ∑39/50, new result: 0.28421052631578947
2025-05-06 15:21:47: BoTorchModel, best RESULT: 0.20526315789473681, completed 38 = ∑38/50, new result: 0.3631578947368421
2025-05-06 15:22:04: BoTorchModel, best RESULT: 0.20526315789473681, completed 37 = ∑37/50, new result: 0.25263157894736843
2025-05-06 15:22:20: BoTorchModel, best RESULT: 0.20526315789473681, completed 36 = ∑36/50, new result: 0.25263157894736843
2025-05-06 15:22:38: BoTorchModel, best RESULT: 0.20526315789473681, completed 35 = ∑35/50, new result: 0.28421052631578947
2025-05-06 15:22:53: BoTorchModel, best RESULT: 0.20526315789473681, completed 34 = ∑34/50, new result: 0.2210526315789474
2025-05-06 15:23:10: BoTorchModel, best RESULT: 0.20526315789473681, completed 33 = ∑33/50, new result: 0.2315789473684211
2025-05-06 15:23:29: BoTorchModel, best RESULT: 0.20526315789473681, completed 32 = ∑32/50, new result: 0.30000000000000004
2025-05-06 15:23:46: BoTorchModel, best RESULT: 0.20526315789473681, completed 31 = ∑31/50, new result: 0.2210526315789474
2025-05-06 15:24:04: BoTorchModel, best RESULT: 0.20526315789473681, completed 30 = ∑30/50, new result: 0.3631578947368421
2025-05-06 15:24:23: BoTorchModel, best RESULT: 0.20526315789473681, completed 29 = ∑29/50, new result: 0.3631578947368421
2025-05-06 15:24:43: BoTorchModel, best RESULT: 0.20526315789473681, completed 28 = ∑28/50, new result: 0.3631578947368421
2025-05-06 15:24:59: BoTorchModel, best RESULT: 0.20526315789473681, completed 27 = ∑27/50, new result: 0.3157894736842105
2025-05-06 15:25:19: BoTorchModel, best RESULT: 0.20526315789473681, completed 26 = ∑26/50, new result: 0.3157894736842105
2025-05-06 15:25:40: BoTorchModel, best RESULT: 0.20526315789473681, completed 25 = ∑25/50, new result: 0.1947368421052632
2025-05-06 15:26:03: BoTorchModel, best RESULT: 0.1947368421052632, completed 24 = ∑24/50, new result: 0.2210526315789474
2025-05-06 15:26:28: BoTorchModel, best RESULT: 0.1947368421052632, completed 23 = ∑23/50, new result: 0.368421052631579
2025-05-06 15:26:46: BoTorchModel, best RESULT: 0.1947368421052632, completed 22 = ∑22/50, new result: 0.21578947368421053
2025-05-06 15:27:05: BoTorchModel, best RESULT: 0.1947368421052632, completed 21 = ∑21/50, new result: 0.22631578947368425
2025-05-06 15:27:28: BoTorchModel, best RESULT: 0.1947368421052632, completed 20 = ∑20/50, new result: 0.2789473684210526
2025-05-06 15:27:52: BoTorchModel, best RESULT: 0.1947368421052632, completed 19 = ∑19/50, new result: 0.3631578947368421
2025-05-06 15:28:13: BoTorchModel, best RESULT: 0.1947368421052632, completed 18 = ∑18/50, new result: 0.25263157894736843
2025-05-06 15:28:40: BoTorchModel, best RESULT: 0.1947368421052632, completed 17 = ∑17/50, new result: 0.3631578947368421
2025-05-06 15:28:56: BoTorchModel, best RESULT: 0.1947368421052632, completed 16 = ∑16/50, new result: 0.2421052631578947
2025-05-06 15:29:11: BoTorchModel, best RESULT: 0.1947368421052632, completed 15 = ∑15/50, new result: 0.3631578947368421
2025-05-06 15:29:28: BoTorchModel, best RESULT: 0.1947368421052632, completed 14 = ∑14/50, new result: 0.26315789473684215
2025-05-06 15:29:45: BoTorchModel, best RESULT: 0.1947368421052632, completed 13 = ∑13/50, new result: 0.35789473684210527
2025-05-06 15:30:01: BoTorchModel, best RESULT: 0.1947368421052632, completed 12 = ∑12/50, new result: 0.3631578947368421
2025-05-06 15:30:24: BoTorchModel, best RESULT: 0.1947368421052632, completed 11 = ∑11/50, new result: 0.3631578947368421
2025-05-06 15:30:40: BoTorchModel, best RESULT: 0.1947368421052632, completed 10 = ∑10/50, new result: 0.3631578947368421
2025-05-06 15:30:57: BoTorchModel, best RESULT: 0.1947368421052632, completed 9 = ∑9/50, new result: 0.19999999999999996
2025-05-06 15:31:21: BoTorchModel, best RESULT: 0.1947368421052632, completed 8 = ∑8/50, new result: 0.3631578947368421
2025-05-06 15:31:38: BoTorchModel, best RESULT: 0.1947368421052632, completed 7 = ∑7/50, new result: 0.4157894736842105
2025-05-06 15:31:58: BoTorchModel, best RESULT: 0.1947368421052632, completed 6 = ∑6/50, new result: 0.35789473684210527
2025-05-06 15:32:22: BoTorchModel, best RESULT: 0.1947368421052632, completed 5 = ∑5/50, new result: 0.19999999999999996
2025-05-06 15:32:41: BoTorchModel, best RESULT: 0.1947368421052632, completed 4 = ∑4/50, new result: 0.2421052631578947
2025-05-06 15:33:04: BoTorchModel, best RESULT: 0.1947368421052632, completed 3 = ∑3/50, new result: 0.23684210526315785
2025-05-06 15:33:24: BoTorchModel, best RESULT: 0.1947368421052632, completed 2 = ∑2/50, new result: 0.34736842105263155
2025-05-06 15:33:40: BoTorchModel, best RESULT: 0.1947368421052632, completed 1 = ∑1/50, new result: 0.3526315789473684
2025-05-06 15:33:55: BoTorchModel, best RESULT: 0.1947368421052632, finishing jobs, finished 50 jobs
2025-05-06 15:34:04: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #1/50
2025-05-06 15:34:34: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #2/50 | ETA: 17m 48s
2025-05-06 15:34:44: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #3/50 | ETA: 10m 12s
2025-05-06 15:34:55: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #4/50 | ETA: 7m 45s
2025-05-06 15:35:05: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #5/50 | ETA: 6m 18s
2025-05-06 15:35:16: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #6/50 | ETA: 5m 17s
2025-05-06 15:35:27: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #7/50 | ETA: 4m 40s
2025-05-06 15:35:38: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #8/50 | ETA: 4m 17s
2025-05-06 15:35:50: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #9/50 | ETA: 4m 0s
2025-05-06 15:36:00: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #10/50 | ETA: 3m 41s
2025-05-06 15:36:11: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #11/50 | ETA: 3m 26s
2025-05-06 15:36:23: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #12/50 | ETA: 3m 16s
2025-05-06 15:36:33: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #13/50 | ETA: 3m 7s
2025-05-06 15:36:45: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #14/50 | ETA: 2m 58s
2025-05-06 15:37:00: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #15/50 | ETA: 2m 53s
2025-05-06 15:37:13: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #16/50 | ETA: 2m 47s
2025-05-06 15:37:24: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #17/50 | ETA: 2m 38s
2025-05-06 15:37:36: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #18/50 | ETA: 2m 32s
2025-05-06 15:37:49: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #19/50 | ETA: 2m 27s
2025-05-06 15:38:01: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #20/50 | ETA: 2m 21s
2025-05-06 15:38:14: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #21/50 | ETA: 2m 14s
2025-05-06 15:38:26: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #22/50 | ETA: 2m 10s
2025-05-06 15:38:37: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #23/50 | ETA: 2m 4s
2025-05-06 15:38:50: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #24/50 | ETA: 1m 59s
2025-05-06 15:39:02: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #25/50 | ETA: 1m 54s
2025-05-06 15:39:18: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #26/50 | ETA: 1m 50s
2025-05-06 15:39:30: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #27/50 | ETA: 1m 45s
2025-05-06 15:39:44: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #28/50 | ETA: 1m 41s
2025-05-06 15:39:58: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #29/50 | ETA: 1m 36s
2025-05-06 15:40:13: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #30/50 | ETA: 1m 32s
2025-05-06 15:40:25: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #31/50 | ETA: 1m 27s
2025-05-06 15:40:40: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #32/50 | ETA: 1m 23s
2025-05-06 15:40:54: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #33/50 | ETA: 1m 19s
2025-05-06 15:41:14: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #34/50 | ETA: 1m 14s
2025-05-06 15:41:28: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #35/50 | ETA: 1m 11s
2025-05-06 15:41:41: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #36/50 | ETA: 1m 6s
2025-05-06 15:41:55: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #37/50 | ETA: 1m 2s
2025-05-06 15:42:11: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #38/50 | ETA: 58s
2025-05-06 15:42:24: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #39/50 | ETA: 54s
2025-05-06 15:42:42: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #40/50 | ETA: 50s
2025-05-06 15:42:57: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #41/50 | ETA: 45s
2025-05-06 15:43:13: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #42/50 | ETA: 41s
2025-05-06 15:43:36: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #43/50 | ETA: 37s
2025-05-06 15:43:51: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #44/50 | ETA: 32s
2025-05-06 15:44:08: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #45/50 | ETA: 28s
2025-05-06 15:44:29: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #46/50 | ETA: 23s
2025-05-06 15:44:46: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #47/50 | ETA: 19s
2025-05-06 15:45:08: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #48/50 | ETA: 14s
2025-05-06 15:45:32: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #49/50 | ETA: 9s
2025-05-06 15:45:46: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #50/50 | ETA: 4s
2025-05-06 15:46:01: BoTorchModel, best RESULT: 0.1947368421052632, eval start
2025-05-06 15:46:10: BoTorchModel, best RESULT: 0.1947368421052632, starting new job
2025-05-06 15:46:22: BoTorchModel, best RESULT: 0.1947368421052632, unknown 1 = ∑1/50, started new job
2025-05-06 15:46:35: BoTorchModel, best RESULT: 0.1947368421052632, pending 1 = ∑1/50, eval start
2025-05-06 15:46:47: BoTorchModel, best RESULT: 0.1947368421052632, pending 1 = ∑1/50, starting new job
2025-05-06 15:47:00: BoTorchModel, best RESULT: 0.1947368421052632, running/unknown 1/1 = ∑2/50, started new job
2025-05-06 15:47:13: BoTorchModel, best RESULT: 0.1947368421052632, running/pending 1/1 = ∑2/50, eval start
2025-05-06 15:47:25: BoTorchModel, best RESULT: 0.1947368421052632, running/pending 1/1 = ∑2/50, starting new job
2025-05-06 15:47:39: BoTorchModel, best RESULT: 0.1947368421052632, running/unknown 2/1 = ∑3/50, started new job
2025-05-06 15:47:48: BoTorchModel, best RESULT: 0.1947368421052632, running/pending 2/1 = ∑3/50, eval start
2025-05-06 15:47:57: BoTorchModel, best RESULT: 0.1947368421052632, running/pending 2/1 = ∑3/50, starting new job
2025-05-06 15:48:16: BoTorchModel, best RESULT: 0.1947368421052632, running/unknown 3/1 = ∑4/50, started new job
2025-05-06 15:48:34: BoTorchModel, best RESULT: 0.1947368421052632, running 4 = ∑4/50, eval start
2025-05-06 15:48:49: BoTorchModel, best RESULT: 0.1947368421052632, running 4 = ∑4/50, starting new job
2025-05-06 15:49:08: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 1/3/1 = ∑5/50, started new job
2025-05-06 15:49:20: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 3/1/1 = ∑5/50, eval start
2025-05-06 15:49:35: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 4/1 = ∑5/50, starting new job
2025-05-06 15:49:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 4/1/1 = ∑6/50, started new job
2025-05-06 15:50:02: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 4/2 = ∑6/50, eval start
2025-05-06 15:50:19: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 4/2 = ∑6/50, starting new job
2025-05-06 15:50:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 4/2/1 = ∑7/50, started new job
2025-05-06 15:50:53: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 5/1/1 = ∑7/50, eval start
2025-05-06 15:51:09: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 5/1/1 = ∑7/50, starting new job
2025-05-06 15:51:23: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 5/2/1 = ∑8/50, started new job
2025-05-06 15:51:36: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 5/3 = ∑8/50, eval start
2025-05-06 15:51:51: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 5/3 = ∑8/50, starting new job
2025-05-06 15:52:06: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 5/3/1 = ∑9/50, started new job
2025-05-06 15:52:23: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 7/1/1 = ∑9/50, eval start
2025-05-06 15:52:46: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 7/2 = ∑9/50, starting new job
2025-05-06 15:53:03: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 7/2/1 = ∑10/50, started new job
2025-05-06 15:53:20: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 7/2/1 = ∑10/50, eval start
2025-05-06 15:53:36: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 7/2/1 = ∑10/50, starting new job
2025-05-06 15:53:54: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 7/3/1 = ∑11/50, started new job
2025-05-06 15:54:11: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 8/3 = ∑11/50, eval start
2025-05-06 15:54:27: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 8/3 = ∑11/50, starting new job
2025-05-06 15:54:50: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 10/1/1 = ∑12/50, started new job
2025-05-06 15:55:10: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 10/2 = ∑12/50, eval start
2025-05-06 15:55:31: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 10/2 = ∑12/50, starting new job
2025-05-06 15:55:50: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 10/2/1 = ∑13/50, started new job
2025-05-06 15:56:07: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 10/3 = ∑13/50, eval start
2025-05-06 15:56:29: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 10/3 = ∑13/50, starting new job
2025-05-06 15:56:55: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 11/2/1 = ∑14/50, started new job
2025-05-06 15:57:11: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 11/3 = ∑14/50, eval start
2025-05-06 15:57:24: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 11/3 = ∑14/50, starting new job
2025-05-06 15:57:44: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 13/1/1 = ∑15/50, started new job
2025-05-06 15:58:07: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 13/2 = ∑15/50, eval start
2025-05-06 15:58:21: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 13/2 = ∑15/50, starting new job
2025-05-06 15:58:34: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 14/1/1 = ∑16/50, started new job
2025-05-06 15:58:50: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 14/1/1 = ∑16/50, eval start
2025-05-06 15:59:10: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 15/1 = ∑16/50, starting new job
2025-05-06 15:59:30: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 15/1/1 = ∑17/50, started new job
2025-05-06 15:59:48: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 15/1/1 = ∑17/50, eval start
2025-05-06 16:00:06: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 15/1/1 = ∑17/50, starting new job
2025-05-06 16:00:23: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 15/2/1 = ∑18/50, started new job
2025-05-06 16:00:39: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 16/2 = ∑18/50, eval start
2025-05-06 16:01:02: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 16/2 = ∑18/50, starting new job
2025-05-06 16:01:18: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 17/1/1 = ∑19/50, started new job
2025-05-06 16:01:34: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 18/1 = ∑19/50, eval start
2025-05-06 16:01:50: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 18/1 = ∑19/50, starting new job
2025-05-06 16:02:13: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 18/1/1 = ∑20/50, started new job
2025-05-06 16:02:27: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 18/1/1 = ∑20/50, eval start
2025-05-06 16:02:40: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 18/1/1 = ∑20/50, starting new job
2025-05-06 16:02:57: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 18/2/1 = ∑21/50, started new job
2025-05-06 16:03:19: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 18/3 = ∑21/50, eval start
2025-05-06 16:03:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 18/3 = ∑21/50, starting new job
2025-05-06 16:03:57: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 20/1/1 = ∑22/50, started new job
2025-05-06 16:04:24: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 21/1 = ∑22/50, eval start
2025-05-06 16:04:43: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 21/1 = ∑22/50, starting new job
2025-05-06 16:05:06: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 21/1/1 = ∑23/50, started new job
2025-05-06 16:05:31: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 21/2 = ∑23/50, eval start
2025-05-06 16:05:54: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 21/2 = ∑23/50, starting new job
2025-05-06 16:06:16: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 22/1/1 = ∑24/50, started new job
2025-05-06 16:06:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 22/1/1 = ∑24/50, eval start
2025-05-06 16:06:54: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 22/1/1 = ∑24/50, starting new job
2025-05-06 16:07:17: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 23/1/1 = ∑25/50, started new job
2025-05-06 16:07:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 23/1/1 = ∑25/50, eval start
2025-05-06 16:08:05: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 23/2 = ∑25/50, starting new job
2025-05-06 16:08:40: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 24/1/1 = ∑26/50, started new job
2025-05-06 16:09:09: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 25/1 = ∑26/50, eval start
2025-05-06 16:09:45: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 25/1 = ∑26/50, starting new job
2025-05-06 16:10:13: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 25/1/1 = ∑27/50, started new job
2025-05-06 16:10:43: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 25/1/1 = ∑27/50, eval start
2025-05-06 16:11:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 25/2 = ∑27/50, starting new job
2025-05-06 16:11:56: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 25/2/1 = ∑28/50, started new job
2025-05-06 16:12:27: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 25/3 = ∑28/50, eval start
2025-05-06 16:12:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 25/3 = ∑28/50, starting new job
2025-05-06 16:13:23: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 25/3/1 = ∑29/50, started new job
2025-05-06 16:13:49: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 25/4 = ∑29/50, eval start
2025-05-06 16:14:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 26/3 = ∑29/50, starting new job
2025-05-06 16:14:59: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 26/3/1 = ∑30/50, started new job
2025-05-06 16:15:28: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 27/3 = ∑30/50, eval start
2025-05-06 16:15:48: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 27/3 = ∑30/50, starting new job
2025-05-06 16:16:09: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 27/3/1 = ∑31/50, started new job
2025-05-06 16:16:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 27/4 = ∑31/50, eval start
2025-05-06 16:17:18: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 27/4 = ∑31/50, starting new job
2025-05-06 16:17:46: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 27/4/1 = ∑32/50, started new job
2025-05-06 16:18:15: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 28/4 = ∑32/50, eval start
2025-05-06 16:18:38: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 28/4 = ∑32/50, starting new job
2025-05-06 16:19:08: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 29/3/1 = ∑33/50, started new job
2025-05-06 16:19:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 30/3 = ∑33/50, eval start
2025-05-06 16:20:14: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 30/3 = ∑33/50, starting new job
2025-05-06 16:20:44: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 31/2/1 = ∑34/50, started new job
2025-05-06 16:21:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 31/3 = ∑34/50, eval start
2025-05-06 16:22:00: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 31/3 = ∑34/50, starting new job
2025-05-06 16:22:42: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 31/3/1 = ∑35/50, started new job
2025-05-06 16:23:27: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 31/4 = ∑35/50, eval start
2025-05-06 16:24:02: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 31/4 = ∑35/50, starting new job
2025-05-06 16:25:01: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 32/3/1 = ∑36/50, started new job
2025-05-06 16:25:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 32/4 = ∑36/50, eval start
2025-05-06 16:26:28: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 32/4 = ∑36/50, starting new job
2025-05-06 16:27:15: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 34/2/1 = ∑37/50, started new job
2025-05-06 16:27:56: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/3 = ∑37/50, eval start
2025-05-06 16:28:34: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/3 = ∑37/50, starting new job
2025-05-06 16:29:06: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 34/3/1 = ∑38/50, started new job
2025-05-06 16:29:38: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/4 = ∑38/50, eval start
2025-05-06 16:30:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/4 = ∑38/50, starting new job
2025-05-06 16:32:02: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 34/4/1 = ∑39/50, started new job
2025-05-06 16:32:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/5 = ∑39/50, eval start
2025-05-06 16:33:12: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/5 = ∑39/50, starting new job
2025-05-06 16:33:48: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 34/5/1 = ∑40/50, started new job
2025-05-06 16:34:14: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/6 = ∑40/50, eval start
2025-05-06 16:34:53: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/6 = ∑40/50, starting new job
2025-05-06 16:35:26: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 34/6/1 = ∑41/50, started new job
2025-05-06 16:35:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/7 = ∑41/50, eval start
2025-05-06 16:36:10: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/7 = ∑41/50, starting new job
2025-05-06 16:36:36: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 34/7/1 = ∑42/50, started new job
2025-05-06 16:37:08: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/8 = ∑42/50, eval start
2025-05-06 16:37:36: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/8 = ∑42/50, starting new job
2025-05-06 16:38:02: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 35/7/1 = ∑43/50, started new job
2025-05-06 16:38:24: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 35/8 = ∑43/50, eval start
2025-05-06 16:38:49: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 35/8 = ∑43/50, starting new job
2025-05-06 16:39:15: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 35/8/1 = ∑44/50, started new job
2025-05-06 16:39:41: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 35/9 = ∑44/50, eval start
2025-05-06 16:40:07: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 35/9 = ∑44/50, starting new job
2025-05-06 16:40:35: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 36/8/1 = ∑45/50, started new job
2025-05-06 16:40:56: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 36/9 = ∑45/50, eval start
2025-05-06 16:41:28: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 36/9 = ∑45/50, starting new job
2025-05-06 16:41:48: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 36/9/1 = ∑46/50, started new job
2025-05-06 16:42:22: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 41/5 = ∑46/50, eval start
2025-05-06 16:43:03: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 41/5 = ∑46/50, starting new job
2025-05-06 16:43:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 43/3/1 = ∑47/50, started new job
2025-05-06 16:44:05: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 44/3 = ∑47/50, eval start
2025-05-06 16:44:29: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 44/3 = ∑47/50, starting new job
2025-05-06 16:45:09: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 44/3/1 = ∑48/50, started new job
2025-05-06 16:45:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 44/4 = ∑48/50, eval start
2025-05-06 16:46:29: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 44/4 = ∑48/50, starting new job
2025-05-06 16:47:05: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 44/4/1 = ∑49/50, started new job
2025-05-06 16:47:35: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 45/4 = ∑49/50, eval start
2025-05-06 16:48:10: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 45/4 = ∑49/50, starting new job
2025-05-06 16:48:41: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 45/4/1 = ∑50/50, started new job
2025-05-06 16:49:20: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 45/5 = ∑50/50, new result: 0.35789473684210527
2025-05-06 16:50:56: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 44/5 = ∑49/50, new result: 0.3052631578947368
2025-05-06 16:52:55: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 45/3 = ∑48/50, new result: 0.2894736842105263
2025-05-06 16:54:16: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 44/3 = ∑47/50, new result: 0.2894736842105263
2025-05-06 16:55:38: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 45/1 = ∑46/50, new result: 0.26315789473684215
2025-05-06 16:57:20: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 44/1 = ∑45/50, new result: 0.3052631578947368
2025-05-06 16:58:54: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 43/1 = ∑44/50, new result: 0.2315789473684211
2025-05-06 17:00:32: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 42/1 = ∑43/50, new result: 0.2210526315789474
2025-05-06 17:02:17: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 41/1 = ∑42/50, new result: 0.23684210526315785
2025-05-06 17:04:10: BoTorchModel, best RESULT: 0.1947368421052632, completed 41 = ∑41/50, new result: 0.32105263157894737
2025-05-06 17:06:00: BoTorchModel, best RESULT: 0.1947368421052632, completed 40 = ∑40/50, new result: 0.30000000000000004
2025-05-06 17:07:06: BoTorchModel, best RESULT: 0.1947368421052632, completed 39 = ∑39/50, new result: 0.33684210526315794
2025-05-06 17:08:07: BoTorchModel, best RESULT: 0.1947368421052632, completed 38 = ∑38/50, new result: 0.2421052631578947
2025-05-06 17:09:07: BoTorchModel, best RESULT: 0.1947368421052632, completed 37 = ∑37/50, new result: 0.3052631578947368
2025-05-06 17:09:57: BoTorchModel, best RESULT: 0.1947368421052632, completed 36 = ∑36/50, new result: 0.37368421052631584
2025-05-06 17:10:44: BoTorchModel, best RESULT: 0.1947368421052632, completed 35 = ∑35/50, new result: 0.2789473684210526
2025-05-06 17:11:39: BoTorchModel, best RESULT: 0.1947368421052632, completed 34 = ∑34/50, new result: 0.2947368421052632
2025-05-06 17:12:39: BoTorchModel, best RESULT: 0.1947368421052632, completed 33 = ∑33/50, new result: 0.3526315789473684
2025-05-06 17:13:38: BoTorchModel, best RESULT: 0.1947368421052632, completed 32 = ∑32/50, new result: 0.27368421052631575
2025-05-06 17:14:31: BoTorchModel, best RESULT: 0.1947368421052632, completed 31 = ∑31/50, new result: 0.3631578947368421
2025-05-06 17:15:20: BoTorchModel, best RESULT: 0.1947368421052632, completed 30 = ∑30/50, new result: 0.33684210526315794
2025-05-06 17:16:26: BoTorchModel, best RESULT: 0.1947368421052632, completed 29 = ∑29/50, new result: 0.24736842105263157
2025-05-06 17:17:18: BoTorchModel, best RESULT: 0.1947368421052632, completed 28 = ∑28/50, new result: 0.2947368421052632
2025-05-06 17:18:08: BoTorchModel, best RESULT: 0.1947368421052632, completed 27 = ∑27/50, new result: 0.31052631578947365
2025-05-06 17:18:48: BoTorchModel, best RESULT: 0.1947368421052632, completed 26 = ∑26/50, new result: 0.2315789473684211
2025-05-06 17:19:32: BoTorchModel, best RESULT: 0.1947368421052632, completed 25 = ∑25/50, new result: 0.31052631578947365
2025-05-06 17:20:24: BoTorchModel, best RESULT: 0.1947368421052632, completed 24 = ∑24/50, new result: 0.3263157894736842
2025-05-06 17:21:34: BoTorchModel, best RESULT: 0.1947368421052632, completed 23 = ∑23/50, new result: 0.27368421052631575
2025-05-06 17:22:37: BoTorchModel, best RESULT: 0.1947368421052632, completed 22 = ∑22/50, new result: 0.3157894736842105
2025-05-06 17:23:25: BoTorchModel, best RESULT: 0.1947368421052632, completed 21 = ∑21/50, new result: 0.3421052631578947
2025-05-06 17:24:10: BoTorchModel, best RESULT: 0.1947368421052632, completed 20 = ∑20/50, new result: 0.23684210526315785
2025-05-06 17:24:56: BoTorchModel, best RESULT: 0.1947368421052632, completed 19 = ∑19/50, new result: 0.32105263157894737
2025-05-06 17:25:33: BoTorchModel, best RESULT: 0.1947368421052632, completed 18 = ∑18/50, new result: 0.22631578947368425
2025-05-06 17:26:17: BoTorchModel, best RESULT: 0.1947368421052632, completed 17 = ∑17/50, new result: 0.2315789473684211
2025-05-06 17:27:11: BoTorchModel, best RESULT: 0.1947368421052632, completed 16 = ∑16/50, new result: 0.3263157894736842
2025-05-06 17:28:04: BoTorchModel, best RESULT: 0.1947368421052632, completed 15 = ∑15/50, new result: 0.2578947368421053
2025-05-06 17:29:05: BoTorchModel, best RESULT: 0.1947368421052632, completed 14 = ∑14/50, new result: 0.2421052631578947
2025-05-06 17:30:14: BoTorchModel, best RESULT: 0.1947368421052632, completed 13 = ∑13/50, new result: 0.2421052631578947
2025-05-06 17:31:07: BoTorchModel, best RESULT: 0.1947368421052632, completed 12 = ∑12/50, new result: 0.3052631578947368
2025-05-06 17:32:08: BoTorchModel, best RESULT: 0.1947368421052632, completed 11 = ∑11/50, new result: 0.2578947368421053
2025-05-06 17:32:59: BoTorchModel, best RESULT: 0.1947368421052632, completed 10 = ∑10/50, new result: 0.27368421052631575
2025-05-06 17:33:43: BoTorchModel, best RESULT: 0.1947368421052632, completed 9 = ∑9/50, new result: 0.27368421052631575
2025-05-06 17:34:25: BoTorchModel, best RESULT: 0.1947368421052632, completed 8 = ∑8/50, new result: 0.3631578947368421
2025-05-06 17:35:06: BoTorchModel, best RESULT: 0.1947368421052632, completed 7 = ∑7/50, new result: 0.3421052631578947
2025-05-06 17:35:45: BoTorchModel, best RESULT: 0.1947368421052632, completed 6 = ∑6/50, new result: 0.30000000000000004
2025-05-06 17:36:22: BoTorchModel, best RESULT: 0.1947368421052632, completed 5 = ∑5/50, new result: 0.2894736842105263
2025-05-06 17:36:59: BoTorchModel, best RESULT: 0.1947368421052632, completed 4 = ∑4/50, new result: 0.25263157894736843
2025-05-06 17:37:39: BoTorchModel, best RESULT: 0.1947368421052632, completed 3 = ∑3/50, new result: 0.2789473684210526
2025-05-06 17:38:09: BoTorchModel, best RESULT: 0.1947368421052632, completed 2 = ∑2/50, new result: 0.27368421052631575
2025-05-06 17:38:44: BoTorchModel, best RESULT: 0.1947368421052632, completed 1 = ∑1/50, new result: 0.3631578947368421
2025-05-06 17:39:20: BoTorchModel, best RESULT: 0.1947368421052632, finishing jobs, finished 50 jobs
2025-05-06 17:39:38: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #1/50
2025-05-06 17:40:08: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #2/50 | ETA: 9m 37s
2025-05-06 17:40:31: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #3/50 | ETA: 6m 36s
2025-05-06 17:40:52: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #4/50 | ETA: 5m 27s
2025-05-06 17:41:16: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #5/50 | ETA: 4m 57s
2025-05-06 17:41:37: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #6/50 | ETA: 4m 30s
2025-05-06 17:42:04: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #7/50 | ETA: 4m 24s
2025-05-06 17:42:25: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #8/50 | ETA: 4m 13s
2025-05-06 17:42:53: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #9/50 | ETA: 4m 2s
2025-05-06 17:43:17: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #10/50 | ETA: 3m 52s
2025-05-06 17:43:39: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #11/50 | ETA: 3m 45s
2025-05-06 17:44:02: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #12/50 | ETA: 3m 35s
2025-05-06 17:44:23: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #13/50 | ETA: 3m 24s
2025-05-06 17:44:53: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #14/50 | ETA: 3m 17s
2025-05-06 17:45:17: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #15/50 | ETA: 3m 10s
2025-05-06 17:45:42: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #16/50 | ETA: 3m 2s
2025-05-06 17:46:10: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #17/50 | ETA: 2m 55s
2025-05-06 17:46:42: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #18/50 | ETA: 2m 51s
2025-05-06 17:47:05: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #19/50 | ETA: 2m 45s
2025-05-06 17:47:25: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #20/50 | ETA: 2m 38s
2025-05-06 17:47:47: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #21/50 | ETA: 2m 35s
2025-05-06 17:48:06: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #22/50 | ETA: 2m 30s
2025-05-06 17:48:23: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #23/50 | ETA: 2m 24s
2025-05-06 17:48:42: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #24/50 | ETA: 2m 18s
2025-05-06 17:49:03: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #25/50 | ETA: 2m 14s
2025-05-06 17:49:28: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #26/50 | ETA: 2m 8s
2025-05-06 17:49:50: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #27/50 | ETA: 2m 3s
2025-05-06 17:50:07: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #28/50 | ETA: 1m 58s
2025-05-06 17:50:24: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #29/50 | ETA: 1m 52s
2025-05-06 17:50:43: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #30/50 | ETA: 1m 47s
2025-05-06 17:51:01: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #31/50 | ETA: 1m 42s
2025-05-06 17:51:20: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #32/50 | ETA: 1m 37s
2025-05-06 17:51:49: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #33/50 | ETA: 1m 32s
2025-05-06 17:52:05: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #34/50 | ETA: 1m 27s
2025-05-06 17:52:26: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #35/50 | ETA: 1m 22s
2025-05-06 17:52:44: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #36/50 | ETA: 1m 17s
2025-05-06 17:53:03: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #37/50 | ETA: 1m 12s
2025-05-06 17:53:29: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #38/50 | ETA: 1m 8s
2025-05-06 17:53:47: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #39/50 | ETA: 1m 3s
2025-05-06 17:54:07: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #40/50 | ETA: 58s
2025-05-06 17:54:31: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #41/50 | ETA: 53s
2025-05-06 17:54:54: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #42/50 | ETA: 47s
2025-05-06 17:55:16: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #43/50 | ETA: 42s
2025-05-06 17:55:46: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #44/50 | ETA: 37s
2025-05-06 17:56:12: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #45/50 | ETA: 32s
2025-05-06 17:56:36: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #46/50 | ETA: 27s
2025-05-06 17:56:55: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #47/50 | ETA: 21s
2025-05-06 17:57:15: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #48/50 | ETA: 16s
2025-05-06 17:57:37: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #49/50 | ETA: 11s
2025-05-06 17:58:01: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #50/50 | ETA: 5s
2025-05-06 17:58:23: BoTorchModel, best RESULT: 0.1947368421052632, eval start
2025-05-06 17:58:40: BoTorchModel, best RESULT: 0.1947368421052632, starting new job
2025-05-06 17:59:00: BoTorchModel, best RESULT: 0.1947368421052632, unknown 1 = ∑1/50, started new job
2025-05-06 17:59:23: BoTorchModel, best RESULT: 0.1947368421052632, running 1 = ∑1/50, eval start
2025-05-06 17:59:42: BoTorchModel, best RESULT: 0.1947368421052632, running 1 = ∑1/50, starting new job
2025-05-06 18:00:01: BoTorchModel, best RESULT: 0.1947368421052632, running/unknown 1/1 = ∑2/50, started new job
2025-05-06 18:00:21: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 1/1 = ∑2/50, eval start
2025-05-06 18:00:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 1/1 = ∑2/50, starting new job
2025-05-06 18:00:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 1/1/1 = ∑3/50, started new job
2025-05-06 18:01:16: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 1/2 = ∑3/50, eval start
2025-05-06 18:01:31: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 1/2 = ∑3/50, starting new job
2025-05-06 18:01:49: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 3/1 = ∑4/50, started new job
2025-05-06 18:02:09: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 3/1 = ∑4/50, eval start
2025-05-06 18:02:27: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 3/1 = ∑4/50, starting new job
2025-05-06 18:02:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 3/1/1 = ∑5/50, started new job
2025-05-06 18:03:16: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 4/1 = ∑5/50, eval start
2025-05-06 18:03:30: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 4/1 = ∑5/50, starting new job
2025-05-06 18:03:47: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 4/1/1 = ∑6/50, started new job
2025-05-06 18:04:02: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 5/1 = ∑6/50, eval start
2025-05-06 18:04:16: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 5/1 = ∑6/50, starting new job
2025-05-06 18:04:32: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 5/1/1 = ∑7/50, started new job
2025-05-06 18:04:50: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 5/2 = ∑7/50, eval start
2025-05-06 18:05:09: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 6/1 = ∑7/50, starting new job
2025-05-06 18:05:27: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 7/1 = ∑8/50, started new job
2025-05-06 18:05:40: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 7/1 = ∑8/50, eval start
2025-05-06 18:05:58: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 7/1 = ∑8/50, starting new job
2025-05-06 18:06:13: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 7/1/1 = ∑9/50, started new job
2025-05-06 18:06:24: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 8/1 = ∑9/50, eval start
2025-05-06 18:06:35: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 8/1 = ∑9/50, starting new job
2025-05-06 18:06:55: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 8/1/1 = ∑10/50, started new job
2025-05-06 18:07:08: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 8/1/1 = ∑10/50, eval start
2025-05-06 18:07:21: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 8/1/1 = ∑10/50, starting new job
2025-05-06 18:07:35: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 8/2/1 = ∑11/50, started new job
2025-05-06 18:07:54: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 10/1 = ∑11/50, eval start
2025-05-06 18:08:10: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 10/1 = ∑11/50, starting new job
2025-05-06 18:08:24: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 10/1/1 = ∑12/50, started new job
2025-05-06 18:08:35: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 11/1 = ∑12/50, eval start
2025-05-06 18:08:55: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 11/1 = ∑12/50, starting new job
2025-05-06 18:09:12: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 11/1/1 = ∑13/50, started new job
2025-05-06 18:09:26: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 11/2 = ∑13/50, eval start
2025-05-06 18:09:44: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 11/2 = ∑13/50, starting new job
2025-05-06 18:10:06: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 12/1/1 = ∑14/50, started new job
2025-05-06 18:10:27: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 13/1 = ∑14/50, eval start
2025-05-06 18:10:49: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 13/1 = ∑14/50, starting new job
2025-05-06 18:11:13: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 13/1/1 = ∑15/50, started new job
2025-05-06 18:11:36: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 13/2 = ∑15/50, eval start
2025-05-06 18:12:03: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 14/1 = ∑15/50, starting new job
2025-05-06 18:12:29: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 14/1/1 = ∑16/50, started new job
2025-05-06 18:12:55: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 15/1 = ∑16/50, eval start
2025-05-06 18:13:18: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 15/1 = ∑16/50, starting new job
2025-05-06 18:13:45: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 15/1/1 = ∑17/50, started new job
2025-05-06 18:14:13: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 16/1 = ∑17/50, eval start
2025-05-06 18:14:44: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 16/1 = ∑17/50, starting new job
2025-05-06 18:15:14: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 16/1/1 = ∑18/50, started new job
2025-05-06 18:15:44: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 17/1 = ∑18/50, eval start
2025-05-06 18:16:07: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 17/1 = ∑18/50, starting new job
2025-05-06 18:16:38: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 17/1/1 = ∑19/50, started new job
2025-05-06 18:17:08: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 18/1 = ∑19/50, eval start
2025-05-06 18:17:36: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 18/1 = ∑19/50, starting new job
2025-05-06 18:18:06: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 19/1 = ∑20/50, started new job
2025-05-06 18:18:34: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 19/1 = ∑20/50, eval start
2025-05-06 18:19:04: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 19/1 = ∑20/50, starting new job
2025-05-06 18:19:41: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 20/1 = ∑21/50, started new job
2025-05-06 18:20:13: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 20/1 = ∑21/50, eval start
2025-05-06 18:20:35: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 20/1 = ∑21/50, starting new job
2025-05-06 18:21:02: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 21/1 = ∑22/50, started new job
2025-05-06 18:21:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 21/1 = ∑22/50, eval start
2025-05-06 18:21:54: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 21/1 = ∑22/50, starting new job
2025-05-06 18:22:41: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 21/1/1 = ∑23/50, started new job
2025-05-06 18:23:19: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 21/2 = ∑23/50, eval start
2025-05-06 18:24:06: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 21/2 = ∑23/50, starting new job
2025-05-06 18:24:50: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 21/2/1 = ∑24/50, started new job
2025-05-06 18:25:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 21/3 = ∑24/50, eval start
2025-05-06 18:26:07: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 21/3 = ∑24/50, starting new job
2025-05-06 18:26:41: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 21/3/1 = ∑25/50, started new job
2025-05-06 18:27:19: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 21/4 = ∑25/50, eval start
2025-05-06 18:28:05: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 22/3 = ∑25/50, starting new job
2025-05-06 18:28:54: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 22/3/1 = ∑26/50, started new job
2025-05-06 18:29:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 22/4 = ∑26/50, eval start
2025-05-06 18:30:14: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 22/4 = ∑26/50, starting new job
2025-05-06 18:30:58: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 22/4/1 = ∑27/50, started new job
2025-05-06 18:31:42: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 22/5 = ∑27/50, eval start
2025-05-06 18:32:26: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 22/5 = ∑27/50, starting new job
2025-05-06 18:33:20: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 22/5/1 = ∑28/50, started new job
2025-05-06 18:34:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 22/6 = ∑28/50, eval start
2025-05-06 18:35:11: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 22/6 = ∑28/50, starting new job
2025-05-06 18:35:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 22/6/1 = ∑29/50, started new job
2025-05-06 18:36:44: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 22/7 = ∑29/50, eval start
2025-05-06 18:37:38: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 22/7 = ∑29/50, starting new job
2025-05-06 18:38:24: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 22/7/1 = ∑30/50, started new job
2025-05-06 18:38:53: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 22/7/1 = ∑30/50, eval start
2025-05-06 18:39:21: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 22/7/1 = ∑30/50, starting new job
2025-05-06 18:39:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 22/8/1 = ∑31/50, started new job
2025-05-06 18:40:13: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 23/7/1 = ∑31/50, eval start
2025-05-06 18:40:50: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 23/8 = ∑31/50, starting new job
2025-05-06 18:41:27: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 23/8/1 = ∑32/50, started new job
2025-05-06 18:41:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 23/9 = ∑32/50, eval start
2025-05-06 18:42:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 23/9 = ∑32/50, starting new job
2025-05-06 18:43:46: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 23/9/1 = ∑33/50, started new job
2025-05-06 18:44:14: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 24/9 = ∑33/50, eval start
2025-05-06 18:44:46: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 24/9 = ∑33/50, starting new job
2025-05-06 18:45:08: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 24/9/1 = ∑34/50, started new job
2025-05-06 18:45:39: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 24/10 = ∑34/50, eval start
2025-05-06 18:46:12: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 25/9 = ∑34/50, starting new job
2025-05-06 18:47:02: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 25/9/1 = ∑35/50, started new job
2025-05-06 18:47:29: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 25/10 = ∑35/50, eval start
2025-05-06 18:47:53: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 25/10 = ∑35/50, starting new job
2025-05-06 18:48:22: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 32/3/1 = ∑36/50, started new job
2025-05-06 18:48:46: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/2 = ∑36/50, eval start
2025-05-06 18:49:12: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 34/2 = ∑36/50, starting new job
2025-05-06 18:49:35: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 34/2/1 = ∑37/50, started new job
2025-05-06 18:50:00: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 35/2 = ∑37/50, eval start
2025-05-06 18:50:26: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 35/2 = ∑37/50, starting new job
2025-05-06 18:50:55: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 35/2/1 = ∑38/50, started new job
2025-05-06 18:51:28: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 36/2 = ∑38/50, eval start
2025-05-06 18:51:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 36/2 = ∑38/50, starting new job
2025-05-06 18:52:17: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 37/1/1 = ∑39/50, started new job
2025-05-06 18:52:42: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 38/1 = ∑39/50, eval start
2025-05-06 18:53:11: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 38/1 = ∑39/50, starting new job
2025-05-06 18:53:44: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 39/1 = ∑40/50, started new job
2025-05-06 18:54:16: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 39/1 = ∑40/50, eval start
2025-05-06 18:54:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 39/1 = ∑40/50, starting new job
2025-05-06 18:55:01: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 39/1/1 = ∑41/50, started new job
2025-05-06 18:55:28: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 40/1 = ∑41/50, eval start
2025-05-06 18:55:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 40/1 = ∑41/50, starting new job
2025-05-06 18:56:17: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 40/1/1 = ∑42/50, started new job
2025-05-06 18:56:39: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 41/1 = ∑42/50, eval start
2025-05-06 18:57:01: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 41/1 = ∑42/50, starting new job
2025-05-06 18:57:31: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 42/1 = ∑43/50, started new job
2025-05-06 18:57:57: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 42/1 = ∑43/50, eval start
2025-05-06 18:58:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 42/1 = ∑43/50, starting new job
2025-05-06 18:58:49: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 42/1/1 = ∑44/50, started new job
2025-05-06 18:59:20: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 43/1 = ∑44/50, eval start
2025-05-06 18:59:53: BoTorchModel, best RESULT: 0.1947368421052632, completed 44 = ∑44/50, starting new job
2025-05-06 19:00:26: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 44/1 = ∑45/50, started new job
2025-05-06 19:00:47: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 44/1 = ∑45/50, eval start
2025-05-06 19:01:08: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 44/1 = ∑45/50, starting new job
2025-05-06 19:01:43: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 45/1 = ∑46/50, started new job
2025-05-06 19:02:12: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 45/1 = ∑46/50, eval start
2025-05-06 19:02:40: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 45/1 = ∑46/50, starting new job
2025-05-06 19:02:59: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 45/1/1 = ∑47/50, started new job
2025-05-06 19:03:20: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 46/1 = ∑47/50, eval start
2025-05-06 19:03:45: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 46/1 = ∑47/50, starting new job
2025-05-06 19:04:06: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 47/1 = ∑48/50, started new job
2025-05-06 19:04:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 47/1 = ∑48/50, eval start
2025-05-06 19:04:53: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 47/1 = ∑48/50, starting new job
2025-05-06 19:05:09: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 48/1 = ∑49/50, started new job
2025-05-06 19:05:29: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 48/1 = ∑49/50, eval start
2025-05-06 19:05:56: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 48/1 = ∑49/50, starting new job
2025-05-06 19:06:15: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 49/1 = ∑50/50, started new job
2025-05-06 19:06:50: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 49/1 = ∑50/50, new result: 0.1947368421052632
2025-05-06 19:07:42: BoTorchModel, best RESULT: 0.1947368421052632, completed 49 = ∑49/50, new result: 0.21052631578947367
2025-05-06 19:08:22: BoTorchModel, best RESULT: 0.1947368421052632, completed 48 = ∑48/50, new result: 0.3052631578947368
2025-05-06 19:09:05: BoTorchModel, best RESULT: 0.1947368421052632, completed 47 = ∑47/50, new result: 0.2315789473684211
2025-05-06 19:09:49: BoTorchModel, best RESULT: 0.1947368421052632, completed 46 = ∑46/50, new result: 0.30000000000000004
2025-05-06 19:10:31: BoTorchModel, best RESULT: 0.1947368421052632, completed 45 = ∑45/50, new result: 0.4631578947368421
2025-05-06 19:11:21: BoTorchModel, best RESULT: 0.1947368421052632, completed 44 = ∑44/50, new result: 0.3789473684210526
2025-05-06 19:12:12: BoTorchModel, best RESULT: 0.1947368421052632, completed 43 = ∑43/50, new result: 0.3157894736842105
2025-05-06 19:12:58: BoTorchModel, best RESULT: 0.1947368421052632, completed 42 = ∑42/50, new result: 0.2421052631578947
2025-05-06 19:13:58: BoTorchModel, best RESULT: 0.1947368421052632, completed 41 = ∑41/50, new result: 0.3052631578947368
2025-05-06 19:14:38: BoTorchModel, best RESULT: 0.1947368421052632, completed 40 = ∑40/50, new result: 0.31052631578947365
2025-05-06 19:15:15: BoTorchModel, best RESULT: 0.1947368421052632, completed 39 = ∑39/50, new result: 0.2789473684210526
2025-05-06 19:15:55: BoTorchModel, best RESULT: 0.1947368421052632, completed 38 = ∑38/50, new result: 0.3894736842105263
2025-05-06 19:16:28: BoTorchModel, best RESULT: 0.1947368421052632, completed 37 = ∑37/50, new result: 0.31052631578947365
2025-05-06 19:17:02: BoTorchModel, best RESULT: 0.1947368421052632, completed 36 = ∑36/50, new result: 0.35789473684210527
2025-05-06 19:17:31: BoTorchModel, best RESULT: 0.1947368421052632, completed 35 = ∑35/50, new result: 0.3631578947368421
2025-05-06 19:18:07: BoTorchModel, best RESULT: 0.1947368421052632, completed 34 = ∑34/50, new result: 0.3263157894736842
2025-05-06 19:18:50: BoTorchModel, best RESULT: 0.1947368421052632, completed 33 = ∑33/50, new result: 0.4052631578947369
2025-05-06 19:19:21: BoTorchModel, best RESULT: 0.1947368421052632, completed 32 = ∑32/50, new result: 0.28421052631578947
2025-05-06 19:20:00: BoTorchModel, best RESULT: 0.1947368421052632, completed 31 = ∑31/50, new result: 0.3631578947368421
2025-05-06 19:20:38: BoTorchModel, best RESULT: 0.1947368421052632, completed 30 = ∑30/50, new result: 0.39473684210526316
2025-05-06 19:21:19: BoTorchModel, best RESULT: 0.1947368421052632, completed 29 = ∑29/50, new result: 0.20526315789473681
2025-05-06 19:22:02: BoTorchModel, best RESULT: 0.1947368421052632, completed 28 = ∑28/50, new result: 0.4789473684210527
2025-05-06 19:22:48: BoTorchModel, best RESULT: 0.1947368421052632, completed 27 = ∑27/50, new result: 0.3263157894736842
2025-05-06 19:23:29: BoTorchModel, best RESULT: 0.1947368421052632, completed 26 = ∑26/50, new result: 0.3526315789473684
2025-05-06 19:24:15: BoTorchModel, best RESULT: 0.1947368421052632, completed 25 = ∑25/50, new result: 0.3315789473684211
2025-05-06 19:24:49: BoTorchModel, best RESULT: 0.1947368421052632, completed 24 = ∑24/50, new result: 0.2947368421052632
2025-05-06 19:25:23: BoTorchModel, best RESULT: 0.1947368421052632, completed 23 = ∑23/50, new result: 0.2947368421052632
2025-05-06 19:25:59: BoTorchModel, best RESULT: 0.1947368421052632, completed 22 = ∑22/50, new result: 0.35789473684210527
2025-05-06 19:26:37: BoTorchModel, best RESULT: 0.1947368421052632, completed 21 = ∑21/50, new result: 0.35789473684210527
2025-05-06 19:27:10: BoTorchModel, best RESULT: 0.1947368421052632, completed 20 = ∑20/50, new result: 0.2789473684210526
2025-05-06 19:27:53: BoTorchModel, best RESULT: 0.1947368421052632, completed 19 = ∑19/50, new result: 0.3631578947368421
2025-05-06 19:28:39: BoTorchModel, best RESULT: 0.1947368421052632, completed 18 = ∑18/50, new result: 0.3894736842105263
2025-05-06 19:29:21: BoTorchModel, best RESULT: 0.1947368421052632, completed 17 = ∑17/50, new result: 0.20526315789473681
2025-05-06 19:30:02: BoTorchModel, best RESULT: 0.1947368421052632, completed 16 = ∑16/50, new result: 0.21578947368421053
2025-05-06 19:30:39: BoTorchModel, best RESULT: 0.1947368421052632, completed 15 = ∑15/50, new result: 0.25263157894736843
2025-05-06 19:31:17: BoTorchModel, best RESULT: 0.1947368421052632, completed 14 = ∑14/50, new result: 0.27368421052631575
2025-05-06 19:31:51: BoTorchModel, best RESULT: 0.1947368421052632, completed 13 = ∑13/50, new result: 0.2684210526315789
2025-05-06 19:32:28: BoTorchModel, best RESULT: 0.1947368421052632, completed 12 = ∑12/50, new result: 0.3421052631578947
2025-05-06 19:33:06: BoTorchModel, best RESULT: 0.1947368421052632, completed 11 = ∑11/50, new result: 0.3052631578947368
2025-05-06 19:33:42: BoTorchModel, best RESULT: 0.1947368421052632, completed 10 = ∑10/50, new result: 0.368421052631579
2025-05-06 19:34:15: BoTorchModel, best RESULT: 0.1947368421052632, completed 9 = ∑9/50, new result: 0.21578947368421053
2025-05-06 19:34:50: BoTorchModel, best RESULT: 0.1947368421052632, completed 8 = ∑8/50, new result: 0.3157894736842105
2025-05-06 19:35:28: BoTorchModel, best RESULT: 0.1947368421052632, completed 7 = ∑7/50, new result: 0.34736842105263155
2025-05-06 19:36:01: BoTorchModel, best RESULT: 0.1947368421052632, completed 6 = ∑6/50, new result: 0.3157894736842105
2025-05-06 19:36:32: BoTorchModel, best RESULT: 0.1947368421052632, completed 5 = ∑5/50, new result: 0.24736842105263157
2025-05-06 19:37:05: BoTorchModel, best RESULT: 0.1947368421052632, completed 4 = ∑4/50, new result: 0.3526315789473684
2025-05-06 19:37:32: BoTorchModel, best RESULT: 0.1947368421052632, completed 3 = ∑3/50, new result: 0.2315789473684211
2025-05-06 19:38:03: BoTorchModel, best RESULT: 0.1947368421052632, completed 2 = ∑2/50, new result: 0.30000000000000004
2025-05-06 19:38:31: BoTorchModel, best RESULT: 0.1947368421052632, completed 1 = ∑1/50, new result: 0.34736842105263155
2025-05-06 19:39:01: BoTorchModel, best RESULT: 0.1947368421052632, finishing jobs, finished 50 jobs
2025-05-06 19:39:16: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #1/50
2025-05-06 19:39:46: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #2/50 | ETA: 11m 42s
2025-05-06 19:40:13: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #3/50 | ETA: 9m 50s
2025-05-06 19:40:39: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #4/50 | ETA: 8m 47s
2025-05-06 19:41:05: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #5/50 | ETA: 7m 47s
2025-05-06 19:41:28: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #6/50 | ETA: 7m 8s
2025-05-06 19:41:52: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #7/50 | ETA: 6m 46s
2025-05-06 19:42:14: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #8/50 | ETA: 6m 20s
2025-05-06 19:42:35: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #9/50 | ETA: 6m 2s
2025-05-06 19:42:54: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #10/50 | ETA: 5m 46s
2025-05-06 19:43:15: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #11/50 | ETA: 5m 34s
2025-05-06 19:43:36: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #12/50 | ETA: 5m 20s
2025-05-06 19:43:57: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #13/50 | ETA: 5m 7s
2025-05-06 19:44:20: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #14/50 | ETA: 4m 54s
2025-05-06 19:44:41: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #15/50 | ETA: 4m 42s
2025-05-06 19:45:06: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #16/50 | ETA: 4m 31s
2025-05-06 19:45:39: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #17/50 | ETA: 4m 27s
2025-05-06 19:46:07: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #18/50 | ETA: 4m 16s
2025-05-06 19:46:33: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #19/50 | ETA: 4m 8s
2025-05-06 19:46:58: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #20/50 | ETA: 3m 59s
2025-05-06 19:47:28: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #21/50 | ETA: 3m 51s
2025-05-06 19:47:51: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #22/50 | ETA: 3m 42s
2025-05-06 19:48:18: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #23/50 | ETA: 3m 34s
2025-05-06 19:48:41: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #24/50 | ETA: 3m 26s
2025-05-06 19:49:07: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #25/50 | ETA: 3m 19s
2025-05-06 19:49:32: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #26/50 | ETA: 3m 11s
2025-05-06 19:49:56: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #27/50 | ETA: 3m 3s
2025-05-06 19:50:20: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #28/50 | ETA: 2m 55s
2025-05-06 19:50:43: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #29/50 | ETA: 2m 47s
2025-05-06 19:51:08: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #30/50 | ETA: 2m 39s
2025-05-06 19:51:33: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #31/50 | ETA: 2m 31s
2025-05-06 19:51:58: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #32/50 | ETA: 2m 24s
2025-05-06 19:52:22: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #33/50 | ETA: 2m 16s
2025-05-06 19:52:53: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #34/50 | ETA: 2m 8s
2025-05-06 19:53:21: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #35/50 | ETA: 2m 1s
2025-05-06 19:53:46: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #36/50 | ETA: 1m 53s
2025-05-06 19:54:13: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #37/50 | ETA: 1m 46s
2025-05-06 19:54:36: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #38/50 | ETA: 1m 38s
2025-05-06 19:55:08: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #39/50 | ETA: 1m 31s
2025-05-06 19:55:31: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #40/50 | ETA: 1m 23s
2025-05-06 19:55:54: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #41/50 | ETA: 1m 16s
2025-05-06 19:56:20: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #42/50 | ETA: 1m 8s
2025-05-06 19:56:47: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #43/50 | ETA: 1m 1s
2025-05-06 19:57:15: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #44/50 | ETA: 53s
2025-05-06 19:57:42: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #45/50 | ETA: 46s
2025-05-06 19:58:12: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #46/50 | ETA: 38s
2025-05-06 19:58:38: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #47/50 | ETA: 31s
2025-05-06 19:59:05: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #48/50 | ETA: 23s
2025-05-06 19:59:29: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #49/50 | ETA: 15s
2025-05-06 19:59:54: BoTorchModel, best RESULT: 0.1947368421052632, getting new HP set #50/50 | ETA: 7s
2025-05-06 20:00:22: BoTorchModel, best RESULT: 0.1947368421052632, eval start
2025-05-06 20:00:37: BoTorchModel, best RESULT: 0.1947368421052632, starting new job
2025-05-06 20:01:04: BoTorchModel, best RESULT: 0.1947368421052632, unknown 1 = ∑1/50, started new job
2025-05-06 20:01:22: BoTorchModel, best RESULT: 0.1947368421052632, running 1 = ∑1/50, eval start
2025-05-06 20:01:41: BoTorchModel, best RESULT: 0.1947368421052632, running 1 = ∑1/50, starting new job
2025-05-06 20:01:59: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 1/1 = ∑2/50, started new job
2025-05-06 20:02:14: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 1/1 = ∑2/50, eval start
2025-05-06 20:02:29: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 1/1 = ∑2/50, starting new job
2025-05-06 20:02:49: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 2/1 = ∑3/50, started new job
2025-05-06 20:03:04: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 2/1 = ∑3/50, eval start
2025-05-06 20:03:17: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 2/1 = ∑3/50, starting new job
2025-05-06 20:03:31: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 2/1/1 = ∑4/50, started new job
2025-05-06 20:03:43: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 3/1 = ∑4/50, eval start
2025-05-06 20:03:56: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 3/1 = ∑4/50, starting new job
2025-05-06 20:04:10: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 3/1/1 = ∑5/50, started new job
2025-05-06 20:04:22: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 4/1 = ∑5/50, eval start
2025-05-06 20:04:35: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 4/1 = ∑5/50, starting new job
2025-05-06 20:04:50: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 5/1 = ∑6/50, started new job
2025-05-06 20:05:03: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 5/1 = ∑6/50, eval start
2025-05-06 20:05:16: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 5/1 = ∑6/50, starting new job
2025-05-06 20:05:30: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 6/1 = ∑7/50, started new job
2025-05-06 20:05:43: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 6/1 = ∑7/50, eval start
2025-05-06 20:05:54: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 6/1 = ∑7/50, starting new job
2025-05-06 20:06:08: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 6/1/1 = ∑8/50, started new job
2025-05-06 20:06:21: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 6/1/1 = ∑8/50, eval start
2025-05-06 20:06:34: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 6/1/1 = ∑8/50, starting new job
2025-05-06 20:06:48: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 7/1/1 = ∑9/50, started new job
2025-05-06 20:07:00: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 8/1 = ∑9/50, eval start
2025-05-06 20:07:13: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 8/1 = ∑9/50, starting new job
2025-05-06 20:07:28: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 9/1 = ∑10/50, started new job
2025-05-06 20:07:40: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 9/1 = ∑10/50, eval start
2025-05-06 20:07:53: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 9/1 = ∑10/50, starting new job
2025-05-06 20:08:06: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 10/1 = ∑11/50, started new job
2025-05-06 20:08:18: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 10/1 = ∑11/50, eval start
2025-05-06 20:08:31: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 10/1 = ∑11/50, starting new job
2025-05-06 20:08:45: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 10/1/1 = ∑12/50, started new job
2025-05-06 20:09:00: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 10/1/1 = ∑12/50, eval start
2025-05-06 20:09:13: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 10/1/1 = ∑12/50, starting new job
2025-05-06 20:09:27: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 12/1 = ∑13/50, started new job
2025-05-06 20:09:39: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 12/1 = ∑13/50, eval start
2025-05-06 20:09:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 12/1 = ∑13/50, starting new job
2025-05-06 20:10:06: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 13/1 = ∑14/50, started new job
2025-05-06 20:10:20: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 13/1 = ∑14/50, eval start
2025-05-06 20:10:33: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 13/1 = ∑14/50, starting new job
2025-05-06 20:10:46: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 14/1 = ∑15/50, started new job
2025-05-06 20:10:59: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 14/1 = ∑15/50, eval start
2025-05-06 20:11:11: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 14/1 = ∑15/50, starting new job
2025-05-06 20:11:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 14/1/1 = ∑16/50, started new job
2025-05-06 20:11:38: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 15/1 = ∑16/50, eval start
2025-05-06 20:11:50: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 15/1 = ∑16/50, starting new job
2025-05-06 20:12:06: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 15/1/1 = ∑17/50, started new job
2025-05-06 20:12:20: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 16/1 = ∑17/50, eval start
2025-05-06 20:12:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 16/1 = ∑17/50, starting new job
2025-05-06 20:12:53: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 17/1 = ∑18/50, started new job
2025-05-06 20:13:07: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 17/1 = ∑18/50, eval start
2025-05-06 20:13:22: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 17/1 = ∑18/50, starting new job
2025-05-06 20:13:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 17/1/1 = ∑19/50, started new job
2025-05-06 20:13:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 18/1 = ∑19/50, eval start
2025-05-06 20:14:07: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 18/1 = ∑19/50, starting new job
2025-05-06 20:14:23: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 19/1 = ∑20/50, started new job
2025-05-06 20:14:36: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 19/1 = ∑20/50, eval start
2025-05-06 20:14:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 19/1 = ∑20/50, starting new job
2025-05-06 20:15:08: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 19/1/1 = ∑21/50, started new job
2025-05-06 20:15:22: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 20/1 = ∑21/50, eval start
2025-05-06 20:15:36: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 20/1 = ∑21/50, starting new job
2025-05-06 20:15:55: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 21/1 = ∑22/50, started new job
2025-05-06 20:16:10: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 21/1 = ∑22/50, eval start
2025-05-06 20:16:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 21/1 = ∑22/50, starting new job
2025-05-06 20:16:42: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 21/1/1 = ∑23/50, started new job
2025-05-06 20:16:59: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 22/1 = ∑23/50, eval start
2025-05-06 20:17:16: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 22/1 = ∑23/50, starting new job
2025-05-06 20:17:34: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 23/1 = ∑24/50, started new job
2025-05-06 20:17:50: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 23/1 = ∑24/50, eval start
2025-05-06 20:18:04: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 23/1 = ∑24/50, starting new job
2025-05-06 20:18:20: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 24/1 = ∑25/50, started new job
2025-05-06 20:18:33: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 24/1 = ∑25/50, eval start
2025-05-06 20:18:51: BoTorchModel, best RESULT: 0.1947368421052632, completed 25 = ∑25/50, starting new job
2025-05-06 20:19:05: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 25/1 = ∑26/50, started new job
2025-05-06 20:19:19: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 25/1 = ∑26/50, eval start
2025-05-06 20:19:33: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 25/1 = ∑26/50, starting new job
2025-05-06 20:19:50: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 25/1/1 = ∑27/50, started new job
2025-05-06 20:20:08: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 26/1 = ∑27/50, eval start
2025-05-06 20:20:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 26/1 = ∑27/50, starting new job
2025-05-06 20:20:42: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 27/1 = ∑28/50, started new job
2025-05-06 20:20:59: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 27/1 = ∑28/50, eval start
2025-05-06 20:21:14: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 27/1 = ∑28/50, starting new job
2025-05-06 20:21:34: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 28/1 = ∑29/50, started new job
2025-05-06 20:21:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 28/1 = ∑29/50, eval start
2025-05-06 20:22:07: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 28/1 = ∑29/50, starting new job
2025-05-06 20:22:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 29/1 = ∑30/50, started new job
2025-05-06 20:22:51: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 29/1 = ∑30/50, eval start
2025-05-06 20:23:08: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 29/1 = ∑30/50, starting new job
2025-05-06 20:23:24: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 29/1/1 = ∑31/50, started new job
2025-05-06 20:23:45: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 29/2 = ∑31/50, eval start
2025-05-06 20:24:01: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 29/2 = ∑31/50, starting new job
2025-05-06 20:24:19: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 30/1/1 = ∑32/50, started new job
2025-05-06 20:24:34: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 30/1/1 = ∑32/50, eval start
2025-05-06 20:24:55: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 30/2 = ∑32/50, starting new job
2025-05-06 20:25:12: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 30/2/1 = ∑33/50, started new job
2025-05-06 20:25:32: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 30/3 = ∑33/50, eval start
2025-05-06 20:25:51: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 30/3 = ∑33/50, starting new job
2025-05-06 20:26:07: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 31/2/1 = ∑34/50, started new job
2025-05-06 20:26:21: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 31/3 = ∑34/50, eval start
2025-05-06 20:26:37: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 31/3 = ∑34/50, starting new job
2025-05-06 20:27:00: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 31/3/1 = ∑35/50, started new job
2025-05-06 20:27:16: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 31/3/1 = ∑35/50, eval start
2025-05-06 20:27:33: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 31/3/1 = ∑35/50, starting new job
2025-05-06 20:27:54: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 31/4/1 = ∑36/50, started new job
2025-05-06 20:28:10: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 31/4/1 = ∑36/50, eval start
2025-05-06 20:28:29: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 31/5 = ∑36/50, starting new job
2025-05-06 20:28:49: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 31/5/1 = ∑37/50, started new job
2025-05-06 20:29:05: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 31/6 = ∑37/50, eval start
2025-05-06 20:29:22: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 31/6 = ∑37/50, starting new job
2025-05-06 20:29:44: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 31/6/1 = ∑38/50, started new job
2025-05-06 20:30:02: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 33/5 = ∑38/50, eval start
2025-05-06 20:30:19: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 33/5 = ∑38/50, starting new job
2025-05-06 20:30:39: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 33/5/1 = ∑39/50, started new job
2025-05-06 20:30:56: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 33/5/1 = ∑39/50, eval start
2025-05-06 20:31:11: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 33/5/1 = ∑39/50, starting new job
2025-05-06 20:31:31: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 33/6/1 = ∑40/50, started new job
2025-05-06 20:31:46: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 33/7 = ∑40/50, eval start
2025-05-06 20:32:01: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 33/7 = ∑40/50, starting new job
2025-05-06 20:32:20: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 33/7/1 = ∑41/50, started new job
2025-05-06 20:32:35: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 33/7/1 = ∑41/50, eval start
2025-05-06 20:32:51: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 33/7/1 = ∑41/50, starting new job
2025-05-06 20:33:09: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 33/8/1 = ∑42/50, started new job
2025-05-06 20:33:25: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 33/8/1 = ∑42/50, eval start
2025-05-06 20:33:45: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 33/9 = ∑42/50, starting new job
2025-05-06 20:34:04: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 33/9/1 = ∑43/50, started new job
2025-05-06 20:34:23: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 33/10 = ∑43/50, eval start
2025-05-06 20:34:39: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 33/10 = ∑43/50, starting new job
2025-05-06 20:34:55: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 33/10/1 = ∑44/50, started new job
2025-05-06 20:35:12: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 33/11 = ∑44/50, eval start
2025-05-06 20:35:29: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 33/11 = ∑44/50, starting new job
2025-05-06 20:35:51: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 34/10/1 = ∑45/50, started new job
2025-05-06 20:36:11: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 34/10/1 = ∑45/50, eval start
2025-05-06 20:36:28: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/pending 34/10/1 = ∑45/50, starting new job
2025-05-06 20:36:46: BoTorchModel, best RESULT: 0.1947368421052632, completed/running/unknown 44/1/1 = ∑46/50, started new job
2025-05-06 20:37:07: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 45/1 = ∑46/50, eval start
2025-05-06 20:37:23: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 45/1 = ∑46/50, starting new job
2025-05-06 20:37:42: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 46/1 = ∑47/50, started new job
2025-05-06 20:37:59: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 46/1 = ∑47/50, eval start
2025-05-06 20:38:18: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 46/1 = ∑47/50, starting new job
2025-05-06 20:38:34: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 47/1 = ∑48/50, started new job
2025-05-06 20:38:51: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 47/1 = ∑48/50, eval start
2025-05-06 20:39:11: BoTorchModel, best RESULT: 0.1947368421052632, completed/running 47/1 = ∑48/50, starting new job
2025-05-06 20:39:33: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 48/1 = ∑49/50, started new job
2025-05-06 20:39:53: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 48/1 = ∑49/50, eval start
2025-05-06 20:40:12: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 48/1 = ∑49/50, starting new job
2025-05-06 20:40:31: BoTorchModel, best RESULT: 0.1947368421052632, completed/unknown 49/1 = ∑50/50, started new job
2025-05-06 20:40:52: BoTorchModel, best RESULT: 0.1947368421052632, completed/pending 49/1 = ∑50/50, new result: 0.368421052631579
2025-05-06 20:41:32: BoTorchModel, best RESULT: 0.1947368421052632, completed 49 = ∑49/50, new result: 0.30000000000000004
2025-05-06 20:42:09: BoTorchModel, best RESULT: 0.1947368421052632, completed 48 = ∑48/50, new result: 0.25263157894736843
2025-05-06 20:42:42: BoTorchModel, best RESULT: 0.1947368421052632, completed 47 = ∑47/50, new result: 0.3631578947368421
2025-05-06 20:43:16: BoTorchModel, best RESULT: 0.1947368421052632, completed 46 = ∑46/50, new result: 0.3631578947368421
2025-05-06 20:43:51: BoTorchModel, best RESULT: 0.1947368421052632, completed 45 = ∑45/50, new result: 0.18947368421052635
2025-05-06 20:44:25: BoTorchModel, best RESULT: 0.18947368421052635, completed 44 = ∑44/50, new result: 0.3052631578947368
2025-05-06 20:44:58: BoTorchModel, best RESULT: 0.18947368421052635, completed 43 = ∑43/50, new result: 0.2578947368421053
2025-05-06 20:45:29: BoTorchModel, best RESULT: 0.18947368421052635, completed 42 = ∑42/50, new result: 0.3631578947368421
2025-05-06 20:46:00: BoTorchModel, best RESULT: 0.18947368421052635, completed 41 = ∑41/50, new result: 0.3631578947368421
2025-05-06 20:46:30: BoTorchModel, best RESULT: 0.18947368421052635, completed 40 = ∑40/50, new result: 0.3631578947368421
2025-05-06 20:47:03: BoTorchModel, best RESULT: 0.18947368421052635, completed 39 = ∑39/50, new result: 0.35789473684210527
2025-05-06 20:47:38: BoTorchModel, best RESULT: 0.18947368421052635, completed 38 = ∑38/50, new result: 0.3631578947368421
2025-05-06 20:48:09: BoTorchModel, best RESULT: 0.18947368421052635, completed 37 = ∑37/50, new result: 0.2421052631578947
2025-05-06 20:48:41: BoTorchModel, best RESULT: 0.18947368421052635, completed 36 = ∑36/50, new result: 0.33684210526315794
2025-05-06 20:49:14: BoTorchModel, best RESULT: 0.18947368421052635, completed 35 = ∑35/50, new result: 0.35789473684210527
2025-05-06 20:49:52: BoTorchModel, best RESULT: 0.18947368421052635, completed 34 = ∑34/50, new result: 0.22631578947368425
2025-05-06 20:50:25: BoTorchModel, best RESULT: 0.18947368421052635, completed 33 = ∑33/50, new result: 0.3631578947368421
2025-05-06 20:51:04: BoTorchModel, best RESULT: 0.18947368421052635, completed 32 = ∑32/50, new result: 0.24736842105263157
2025-05-06 20:51:37: BoTorchModel, best RESULT: 0.18947368421052635, completed 31 = ∑31/50, new result: 0.33684210526315794
2025-05-06 20:52:16: BoTorchModel, best RESULT: 0.18947368421052635, completed 30 = ∑30/50, new result: 0.3631578947368421
2025-05-06 20:52:55: BoTorchModel, best RESULT: 0.18947368421052635, completed 29 = ∑29/50, new result: 0.23684210526315785
2025-05-06 20:53:30: BoTorchModel, best RESULT: 0.18947368421052635, completed 28 = ∑28/50, new result: 0.32105263157894737
2025-05-06 20:54:10: BoTorchModel, best RESULT: 0.18947368421052635, completed 27 = ∑27/50, new result: 0.3315789473684211
2025-05-06 20:54:44: BoTorchModel, best RESULT: 0.18947368421052635, completed 26 = ∑26/50, new result: 0.34736842105263155
2025-05-06 20:55:36: BoTorchModel, best RESULT: 0.18947368421052635, completed 25 = ∑25/50, new result: 0.34736842105263155
2025-05-06 20:56:19: BoTorchModel, best RESULT: 0.18947368421052635, completed 24 = ∑24/50, new result: 0.2789473684210526
2025-05-06 20:56:59: BoTorchModel, best RESULT: 0.18947368421052635, completed 23 = ∑23/50, new result: 0.35789473684210527
2025-05-06 20:57:54: BoTorchModel, best RESULT: 0.18947368421052635, completed 22 = ∑22/50, new result: 0.2315789473684211
2025-05-06 20:58:43: BoTorchModel, best RESULT: 0.18947368421052635, completed 21 = ∑21/50, new result: 0.22631578947368425
2025-05-06 20:59:36: BoTorchModel, best RESULT: 0.18947368421052635, completed 20 = ∑20/50, new result: 0.26315789473684215
2025-05-06 21:00:31: BoTorchModel, best RESULT: 0.18947368421052635, completed 19 = ∑19/50, new result: 0.3631578947368421
2025-05-06 21:01:30: BoTorchModel, best RESULT: 0.18947368421052635, completed 18 = ∑18/50, new result: 0.3421052631578947
2025-05-06 21:02:29: BoTorchModel, best RESULT: 0.18947368421052635, completed 17 = ∑17/50, new result: 0.28421052631578947
2025-05-06 21:03:18: BoTorchModel, best RESULT: 0.18947368421052635, completed 16 = ∑16/50, new result: 0.28421052631578947
2025-05-06 21:03:58: BoTorchModel, best RESULT: 0.18947368421052635, completed 15 = ∑15/50, new result: 0.3631578947368421
2025-05-06 21:04:35: BoTorchModel, best RESULT: 0.18947368421052635, completed 14 = ∑14/50, new result: 0.2210526315789474
2025-05-06 21:05:12: BoTorchModel, best RESULT: 0.18947368421052635, completed 13 = ∑13/50, new result: 0.3052631578947368
2025-05-06 21:05:46: BoTorchModel, best RESULT: 0.18947368421052635, completed 12 = ∑12/50, new result: 0.2421052631578947
2025-05-06 21:06:25: BoTorchModel, best RESULT: 0.18947368421052635, completed 11 = ∑11/50, new result: 0.3052631578947368
2025-05-06 21:07:03: BoTorchModel, best RESULT: 0.18947368421052635, completed 10 = ∑10/50, new result: 0.21578947368421053
2025-05-06 21:07:36: BoTorchModel, best RESULT: 0.18947368421052635, completed 9 = ∑9/50, new result: 0.3052631578947368
2025-05-06 21:08:11: BoTorchModel, best RESULT: 0.18947368421052635, completed 8 = ∑8/50, new result: 0.33684210526315794
2025-05-06 21:08:46: BoTorchModel, best RESULT: 0.18947368421052635, completed 7 = ∑7/50, new result: 0.2421052631578947
2025-05-06 21:09:23: BoTorchModel, best RESULT: 0.18947368421052635, completed 6 = ∑6/50, new result: 0.3315789473684211
2025-05-06 21:09:58: BoTorchModel, best RESULT: 0.18947368421052635, completed 5 = ∑5/50, new result: 0.3631578947368421
2025-05-06 21:10:34: BoTorchModel, best RESULT: 0.18947368421052635, completed 4 = ∑4/50, new result: 0.2315789473684211
2025-05-06 21:11:15: BoTorchModel, best RESULT: 0.18947368421052635, completed 3 = ∑3/50, new result: 0.35789473684210527
2025-05-06 21:11:57: BoTorchModel, best RESULT: 0.18947368421052635, completed 2 = ∑2/50, new result: 0.23684210526315785
2025-05-06 21:12:38: BoTorchModel, best RESULT: 0.18947368421052635, completed 1 = ∑1/50, new result: 0.19999999999999996
2025-05-06 21:13:14: BoTorchModel, best RESULT: 0.18947368421052635, finishing jobs, finished 50 jobs
2025-05-06 21:13:34: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #1/50
2025-05-06 21:14:12: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #2/50 | ETA: 14m 1s
2025-05-06 21:14:37: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #3/50 | ETA: 10m 22s
2025-05-06 21:15:03: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #4/50 | ETA: 8m 59s
2025-05-06 21:15:28: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #5/50 | ETA: 8m 8s
2025-05-06 21:16:00: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #6/50 | ETA: 7m 40s
2025-05-06 21:16:28: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #7/50 | ETA: 7m 23s
2025-05-06 21:16:56: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #8/50 | ETA: 7m 5s
2025-05-06 21:17:21: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #9/50 | ETA: 6m 47s
2025-05-06 21:17:54: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #10/50 | ETA: 6m 36s
2025-05-06 21:18:22: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #11/50 | ETA: 6m 22s
2025-05-06 21:18:53: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #12/50 | ETA: 6m 9s
2025-05-06 21:19:20: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #13/50 | ETA: 5m 58s
2025-05-06 21:19:51: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #14/50 | ETA: 5m 46s
2025-05-06 21:20:17: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #15/50 | ETA: 5m 35s
2025-05-06 21:20:52: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #16/50 | ETA: 5m 26s
2025-05-06 21:21:21: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #17/50 | ETA: 5m 17s
2025-05-06 21:21:52: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #18/50 | ETA: 5m 6s
2025-05-06 21:22:20: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #19/50 | ETA: 4m 55s
2025-05-06 21:22:52: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #20/50 | ETA: 4m 47s
2025-05-06 21:23:22: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #21/50 | ETA: 4m 37s
2025-05-06 21:23:51: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #22/50 | ETA: 4m 28s
2025-05-06 21:24:18: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #23/50 | ETA: 4m 19s
2025-05-06 21:24:46: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #24/50 | ETA: 4m 10s
2025-05-06 21:25:10: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #25/50 | ETA: 4m 0s
2025-05-06 21:25:40: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #26/50 | ETA: 3m 50s
2025-05-06 21:26:04: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #27/50 | ETA: 3m 41s
2025-05-06 21:26:30: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #28/50 | ETA: 3m 31s
2025-05-06 21:26:55: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #29/50 | ETA: 3m 22s
2025-05-06 21:27:21: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #30/50 | ETA: 3m 14s
2025-05-06 21:27:50: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #31/50 | ETA: 3m 5s
2025-05-06 21:28:16: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #32/50 | ETA: 2m 55s
2025-05-06 21:28:46: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #33/50 | ETA: 2m 46s
2025-05-06 21:29:11: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #34/50 | ETA: 2m 37s
2025-05-06 21:29:40: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #35/50 | ETA: 2m 28s
2025-05-06 21:30:05: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #36/50 | ETA: 2m 19s
2025-05-06 21:30:33: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #37/50 | ETA: 2m 10s
2025-05-06 21:31:00: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #38/50 | ETA: 2m 1s
2025-05-06 21:31:29: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #39/50 | ETA: 1m 52s
2025-05-06 21:31:55: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #40/50 | ETA: 1m 43s
2025-05-06 21:32:24: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #41/50 | ETA: 1m 34s
2025-05-06 21:32:52: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #42/50 | ETA: 1m 25s
2025-05-06 21:33:23: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #43/50 | ETA: 1m 15s
2025-05-06 21:33:48: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #44/50 | ETA: 1m 6s
2025-05-06 21:34:20: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #45/50 | ETA: 57s
2025-05-06 21:34:45: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #46/50 | ETA: 47s
2025-05-06 21:35:11: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #47/50 | ETA: 38s
2025-05-06 21:35:37: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #48/50 | ETA: 28s
2025-05-06 21:36:05: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #49/50 | ETA: 19s
2025-05-06 21:36:29: BoTorchModel, best RESULT: 0.18947368421052635, getting new HP set #50/50 | ETA: 9s
2025-05-06 21:36:55: BoTorchModel, best RESULT: 0.18947368421052635, eval start
2025-05-06 21:37:09: BoTorchModel, best RESULT: 0.18947368421052635, starting new job
2025-05-06 21:37:25: BoTorchModel, best RESULT: 0.18947368421052635, unknown 1 = ∑1/50, started new job
2025-05-06 21:37:39: BoTorchModel, best RESULT: 0.18947368421052635, pending 1 = ∑1/50, eval start
2025-05-06 21:37:57: BoTorchModel, best RESULT: 0.18947368421052635, running 1 = ∑1/50, starting new job
2025-05-06 21:38:14: BoTorchModel, best RESULT: 0.18947368421052635, running/unknown 1/1 = ∑2/50, started new job
2025-05-06 21:38:30: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 1/1 = ∑2/50, eval start
2025-05-06 21:38:47: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 1/1 = ∑2/50, starting new job
2025-05-06 21:39:04: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 1/1/1 = ∑3/50, started new job
2025-05-06 21:39:19: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 2/1 = ∑3/50, eval start
2025-05-06 21:39:36: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 2/1 = ∑3/50, starting new job
2025-05-06 21:39:54: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 3/1 = ∑4/50, started new job
2025-05-06 21:40:09: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 3/1 = ∑4/50, eval start
2025-05-06 21:40:27: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 3/1 = ∑4/50, starting new job
2025-05-06 21:40:49: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 4/1 = ∑5/50, started new job
2025-05-06 21:41:04: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 4/1 = ∑5/50, eval start
2025-05-06 21:41:19: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 4/1 = ∑5/50, starting new job
2025-05-06 21:41:37: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 4/1/1 = ∑6/50, started new job
2025-05-06 21:41:55: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 5/1 = ∑6/50, eval start
2025-05-06 21:42:10: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 5/1 = ∑6/50, starting new job
2025-05-06 21:42:28: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 6/1 = ∑7/50, started new job
2025-05-06 21:42:47: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 6/1 = ∑7/50, eval start
2025-05-06 21:43:04: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 6/1 = ∑7/50, starting new job
2025-05-06 21:43:20: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 6/1/1 = ∑8/50, started new job
2025-05-06 21:43:38: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 7/1 = ∑8/50, eval start
2025-05-06 21:43:54: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 7/1 = ∑8/50, starting new job
2025-05-06 21:44:10: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 7/1/1 = ∑9/50, started new job
2025-05-06 21:44:26: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 8/1 = ∑9/50, eval start
2025-05-06 21:44:43: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 8/1 = ∑9/50, starting new job
2025-05-06 21:45:00: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 8/1/1 = ∑10/50, started new job
2025-05-06 21:45:16: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/pending 8/1/1 = ∑10/50, eval start
2025-05-06 21:45:31: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/pending 8/1/1 = ∑10/50, starting new job
2025-05-06 21:45:50: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 9/1/1 = ∑11/50, started new job
2025-05-06 21:46:04: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 9/2 = ∑11/50, eval start
2025-05-06 21:46:20: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 9/2 = ∑11/50, starting new job
2025-05-06 21:46:38: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 10/1/1 = ∑12/50, started new job
2025-05-06 21:46:53: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 11/1 = ∑12/50, eval start
2025-05-06 21:47:08: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 11/1 = ∑12/50, starting new job
2025-05-06 21:47:25: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 11/1/1 = ∑13/50, started new job
2025-05-06 21:47:45: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 11/2 = ∑13/50, eval start
2025-05-06 21:48:04: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 11/2 = ∑13/50, starting new job
2025-05-06 21:48:25: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 12/1/1 = ∑14/50, started new job
2025-05-06 21:48:46: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 13/1 = ∑14/50, eval start
2025-05-06 21:49:03: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 13/1 = ∑14/50, starting new job
2025-05-06 21:49:21: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 14/1 = ∑15/50, started new job
2025-05-06 21:49:39: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 14/1 = ∑15/50, eval start
2025-05-06 21:49:55: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 14/1 = ∑15/50, starting new job
2025-05-06 21:50:12: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 14/1/1 = ∑16/50, started new job
2025-05-06 21:50:28: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 15/1 = ∑16/50, eval start
2025-05-06 21:50:45: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 15/1 = ∑16/50, starting new job
2025-05-06 21:51:03: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 15/1/1 = ∑17/50, started new job
2025-05-06 21:51:18: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/pending 15/1/1 = ∑17/50, eval start
2025-05-06 21:51:35: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/pending 15/1/1 = ∑17/50, starting new job
2025-05-06 21:51:55: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 16/1/1 = ∑18/50, started new job
2025-05-06 21:52:11: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 16/2 = ∑18/50, eval start
2025-05-06 21:52:29: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 17/1 = ∑18/50, starting new job
2025-05-06 21:52:49: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 17/1/1 = ∑19/50, started new job
2025-05-06 21:53:08: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 18/1 = ∑19/50, eval start
2025-05-06 21:53:25: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 18/1 = ∑19/50, starting new job
2025-05-06 21:53:42: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 18/1/1 = ∑20/50, started new job
2025-05-06 21:53:59: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 19/1 = ∑20/50, eval start
2025-05-06 21:54:16: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 19/1 = ∑20/50, starting new job
2025-05-06 21:54:33: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 19/1/1 = ∑21/50, started new job
2025-05-06 21:54:52: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 20/1 = ∑21/50, eval start
2025-05-06 21:55:08: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 20/1 = ∑21/50, starting new job
2025-05-06 21:55:27: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 20/1/1 = ∑22/50, started new job
2025-05-06 21:55:42: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 21/1 = ∑22/50, eval start
2025-05-06 21:56:02: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 21/1 = ∑22/50, starting new job
2025-05-06 21:56:19: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 21/1/1 = ∑23/50, started new job
2025-05-06 21:56:35: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 22/1 = ∑23/50, eval start
2025-05-06 21:56:55: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 22/1 = ∑23/50, starting new job
2025-05-06 21:57:13: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 22/1/1 = ∑24/50, started new job
2025-05-06 21:57:30: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 23/1 = ∑24/50, eval start
2025-05-06 21:57:47: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 23/1 = ∑24/50, starting new job
2025-05-06 21:58:08: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 23/1/1 = ∑25/50, started new job
2025-05-06 21:58:25: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 23/2 = ∑25/50, eval start
2025-05-06 21:58:41: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 23/2 = ∑25/50, starting new job
2025-05-06 21:59:02: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 25/1 = ∑26/50, started new job
2025-05-06 21:59:20: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 25/1 = ∑26/50, eval start
2025-05-06 21:59:38: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 25/1 = ∑26/50, starting new job
2025-05-06 21:59:59: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 25/1/1 = ∑27/50, started new job
2025-05-06 22:00:15: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 26/1 = ∑27/50, eval start
2025-05-06 22:00:35: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 26/1 = ∑27/50, starting new job
2025-05-06 22:00:55: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 26/1/1 = ∑28/50, started new job
2025-05-06 22:01:11: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 27/1 = ∑28/50, eval start
2025-05-06 22:01:28: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 27/1 = ∑28/50, starting new job
2025-05-06 22:01:47: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 27/1/1 = ∑29/50, started new job
2025-05-06 22:02:05: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/pending 27/1/1 = ∑29/50, eval start
2025-05-06 22:02:22: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/pending 27/1/1 = ∑29/50, starting new job
2025-05-06 22:02:39: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 28/1/1 = ∑30/50, started new job
2025-05-06 22:02:57: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 28/2 = ∑30/50, eval start
2025-05-06 22:03:15: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 28/2 = ∑30/50, starting new job
2025-05-06 22:03:33: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 30/1 = ∑31/50, started new job
2025-05-06 22:03:50: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 30/1 = ∑31/50, eval start
2025-05-06 22:04:08: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 30/1 = ∑31/50, starting new job
2025-05-06 22:04:25: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 30/1/1 = ∑32/50, started new job
2025-05-06 22:04:43: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 31/1 = ∑32/50, eval start
2025-05-06 22:05:00: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 31/1 = ∑32/50, starting new job
2025-05-06 22:05:18: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 31/1/1 = ∑33/50, started new job
2025-05-06 22:05:36: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 31/2 = ∑33/50, eval start
2025-05-06 22:05:53: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 31/2 = ∑33/50, starting new job
2025-05-06 22:06:11: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 33/1 = ∑34/50, started new job
2025-05-06 22:06:27: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 33/1 = ∑34/50, eval start
2025-05-06 22:06:46: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 33/1 = ∑34/50, starting new job
2025-05-06 22:07:05: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 33/1/1 = ∑35/50, started new job
2025-05-06 22:07:21: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 34/1 = ∑35/50, eval start
2025-05-06 22:07:44: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 34/1 = ∑35/50, starting new job
2025-05-06 22:08:03: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 34/1/1 = ∑36/50, started new job
2025-05-06 22:08:18: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/pending 34/1/1 = ∑36/50, eval start
2025-05-06 22:08:40: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 35/1 = ∑36/50, starting new job
2025-05-06 22:09:00: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 35/1/1 = ∑37/50, started new job
2025-05-06 22:09:18: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/pending 35/1/1 = ∑37/50, eval start
2025-05-06 22:09:39: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 36/1 = ∑37/50, starting new job
2025-05-06 22:09:58: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 36/1/1 = ∑38/50, started new job
2025-05-06 22:10:16: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 36/2 = ∑38/50, eval start
2025-05-06 22:10:39: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 37/1 = ∑38/50, starting new job
2025-05-06 22:10:59: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 38/1 = ∑39/50, started new job
2025-05-06 22:11:17: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 38/1 = ∑39/50, eval start
2025-05-06 22:11:38: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 38/1 = ∑39/50, starting new job
2025-05-06 22:11:59: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 38/1/1 = ∑40/50, started new job
2025-05-06 22:12:19: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 39/1 = ∑40/50, eval start
2025-05-06 22:12:40: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 39/1 = ∑40/50, starting new job
2025-05-06 22:12:59: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 39/1/1 = ∑41/50, started new job
2025-05-06 22:13:20: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 40/1 = ∑41/50, eval start
2025-05-06 22:13:43: BoTorchModel, best RESULT: 0.18947368421052635, completed 41 = ∑41/50, starting new job
2025-05-06 22:14:06: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 41/1 = ∑42/50, started new job
2025-05-06 22:14:27: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 41/1 = ∑42/50, eval start
2025-05-06 22:14:44: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 41/1 = ∑42/50, starting new job
2025-05-06 22:15:05: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 42/1 = ∑43/50, started new job
2025-05-06 22:15:27: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 42/1 = ∑43/50, eval start
2025-05-06 22:15:46: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 42/1 = ∑43/50, starting new job
2025-05-06 22:16:07: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 43/1 = ∑44/50, started new job
2025-05-06 22:16:29: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 43/1 = ∑44/50, eval start
2025-05-06 22:16:49: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 43/1 = ∑44/50, starting new job
2025-05-06 22:17:11: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 44/1 = ∑45/50, started new job
2025-05-06 22:17:36: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 44/1 = ∑45/50, eval start
2025-05-06 22:18:00: BoTorchModel, best RESULT: 0.18947368421052635, completed/pending 44/1 = ∑45/50, starting new job
2025-05-06 22:18:24: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 45/1 = ∑46/50, started new job
2025-05-06 22:18:44: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 45/1 = ∑46/50, eval start
2025-05-06 22:19:05: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 45/1 = ∑46/50, starting new job
2025-05-06 22:19:28: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 46/1 = ∑47/50, started new job
2025-05-06 22:19:47: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 46/1 = ∑47/50, eval start
2025-05-06 22:20:14: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 46/1 = ∑47/50, starting new job
2025-05-06 22:20:37: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 47/1 = ∑48/50, started new job
2025-05-06 22:20:55: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 47/1 = ∑48/50, eval start
2025-05-06 22:21:14: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 47/1 = ∑48/50, starting new job
2025-05-06 22:21:34: BoTorchModel, best RESULT: 0.18947368421052635, completed/unknown 48/1 = ∑49/50, started new job
2025-05-06 22:21:52: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 48/1 = ∑49/50, eval start
2025-05-06 22:22:12: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 48/1 = ∑49/50, starting new job
2025-05-06 22:22:36: BoTorchModel, best RESULT: 0.18947368421052635, completed/running/unknown 48/1/1 = ∑50/50, started new job
2025-05-06 22:22:59: BoTorchModel, best RESULT: 0.18947368421052635, completed/running 49/1 = ∑50/50, new result: 0.19999999999999996
2025-05-06 22:23:44: BoTorchModel, best RESULT: 0.18947368421052635, completed 49 = ∑49/50, new result: 0.2684210526315789
2025-05-06 22:24:20: BoTorchModel, best RESULT: 0.18947368421052635, completed 48 = ∑48/50, new result: 0.28421052631578947
2025-05-06 22:24:56: BoTorchModel, best RESULT: 0.18947368421052635, completed 47 = ∑47/50, new result: 0.24736842105263157
2025-05-06 22:25:30: BoTorchModel, best RESULT: 0.18947368421052635, completed 46 = ∑46/50, new result: 0.26315789473684215
2025-05-06 22:26:06: BoTorchModel, best RESULT: 0.18947368421052635, completed 45 = ∑45/50, new result: 0.20526315789473681
2025-05-06 22:26:44: BoTorchModel, best RESULT: 0.18947368421052635, completed 44 = ∑44/50, new result: 0.35789473684210527
2025-05-06 22:27:20: BoTorchModel, best RESULT: 0.18947368421052635, completed 43 = ∑43/50, new result: 0.26315789473684215
2025-05-06 22:27:56: BoTorchModel, best RESULT: 0.18947368421052635, completed 42 = ∑42/50, new result: 0.33684210526315794
2025-05-06 22:28:33: BoTorchModel, best RESULT: 0.18947368421052635, completed 41 = ∑41/50, new result: 0.2210526315789474
2025-05-06 22:29:08: BoTorchModel, best RESULT: 0.18947368421052635, completed 40 = ∑40/50, new result: 0.24736842105263157
2025-05-06 22:29:43: BoTorchModel, best RESULT: 0.18947368421052635, completed 39 = ∑39/50, new result: 0.2578947368421053
2025-05-06 22:30:17: BoTorchModel, best RESULT: 0.18947368421052635, completed 38 = ∑38/50, new result: 0.41052631578947374
2025-05-06 22:30:52: BoTorchModel, best RESULT: 0.18947368421052635, completed 37 = ∑37/50, new result: 0.26315789473684215
2025-05-06 22:31:31: BoTorchModel, best RESULT: 0.18947368421052635, completed 36 = ∑36/50, new result: 0.1842105263157895
2025-05-06 22:32:07: BoTorchModel, best RESULT: 0.1842105263157895, completed 35 = ∑35/50, new result: 0.22631578947368425
2025-05-06 22:32:47: BoTorchModel, best RESULT: 0.1842105263157895, completed 34 = ∑34/50, new result: 0.34736842105263155
2025-05-06 22:33:25: BoTorchModel, best RESULT: 0.1842105263157895, completed 33 = ∑33/50, new result: 0.2947368421052632
2025-05-06 22:34:01: BoTorchModel, best RESULT: 0.1842105263157895, completed 32 = ∑32/50, new result: 0.20526315789473681
2025-05-06 22:34:42: BoTorchModel, best RESULT: 0.1842105263157895, completed 31 = ∑31/50, new result: 0.2578947368421053
2025-05-06 22:35:23: BoTorchModel, best RESULT: 0.1842105263157895, completed 30 = ∑30/50, new result: 0.3631578947368421
2025-05-06 22:35:59: BoTorchModel, best RESULT: 0.1842105263157895, completed 29 = ∑29/50, new result: 0.3631578947368421
2025-05-06 22:36:38: BoTorchModel, best RESULT: 0.1842105263157895, completed 28 = ∑28/50, new result: 0.22631578947368425
2025-05-06 22:37:16: BoTorchModel, best RESULT: 0.1842105263157895, completed 27 = ∑27/50, new result: 0.2315789473684211
2025-05-06 22:37:50: BoTorchModel, best RESULT: 0.1842105263157895, completed 26 = ∑26/50, new result: 0.1947368421052632
2025-05-06 22:38:25: BoTorchModel, best RESULT: 0.1842105263157895, completed 25 = ∑25/50, new result: 0.28421052631578947
2025-05-06 22:38:59: BoTorchModel, best RESULT: 0.1842105263157895, completed 24 = ∑24/50, new result: 0.25263157894736843
2025-05-06 22:39:34: BoTorchModel, best RESULT: 0.1842105263157895, completed 23 = ∑23/50, new result: 0.3631578947368421
2025-05-06 22:40:11: BoTorchModel, best RESULT: 0.1842105263157895, completed 22 = ∑22/50, new result: 0.3052631578947368
2025-05-06 22:40:47: BoTorchModel, best RESULT: 0.1842105263157895, completed 21 = ∑21/50, new result: 0.3052631578947368
2025-05-06 22:41:32: BoTorchModel, best RESULT: 0.1842105263157895, completed 20 = ∑20/50, new result: 0.2210526315789474
2025-05-06 22:42:16: BoTorchModel, best RESULT: 0.1842105263157895, completed 19 = ∑19/50, new result: 0.28421052631578947
2025-05-06 22:42:59: BoTorchModel, best RESULT: 0.1842105263157895, completed 18 = ∑18/50, new result: 0.3263157894736842
2025-05-06 22:43:37: BoTorchModel, best RESULT: 0.1842105263157895, completed 17 = ∑17/50, new result: 0.25263157894736843
2025-05-06 22:44:16: BoTorchModel, best RESULT: 0.1842105263157895, completed 16 = ∑16/50, new result: 0.28421052631578947
2025-05-06 22:44:51: BoTorchModel, best RESULT: 0.1842105263157895, completed 15 = ∑15/50, new result: 0.20526315789473681
2025-05-06 22:45:32: BoTorchModel, best RESULT: 0.1842105263157895, completed 14 = ∑14/50, new result: 0.3052631578947368
2025-05-06 22:46:11: BoTorchModel, best RESULT: 0.1842105263157895, completed 13 = ∑13/50, new result: 0.34736842105263155
2025-05-06 22:46:46: BoTorchModel, best RESULT: 0.1842105263157895, completed 12 = ∑12/50, new result: 0.25263157894736843
2025-05-06 22:47:22: BoTorchModel, best RESULT: 0.1842105263157895, completed 11 = ∑11/50, new result: 0.24736842105263157
2025-05-06 22:47:59: BoTorchModel, best RESULT: 0.1842105263157895, completed 10 = ∑10/50, new result: 0.21578947368421053
2025-05-06 22:48:34: BoTorchModel, best RESULT: 0.1842105263157895, completed 9 = ∑9/50, new result: 0.21052631578947367
2025-05-06 22:49:09: BoTorchModel, best RESULT: 0.1842105263157895, completed 8 = ∑8/50, new result: 0.32105263157894737
2025-05-06 22:49:43: BoTorchModel, best RESULT: 0.1842105263157895, completed 7 = ∑7/50, new result: 0.2578947368421053
2025-05-06 22:50:18: BoTorchModel, best RESULT: 0.1842105263157895, completed 6 = ∑6/50, new result: 0.24736842105263157
2025-05-06 22:50:51: BoTorchModel, best RESULT: 0.1842105263157895, completed 5 = ∑5/50, new result: 0.2894736842105263
2025-05-06 22:51:25: BoTorchModel, best RESULT: 0.1842105263157895, completed 4 = ∑4/50, new result: 0.2894736842105263
2025-05-06 22:52:02: BoTorchModel, best RESULT: 0.1842105263157895, completed 3 = ∑3/50, new result: 0.35789473684210527
2025-05-06 22:52:36: BoTorchModel, best RESULT: 0.1842105263157895, completed 2 = ∑2/50, new result: 0.26315789473684215
2025-05-06 22:53:13: BoTorchModel, best RESULT: 0.1842105263157895, completed 1 = ∑1/50, new result: 0.3631578947368421
2025-05-06 22:53:50: BoTorchModel, best RESULT: 0.1842105263157895, finishing jobs, finished 50 jobs
2025-05-06 22:54:12: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #1/50
2025-05-06 22:54:48: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #2/50 | ETA: 14m 24s
2025-05-06 22:55:21: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #3/50 | ETA: 11m 55s
2025-05-06 22:55:50: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #4/50 | ETA: 11m 19s
2025-05-06 22:56:24: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #5/50 | ETA: 11m 0s
2025-05-06 22:56:54: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #6/50 | ETA: 10m 38s
2025-05-06 22:57:26: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #7/50 | ETA: 10m 21s
2025-05-06 22:58:00: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #8/50 | ETA: 9m 59s
2025-05-06 22:58:30: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #9/50 | ETA: 9m 37s
2025-05-06 22:59:04: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #10/50 | ETA: 9m 22s
2025-05-06 22:59:36: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #11/50 | ETA: 9m 2s
2025-05-06 23:00:09: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #12/50 | ETA: 8m 49s
2025-05-06 23:00:43: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #13/50 | ETA: 8m 33s
2025-05-06 23:01:17: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #14/50 | ETA: 8m 14s
2025-05-06 23:01:50: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #15/50 | ETA: 8m 1s
2025-05-06 23:02:21: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #16/50 | ETA: 7m 49s
2025-05-06 23:02:52: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #17/50 | ETA: 7m 34s
2025-05-06 23:03:25: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #18/50 | ETA: 7m 21s
2025-05-06 23:04:01: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #19/50 | ETA: 7m 8s
2025-05-06 23:04:34: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #20/50 | ETA: 6m 55s
2025-05-06 23:05:03: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #21/50 | ETA: 6m 39s
2025-05-06 23:05:36: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #22/50 | ETA: 6m 26s
2025-05-06 23:06:09: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #23/50 | ETA: 6m 12s
2025-05-06 23:06:41: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #24/50 | ETA: 6m 0s
2025-05-06 23:07:14: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #25/50 | ETA: 5m 46s
2025-05-06 23:07:46: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #26/50 | ETA: 5m 33s
2025-05-06 23:08:16: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #27/50 | ETA: 5m 19s
2025-05-06 23:08:56: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #28/50 | ETA: 5m 6s
2025-05-06 23:09:32: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #29/50 | ETA: 4m 53s
2025-05-06 23:10:05: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #30/50 | ETA: 4m 40s
2025-05-06 23:10:40: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #31/50 | ETA: 4m 28s
2025-05-06 23:11:11: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #32/50 | ETA: 4m 14s
2025-05-06 23:11:47: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #33/50 | ETA: 4m 1s
2025-05-06 23:12:20: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #34/50 | ETA: 3m 47s
2025-05-06 23:12:57: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #35/50 | ETA: 3m 34s
2025-05-06 23:13:28: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #36/50 | ETA: 3m 21s
2025-05-06 23:14:02: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #37/50 | ETA: 3m 7s
2025-05-06 23:14:36: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #38/50 | ETA: 2m 54s
2025-05-06 23:15:09: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #39/50 | ETA: 2m 41s
2025-05-06 23:15:45: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #40/50 | ETA: 2m 28s
2025-05-06 23:16:19: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #41/50 | ETA: 2m 15s
2025-05-06 23:16:52: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #42/50 | ETA: 2m 2s
2025-05-06 23:17:25: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #43/50 | ETA: 1m 48s
2025-05-06 23:17:58: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #44/50 | ETA: 1m 35s
2025-05-06 23:18:38: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #45/50 | ETA: 1m 21s
2025-05-06 23:19:16: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #46/50 | ETA: 1m 8s
2025-05-06 23:19:48: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #47/50 | ETA: 54s
2025-05-06 23:20:25: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #48/50 | ETA: 41s
2025-05-06 23:20:58: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #49/50 | ETA: 27s
2025-05-06 23:21:34: BoTorchModel, best RESULT: 0.1842105263157895, getting new HP set #50/50 | ETA: 13s
2025-05-06 23:22:06: BoTorchModel, best RESULT: 0.1842105263157895, eval start
2025-05-06 23:22:24: BoTorchModel, best RESULT: 0.1842105263157895, starting new job
2025-05-06 23:22:42: BoTorchModel, best RESULT: 0.1842105263157895, unknown 1 = ∑1/50, started new job
2025-05-06 23:23:03: BoTorchModel, best RESULT: 0.1842105263157895, running 1 = ∑1/50, eval start
2025-05-06 23:23:22: BoTorchModel, best RESULT: 0.1842105263157895, running 1 = ∑1/50, starting new job
2025-05-06 23:23:42: BoTorchModel, best RESULT: 0.1842105263157895, running/unknown 1/1 = ∑2/50, started new job
2025-05-06 23:24:02: BoTorchModel, best RESULT: 0.1842105263157895, running 2 = ∑2/50, eval start
2025-05-06 23:24:21: BoTorchModel, best RESULT: 0.1842105263157895, running 2 = ∑2/50, starting new job
2025-05-06 23:24:40: BoTorchModel, best RESULT: 0.1842105263157895, running/unknown 2/1 = ∑3/50, started new job
2025-05-06 23:24:58: BoTorchModel, best RESULT: 0.1842105263157895, running/completed 2/1 = ∑3/50, eval start
2025-05-06 23:25:17: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 2/1 = ∑3/50, starting new job
2025-05-06 23:25:37: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 2/1/1 = ∑4/50, started new job
2025-05-06 23:26:00: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 3/1 = ∑4/50, eval start
2025-05-06 23:26:23: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 3/1 = ∑4/50, starting new job
2025-05-06 23:26:45: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 3/1/1 = ∑5/50, started new job
2025-05-06 23:27:04: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 4/1 = ∑5/50, eval start
2025-05-06 23:27:24: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 4/1 = ∑5/50, starting new job
2025-05-06 23:27:47: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 4/1/1 = ∑6/50, started new job
2025-05-06 23:28:05: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 5/1 = ∑6/50, eval start
2025-05-06 23:28:23: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 5/1 = ∑6/50, starting new job
2025-05-06 23:28:45: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 6/1 = ∑7/50, started new job
2025-05-06 23:29:04: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 6/1 = ∑7/50, eval start
2025-05-06 23:29:23: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 6/1 = ∑7/50, starting new job
2025-05-06 23:29:45: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 6/1/1 = ∑8/50, started new job
2025-05-06 23:30:04: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 6/2 = ∑8/50, eval start
2025-05-06 23:30:22: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 6/2 = ∑8/50, starting new job
2025-05-06 23:30:41: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 8/1 = ∑9/50, started new job
2025-05-06 23:30:59: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 8/1 = ∑9/50, eval start
2025-05-06 23:31:17: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 8/1 = ∑9/50, starting new job
2025-05-06 23:31:41: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 8/1/1 = ∑10/50, started new job
2025-05-06 23:32:32: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 9/1 = ∑10/50, eval start
2025-05-06 23:32:52: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 9/1 = ∑10/50, starting new job
2025-05-06 23:33:11: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 10/1 = ∑11/50, started new job
2025-05-06 23:33:32: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 10/1 = ∑11/50, eval start
2025-05-06 23:33:49: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 10/1 = ∑11/50, starting new job
2025-05-06 23:34:10: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 10/1/1 = ∑12/50, started new job
2025-05-06 23:34:29: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/pending 10/1/1 = ∑12/50, eval start
2025-05-06 23:34:47: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/pending 10/1/1 = ∑12/50, starting new job
2025-05-06 23:35:06: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 11/1/1 = ∑13/50, started new job
2025-05-06 23:35:25: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 12/1 = ∑13/50, eval start
2025-05-06 23:35:42: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 12/1 = ∑13/50, starting new job
2025-05-06 23:36:02: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 12/1/1 = ∑14/50, started new job
2025-05-06 23:36:22: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 12/2 = ∑14/50, eval start
2025-05-06 23:36:40: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 12/2 = ∑14/50, starting new job
2025-05-06 23:37:01: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 14/1 = ∑15/50, started new job
2025-05-06 23:37:20: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 14/1 = ∑15/50, eval start
2025-05-06 23:37:38: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 14/1 = ∑15/50, starting new job
2025-05-06 23:38:00: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 14/1/1 = ∑16/50, started new job
2025-05-06 23:38:20: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 15/1 = ∑16/50, eval start
2025-05-06 23:38:41: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 15/1 = ∑16/50, starting new job
2025-05-06 23:39:01: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 15/1/1 = ∑17/50, started new job
2025-05-06 23:39:20: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 16/1 = ∑17/50, eval start
2025-05-06 23:39:39: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 16/1 = ∑17/50, starting new job
2025-05-06 23:39:56: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 16/1/1 = ∑18/50, started new job
2025-05-06 23:40:13: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 17/1 = ∑18/50, eval start
2025-05-06 23:40:30: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 17/1 = ∑18/50, starting new job
2025-05-06 23:40:48: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 18/1 = ∑19/50, started new job
2025-05-06 23:41:06: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 18/1 = ∑19/50, eval start
2025-05-06 23:41:22: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 18/1 = ∑19/50, starting new job
2025-05-06 23:41:41: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 18/1/1 = ∑20/50, started new job
2025-05-06 23:41:59: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 19/1 = ∑20/50, eval start
2025-05-06 23:42:15: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 19/1 = ∑20/50, starting new job
2025-05-06 23:42:33: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 20/1 = ∑21/50, started new job
2025-05-06 23:42:51: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 20/1 = ∑21/50, eval start
2025-05-06 23:43:09: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 20/1 = ∑21/50, starting new job
2025-05-06 23:43:27: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 21/1 = ∑22/50, started new job
2025-05-06 23:43:43: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 21/1 = ∑22/50, eval start
2025-05-06 23:44:01: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 21/1 = ∑22/50, starting new job
2025-05-06 23:44:20: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 22/1 = ∑23/50, started new job
2025-05-06 23:44:37: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 22/1 = ∑23/50, eval start
2025-05-06 23:44:54: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 22/1 = ∑23/50, starting new job
2025-05-06 23:45:12: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 23/1 = ∑24/50, started new job
2025-05-06 23:45:29: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 23/1 = ∑24/50, eval start
2025-05-06 23:45:45: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 23/1 = ∑24/50, starting new job
2025-05-06 23:46:02: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 24/1 = ∑25/50, started new job
2025-05-06 23:46:19: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 24/1 = ∑25/50, eval start
2025-05-06 23:46:37: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 24/1 = ∑25/50, starting new job
2025-05-06 23:46:54: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 25/1 = ∑26/50, started new job
2025-05-06 23:47:11: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 25/1 = ∑26/50, eval start
2025-05-06 23:47:28: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 25/1 = ∑26/50, starting new job
2025-05-06 23:47:46: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 25/1/1 = ∑27/50, started new job
2025-05-06 23:48:04: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 26/1 = ∑27/50, eval start
2025-05-06 23:48:20: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 26/1 = ∑27/50, starting new job
2025-05-06 23:48:38: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 27/1 = ∑28/50, started new job
2025-05-06 23:48:54: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 27/1 = ∑28/50, eval start
2025-05-06 23:49:11: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 27/1 = ∑28/50, starting new job
2025-05-06 23:49:28: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 27/1/1 = ∑29/50, started new job
2025-05-06 23:49:44: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 28/1 = ∑29/50, eval start
2025-05-06 23:50:01: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 28/1 = ∑29/50, starting new job
2025-05-06 23:50:19: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 29/1 = ∑30/50, started new job
2025-05-06 23:50:36: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 29/1 = ∑30/50, eval start
2025-05-06 23:50:54: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 29/1 = ∑30/50, starting new job
2025-05-06 23:51:12: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 30/1 = ∑31/50, started new job
2025-05-06 23:51:29: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 30/1 = ∑31/50, eval start
2025-05-06 23:51:46: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 30/1 = ∑31/50, starting new job
2025-05-06 23:52:05: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 31/1 = ∑32/50, started new job
2025-05-06 23:52:22: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 31/1 = ∑32/50, eval start
2025-05-06 23:52:39: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 31/1 = ∑32/50, starting new job
2025-05-06 23:52:57: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 32/1 = ∑33/50, started new job
2025-05-06 23:53:15: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 32/1 = ∑33/50, eval start
2025-05-06 23:53:32: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 32/1 = ∑33/50, starting new job
2025-05-06 23:53:50: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 33/1 = ∑34/50, started new job
2025-05-06 23:54:08: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 33/1 = ∑34/50, eval start
2025-05-06 23:54:26: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 33/1 = ∑34/50, starting new job
2025-05-06 23:54:52: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 34/1 = ∑35/50, started new job
2025-05-06 23:55:10: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 34/1 = ∑35/50, eval start
2025-05-06 23:55:28: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 34/1 = ∑35/50, starting new job
2025-05-06 23:55:48: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 35/1 = ∑36/50, started new job
2025-05-06 23:56:06: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 35/1 = ∑36/50, eval start
2025-05-06 23:56:26: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 35/1 = ∑36/50, starting new job
2025-05-06 23:56:46: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 36/1 = ∑37/50, started new job
2025-05-06 23:57:06: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 36/1 = ∑37/50, eval start
2025-05-06 23:57:25: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 36/1 = ∑37/50, starting new job
2025-05-06 23:57:46: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 36/1/1 = ∑38/50, started new job
2025-05-06 23:58:04: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 37/1 = ∑38/50, eval start
2025-05-06 23:58:22: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 37/1 = ∑38/50, starting new job
2025-05-06 23:58:41: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 38/1 = ∑39/50, started new job
2025-05-06 23:59:00: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 38/1 = ∑39/50, eval start
2025-05-06 23:59:18: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 38/1 = ∑39/50, starting new job
2025-05-06 23:59:38: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 38/1/1 = ∑40/50, started new job
2025-05-06 23:59:57: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 39/1 = ∑40/50, eval start
2025-05-07 00:00:16: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 39/1 = ∑40/50, starting new job
2025-05-07 00:00:36: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 40/1 = ∑41/50, started new job
2025-05-07 00:00:55: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 40/1 = ∑41/50, eval start
2025-05-07 00:01:15: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 40/1 = ∑41/50, starting new job
2025-05-07 00:01:35: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 40/1/1 = ∑42/50, started new job
2025-05-07 00:01:55: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 41/1 = ∑42/50, eval start
2025-05-07 00:02:14: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 41/1 = ∑42/50, starting new job
2025-05-07 00:02:34: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 42/1 = ∑43/50, started new job
2025-05-07 00:02:54: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 42/1 = ∑43/50, eval start
2025-05-07 00:03:13: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 42/1 = ∑43/50, starting new job
2025-05-07 00:03:33: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 43/1 = ∑44/50, started new job
2025-05-07 00:03:52: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 43/1 = ∑44/50, eval start
2025-05-07 00:04:12: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 43/1 = ∑44/50, starting new job
2025-05-07 00:04:32: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 44/1 = ∑45/50, started new job
2025-05-07 00:04:51: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 44/1 = ∑45/50, eval start
2025-05-07 00:05:11: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 44/1 = ∑45/50, starting new job
2025-05-07 00:05:32: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 44/1/1 = ∑46/50, started new job
2025-05-07 00:05:51: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 45/1 = ∑46/50, eval start
2025-05-07 00:06:10: BoTorchModel, best RESULT: 0.1842105263157895, completed/running 45/1 = ∑46/50, starting new job
2025-05-07 00:06:31: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 45/1/1 = ∑47/50, started new job
2025-05-07 00:06:50: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 46/1 = ∑47/50, eval start
2025-05-07 00:07:10: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 46/1 = ∑47/50, starting new job
2025-05-07 00:07:31: BoTorchModel, best RESULT: 0.1842105263157895, completed/unknown 47/1 = ∑48/50, started new job
2025-05-07 00:07:51: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 47/1 = ∑48/50, eval start
2025-05-07 00:08:10: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 47/1 = ∑48/50, starting new job
2025-05-07 00:08:30: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 47/1/1 = ∑49/50, started new job
2025-05-07 00:08:50: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 48/1 = ∑49/50, eval start
2025-05-07 00:09:10: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 48/1 = ∑49/50, starting new job
2025-05-07 00:09:31: BoTorchModel, best RESULT: 0.1842105263157895, completed/running/unknown 48/1/1 = ∑50/50, started new job
2025-05-07 00:09:50: BoTorchModel, best RESULT: 0.1842105263157895, completed/pending 49/1 = ∑50/50, new result: 0.35789473684210527
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_progressbar_log")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_progressbar_log", "progressbar")'> Download »progressbar« as file</button>
<h1> Args Overview</h1>
<h2>Arguments Overview: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Key</th><th>Value </th></tr></thead><tbody><tr><td> config_yaml</td><td>None </td></tr><tr><td> config_toml</td><td>None </td></tr><tr><td> config_json</td><td>None </td></tr><tr><td> num_random_steps</td><td>50 </td></tr><tr><td> max_eval</td><td>2000 </td></tr><tr><td> run_program</td><td>[['YmFzaCAvZGF0YS9ob3JzZS93cy9wd2lua2xlci1vb3B0L3J1bi5zaCAlKGVwb2NocykgJShscikgJShic3opICUoZGEpICUoZGIp']] </td></tr><tr><td> experiment_name</td><td>vergl_botorch </td></tr><tr><td> mem_gb</td><td>10 </td></tr><tr><td> parameter</td><td>[['epochs', 'range', '10', '200', 'int', 'false'], ['lr', 'range', '0.0001', '0.01', 'float', 'false'], ['bsz', 'range', '4', '32', 'int', 'false'], </td></tr><tr><td></td><td>['da', 'range', '10', '100', 'int', 'false'], ['db', 'range', '10', '100', 'int', 'false']] </td></tr><tr><td> continue_previous_job</td><td>None </td></tr><tr><td> experiment_constraints</td><td>None </td></tr><tr><td> run_dir</td><td>runs </td></tr><tr><td> seed</td><td>None </td></tr><tr><td> decimalrounding</td><td>4 </td></tr><tr><td> enforce_sequential_optimization</td><td>False </td></tr><tr><td> verbose_tqdm</td><td>False </td></tr><tr><td> model</td><td>BOTORCH_MODULAR </td></tr><tr><td> gridsearch</td><td>False </td></tr><tr><td> occ</td><td>False </td></tr><tr><td> show_sixel_scatter</td><td>False </td></tr><tr><td> show_sixel_general</td><td>False </td></tr><tr><td> show_sixel_trial_index_result</td><td>False </td></tr><tr><td> follow</td><td>True </td></tr><tr><td> send_anonymized_usage_stats</td><td>True </td></tr><tr><td> ui_url</td><td>aHR0cHM6Ly9pbWFnZXNlZy5zY2Fkcy5kZS9vbW5pYXgvZ3VpP3BhcnRpdGlvbj1iYXJuYXJkJmV4cGVyaW1lbnRfbmFtZT12ZXJnbF9ib3RvcmNoJnJlc2VydmF0aW9uPSZhY2NvdW50PSZtZW1fZ2I… </td></tr><tr><td> root_venv_dir</td><td>/home/pwinkler </td></tr><tr><td> exclude</td><td>None </td></tr><tr><td> main_process_gb</td><td>8 </td></tr><tr><td> pareto_front_confidence</td><td>1.0 </td></tr><tr><td> max_nr_of_zero_results</td><td>50 </td></tr><tr><td> abbreviate_job_names</td><td>False </td></tr><tr><td> orchestrator_file</td><td>None </td></tr><tr><td> checkout_to_latest_tested_version</td><td>True </td></tr><tr><td> live_share</td><td>True </td></tr><tr><td> disable_tqdm</td><td>False </td></tr><tr><td> workdir</td><td></td></tr><tr><td> occ_type</td><td>euclid </td></tr><tr><td> result_names</td><td>['RESULT=min'] </td></tr><tr><td> minkowski_p</td><td>2 </td></tr><tr><td> signed_weighted_euclidean_weights</td><td></td></tr><tr><td> generation_strategy</td><td>None </td></tr><tr><td> generate_all_jobs_at_once</td><td>True </td></tr><tr><td> revert_to_random_when_seemingly_exhausted</td><td>True </td></tr><tr><td> load_data_from_existing_jobs</td><td>[] </td></tr><tr><td> n_estimators_randomforest</td><td>100 </td></tr><tr><td> external_generator</td><td>None </td></tr><tr><td> username</td><td>None </td></tr><tr><td> max_failed_jobs</td><td>0 </td></tr><tr><td> num_parallel_jobs</td><td>50 </td></tr><tr><td> worker_timeout</td><td>30 </td></tr><tr><td> slurm_use_srun</td><td>False </td></tr><tr><td> time</td><td>600 </td></tr><tr><td> partition</td><td>barnard </td></tr><tr><td> reservation</td><td>None </td></tr><tr><td> force_local_execution</td><td>False </td></tr><tr><td> slurm_signal_delay_s</td><td>0 </td></tr><tr><td> nodes_per_job</td><td>1 </td></tr><tr><td> cpus_per_task</td><td>1 </td></tr><tr><td> account</td><td>None </td></tr><tr><td> gpus</td><td>0 </td></tr><tr><td> run_mode</td><td>local </td></tr><tr><td> verbose</td><td>False </td></tr><tr><td> verbose_break_run_search_table</td><td>False </td></tr><tr><td> debug</td><td>False </td></tr><tr><td> no_sleep</td><td>False </td></tr><tr><td> tests</td><td>False </td></tr><tr><td> show_worker_percentage_table_at_end</td><td>False </td></tr><tr><td> auto_exclude_defective_hosts</td><td>False </td></tr><tr><td> run_tests_that_fail_on_taurus</td><td>False </td></tr><tr><td> raise_in_eval</td><td>False </td></tr><tr><td> show_ram_every_n_seconds</td><td>0 </td></tr></tbody></table>
<h1> Worker-Usage</h1>
<div class='invert_in_dark_mode' id='workerUsagePlot'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_worker_usage")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_worker_usage", "worker_usage.csv")'> Download »worker_usage.csv« as file</button>
<pre id="pre_tab_worker_usage">1746533469.7129881,50,0,0
1746533477.1006575,50,0,0
1746533480.506698,50,0,0
1746533483.8369796,50,0,0
1746533486.66073,50,0,0
1746533491.4957435,50,0,0
1746533497.4876556,50,0,0
1746533501.6640644,50,0,0
1746533505.623999,50,0,0
1746533509.3890522,50,0,0
1746533512.4488194,50,0,0
1746533515.5987937,50,0,0
1746533519.2019722,50,0,0
1746533522.2948287,50,0,0
1746533526.414911,50,0,0
1746533529.4414902,50,0,0
1746533532.4306839,50,0,0
1746533535.934414,50,0,0
1746533539.3583317,50,0,0
1746533542.5209835,50,0,0
1746533546.2443917,50,0,0
1746533550.48382,50,0,0
1746533555.6006434,50,0,0
1746533561.4186018,50,0,0
1746533564.9048533,50,0,0
1746533567.9178004,50,0,0
1746533571.1257794,50,0,0
1746533574.295126,50,0,0
1746533578.5650866,50,0,0
1746533583.6705663,50,0,0
1746533586.320773,50,0,0
1746533589.5453846,50,0,0
1746533594.2689786,50,0,0
1746533598.1433365,50,0,0
1746533601.245872,50,0,0
1746533603.9938898,50,0,0
1746533606.7179084,50,0,0
1746533609.8346395,50,0,0
1746533615.990922,50,0,0
1746533621.637593,50,0,0
1746533624.4416368,50,0,0
1746533627.801397,50,0,0
1746533631.2691054,50,0,0
1746533633.8707032,50,0,0
1746533636.604095,50,0,0
1746533639.3981886,50,0,0
1746533641.8939435,50,0,0
1746533644.4899979,50,0,0
1746533647.2465408,50,0,0
1746533650.507465,50,0,0
1746533653.7956502,50,0,0
1746533657.7365413,50,0,0
1746533662.6130426,50,0,0
1746533668.476896,50,1,2
1746533671.643203,50,1,2
1746533677.6131225,50,1,2
1746533684.861381,50,2,4
1746533690.6044095,50,2,4
1746533696.6088896,50,2,4
1746533703.5932837,50,3,6
1746533708.7397106,50,3,6
1746533716.2083752,50,3,6
1746533725.2934806,50,4,8
1746533731.5235696,50,4,8
1746533737.7227402,50,4,8
1746533748.5110712,50,5,10
1746533755.4924643,50,5,10
1746533760.9511247,50,5,10
1746533767.4474502,50,6,12
1746533773.3305087,50,6,12
1746533779.456639,50,6,12
1746533786.6961312,50,7,14
1746533791.870954,50,7,14
1746533797.2622354,50,7,14
1746533806.2343907,50,8,16
1746533812.6459198,50,8,16
1746533817.663453,50,8,16
1746533823.169878,50,9,18
1746533827.5218709,50,9,18
1746533832.195744,50,9,18
1746533838.3429155,50,10,20
1746533844.2508655,50,10,20
1746533849.749716,50,10,20
1746533855.3774567,50,11,22
1746533859.5701087,50,11,22
1746533868.3611138,50,11,22
1746533875.3753345,50,12,24
1746533879.8073285,50,12,24
1746533885.0859735,50,12,24
1746533890.226558,50,13,26
1746533899.1743593,50,13,26
1746533905.4733288,50,13,26
1746533911.9141293,50,14,28
1746533917.36381,50,14,28
1746533923.1465116,50,14,28
1746533931.870728,50,15,30
1746533937.7723382,50,15,30
1746533943.6438951,50,15,30
1746533950.2467012,50,16,32
1746533957.0984964,50,16,32
1746533966.4369102,50,16,32
1746533975.06236,50,17,34
1746533983.7931852,50,17,34
1746533992.1031358,50,17,34
1746533999.6245546,50,18,36
1746534004.6732938,50,18,36
1746534009.6726089,50,18,36
1746534015.2627635,50,19,38
1746534019.3842607,50,19,38
1746534024.112767,50,19,38
1746534030.8612385,50,20,40
1746534035.2933593,50,20,40
1746534041.4876032,50,20,40
1746534051.2146516,50,21,42
1746534058.4899929,50,21,42
1746534066.046533,50,21,42
1746534073.390434,50,22,44
1746534082.8514802,50,22,44
1746534089.089627,50,22,44
1746534096.4177969,50,23,46
1746534100.7950487,50,23,46
1746534107.4176154,50,23,46
1746534114.4404655,50,24,48
1746534117.9202719,50,24,48
1746534121.9782414,50,24,48
1746534127.1627345,50,25,50
1746534130.7404006,50,25,50
1746534134.5007014,50,25,50
1746534140.500521,50,26,52
1746534145.244975,50,26,52
1746534151.0773215,50,26,52
1746534158.571673,50,27,54
1746534163.712041,50,27,54
1746534171.2030628,50,27,54
1746534177.2082155,50,28,56
1746534182.1263041,50,28,56
1746534186.4116583,50,28,56
1746534193.2530682,50,29,58
1746534199.5794544,50,29,58
1746534205.9393337,50,29,58
1746534212.6747928,50,30,60
1746534217.691538,50,30,60
1746534223.236522,50,30,60
1746534231.934073,50,31,62
1746534236.0002859,50,31,62
1746534240.7210062,50,31,62
1746534246.4473755,50,32,64
1746534250.6581783,50,32,64
1746534254.6641748,50,32,64
1746534260.2023225,50,33,66
1746534265.8421443,50,33,66
1746534271.7528346,50,33,66
1746534279.5701995,50,34,68
1746534286.5572462,50,34,68
1746534292.196118,50,34,68
1746534299.0063276,50,35,70
1746534304.521989,50,35,70
1746534310.093791,50,35,70
1746534315.4599423,50,36,72
1746534320.0961277,50,36,72
1746534325.9030468,50,36,72
1746534332.36571,50,37,74
1746534337.8596487,50,37,74
1746534344.6083763,50,37,74
1746534351.6582212,50,38,76
1746534358.579306,50,38,76
1746534363.5640984,50,38,76
1746534369.3080912,50,39,78
1746534373.3870847,50,39,78
1746534379.5084534,50,39,78
1746534386.645501,50,40,80
1746534392.282939,50,40,80
1746534397.6087976,50,40,80
1746534404.7460206,50,41,82
1746534409.0838337,50,41,82
1746534414.868319,50,41,82
1746534422.1118565,50,42,84
1746534427.8698072,50,42,84
1746534432.207405,50,42,84
1746534437.7567563,50,43,86
1746534442.9630582,50,43,86
1746534448.318378,50,43,86
1746534454.6852744,50,44,88
1746534460.842351,50,44,88
1746534465.7749681,50,44,88
1746534472.0443394,50,45,90
1746534477.7876601,50,45,90
1746534483.4208724,50,45,90
1746534489.5904148,50,46,92
1746534494.1100273,50,46,92
1746534498.7930295,50,46,92
1746534505.3007734,50,47,94
1746534510.8095849,50,47,94
1746534518.2748456,50,47,94
1746534524.231801,50,48,96
1746534528.7657745,50,48,96
1746534533.9070718,50,48,96
1746534541.7255876,50,49,98
1746534547.3635707,50,49,98
1746534552.1173682,50,49,98
1746534558.3256457,50,50,100
1746534563.6620505,50,50,100
1746534581.572394,50,49,98
1746534593.5486486,50,48,96
1746534603.1547463,50,47,94
1746534612.928481,50,46,92
1746534623.4094605,50,45,90
1746534635.1567335,50,44,88
1746534647.3704205,50,43,86
1746534658.2883108,50,42,84
1746534668.1261024,50,41,82
1746534677.480526,50,40,80
1746534687.622852,50,39,78
1746534702.2245169,50,38,76
1746534718.1630294,50,37,74
1746534728.341374,50,36,72
1746534739.2116337,50,35,70
1746534753.3875852,50,34,68
1746534764.4158046,50,33,66
1746534775.2817464,50,32,64
1746534788.0866725,50,31,62
1746534803.3843093,50,30,60
1746534825.5023253,50,29,58
1746534841.5736947,50,28,56
1746534856.3402004,50,27,54
1746534869.0141392,50,26,52
1746534880.8734531,50,25,50
1746534891.0592709,50,24,48
1746534902.7679164,50,23,46
1746534913.7914557,50,22,44
1746534927.4201593,50,21,42
1746534945.5265305,50,20,40
1746534956.5385635,50,19,38
1746534968.1525714,50,18,36
1746534980.5637887,50,17,34
1746534995.599937,50,16,32
1746535015.3649573,50,15,30
1746535033.8067937,50,14,28
1746535053.370955,50,13,26
1746535073.4630013,50,12,24
1746535098.021907,50,11,22
1746535121.1008706,50,10,20
1746535136.145031,50,9,18
1746535147.4716,50,8,16
1746535159.2906792,50,7,14
1746535171.5289204,50,6,12
1746535188.2491527,50,5,10
1746535200.49138,50,4,8
1746535216.3935485,50,3,6
1746535244.3165214,50,2,4
1746535259.4223022,50,1,2
1746535272.2741957,50,0,0
1746535280.7824667,50,0,0
1746535304.4767134,50,0,0
1746535313.776924,50,0,0
1746535328.6424227,50,0,0
1746535336.6677096,50,0,0
1746535343.4830542,50,0,0
1746535353.1790547,50,0,0
1746535367.081289,50,0,0
1746535374.8464632,50,0,0
1746535382.7177498,50,0,0
1746535390.8932486,50,0,0
1746535400.8211052,50,0,0
1746535413.7725751,50,0,0
1746535422.5916178,50,0,0
1746535430.8547764,50,0,0
1746535439.0765762,50,0,0
1746535446.9903095,50,0,0
1746535455.289565,50,0,0
1746535465.9934685,50,0,0
1746535476.9854414,50,0,0
1746535489.976535,50,0,0
1746535499.1133783,50,0,0
1746535515.4080539,50,0,0
1746535525.6899254,50,0,0
1746535538.413045,50,0,0
1746535550.968603,50,0,0
1746535561.3259356,50,0,0
1746535572.6937206,50,0,0
1746535586.5683212,50,0,0
1746535599.5658798,50,0,0
1746535610.6492484,50,0,0
1746535625.872122,50,0,0
1746535639.2439325,50,0,0
1746535653.1218393,50,0,0
1746535663.3017466,50,0,0
1746535674.658162,50,0,0
1746535687.0865178,50,0,0
1746535708.3146756,50,0,0
1746535723.7504985,50,0,0
1746535733.83532,50,0,0
1746535746.0506349,50,0,0
1746535761.9139748,50,0,0
1746535777.6514823,50,0,0
1746535790.146199,50,0,0
1746535803.5398853,50,0,0
1746535820.0104973,50,0,0
1746535832.5996935,50,0,0
1746535852.1711342,50,0,0
1746535866.6309927,50,0,0
1746535883.5747035,50,0,0
1746535898.4282215,50,0,0
1746535908.692251,50,0,0
1746535920.1825218,50,1,2
1746535927.5281112,50,1,2
1746535944.512151,50,1,2
1746535954.3393836,50,2,4
1746535964.4969208,50,2,4
1746535974.6200697,50,2,4
1746535984.797531,50,3,6
1746535999.446326,50,3,6
1746536011.2751782,50,3,6
1746536020.0563743,50,4,8
1746536030.320322,50,4,8
1746536048.065145,50,4,8
1746536061.5346594,50,5,10
1746536071.030407,50,5,10
1746536080.194881,50,5,10
1746536101.5291874,50,6,12
1746536129.5830119,50,6,12
1746536143.4687235,50,6,12
1746536156.090576,50,7,14
1746536175.270972,50,7,14
1746536189.9221103,50,7,14
1746536204.074316,50,8,16
1746536215.9418712,50,8,16
1746536228.8478146,50,8,16
1746536237.9817753,50,9,18
1746536246.865788,50,9,18
1746536253.9832706,50,9,18
1746536263.3550453,50,10,20
1746536271.7782817,50,10,20
1746536282.657962,50,10,20
1746536292.487743,50,11,22
1746536299.1999407,50,11,22
1746536306.771779,50,11,22
1746536314.3104236,50,12,24
1746536321.4140956,50,12,24
1746536328.6983824,50,12,24
1746536340.615121,50,13,26
1746536349.0726717,50,13,26
1746536356.6114078,50,13,26
1746536365.3159163,50,14,28
1746536372.6435218,50,14,28
1746536380.0249915,50,14,28
1746536388.50843,50,15,30
1746536397.982179,50,15,30
1746536408.3169575,50,15,30
1746536416.6051326,50,16,32
1746536424.4108355,50,16,32
1746536436.389813,50,16,32
1746536444.690327,50,17,34
1746536453.3323407,50,17,34
1746536472.6316261,50,17,34
1746536482.764335,50,18,36
1746536491.729613,50,18,36
1746536498.5962124,50,18,36
1746536507.1410718,50,19,38
1746536516.6974514,50,19,38
1746536523.4559484,50,19,38
1746536532.1576374,50,20,40
1746536540.1320167,50,20,40
1746536546.272004,50,20,40
1746536554.2046547,50,21,42
1746536559.9476209,50,21,42
1746536565.9484353,50,21,42
1746536575.6988404,50,22,44
1746536583.3426933,50,22,44
1746536590.0217412,50,22,44
1746536599.0968294,50,23,46
1746536605.5456316,50,23,46
1746536615.1079316,50,23,46
1746536625.083695,50,24,48
1746536633.976646,50,24,48
1746536643.838848,50,24,48
1746536657.2712924,50,25,50
1746536665.2881818,50,25,50
1746536672.6624832,50,25,50
1746536682.7201054,50,26,52
1746536692.933377,50,26,52
1746536703.3018992,50,26,52
1746536714.0103016,50,27,54
1746536720.878227,50,27,54
1746536728.6871786,50,27,54
1746536742.2390554,50,28,56
1746536751.2948089,50,28,56
1746536760.4855778,50,28,56
1746536770.549747,50,29,58
1746536777.8267436,50,29,58
1746536785.364265,50,29,58
1746536794.5300531,50,30,60
1746536802.7765152,50,30,60
1746536810.8565328,50,30,60
1746536819.312953,50,31,62
1746536829.2269475,50,31,62
1746536839.253215,50,31,62
1746536848.9142354,50,32,64
1746536859.542809,50,32,64
1746536870.8486261,50,32,64
1746536880.6903188,50,33,66
1746536889.510329,50,33,66
1746536897.166515,50,33,66
1746536907.4143167,50,34,68
1746536916.3493533,50,34,68
1746536929.739277,50,34,68
1746536939.9759777,50,35,70
1746536949.0709994,50,35,70
1746536958.6259952,50,35,70
1746536969.401813,50,36,72
1746536979.569233,50,36,72
1746536990.6482854,50,36,72
1746537000.0876915,50,37,74
1746537010.3244143,50,37,74
1746537018.9773033,50,37,74
1746537029.0065756,50,38,76
1746537040.8047786,50,38,76
1746537052.4326663,50,38,76
1746537066.725076,50,39,78
1746537087.3533762,50,39,78
1746537103.2104933,50,39,78
1746537124.621516,50,40,80
1746537141.4595308,50,40,80
1746537150.5062687,50,40,80
1746537161.7139447,50,41,82
1746537170.0371706,50,41,82
1746537179.3127003,50,41,82
1746537189.490179,50,42,84
1746537199.7088368,50,42,84
1746537209.008884,50,42,84
1746537222.2892675,50,43,86
1746537232.0350044,50,43,86
1746537242.142215,50,43,86
1746537254.120279,50,44,88
1746537264.8504786,50,44,88
1746537274.9322865,50,44,88
1746537285.8104491,50,45,90
1746537295.0598981,50,45,90
1746537302.8946033,50,45,90
1746537311.4659343,50,46,92
1746537321.1617393,50,46,92
1746537330.317385,50,46,92
1746537342.0501077,50,47,94
1746537352.4536915,50,47,94
1746537361.1289315,50,47,94
1746537370.3477633,50,48,96
1746537378.769645,50,48,96
1746537388.6569285,50,48,96
1746537402.473606,50,49,98
1746537417.1129963,50,49,98
1746537425.716728,50,49,98
1746537436.8937693,50,50,100
1746537453.5798337,50,50,100
1746537480.3238206,50,49,98
1746537503.8528552,50,48,96
1746537526.8052592,50,47,94
1746537548.5409136,50,46,92
1746537566.7200139,50,45,90
1746537593.0377407,50,44,88
1746537610.6073027,50,43,86
1746537628.3082025,50,42,84
1746537648.6222181,50,41,82
1746537670.8598537,50,40,80
1746537687.2966113,50,39,78
1746537707.376948,50,38,76
1746537724.3156998,50,37,74
1746537740.5694408,50,36,72
1746537758.6982384,50,35,70
1746537773.3536532,50,34,68
1746537790.878397,50,33,66
1746537809.6551368,50,32,64
1746537826.430078,50,31,62
1746537844.6833665,50,30,60
1746537863.9540768,50,29,58
1746537883.9179194,50,28,56
1746537899.8772464,50,27,54
1746537919.5185957,50,26,52
1746537940.7348971,50,25,50
1746537963.9952998,50,24,48
1746537988.3108554,50,23,46
1746538006.1314569,50,22,44
1746538025.917936,50,21,42
1746538048.8973122,50,20,40
1746538072.1669505,50,19,38
1746538093.5116138,50,18,36
1746538120.7216208,50,17,34
1746538136.9485207,50,16,32
1746538151.7486937,50,15,30
1746538168.4766405,50,14,28
1746538185.230573,50,13,26
1746538201.8013668,50,12,24
1746538224.2887275,50,11,22
1746538240.6651511,50,10,20
1746538257.225245,50,9,18
1746538281.9508207,50,8,16
1746538298.3479826,50,7,14
1746538318.5966961,50,6,12
1746538342.1892385,50,5,10
1746538361.9688995,50,4,8
1746538384.3689332,50,3,6
1746538404.0452762,50,2,4
1746538420.3261623,50,1,2
1746538435.2486262,50,0,0
1746538444.6013384,50,0,0
1746538474.4406579,50,0,0
1746538484.5362105,50,0,0
1746538495.371062,50,0,0
1746538505.3457916,50,0,0
1746538516.7150006,50,0,0
1746538527.7194407,50,0,0
1746538538.3597586,50,0,0
1746538550.2462873,50,0,0
1746538560.69571,50,0,0
1746538571.7635822,50,0,0
1746538583.119091,50,0,0
1746538593.8691301,50,0,0
1746538605.2956932,50,0,0
1746538620.2553911,50,0,0
1746538633.865929,50,0,0
1746538644.773361,50,0,0
1746538656.2505898,50,0,0
1746538669.524791,50,0,0
1746538681.0447533,50,0,0
1746538694.2360098,50,0,0
1746538706.3973308,50,0,0
1746538717.2460163,50,0,0
1746538730.8991644,50,0,0
1746538742.6390016,50,0,0
1746538758.015088,50,0,0
1746538770.178498,50,0,0
1746538784.2997954,50,0,0
1746538798.1574643,50,0,0
1746538813.3119028,50,0,0
1746538825.672122,50,0,0
1746538840.168195,50,0,0
1746538854.1565733,50,0,0
1746538874.2151406,50,0,0
1746538888.6027577,50,0,0
1746538901.6152155,50,0,0
1746538915.4339368,50,0,0
1746538931.0035374,50,0,0
1746538944.4759886,50,0,0
1746538962.6111987,50,0,0
1746538977.840349,50,0,0
1746538993.0816905,50,0,0
1746539016.125312,50,0,0
1746539031.0891547,50,0,0
1746539048.8019629,50,0,0
1746539069.402556,50,0,0
1746539086.5168543,50,0,0
1746539108.3094802,50,0,0
1746539132.266248,50,0,0
1746539146.398116,50,0,0
1746539161.6847596,50,0,0
1746539170.6450832,50,0,0
1746539182.369351,50,1,2
1746539195.7370944,50,1,2
1746539207.89265,50,1,2
1746539220.950517,50,2,4
1746539233.4849856,50,2,4
1746539245.0263536,50,2,4
1746539259.7337925,50,3,6
1746539267.988632,50,3,6
1746539277.0940163,50,3,6
1746539296.9171302,50,4,8
1746539314.4632373,50,4,8
1746539329.1082633,50,4,8
1746539348.6965404,50,5,10
1746539360.1680958,50,5,10
1746539375.8265696,50,5,10
1746539392.2932737,50,6,12
1746539402.4526749,50,6,12
1746539419.5238302,50,6,12
1746539437.6618214,50,7,14
1746539453.4012132,50,7,14
1746539469.2276788,50,7,14
1746539483.055035,50,8,16
1746539496.2767766,50,8,16
1746539511.5888696,50,8,16
1746539526.6660526,50,9,18
1746539543.0561686,50,9,18
1746539566.4831722,50,9,18
1746539583.1688192,50,10,20
1746539600.843219,50,10,20
1746539616.6886125,50,10,20
1746539634.210507,50,11,22
1746539651.6264217,50,11,22
1746539667.0722573,50,11,22
1746539690.9787657,50,12,24
1746539710.3973222,50,12,24
1746539731.0176551,50,12,24
1746539750.1606607,50,13,26
1746539767.794427,50,13,26
1746539789.7049282,50,13,26
1746539815.854614,50,14,28
1746539831.7451608,50,14,28
1746539844.3951492,50,14,28
1746539864.0685358,50,15,30
1746539887.3647025,50,15,30
1746539901.1273859,50,15,30
1746539914.9227598,50,16,32
1746539930.4479704,50,16,32
1746539950.048842,50,16,32
1746539970.7680545,50,17,34
1746539988.2869668,50,17,34
1746540006.1090336,50,17,34
1746540023.6695054,50,18,36
1746540039.4425082,50,18,36
1746540062.769956,50,18,36
1746540078.5821457,50,19,38
1746540094.8581796,50,19,38
1746540110.3453543,50,19,38
1746540133.4530816,50,20,40
1746540147.0781116,50,20,40
1746540160.8262446,50,20,40
1746540177.828738,50,21,42
1746540199.0479465,50,21,42
1746540217.8510509,50,21,42
1746540237.8897812,50,22,44
1746540264.8131626,50,22,44
1746540283.5052464,50,22,44
1746540306.8070455,50,23,46
1746540331.4141686,50,23,46
1746540354.0572598,50,23,46
1746540376.2133222,50,24,48
1746540397.300531,50,24,48
1746540414.2382736,50,24,48
1746540437.6404507,50,25,50
1746540457.402449,50,25,50
1746540485.6715996,50,25,50
1746540520.414385,50,26,52
1746540549.5454729,50,26,52
1746540585.2008934,50,26,52
1746540613.5158305,50,27,54
1746540642.9313936,50,27,54
1746540685.0050852,50,27,54
1746540716.0232894,50,28,56
1746540747.5503366,50,28,56
1746540772.7471344,50,28,56
1746540803.660504,50,29,58
1746540829.7624397,50,29,58
1746540864.986714,50,29,58
1746540899.3074083,50,30,60
1746540927.9497225,50,30,60
1746540948.141497,50,30,60
1746540969.6243627,50,31,62
1746541011.96106,50,31,62
1746541038.3525891,50,31,62
1746541066.2603362,50,32,64
1746541095.328024,50,32,64
1746541118.2119458,50,32,64
1746541148.9291384,50,33,66
1746541177.072193,50,33,66
1746541214.8651252,50,33,66
1746541244.567232,50,34,68
1746541285.2332757,50,34,68
1746541320.855433,50,34,68
1746541362.3910906,50,35,70
1746541407.0317273,50,35,70
1746541442.0739174,50,35,70
1746541501.2337303,50,36,72
1746541552.9003444,50,36,72
1746541588.3472157,50,36,72
1746541635.0170007,50,37,74
1746541676.2273138,50,37,74
1746541714.947667,50,37,74
1746541746.9173343,50,38,76
1746541778.246792,50,38,76
1746541837.3012714,50,38,76
1746541922.4031365,50,39,78
1746541956.9955192,50,39,78
1746541992.4587173,50,39,78
1746542028.095385,50,40,80
1746542054.4871294,50,40,80
1746542093.2300014,50,40,80
1746542126.280432,50,41,82
1746542152.5834925,50,41,82
1746542170.4113572,50,41,82
1746542196.2814887,50,42,84
1746542228.4425156,50,42,84
1746542256.3747044,50,42,84
1746542282.677739,50,43,86
1746542304.2275002,50,43,86
1746542329.5659003,50,43,86
1746542355.5993621,50,44,88
1746542381.1443996,50,44,88
1746542407.4957843,50,44,88
1746542435.2623425,50,45,90
1746542456.240685,50,45,90
1746542488.000656,50,45,90
1746542508.889974,50,46,92
1746542542.0332382,50,46,92
1746542583.3496332,50,46,92
1746542617.6987855,50,47,94
1746542644.9378753,50,47,94
1746542669.4084983,50,47,94
1746542709.6609554,50,48,96
1746542752.5574687,50,48,96
1746542789.1062737,50,48,96
1746542825.8279698,50,49,98
1746542855.7284753,50,49,98
1746542890.5859423,50,49,98
1746542921.1077027,50,50,100
1746542960.7077951,50,50,100
1746543056.1653128,50,49,98
1746543175.9351792,50,48,96
1746543256.6991844,50,47,94
1746543338.8578613,50,46,92
1746543440.626084,50,45,90
1746543534.8153007,50,44,88
1746543632.9531434,50,43,86
1746543737.6703782,50,42,84
1746543850.3378692,50,41,82
1746543960.1044781,50,40,80
1746544026.1572185,50,39,78
1746544087.564161,50,38,76
1746544147.484092,50,37,74
1746544197.8238926,50,36,72
1746544244.8555074,50,35,70
1746544299.4491737,50,34,68
1746544359.4295409,50,33,66
1746544418.9359493,50,32,64
1746544471.2657843,50,31,62
1746544520.7534313,50,30,60
1746544586.5430343,50,29,58
1746544638.4577174,50,28,56
1746544688.3629787,50,27,54
1746544728.1858525,50,26,52
1746544772.1750908,50,25,50
1746544824.379164,50,24,48
1746544894.2386718,50,23,46
1746544957.215025,50,22,44
1746545005.9622622,50,21,42
1746545050.5457346,50,20,40
1746545096.2860794,50,19,38
1746545133.06788,50,18,36
1746545177.2026393,50,17,34
1746545231.1769001,50,16,32
1746545284.227206,50,15,30
1746545345.0244927,50,14,28
1746545414.9461186,50,13,26
1746545467.8612635,50,12,24
1746545528.7672246,50,11,22
1746545579.7772994,50,10,20
1746545623.5943923,50,9,18
1746545665.06204,50,8,16
1746545706.8283474,50,7,14
1746545745.8746164,50,6,12
1746545782.59218,50,5,10
1746545819.7714033,50,4,8
1746545859.1753452,50,3,6
1746545889.8315697,50,2,4
1746545924.0515473,50,1,2
1746545960.261598,50,0,0
1746545978.7671556,50,0,0
1746546008.6793249,50,0,0
1746546031.4241679,50,0,0
1746546052.0677223,50,0,0
1746546076.0763023,50,0,0
1746546097.1751006,50,0,0
1746546124.9806962,50,0,0
1746546145.0518572,50,0,0
1746546173.2420828,50,0,0
1746546197.1668987,50,0,0
1746546219.8637683,50,0,0
1746546242.125771,50,0,0
1746546263.6906068,50,0,0
1746546293.7118568,50,0,0
1746546317.8536816,50,0,0
1746546342.733743,50,0,0
1746546370.8588777,50,0,0
1746546402.8760688,50,0,0
1746546425.482334,50,0,0
1746546445.289149,50,0,0
1746546467.1790974,50,0,0
1746546486.5950854,50,0,0
1746546503.48424,50,0,0
1746546522.787966,50,0,0
1746546543.3192382,50,0,0
1746546568.1966124,50,0,0
1746546590.2461448,50,0,0
1746546607.2615414,50,0,0
1746546624.6119883,50,0,0
1746546643.933918,50,0,0
1746546661.5031676,50,0,0
1746546680.9337652,50,0,0
1746546709.2453604,50,0,0
1746546725.5358822,50,0,0
1746546746.927259,50,0,0
1746546764.6553254,50,0,0
1746546783.9868953,50,0,0
1746546809.3430774,50,0,0
1746546827.424699,50,0,0
1746546847.1950421,50,0,0
1746546871.377993,50,0,0
1746546894.256327,50,0,0
1746546916.893805,50,0,0
1746546946.5325608,50,0,0
1746546972.4295466,50,0,0
1746546996.8062842,50,0,0
1746547015.329012,50,0,0
1746547035.567827,50,0,0
1746547057.6979964,50,0,0
1746547081.775668,50,0,0
1746547103.6184733,50,0,0
1746547120.5357893,50,0,0
1746547140.222476,50,1,2
1746547162.981737,50,1,2
1746547182.8515904,50,1,2
1746547201.3924053,50,2,4
1746547221.2210567,50,2,4
1746547237.9639416,50,2,4
1746547252.8383706,50,3,6
1746547276.085714,50,3,6
1746547291.9447203,50,3,6
1746547309.849398,50,4,8
1746547329.5869825,50,4,8
1746547347.6536472,50,4,8
1746547372.748522,50,5,10
1746547396.168331,50,5,10
1746547410.0438828,50,5,10
1746547427.3495078,50,6,12
1746547442.0876842,50,6,12
1746547456.8298414,50,6,12
1746547472.7387636,50,7,14
1746547490.206135,50,7,14
1746547509.707774,50,7,14
1746547527.1663816,50,8,16
1746547540.5765421,50,8,16
1746547558.7444015,50,8,16
1746547573.6236064,50,9,18
1746547583.9210792,50,9,18
1746547595.7089067,50,9,18
1746547615.5301244,50,10,20
1746547628.5913928,50,10,20
1746547641.3620448,50,10,20
1746547655.589708,50,11,22
1746547674.001156,50,11,22
1746547690.129626,50,11,22
1746547704.3601859,50,12,24
1746547715.9033384,50,12,24
1746547734.7614796,50,12,24
1746547752.4471538,50,13,26
1746547766.6918986,50,13,26
1746547784.5094125,50,13,26
1746547806.177761,50,14,28
1746547827.9047475,50,14,28
1746547849.5503652,50,14,28
1746547873.114199,50,15,30
1746547896.5970242,50,15,30
1746547923.7312686,50,15,30
1746547949.3455908,50,16,32
1746547975.072771,50,16,32
1746547998.9755657,50,16,32
1746548025.2163205,50,17,34
1746548053.6761572,50,17,34
1746548084.6388233,50,17,34
1746548114.6592355,50,18,36
1746548144.5680218,50,18,36
1746548167.3988965,50,18,36
1746548198.114894,50,19,38
1746548228.0958197,50,19,38
1746548256.1972852,50,19,38
1746548286.8497074,50,20,40
1746548314.7914379,50,20,40
1746548344.444395,50,20,40
1746548381.8661664,50,21,42
1746548413.7413573,50,21,42
1746548435.9911737,50,21,42
1746548462.1126378,50,22,44
1746548485.7237353,50,22,44
1746548514.012134,50,22,44
1746548561.3484175,50,23,46
1746548598.9277232,50,23,46
1746548646.4072113,50,23,46
1746548690.992805,50,24,48
1746548725.2434676,50,24,48
1746548766.9622014,50,24,48
1746548801.091006,50,25,50
1746548839.5790398,50,25,50
1746548885.707689,50,25,50
1746548934.18325,50,26,52
1746548977.0953054,50,26,52
1746549014.5209072,50,26,52
1746549058.2579064,50,27,54
1746549102.5461345,50,27,54
1746549146.7797902,50,27,54
1746549200.8538246,50,28,56
1746549265.4467134,50,28,56
1746549311.3107355,50,28,56
1746549352.3397985,50,29,58
1746549404.1249204,50,29,58
1746549458.8287277,50,29,58
1746549504.7104993,50,30,60
1746549533.758304,50,30,60
1746549561.520099,50,30,60
1746549592.2474637,50,31,62
1746549613.6209967,50,31,62
1746549650.253028,50,31,62
1746549687.1554155,50,32,64
1746549712.7183173,50,32,64
1746549745.180674,50,32,64
1746549826.292508,50,33,66
1746549854.2436702,50,33,66
1746549885.9216142,50,33,66
1746549908.8258317,50,34,68
1746549939.4276156,50,34,68
1746549972.3329387,50,34,68
1746550022.475632,50,35,70
1746550049.4347017,50,35,70
1746550073.736801,50,35,70
1746550102.462704,50,36,72
1746550126.1311295,50,36,72
1746550152.3604429,50,36,72
1746550175.7691548,50,37,74
1746550200.6754875,50,37,74
1746550226.5340755,50,37,74
1746550255.4513958,50,38,76
1746550288.760519,50,38,76
1746550312.1819494,50,38,76
1746550337.667139,50,39,78
1746550362.2486196,50,39,78
1746550391.3027337,50,39,78
1746550424.7398238,50,40,80
1746550456.2496018,50,40,80
1746550477.063626,50,40,80
1746550501.6059897,50,41,82
1746550528.5256085,50,41,82
1746550552.071387,50,41,82
1746550577.9098778,50,42,84
1746550599.328185,50,42,84
1746550621.4255962,50,42,84
1746550651.6660364,50,43,86
1746550677.4675395,50,43,86
1746550705.4189677,50,43,86
1746550729.6764803,50,44,88
1746550760.1114304,50,44,88
1746550793.8643079,50,44,88
1746550826.5980217,50,45,90
1746550847.53085,50,45,90
1746550868.9629831,50,45,90
1746550903.4008899,50,46,92
1746550931.8995235,50,46,92
1746550960.2195294,50,46,92
1746550979.9066355,50,47,94
1746551000.3763587,50,47,94
1746551025.7289083,50,47,94
1746551046.3085132,50,48,96
1746551065.808146,50,48,96
1746551092.9944663,50,48,96
1746551109.8619747,50,49,98
1746551129.0906312,50,49,98
1746551156.2451737,50,49,98
1746551175.5306745,50,50,100
1746551210.6427367,50,50,100
1746551262.4989767,50,49,98
1746551302.2415192,50,48,96
1746551345.1754541,50,47,94
1746551389.3072376,50,46,92
1746551431.1833851,50,45,90
1746551481.4771554,50,44,88
1746551532.2754967,50,43,86
1746551578.4494486,50,42,84
1746551638.076214,50,41,82
1746551678.7468836,50,40,80
1746551715.6336675,50,39,78
1746551755.1525195,50,38,76
1746551788.6661499,50,37,74
1746551822.3163738,50,36,72
1746551851.7628202,50,35,70
1746551887.719801,50,34,68
1746551930.029264,50,33,66
1746551961.5245366,50,32,64
1746552000.9194524,50,31,62
1746552038.8102677,50,30,60
1746552079.5979853,50,29,58
1746552122.493073,50,28,56
1746552168.3593974,50,27,54
1746552209.389579,50,26,52
1746552255.4467173,50,25,50
1746552289.8084323,50,24,48
1746552323.2124412,50,23,46
1746552359.7090108,50,22,44
1746552397.8487613,50,21,42
1746552430.8182447,50,20,40
1746552473.5742357,50,19,38
1746552519.242942,50,18,36
1746552561.536264,50,17,34
1746552602.98525,50,16,32
1746552639.444207,50,15,30
1746552677.480965,50,14,28
1746552711.312603,50,13,26
1746552748.7483623,50,12,24
1746552786.6318061,50,11,22
1746552822.121778,50,10,20
1746552855.6677597,50,9,18
1746552890.9191132,50,8,16
1746552928.0880644,50,7,14
1746552961.6571236,50,6,12
1746552992.1865468,50,5,10
1746553025.246342,50,4,8
1746553052.6384153,50,3,6
1746553083.9280992,50,2,4
1746553111.0644083,50,1,2
1746553141.5593717,50,0,0
1746553156.4685154,50,0,0
1746553186.2904878,50,0,0
1746553213.6267736,50,0,0
1746553239.5823913,50,0,0
1746553265.3947334,50,0,0
1746553288.064008,50,0,0
1746553312.8417947,50,0,0
1746553334.3900347,50,0,0
1746553355.2849636,50,0,0
1746553374.651137,50,0,0
1746553395.640217,50,0,0
1746553416.921146,50,0,0
1746553437.133974,50,0,0
1746553460.5663075,50,0,0
1746553481.8893366,50,0,0
1746553506.8759055,50,0,0
1746553539.6089315,50,0,0
1746553567.1713858,50,0,0
1746553593.9535732,50,0,0
1746553618.212266,50,0,0
1746553648.4981515,50,0,0
1746553671.5452302,50,0,0
1746553698.6121702,50,0,0
1746553721.9464664,50,0,0
1746553747.7394104,50,0,0
1746553772.1630309,50,0,0
1746553796.7150114,50,0,0
1746553820.2755065,50,0,0
1746553843.206653,50,0,0
1746553868.909474,50,0,0
1746553893.1503315,50,0,0
1746553918.318236,50,0,0
1746553942.481174,50,0,0
1746553973.1878572,50,0,0
1746554001.1135218,50,0,0
1746554026.3784509,50,0,0
1746554053.0268807,50,0,0
1746554076.9951768,50,0,0
1746554108.0849965,50,0,0
1746554131.2792366,50,0,0
1746554154.7262592,50,0,0
1746554180.8594728,50,0,0
1746554207.4857323,50,0,0
1746554235.7898295,50,0,0
1746554262.1525345,50,0,0
1746554292.9023488,50,0,0
1746554318.4000022,50,0,0
1746554345.559473,50,0,0
1746554369.9933603,50,0,0
1746554394.200284,50,0,0
1746554422.8738372,50,0,0
1746554437.7709897,50,0,0
1746554464.5691383,50,1,2
1746554482.7664826,50,1,2
1746554501.6348674,50,1,2
1746554519.1657884,50,2,4
1746554534.4308448,50,2,4
1746554549.8760085,50,2,4
1746554569.5338166,50,3,6
1746554584.2411425,50,3,6
1746554597.892474,50,3,6
1746554611.1996667,50,4,8
1746554623.7447636,50,4,8
1746554636.150679,50,4,8
1746554650.1156871,50,5,10
1746554662.4823737,50,5,10
1746554675.5297663,50,5,10
1746554690.9342442,50,6,12
1746554703.3180885,50,6,12
1746554716.2446887,50,6,12
1746554730.3694189,50,7,14
1746554742.958636,50,7,14
1746554754.7263372,50,7,14
1746554768.4622438,50,8,16
1746554781.4997191,50,8,16
1746554794.7251928,50,8,16
1746554808.3683412,50,9,18
1746554819.92243,50,9,18
1746554833.2732656,50,9,18
1746554848.1806953,50,10,20
1746554859.9294202,50,10,20
1746554873.163302,50,10,20
1746554886.738963,50,11,22
1746554898.554802,50,11,22
1746554911.4863734,50,11,22
1746554925.0110683,50,12,24
1746554937.0661542,50,12,24
1746554953.124793,50,12,24
1746554967.6215305,50,13,26
1746554979.427242,50,13,26
1746554992.5732355,50,13,26
1746555006.879536,50,14,28
1746555020.52669,50,14,28
1746555033.5127196,50,14,28
1746555046.9712281,50,15,30
1746555059.037726,50,15,30
1746555071.8590539,50,15,30
1746555085.7412455,50,16,32
1746555098.1405342,50,16,32
1746555110.5993087,50,16,32
1746555126.4931293,50,17,34
1746555140.6080549,50,17,34
1746555157.6277974,50,17,34
1746555173.7688112,50,18,36
1746555187.685248,50,18,36
1746555202.1313107,50,18,36
1746555217.5439541,50,19,38
1746555232.071386,50,19,38
1746555247.3512235,50,19,38
1746555263.2637045,50,20,40
1746555276.2775981,50,20,40
1746555292.4947586,50,20,40
1746555308.815907,50,21,42
1746555322.2190018,50,21,42
1746555336.31667,50,21,42
1746555355.1192646,50,22,44
1746555370.8144002,50,22,44
1746555385.530855,50,22,44
1746555402.181373,50,23,46
1746555418.907878,50,23,46
1746555436.6657512,50,23,46
1746555454.1919816,50,24,48
1746555470.6918085,50,24,48
1746555484.8572083,50,24,48
1746555500.1398735,50,25,50
1746555513.778389,50,25,50
1746555531.4352956,50,25,50
1746555545.9782643,50,26,52
1746555559.7059715,50,26,52
1746555573.5999222,50,26,52
1746555590.6458375,50,27,54
1746555608.6725037,50,27,54
1746555625.6648178,50,27,54
1746555642.3072486,50,28,56
1746555659.650903,50,28,56
1746555674.8739238,50,28,56
1746555694.1740656,50,29,58
1746555712.1680465,50,29,58
1746555727.6610296,50,29,58
1746555745.7795932,50,30,60
1746555764.2765987,50,30,60
1746555788.8294485,50,30,60
1746555804.4318237,50,31,62
1746555825.1059759,50,31,62
1746555841.7289085,50,31,62
1746555859.0086699,50,32,64
1746555874.7113383,50,32,64
1746555895.515611,50,32,64
1746555912.699454,50,33,66
1746555932.4627361,50,33,66
1746555951.5057764,50,33,66
1746555967.0399437,50,34,68
1746555981.0052352,50,34,68
1746555997.8293562,50,34,68
1746556020.5490181,50,35,70
1746556036.7238097,50,35,70
1746556053.7965655,50,35,70
1746556074.3365347,50,36,72
1746556090.311175,50,36,72
1746556109.0696826,50,36,72
1746556129.7861674,50,37,74
1746556145.7623584,50,37,74
1746556162.3722162,50,37,74
1746556184.3995242,50,38,76
1746556202.3044271,50,38,76
1746556219.399741,50,38,76
1746556239.62365,50,39,78
1746556256.539626,50,39,78
1746556271.2437222,50,39,78
1746556291.5393322,50,40,80
1746556306.5075839,50,40,80
1746556321.3357742,50,40,80
1746556340.208338,50,41,82
1746556355.5690105,50,41,82
1746556371.1820798,50,41,82
1746556389.8602784,50,42,84
1746556405.8837686,50,42,84
1746556425.5056934,50,42,84
1746556444.1026587,50,43,86
1746556462.9905167,50,43,86
1746556479.507711,50,43,86
1746556495.9848714,50,44,88
1746556512.6174166,50,44,88
1746556529.5444922,50,44,88
1746556551.0293963,50,45,90
1746556570.9510858,50,45,90
1746556588.7080014,50,45,90
1746556606.52664,50,46,92
1746556627.8671489,50,46,92
1746556643.458403,50,46,92
1746556662.9719918,50,47,94
1746556679.049147,50,47,94
1746556698.7737632,50,47,94
1746556714.9062955,50,48,96
1746556731.4569173,50,48,96
1746556751.332411,50,48,96
1746556773.1905103,50,49,98
1746556792.9697397,50,49,98
1746556812.80882,50,49,98
1746556831.200855,50,50,100
1746556852.68704,50,50,100
1746556892.6835089,50,49,98
1746556929.2202406,50,48,96
1746556962.655907,50,47,94
1746556996.9922311,50,46,92
1746557031.9311807,50,45,90
1746557065.3389933,50,44,88
1746557098.8144572,50,43,86
1746557129.6837065,50,42,84
1746557160.8121798,50,41,82
1746557190.8331134,50,40,80
1746557223.4408991,50,39,78
1746557258.9275954,50,38,76
1746557289.6462154,50,37,74
1746557321.0841124,50,36,72
1746557354.0981383,50,35,70
1746557392.448202,50,34,68
1746557425.032063,50,33,66
1746557464.409275,50,32,64
1746557497.9256063,50,31,62
1746557536.4848747,50,30,60
1746557575.9362507,50,29,58
1746557610.858593,50,28,56
1746557650.1915696,50,27,54
1746557684.3811028,50,26,52
1746557736.28609,50,25,50
1746557779.0621507,50,24,48
1746557819.0791948,50,23,46
1746557874.0957944,50,22,44
1746557923.7004685,50,21,42
1746557976.3039024,50,20,40
1746558031.0823634,50,19,38
1746558090.7053084,50,18,36
1746558149.8929865,50,17,34
1746558198.1643212,50,16,32
1746558238.3797061,50,15,30
1746558275.7427285,50,14,28
1746558312.6181371,50,13,26
1746558346.6659794,50,12,24
1746558385.136596,50,11,22
1746558423.6478808,50,10,20
1746558456.0792873,50,9,18
1746558491.4709508,50,8,16
1746558526.6352725,50,7,14
1746558563.646303,50,6,12
1746558598.4767733,50,5,10
1746558634.3817499,50,4,8
1746558675.4672585,50,3,6
1746558717.6778548,50,2,4
1746558758.16545,50,1,2
1746558794.2779772,50,0,0
1746558814.4311473,50,0,0
1746558852.3531244,50,0,0
1746558877.4280598,50,0,0
1746558903.2005725,50,0,0
1746558928.0702653,50,0,0
1746558960.7948995,50,0,0
1746558988.235982,50,0,0
1746559016.1101656,50,0,0
1746559041.4554045,50,0,0
1746559074.5266695,50,0,0
1746559102.7877357,50,0,0
1746559133.1081278,50,0,0
1746559160.4823804,50,0,0
1746559191.729854,50,0,0
1746559217.0293987,50,0,0
1746559252.206439,50,0,0
1746559281.0641565,50,0,0
1746559312.4199047,50,0,0
1746559340.2242148,50,0,0
1746559372.6335611,50,0,0
1746559402.9116578,50,0,0
1746559431.6103718,50,0,0
1746559458.6839516,50,0,0
1746559486.1243591,50,0,0
1746559510.6068609,50,0,0
1746559540.0599077,50,0,0
1746559564.3500378,50,0,0
1746559590.6721392,50,0,0
1746559615.7096918,50,0,0
1746559641.263482,50,0,0
1746559670.194712,50,0,0
1746559696.6169112,50,0,0
1746559726.8381913,50,0,0
1746559751.8002443,50,0,0
1746559780.057597,50,0,0
1746559805.3833034,50,0,0
1746559833.494304,50,0,0
1746559860.4769464,50,0,0
1746559889.5180159,50,0,0
1746559915.6488097,50,0,0
1746559944.8331916,50,0,0
1746559972.883017,50,0,0
1746560003.0727506,50,0,0
1746560028.4566953,50,0,0
1746560060.3769274,50,0,0
1746560085.726563,50,0,0
1746560111.79901,50,0,0
1746560137.6257744,50,0,0
1746560165.0564594,50,0,0
1746560189.2505262,50,0,0
1746560215.214648,50,0,0
1746560229.5896254,50,0,0
1746560245.3042731,50,1,2
1746560259.5035336,50,1,2
1746560277.5893345,50,1,2
1746560294.9319284,50,2,4
1746560309.9293914,50,2,4
1746560327.6317422,50,2,4
1746560344.4690175,50,3,6
1746560359.2723963,50,3,6
1746560376.4847715,50,3,6
1746560394.83529,50,4,8
1746560409.6996655,50,4,8
1746560426.9775357,50,4,8
1746560449.09194,50,5,10
1746560464.412513,50,5,10
1746560479.7418375,50,5,10
1746560497.4474735,50,6,12
1746560515.1943731,50,6,12
1746560530.990147,50,6,12
1746560548.383142,50,7,14
1746560567.713221,50,7,14
1746560584.321738,50,7,14
1746560600.9801989,50,8,16
1746560618.6604052,50,8,16
1746560634.331097,50,8,16
1746560650.1289957,50,9,18
1746560666.0985062,50,9,18
1746560683.278447,50,9,18
1746560700.7738435,50,10,20
1746560716.186615,50,10,20
1746560731.669018,50,10,20
1746560750.0241904,50,11,22
1746560764.8954296,50,11,22
1746560780.421059,50,11,22
1746560798.8165386,50,12,24
1746560813.7224753,50,12,24
1746560828.7601035,50,12,24
1746560845.7838829,50,13,26
1746560865.2037754,50,13,26
1746560884.319409,50,13,26
1746560905.3740163,50,14,28
1746560926.5889082,50,14,28
1746560943.0852485,50,14,28
1746560961.1191092,50,15,30
1746560979.1134293,50,15,30
1746560995.3987286,50,15,30
1746561012.5728292,50,16,32
1746561028.0372992,50,16,32
1746561045.4995844,50,16,32
1746561063.2884,50,17,34
1746561078.8185036,50,17,34
1746561095.5308414,50,17,34
1746561115.4120517,50,18,36
1746561131.549795,50,18,36
1746561149.7788997,50,18,36
1746561169.620734,50,19,38
1746561188.3549504,50,19,38
1746561205.5373845,50,19,38
1746561222.8194401,50,20,40
1746561239.3937755,50,20,40
1746561256.4581532,50,20,40
1746561273.9727042,50,21,42
1746561292.6560023,50,21,42
1746561308.8108258,50,21,42
1746561327.0700514,50,22,44
1746561342.8846617,50,22,44
1746561361.3917186,50,22,44
1746561379.8710396,50,23,46
1746561395.7475219,50,23,46
1746561415.110208,50,23,46
1746561433.116248,50,24,48
1746561450.053395,50,24,48
1746561467.8197463,50,24,48
1746561488.9602127,50,25,50
1746561505.5091472,50,25,50
1746561521.4574594,50,25,50
1746561542.534335,50,26,52
1746561560.1209135,50,26,52
1746561578.5381198,50,26,52
1746561599.2888038,50,27,54
1746561615.7016177,50,27,54
1746561634.1723242,50,27,54
1746561655.94982,50,28,56
1746561671.7112794,50,28,56
1746561688.5461664,50,28,56
1746561707.0898006,50,29,58
1746561725.6210525,50,29,58
1746561742.2962408,50,29,58
1746561759.645343,50,30,60
1746561777.1760252,50,30,60
1746561795.190377,50,30,60
1746561813.0683067,50,31,62
1746561830.0866525,50,31,62
1746561848.2903197,50,31,62
1746561865.7753525,50,32,64
1746561883.6947055,50,32,64
1746561900.4047432,50,32,64
1746561918.8774889,50,33,66
1746561936.5216968,50,33,66
1746561953.9048722,50,33,66
1746561971.0023844,50,34,68
1746561987.192251,50,34,68
1746562006.4754026,50,34,68
1746562025.3751564,50,35,70
1746562041.680086,50,35,70
1746562064.133024,50,35,70
1746562083.1294231,50,36,72
1746562098.8387113,50,36,72
1746562120.470144,50,36,72
1746562140.201284,50,37,74
1746562158.8603032,50,37,74
1746562179.3560297,50,37,74
1746562198.4534714,50,38,76
1746562216.526343,50,38,76
1746562239.5335686,50,38,76
1746562259.4057002,50,39,78
1746562277.5661924,50,39,78
1746562298.3904293,50,39,78
1746562319.4839306,50,40,80
1746562339.1086905,50,40,80
1746562360.2948012,50,40,80
1746562379.9698398,50,41,82
1746562400.3846304,50,41,82
1746562423.8797648,50,41,82
1746562446.223142,50,42,84
1746562467.0114052,50,42,84
1746562484.7724893,50,42,84
1746562505.3581257,50,43,86
1746562526.896331,50,43,86
1746562546.2114346,50,43,86
1746562567.8605254,50,44,88
1746562589.6049087,50,44,88
1746562609.849097,50,44,88
1746562631.657505,50,45,90
1746562656.238487,50,45,90
1746562680.7065942,50,45,90
1746562704.8876505,50,46,92
1746562724.5127022,50,46,92
1746562745.1030164,50,46,92
1746562768.3409474,50,47,94
1746562787.2378027,50,47,94
1746562814.7521677,50,47,94
1746562837.3901043,50,48,96
1746562855.759093,50,48,96
1746562874.892255,50,48,96
1746562894.7430577,50,49,98
1746562912.453704,50,49,98
1746562932.172901,50,49,98
1746562956.2374365,50,50,100
1746562979.147943,50,50,100
1746563024.1827323,50,49,98
1746563060.7924445,50,48,96
1746563096.772328,50,47,94
1746563130.4286423,50,46,92
1746563166.7356756,50,45,90
1746563204.4157414,50,44,88
1746563240.970277,50,43,86
1746563276.379332,50,42,84
1746563313.8920836,50,41,82
1746563348.3542833,50,40,80
1746563383.1414363,50,39,78
1746563417.4686887,50,38,76
1746563452.3762116,50,37,74
1746563491.7065458,50,36,72
1746563527.1521704,50,35,70
1746563567.0661476,50,34,68
1746563605.7113056,50,33,66
1746563641.4993284,50,32,64
1746563682.307408,50,31,62
1746563723.854065,50,30,60
1746563759.0226471,50,29,58
1746563798.2178028,50,28,56
1746563836.1733499,50,27,54
1746563870.4180038,50,26,52
1746563905.7318988,50,25,50
1746563939.3602738,50,24,48
1746563974.4832442,50,23,46
1746564011.6926093,50,22,44
1746564047.635378,50,21,42
1746564092.7294805,50,20,40
1746564136.0846293,50,19,38
1746564179.7574878,50,18,36
1746564217.7355425,50,17,34
1746564256.6147902,50,16,32
1746564291.7383335,50,15,30
1746564332.4716787,50,14,28
1746564371.1995785,50,13,26
1746564406.066236,50,12,24
1746564442.587112,50,11,22
1746564479.6545825,50,10,20
1746564514.567038,50,9,18
1746564549.3796878,50,8,16
1746564583.8735964,50,7,14
1746564618.6337423,50,6,12
1746564651.461022,50,5,10
1746564685.218942,50,4,8
1746564722.3917916,50,3,6
1746564756.7353556,50,2,4
1746564793.1183658,50,1,2
1746564830.9023192,50,0,0
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_worker_usage")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_worker_usage", "worker_usage.csv")'> Download »worker_usage.csv« as file</button>
<h1> CPU/RAM-Usage (main)</h1>
<div class='invert_in_dark_mode' id='mainWorkerCPURAM'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<pre id="pre_tab_main_worker_cpu_ram">timestamp,ram_usage_mb,cpu_usage_percent
1746533465,619.28515625,34.3
1746533469,619.54296875,36.5
1746533473,619.54296875,35.2
1746533473,619.54296875,31.8
1746533473,619.54296875,28.0
1746533473,619.54296875,33.6
1746533473,619.54296875,48.4
1746535280,641.20703125,35.4
1746535280,641.20703125,28.0
1746535280,641.20703125,37.0
1746538443,699.9921875,42.6
1746538443,699.9921875,34.0
1746538443,699.9921875,32.6
1746538443,699.9921875,39.4
1746545977,714.21484375,33.6
1746545977,714.21484375,38.6
1746545977,714.21484375,39.1
1746545977,714.21484375,33.3
1746553154,731.48828125,37.6
1746553154,731.48828125,50.0
1746553154,731.48828125,37.5
1746553154,731.48828125,50.0
1746558812,758.86328125,39.7
1746558812,758.86328125,43.6
1746558812,758.86328125,40.3
1746558812,758.86328125,36.4
1746564851,788.62890625,39.4
1746564851,788.62890625,43.3
1746564851,788.62890625,38.3
1746564851,788.62890625,40.9
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<h1> Parallel Plot</h1>
<div class="invert_in_dark_mode" id="parallel-plot"></div>
<h1> Scatter-2D</h1>
<div class='invert_in_dark_mode' id='plotScatter2d'></div>
<h1> Scatter-3D</h1>
<div class='invert_in_dark_mode' id='plotScatter3d'></div>
<h1> Results by Generation Method</h1>
<div class="invert_in_dark_mode" id="plotResultsDistributionByGenerationMethod"></div>
<h1> Job Status Distribution</h1>
<div class="invert_in_dark_mode" id="plotJobStatusDistribution"></div>
<h1> Boxplots</h1>
<div class="invert_in_dark_mode" id="plotBoxplot"></div>
<h1> Violin</h1>
<div class="invert_in_dark_mode" id="plotViolin"></div>
<h1> Histogram</h1>
<div class="invert_in_dark_mode" id="plotHistogram"></div>
<h1> Heatmap</h1>
<div class="invert_in_dark_mode" id="plotHeatmap"></div><br>
<h1>Correlation Heatmap Explanation</h1>
<p>
This is a heatmap that visualizes the correlation between numerical columns in a dataset. The values represented in the heatmap show the strength and direction of relationships between different variables.
</p>
<h2>How It Works</h2>
<p>
The heatmap uses a matrix to represent correlations between each pair of numerical columns. The calculation behind this is based on the concept of "correlation," which measures how strongly two variables are related. A correlation can be positive, negative, or zero:
</p>
<ul>
<li><strong>Positive correlation</strong>: Both variables increase or decrease together (e.g., if the temperature rises, ice cream sales increase).</li>
<li><strong>Negative correlation</strong>: As one variable increases, the other decreases (e.g., as the price of a product rises, the demand for it decreases).</li>
<li><strong>Zero correlation</strong>: There is no relationship between the two variables (e.g., height and shoe size might show zero correlation in some contexts).</li>
</ul>
<h2>Color Scale: Yellow to Purple (Viridis)</h2>
<p>
The heatmap uses a color scale called "Viridis," which ranges from yellow to purple. Here's what the colors represent:
</p>
<ul>
<li><strong>Yellow (brightest)</strong>: A strong positive correlation (close to +1). This indicates that as one variable increases, the other increases in a very predictable manner.</li>
<li><strong>Green</strong>: A moderate positive correlation. Variables are still positively related, but the relationship is not as strong.</li>
<li><strong>Blue</strong>: A weak or near-zero correlation. There is a small or no discernible relationship between the variables.</li>
<li><strong>Purple (darkest)</strong>: A strong negative correlation (close to -1). This indicates that as one variable increases, the other decreases in a very predictable manner.</li>
</ul>
<h2>What the Heatmap Shows</h2>
<p>
In the heatmap, each cell represents the correlation between two numerical columns. The color of the cell is determined by the correlation coefficient: from yellow for strong positive correlations, through green and blue for weaker correlations, to purple for strong negative correlations.
</p>
<h1> Evolution</h1>
<div class="invert_in_dark_mode" id="plotResultEvolution"></div>
</body>
</html>
Copy raw data to clipboard
Download »export.html« as file