Copy raw data to clipboard
Download »results.csv« as file
trial_index,arm_name,trial_status,generation_method,result,n_samples,n_permutations,update_interval,n_consecutive_deviations
0,0_0,COMPLETED,Sobol,0.314328582145536383762873811065,249,31,230,1
1,1_0,COMPLETED,Sobol,0.272818204551137810653926862869,276,27,149,4
2,2_0,COMPLETED,Sobol,0.300325081270317539861025579739,915,30,103,1
3,3_0,COMPLETED,Sobol,0.311577894473618388637703446875,827,46,184,3
4,4_0,COMPLETED,Sobol,0.286571642910727675257476221304,135,30,239,2
5,5_0,COMPLETED,Sobol,0.307576894223555941110248568293,519,37,156,5
6,6_0,COMPLETED,Sobol,0.246561640410102533849112660391,460,32,72,3
7,7_0,COMPLETED,Sobol,0.308577144286071525236536672310,662,44,250,1
8,8_0,COMPLETED,Sobol,0.291572893223305817933521666419,438,11,186,2
9,9_0,COMPLETED,Sobol,0.290322580645161254508934689511,499,36,160,4
10,10_0,COMPLETED,Sobol,0.311077769442360541063408163609,871,50,138,1
11,11_0,COMPLETED,Sobol,0.288572143035758954532354891853,699,37,209,5
12,12_0,COMPLETED,Sobol,0.326081520380094969091544498951,830,29,205,3
13,13_0,COMPLETED,Sobol,0.299824956239059803309032758989,573,31,219,1
14,14_0,COMPLETED,Sobol,0.209552388097024255841915874043,245,31,54,2
15,15_0,COMPLETED,Sobol,0.324831207801950516689259984560,958,14,228,3
16,16_0,COMPLETED,Sobol,0.283570892723180811856309446739,261,27,202,2
17,17_0,COMPLETED,Sobol,0.292823205801450381358108643326,396,44,240,3
18,18_0,COMPLETED,Sobol,0.264816204051012804576714643190,380,33,166,2
19,19_0,COMPLETED,Sobol,0.261065266316579114302953712468,338,13,87,5
20,20_0,COMPLETED,BoTorch,0.208052013003250824141332486761,164,26,50,2
21,21_0,COMPLETED,BoTorch,0.229057264316078978971802371234,209,40,50,2
22,22_0,COMPLETED,BoTorch,0.212553138284571119243082648609,304,26,50,2
23,23_0,COMPLETED,BoTorch,0.225056264066016531444347492652,164,31,50,3
24,24_0,COMPLETED,BoTorch,0.218054513628407109493423376989,282,32,50,1
25,25_0,COMPLETED,BoTorch,0.233058264566141537521559712332,186,32,80,2
26,26_0,COMPLETED,BoTorch,0.235808952238059532646730076522,100,32,50,2
27,27_0,COMPLETED,BoTorch,0.225306326581645399720343903027,208,18,51,2
28,28_0,COMPLETED,BoTorch,0.222305576394098536319177128462,307,39,50,2
29,29_0,COMPLETED,BoTorch,0.240310077519379827748480238370,129,26,83,2
30,30_0,COMPLETED,BoTorch,0.218804701175293825343715070630,161,41,50,3
31,31_0,COMPLETED,BoTorch,0.209052263065766408267620590777,126,18,50,3
32,32_0,COMPLETED,BoTorch,0.210552638159539839968203978060,204,22,50,1
33,33_0,COMPLETED,BoTorch,0.248312078019504833825692458049,100,42,61,2
34,34_0,COMPLETED,BoTorch,0.215803950987746961942548296065,234,40,71,1
35,35_0,COMPLETED,BoTorch,0.253563390847711955800036776054,285,36,72,2
36,36_0,COMPLETED,BoTorch,0.214053513378344550943666035892,141,30,50,1
37,37_0,COMPLETED,BoTorch,0.217554388597149261919128093723,322,17,50,1
38,38_0,COMPLETED,BoTorch,0.251812953238309544801154515881,100,36,82,1
39,39_0,COMPLETED,BoTorch,0.240810202550637675322775521636,229,25,73,2
40,40_0,COMPLETED,BoTorch,0.202050512628156986316696475114,213,27,50,2
41,41_0,COMPLETED,BoTorch,0.239809952488121980174184955104,133,19,78,2
42,42_0,COMPLETED,BoTorch,0.205051262815703960740165712195,143,12,50,3
43,43_0,COMPLETED,BoTorch,0.214553638409602398517961319158,103,11,50,1
44,44_0,COMPLETED,BoTorch,0.226056514128532115570635596669,100,21,50,1
45,45_0,COMPLETED,BoTorch,0.204051012753188265591575145663,202,10,50,1
46,46_0,COMPLETED,BoTorch,0.231307826956739237544979914674,100,14,50,5
47,47_0,COMPLETED,BoTorch,0.222055513878469668043180718087,290,10,50,3
48,48_0,COMPLETED,BoTorch,0.222055513878469668043180718087,100,26,50,5
49,49_0,COMPLETED,BoTorch,0.211052763190797687542499261326,246,20,50,3
50,50_0,COMPLETED,BoTorch,0.209552388097024255841915874043,303,29,50,1
51,51_0,COMPLETED,BoTorch,0.234308577144286100946146689239,100,10,50,4
52,52_0,COMPLETED,BoTorch,0.229557389347336826546097654500,419,50,50,1
53,53_0,COMPLETED,BoTorch,0.200550137534383554616113087832,244,28,50,1
54,54_0,COMPLETED,BoTorch,0.234558639659914969222143099614,100,10,50,2
55,55_0,COMPLETED,BoTorch,0.214553638409602398517961319158,112,24,50,3
56,56_0,COMPLETED,BoTorch,0.243810952738184538723942296201,408,15,50,3
57,57_0,COMPLETED,BoTorch,0.226056514128532115570635596669,271,38,50,5
58,58_0,COMPLETED,BoTorch,0.233058264566141537521559712332,197,10,50,3
59,59_0,COMPLETED,BoTorch,0.214553638409602398517961319158,195,10,50,2
60,60_0,COMPLETED,BoTorch,0.206801700425106260716745509853,235,10,50,1
61,61_0,COMPLETED,BoTorch,0.201050262565641402190408371098,245,19,50,1
62,62_0,COMPLETED,BoTorch,0.233058264566141537521559712332,365,50,50,5
63,63_0,COMPLETED,BoTorch,0.197549387346836691214946313266,147,10,50,2
64,64_0,COMPLETED,BoTorch,0.207301825456364108291040793119,234,16,50,2
65,65_0,COMPLETED,BoTorch,0.220305076269067257044298457913,343,10,50,1
66,66_0,COMPLETED,BoTorch,0.234808702175543837498139509989,201,50,50,5
67,67_0,COMPLETED,BoTorch,0.220055013753438388768302047538,504,10,50,1
68,68_0,COMPLETED,BoTorch,0.226306576644161094868934469559,194,22,50,4
69,69_0,COMPLETED,BoTorch,0.204051012753188265591575145663,233,33,50,4
70,70_0,COMPLETED,BoTorch,0.245311327831957970424525683484,230,36,50,5
71,71_0,COMPLETED,BoTorch,0.208302075518879692417328897136,242,21,50,1
72,72_0,COMPLETED,BoTorch,0.213553388347086814391673215141,236,27,50,4
73,73_0,COMPLETED,BoTorch,0.234558639659914969222143099614,278,38,50,5
74,74_0,COMPLETED,BoTorch,0.219304826206551672918010353897,100,50,50,5
75,75_0,COMPLETED,BoTorch,0.267066766691672952127589724114,668,50,50,5
76,76_0,COMPLETED,BoTorch,0.228807201800450110695805960859,220,19,50,1
77,77_0,COMPLETED,BoTorch,0.226556639159789963144930879935,159,45,50,5
78,78_0,COMPLETED,BoTorch,0.219804951237809409470003174647,535,12,50,1
79,79_0,COMPLETED,BoTorch,0.262815703925981525301835972641,689,37,50,3
80,80_0,COMPLETED,BoTorch,0.242560640160039975299355319294,362,44,50,5
81,74_0,COMPLETED,BoTorch,0.218054513628407109493423376989,100,50,50,5
82,82_0,COMPLETED,BoTorch,0.205301325331332829016162122571,257,18,50,1
83,83_0,COMPLETED,BoTorch,0.233058264566141537521559712332,260,20,50,1
84,84_0,COMPLETED,BoTorch,0.243810952738184538723942296201,713,45,50,4
85,85_0,COMPLETED,BoTorch,0.219054763690922693619711481006,241,21,50,2
86,86_0,COMPLETED,BoTorch,0.255813953488372103350911856978,562,50,57,4
87,87_0,COMPLETED,BoTorch,0.247561890472618117975400764408,563,50,57,4
88,88_0,COMPLETED,BoTorch,0.274318579644911242354510250152,766,50,91,4
89,86_0,COMPLETED,BoTorch,0.255813953488372103350911856978,562,50,57,4
90,90_0,COMPLETED,BoTorch,0.243060765191297822873650602560,697,10,50,1
91,91_0,COMPLETED,BoTorch,0.235058764691172816796438382880,493,50,50,3
92,92_0,COMPLETED,BoTorch,0.251312828207051808249161695130,721,44,50,4
93,93_0,COMPLETED,BoTorch,0.206551637909477392440749099478,278,10,50,1
94,94_0,COMPLETED,BoTorch,0.214303575893973530241964908782,336,23,50,1
95,95_0,COMPLETED,BoTorch,0.232058014503625953395271608315,310,20,50,1
96,96_0,COMPLETED,BoTorch,0.224056014003500836295756926120,252,13,50,2
97,97_0,COMPLETED,BoTorch,0.222305576394098536319177128462,319,23,50,1
98,98_0,COMPLETED,BoTorch,0.203050762690672681465287041647,127,50,50,1
99,99_0,COMPLETED,BoTorch,0.220305076269067257044298457913,273,50,50,1
100,100_0,COMPLETED,BoTorch,0.224056014003500836295756926120,100,34,50,4
101,101_0,COMPLETED,BoTorch,0.217804451112778241217426966614,265,50,50,3
102,102_0,COMPLETED,BoTorch,0.210802700675168819266502850951,123,50,50,1
103,103_0,COMPLETED,BoTorch,0.219804951237809409470003174647,221,42,50,3
104,104_0,COMPLETED,BoTorch,0.224056014003500836295756926120,100,50,50,4
105,105_0,COMPLETED,BoTorch,0.224056014003500836295756926120,100,36,50,4
106,106_0,COMPLETED,BoTorch,0.258564641160290098476082221168,100,50,104,5
107,107_0,COMPLETED,BoTorch,0.246811702925731402125109070766,103,42,83,5
108,108_0,COMPLETED,BoTorch,0.226056514128532115570635596669,222,50,50,1
109,109_0,COMPLETED,BoTorch,0.274568642160540110630506660527,100,38,118,5
110,110_0,COMPLETED,BoTorch,0.204551137784446113165870428929,258,10,50,1
111,111_0,COMPLETED,BoTorch,0.263315828957239261853828793392,100,50,88,5
112,112_0,COMPLETED,BoTorch,0.222305576394098536319177128462,203,22,50,3
113,100_0,COMPLETED,BoTorch,0.224056014003500836295756926120,100,34,50,4
114,114_0,COMPLETED,BoTorch,0.221555388847211820468885434821,100,27,50,4
115,115_0,COMPLETED,BoTorch,0.277319329832458105755677024717,322,10,149,4
116,116_0,COMPLETED,BoTorch,0.228307076769192263121510677593,100,50,50,3
117,117_0,COMPLETED,BoTorch,0.224306076519129815594055799011,100,50,50,1
118,118_0,COMPLETED,BoTorch,0.203800950237559397315578735288,235,30,50,1
119,119_0,COMPLETED,BoTorch,0.310327581895473825213116469968,1000,10,50,5
120,120_0,COMPLETED,BoTorch,0.239059764941235264323893261462,100,50,50,2
121,119_0,COMPLETED,BoTorch,0.310327581895473825213116469968,1000,10,50,5
122,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
123,123_0,COMPLETED,BoTorch,0.219804951237809409470003174647,201,50,50,1
124,124_0,COMPLETED,BoTorch,0.220805201300325104618593741179,162,50,50,2
125,125_0,COMPLETED,BoTorch,0.211052763190797687542499261326,196,23,50,2
126,126_0,COMPLETED,BoTorch,0.242560640160039975299355319294,714,35,50,5
127,127_0,COMPLETED,BoTorch,0.197049262315578843640651030000,227,28,50,1
128,128_0,COMPLETED,BoTorch,0.223055763940985252169468822103,334,50,50,2
129,129_0,COMPLETED,BoTorch,0.241310327581895522897070804902,299,50,50,3
130,130_0,COMPLETED,BoTorch,0.225056264066016531444347492652,221,14,50,1
131,131_0,COMPLETED,BoTorch,0.224056014003500836295756926120,268,32,50,3
132,132_0,COMPLETED,BoTorch,0.293573393348337097208400336967,100,10,250,5
133,133_0,COMPLETED,BoTorch,0.207051762940735128992741920229,242,10,50,1
134,134_0,COMPLETED,BoTorch,0.305326331582895682537071024854,266,42,225,1
135,135_0,COMPLETED,BoTorch,0.300825206301575387435320863005,265,42,225,1
136,136_0,COMPLETED,BoTorch,0.278319579894973689881965128734,100,10,185,5
137,137_0,COMPLETED,BoTorch,0.240060015003750959472483827994,281,28,50,2
138,138_0,COMPLETED,BoTorch,0.294823705926481660632987313875,226,11,241,5
139,139_0,COMPLETED,BoTorch,0.221305326331582841170586561930,201,21,50,1
140,140_0,COMPLETED,BoTorch,0.268317079269817404529874238506,101,31,229,5
141,141_0,COMPLETED,BoTorch,0.294073518379594944782695620233,100,20,194,5
142,142_0,COMPLETED,BoTorch,0.352088022005501377620362291054,163,12,249,5
143,143_0,COMPLETED,BoTorch,0.282820705176294096006017753098,222,19,250,4
144,144_0,COMPLETED,BoTorch,0.195298824706176543664071232342,227,30,50,1
145,145_0,COMPLETED,BoTorch,0.221555388847211820468885434821,251,10,50,1
146,146_0,COMPLETED,BoTorch,0.208052013003250824141332486761,239,10,50,1
147,147_0,COMPLETED,BoTorch,0.202300575143785965614995348005,225,29,50,1
148,148_0,COMPLETED,BoTorch,0.277319329832458105755677024717,679,31,65,5
149,149_0,COMPLETED,BoTorch,0.242810702675668954597654192185,338,27,96,2
150,150_0,COMPLETED,BoTorch,0.200800200050012533914411960723,233,10,50,1
151,151_0,COMPLETED,BoTorch,0.199299824956239102213828573440,243,10,50,1
152,146_0,COMPLETED,BoTorch,0.207051762940735128992741920229,239,10,50,1
153,74_0,COMPLETED,BoTorch,0.218054513628407109493423376989,100,50,50,5
154,154_0,COMPLETED,BoTorch,0.193798449612403111963487845060,226,28,50,1
155,155_0,COMPLETED,BoTorch,0.238809702425606396047896851087,148,10,61,3
156,156_0,COMPLETED,BoTorch,0.223305826456614120445465232478,257,12,71,1
157,157_0,COMPLETED,BoTorch,0.202300575143785965614995348005,225,30,50,1
158,158_0,COMPLETED,BoTorch,0.236309077269317380221025359788,190,19,50,1
159,159_0,COMPLETED,BoTorch,0.226806701675418831420927290310,148,10,50,3
160,160_0,COMPLETED,BoTorch,0.229557389347336826546097654500,185,38,66,3
161,161_0,COMPLETED,BoTorch,0.200800200050012533914411960723,232,31,50,1
162,162_0,COMPLETED,BoTorch,0.261065266316579114302953712468,100,10,92,3
163,163_0,COMPLETED,BoTorch,0.206051512878219544866453816212,236,19,54,2
164,164_0,COMPLETED,BoTorch,0.240810202550637675322775521636,104,28,86,3
165,165_0,COMPLETED,BoTorch,0.239309827456864243622192134353,107,29,85,3
166,166_0,COMPLETED,BoTorch,0.247561890472618117975400764408,200,14,97,1
167,167_0,COMPLETED,BoTorch,0.234308577144286100946146689239,214,50,96,3
168,160_0,COMPLETED,BoTorch,0.229557389347336826546097654500,185,38,66,3
169,169_0,COMPLETED,BoTorch,0.216804201050262546068836400082,186,43,51,3
170,160_0,COMPLETED,BoTorch,0.229557389347336826546097654500,185,38,66,3
171,171_0,COMPLETED,BoTorch,0.251312828207051808249161695130,599,50,50,1
172,172_0,COMPLETED,BoTorch,0.281820455113778400857427186565,1000,50,50,1
173,173_0,COMPLETED,BoTorch,0.239059764941235264323893261462,298,38,65,3
174,174_0,COMPLETED,BoTorch,0.228307076769192263121510677593,245,23,77,2
175,175_0,COMPLETED,BoTorch,0.202300575143785965614995348005,238,32,50,1
176,176_0,COMPLETED,BoTorch,0.224556139034758683870052209386,270,10,50,1
177,177_0,COMPLETED,BoTorch,0.236809202300575116773018180538,489,38,64,1
178,178_0,COMPLETED,BoTorch,0.218804701175293825343715070630,356,10,50,2
179,179_0,COMPLETED,BoTorch,0.215053763440860246092256602424,240,31,50,1
180,180_0,COMPLETED,BoTorch,0.209302325581395387565919463668,466,18,50,2
181,181_0,COMPLETED,BoTorch,0.274568642160540110630506660527,690,47,59,1
182,182_0,COMPLETED,BoTorch,0.202050512628156986316696475114,238,31,50,1
183,183_0,COMPLETED,BoTorch,0.205301325331332829016162122571,108,28,51,1
184,184_0,COMPLETED,BoTorch,0.265566391597899520427006336831,700,42,64,1
185,185_0,COMPLETED,BoTorch,0.223305826456614120445465232478,222,10,50,2
186,186_0,COMPLETED,BoTorch,0.256064016004000971626908267353,872,23,50,1
187,187_0,COMPLETED,BoTorch,0.286321580395098806981479810929,677,42,58,5
188,188_0,COMPLETED,BoTorch,0.236809202300575116773018180538,289,10,50,3
189,189_0,COMPLETED,BoTorch,0.223805951487871968019760515745,358,16,65,2
190,190_0,COMPLETED,BoTorch,0.206801700425106260716745509853,239,31,50,1
191,191_0,COMPLETED,BoTorch,0.207551887971992976567037203495,223,32,50,1
192,192_0,COMPLETED,BoTorch,0.235058764691172816796438382880,280,10,50,1
193,193_0,COMPLETED,BoTorch,0.209302325581395387565919463668,219,32,50,1
194,194_0,COMPLETED,BoTorch,0.255563890972743235074915446603,791,25,55,1
195,191_0,COMPLETED,BoTorch,0.207551887971992976567037203495,223,32,50,1
196,196_0,COMPLETED,BoTorch,0.230307576894223542396389348141,263,10,50,1
197,197_0,COMPLETED,BoTorch,0.223305826456614120445465232478,221,32,50,1
198,198_0,COMPLETED,BoTorch,0.207551887971992976567037203495,223,33,50,1
199,199_0,COMPLETED,BoTorch,0.227556889222305547271218983951,222,33,50,1
200,193_0,COMPLETED,BoTorch,0.209302325581395387565919463668,219,32,50,1
201,201_0,COMPLETED,BoTorch,0.210802700675168819266502850951,268,10,50,1
202,202_0,COMPLETED,BoTorch,0.193798449612403111963487845060,226,32,50,1
203,203_0,COMPLETED,BoTorch,0.244811202800700122850230400218,320,10,74,1
204,204_0,COMPLETED,BoTorch,0.235558889722430553348431203631,353,10,86,2
205,205_0,COMPLETED,BoTorch,0.259064766191547835028075041919,336,25,134,2
206,206_0,COMPLETED,BoTorch,0.203550887721930529039582324913,217,32,50,1
207,207_0,COMPLETED,BoTorch,0.269067266816704231402468394663,232,39,135,3
208,208_0,COMPLETED,BoTorch,0.210802700675168819266502850951,216,25,50,1
209,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
210,210_0,COMPLETED,BoTorch,0.208302075518879692417328897136,213,32,50,1
211,211_0,COMPLETED,BoTorch,0.242060515128782238747362498543,258,35,108,2
212,212_0,COMPLETED,BoTorch,0.221305326331582841170586561930,100,10,50,1
213,213_0,COMPLETED,BoTorch,0.231307826956739237544979914674,100,19,50,5
214,214_0,COMPLETED,BoTorch,0.238809702425606396047896851087,157,46,50,4
215,215_0,COMPLETED,BoTorch,0.283820955238809680132305857114,844,31,105,2
216,216_0,COMPLETED,BoTorch,0.211052763190797687542499261326,216,32,50,1
217,217_0,COMPLETED,BoTorch,0.205301325331332829016162122571,218,32,50,1
218,218_0,COMPLETED,BoTorch,0.215053763440860246092256602424,240,26,50,1
219,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
220,217_0,COMPLETED,BoTorch,0.205301325331332829016162122571,218,32,50,1
221,221_0,COMPLETED,BoTorch,0.233308327081770405797556122707,100,10,50,5
222,222_0,COMPLETED,BoTorch,0.202800700175043813189290631271,237,28,50,1
223,223_0,COMPLETED,BoTorch,0.264566141535383825278415770299,178,33,106,4
224,216_0,COMPLETED,BoTorch,0.211052763190797687542499261326,216,32,50,1
225,225_0,COMPLETED,BoTorch,0.216554138534633677792839989706,215,32,50,1
226,225_0,COMPLETED,BoTorch,0.216554138534633677792839989706,215,32,50,1
227,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
228,228_0,COMPLETED,BoTorch,0.246561640410102533849112660391,695,45,70,2
229,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
230,230_0,COMPLETED,BoTorch,0.219804951237809409470003174647,212,33,50,1
231,212_0,COMPLETED,BoTorch,0.221305326331582841170586561930,100,10,50,1
232,232_0,COMPLETED,BoTorch,0.247311827956989249699404354033,246,50,114,1
233,122_0,COMPLETED,BoTorch,0.208302075518879692417328897136,214,32,50,1
234,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
235,235_0,COMPLETED,BoTorch,0.235808952238059532646730076522,100,22,50,2
236,236_0,COMPLETED,BoTorch,0.207801950487621955865336076386,239,27,50,1
237,237_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,33,50,1
238,206_0,COMPLETED,BoTorch,0.203550887721930529039582324913,217,32,50,1
239,239_0,COMPLETED,BoTorch,0.210802700675168819266502850951,267,25,50,2
240,240_0,COMPLETED,BoTorch,0.238559639909977527771900440712,100,16,50,2
241,241_0,COMPLETED,BoTorch,0.225306326581645399720343903027,180,10,50,1
242,242_0,COMPLETED,BoTorch,0.244811202800700122850230400218,100,31,104,2
243,243_0,RUNNING,BoTorch,,210,27,50,1
244,244_0,COMPLETED,BoTorch,0.262565641410352546003537099750,503,41,126,1
245,245_0,COMPLETED,BoTorch,0.240060015003750959472483827994,352,10,57,3
246,246_0,COMPLETED,BoTorch,0.237059264816204096071317053429,100,28,50,2
247,247_0,RUNNING,BoTorch,,223,28,50,1
248,248_0,RUNNING,BoTorch,,233,27,50,1
249,249_0,COMPLETED,BoTorch,0.219554888722180541194006764272,191,24,50,3
250,225_0,COMPLETED,BoTorch,0.216554138534633677792839989706,215,32,50,1
251,251_0,COMPLETED,BoTorch,0.254313578394598671650328469696,713,50,63,5
252,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
253,253_0,COMPLETED,BoTorch,0.239809952488121980174184955104,321,25,50,5
254,216_0,COMPLETED,BoTorch,0.211052763190797687542499261326,216,32,50,1
255,255_0,COMPLETED,BoTorch,0.209052263065766408267620590777,219,33,50,1
256,256_0,COMPLETED,BoTorch,0.230307576894223542396389348141,220,33,50,1
257,257_0,COMPLETED,BoTorch,0.229807451862965694822094064875,263,29,50,1
258,256_0,COMPLETED,BoTorch,0.230307576894223542396389348141,220,33,50,1
259,259_0,COMPLETED,BoTorch,0.270817704426106531379048192321,768,17,105,1
260,256_0,COMPLETED,BoTorch,0.230307576894223542396389348141,220,33,50,1
261,261_0,COMPLETED,BoTorch,0.237559389847461832623309874180,100,47,73,4
262,256_0,COMPLETED,BoTorch,0.228807201800450110695805960859,220,33,50,1
263,256_0,COMPLETED,BoTorch,0.232558139534883689947264429065,220,33,50,1
264,264_0,COMPLETED,BoTorch,0.225306326581645399720343903027,221,33,50,1
265,265_0,COMPLETED,BoTorch,0.205051262815703960740165712195,218,33,50,1
266,266_0,COMPLETED,BoTorch,0.237059264816204096071317053429,279,50,57,2
267,267_0,COMPLETED,BoTorch,0.260815203800950246026957302092,164,35,94,3
268,268_0,COMPLETED,BoTorch,0.195798949737434391238366515609,227,29,50,1
269,269_0,COMPLETED,BoTorch,0.217554388597149261919128093723,275,10,50,2
270,270_0,COMPLETED,BoTorch,0.194548637159289827813779538701,226,30,50,1
271,147_0,COMPLETED,BoTorch,0.202300575143785965614995348005,225,29,50,1
272,272_0,COMPLETED,BoTorch,0.237559389847461832623309874180,281,43,50,1
273,273_0,COMPLETED,BoTorch,0.200550137534383554616113087832,232,29,50,1
274,274_0,COMPLETED,BoTorch,0.249562390597649397250279434957,695,35,55,1
275,275_0,COMPLETED,BoTorch,0.216054013503375830218544706440,267,25,50,1
276,276_0,COMPLETED,BoTorch,0.208052013003250824141332486761,229,29,50,1
277,277_0,COMPLETED,BoTorch,0.213303325831457835093374342250,176,50,50,2
278,278_0,COMPLETED,BoTorch,0.225556389097274267996340313402,453,50,58,2
279,147_0,COMPLETED,BoTorch,0.202300575143785965614995348005,225,29,50,1
280,268_0,COMPLETED,BoTorch,0.195798949737434391238366515609,227,29,50,1
281,281_0,COMPLETED,BoTorch,0.204051012753188265591575145663,258,25,50,1
282,266_0,COMPLETED,BoTorch,0.237059264816204096071317053429,279,50,57,2
283,283_0,COMPLETED,BoTorch,0.208552138034508671715627770027,224,28,50,1
284,284_0,COMPLETED,BoTorch,0.202300575143785965614995348005,225,28,50,1
285,283_0,COMPLETED,BoTorch,0.208552138034508671715627770027,224,28,50,1
286,286_0,COMPLETED,BoTorch,0.194548637159289827813779538701,226,27,50,1
287,284_0,COMPLETED,BoTorch,0.203300825206301549741283452022,225,28,50,1
288,284_0,COMPLETED,BoTorch,0.203300825206301549741283452022,225,28,50,1
289,289_0,COMPLETED,BoTorch,0.246061515378844686274817377125,315,27,121,3
290,290_0,COMPLETED,BoTorch,0.208552138034508671715627770027,224,27,50,1
291,291_0,COMPLETED,BoTorch,0.222055513878469668043180718087,255,23,60,3
292,127_0,COMPLETED,BoTorch,0.195548887221805411940067642718,227,28,50,1
293,284_0,COMPLETED,BoTorch,0.203300825206301549741283452022,225,28,50,1
294,294_0,COMPLETED,BoTorch,0.283320830207551832558010573848,821,17,75,2
295,295_0,COMPLETED,BoTorch,0.224806201550387552146048619761,230,28,50,1
296,290_0,COMPLETED,BoTorch,0.208552138034508671715627770027,224,27,50,1
297,297_0,COMPLETED,BoTorch,0.209552388097024255841915874043,229,27,50,1
298,298_0,COMPLETED,BoTorch,0.261315328832208093601252585358,319,13,120,2
299,299_0,COMPLETED,BoTorch,0.199049762440610122915529700549,228,27,50,1
300,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
301,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
302,302_0,RUNNING,BoTorch,,126,44,61,4
303,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
304,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
305,305_0,COMPLETED,BoTorch,0.221055263815953972894590151554,318,15,87,1
306,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
307,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
308,299_0,COMPLETED,BoTorch,0.199049762440610122915529700549,228,27,50,1
309,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
310,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
311,218_0,COMPLETED,BoTorch,0.212303075768942250967086238234,240,26,50,1
312,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
313,248_0,COMPLETED,BoTorch,0.199299824956239102213828573440,233,27,50,1
314,314_0,COMPLETED,BoTorch,0.220055013753438388768302047538,146,31,74,2
315,315_0,COMPLETED,BoTorch,0.200550137534383554616113087832,232,27,50,1
316,316_0,COMPLETED,BoTorch,0.206301575393848413142450226587,234,27,50,1
317,317_0,COMPLETED,BoTorch,0.216054013503375830218544706440,231,27,50,1
318,318_0,COMPLETED,BoTorch,0.214053513378344550943666035892,237,21,50,3
319,319_0,COMPLETED,BoTorch,0.206801700425106260716745509853,248,25,50,1
320,320_0,COMPLETED,BoTorch,0.288572143035758954532354891853,903,40,66,4
321,248_0,COMPLETED,BoTorch,0.199299824956239102213828573440,233,27,50,1
322,248_0,COMPLETED,BoTorch,0.199299824956239102213828573440,233,27,50,1
323,315_0,COMPLETED,BoTorch,0.200550137534383554616113087832,232,27,50,1
324,315_0,COMPLETED,BoTorch,0.200550137534383554616113087832,232,27,50,1
325,325_0,COMPLETED,BoTorch,0.209802450612653124117912284419,236,27,50,1
326,326_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,27,50,1
327,327_0,COMPLETED,BoTorch,0.235558889722430553348431203631,188,43,94,2
328,248_0,COMPLETED,BoTorch,0.199299824956239102213828573440,233,27,50,1
329,329_0,COMPLETED,BoTorch,0.269067266816704231402468394663,452,17,108,2
330,330_0,COMPLETED,BoTorch,0.200300075018754686340116677457,244,26,50,1
331,331_0,COMPLETED,BoTorch,0.222805701425356383893472411728,241,27,50,1
332,332_0,COMPLETED,BoTorch,0.216054013503375830218544706440,151,50,57,3
333,316_0,COMPLETED,BoTorch,0.206301575393848413142450226587,234,27,50,1
334,248_0,COMPLETED,BoTorch,0.199299824956239102213828573440,233,27,50,1
335,335_0,COMPLETED,BoTorch,0.246311577894473665573116250016,130,46,79,5
336,336_0,COMPLETED,BoTorch,0.258314578644661119177783348277,344,50,96,4
337,316_0,COMPLETED,BoTorch,0.206301575393848413142450226587,234,27,50,1
338,338_0,COMPLETED,BoTorch,0.202050512628156986316696475114,238,26,50,1
339,339_0,COMPLETED,BoTorch,0.282320580145036248431722469832,280,21,186,5
340,340_0,COMPLETED,BoTorch,0.232558139534883689947264429065,199,28,65,2
341,338_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,26,50,1
342,338_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,26,50,1
343,338_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,26,50,1
344,218_0,COMPLETED,BoTorch,0.212303075768942250967086238234,240,26,50,1
345,345_0,COMPLETED,BoTorch,0.202550637659414833890991758381,237,26,50,1
346,346_0,COMPLETED,BoTorch,0.243810952738184538723942296201,421,37,88,3
347,338_0,COMPLETED,BoTorch,0.202050512628156986316696475114,238,26,50,1
348,348_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,25,50,1
349,345_0,COMPLETED,BoTorch,0.202800700175043813189290631271,237,26,50,1
350,338_0,COMPLETED,BoTorch,0.202050512628156986316696475114,238,26,50,1
351,351_0,COMPLETED,BoTorch,0.267566891722930688679582544864,538,12,120,2
352,345_0,COMPLETED,BoTorch,0.208302075518879692417328897136,237,26,50,1
353,353_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,26,50,1
354,354_0,COMPLETED,BoTorch,0.231557889472368105820976325049,476,45,65,3
355,355_0,COMPLETED,BoTorch,0.239059764941235264323893261462,100,40,50,2
356,356_0,COMPLETED,BoTorch,0.209552388097024255841915874043,239,26,50,1
357,357_0,COMPLETED,BoTorch,0.249812453113278265526275845332,219,27,84,2
358,358_0,COMPLETED,BoTorch,0.222805701425356383893472411728,241,26,50,1
359,338_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,26,50,1
360,358_0,COMPLETED,BoTorch,0.222805701425356383893472411728,241,26,50,1
361,361_0,COMPLETED,BoTorch,0.224806201550387552146048619761,141,23,59,1
362,218_0,COMPLETED,BoTorch,0.212303075768942250967086238234,240,26,50,1
363,218_0,COMPLETED,BoTorch,0.212303075768942250967086238234,240,26,50,1
364,364_0,COMPLETED,BoTorch,0.255313828457114255776616573712,127,32,126,4
365,218_0,COMPLETED,BoTorch,0.212303075768942250967086238234,240,26,50,1
366,366_0,COMPLETED,BoTorch,0.284821205301325375280896423646,144,14,132,4
367,367_0,COMPLETED,BoTorch,0.210802700675168819266502850951,216,34,58,1
368,326_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,27,50,1
369,369_0,COMPLETED,BoTorch,0.246811702925731402125109070766,385,41,114,4
370,370_0,COMPLETED,BoTorch,0.202800700175043813189290631271,237,27,50,1
371,371_0,COMPLETED,BoTorch,0.219054763690922693619711481006,183,50,50,1
372,117_0,COMPLETED,BoTorch,0.224306076519129815594055799011,100,50,50,1
373,373_0,COMPLETED,BoTorch,0.224306076519129815594055799011,101,27,50,4
374,370_0,COMPLETED,BoTorch,0.202800700175043813189290631271,237,27,50,1
375,375_0,COMPLETED,BoTorch,0.221805451362840688744881845196,100,32,50,3
376,236_0,COMPLETED,BoTorch,0.207801950487621955865336076386,239,27,50,1
377,326_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,27,50,1
378,378_0,COMPLETED,BoTorch,0.227056764191047810719226163201,100,39,50,3
379,379_0,COMPLETED,BoTorch,0.211802950737684403392790954967,253,25,50,1
380,380_0,COMPLETED,BoTorch,0.246311577894473665573116250016,306,13,100,1
381,381_0,COMPLETED,BoTorch,0.206801700425106260716745509853,235,27,50,1
382,381_0,COMPLETED,BoTorch,0.206801700425106260716745509853,235,27,50,1
383,383_0,COMPLETED,BoTorch,0.225556389097274267996340313402,249,26,50,1
384,384_0,COMPLETED,BoTorch,0.249812453113278265526275845332,500,39,56,2
385,325_0,COMPLETED,BoTorch,0.209802450612653124117912284419,236,27,50,1
386,386_0,COMPLETED,BoTorch,0.275068767191797958204801943793,536,47,92,4
387,325_0,COMPLETED,BoTorch,0.203800950237559397315578735288,236,27,50,1
388,326_0,COMPLETED,BoTorch,0.201800450112528118040700064739,238,27,50,1
389,212_0,COMPLETED,BoTorch,0.221305326331582841170586561930,100,10,50,1
390,381_0,COMPLETED,BoTorch,0.206801700425106260716745509853,235,27,50,1
391,325_0,COMPLETED,BoTorch,0.209802450612653124117912284419,236,27,50,1
392,392_0,COMPLETED,BoTorch,0.227806951737934526569517856842,404,31,64,1
393,325_0,COMPLETED,BoTorch,0.209802450612653124117912284419,236,27,50,1
394,394_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,28,50,1
395,395_0,COMPLETED,BoTorch,0.222805701425356383893472411728,241,28,50,1
396,396_0,COMPLETED,BoTorch,0.199299824956239102213828573440,243,28,50,1
397,394_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,28,50,1
398,395_0,COMPLETED,BoTorch,0.222805701425356383893472411728,241,28,50,1
399,399_0,COMPLETED,BoTorch,0.265316329082270541128707463940,280,27,80,1
400,117_0,COMPLETED,BoTorch,0.224306076519129815594055799011,100,50,50,1
401,394_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,28,50,1
402,396_0,COMPLETED,BoTorch,0.199299824956239102213828573440,243,28,50,1
403,403_0,COMPLETED,BoTorch,0.265066266566641672852711053565,501,23,156,1
404,396_0,COMPLETED,BoTorch,0.199299824956239102213828573440,243,28,50,1
405,394_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,28,50,1
406,406_0,COMPLETED,BoTorch,0.220055013753438388768302047538,348,10,50,1
407,394_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,28,50,1
408,408_0,COMPLETED,BoTorch,0.214303575893973530241964908782,446,10,50,1
409,409_0,COMPLETED,BoTorch,0.208302075518879692417328897136,214,25,50,1
410,410_0,COMPLETED,BoTorch,0.216054013503375830218544706440,445,10,50,1
411,411_0,COMPLETED,BoTorch,0.222805701425356383893472411728,506,10,50,1
412,412_0,COMPLETED,BoTorch,0.226806701675418831420927290310,441,10,50,1
413,413_0,COMPLETED,BoTorch,0.225056264066016531444347492652,414,38,52,1
414,413_0,COMPLETED,BoTorch,0.225056264066016531444347492652,414,38,52,1
415,415_0,COMPLETED,BoTorch,0.214303575893973530241964908782,446,16,50,1
416,416_0,COMPLETED,BoTorch,0.232558139534883689947264429065,525,10,50,1
417,417_0,COMPLETED,BoTorch,0.266316579144786236277298030473,283,33,91,5
418,412_0,COMPLETED,BoTorch,0.226806701675418831420927290310,441,10,50,1
419,419_0,COMPLETED,BoTorch,0.237809452363090811921608747070,499,10,64,1
420,420_0,COMPLETED,BoTorch,0.223305826456614120445465232478,484,26,50,1
421,421_0,COMPLETED,BoTorch,0.230307576894223542396389348141,442,10,60,1
422,422_0,COMPLETED,BoTorch,0.229057264316078978971802371234,419,16,50,1
423,297_0,COMPLETED,BoTorch,0.208052013003250824141332486761,229,27,50,1
424,303_0,COMPLETED,BoTorch,0.226806701675418831420927290310,230,27,50,1
425,317_0,COMPLETED,BoTorch,0.215053763440860246092256602424,231,27,50,1
426,426_0,COMPLETED,BoTorch,0.239559889972493111898188544728,128,44,61,4
427,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
428,303_0,COMPLETED,BoTorch,0.224056014003500836295756926120,230,27,50,1
429,429_0,COMPLETED,BoTorch,0.205551387846961697292158532946,107,42,51,3
430,299_0,COMPLETED,BoTorch,0.199049762440610122915529700549,228,27,50,1
431,297_0,COMPLETED,BoTorch,0.209552388097024255841915874043,229,27,50,1
432,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
433,433_0,COMPLETED,BoTorch,0.229557389347336826546097654500,468,49,62,2
434,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
435,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
436,297_0,COMPLETED,BoTorch,0.208052013003250824141332486761,229,27,50,1
437,286_0,COMPLETED,BoTorch,0.194548637159289827813779538701,226,27,50,1
438,438_0,COMPLETED,BoTorch,0.197049262315578843640651030000,227,27,50,1
439,286_0,COMPLETED,BoTorch,0.194548637159289827813779538701,226,27,50,1
440,440_0,COMPLETED,BoTorch,0.265816454113528388703002747206,100,36,149,2
441,441_0,COMPLETED,BoTorch,0.291572893223305817933521666419,1000,46,60,4
442,442_0,COMPLETED,BoTorch,0.262565641410352546003537099750,329,31,109,2
443,443_0,COMPLETED,BoTorch,0.222555638909727404595173538837,101,50,50,1
444,444_0,COMPLETED,BoTorch,0.201800450112528118040700064739,234,49,52,1
445,286_0,COMPLETED,BoTorch,0.194548637159289827813779538701,226,27,50,1
446,286_0,COMPLETED,BoTorch,0.194548637159289827813779538701,226,27,50,1
447,447_0,COMPLETED,BoTorch,0.218304576144035977769419787364,235,50,69,2
448,448_0,COMPLETED,BoTorch,0.214303575893973530241964908782,236,41,73,2
449,438_0,COMPLETED,BoTorch,0.195548887221805411940067642718,227,27,50,1
450,438_0,COMPLETED,BoTorch,0.195548887221805411940067642718,227,27,50,1
451,451_0,COMPLETED,BoTorch,0.214803700925231266793957729533,215,25,50,1
452,452_0,COMPLETED,BoTorch,0.219804951237809409470003174647,100,26,50,1
453,208_0,COMPLETED,BoTorch,0.208052013003250824141332486761,216,25,50,1
454,454_0,COMPLETED,BoTorch,0.243060765191297822873650602560,628,25,63,2
455,208_0,COMPLETED,BoTorch,0.207801950487621955865336076386,216,25,50,1
456,456_0,COMPLETED,BoTorch,0.244561140285071254574233989842,100,50,100,3
457,208_0,COMPLETED,BoTorch,0.207801950487621955865336076386,216,25,50,1
458,451_0,COMPLETED,BoTorch,0.214303575893973530241964908782,215,25,50,1
459,459_0,COMPLETED,BoTorch,0.229307326831707958270101244125,189,17,50,1
460,460_0,COMPLETED,BoTorch,0.217304326081520393643131683348,260,10,50,2
461,461_0,COMPLETED,BoTorch,0.235808952238059532646730076522,105,10,90,2
462,462_0,COMPLETED,BoTorch,0.251312828207051808249161695130,100,13,69,5
463,208_0,COMPLETED,BoTorch,0.207801950487621955865336076386,216,25,50,1
464,451_0,COMPLETED,BoTorch,0.214303575893973530241964908782,215,25,50,1
465,465_0,COMPLETED,BoTorch,0.257314328582145535051495244261,100,46,99,3
466,466_0,COMPLETED,BoTorch,0.226806701675418831420927290310,115,36,82,2
467,467_0,COMPLETED,BoTorch,0.249312328082020528974283024581,261,30,107,3
468,468_0,COMPLETED,BoTorch,0.238809702425606396047896851087,100,50,79,1
469,469_0,COMPLETED,BoTorch,0.231057764441110258246681041783,105,35,80,2
470,470_0,COMPLETED,BoTorch,0.262815703925981525301835972641,270,27,106,3
471,471_0,COMPLETED,BoTorch,0.261315328832208093601252585358,267,28,105,3
472,472_0,COMPLETED,BoTorch,0.209802450612653124117912284419,236,28,50,1
473,472_0,COMPLETED,BoTorch,0.203800950237559397315578735288,236,28,50,1
474,474_0,COMPLETED,BoTorch,0.252563140785196260651446209522,118,45,102,3
475,475_0,COMPLETED,BoTorch,0.206301575393848413142450226587,234,28,50,1
476,476_0,COMPLETED,BoTorch,0.262065516379094809451544279000,148,46,98,3
477,477_0,COMPLETED,BoTorch,0.201050262565641402190408371098,293,48,50,2
478,472_0,COMPLETED,BoTorch,0.203800950237559397315578735288,236,28,50,1
479,472_0,COMPLETED,BoTorch,0.203800950237559397315578735288,236,28,50,1
480,480_0,COMPLETED,BoTorch,0.242560640160039975299355319294,157,46,60,4
481,303_0,COMPLETED,BoTorch,0.224056014003500836295756926120,230,27,50,1
482,482_0,COMPLETED,BoTorch,0.216054013503375830218544706440,174,27,51,1
483,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
484,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
485,485_0,COMPLETED,BoTorch,0.229057264316078978971802371234,108,31,58,2
486,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
487,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
488,317_0,COMPLETED,BoTorch,0.211552888222055535116794544592,231,27,50,1
489,303_0,COMPLETED,BoTorch,0.224056014003500836295756926120,230,27,50,1
490,490_0,COMPLETED,BoTorch,0.236059014753688400922726486897,260,26,50,3
491,491_0,COMPLETED,BoTorch,0.245061265316329102148529273109,100,10,68,5
492,297_0,COMPLETED,BoTorch,0.208052013003250824141332486761,229,27,50,1
493,303_0,COMPLETED,BoTorch,0.224056014003500836295756926120,230,27,50,1
494,303_0,COMPLETED,BoTorch,0.226806701675418831420927290310,230,27,50,1
495,495_0,COMPLETED,BoTorch,0.249062265566391549675984151690,193,29,114,3
496,381_0,COMPLETED,BoTorch,0.206801700425106260716745509853,235,27,50,1
497,495_0,COMPLETED,BoTorch,0.247061765441360381423407943657,193,29,114,3
498,498_0,COMPLETED,BoTorch,0.250562640660165092398870001489,100,50,71,1
499,316_0,COMPLETED,BoTorch,0.206301575393848413142450226587,234,27,50,1
500,500_0,COMPLETED,BoTorch,0.200550137534383554616113087832,232,26,50,1
501,501_0,RUNNING,BoTorch,,169,27,87,2
502,502_0,RUNNING,BoTorch,,185,31,125,3
503,248_0,RUNNING,BoTorch,,233,27,50,1
504,504_0,RUNNING,BoTorch,,166,28,69,1
505,248_0,RUNNING,BoTorch,,233,27,50,1
506,506_0,RUNNING,BoTorch,,189,28,108,3
507,507_0,RUNNING,BoTorch,,158,27,50,3
508,501_0,RUNNING,BoTorch,,169,27,87,2
509,509_0,RUNNING,BoTorch,,162,26,73,2
Copy raw data to clipboard
Download »results.csv« as file
Copy raw data to clipboard
Download »job_infos.csv« as file
start_time,end_time,run_time,program_string,n_samples,n_permutations,update_interval,n_consecutive_deviations,result,exit_code,signal,hostname,OO_Info_runtime,OO_Info_lpd
1727501118,1727501151,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 276 n_permutations 27 update_interval 149 n_consecutive_deviations 4,276,27,149,4,0.2728182045511378,0,None,i7186,29,0.018454613653413353
1727501118,1727501152,34,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 135 n_permutations 30 update_interval 239 n_consecutive_deviations 2,135,30,239,2,0.2865716429107277,0,None,i7186,30,0.01870204393203564
1727501118,1727501154,36,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 519 n_permutations 37 update_interval 156 n_consecutive_deviations 5,519,37,156,5,0.30757689422355594,0,None,i7186,32,0.023880970242560636
1727501118,1727501155,37,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 249 n_permutations 31 update_interval 230 n_consecutive_deviations 1,249,31,230,1,0.3143285821455364,0,None,i7186,33,0.021838793031591232
1727501118,1727501155,37,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 915 n_permutations 30 update_interval 103 n_consecutive_deviations 1,915,30,103,1,0.30032508127031754,0,None,i7186,33,0.017079269817454366
1727501118,1727501156,38,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 827 n_permutations 46 update_interval 184 n_consecutive_deviations 3,827,46,184,3,0.3115778944736184,0,None,i7186,34,0.023595184510413317
1727501139,1727501170,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 460 n_permutations 32 update_interval 72 n_consecutive_deviations 3,460,32,72,3,0.24656164041010253,0,None,i7186,27,0.01317829457364341
1727501138,1727501174,36,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 662 n_permutations 44 update_interval 250 n_consecutive_deviations 1,662,44,250,1,0.3085771442860715,0,None,i7186,32,0.023809523809523808
1727501156,1727501217,61,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 245 n_permutations 31 update_interval 54 n_consecutive_deviations 2,245,31,54,2,0.20955238809702426,0,None,i7177,24,0.008823634480048583
1727501166,1727501220,54,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 338 n_permutations 13 update_interval 87 n_consecutive_deviations 5,338,13,87,5,0.2610652663165791,0,None,i7173,27,0.019042260565141286
1727501166,1727501220,54,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 380 n_permutations 33 update_interval 166 n_consecutive_deviations 2,380,33,166,2,0.2648162040510128,0,None,i7173,27,0.02094968186491067
1727501156,1727501221,65,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 261 n_permutations 27 update_interval 202 n_consecutive_deviations 2,261,27,202,2,0.2835708927231808,0,None,i7177,28,0.02107879911154259
1727501156,1727501222,66,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 499 n_permutations 36 update_interval 160 n_consecutive_deviations 4,499,36,160,4,0.29032258064516125,0,None,i7177,29,0.021974243560890224
1727501166,1727501223,57,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 396 n_permutations 44 update_interval 240 n_consecutive_deviations 3,396,44,240,3,0.2928232058014504,0,None,i7173,30,0.026852867062919575
1727501156,1727501223,67,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 438 n_permutations 11 update_interval 186 n_consecutive_deviations 2,438,11,186,2,0.2915728932233058,0,None,i7177,30,0.02189609902475619
1727501156,1727501223,67,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 573 n_permutations 31 update_interval 219 n_consecutive_deviations 1,573,31,219,1,0.2998249562390598,0,None,i7177,30,0.019004751187796945
1727501156,1727501223,67,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 699 n_permutations 37 update_interval 209 n_consecutive_deviations 5,699,37,209,5,0.28857214303575895,0,None,i7177,30,0.027179871891049683
1727501156,1727501223,67,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 871 n_permutations 50 update_interval 138 n_consecutive_deviations 1,871,50,138,1,0.31107776944236054,0,None,i7177,30,0.019460747539826136
1727501156,1727501224,68,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 830 n_permutations 29 update_interval 205 n_consecutive_deviations 3,830,29,205,3,0.32608152038009497,0,None,i7177,31,0.022559211231379276
1727501156,1727501226,70,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 958 n_permutations 14 update_interval 228 n_consecutive_deviations 3,958,14,228,3,0.3248312078019505,0,None,i7177,33,0.02882538816522312
1727501358,1727501388,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 209 n_permutations 40 update_interval 50 n_consecutive_deviations 2,209,40,50,2,0.22905726431607898,0,None,i7186,25,0.007789683269874073
1727501358,1727501388,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 164 n_permutations 26 update_interval 50 n_consecutive_deviations 2,164,26,50,2,0.20805201300325082,0,None,i7186,26,0.007230974410269234
1727501359,1727501389,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 282 n_permutations 32 update_interval 50 n_consecutive_deviations 1,282,32,50,1,0.2180545136284071,0,None,i7186,26,0.006520860984476888
1727501358,1727501389,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 164 n_permutations 31 update_interval 50 n_consecutive_deviations 3,164,31,50,3,0.22505626406601653,0,None,i7186,27,0.009062048120725833
1727501358,1727501389,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 304 n_permutations 26 update_interval 50 n_consecutive_deviations 2,304,26,50,2,0.21255313828457112,0,None,i7186,27,0.008101081874242145
1727501379,1727501407,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 32 update_interval 50 n_consecutive_deviations 2,100,32,50,2,0.23580895223805953,0,None,i7186,25,0.006657402055431891
1727501378,1727501408,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 208 n_permutations 18 update_interval 51 n_consecutive_deviations 2,208,18,51,2,0.2253063265816454,0,None,i7186,26,0.008168708843877636
1727501378,1727501409,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 186 n_permutations 32 update_interval 80 n_consecutive_deviations 2,186,32,80,2,0.23305826456614154,0,None,i7186,27,0.01168149180152181
1727501396,1727501424,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 204 n_permutations 22 update_interval 50 n_consecutive_deviations 1,204,22,50,1,0.21055263815953984,0,None,i7174,20,0.007071439991145328
1727501396,1727501424,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 126 n_permutations 18 update_interval 50 n_consecutive_deviations 3,126,18,50,3,0.2090522630657664,0,None,i7174,20,0.008167136123653555
1727501396,1727501424,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 161 n_permutations 41 update_interval 50 n_consecutive_deviations 3,161,41,50,3,0.21880470117529383,0,None,i7174,20,0.008136649547002136
1727501396,1727501425,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 40 update_interval 71 n_consecutive_deviations 1,234,40,71,1,0.21580395098774696,0,None,i7174,21,0.009469033925147953
1727501396,1727501425,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 129 n_permutations 26 update_interval 83 n_consecutive_deviations 2,129,26,83,2,0.24031007751937983,0,None,i7174,21,0.010568431581579605
1727501396,1727501425,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 42 update_interval 61 n_consecutive_deviations 2,100,42,61,2,0.24831207801950483,0,None,i7174,21,0.008374434034040425
1727501396,1727501425,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 307 n_permutations 39 update_interval 50 n_consecutive_deviations 2,307,39,50,2,0.22230557639409854,0,None,i7174,22,0.007917073608024646
1727501398,1727501426,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 141 n_permutations 30 update_interval 50 n_consecutive_deviations 1,141,30,50,1,0.21405351337834455,0,None,i7186,24,0.0062008255687110185
1727501398,1727501430,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 285 n_permutations 36 update_interval 72 n_consecutive_deviations 2,285,36,72,2,0.25356339084771196,0,None,i7186,28,0.011421973140343909
1727501418,1727501447,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 322 n_permutations 17 update_interval 50 n_consecutive_deviations 1,322,17,50,1,0.21755438859714926,0,None,i7186,25,0.007072601483704259
1727501418,1727501448,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 25 update_interval 73 n_consecutive_deviations 2,229,25,73,2,0.24081020255063768,0,None,i7186,26,0.00955000654925636
1727501418,1727501448,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 36 update_interval 82 n_consecutive_deviations 1,100,36,82,1,0.25181295323830954,0,None,i7186,27,0.009514573765392569
1727501498,1727501529,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 213 n_permutations 27 update_interval 50 n_consecutive_deviations 2,213,27,50,2,0.202050512628157,0,None,i7186,27,0.007997453908931779
1727501511,1727501540,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 21 update_interval 50 n_consecutive_deviations 1,100,21,50,1,0.22605651412853212,0,None,i7186,25,0.0059407709070124675
1727501511,1727501540,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 103 n_permutations 11 update_interval 50 n_consecutive_deviations 1,103,11,50,1,0.2145536384096024,0,None,i7186,25,0.006892852245319394
1727501511,1727501540,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 143 n_permutations 12 update_interval 50 n_consecutive_deviations 3,143,12,50,3,0.20505126281570396,0,None,i7186,26,0.008915494179667366
1727501511,1727501541,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 133 n_permutations 19 update_interval 78 n_consecutive_deviations 2,133,19,78,2,0.23980995248812198,0,None,i7186,26,0.010310269875161098
1727501618,1727501648,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 202 n_permutations 10 update_interval 50 n_consecutive_deviations 1,202,10,50,1,0.20405101275318827,0,None,i7186,26,0.007062249433326073
1727501632,1727501661,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 14 update_interval 50 n_consecutive_deviations 5,100,14,50,5,0.23130782695673924,0,None,i7186,26,0.009776253587206324
1727501632,1727501662,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 290 n_permutations 10 update_interval 50 n_consecutive_deviations 3,290,10,50,3,0.22205551387846967,0,None,i7186,26,0.008397099274818704
1727501638,1727501668,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 26 update_interval 50 n_consecutive_deviations 5,100,26,50,5,0.22205551387846967,0,None,i7186,26,0.009542158266839436
1727501638,1727501668,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 246 n_permutations 20 update_interval 50 n_consecutive_deviations 3,246,20,50,3,0.2110527631907977,0,None,i7186,26,0.008976202383929316
1727501659,1727501688,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 244 n_permutations 28 update_interval 50 n_consecutive_deviations 1,244,28,50,1,0.20055013753438355,0,None,i7186,26,0.00788143464437538
1727501659,1727501690,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 419 n_permutations 50 update_interval 50 n_consecutive_deviations 1,419,50,50,1,0.22955738934733683,0,None,i7186,27,0.007929867082155154
1727501659,1727501690,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 50 n_consecutive_deviations 4,100,10,50,4,0.2343085771442861,0,None,i7186,27,0.008860910879893885
1727501659,1727501690,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 303 n_permutations 29 update_interval 50 n_consecutive_deviations 1,303,29,50,1,0.20955238809702426,0,None,i7186,27,0.006862826817815565
1727501676,1727501704,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 50 n_consecutive_deviations 2,100,10,50,2,0.23455863965991497,0,None,i7181,21,0.006789197299324831
1727501676,1727501705,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 112 n_permutations 24 update_interval 50 n_consecutive_deviations 3,112,24,50,3,0.2145536384096024,0,None,i7181,22,0.008721568147138826
1727501679,1727501708,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 195 n_permutations 10 update_interval 50 n_consecutive_deviations 2,195,10,50,2,0.2145536384096024,0,None,i7186,25,0.008218400754034662
1727501679,1727501709,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 271 n_permutations 38 update_interval 50 n_consecutive_deviations 5,271,38,50,5,0.22605651412853212,0,None,i7186,26,0.010142779597338359
1727501679,1727501709,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 197 n_permutations 10 update_interval 50 n_consecutive_deviations 3,197,10,50,3,0.23305826456614154,0,None,i7186,27,0.009972005196421056
1727501679,1727501709,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 408 n_permutations 15 update_interval 50 n_consecutive_deviations 3,408,15,50,3,0.24381095273818454,0,None,i7186,27,0.01075944661841136
1727501779,1727501808,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 10 update_interval 50 n_consecutive_deviations 1,235,10,50,1,0.20680170042510626,0,None,i7186,26,0.007501875468867217
1727501783,1727501811,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 245 n_permutations 19 update_interval 50 n_consecutive_deviations 1,245,19,50,1,0.2010502625656414,0,None,i7186,25,0.007872503840245775
1727501799,1727501828,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 147 n_permutations 10 update_interval 50 n_consecutive_deviations 2,147,10,50,2,0.1975493873468367,0,None,i7186,26,0.007284608037255216
1727501799,1727501829,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 16 update_interval 50 n_consecutive_deviations 2,234,16,50,2,0.2073018254563641,0,None,i7186,26,0.008200163248359258
1727501799,1727501829,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 343 n_permutations 10 update_interval 50 n_consecutive_deviations 1,343,10,50,1,0.22030507626906726,0,None,i7186,26,0.007528667881256028
1727501799,1727501831,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 365 n_permutations 50 update_interval 50 n_consecutive_deviations 5,365,50,50,5,0.23305826456614154,0,None,i7186,28,0.01168149180152181
1727501812,1727501840,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 33 update_interval 50 n_consecutive_deviations 4,233,33,50,4,0.20405101275318827,0,None,i7173,24,0.010182778252702711
1727501813,1727501842,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 194 n_permutations 22 update_interval 50 n_consecutive_deviations 4,194,22,50,4,0.2263065766441611,0,None,i7186,26,0.010656510281416506
1727501813,1727501843,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 504 n_permutations 10 update_interval 50 n_consecutive_deviations 1,504,10,50,1,0.2200550137534384,0,None,i7186,27,0.008437109277319329
1727501813,1727501843,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 201 n_permutations 50 update_interval 50 n_consecutive_deviations 5,201,50,50,5,0.23480870217554384,0,None,i7186,26,0.010177544386096525
1727501963,1727501994,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 36 update_interval 50 n_consecutive_deviations 5,230,36,50,5,0.24531132783195797,0,None,i7186,28,0.011664680876101379
1727501979,1727502008,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 21 update_interval 50 n_consecutive_deviations 1,242,21,50,1,0.2083020755188797,0,None,i7186,25,0.007349294950856358
1727501979,1727502009,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 27 update_interval 50 n_consecutive_deviations 4,236,27,50,4,0.21355338834708681,0,None,i7186,26,0.009735388392552682
1727501993,1727502023,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 5,100,50,50,5,0.21930482620655167,0,None,i7186,26,0.009187079378540287
1727501993,1727502024,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 278 n_permutations 38 update_interval 50 n_consecutive_deviations 5,278,38,50,5,0.23455863965991497,0,None,i7186,27,0.009698853284749759
1727501993,1727502028,35,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 668 n_permutations 50 update_interval 50 n_consecutive_deviations 5,668,50,50,5,0.26706676669167295,0,None,i7186,30,0.01388310040473081
1727501999,1727502029,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 159 n_permutations 45 update_interval 50 n_consecutive_deviations 5,159,45,50,5,0.22655663915978996,0,None,i7186,26,0.009659391592084067
1727501999,1727502030,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 220 n_permutations 19 update_interval 50 n_consecutive_deviations 1,220,19,50,1,0.2288072018004501,0,None,i7186,27,0.006885054596982579
1727502018,1727502045,27,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 5,100,50,50,5,0.2180545136284071,0,None,i7173,23,0.008830332583145787
1727502019,1727502049,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 362 n_permutations 44 update_interval 50 n_consecutive_deviations 5,362,44,50,5,0.24256064016003998,0,None,i7186,26,0.010793238850253104
1727502019,1727502049,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 535 n_permutations 12 update_interval 50 n_consecutive_deviations 1,535,12,50,1,0.2198049512378094,0,None,i7186,26,0.007405360111957814
1727502019,1727502052,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 689 n_permutations 37 update_interval 50 n_consecutive_deviations 3,689,37,50,3,0.2628157039259815,0,None,i7186,29,0.012636492456447443
1727502174,1727502204,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 257 n_permutations 18 update_interval 50 n_consecutive_deviations 1,257,18,50,1,0.20530132533133283,0,None,i7186,26,0.007042083101420516
1727502179,1727502207,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 260 n_permutations 20 update_interval 50 n_consecutive_deviations 1,260,20,50,1,0.23305826456614154,0,None,i7186,25,0.006929698526326497
1727502199,1727502229,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 241 n_permutations 21 update_interval 50 n_consecutive_deviations 2,241,21,50,2,0.2190547636909227,0,None,i7186,26,0.007978409696763814
1727502199,1727502232,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 562 n_permutations 50 update_interval 57 n_consecutive_deviations 4,562,50,57,4,0.2558139534883721,0,None,i7186,29,0.012065516379094773
1727502199,1727502233,34,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 563 n_permutations 50 update_interval 57 n_consecutive_deviations 4,563,50,57,4,0.24756189047261812,0,None,i7186,30,0.012720922166025378
1727502199,1727502233,34,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 713 n_permutations 45 update_interval 50 n_consecutive_deviations 4,713,45,50,4,0.24381095273818454,0,None,i7186,30,0.012440610152538134
1727502205,1727502240,35,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 766 n_permutations 50 update_interval 91 n_consecutive_deviations 4,766,50,91,4,0.27431857964491124,0,None,i7186,32,0.01934694199865756
1727502219,1727502251,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 493 n_permutations 50 update_interval 50 n_consecutive_deviations 3,493,50,50,3,0.23505876469117282,0,None,i7186,28,0.010432095203288
1727502219,1727502252,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 697 n_permutations 10 update_interval 50 n_consecutive_deviations 1,697,10,50,1,0.24306076519129782,0,None,i7186,29,0.009496421724478739
1727502220,1727502253,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 562 n_permutations 50 update_interval 57 n_consecutive_deviations 4,562,50,57,4,0.2558139534883721,0,None,i7186,29,0.012065516379094773
1727502235,1727502268,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 721 n_permutations 44 update_interval 50 n_consecutive_deviations 4,721,44,50,4,0.2513128282070518,0,None,i7186,29,0.012599924174592034
1727502339,1727502369,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 278 n_permutations 10 update_interval 50 n_consecutive_deviations 1,278,10,50,1,0.2065516379094774,0,None,i7186,26,0.006697828303229653
1727502356,1727502385,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 310 n_permutations 20 update_interval 50 n_consecutive_deviations 1,310,20,50,1,0.23205801450362595,0,None,i7186,26,0.006505594652631411
1727502356,1727502385,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 336 n_permutations 23 update_interval 50 n_consecutive_deviations 1,336,23,50,1,0.21430357589397353,0,None,i7186,26,0.006896885511700505
1727502380,1727502409,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 127 n_permutations 50 update_interval 50 n_consecutive_deviations 1,127,50,50,1,0.20305076269067268,0,None,i7186,25,0.006181122745475101
1727502380,1727502410,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 319 n_permutations 23 update_interval 50 n_consecutive_deviations 1,319,23,50,1,0.22230557639409854,0,None,i7186,26,0.006878768872546005
1727502380,1727502410,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 273 n_permutations 50 update_interval 50 n_consecutive_deviations 1,273,50,50,1,0.22030507626906726,0,None,i7186,27,0.006911563956562911
1727502380,1727502410,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 252 n_permutations 13 update_interval 50 n_consecutive_deviations 2,252,13,50,2,0.22405601400350084,0,None,i7186,27,0.008035662761844307
1727502386,1727502415,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 34 update_interval 50 n_consecutive_deviations 4,100,34,50,4,0.22405601400350084,0,None,i7186,26,0.00835708927231808
1727502400,1727502428,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 123 n_permutations 50 update_interval 50 n_consecutive_deviations 1,123,50,50,1,0.21080270067516882,0,None,i7186,25,0.006531936014306607
1727502400,1727502429,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 221 n_permutations 42 update_interval 50 n_consecutive_deviations 3,221,42,50,3,0.2198049512378094,0,None,i7186,25,0.008117413968876835
1727502400,1727502429,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 265 n_permutations 50 update_interval 50 n_consecutive_deviations 3,265,50,50,3,0.21780445111277824,0,None,i7186,26,0.008482120530132533
1727502560,1727502589,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 4,100,50,50,4,0.22405601400350084,0,None,i7186,26,0.00835708927231808
1727502567,1727502595,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 36 update_interval 50 n_consecutive_deviations 4,100,36,50,4,0.22405601400350084,0,None,i7186,25,0.00835708927231808
1727502566,1727502598,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 104 n_consecutive_deviations 5,100,50,104,5,0.2585646411602901,0,None,i7186,28,0.016667210280831075
1727502580,1727502609,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 222 n_permutations 50 update_interval 50 n_consecutive_deviations 1,222,50,50,1,0.22605651412853212,0,None,i7186,26,0.006817278090014307
1727502580,1727502610,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 103 n_permutations 42 update_interval 83 n_consecutive_deviations 5,103,42,83,5,0.2468117029257314,0,None,i7186,27,0.013624095679092188
1727502597,1727502626,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 258 n_permutations 10 update_interval 50 n_consecutive_deviations 1,258,10,50,1,0.2045511377844461,0,None,i7186,26,0.0072893223305826454
1727502597,1727502628,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 88 n_consecutive_deviations 5,100,50,88,5,0.26331582895723926,0,None,i7186,28,0.015774777027590232
1727502597,1727502630,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 38 update_interval 118 n_consecutive_deviations 5,100,38,118,5,0.2745686421605401,0,None,i7186,30,0.019333780813624458
1727502620,1727502648,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 34 update_interval 50 n_consecutive_deviations 4,100,34,50,4,0.22405601400350084,0,None,i7186,25,0.00835708927231808
1727502620,1727502649,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 27 update_interval 50 n_consecutive_deviations 4,100,27,50,4,0.22155538884721182,0,None,i7186,25,0.00824225664259202
1727502620,1727502649,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 203 n_permutations 22 update_interval 50 n_consecutive_deviations 3,203,22,50,3,0.22230557639409854,0,None,i7186,25,0.009121845678811007
1727502627,1727502660,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 322 n_permutations 10 update_interval 149 n_consecutive_deviations 4,322,10,149,4,0.2773193298324581,0,None,i7186,29,0.019189007778260353
1727502778,1727502807,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 3,100,50,50,3,0.22830707676919226,0,None,i7186,26,0.007131093118107113
1727502780,1727502808,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 1,100,50,50,1,0.22430607651912982,0,None,i7186,24,0.0054234337805230525
1727502800,1727502829,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 2,100,50,50,2,0.23905976494123526,0,None,i7186,25,0.006714178544636159
1727502800,1727502829,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 30 update_interval 50 n_consecutive_deviations 1,235,30,50,1,0.2038009502375594,0,None,i7186,26,0.007182123399702384
1727502800,1727502837,37,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 1000 n_permutations 10 update_interval 50 n_consecutive_deviations 5,1000,10,50,5,0.3103275818954738,0,None,i7186,33,0.013263315828957241
1727502808,1727502845,37,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 1000 n_permutations 10 update_interval 50 n_consecutive_deviations 5,1000,10,50,5,0.3103275818954738,0,None,i7186,33,0.013263315828957241
1727502820,1727502849,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 201 n_permutations 50 update_interval 50 n_consecutive_deviations 1,201,50,50,1,0.2198049512378094,0,None,i7186,25,0.006808153651316056
1727502820,1727502850,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1,214,32,50,1,0.2073018254563641,0,None,i7186,26,0.0067907601900475114
1727502838,1727502867,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 162 n_permutations 50 update_interval 50 n_consecutive_deviations 2,162,50,50,2,0.2208052013003251,0,None,i7186,25,0.007018421271984663
1727502838,1727502867,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 196 n_permutations 23 update_interval 50 n_consecutive_deviations 2,196,23,50,2,0.2110527631907977,0,None,i7186,25,0.007833776625974676
1727502838,1727502873,35,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 714 n_permutations 35 update_interval 50 n_consecutive_deviations 5,714,35,50,5,0.24256064016003998,0,None,i7186,32,0.014262494194977316
1727502860,1727502891,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 28 update_interval 50 n_consecutive_deviations 1,227,28,50,1,0.19704926231557884,0,None,i7186,25,0.007061289131806762
1727502860,1727502891,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 334 n_permutations 50 update_interval 50 n_consecutive_deviations 2,334,50,50,2,0.22305576394098525,0,None,i7186,26,0.007902919126007917
1727503040,1727503070,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 299 n_permutations 50 update_interval 50 n_consecutive_deviations 3,299,50,50,3,0.24131032758189552,0,None,i7186,26,0.008902225556389096
1727503049,1727503077,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 221 n_permutations 14 update_interval 50 n_consecutive_deviations 1,221,14,50,1,0.22505626406601653,0,None,i7186,25,0.006833675632022759
1727503049,1727503078,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 268 n_permutations 32 update_interval 50 n_consecutive_deviations 3,268,32,50,3,0.22405601400350084,0,None,i7186,26,0.008890520502466043
1727503060,1727503094,34,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 250 n_consecutive_deviations 5,100,10,250,5,0.2935733933483371,0,None,i7186,30,0.02488122030507627
1727503079,1727503109,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 10 update_interval 50 n_consecutive_deviations 1,242,10,50,1,0.20705176294073513,0,None,i7186,26,0.00749756404618396
1727503079,1727503114,35,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 266 n_permutations 42 update_interval 225 n_consecutive_deviations 1,266,42,225,1,0.3053263315828957,0,None,i7186,31,0.019799067413912304
1727503079,1727503114,35,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 265 n_permutations 42 update_interval 225 n_consecutive_deviations 1,265,42,225,1,0.3008252063015754,0,None,i7186,32,0.02131782945736434
1727503101,1727503131,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 281 n_permutations 28 update_interval 50 n_consecutive_deviations 2,281,28,50,2,0.24006001500375096,0,None,i7186,26,0.007306372047557344
1727503101,1727503134,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 185 n_consecutive_deviations 5,100,10,185,5,0.2783195798949737,0,None,i7186,29,0.021387699866143008
1727503101,1727503137,36,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 11 update_interval 241 n_consecutive_deviations 5,226,11,241,5,0.29482370592648166,0,None,i7186,33,0.02892389764107693
1727503109,1727503138,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 201 n_permutations 21 update_interval 50 n_consecutive_deviations 1,201,21,50,1,0.22130532633158284,0,None,i7186,25,0.007010085854797034
1727503121,1727503154,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 101 n_permutations 31 update_interval 229 n_consecutive_deviations 5,101,31,229,5,0.2683170792698174,0,None,i7186,30,0.01966281043945197
1727503139,1727503173,34,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 222 n_permutations 19 update_interval 250 n_consecutive_deviations 4,222,19,250,4,0.2828207051762941,0,None,i7186,31,0.025649269460222196
1727503139,1727503174,35,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 20 update_interval 194 n_consecutive_deviations 5,100,20,194,5,0.29407351837959494,0,None,i7186,31,0.02484549708855785
1727503139,1727503177,38,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 163 n_permutations 12 update_interval 249 n_consecutive_deviations 5,163,12,249,5,0.3520880220055014,0,None,i7186,34,0.026347495964900314
1727503341,1727503369,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 251 n_permutations 10 update_interval 50 n_consecutive_deviations 1,251,10,50,1,0.22155538884721182,0,None,i7186,25,0.007374650680213913
1727503341,1727503371,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 30 update_interval 50 n_consecutive_deviations 1,227,30,50,1,0.19529882470617654,0,None,i7186,26,0.006870948506357359
1727503350,1727503379,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 239 n_permutations 10 update_interval 50 n_consecutive_deviations 1,239,10,50,1,0.20805201300325082,0,None,i7186,26,0.00788833572029371
1727503361,1727503389,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 29 update_interval 50 n_consecutive_deviations 1,225,29,50,1,0.20230057514378597,0,None,i7186,25,0.006977934959930458
1727503361,1727503394,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 679 n_permutations 31 update_interval 65 n_consecutive_deviations 5,679,31,65,5,0.2773193298324581,0,None,i7186,30,0.015191297824456114
1727503380,1727503409,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 10 update_interval 50 n_consecutive_deviations 1,233,10,50,1,0.20080020005001253,0,None,i7186,25,0.007351837959489872
1727503380,1727503411,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 338 n_permutations 27 update_interval 96 n_consecutive_deviations 2,338,27,96,2,0.24281070267566895,0,None,i7186,27,0.012093932574052602
1727503401,1727503430,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 243 n_permutations 10 update_interval 50 n_consecutive_deviations 1,243,10,50,1,0.1992998249562391,0,None,i7186,26,0.007903761654699389
1727503401,1727503430,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 239 n_permutations 10 update_interval 50 n_consecutive_deviations 1,239,10,50,1,0.20705176294073513,0,None,i7186,26,0.007906522085066722
1727503410,1727503439,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 5,100,50,50,5,0.2180545136284071,0,None,i7186,25,0.008830332583145787
1727503421,1727503450,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 28 update_interval 50 n_consecutive_deviations 1,226,28,50,1,0.1937984496124031,0,None,i7186,25,0.006894031200107719
1727503441,1727503470,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 30 update_interval 50 n_consecutive_deviations 1,225,30,50,1,0.20230057514378597,0,None,i7186,25,0.006977934959930458
1727503441,1727503470,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 148 n_permutations 10 update_interval 61 n_consecutive_deviations 3,148,10,61,3,0.2388097024256064,0,None,i7186,26,0.0103359173126615
1727503441,1727503470,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 257 n_permutations 12 update_interval 71 n_consecutive_deviations 1,257,12,71,1,0.22330582645661412,0,None,i7186,26,0.009513742071881607
1727503461,1727503489,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 190 n_permutations 19 update_interval 50 n_consecutive_deviations 1,190,19,50,1,0.23630907726931738,0,None,i7186,24,0.006649203284427663
1727503461,1727503490,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 148 n_permutations 10 update_interval 50 n_consecutive_deviations 3,148,10,50,3,0.22680670167541883,0,None,i7186,25,0.009023995129217087
1727503713,1727503743,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 185 n_permutations 38 update_interval 66 n_consecutive_deviations 3,185,38,66,3,0.22955738934733683,0,None,i7186,26,0.012886034008502125
1727503721,1727503749,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 31 update_interval 50 n_consecutive_deviations 1,232,31,50,1,0.20080020005001253,0,None,i7186,25,0.006683489054081702
1727503741,1727503770,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 19 update_interval 54 n_consecutive_deviations 2,236,19,54,2,0.20605151287821954,0,None,i7186,26,0.008895080913085414
1727503741,1727503771,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 104 n_permutations 28 update_interval 86 n_consecutive_deviations 3,104,28,86,3,0.24081020255063768,0,None,i7186,26,0.012938718550605393
1727503741,1727503772,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 92 n_consecutive_deviations 3,100,10,92,3,0.2610652663165791,0,None,i7186,27,0.012694840376760858
1727503761,1727503792,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 200 n_permutations 14 update_interval 97 n_consecutive_deviations 1,200,14,97,1,0.24756189047261812,0,None,i7186,27,0.011949957186266263
1727503761,1727503793,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 107 n_permutations 29 update_interval 85 n_consecutive_deviations 3,107,29,85,3,0.23930982745686424,0,None,i7186,27,0.013420021672084687
1727503773,1727503804,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 50 update_interval 96 n_consecutive_deviations 3,214,50,96,3,0.2343085771442861,0,None,i7186,27,0.01455721073125424
1727503781,1727503810,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 185 n_permutations 38 update_interval 66 n_consecutive_deviations 3,185,38,66,3,0.22955738934733683,0,None,i7186,26,0.012886034008502125
1727503801,1727503831,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 185 n_permutations 38 update_interval 66 n_consecutive_deviations 3,185,38,66,3,0.22955738934733683,0,None,i7186,26,0.012886034008502125
1727503801,1727503831,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 186 n_permutations 43 update_interval 51 n_consecutive_deviations 3,186,43,51,3,0.21680420105026255,0,None,i7186,26,0.009886192478352146
1727503821,1727503853,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 599 n_permutations 50 update_interval 50 n_consecutive_deviations 1,599,50,50,1,0.2513128282070518,0,None,i7186,28,0.008137451029424021
1727503821,1727503855,34,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 1000 n_permutations 50 update_interval 50 n_consecutive_deviations 1,1000,50,50,1,0.2818204551137784,0,None,i7186,31,0.008002000500125032
1727503833,1727503863,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 298 n_permutations 38 update_interval 65 n_consecutive_deviations 3,298,38,65,3,0.23905976494123526,0,None,i7186,27,0.010887857099409988
1727503841,1727503871,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 245 n_permutations 23 update_interval 77 n_consecutive_deviations 2,245,23,77,2,0.22830707676919226,0,None,i7186,26,0.011488983356950349
1727504102,1727504131,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 32 update_interval 50 n_consecutive_deviations 1,238,32,50,1,0.20230057514378597,0,None,i7186,25,0.007850176829921765
1727504122,1727504150,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 270 n_permutations 10 update_interval 50 n_consecutive_deviations 1,270,10,50,1,0.22455613903475868,0,None,i7186,25,0.007073802348892308
1727504122,1727504152,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 489 n_permutations 38 update_interval 64 n_consecutive_deviations 1,489,38,64,1,0.23680920230057512,0,None,i7186,27,0.009002250562640661
1727504134,1727504164,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 356 n_permutations 10 update_interval 50 n_consecutive_deviations 2,356,10,50,2,0.21880470117529383,0,None,i7186,26,0.00829619169498257
1727504142,1727504171,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 31 update_interval 50 n_consecutive_deviations 1,240,31,50,1,0.21505376344086025,0,None,i7186,25,0.0074887142838341155
1727504162,1727504192,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 466 n_permutations 18 update_interval 50 n_consecutive_deviations 2,466,18,50,2,0.2093023255813954,0,None,i7186,26,0.009404525044304553
1727504162,1727504195,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 690 n_permutations 47 update_interval 59 n_consecutive_deviations 1,690,47,59,1,0.2745686421605401,0,None,i7186,29,0.010203939873857353
1727504182,1727504211,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 108 n_permutations 28 update_interval 51 n_consecutive_deviations 1,108,28,51,1,0.20530132533133283,0,None,i7186,25,0.0069303040045725715
1727504182,1727504212,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 31 update_interval 50 n_consecutive_deviations 1,238,31,50,1,0.202050512628157,0,None,i7186,26,0.007854642231986569
1727504195,1727504224,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 222 n_permutations 10 update_interval 50 n_consecutive_deviations 2,222,10,50,2,0.22330582645661412,0,None,i7186,25,0.008050089445438283
1727504195,1727504227,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 700 n_permutations 42 update_interval 64 n_consecutive_deviations 1,700,42,64,1,0.2655663915978995,0,None,i7186,29,0.009903791737408034
1727504222,1727504255,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 677 n_permutations 42 update_interval 58 n_consecutive_deviations 5,677,42,58,5,0.2863215803950988,0,None,i7186,30,0.015460386835839392
1727504222,1727504256,34,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 872 n_permutations 23 update_interval 50 n_consecutive_deviations 1,872,23,50,1,0.25606401600400097,0,None,i7186,30,0.007874417583987834
1727504242,1727504271,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 289 n_permutations 10 update_interval 50 n_consecutive_deviations 3,289,10,50,3,0.23680920230057512,0,None,i7186,25,0.008102025506376594
1727504242,1727504272,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 358 n_permutations 16 update_interval 65 n_consecutive_deviations 2,358,16,65,2,0.22380595148787197,0,None,i7186,27,0.010197671369061778
1727504255,1727504284,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 239 n_permutations 31 update_interval 50 n_consecutive_deviations 1,239,31,50,1,0.20680170042510626,0,None,i7186,25,0.007769799592755332
1727504436,1727504466,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 223 n_permutations 32 update_interval 50 n_consecutive_deviations 1,223,32,50,1,0.20755188797199298,0,None,i7186,26,0.006682439840729413
1727504442,1727504471,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 280 n_permutations 10 update_interval 50 n_consecutive_deviations 1,280,10,50,1,0.23505876469117282,0,None,i7186,25,0.006562124402068259
1727504462,1727504491,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 219 n_permutations 32 update_interval 50 n_consecutive_deviations 1,219,32,50,1,0.2093023255813954,0,None,i7186,25,0.007091936918655893
1727504462,1727504495,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 791 n_permutations 25 update_interval 55 n_consecutive_deviations 1,791,25,55,1,0.25556389097274324,0,None,i7186,29,0.010167015438070042
1727504482,1727504511,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 263 n_permutations 10 update_interval 50 n_consecutive_deviations 1,263,10,50,1,0.23030757689422354,0,None,i7186,25,0.006976320351274259
1727504482,1727504512,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 223 n_permutations 32 update_interval 50 n_consecutive_deviations 1,223,32,50,1,0.20755188797199298,0,None,i7186,26,0.006682439840729413
1727504496,1727504525,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 221 n_permutations 32 update_interval 50 n_consecutive_deviations 1,221,32,50,1,0.22330582645661412,0,None,i7186,25,0.006862371330537553
1727504502,1727504531,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 223 n_permutations 33 update_interval 50 n_consecutive_deviations 1,223,33,50,1,0.20755188797199298,0,None,i7186,25,0.006682439840729413
1727504522,1727504552,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 222 n_permutations 33 update_interval 50 n_consecutive_deviations 1,222,33,50,1,0.22755688922230555,0,None,i7186,25,0.006683122393501602
1727504522,1727504552,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 219 n_permutations 32 update_interval 50 n_consecutive_deviations 1,219,32,50,1,0.2093023255813954,0,None,i7186,25,0.007091936918655893
1727504542,1727504572,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 268 n_permutations 10 update_interval 50 n_consecutive_deviations 1,268,10,50,1,0.21080270067516882,0,None,i7186,26,0.007185129615737267
1727504557,1727504586,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 32 update_interval 50 n_consecutive_deviations 1,226,32,50,1,0.1937984496124031,0,None,i7186,25,0.006894031200107719
1727504557,1727504586,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 320 n_permutations 10 update_interval 74 n_consecutive_deviations 1,320,10,74,1,0.24481120280070012,0,None,i7186,26,0.009454744638540588
1727504562,1727504593,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 353 n_permutations 10 update_interval 86 n_consecutive_deviations 2,353,10,86,2,0.23555888972243055,0,None,i7186,27,0.011951517291087479
1727504582,1727504615,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 336 n_permutations 25 update_interval 134 n_consecutive_deviations 2,336,25,134,2,0.25906476619154784,0,None,i7186,29,0.015951904642827374
1727504858,1727504888,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 217 n_permutations 32 update_interval 50 n_consecutive_deviations 1,217,32,50,1,0.20355088772193053,0,None,i7186,26,0.006958088728531338
1727504883,1727504911,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 25 update_interval 50 n_consecutive_deviations 1,216,25,50,1,0.21080270067516882,0,None,i7186,25,0.006953351241036065
1727504883,1727504915,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 39 update_interval 135 n_consecutive_deviations 3,232,39,135,3,0.26906726681670423,0,None,i7186,29,0.019623326884352664
1727504888,1727504918,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1,214,32,50,1,0.2073018254563641,0,None,i7186,26,0.0067907601900475114
1727504903,1727504932,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 213 n_permutations 32 update_interval 50 n_consecutive_deviations 1,213,32,50,1,0.2083020755188797,0,None,i7186,25,0.0069936839048471795
1727504918,1727504947,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 50 n_consecutive_deviations 1,100,10,50,1,0.22130532633158284,0,None,i7186,25,0.005924016215321437
1727504918,1727504949,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 258 n_permutations 35 update_interval 108 n_consecutive_deviations 2,258,35,108,2,0.24206051512878224,0,None,i7186,27,0.012898385886794277
1727504943,1727504972,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 157 n_permutations 46 update_interval 50 n_consecutive_deviations 4,157,46,50,4,0.2388097024256064,0,None,i7186,25,0.008957795004306632
1727504943,1727504973,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 19 update_interval 50 n_consecutive_deviations 5,100,19,50,5,0.23130782695673924,0,None,i7186,26,0.009776253587206324
1727504963,1727504997,34,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 844 n_permutations 31 update_interval 105 n_consecutive_deviations 2,844,31,105,2,0.2838209552388097,0,None,i7186,31,0.016276796471845236
1727504979,1727505008,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 218 n_permutations 32 update_interval 50 n_consecutive_deviations 1,218,32,50,1,0.20530132533133283,0,None,i7186,25,0.007157527086689705
1727504979,1727505009,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 32 update_interval 50 n_consecutive_deviations 1,216,32,50,1,0.2110527631907977,0,None,i7186,26,0.006839011340136622
1727505003,1727505031,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1,214,32,50,1,0.2073018254563641,0,None,i7186,25,0.0067907601900475114
1727505003,1727505031,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 26 update_interval 50 n_consecutive_deviations 1,240,26,50,1,0.21505376344086025,0,None,i7186,25,0.0074887142838341155
1727505023,1727505052,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 218 n_permutations 32 update_interval 50 n_consecutive_deviations 1,218,32,50,1,0.20530132533133283,0,None,i7186,26,0.007157527086689705
1727505039,1727505068,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 50 n_consecutive_deviations 5,100,10,50,5,0.2333083270817704,0,None,i7186,25,0.00996590611067401
1727505383,1727505413,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 28 update_interval 50 n_consecutive_deviations 1,237,28,50,1,0.2028007001750438,0,None,i7186,25,0.007983814135352018
1727505401,1727505429,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 32 update_interval 50 n_consecutive_deviations 1,216,32,50,1,0.2110527631907977,0,None,i7186,25,0.006839011340136622
1727505401,1727505432,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 178 n_permutations 33 update_interval 106 n_consecutive_deviations 4,178,33,106,4,0.2645661415353838,0,None,i7186,27,0.01451324369553927
1727505424,1727505452,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 215 n_permutations 32 update_interval 50 n_consecutive_deviations 1,215,32,50,1,0.21655413853463368,0,None,i7186,25,0.006751687921980495
1727505424,1727505453,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 215 n_permutations 32 update_interval 50 n_consecutive_deviations 1,215,32,50,1,0.21655413853463368,0,None,i7186,26,0.006751687921980495
1727505431,1727505459,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1,214,32,50,1,0.2073018254563641,0,None,i7186,25,0.0067907601900475114
1727505443,1727505475,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 695 n_permutations 45 update_interval 70 n_consecutive_deviations 2,695,45,70,2,0.24656164041010253,0,None,i7186,28,0.011980267794221282
1727505461,1727505489,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1,214,32,50,1,0.2073018254563641,0,None,i7186,25,0.0067907601900475114
1727505484,1727505512,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 50 n_consecutive_deviations 1,100,10,50,1,0.22130532633158284,0,None,i7186,24,0.005924016215321437
1727505484,1727505512,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 212 n_permutations 33 update_interval 50 n_consecutive_deviations 1,212,33,50,1,0.2198049512378094,0,None,i7186,25,0.006700087720342785
1727505504,1727505535,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 246 n_permutations 50 update_interval 114 n_consecutive_deviations 1,246,50,114,1,0.24731182795698925,0,None,i7186,28,0.012331207801950487
1727505521,1727505550,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1,214,32,50,1,0.2073018254563641,0,None,i7186,25,0.0067907601900475114
1727505522,1727505550,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1,214,32,50,1,0.2083020755188797,0,None,i7186,25,0.006882673049214685
1727505544,1727505573,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 22 update_interval 50 n_consecutive_deviations 2,100,22,50,2,0.23580895223805953,0,None,i7186,25,0.006657402055431891
1727505544,1727505573,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 239 n_permutations 27 update_interval 50 n_consecutive_deviations 1,239,27,50,1,0.20780195048762196,0,None,i7186,25,0.007751937984496123
1727505551,1727505579,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 33 update_interval 50 n_consecutive_deviations 1,214,33,50,1,0.2073018254563641,0,None,i7186,25,0.0067907601900475114
1727506064,1727506093,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 267 n_permutations 25 update_interval 50 n_consecutive_deviations 2,267,25,50,2,0.21080270067516882,0,None,i7186,25,0.008134108998947849
1727506064,1727506094,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 217 n_permutations 32 update_interval 50 n_consecutive_deviations 1,217,32,50,1,0.20355088772193053,0,None,i7186,26,0.006958088728531338
1727506084,1727506113,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 180 n_permutations 10 update_interval 50 n_consecutive_deviations 1,180,10,50,1,0.2253063265816454,0,None,i7186,25,0.006829576246520646
1727506084,1727506113,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 16 update_interval 50 n_consecutive_deviations 2,100,16,50,2,0.23855963990997753,0,None,i7186,25,0.006612308814908645
1727506094,1727506124,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 31 update_interval 104 n_consecutive_deviations 2,100,31,104,2,0.24481120280070012,0,None,i7186,26,0.011030535411630687
1727506104,1727506133,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 210 n_permutations 27 update_interval 50 n_consecutive_deviations 1,210,27,50,1,0.23480870217554384,0,None,i7186,25,0.005986790815350897
1727506124,1727506156,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 503 n_permutations 41 update_interval 126 n_consecutive_deviations 1,503,41,126,1,0.26256564141035255,0,None,i7186,28,0.014049808748483418
1727506144,1727506175,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 352 n_permutations 10 update_interval 57 n_consecutive_deviations 3,352,10,57,3,0.24006001500375096,0,None,i7186,27,0.010575012174096154
1727506154,1727506183,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 28 update_interval 50 n_consecutive_deviations 2,100,28,50,2,0.2370592648162041,0,None,i7186,25,0.006636905127921324
1727506164,1727506193,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 223 n_permutations 28 update_interval 50 n_consecutive_deviations 1,223,28,50,1,0.20755188797199298,0,None,i7186,24,0.006682439840729413
1727506185,1727506213,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 191 n_permutations 24 update_interval 50 n_consecutive_deviations 3,191,24,50,3,0.21955488872218054,0,None,i7186,25,0.008986289125472858
1727506185,1727506214,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 27 update_interval 50 n_consecutive_deviations 1,233,27,50,1,0.19879969992498125,0,None,i7186,26,0.007264111109744649
1727506205,1727506233,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 215 n_permutations 32 update_interval 50 n_consecutive_deviations 1,215,32,50,1,0.21655413853463368,0,None,i7186,25,0.006751687921980495
1727506215,1727506249,34,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 713 n_permutations 50 update_interval 63 n_consecutive_deviations 5,713,50,63,5,0.25431357839459867,0,None,i7186,30,0.01614987080103359
1727506225,1727506253,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1,214,32,50,1,0.2073018254563641,0,None,i7186,25,0.0067907601900475114
1727506245,1727506273,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 32 update_interval 50 n_consecutive_deviations 1,216,32,50,1,0.2110527631907977,0,None,i7186,25,0.006839011340136622
1727506245,1727506275,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 321 n_permutations 25 update_interval 50 n_consecutive_deviations 5,321,25,50,5,0.23980995248812198,0,None,i7186,26,0.012184864397917662
1727506517,1727506546,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 219 n_permutations 33 update_interval 50 n_consecutive_deviations 1,219,33,50,1,0.2090522630657664,0,None,i7186,25,0.006981584105703846
1727506545,1727506574,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 220 n_permutations 33 update_interval 50 n_consecutive_deviations 1,220,33,50,1,0.23030757689422354,0,None,i7186,25,0.006747588536478382
1727506545,1727506574,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 263 n_permutations 29 update_interval 50 n_consecutive_deviations 1,263,29,50,1,0.2298074518629657,0,None,i7186,25,0.006868383762607319
1727506565,1727506594,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 220 n_permutations 33 update_interval 50 n_consecutive_deviations 1,220,33,50,1,0.23030757689422354,0,None,i7186,26,0.006747588536478382
1727506577,1727506611,34,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 768 n_permutations 17 update_interval 105 n_consecutive_deviations 1,768,17,105,1,0.27081770442610653,0,None,i7186,31,0.015462198883054097
1727506585,1727506613,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 220 n_permutations 33 update_interval 50 n_consecutive_deviations 1,220,33,50,1,0.23030757689422354,0,None,i7186,25,0.006747588536478382
1727506605,1727506634,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 220 n_permutations 33 update_interval 50 n_consecutive_deviations 1,220,33,50,1,0.2288072018004501,0,None,i7186,25,0.006772184849491061
1727506605,1727506636,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 47 update_interval 73 n_consecutive_deviations 4,100,47,73,4,0.23755938984746183,0,None,i7186,27,0.011552888222055515
1727506625,1727506653,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 220 n_permutations 33 update_interval 50 n_consecutive_deviations 1,220,33,50,1,0.2325581395348837,0,None,i7186,25,0.006710694066959363
1727506637,1727506666,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 221 n_permutations 33 update_interval 50 n_consecutive_deviations 1,221,33,50,1,0.2253063265816454,0,None,i7186,25,0.006829576246520646
1727506645,1727506675,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 218 n_permutations 33 update_interval 50 n_consecutive_deviations 1,218,33,50,1,0.20505126281570396,0,None,i7186,26,0.007161626472191818
1727506665,1727506694,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 279 n_permutations 50 update_interval 57 n_consecutive_deviations 2,279,50,57,2,0.2370592648162041,0,None,i7186,25,0.007638702128362278
1727506685,1727506716,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 164 n_permutations 35 update_interval 94 n_consecutive_deviations 3,164,35,94,3,0.26081520380095025,0,None,i7186,27,0.013610545493516235
1727507126,1727507155,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 29 update_interval 50 n_consecutive_deviations 1,227,29,50,1,0.1957989497374344,0,None,i7186,25,0.006863254275107237
1727507146,1727507174,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 275 n_permutations 10 update_interval 50 n_consecutive_deviations 2,275,10,50,2,0.21755438859714926,0,None,i7186,25,0.007858446093004732
1727507166,1727507195,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 30 update_interval 50 n_consecutive_deviations 1,226,30,50,1,0.19454863715928983,0,None,i7186,25,0.0066770423949270895
1727507166,1727507195,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 29 update_interval 50 n_consecutive_deviations 1,225,29,50,1,0.20230057514378597,0,None,i7186,25,0.006977934959930458
1727507180,1727507208,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 281 n_permutations 43 update_interval 50 n_consecutive_deviations 1,281,43,50,1,0.23755938984746183,0,None,i7186,25,0.006035090862267806
1727507206,1727507235,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 29 update_interval 50 n_consecutive_deviations 1,232,29,50,1,0.20055013753438355,0,None,i7186,25,0.00668727788007608
1727507206,1727507238,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 695 n_permutations 35 update_interval 55 n_consecutive_deviations 1,695,35,55,1,0.2495623905976494,0,None,i7186,29,0.00912437411678501
1727507226,1727507254,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 267 n_permutations 25 update_interval 50 n_consecutive_deviations 1,267,25,50,1,0.21605401350337583,0,None,i7186,25,0.006981253510098836
1727507240,1727507270,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 29 update_interval 50 n_consecutive_deviations 1,229,29,50,1,0.20805201300325082,0,None,i7186,26,0.0067790385096274065
1727507246,1727507275,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 176 n_permutations 50 update_interval 50 n_consecutive_deviations 2,176,50,50,2,0.21330332583145784,0,None,i7186,25,0.008242445226691288
1727507266,1727507296,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 453 n_permutations 50 update_interval 58 n_consecutive_deviations 2,453,50,58,2,0.22555638909727427,0,None,i7186,27,0.010408852213053264
1727507286,1727507315,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 29 update_interval 50 n_consecutive_deviations 1,225,29,50,1,0.20230057514378597,0,None,i7186,25,0.006977934959930458
1727507301,1727507329,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 29 update_interval 50 n_consecutive_deviations 1,227,29,50,1,0.1957989497374344,0,None,i7186,25,0.006863254275107237
1727507306,1727507334,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 258 n_permutations 25 update_interval 50 n_consecutive_deviations 1,258,25,50,1,0.20405101275318827,0,None,i7186,25,0.007178024014200272
1727507326,1727507356,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 279 n_permutations 50 update_interval 57 n_consecutive_deviations 2,279,50,57,2,0.2370592648162041,0,None,i7186,27,0.007638702128362278
1727507687,1727507716,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 224 n_permutations 28 update_interval 50 n_consecutive_deviations 1,224,28,50,1,0.20855213803450867,0,None,i7186,26,0.00687870380293486
1727507706,1727507735,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 28 update_interval 50 n_consecutive_deviations 1,225,28,50,1,0.20230057514378597,0,None,i7186,25,0.006977934959930458
1727507723,1727507752,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 224 n_permutations 28 update_interval 50 n_consecutive_deviations 1,224,28,50,1,0.20855213803450867,0,None,i7186,26,0.00687870380293486
1727507727,1727507756,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 27 update_interval 50 n_consecutive_deviations 1,226,27,50,1,0.19454863715928983,0,None,i7186,25,0.0066770423949270895
1727507746,1727507775,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 28 update_interval 50 n_consecutive_deviations 1,225,28,50,1,0.20330082520630155,0,None,i7186,25,0.006747840806355435
1727507753,1727507782,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 28 update_interval 50 n_consecutive_deviations 1,225,28,50,1,0.20330082520630155,0,None,i7186,25,0.006747840806355435
1727507767,1727507798,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 315 n_permutations 27 update_interval 121 n_consecutive_deviations 3,315,27,121,3,0.2460615153788447,0,None,i7186,28,0.01649370676002334
1727507783,1727507811,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 224 n_permutations 27 update_interval 50 n_consecutive_deviations 1,224,27,50,1,0.20855213803450867,0,None,i7186,24,0.00687870380293486
1727507807,1727507837,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 255 n_permutations 23 update_interval 60 n_consecutive_deviations 3,255,23,60,3,0.22205551387846967,0,None,i7186,26,0.009330110305354114
1727507814,1727507842,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 28 update_interval 50 n_consecutive_deviations 1,227,28,50,1,0.1955488872218054,0,None,i7186,25,0.0068671013907322985
1727507827,1727507855,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 28 update_interval 50 n_consecutive_deviations 1,225,28,50,1,0.20330082520630155,0,None,i7186,25,0.006747840806355435
1727507844,1727507877,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 821 n_permutations 17 update_interval 75 n_consecutive_deviations 2,821,17,75,2,0.28332083020755183,0,None,i7186,30,0.01434358589647412
1727507867,1727507895,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 28 update_interval 50 n_consecutive_deviations 1,230,28,50,1,0.22480620155038755,0,None,i7186,25,0.006044989508246628
1727507874,1727507902,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 224 n_permutations 27 update_interval 50 n_consecutive_deviations 1,224,27,50,1,0.20855213803450867,0,None,i7186,25,0.00687870380293486
1727508206,1727508238,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20955238809702426,0,None,i7186,26,0.006651662915728932
1727508227,1727508257,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 319 n_permutations 13 update_interval 120 n_consecutive_deviations 2,319,13,120,2,0.2613153288322081,0,None,i7186,27,0.01522380595148787
1727508236,1727508265,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 228 n_permutations 27 update_interval 50 n_consecutive_deviations 1,228,27,50,1,0.19904976244061012,0,None,i7186,25,0.0069196986746686675
1727508247,1727508276,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20680170042510626,0,None,i7186,25,0.006798574643660915
1727508266,1727508295,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20680170042510626,0,None,i7186,25,0.006798574643660915
1727508287,1727508316,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22430607651912982,0,None,i7186,25,0.006141241192651103
1727508287,1727508317,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 126 n_permutations 44 update_interval 61 n_consecutive_deviations 4,126,44,61,4,0.22905726431607898,0,None,i7186,26,0.011158194954143942
1727508307,1727508335,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22430607651912982,0,None,i7186,25,0.006141241192651103
1727508327,1727508357,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 318 n_permutations 15 update_interval 87 n_consecutive_deviations 1,318,15,87,1,0.22105526381595397,0,None,i7186,26,0.01026476131227929
1727508348,1727508376,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20680170042510626,0,None,i7186,25,0.006798574643660915
1727508348,1727508376,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22430607651912982,0,None,i7186,25,0.006141241192651103
1727508367,1727508397,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 228 n_permutations 27 update_interval 50 n_consecutive_deviations 1,228,27,50,1,0.19904976244061012,0,None,i7186,26,0.0069196986746686675
1727508387,1727508416,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22430607651912982,0,None,i7186,25,0.006141241192651103
1727508387,1727508416,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20680170042510626,0,None,i7186,25,0.006798574643660915
1727508408,1727508437,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 26 update_interval 50 n_consecutive_deviations 1,240,26,50,1,0.21230307576894225,0,None,i7186,25,0.007407024169835562
1727508779,1727508808,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22430607651912982,0,None,i7186,25,0.006141241192651103
1727508808,1727508837,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 27 update_interval 50 n_consecutive_deviations 1,233,27,50,1,0.1992998249562391,0,None,i7186,25,0.007138881494567189
1727508808,1727508837,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 146 n_permutations 31 update_interval 74 n_consecutive_deviations 2,146,31,74,2,0.2200550137534384,0,None,i7186,25,0.009170770953607967
1727508828,1727508857,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 27 update_interval 50 n_consecutive_deviations 1,232,27,50,1,0.20055013753438355,0,None,i7186,26,0.00668727788007608
1727508839,1727508868,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 27 update_interval 50 n_consecutive_deviations 1,234,27,50,1,0.2063015753938484,0,None,i7186,25,0.007141129544681253
1727508848,1727508877,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 231 n_permutations 27 update_interval 50 n_consecutive_deviations 1,231,27,50,1,0.21605401350337583,0,None,i7186,25,0.006654007251812953
1727508868,1727508898,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 21 update_interval 50 n_consecutive_deviations 3,237,21,50,3,0.21405351337834455,0,None,i7186,26,0.009301238353066527
1727508888,1727508916,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 248 n_permutations 25 update_interval 50 n_consecutive_deviations 1,248,25,50,1,0.20680170042510626,0,None,i7186,24,0.008057569948042567
1727508908,1727508943,35,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 903 n_permutations 40 update_interval 66 n_consecutive_deviations 4,903,40,66,4,0.28857214303575895,0,None,i7186,31,0.014722430607651911
1727508928,1727508956,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 27 update_interval 50 n_consecutive_deviations 1,233,27,50,1,0.1992998249562391,0,None,i7186,25,0.007138881494567189
1727508948,1727508978,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 27 update_interval 50 n_consecutive_deviations 1,232,27,50,1,0.20055013753438355,0,None,i7186,25,0.00668727788007608
1727508948,1727508979,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 27 update_interval 50 n_consecutive_deviations 1,233,27,50,1,0.1992998249562391,0,None,i7186,26,0.007138881494567189
1727508968,1727508996,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 27 update_interval 50 n_consecutive_deviations 1,232,27,50,1,0.20055013753438355,0,None,i7186,24,0.00668727788007608
1727509331,1727509360,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 27 update_interval 50 n_consecutive_deviations 1,236,27,50,1,0.20980245061265312,0,None,i7186,25,0.007716214767977709
1727509351,1727509380,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 27 update_interval 50 n_consecutive_deviations 1,238,27,50,1,0.2063015753938484,0,None,i7186,25,0.00792016185864648
1727509372,1727509400,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 27 update_interval 50 n_consecutive_deviations 1,233,27,50,1,0.1992998249562391,0,None,i7186,25,0.007138881494567189
1727509372,1727509402,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 188 n_permutations 43 update_interval 94 n_consecutive_deviations 2,188,43,94,2,0.23555888972243055,0,None,i7186,27,0.012313684481726494
1727509391,1727509424,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 452 n_permutations 17 update_interval 108 n_consecutive_deviations 2,452,17,108,2,0.26906726681670423,0,None,i7186,29,0.016947418672850028
1727509412,1727509441,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 244 n_permutations 26 update_interval 50 n_consecutive_deviations 1,244,26,50,1,0.2003000750187547,0,None,i7186,25,0.007747550922818424
1727509432,1727509460,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 241 n_permutations 27 update_interval 50 n_consecutive_deviations 1,241,27,50,1,0.22280570142535638,0,None,i7186,25,0.007484013860608008
1727509442,1727509470,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 151 n_permutations 50 update_interval 57 n_consecutive_deviations 3,151,50,57,3,0.21605401350337583,0,None,i7186,25,0.009257749219913675
1727509472,1727509500,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 27 update_interval 50 n_consecutive_deviations 1,233,27,50,1,0.1992998249562391,0,None,i7186,25,0.007138881494567189
1727509472,1727509501,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 27 update_interval 50 n_consecutive_deviations 1,234,27,50,1,0.2063015753938484,0,None,i7186,26,0.007141129544681253
1727509492,1727509521,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 130 n_permutations 46 update_interval 79 n_consecutive_deviations 5,130,46,79,5,0.24631157789447367,0,None,i7186,26,0.013186629990831039
1727509502,1727509534,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 344 n_permutations 50 update_interval 96 n_consecutive_deviations 4,344,50,96,4,0.2583145786446611,0,None,i7186,28,0.016678082564119293
1727509533,1727509562,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 27 update_interval 50 n_consecutive_deviations 1,234,27,50,1,0.2063015753938484,0,None,i7186,25,0.007141129544681253
1727509912,1727509942,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1,238,26,50,1,0.202050512628157,0,None,i7186,26,0.007997453908931779
1727509932,1727509964,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 280 n_permutations 21 update_interval 186 n_consecutive_deviations 5,280,21,186,5,0.28232058014503625,0,None,i7186,28,0.01997721652635381
1727509952,1727509982,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 199 n_permutations 28 update_interval 65 n_consecutive_deviations 2,199,28,65,2,0.2325581395348837,0,None,i7186,26,0.00998420336791515
1727509972,1727510001,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1,238,26,50,1,0.2063015753938484,0,None,i7186,25,0.00792016185864648
1727509985,1727510013,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1,238,26,50,1,0.2063015753938484,0,None,i7186,25,0.00792016185864648
1727509993,1727510022,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1,238,26,50,1,0.2063015753938484,0,None,i7186,26,0.00792016185864648
1727510012,1727510041,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 26 update_interval 50 n_consecutive_deviations 1,240,26,50,1,0.21230307576894225,0,None,i7186,25,0.007407024169835562
1727510032,1727510061,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 26 update_interval 50 n_consecutive_deviations 1,237,26,50,1,0.20255063765941483,0,None,i7186,25,0.008136293332592408
1727510052,1727510083,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 421 n_permutations 37 update_interval 88 n_consecutive_deviations 3,421,37,88,3,0.24381095273818454,0,None,i7186,27,0.013727569823490356
1727510073,1727510101,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1,238,26,50,1,0.202050512628157,0,None,i7186,25,0.007997453908931779
1727510093,1727510121,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 25 update_interval 50 n_consecutive_deviations 1,242,25,50,1,0.20855213803450867,0,None,i7186,25,0.007345056603133834
1727510106,1727510135,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 26 update_interval 50 n_consecutive_deviations 1,237,26,50,1,0.2028007001750438,0,None,i7186,26,0.007983814135352018
1727510113,1727510141,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1,238,26,50,1,0.202050512628157,0,None,i7186,25,0.007854642231986569
1727510133,1727510165,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 538 n_permutations 12 update_interval 120 n_consecutive_deviations 2,538,12,120,2,0.2675668917229307,0,None,i7186,29,0.015597649412353089
1727510534,1727510563,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 26 update_interval 50 n_consecutive_deviations 1,237,26,50,1,0.2083020755188797,0,None,i7186,25,0.0080297852240838
1727510554,1727510582,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 26 update_interval 50 n_consecutive_deviations 1,242,26,50,1,0.20855213803450867,0,None,i7186,25,0.007345056603133834
1727510574,1727510607,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 476 n_permutations 45 update_interval 65 n_consecutive_deviations 3,476,45,65,3,0.2315578894723681,0,None,i7186,28,0.012069193769030493
1727510588,1727510616,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 40 update_interval 50 n_consecutive_deviations 2,100,40,50,2,0.23905976494123526,0,None,i7186,24,0.006714178544636159
1727510614,1727510644,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 239 n_permutations 26 update_interval 50 n_consecutive_deviations 1,239,26,50,1,0.20955238809702426,0,None,i7186,25,0.00772068017004251
1727510618,1727510648,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 219 n_permutations 27 update_interval 84 n_consecutive_deviations 2,219,27,84,2,0.24981245311327827,0,None,i7186,26,0.011881758318367472
1727510648,1727510677,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 241 n_permutations 26 update_interval 50 n_consecutive_deviations 1,241,26,50,1,0.22280570142535638,0,None,i7186,25,0.007484013860608008
1727510654,1727510683,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1,238,26,50,1,0.2063015753938484,0,None,i7186,25,0.00792016185864648
1727510674,1727510703,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 241 n_permutations 26 update_interval 50 n_consecutive_deviations 1,241,26,50,1,0.22280570142535638,0,None,i7186,25,0.007484013860608008
1727510695,1727510724,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 141 n_permutations 23 update_interval 59 n_consecutive_deviations 1,141,23,59,1,0.22480620155038755,0,None,i7186,25,0.007191453035672712
1727510708,1727510737,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 26 update_interval 50 n_consecutive_deviations 1,240,26,50,1,0.21230307576894225,0,None,i7186,25,0.007407024169835562
1727510735,1727510764,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 26 update_interval 50 n_consecutive_deviations 1,240,26,50,1,0.21230307576894225,0,None,i7186,26,0.007407024169835562
1727510739,1727510769,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 127 n_permutations 32 update_interval 126 n_consecutive_deviations 4,127,32,126,4,0.25531382845711426,0,None,i7186,27,0.018409364245823363
1727510769,1727510798,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 26 update_interval 50 n_consecutive_deviations 1,240,26,50,1,0.21230307576894225,0,None,i7186,25,0.007407024169835562
1727511256,1727511289,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 144 n_permutations 14 update_interval 132 n_consecutive_deviations 4,144,14,132,4,0.2848212053013254,0,None,i7186,29,0.022318079519879967
1727511281,1727511310,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 34 update_interval 58 n_consecutive_deviations 1,216,34,58,1,0.21080270067516882,0,None,i7186,25,0.008798117896821143
1727511296,1727511325,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 27 update_interval 50 n_consecutive_deviations 1,238,27,50,1,0.2063015753938484,0,None,i7186,25,0.00792016185864648
1727511311,1727511343,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 385 n_permutations 41 update_interval 114 n_consecutive_deviations 4,385,41,114,4,0.2468117029257314,0,None,i7186,28,0.01795903521334879
1727511336,1727511365,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 27 update_interval 50 n_consecutive_deviations 1,237,27,50,1,0.2028007001750438,0,None,i7186,26,0.007983814135352018
1727511356,1727511384,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 183 n_permutations 50 update_interval 50 n_consecutive_deviations 1,183,50,50,1,0.2190547636909227,0,None,i7186,25,0.0066071205301325335
1727511372,1727511400,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 1,100,50,50,1,0.22430607651912982,0,None,i7186,25,0.0054234337805230525
1727511396,1727511425,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 27 update_interval 50 n_consecutive_deviations 1,237,27,50,1,0.2028007001750438,0,None,i7186,25,0.007983814135352018
1727511396,1727511425,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 101 n_permutations 27 update_interval 50 n_consecutive_deviations 4,101,27,50,4,0.22430607651912982,0,None,i7186,25,0.009280097802228333
1727511416,1727511445,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 32 update_interval 50 n_consecutive_deviations 3,100,32,50,3,0.2218054513628407,0,None,i7186,25,0.007779722708454891
1727511432,1727511461,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 239 n_permutations 27 update_interval 50 n_consecutive_deviations 1,239,27,50,1,0.20780195048762196,0,None,i7186,25,0.007751937984496123
1727511456,1727511486,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 27 update_interval 50 n_consecutive_deviations 1,238,27,50,1,0.2063015753938484,0,None,i7186,26,0.00792016185864648
1727511476,1727511506,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 39 update_interval 50 n_consecutive_deviations 3,100,39,50,3,0.2270567641910478,0,None,i7186,26,0.0075427947896064915
1727511493,1727511521,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 253 n_permutations 25 update_interval 50 n_consecutive_deviations 1,253,25,50,1,0.2118029507376844,0,None,i7186,25,0.007545746085644218
1727511997,1727512028,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 306 n_permutations 13 update_interval 100 n_consecutive_deviations 1,306,13,100,1,0.24631157789447367,0,None,i7186,27,0.0123624656164041
1727512017,1727512045,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 27 update_interval 50 n_consecutive_deviations 1,235,27,50,1,0.20680170042510626,0,None,i7186,25,0.007132930773677026
1727512036,1727512064,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 27 update_interval 50 n_consecutive_deviations 1,235,27,50,1,0.20680170042510626,0,None,i7186,25,0.007132930773677026
1727512057,1727512085,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 249 n_permutations 26 update_interval 50 n_consecutive_deviations 1,249,26,50,1,0.22555638909727427,0,None,i7186,25,0.007434894437895189
1727512066,1727512096,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 500 n_permutations 39 update_interval 56 n_consecutive_deviations 2,500,39,56,2,0.24981245311327827,0,None,i7186,27,0.00956336645136894
1727512077,1727512106,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 27 update_interval 50 n_consecutive_deviations 1,236,27,50,1,0.20980245061265312,0,None,i7186,25,0.007716214767977709
1727512096,1727512129,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 536 n_permutations 47 update_interval 92 n_consecutive_deviations 4,536,47,92,4,0.27506876719179796,0,None,i7186,29,0.019307458443558256
1727512118,1727512147,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 27 update_interval 50 n_consecutive_deviations 1,236,27,50,1,0.2038009502375594,0,None,i7186,25,0.007686132059330622
1727512137,1727512166,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 27 update_interval 50 n_consecutive_deviations 1,238,27,50,1,0.20180045011252812,0,None,i7186,25,0.008002000500125032
1727512156,1727512185,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 50 n_consecutive_deviations 1,100,10,50,1,0.22130532633158284,0,None,i7186,25,0.005924016215321437
1727512177,1727512205,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 27 update_interval 50 n_consecutive_deviations 1,235,27,50,1,0.20680170042510626,0,None,i7186,24,0.007132930773677026
1727512197,1727512227,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 27 update_interval 50 n_consecutive_deviations 1,236,27,50,1,0.20980245061265312,0,None,i7186,26,0.007716214767977709
1727512217,1727512246,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 404 n_permutations 31 update_interval 64 n_consecutive_deviations 1,404,31,64,1,0.22780695173793453,0,None,i7186,26,0.010100085997109032
1727512238,1727512267,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 27 update_interval 50 n_consecutive_deviations 1,236,27,50,1,0.20980245061265312,0,None,i7186,25,0.007716214767977709
1727512718,1727512747,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 28 update_interval 50 n_consecutive_deviations 1,242,28,50,1,0.20855213803450867,0,None,i7186,25,0.007345056603133834
1727512729,1727512757,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 241 n_permutations 28 update_interval 50 n_consecutive_deviations 1,241,28,50,1,0.22280570142535638,0,None,i7186,25,0.007484013860608008
1727512758,1727512788,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 243 n_permutations 28 update_interval 50 n_consecutive_deviations 1,243,28,50,1,0.1992998249562391,0,None,i7186,25,0.007765099169529223
1727512778,1727512806,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 28 update_interval 50 n_consecutive_deviations 1,242,28,50,1,0.20855213803450867,0,None,i7186,25,0.007345056603133834
1727512789,1727512817,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 241 n_permutations 28 update_interval 50 n_consecutive_deviations 1,241,28,50,1,0.22280570142535638,0,None,i7186,25,0.007484013860608008
1727512798,1727512829,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 280 n_permutations 27 update_interval 80 n_consecutive_deviations 1,280,27,80,1,0.26531632908227054,0,None,i7186,27,0.00965626021890088
1727512818,1727512846,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 1,100,50,50,1,0.22430607651912982,0,None,i7186,24,0.0054234337805230525
1727512850,1727512878,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 28 update_interval 50 n_consecutive_deviations 1,242,28,50,1,0.20855213803450867,0,None,i7186,25,0.007345056603133834
1727512878,1727512907,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 243 n_permutations 28 update_interval 50 n_consecutive_deviations 1,243,28,50,1,0.1992998249562391,0,None,i7186,25,0.007765099169529223
1727512899,1727512932,33,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 501 n_permutations 23 update_interval 156 n_consecutive_deviations 1,501,23,156,1,0.2650662665666417,0,None,i7186,30,0.017129282320580145
1727512910,1727512938,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 243 n_permutations 28 update_interval 50 n_consecutive_deviations 1,243,28,50,1,0.1992998249562391,0,None,i7186,25,0.007765099169529223
1727512918,1727512947,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 28 update_interval 50 n_consecutive_deviations 1,242,28,50,1,0.20855213803450867,0,None,i7186,24,0.007345056603133834
1727512939,1727512969,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 348 n_permutations 10 update_interval 50 n_consecutive_deviations 1,348,10,50,1,0.2200550137534384,0,None,i7186,26,0.007400973050280113
1727512958,1727512987,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 28 update_interval 50 n_consecutive_deviations 1,242,28,50,1,0.20855213803450867,0,None,i7186,25,0.007345056603133834
1727513782,1727513812,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 446 n_permutations 10 update_interval 50 n_consecutive_deviations 1,446,10,50,1,0.21430357589397353,0,None,i7186,26,0.00838444905343983
1727513801,1727513829,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 25 update_interval 50 n_consecutive_deviations 1,214,25,50,1,0.2083020755188797,0,None,i7186,24,0.006882673049214685
1727513822,1727513852,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 445 n_permutations 10 update_interval 50 n_consecutive_deviations 1,445,10,50,1,0.21605401350337583,0,None,i7186,26,0.008690948247265897
1727513842,1727513871,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 506 n_permutations 10 update_interval 50 n_consecutive_deviations 1,506,10,50,1,0.22280570142535638,0,None,i7186,26,0.008217740709687225
1727513862,1727513892,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 441 n_permutations 10 update_interval 50 n_consecutive_deviations 1,441,10,50,1,0.22680670167541883,0,None,i7186,27,0.008139289724391882
1727513881,1727513911,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 414 n_permutations 38 update_interval 52 n_consecutive_deviations 1,414,38,52,1,0.22505626406601653,0,None,i7186,26,0.008337084271067767
1727513902,1727513932,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 414 n_permutations 38 update_interval 52 n_consecutive_deviations 1,414,38,52,1,0.22505626406601653,0,None,i7186,27,0.008337084271067767
1727513922,1727513951,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 446 n_permutations 16 update_interval 50 n_consecutive_deviations 1,446,16,50,1,0.21430357589397353,0,None,i7186,26,0.00838444905343983
1727513942,1727513973,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 525 n_permutations 10 update_interval 50 n_consecutive_deviations 1,525,10,50,1,0.2325581395348837,0,None,i7186,27,0.008026516433029826
1727513962,1727513992,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 283 n_permutations 33 update_interval 91 n_consecutive_deviations 5,283,33,91,5,0.26631657914478624,0,None,i7186,27,0.015649745769775774
1727513982,1727514012,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 441 n_permutations 10 update_interval 50 n_consecutive_deviations 1,441,10,50,1,0.22680670167541883,0,None,i7186,27,0.008139289724391882
1727514002,1727514032,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 499 n_permutations 10 update_interval 64 n_consecutive_deviations 1,499,10,64,1,0.2378094523630908,0,None,i7186,27,0.009397698261774745
1727514022,1727514053,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 484 n_permutations 26 update_interval 50 n_consecutive_deviations 1,484,26,50,1,0.22330582645661412,0,None,i7186,27,0.008050089445438283
1727514042,1727514072,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 442 n_permutations 10 update_interval 60 n_consecutive_deviations 1,442,10,60,1,0.23030757689422354,0,None,i7186,27,0.00914673112722625
1727514062,1727514092,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 419 n_permutations 16 update_interval 50 n_consecutive_deviations 1,419,16,50,1,0.22905726431607898,0,None,i7186,27,0.008095161045163252
1727514599,1727514628,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20805201300325082,0,None,i7186,25,0.0067790385096274065
1727514623,1727514653,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22680670167541883,0,None,i7186,25,0.006104467293293912
1727514643,1727514672,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 231 n_permutations 27 update_interval 50 n_consecutive_deviations 1,231,27,50,1,0.21505376344086025,0,None,i7186,26,0.006567026371977609
1727514659,1727514688,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 128 n_permutations 44 update_interval 61 n_consecutive_deviations 4,128,44,61,4,0.2395598899724931,0,None,i7186,25,0.010588173359129255
1727514683,1727514712,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20680170042510626,0,None,i7186,26,0.006798574643660915
1727514689,1727514718,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22405601400350084,0,None,i7186,25,0.00605586179153484
1727514720,1727514749,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 107 n_permutations 42 update_interval 51 n_consecutive_deviations 3,107,42,51,3,0.2055513878469617,0,None,i7186,25,0.008556060583773395
1727514743,1727514771,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 228 n_permutations 27 update_interval 50 n_consecutive_deviations 1,228,27,50,1,0.19904976244061012,0,None,i7186,25,0.0069196986746686675
1727514763,1727514792,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20955238809702426,0,None,i7186,25,0.006651662915728932
1727514780,1727514808,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20680170042510626,0,None,i7186,25,0.006798574643660915
1727514803,1727514834,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 468 n_permutations 49 update_interval 62 n_consecutive_deviations 2,468,49,62,2,0.22955738934733683,0,None,i7186,27,0.010573156109540205
1727514810,1727514838,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20680170042510626,0,None,i7186,25,0.006798574643660915
1727514840,1727514870,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20680170042510626,0,None,i7186,26,0.006798574643660915
1727514863,1727514891,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20805201300325082,0,None,i7186,25,0.0067790385096274065
1727515404,1727515433,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 27 update_interval 50 n_consecutive_deviations 1,226,27,50,1,0.19454863715928983,0,None,i7186,25,0.0066770423949270895
1727515444,1727515472,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 27 update_interval 50 n_consecutive_deviations 1,226,27,50,1,0.19454863715928983,0,None,i7186,25,0.0066770423949270895
1727515444,1727515474,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 27 update_interval 50 n_consecutive_deviations 1,227,27,50,1,0.19704926231557884,0,None,i7186,26,0.007061289131806762
1727515464,1727515495,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 36 update_interval 149 n_consecutive_deviations 2,100,36,149,2,0.2658164541135284,0,None,i7186,27,0.015043760940235058
1727515484,1727515519,35,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 1000 n_permutations 46 update_interval 60 n_consecutive_deviations 4,1000,46,60,4,0.2915728932233058,0,None,i7186,32,0.012975466088744407
1727515524,1727515556,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 329 n_permutations 31 update_interval 109 n_consecutive_deviations 2,329,31,109,2,0.26256564141035255,0,None,i7186,28,0.014049808748483418
1727515534,1727515562,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 101 n_permutations 50 update_interval 50 n_consecutive_deviations 1,101,50,50,1,0.2225556389097274,0,None,i7186,24,0.005666957279860506
1727515564,1727515593,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 27 update_interval 50 n_consecutive_deviations 1,226,27,50,1,0.19454863715928983,0,None,i7186,25,0.0066770423949270895
1727515564,1727515596,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 49 update_interval 52 n_consecutive_deviations 1,234,49,52,1,0.20180045011252812,0,None,i7186,28,0.006985873452490107
1727515595,1727515623,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 27 update_interval 50 n_consecutive_deviations 1,226,27,50,1,0.19454863715928983,0,None,i7186,24,0.0066770423949270895
1727515624,1727515654,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 50 update_interval 69 n_consecutive_deviations 2,235,50,69,2,0.21830457614403598,0,None,i7186,26,0.010861689781419714
1727515644,1727515674,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 41 update_interval 73 n_consecutive_deviations 2,236,41,73,2,0.21430357589397353,0,None,i7186,27,0.011252813203300824
1727515655,1727515683,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 27 update_interval 50 n_consecutive_deviations 1,227,27,50,1,0.1955488872218054,0,None,i7186,25,0.0068671013907322985
1727515684,1727515713,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 27 update_interval 50 n_consecutive_deviations 1,227,27,50,1,0.1955488872218054,0,None,i7186,25,0.0068671013907322985
1727516259,1727516288,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 215 n_permutations 25 update_interval 50 n_consecutive_deviations 1,215,25,50,1,0.21480370092523127,0,None,i7186,26,0.006888818978938283
1727516285,1727516312,27,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 26 update_interval 50 n_consecutive_deviations 1,100,26,50,1,0.2198049512378094,0,None,i7186,24,0.005704128734886424
1727516305,1727516334,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 25 update_interval 50 n_consecutive_deviations 1,216,25,50,1,0.20805201300325082,0,None,i7186,25,0.006997717171228291
1727516319,1727516351,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 628 n_permutations 25 update_interval 63 n_consecutive_deviations 2,628,25,63,2,0.24306076519129782,0,None,i7186,28,0.010779721957516405
1727516345,1727516374,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 25 update_interval 50 n_consecutive_deviations 1,216,25,50,1,0.20780195048762196,0,None,i7186,26,0.007001750437609401
1727516365,1727516394,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 100 n_consecutive_deviations 3,100,50,100,3,0.24456114028507125,0,None,i7186,26,0.013244977911144453
1727516385,1727516414,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 25 update_interval 50 n_consecutive_deviations 1,216,25,50,1,0.20780195048762196,0,None,i7186,26,0.007001750437609401
1727516405,1727516433,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 215 n_permutations 25 update_interval 50 n_consecutive_deviations 1,215,25,50,1,0.21430357589397353,0,None,i7186,25,0.006896885511700505
1727516440,1727516469,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 189 n_permutations 17 update_interval 50 n_consecutive_deviations 1,189,17,50,1,0.22930732683170796,0,None,i7186,25,0.00665488952883382
1727516465,1727516493,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 260 n_permutations 10 update_interval 50 n_consecutive_deviations 2,260,10,50,2,0.2173043260815204,0,None,i7186,25,0.008325610814468323
1727516470,1727516499,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 105 n_permutations 10 update_interval 90 n_consecutive_deviations 2,105,10,90,2,0.23580895223805953,0,None,i7186,25,0.011944162511216038
1727516501,1727516531,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 13 update_interval 69 n_consecutive_deviations 5,100,13,69,5,0.2513128282070518,0,None,i7186,26,0.012599924174592034
1727516525,1727516553,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 25 update_interval 50 n_consecutive_deviations 1,216,25,50,1,0.20780195048762196,0,None,i7186,25,0.007001750437609401
1727516545,1727516574,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 215 n_permutations 25 update_interval 50 n_consecutive_deviations 1,215,25,50,1,0.21430357589397353,0,None,i7186,25,0.006896885511700505
1727516561,1727516590,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 46 update_interval 99 n_consecutive_deviations 3,100,46,99,3,0.25731432858214554,0,None,i7186,26,0.013261936173698597
1727517211,1727517242,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 115 n_permutations 36 update_interval 82 n_consecutive_deviations 2,115,36,82,2,0.22680670167541883,0,None,i7186,25,0.01012448234009722
1727517231,1727517261,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 261 n_permutations 30 update_interval 107 n_consecutive_deviations 3,261,30,107,3,0.24931232808202053,0,None,i7186,26,0.014021362483478012
1727517251,1727517281,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 79 n_consecutive_deviations 1,100,50,79,1,0.2388097024256064,0,None,i7186,26,0.008576612238165924
1727517271,1727517300,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 105 n_permutations 35 update_interval 80 n_consecutive_deviations 2,105,35,80,2,0.23105776444111026,0,None,i7186,25,0.010534684953289604
1727517291,1727517322,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 270 n_permutations 27 update_interval 106 n_consecutive_deviations 3,270,27,106,3,0.2628157039259815,0,None,i7186,27,0.015163790947736932
1727517316,1727517347,31,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 267 n_permutations 28 update_interval 105 n_consecutive_deviations 3,267,28,105,3,0.2613153288322081,0,None,i7186,27,0.01522380595148787
1727517346,1727517375,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 28 update_interval 50 n_consecutive_deviations 1,236,28,50,1,0.20980245061265312,0,None,i7186,25,0.007716214767977709
1727517371,1727517400,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 28 update_interval 50 n_consecutive_deviations 1,236,28,50,1,0.2038009502375594,0,None,i7186,25,0.007823384417532954
1727517391,1727517423,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 118 n_permutations 45 update_interval 102 n_consecutive_deviations 3,118,45,102,3,0.25256314078519626,0,None,i7186,28,0.012559591510780921
1727517407,1727517435,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 28 update_interval 50 n_consecutive_deviations 1,234,28,50,1,0.2063015753938484,0,None,i7186,25,0.007141129544681253
1727517431,1727517463,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 148 n_permutations 46 update_interval 98 n_consecutive_deviations 3,148,46,98,3,0.2620655163790948,0,None,i7186,28,0.01460942158616577
1727517451,1727517480,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 293 n_permutations 48 update_interval 50 n_consecutive_deviations 2,293,48,50,2,0.2010502625656414,0,None,i7186,25,0.007734389737785324
1727517471,1727517501,30,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 28 update_interval 50 n_consecutive_deviations 1,236,28,50,1,0.2038009502375594,0,None,i7186,25,0.007686132059330622
1727517491,1727517519,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 28 update_interval 50 n_consecutive_deviations 1,236,28,50,1,0.2038009502375594,0,None,i7186,24,0.007823384417532954
1727518414,1727518443,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 157 n_permutations 46 update_interval 60 n_consecutive_deviations 4,157,46,60,4,0.24256064016003998,0,None,i7186,25,0.010793238850253104
1727518454,1727518483,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22405601400350084,0,None,i7186,25,0.00605586179153484
1727518463,1727518492,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 174 n_permutations 27 update_interval 51 n_consecutive_deviations 1,174,27,51,1,0.21605401350337583,0,None,i7186,25,0.00709760773526715
1727518494,1727518523,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22430607651912982,0,None,i7186,25,0.006141241192651103
1727518514,1727518542,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22430607651912982,0,None,i7186,25,0.006141241192651103
1727518524,1727518553,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 108 n_permutations 31 update_interval 58 n_consecutive_deviations 2,108,31,58,2,0.22905726431607898,0,None,i7186,25,0.008257064266066517
1727518554,1727518583,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22430607651912982,0,None,i7186,25,0.006141241192651103
1727518574,1727518602,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22430607651912982,0,None,i7186,24,0.006141241192651103
1727518594,1727518623,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 231 n_permutations 27 update_interval 50 n_consecutive_deviations 1,231,27,50,1,0.21155288822205554,0,None,i7186,25,0.006620885990728451
1727518614,1727518643,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22405601400350084,0,None,i7186,25,0.00605586179153484
1727518645,1727518674,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 260 n_permutations 26 update_interval 50 n_consecutive_deviations 3,260,26,50,3,0.2360590147536884,0,None,i7186,26,0.00882285788838514
1727518674,1727518703,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 68 n_consecutive_deviations 5,100,10,68,5,0.2450612653163291,0,None,i7186,25,0.011672035655972815
1727518695,1727518724,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1,229,27,50,1,0.20805201300325082,0,None,i7186,26,0.0067790385096274065
1727518714,1727518742,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22405601400350084,0,None,i7186,24,0.00605586179153484
1727518735,1727518763,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1,230,27,50,1,0.22680670167541883,0,None,i7186,25,0.006104467293293912
1727519702,1727519738,36,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 193 n_permutations 29 update_interval 114 n_consecutive_deviations 3,193,29,114,3,0.24906226556639155,0,None,i7186,28,0.017080357045783187
1727519729,1727519757,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 27 update_interval 50 n_consecutive_deviations 1,235,27,50,1,0.20680170042510626,0,None,i7186,25,0.007132930773677026
1727519749,1727519781,32,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 193 n_permutations 29 update_interval 114 n_consecutive_deviations 3,193,29,114,3,0.24706176544136038,0,None,i7186,28,0.01716733531208889
1727519769,1727519797,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 71 n_consecutive_deviations 1,100,50,71,1,0.2505626406601651,0,None,i7186,25,0.0071154152174407225
1727519793,1727519822,29,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 27 update_interval 50 n_consecutive_deviations 1,234,27,50,1,0.2063015753938484,0,None,i7186,25,0.007141129544681253
1727519823,1727519851,28,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 26 update_interval 50 n_consecutive_deviations 1,232,26,50,1,0.20055013753438355,0,None,i7186,24,0.00668727788007608
Copy raw data to clipboard
Download »job_infos.csv« as file
Skipped tabs:
Job-Infos
Single Logs
Copy raw data to clipboard
Download »export.html« as file
<!DOCTYPE html>
<html lang='en'>
<head>
<meta charset='UTF-8'>
<meta name='viewport' content='width=device-width, initial-scale=1.0'>
<title>Exported »s4122485/ImageBasedDriftDetector_OutdoorObjects/0« from OmniOpt2-Share</title>
<script src='https://code.jquery.com/jquery-3.7.1.js'></script>
<script src='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/gridjs.production.min.js'></script>
<script src='https://cdn.jsdelivr.net/npm/plotly.js-dist@3.0.1/plotly.min.js'></script>
<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/theme/mermaid.css'>
<style>
#share_path {
color: black;
}
.debug_log_pre {
min-width: 300px;
}
body.dark-mode {
background-color: #1e1e1e; color: #fff;
}
.plot-container {
margin-bottom: 2rem;
}
.spinner {
border: 4px solid #f3f3f3;
border-top: 4px solid #3498db;
border-radius: 50%;
width: 40px;
height: 40px;
animation: spin 2s linear infinite;
margin: auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.tabs {
margin-bottom: 20px;
}
.tab-content {
display: none;
}
.tab-content.active {
display: block;
}
pre {
color: #00CC00 !important;
background-color: black !important;
font-family: monospace !important;
line-break: anywhere;
}
menu[role="tablist"] {
display: flex;
flex-wrap: wrap;
gap: 4px;
max-width: 100%;
max-height: 100px;
overflow: scroll;
}
menu[role="tablist"] button {
white-space: nowrap;
min-width: 100px;
}
.container {
max-width: 100% !important;
}
.gridjs-sort {
min-width: 1px !important;
}
td.gridjs-td {
overflow: clip;
}
.title-bar-text {
font-size: 22px;
display: block ruby;
}
.title-bar {
height: fit-content;
}
.window {
width: fit-content;
min-width: 100%;
}
.top_link {
display: inline-block;
padding: 5px 5px;
background-color: #007bff; /* Blau, kannst du anpassen */
color: white;
text-decoration: none;
font-size: 16px;
font-weight: bold;
border-radius: 6px;
border: 2px solid #0056b3;
text-align: center;
transition: all 0.3s ease-in-out;
}
.top_link:hover {
background-color: #0056b3;
border-color: #004494;
}
.top_link:active {
background-color: #003366;
border-color: #002244;
}
button {
color: black;
}
.share_folder_buttons {
width: fit-content;
}
button {
background: #fcfcfe;
border-color: #919b9c;
border-top-color: rgb(145, 155, 156);
border-bottom-color: rgb(145, 155, 156);
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c;
}
button {
padding-bottom: 2px;
margin-top: -2px;
background-color: #ece9d8;
position: relative;
z-index: 8;
margin-left: -3px;
margin-bottom: 1px;
}
.window {
min-width: 1100px;
}
.error_text {
color: red;
}
[role="tab"] {
padding: 10px !important;
}
[role="tabpanel"] {
min-width: fit-content;
}
select {
border: 1px solid #7f9db9;
background-image: url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 -0.5 15 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e6eefc' d='M0 0h1'/%3E%3Cpath stroke='%23d1e0fd' d='M1 0h1M0 1h1m3 0h2M2 3h1M2 4h1'/%3E%3Cpath stroke='%23cad8f9' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23c4d3f7' d='M3 0h1M0 3h1M0 4h1'/%3E%3Cpath stroke='%23bfd0f8' d='M4 0h2M0 5h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 0h1M0 6h1'/%3E%3Cpath stroke='%23baccf4' d='M7 0h1m6 2h1m-1 5h1m-1 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M8 0h1M0 7h1M0 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M9 0h2M0 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 0h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 0h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 0h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 0h1'/%3E%3Cpath stroke='%23e1eafe' d='M1 1h1'/%3E%3Cpath stroke='%23dae6fe' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23d4e1fc' d='M3 1h1M1 3h1M1 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 1h1M1 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 1h1M4 2h2'/%3E%3Cpath stroke='%23cad9fd' d='M8 1h1M6 2h1M3 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M9 1h2'/%3E%3Cpath stroke='%23c5d6fc' d='M11 1h1M2 11h4'/%3E%3Cpath stroke='%23c2d3fc' d='M12 1h1m-2 1h1M1 11h1m0 1h2m-2 1h2'/%3E%3Cpath stroke='%23bccefa' d='M13 1h1m-1 1h1m-1 1h1m-1 1h1M3 15h4'/%3E%3Cpath stroke='%23b9c9f3' d='M14 1h1M3 16h4'/%3E%3Cpath stroke='%23d8e3fc' d='M2 2h1'/%3E%3Cpath stroke='%23d1defd' d='M3 2h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 2h1M4 3h3M4 4h3M3 6h1m1 0h2M1 7h1M1 8h1'/%3E%3Cpath stroke='%23c5d5fc' d='M8 2h1m-8 8h5'/%3E%3Cpath stroke='%23c5d3fc' d='M9 2h2'/%3E%3Cpath stroke='%23bed0fc' d='M12 2h1M8 3h1M8 4h1m-8 8h1m-1 1h1m0 1h1m1 0h3'/%3E%3Cpath stroke='%23cddbfc' d='M3 3h1M3 4h1M1 6h2'/%3E%3Cpath stroke='%23c8d5fb' d='M7 3h1M7 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M9 3h4M9 4h4M8 5h1M7 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 3h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23ceddfd' d='M2 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M4 5h4M1 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M9 5h2m1 0h2M1 14h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M8 6h2m2 0h2m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%234d6185' d='M4 6h1m5 0h1M3 7h3m3 0h3M4 8h3m1 0h3M5 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1m-1 1h1'/%3E%3Cpath stroke='%23cad8fd' d='M2 7h1M2 8h2'/%3E%3Cpath stroke='%23c1d3fb' d='M6 7h2M7 8h1M4 9h1'/%3E%3Cpath stroke='%23b6cefb' d='M8 7h1m2 1h1m-2 1h3m-2 1h2'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-6 6h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b4c8f6' d='M0 10h1'/%3E%3Cpath stroke='%23bdd3fb' d='M9 10h2m-4 4h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 10h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 10h1'/%3E%3Cpath stroke='%23b1c7f6' d='M0 11h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M8 11h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M9 11h4m-2 3h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 11h1m-3 4h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 11h1m-7 5h3'/%3E%3Cpath stroke='%23adc3f6' d='M0 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c2d5fc' d='M4 12h4m-4 1h4'/%3E%3Cpath stroke='%23b7d3fc' d='M9 12h2m-2 1h2m-3 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 12h1m-1 1h1'/%3E%3Cpath stroke='%23afcdfb' d='M12 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afcbfa' d='M13 12h1m-1 1h1'/%3E%3Cpath stroke='%23b2c8f4' d='M14 12h1m-1 1h1m-4 3h1'/%3E%3Cpath stroke='%23c1d2fb' d='M3 14h1'/%3E%3Cpath stroke='%23b6d1fb' d='M9 14h2'/%3E%3Cpath stroke='%23adc9f9' d='M13 14h1m-2 1h1'/%3E%3Cpath stroke='%23b1c6f3' d='M14 14h1m-3 2h1'/%3E%3Cpath stroke='%23abc1f4' d='M0 15h1'/%3E%3Cpath stroke='%23b7cbf9' d='M1 15h1'/%3E%3Cpath stroke='%23b9cefb' d='M2 15h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 15h1'/%3E%3Cpath stroke='%23b2cdfb' d='M9 15h2'/%3E%3Cpath stroke='%23aec8f7' d='M13 15h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 15h1m-2 1h1'/%3E%3Cpath stroke='%23dbe3f8' d='M0 16h1'/%3E%3Cpath stroke='%23b7c6f1' d='M1 16h1'/%3E%3Cpath stroke='%23b8c9f2' d='M2 16h1m4 0h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 16h1'/%3E%3C/svg%3E");
background-size: 15px;
font-size: 11px;
border: none;
background-color: #fff;
box-sizing: border-box;
height: 21px;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
position: relative;
padding: 5px 32px 32px 5px;
background-position: top 50% right 2px;
background-repeat: no-repeat;
border-radius: 0;
border: 1px solid black;
}
body {
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
background-color: #fafafa;
font-variant: oldstyle-nums;
text-shadow: 0 0.05em 0.1em rgba(0,0,0,0.2);
scroll-behavior: smooth;
text-wrap: balance;
text-rendering: optimizeLegibility;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
font-feature-settings: "ss02", "liga", "onum";
}
.marked_text {
background-color: yellow;
}
.time_picker_container {
font-variant: small-caps;
width: 100%;
}
.time_picker_container > input {
width: 50px;
}
#loader {
display: grid;
justify-content: center;
align-items: center;
height: 100%;
}
.no_linebreak {
line-break: auto;
}
.dark_code_bg {
background-color: #363636;
color: white;
}
.code_bg {
background-color: #C0C0C0;
}
#commands {
line-break: anywhere;
}
.color_red {
color: red;
}
.color_orange {
color: orange;
}
table > tbody > tr:nth-child(odd) {
background-color: #fafafa;
}
table > tbody > tr:nth-child(even) {
background-color: #ddd;
}
table {
border-collapse: collapse;
margin: 25px 0;
min-width: 200px;
}
th {
background-color: #4eae46;
color: #ffffff;
text-align: left;
border: 0px;
}
.error_element {
background-color: #e57373;
border-radius: 10px;
padding: 4px;
display: none;
}
button {
background-color: #4eae46;
border: 1px solid #2A8387;
border-radius: 4px;
box-shadow: rgba(0, 0, 0, 0.12) 0 1px 1px;
cursor: pointer;
display: block;
line-height: 100%;
outline: 0;
padding: 11px 15px 12px;
text-align: center;
transition: box-shadow .05s ease-in-out, opacity .05s ease-in-out;
user-select: none;
-webkit-user-select: none;
touch-action: manipulation;
}
button:hover {
box-shadow: rgba(255, 255, 255, 0.3) 0 0 2px inset, rgba(0, 0, 0, 0.4) 0 1px 2px;
text-decoration: none;
transition-duration: .15s, .15s;
}
button:active {
box-shadow: rgba(0, 0, 0, 0.15) 0 2px 4px inset, rgba(0, 0, 0, 0.4) 0 1px 1px;
}
button:disabled {
cursor: not-allowed;
opacity: .6;
}
button:disabled:active {
pointer-events: none;
}
button:disabled:hover {
box-shadow: none;
}
.half_width_td {
vertical-align: baseline;
width: 50%;
}
#scads_bar {
width: 100%;
min-height: 80px;
margin: 0;
padding: 0;
user-select: none;
user-drag: none;
-webkit-user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-select: none;
-ms-user-select: none;
display: -webkit-box;
}
.tab {
display: inline-block;
padding: 0px;
margin: 0px;
font-size: 16px;
font-weight: bold;
text-align: center;
border-radius: 25px;
text-decoration: none !important;
transition: background-color 0.3s, color 0.3s;
color: unset !important;
}
.tooltipster-base {
border: 1px solid black;
position: absolute;
border-radius: 8px;
padding: 2px;
color: white;
background-color: #61686f;
width: 70%;
min-width: 200px;
pointer-events: none;
}
td {
padding-top: 3px;
padding-bottom: 3px;
}
.left_side {
text-align: right;
}
.right_side {
text-align: left;
}
.spinner {
border: 8px solid rgba(0, 0, 0, 0.1);
border-left: 8px solid #3498db;
border-radius: 50%;
width: 50px;
height: 50px;
animation: spin 1s linear infinite;
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
#spinner-overlay {
-webkit-text-stroke: 1px black;
white !important;
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
display: flex;
justify-content: center;
align-items: center;
z-index: 9999;
}
#spinner-container {
text-align: center;
color: #fff;
display: contents;
}
#spinner-text {
font-size: 3vw;
margin-left: 10px;
}
a, a:visited, a:active, a:hover, a:link {
color: #007bff;
text-decoration: none;
}
.copy-container {
display: inline-block;
position: relative;
cursor: pointer;
margin-left: 10px;
color: blue;
}
.copy-container:hover {
text-decoration: underline;
}
.clipboard-icon {
position: absolute;
top: 5px;
right: 5px;
font-size: 1.5em;
}
#main_tab {
overflow: scroll;
width: max-content;
}
.ui-tabs .ui-tabs-nav li {
user-select: none;
}
.stacktrace_table {
background-color: black !important;
color: white !important;
}
#breadcrumb {
user-select: none;
}
#statusBar {
user-select: none;
}
.error_line {
background-color: red !important;
color: white !important;
}
.header_table {
border: 0px !important;
padding: 0px !important;
width: revert !important;
min-width: revert !important;
}
.img_auto_width {
max-width: revert !important;
}
#main_dir_or_plot_view {
display: inline-grid;
}
#refresh_button {
width: 300px;
}
._share_link {
color: black !important;
}
#footer_element {
height: 30px;
background-color: #f8f9fa;
padding: 0px;
text-align: center;
border-top: 1px solid #dee2e6;
width: 100%;
box-sizing: border-box;
position: fixed;
bottom: 0;
z-index: 2;
margin-left: -9px;
z-index: 99;
}
.switch {
position: relative;
display: inline-block;
width: 50px;
height: 26px;
}
.switch input {
opacity: 0;
width: 0;
height: 0;
}
.slider {
position: absolute;
cursor: pointer;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #ccc;
transition: .4s;
border-radius: 26px;
}
.slider:before {
position: absolute;
content: "";
height: 20px;
width: 20px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #444;
}
input:checked + .slider:before {
transform: translateX(24px);
}
.mode-text {
position: absolute;
top: 5px;
left: 65px;
font-size: 14px;
color: black;
transition: .4s;
width: 60px;
display: block;
font-size: 0.7rem;
text-align: center;
}
input:checked + .slider .mode-text {
content: "Dark Mode";
color: white;
}
#mainContent {
height: fit-content;
min-height: 100%;
}
li {
text-align: left;
}
#share_path {
margin-bottom: 20px;
margin-top: 20px;
}
#sortForm {
margin-bottom: 20px;
}
.share_folder_buttons {
margin-top: 10px;
margin-bottom: 10px;
}
.nav_tab_button {
margin: 10px;
}
.header_table {
margin: 10px;
}
.no_border {
border: unset !important;
}
.gui_table {
padding: 5px !important;
}
.gui_parameter_row {
}
.gui_parameter_row_cell {
border: unset !important;
}
.gui_param_table {
width: 95%;
margin: unset !important;
}
table td, table tr,
.parameterRow table {
padding: 2px !important;
}
.parameterRow table {
margin: 0px;
border: unset;
}
.parameterRow > td {
border: 0px !important;
}
.parameter_config_table td, .parameter_config_table tr, #config_table th, #config_table td, #hidden_config_table th, #hidden_config_table td {
border: 0px !important;
}
.green_text {
color: green;
}
.remove_parameter {
white-space: pre;
}
select {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
background-color: #fff;
color: #222;
padding: 5px 30px 5px 5px;
border: 1px solid #555;
border-radius: 5px;
cursor: pointer;
outline: none;
transition: all 0.3s ease;
background:
url("data:image/svg+xml;charset=UTF-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 10 6'%3E%3Cpath fill='%23888' d='M0 0l5 6 5-6z'/%3E%3C/svg%3E")
no-repeat right 10px center,
linear-gradient(180deg, #fff, #ecebe5 86%, #d8d0c4);
background-size: 12px, auto;
}
select:hover {
border-color: #888;
}
select:focus {
border-color: #4caf50;
box-shadow: 0 0 5px rgba(76, 175, 80, 0.5);
}
select::-ms-expand {
display: none;
}
input, textarea {
border-radius: 5px;
}
#search {
width: 200px;
max-width: 70%;
background-image: url(images/search.svg);
background-repeat: no-repeat;
background-size: auto 40px;
height: 40px;
line-height: 40px;
padding-left: 40px;
box-sizing: border-box;
}
input[type="checkbox"] {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
width: 25px;
height: 25px;
border: 2px solid #3498db;
border-radius: 5px;
background-color: #fff;
position: relative;
cursor: pointer;
transition: all 0.3s ease;
width: 25px !important;
}
input[type="checkbox"]:checked {
background-color: #3498db;
border-color: #2980b9;
}
input[type="checkbox"]:checked::before {
content: '✔';
position: absolute;
left: 4px;
top: 2px;
color: #fff;
}
input[type="checkbox"]:hover {
border-color: #2980b9;
background-color: #3caffc;
}
.toc {
margin-bottom: 20px;
}
.toc li {
margin-bottom: 5px;
}
.toc a {
text-decoration: none;
color: #007bff;
}
.toc a:hover {
text-decoration: underline;
}
.table-container {
width: 100%;
overflow-x: auto;
}
.section-header {
background-color: #1d6f9a !important;
color: white;
}
.warning {
color: red;
}
.li_list a {
text-decoration: none;
color: #007bff;
}
.gridjs-td {
white-space: nowrap;
}
th, td {
border: 1px solid gray !important;
}
.no_border {
border: 0px !important;
}
.no_break {
}
img {
user-select: none;
pointer-events: none;
}
#config_table, #hidden_config_table {
user-select: none;
}
.copy_clipboard_button {
margin-bottom: 10px;
}
.badge_table {
background-color: unset !important;
}
.make_markable {
user-select: text;
}
.header-container {
display: flex;
flex-wrap: wrap;
align-items: center;
justify-content: space-between;
gap: 1rem;
padding: 10px;
background: var(--header-bg, #fff);
border-bottom: 1px solid #ccc;
}
.header-logo-group {
display: flex;
gap: 1rem;
align-items: center;
flex: 1 1 auto;
min-width: 200px;
}
.logo-img {
max-height: 45px;
height: auto;
width: auto;
object-fit: contain;
pointer-events: unset;
}
.header-badges {
flex-direction: column;
gap: 5px;
align-items: flex-start;
flex: 0 1 auto;
margin-top: auto;
margin-bottom: auto;
}
.badge-img {
height: auto;
max-width: 130px;
}
.header-tabs {
margin-top: 10px;
display: flex;
flex-wrap: wrap;
gap: 10px;
flex: 2 1 100%;
justify-content: center;
}
.nav-tab {
display: inline-block;
text-decoration: none;
padding: 8px 16px;
border-radius: 20px;
background: linear-gradient(to right, #4a90e2, #357ABD);
color: white;
font-weight: bold;
white-space: nowrap;
transition: background 0.2s ease-in-out, transform 0.2s;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
}
.nav-tab:hover {
background: linear-gradient(to right, #5aa0f2, #4a90e2);
transform: translateY(-2px);
}
.current-tag {
padding-left: 10px;
font-size: 0.9rem;
color: #666;
}
.header-theme-toggle {
flex: 1 1 auto;
align-items: center;
margin-top: 20px;
min-width: 120px;
}
.switch {
position: relative;
display: inline-block;
width: 60px;
height: 30px;
}
.switch input {
display: none;
}
.slider {
position: absolute;
top: 0; left: 0; right: 0; bottom: 0;
background-color: #ccc;
border-radius: 34px;
cursor: pointer;
}
.slider::before {
content: "";
position: absolute;
height: 24px;
width: 24px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #2196F3;
}
input:checked + .slider::before {
transform: translateX(30px);
}
@media (max-width: 768px) {
.header-logo-group,
.header-badges,
.header-theme-toggle {
justify-content: center;
flex: 1 1 100%;
text-align: center;
}
.logo-img {
max-height: 50px;
pointer-events: unset;
}
.badge-img {
max-width: 100px;
}
.nav-tab {
font-size: 0.9rem;
padding: 6px 12px;
}
.header_button {
font-size: 2em;
}
}
.header_button {
margin-top: 20px;
margin: 5px;
}
.line_break_anywhere {
line-break: anywhere;
}
.responsive-container {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
gap: 20px;
}
.responsive-container .half {
flex: 1 1 48%;
box-sizing: border-box;
min-width: 500px;
}
.config-section table {
width: 100%;
border-collapse: collapse;
}
@media (max-width: 768px) {
.responsive-container .half {
flex: 1 1 100%;
}
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
.rotate {
animation: spin 2s linear infinite;
display: inline-block;
}
/*! XP.css v0.2.6 - https: //botoxparty.github.io/XP.css/ */
body{
color: #222
}
.surface{
background: #ece9d8
}
u{
text-decoration: none;
border-bottom: .5px solid #222
}
a{
color: #00f
}
a: focus{
outline: 1px dotted #00f
}
code,code *{
font-family: monospace
}
pre{
display: block;
padding: 12px 8px;
background-color: #000;
color: silver;
font-size: 1rem;
margin: 0;
overflow: scroll;
}
summary: focus{
outline: 1px dotted #000
}
: :-webkit-scrollbar{
width: 16px
}
: :-webkit-scrollbar: horizontal{
height: 17px
}
: :-webkit-scrollbar-track{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='2' height='2' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 0H0v1h1v1h1V1H1V0z' fill='silver'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 0H1v1H0v1h1V1h1V0z' fill='%23fff'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-color: #dfdfdf;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
: :-webkit-scrollbar-button: horizontal: end: increment,: :-webkit-scrollbar-button: horizontal: start: decrement,: :-webkit-scrollbar-button: vertical: end: increment,: :-webkit-scrollbar-button: vertical: start: decrement{
display: block
}
: :-webkit-scrollbar-button: vertical: start{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 6H7v1H6v1H5v1H4v1h7V9h-1V8H9V7H8V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 6H4v1h1v1h1v1h1v1h1V9h1V8h1V7h1V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 4H8v1H7v1H6v1H5v1h1v1h1v1h1v1h1V4z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M7 4H6v7h1v-1h1V9h1V8h1V7H9V6H8V5H7V4z' fill='%23000'/%3E%3C/svg%3E")
}
button{
border: none;
background: #ece9d8;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf;
border-radius: 0;
min-width: 75px;
min-height: 23px;
padding: 0 12px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: inset -1px -1px #fff,inset 1px 1px #0a0a0a,inset -2px -2px #dfdfdf,inset 2px 2px grey
}
button.focused,button: focus{
outline: 1px dotted #000;
outline-offset: -4px
}
label{
display: inline-flex;
align-items: center
}
textarea{
padding: 3px 4px;
border: none;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0
}
textarea: focus{
outline: none
}
select: focus option{
color: #000;
background-color: #fff
}
.vertical-bar{
width: 4px;
height: 20px;
background: silver;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
&: disabled,&: disabled+label{
color: grey;
text-shadow: 1px 1px 0 #fff
}
input[type=radio]+label{
line-height: 13px;
position: relative;
margin-left: 19px
}
input[type=radio]+label: before{
content: "";
position: absolute;
top: 0;
left: -19px;
display: inline-block;
width: 13px;
height: 13px;
margin-right: 6px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='%23fff'/%3E%3C/svg%3E")
}
input[type=radio]: active+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio]: checked+label: after{
content: "";
display: block;
width: 5px;
height: 5px;
top: 5px;
left: -14px;
position: absolute;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=radio][disabled]+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='gray'/%3E%3C/svg%3E")
}
input[type=email],input[type=password]{
padding: 3px 4px;
border: 1px solid #7f9db9;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0;
height: 21px;
line-height: 2
}
input[type=email]: focus,input[type=password]: focus{
outline: none
}
input[type=range]{
-webkit-appearance: none;
width: 100%;
background: transparent
}
input[type=range]: focus{
outline: none
}
input[type=range]: :-webkit-slider-thumb{
-webkit-appearance: none;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-webkit-slider-runnable-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range]: :-moz-range-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
.is-vertical{
display: inline-block;
width: 4px;
height: 150px;
transform: translateY(50%)
}
.is-vertical>input[type=range]{
width: 150px;
height: 4px;
margin: 0 16px 0 10px;
transform-origin: left;
transform: rotate(270deg) translateX(calc(-50% + 8px))
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-webkit-slider-thumb{
transform: translateY(-8px) scaleX(-1)
}
.is-vertical>input[type=range]: :-moz-range-thumb{
transform: translateY(2px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-webkit-slider-thumb{
transform: translateY(-10px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-moz-range-thumb{
transform: translateY(0) scaleX(-1)
}
.window{
font-size: 11px;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #dfdfdf,inset -2px -2px grey,inset 2px 2px #fff;
background: #ece9d8;
padding: 3px
}
.window fieldset{
margin-bottom: 9px
}
.title-bar{
background: #000;
padding: 3px 2px 3px 3px;
display: flex;
justify-content: space-between;
align-items: center
}
.title-bar-text{
font-weight: 700;
color: #fff;
letter-spacing: 0;
margin-right: 24px
}
.title-bar-controls button{
padding: 0;
display: block;
min-width: 16px;
min-height: 14px
}
.title-bar-controls button: focus{
outline: none
}
.window-body{
margin: 8px
}
.window-body pre{
margin: -8px
}
.status-bar{
margin: 0 1px;
display: flex;
gap: 1px
}
.status-bar-field{
box-shadow: inset -1px -1px #dfdfdf,inset 1px 1px grey;
flex-grow: 1;
padding: 2px 3px;
margin: 0
}
ul.tree-view{
display: block;
background: #fff;
padding: 6px;
margin: 0
}
ul.tree-view li{
list-style-type: none;
margin-top: 3px
}
ul.tree-view a{
text-decoration: none;
color: #000
}
ul.tree-view a: focus{
background-color: #2267cb;
color: #fff
}
ul.tree-view ul{
margin-top: 3px;
margin-left: 16px;
padding-left: 16px;
border-left: 1px dotted grey
}
ul.tree-view ul>li{
position: relative
}
ul.tree-view ul>li: before{
content: "";
display: block;
position: absolute;
left: -16px;
top: 6px;
width: 12px;
border-bottom: 1px dotted grey
}
ul.tree-view ul>li: last-child: after{
content: "";
display: block;
position: absolute;
left: -20px;
top: 7px;
bottom: 0;
width: 8px;
background: #fff
}
ul.tree-view ul details>summary: before{
margin-left: -22px;
position: relative;
z-index: 1
}
ul.tree-view details{
margin-top: 0
}
ul.tree-view details>summary: before{
text-align: center;
display: block;
float: left;
content: "+";
border: 1px solid grey;
width: 8px;
height: 9px;
line-height: 9px;
margin-right: 5px;
padding-left: 1px;
background-color: #fff
}
ul.tree-view details[open] summary{
margin-bottom: 0
}
ul.tree-view details[open]>summary: before{
content: "-"
}
fieldset{
border-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='5' height='5' fill='gray' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h5v5H0V2h2v1h1V2H0' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h4v4H0V1h1v2h2V1H0'/%3E%3C/svg%3E") 2;
padding: 10px;
padding-block-start: 8px;
margin: 0
}
legend{
background: #ece9d8
}
menu[role=tablist]{
position: relative;
margin: 0 0 -2px;
text-indent: 0;
list-style-type: none;
display: flex;
padding-left: 3px
}
menu[role=tablist] button{
z-index: 1;
display: block;
color: #222;
text-decoration: none;
min-width: unset
}
menu[role=tablist] button[aria-selected=true]{
padding-bottom: 2px;margin-top: -2px;background-color: #ece9d8;position: relative;z-index: 8;margin-left: -3px;margin-bottom: 1px
}
menu[role=tablist] button: focus{
outline: 1px dotted #222;outline-offset: -4px
}
menu[role=tablist].justified button{
flex-grow: 1;text-align: center
}
[role=tabpanel]{
padding: 14px;clear: both;background: linear-gradient(180deg,#fcfcfe,#f4f3ee);border: 1px solid #919b9c;position: relative;z-index: 2;margin-bottom: 9px
}
: :-webkit-scrollbar{
width: 17px
}
: :-webkit-scrollbar-corner{
background: #dfdfdf
}
: :-webkit-scrollbar-track: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 1' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1'/%3E%3Cpath stroke='%23f3f1ec' d='M1 0h1'/%3E%3Cpath stroke='%23f4f1ec' d='M2 0h1'/%3E%3Cpath stroke='%23f4f3ee' d='M3 0h1'/%3E%3Cpath stroke='%23f5f4ef' d='M4 0h1'/%3E%3Cpath stroke='%23f6f5f0' d='M5 0h1'/%3E%3Cpath stroke='%23f7f7f3' d='M6 0h1'/%3E%3Cpath stroke='%23f9f8f4' d='M7 0h1'/%3E%3Cpath stroke='%23f9f9f7' d='M8 0h1'/%3E%3Cpath stroke='%23fbfbf8' d='M9 0h1'/%3E%3Cpath stroke='%23fbfbf9' d='M10 0h2'/%3E%3Cpath stroke='%23fdfdfa' d='M12 0h1'/%3E%3Cpath stroke='%23fefefb' d='M13 0h3'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-track: horizontal{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 1 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1M0 16h1'/%3E%3Cpath stroke='%23f3f1ec' d='M0 1h1'/%3E%3Cpath stroke='%23f4f1ec' d='M0 2h1'/%3E%3Cpath stroke='%23f4f3ee' d='M0 3h1'/%3E%3Cpath stroke='%23f5f4ef' d='M0 4h1'/%3E%3Cpath stroke='%23f6f5f0' d='M0 5h1'/%3E%3Cpath stroke='%23f7f7f3' d='M0 6h1'/%3E%3Cpath stroke='%23f9f8f4' d='M0 7h1'/%3E%3Cpath stroke='%23f9f9f7' d='M0 8h1'/%3E%3Cpath stroke='%23fbfbf8' d='M0 9h1'/%3E%3Cpath stroke='%23fbfbf9' d='M0 10h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 12h1'/%3E%3Cpath stroke='%23fefefb' d='M0 13h1m-1 1h1m-1 1h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-position: 50%;
background-repeat: no-repeat;
background-color: #c8d6fb;
background-size: 7px;
border: 1px solid #fff;
border-radius: 2px;
box-shadow: inset -3px 0 #bad1fc,inset 1px 1px #b7caf5
}
: :-webkit-scrollbar-thumb: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 7 8' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h6M0 2h6M0 4h6M0 6h6'/%3E%3Cpath stroke='%23bad1fc' d='M6 0h1M6 2h1M6 4h1'/%3E%3Cpath stroke='%23c8d6fb' d='M0 1h1M0 3h1M0 5h1M0 7h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h6M1 3h6M1 5h6M1 7h6'/%3E%3Cpath stroke='%23bad3fc' d='M6 6h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb: horizontal{
background-size: 8px;background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 8 7' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h1m1 0h1m1 0h1m1 0h1M0 1h1m1 0h1m1 0h1m1 0h1M0 2h1m1 0h1m1 0h1m1 0h1M0 3h1m1 0h1m1 0h1m1 0h1M0 4h1m1 0h1m1 0h1m1 0h1M0 5h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23c8d6fb' d='M1 0h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h1m1 0h1m1 0h1m1 0h1M1 2h1m1 0h1m1 0h1m1 0h1M1 3h1m1 0h1m1 0h1m1 0h1M1 4h1m1 0h1m1 0h1m1 0h1M1 5h1m1 0h1m1 0h1m1 0h1M1 6h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23bad1fc' d='M0 6h1m1 0h1'/%3E%3Cpath stroke='%23bad3fc' d='M4 6h1m1 0h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: start{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h1m1 0h1'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M5 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h1m3 0h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h2M3 8h2'/%3E%3Cpath stroke='%234d6185' d='M8 5h1M7 6h3M6 7h5M5 8h3m1 0h3M4 9h3m3 0h3m-8 1h1m5 0h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1m-2 1h1m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23cad8fd' d='M4 7h2'/%3E%3Cpath stroke='%23b6cefb' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23c1d3fb' d='M8 8h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M8 9h1m-1 1h1m-3 1h2'/%3E%3Cpath stroke='%23bdd3fb' d='M9 9h1m-2 3h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M7 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h1m1 0h1m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c1d5fb' d='M8 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M6 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h3'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1M8 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h3M3 8h2'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M9 6h2m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%234d6185' d='M5 6h1m5 0h1M4 7h3m3 0h3M5 8h3m1 0h3M6 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 7h2M8 8h1'/%3E%3Cpath stroke='%23b6cefb' d='M9 7h1m2 1h1m-2 1h2'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M6 11h2'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23bdd3fb' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1M1 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 4h1M5 5h2M4 7h1M2 8h1'/%3E%3Cpath stroke='%234d6185' d='M8 4h1M7 5h3M6 6h3M5 7h3M4 8h3M5 9h3m-2 1h3m-2 1h3m-2 1h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M2 11h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M9 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23c8d6fb' d='M5 6h1M2 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1M8 7h3m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 8h2'/%3E%3Cpath stroke='%23b6cefb' d='M9 8h3M9 9h4'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 1h1m-1 4h1'/%3E%3Cpath stroke='%23bdd3fb' d='M8 9h1m-2 3h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-5 4h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%239fb5d2' d='M16 10h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M5 11h2'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%234d6185' d='M7 4h1M6 5h3M7 6h3M8 7h3M9 8h3M8 9h3m-4 1h3m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23c8d6fb' d='M8 4h1M5 6h2'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1M2 9h5'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M9 5h1m-8 6h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23c9d8fc' d='M5 5h1M4 7h3M2 8h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M7 7h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1m0 1h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h3'/%3E%3Cpath stroke='%23c1d3fb' d='M6 8h3'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 5h1'/%3E%3Cpath stroke='%23b4c8f6' d='M1 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M7 9h1m-3 2h1'/%3E%3Cpath stroke='%23b6cefb' d='M11 9h2'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23bbd3fd' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b6cdfb' d='M9 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
.window{
box-shadow: inset -1px -1px #00138c,inset 1px 1px #0831d9,inset -2px -2px #001ea0,inset 2px 2px #166aee,inset -3px -3px #003bda,inset 3px 3px #0855dd;
border-top-left-radius: 8px;
border-top-right-radius: 8px;
padding: 0 0 3px;
-webkit-font-smoothing: antialiased
}
.title-bar{
background: linear-gradient(180deg,#0997ff,#0053ee 8%,#0050ee 40%,#06f 88%,#06f 93%,#005bff 95%,#003dd7 96%,#003dd7);
padding: 3px 5px 3px 3px;
border-top: 1px solid #0831d9;
border-left: 1px solid #0831d9;
border-right: 1px solid #001ea0;
border-top-left-radius: 8px;
border-top-right-radius: 7px;
font-size: 13px;
text-shadow: 1px 1px #0f1089;
height: 21px
}
.title-bar-text{
padding-left: 3px
}
.title-bar-controls{
display: flex
}
.title-bar-controls button{
min-width: 21px;
min-height: 21px;
margin-left: 2px;
background-repeat: no-repeat;
background-position: 50%;
box-shadow: none;
background-color: #0050ee;
transition: background .1s;
border: none
}
.title-bar-controls button: active,.title-bar-controls button: focus,.title-bar-controls button: hover{
box-shadow: none!important
}
.title-bar-controls button[aria-label=Minimize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%235985f7' d='M7 5h1'/%3E%3Cpath stroke='%235381f6' d='M8 5h1M6 9h1'/%3E%3Cpath stroke='%234d7bf6' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%234677f5' d='M10 5h1'/%3E%3Cpath stroke='%234173f5' d='M11 5h1'/%3E%3Cpath stroke='%233a6ff4' d='M12 5h1'/%3E%3Cpath stroke='%23386ef4' d='M13 5h1'/%3E%3Cpath stroke='%23346cf4' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%235480f7' d='M7 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%233a6ff5' d='M11 6h1'/%3E%3Cpath stroke='%23346df4' d='M12 6h1'/%3E%3Cpath stroke='%23306bf4' d='M13 6h1'/%3E%3Cpath stroke='%232d69f4' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23507ef6' d='M7 7h1'/%3E%3Cpath stroke='%234a79f6' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236694eb' d='M19 0h1'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1m-6 6h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23427ff6' d='M9 13h1'/%3E%3Cpath stroke='%233c7ff6' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23366ef4' d='M2 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%236699f3' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23afc2ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h1'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1m-5 6h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M6 13h1'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23539fff' d='M9 13h1'/%3E%3Cpath stroke='%234fa4ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-7 7h1m-3 1h1'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m-7 7h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-1 1h1m-1 1h1M7 12h1m-2 1h1m-3 1h1m1 0h1m-3 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 5h11M5 6h11M5 7h11M5 8h1m9 0h1M5 9h1m9 0h1M5 10h1m9 0h1M5 11h1m9 0h1M5 12h1m9 0h1M5 13h1m9 0h1M5 14h1m9 0h1M5 15h11'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%23004fb4' d='M16 7h2m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1'/%3E%3Cpath stroke='%230049ae' d='M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M10 8h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 2h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h1m-6 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230051b6' d='M18 9h1m0 2h1m-1 1h1M8 14h1m10 3h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 1h1m-1 3h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h1m-4 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230049ac' d='M4 11h1m-2 1h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h1m-3 1h1m4 0h1m-7 2h1m0 3h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-1 2h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 3h1'/%3E%3Cpath stroke='%23005ec3' d='M13 13h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230060c5' d='M14 14h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23b2c3ee' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 5h1M8 5h1M6 9h1M9 5h1M8 6h1M10 5h1M11 5h1M12 5h1M13 5h1M14 5h1M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%23FFF' d='M7 6h1M8 6h1M9 6h1M10 6h1M11 6h1M12 6h1M13 6h1M14 6h1M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23FFF' d='M7 7h1'/%3E%3Cpath stroke='%234375f5' d='M8 7h1M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%23FFF' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 8h1'/%3E%3Cpath stroke='%234174f5' d='M8 8h1M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%23FFF' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%23FFF' d='M5 9h1M6 9h1M7 9h1M8 9h1M9 9h1M10 9h1M11 9h1M12 9h1M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%23FFF' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1M4 10h1'/%3E%3Cpath stroke='%23FFF' d='M5 10h1M6 10h1M7 10h1M8 10h1M9 10h1M10 10h1M11 10h1M12 10h1M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%23FFF' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%23FFF' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232673f7' d='M12 11h1'/%3E%3Cpath stroke='%23FFF' d='M13 11h1M14 11h1M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%23FFF' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232677f7' d='M12 12h1'/%3E%3Cpath stroke='%23FFF' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1M6 13h1M7 13h1'/%3E%3Cpath stroke='%23437ff6' d='M8 13h1'/%3E%3Cpath stroke='%232d7df7' d='M9 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M10 13h1M11 13h1'/%3E%3Cpath stroke='%232679f8' d='M12 13h1'/%3E%3Cpath stroke='%23FFF' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1M6 14h1'/%3E%3Cpath stroke='%232d7df7' d='M7 14h1M8 14h1M9 14h1M10 14h1M11 14h1'/%3E%3Cpath stroke='%23257af8' d='M12 14h1'/%3E%3Cpath stroke='%23FFF' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23FFF' d='M11 15h1M12 15h1M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%23FFF' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23548DFF' d='M5 13h1'/%3E%3Cpath stroke='%235991FF' d='M6 13h1'/%3E%3Cpath stroke='%235792FF' d='M7 13h1'/%3E%3Cpath stroke='%235496FF' d='M8 13h1'/%3E%3Cpath stroke='%23539CFF' d='M9 13h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 13h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23548DFF' d='M5 14h1'/%3E%3Cpath stroke='%235991FF' d='M6 14h1'/%3E%3Cpath stroke='%235792FF' d='M7 14h1'/%3E%3Cpath stroke='%235496FF' d='M8 14h1'/%3E%3Cpath stroke='%23539CFF' d='M9 14h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 14h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M12 12h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7M5 13h1'/%3E%3Cpath stroke='%23004BB0' d='M6 13h1'/%3E%3Cpath stroke='%23004DB1' d='M7 13h1'/%3E%3Cpath stroke='%23004FB4' d='M8 13h1'/%3E%3Cpath stroke='%230052B7' d='M9 13h1'/%3E%3Cpath stroke='%230055B9' d='M10 13h1'/%3E%3Cpath stroke='%230157BC' d='M11 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m1 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23004BB0' d='M6 14h1'/%3E%3Cpath stroke='%23004DB1' d='M7 14h1'/%3E%3Cpath stroke='%23004FB4' d='M8 14h1'/%3E%3Cpath stroke='%230052B7' d='M9 14h1'/%3E%3Cpath stroke='%230055B9' d='M10 14h1'/%3E%3Cpath stroke='%230157BC' d='M11 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 14h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M12 15h1M13 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1M5 14h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%2392aff9' d='M7 4h1'/%3E%3Cpath stroke='%23e1e9fd' d='M8 4h1'/%3E%3Cpath stroke='%23e0e8fd' d='M12 4h1'/%3E%3Cpath stroke='%2381a4f8' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%238eacf9' d='M6 5h1'/%3E%3Cpath stroke='%23f3f6fe' d='M7 5h1'/%3E%3Cpath stroke='%23d8e2fd' d='M9 5h1'/%3E%3Cpath stroke='%23cfdcfc' d='M10 5h1'/%3E%3Cpath stroke='%23ecf1fe' d='M11 5h1'/%3E%3Cpath stroke='%23eff4fe' d='M13 5h1'/%3E%3Cpath stroke='%23749af7' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%23d3dffd' d='M6 6h1'/%3E%3Cpath stroke='%23b2c6fb' d='M8 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%234a7bf6' d='M11 6h1'/%3E%3Cpath stroke='%23c8d7fc' d='M12 6h1'/%3E%3Cpath stroke='%23c6d6fc' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%23e6edfe' d='M6 7h1'/%3E%3Cpath stroke='%23e5ecfe' d='M7 7h1'/%3E%3Cpath stroke='%235a85f7' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%236c97f8' d='M12 7h1'/%3E%3Cpath stroke='%23cfddfd' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%2385a9f9' d='M12 8h1'/%3E%3Cpath stroke='%23cbdbfd' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235986f7' d='M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%2396b6fa' d='M11 9h1'/%3E%3Cpath stroke='%23f2f6fe' d='M12 9h1'/%3E%3Cpath stroke='%2393b6fb' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234e82f7' d='M9 10h1'/%3E%3Cpath stroke='%23cadafc' d='M10 10h1'/%3E%3Cpath stroke='%23a0c0fb' d='M13 10h1'/%3E%3Cpath stroke='%232a72f6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23bcd1fc' d='M9 11h1'/%3E%3Cpath stroke='%23dde8fd' d='M11 11h1'/%3E%3Cpath stroke='%235f97f8' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23dfe9fd' d='M9 12h1'/%3E%3Cpath stroke='%234687f7' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%235081f6' d='M5 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23d2e0fd' d='M9 13h1'/%3E%3Cpath stroke='%23edf3fe' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23467af5' d='M5 15h1'/%3E%3Cpath stroke='%23457af6' d='M6 15h1'/%3E%3Cpath stroke='%23437bf6' d='M7 15h1'/%3E%3Cpath stroke='%23417cf6' d='M8 15h1'/%3E%3Cpath stroke='%23cbdcfd' d='M9 15h1'/%3E%3Cpath stroke='%23327df7' d='M11 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%23f5f8fe' d='M9 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ee' d='M1 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b1ed' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m2 5h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2393b0ed' d='M20 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1m7 1h1'/%3E%3Cpath stroke='%239bbdff' d='M7 4h1'/%3E%3Cpath stroke='%23e3edff' d='M8 4h1'/%3E%3Cpath stroke='%23e1ebff' d='M12 4h1'/%3E%3Cpath stroke='%2387afff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1m-6 9h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%239bf' d='M6 5h1'/%3E%3Cpath stroke='%23f4f7ff' d='M7 5h1'/%3E%3Cpath stroke='%23dbe7ff' d='M9 5h1'/%3E%3Cpath stroke='%23d2e1ff' d='M10 5h1'/%3E%3Cpath stroke='%23edf3ff' d='M11 5h1'/%3E%3Cpath stroke='%23f0f5ff' d='M13 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%23548dff' d='M1 6h1m2 7h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%23d8e5ff' d='M6 6h1'/%3E%3Cpath stroke='%23b9d0ff' d='M8 6h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%23538dff' d='M11 6h1'/%3E%3Cpath stroke='%23cbdcff' d='M12 6h1'/%3E%3Cpath stroke='%23c9dbff' d='M14 6h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23e8f0ff' d='M6 7h1'/%3E%3Cpath stroke='%23e7efff' d='M7 7h1'/%3E%3Cpath stroke='%23679aff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%2374a5ff' d='M12 7h1'/%3E%3Cpath stroke='%23d1e1ff' d='M14 7h1'/%3E%3Cpath stroke='%23317aff' d='M15 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%238cb7ff' d='M12 8h1'/%3E%3Cpath stroke='%23cde0ff' d='M14 8h1'/%3E%3Cpath stroke='%232f7fff' d='M15 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%239dc5ff' d='M11 9h1'/%3E%3Cpath stroke='%23f3f8ff' d='M12 9h1'/%3E%3Cpath stroke='%239ac5ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%236297ff' d='M5 10h1'/%3E%3Cpath stroke='%235f95ff' d='M6 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235c9aff' d='M9 10h1'/%3E%3Cpath stroke='%23cee2ff' d='M10 10h1'/%3E%3Cpath stroke='%23a7d0ff' d='M13 10h1'/%3E%3Cpath stroke='%233897ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%23c2dbff' d='M9 11h1'/%3E%3Cpath stroke='%23e0efff' d='M11 11h1'/%3E%3Cpath stroke='%236eb6ff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23e2eeff' d='M9 12h1'/%3E%3Cpath stroke='%2359adff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M5 13h2'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23d6e8ff' d='M9 13h1'/%3E%3Cpath stroke='%23eef6ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528cff' d='M5 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%234d89ff' d='M6 15h1'/%3E%3Cpath stroke='%234c8cff' d='M7 15h1'/%3E%3Cpath stroke='%234d94ff' d='M8 15h1'/%3E%3Cpath stroke='%23cfe4ff' d='M9 15h1'/%3E%3Cpath stroke='%2347aaff' d='M11 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%23f6faff' d='M9 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%2393b2f1' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bdef' d='M1 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h1m5 0h9'/%3E%3Cpath stroke='%23a7bdee' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23a7bcee' d='M20 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230a4aa5' d='M7 4h1'/%3E%3Cpath stroke='%234e7ec0' d='M8 4h1'/%3E%3Cpath stroke='%23789ed1' d='M9 4h1'/%3E%3Cpath stroke='%23789ed3' d='M10 4h1'/%3E%3Cpath stroke='%23789fd4' d='M11 4h1m0 1h1'/%3E%3Cpath stroke='%235184c7' d='M12 4h1'/%3E%3Cpath stroke='%230b54b3' d='M13 4h1m0 1h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-2 1h2M7 12h1m-2 1h1m-3 1h3m-3 1h2m-2 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230949a4' d='M6 5h1'/%3E%3Cpath stroke='%23668ec8' d='M7 5h1'/%3E%3Cpath stroke='%23789dd1' d='M8 5h1M7 6h1'/%3E%3Cpath stroke='%23497cc1' d='M9 5h1'/%3E%3Cpath stroke='%234178c0' d='M10 5h1'/%3E%3Cpath stroke='%23608dcb' d='M11 5h1'/%3E%3Cpath stroke='%236693cf' d='M13 5h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230042a1' d='M5 6h1'/%3E%3Cpath stroke='%234073bb' d='M6 6h1'/%3E%3Cpath stroke='%232661b6' d='M8 6h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1'/%3E%3Cpath stroke='%230049ad' d='M10 6h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M11 6h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%234077c4' d='M12 6h1'/%3E%3Cpath stroke='%2378a1d6' d='M13 6h1'/%3E%3Cpath stroke='%234079c4' d='M14 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%235684c6' d='M6 7h1'/%3E%3Cpath stroke='%235686c8' d='M7 7h1'/%3E%3Cpath stroke='%230049ac' d='M8 7h1m-4 3h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230a53b5' d='M12 7h1'/%3E%3Cpath stroke='%2378a1d7' d='M13 7h1'/%3E%3Cpath stroke='%234881c8' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m0 1h1m0 1h1M8 12h1m-2 3h1m0 3h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230046a8' d='M5 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%23145db9' d='M12 8h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 8h1'/%3E%3Cpath stroke='%23457fc8' d='M14 8h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1M8 14h1m-1 1h1m10 2h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%230050b5' d='M16 8h2m1 2h1M8 13h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230047a8' d='M4 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1m-2 1h1'/%3E%3Cpath stroke='%231b62bd' d='M11 9h1'/%3E%3Cpath stroke='%236899d4' d='M12 9h1'/%3E%3Cpath stroke='%2378a4d9' d='M13 9h1'/%3E%3Cpath stroke='%231f68c1' d='M14 9h1'/%3E%3Cpath stroke='%230054b9' d='M15 9h1m-7 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230053b8' d='M16 9h2m0 1h1m0 4h1m-1 2h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230048ab' d='M4 10h1'/%3E%3Cpath stroke='%23407cc7' d='M10 10h1'/%3E%3Cpath stroke='%2378a3d9' d='M11 10h1m-2 1h1'/%3E%3Cpath stroke='%2378a5da' d='M12 10h1m-3 2h1'/%3E%3Cpath stroke='%23256ec4' d='M13 10h1'/%3E%3Cpath stroke='%230057bb' d='M14 10h1'/%3E%3Cpath stroke='%230057bc' d='M15 10h1m-5 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%230056bb' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%230055ba' d='M17 10h1m0 1h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%23004cb0' d='M7 11h1m-4 2h1'/%3E%3Cpath stroke='%233272c4' d='M9 11h1'/%3E%3Cpath stroke='%23538cd0' d='M11 11h1'/%3E%3Cpath stroke='%23065cbf' d='M12 11h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%230058bd' d='M17 11h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%23538ace' d='M9 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 2h1m-1 1h1'/%3E%3Cpath stroke='%234581cb' d='M9 13h1'/%3E%3Cpath stroke='%236297d5' d='M10 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230052b7' d='M19 13h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23407fca' d='M9 15h1'/%3E%3Cpath stroke='%2378a6dc' d='M10 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%236c9bd5' d='M9 16h1'/%3E%3Cpath stroke='%2378a6db' d='M10 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M4 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M5 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M6 20h1'/%3E%3Cpath stroke='%23a7bdf0' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23fae1dc' d='M1 1h1'/%3E%3Cpath stroke='%23eb8b73' d='M2 1h1'/%3E%3Cpath stroke='%23e97b60' d='M3 1h1'/%3E%3Cpath stroke='%23e77155' d='M4 1h1'/%3E%3Cpath stroke='%23e66a4d' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23e56648' d='M6 1h1'/%3E%3Cpath stroke='%23e46142' d='M7 1h1'/%3E%3Cpath stroke='%23e46344' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%23e45f3e' d='M9 1h2'/%3E%3Cpath stroke='%23e35c3b' d='M11 1h2'/%3E%3Cpath stroke='%23e25633' d='M13 1h2'/%3E%3Cpath stroke='%23e25330' d='M15 1h1'/%3E%3Cpath stroke='%23e04d28' d='M16 1h1'/%3E%3Cpath stroke='%23dc451f' d='M17 1h1'/%3E%3Cpath stroke='%23d05334' d='M18 1h1'/%3E%3Cpath stroke='%23efd8d2' d='M19 1h1'/%3E%3Cpath stroke='%23ec8d76' d='M1 2h1'/%3E%3Cpath stroke='%23efa390' d='M2 2h1'/%3E%3Cpath stroke='%23f0a694' d='M3 2h1'/%3E%3Cpath stroke='%23ee9a85' d='M4 2h1'/%3E%3Cpath stroke='%23eb8d75' d='M5 2h1'/%3E%3Cpath stroke='%23ea876e' d='M6 2h1'/%3E%3Cpath stroke='%23ea8168' d='M7 2h1'/%3E%3Cpath stroke='%23e97f66' d='M8 2h1'/%3E%3Cpath stroke='%23e97c62' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%23e8795f' d='M10 2h1'/%3E%3Cpath stroke='%23e8795e' d='M11 2h1'/%3E%3Cpath stroke='%23e87559' d='M12 2h1'/%3E%3Cpath stroke='%23e77256' d='M13 2h1'/%3E%3Cpath stroke='%23e66e50' d='M14 2h1'/%3E%3Cpath stroke='%23e56849' d='M15 2h1'/%3E%3Cpath stroke='%23e4603f' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23e05532' d='M17 2h1'/%3E%3Cpath stroke='%23d04623' d='M18 2h1'/%3E%3Cpath stroke='%23b64b30' d='M19 2h1'/%3E%3Cpath stroke='%23e97f65' d='M1 3h1'/%3E%3Cpath stroke='%23f0a997' d='M2 3h1'/%3E%3Cpath stroke='%23f1ac9a' d='M3 3h1'/%3E%3Cpath stroke='%23ee9d89' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%23ec917a' d='M5 3h1'/%3E%3Cpath stroke='%23eb8b72' d='M6 3h1'/%3E%3Cpath stroke='%23ea856d' d='M7 3h1'/%3E%3Cpath stroke='%23e98168' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23e87e65' d='M9 3h1'/%3E%3Cpath stroke='%23e97b61' d='M11 3h1'/%3E%3Cpath stroke='%23e8775d' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%23e87459' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%23e66f52' d='M14 3h1'/%3E%3Cpath stroke='%23e56a4c' d='M15 3h1'/%3E%3Cpath stroke='%23e46343' d='M16 3h1'/%3E%3Cpath stroke='%23e15937' d='M17 3h1'/%3E%3Cpath stroke='%23d24a28' d='M18 3h1'/%3E%3Cpath stroke='%23aa3315' d='M19 3h1'/%3E%3Cpath stroke='%23e87458' d='M1 4h1'/%3E%3Cpath stroke='%23efa18d' d='M3 4h1'/%3E%3Cpath stroke='%23ed957f' d='M4 4h1'/%3E%3Cpath stroke='%23eb8a71' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%23ea836a' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23e97d64' d='M7 4h1'/%3E%3Cpath stroke='%23e8785e' d='M8 4h1'/%3E%3Cpath stroke='%23e77359' d='M9 4h1'/%3E%3Cpath stroke='%23e76f54' d='M10 4h1'/%3E%3Cpath stroke='%23e66d51' d='M11 4h1'/%3E%3Cpath stroke='%23e5684b' d='M12 4h1'/%3E%3Cpath stroke='%23e5684a' d='M13 4h1'/%3E%3Cpath stroke='%23e35c3a' d='M16 4h1m-7 4h1m-8 7h1'/%3E%3Cpath stroke='%23e05634' d='M17 4h1'/%3E%3Cpath stroke='%23d24c2a' d='M18 4h1'/%3E%3Cpath stroke='%23ac3618' d='M19 4h1'/%3E%3Cpath stroke='%23e76f52' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23ec9179' d='M2 5h1'/%3E%3Cpath stroke='%23ec937c' d='M3 5h1'/%3E%3Cpath stroke='%23f7ccc2' d='M5 5h1'/%3E%3Cpath stroke='%23e77259' d='M7 5h1M5 9h1'/%3E%3Cpath stroke='%23e76d53' d='M8 5h1'/%3E%3Cpath stroke='%23e5684d' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%23e46446' d='M10 5h1'/%3E%3Cpath stroke='%23e45f41' d='M11 5h1'/%3E%3Cpath stroke='%23e35b3a' d='M12 5h1m-2 1h1'/%3E%3Cpath stroke='%23e35938' d='M13 5h1'/%3E%3Cpath stroke='%23f3bbad' d='M15 5h1'/%3E%3Cpath stroke='%23e25531' d='M16 5h1'/%3E%3Cpath stroke='%23df5330' d='M17 5h1'/%3E%3Cpath stroke='%23d34e2c' d='M18 5h1'/%3E%3Cpath stroke='%23ad3a1d' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%23eb876e' d='M2 6h1'/%3E%3Cpath stroke='%23eb8a70' d='M3 6h1'/%3E%3Cpath stroke='%23e46447' d='M9 6h1'/%3E%3Cpath stroke='%23e45f40' d='M10 6h1'/%3E%3Cpath stroke='%23e25634' d='M12 6h1'/%3E%3Cpath stroke='%23e2522d' d='M16 6h1'/%3E%3Cpath stroke='%23df522e' d='M17 6h1'/%3E%3Cpath stroke='%23d34d2c' d='M18 6h1'/%3E%3Cpath stroke='%23e56546' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23e97e65' d='M4 7h1'/%3E%3Cpath stroke='%23e8775e' d='M5 7h1'/%3E%3Cpath stroke='%23e46143' d='M9 7h1'/%3E%3Cpath stroke='%23e45d3d' d='M10 7h1'/%3E%3Cpath stroke='%23e35836' d='M11 7h1'/%3E%3Cpath stroke='%23e24e27' d='M15 7h1'/%3E%3Cpath stroke='%23e2502a' d='M16 7h1'/%3E%3Cpath stroke='%23e0512c' d='M17 7h1'/%3E%3Cpath stroke='%23d34d2a' d='M18 7h1'/%3E%3Cpath stroke='%23ad391c' d='M19 7h1'/%3E%3Cpath stroke='%23e87a60' d='M2 8h1m1 0h1'/%3E%3Cpath stroke='%23e87c62' d='M3 8h1'/%3E%3Cpath stroke='%23e8745b' d='M5 8h1'/%3E%3Cpath stroke='%23e76e54' d='M6 8h1'/%3E%3Cpath stroke='%23e24d24' d='M14 8h1'/%3E%3Cpath stroke='%23e24b22' d='M15 8h1'/%3E%3Cpath stroke='%23e24d25' d='M16 8h1'/%3E%3Cpath stroke='%23e05029' d='M17 8h1'/%3E%3Cpath stroke='%23d44c29' d='M18 8h1'/%3E%3Cpath stroke='%23ae391b' d='M19 8h1'/%3E%3Cpath stroke='%23e35d3c' d='M1 9h1'/%3E%3Cpath stroke='%23e8765d' d='M4 9h1'/%3E%3Cpath stroke='%23e66f53' d='M6 9h1'/%3E%3Cpath stroke='%23e56b4e' d='M7 9h1'/%3E%3Cpath stroke='%23e45127' d='M13 9h1'/%3E%3Cpath stroke='%23e44f23' d='M14 9h1'/%3E%3Cpath stroke='%23e34c20' d='M15 9h1'/%3E%3Cpath stroke='%23e34d22' d='M16 9h1'/%3E%3Cpath stroke='%23e14f25' d='M17 9h1'/%3E%3Cpath stroke='%23d54a25' d='M18 9h1'/%3E%3Cpath stroke='%23af3719' d='M19 9h1'/%3E%3Cpath stroke='%23e35937' d='M1 10h1'/%3E%3Cpath stroke='%23e76d51' d='M2 10h1'/%3E%3Cpath stroke='%23e87257' d='M3 10h1'/%3E%3Cpath stroke='%23e87359' d='M4 10h1'/%3E%3Cpath stroke='%23e77157' d='M5 10h1'/%3E%3Cpath stroke='%23e66e52' d='M6 10h1'/%3E%3Cpath stroke='%23e56747' d='M8 10h1'/%3E%3Cpath stroke='%23e5572c' d='M12 10h1'/%3E%3Cpath stroke='%23e55326' d='M13 10h1'/%3E%3Cpath stroke='%23e55022' d='M14 10h1'/%3E%3Cpath stroke='%23e54d1e' d='M15 10h1'/%3E%3Cpath stroke='%23e54d1f' d='M16 10h1'/%3E%3Cpath stroke='%23e24e21' d='M17 10h1'/%3E%3Cpath stroke='%23d64921' d='M18 10h1'/%3E%3Cpath stroke='%23af3516' d='M19 10h1'/%3E%3Cpath stroke='%23e25432' d='M1 11h1'/%3E%3Cpath stroke='%23e5694b' d='M2 11h1'/%3E%3Cpath stroke='%23e77054' d='M3 11h1'/%3E%3Cpath stroke='%23e77156' d='M4 11h1'/%3E%3Cpath stroke='%23e87055' d='M5 11h1'/%3E%3Cpath stroke='%23e66c4d' d='M7 11h1'/%3E%3Cpath stroke='%23e75526' d='M13 11h1'/%3E%3Cpath stroke='%23e75221' d='M14 11h1'/%3E%3Cpath stroke='%23e64e1c' d='M15 11h1'/%3E%3Cpath stroke='%23e64d1c' d='M16 11h1'/%3E%3Cpath stroke='%23e34c1c' d='M17 11h1'/%3E%3Cpath stroke='%23d6461c' d='M18 11h1'/%3E%3Cpath stroke='%23b03312' d='M19 11h1'/%3E%3Cpath stroke='%23e14f2b' d='M1 12h1'/%3E%3Cpath stroke='%23e66b4e' d='M3 12h1'/%3E%3Cpath stroke='%23e76f53' d='M5 12h1'/%3E%3Cpath stroke='%23e66e51' d='M6 12h1'/%3E%3Cpath stroke='%23e7653d' d='M10 12h1'/%3E%3Cpath stroke='%23fef5f1' d='M13 12h1'/%3E%3Cpath stroke='%23e85421' d='M14 12h1'/%3E%3Cpath stroke='%23e8501b' d='M15 12h1'/%3E%3Cpath stroke='%23e74d18' d='M16 12h1'/%3E%3Cpath stroke='%23e44a18' d='M17 12h1'/%3E%3Cpath stroke='%23d74216' d='M18 12h1'/%3E%3Cpath stroke='%23b2310f' d='M19 12h1'/%3E%3Cpath stroke='%23e04b25' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23e35e3d' d='M2 13h1'/%3E%3Cpath stroke='%23e56748' d='M3 13h1'/%3E%3Cpath stroke='%23e66c4e' d='M4 13h1'/%3E%3Cpath stroke='%23e66d50' d='M5 13h1'/%3E%3Cpath stroke='%23e76842' d='M9 13h1'/%3E%3Cpath stroke='%23e7653c' d='M10 13h1'/%3E%3Cpath stroke='%23e86236' d='M11 13h1'/%3E%3Cpath stroke='%23e95019' d='M15 13h1m-2 3h1'/%3E%3Cpath stroke='%23e84c16' d='M16 13h1'/%3E%3Cpath stroke='%23e44713' d='M17 13h1'/%3E%3Cpath stroke='%23d83f10' d='M18 13h1'/%3E%3Cpath stroke='%23b12d0a' d='M19 13h1'/%3E%3Cpath stroke='%23df451e' d='M1 14h1'/%3E%3Cpath stroke='%23e25836' d='M2 14h1'/%3E%3Cpath stroke='%23e46242' d='M3 14h1m0 1h1'/%3E%3Cpath stroke='%23e56749' d='M4 14h1'/%3E%3Cpath stroke='%23e66845' d='M8 14h1'/%3E%3Cpath stroke='%23e76741' d='M9 14h1'/%3E%3Cpath stroke='%23e7643b' d='M10 14h1'/%3E%3Cpath stroke='%23e86235' d='M11 14h1'/%3E%3Cpath stroke='%23ea5e2d' d='M12 14h1'/%3E%3Cpath stroke='%23e94a11' d='M16 14h1m-2 2h1'/%3E%3Cpath stroke='%23e6440d' d='M17 14h1'/%3E%3Cpath stroke='%23d73b0b' d='M18 14h1'/%3E%3Cpath stroke='%23b12b06' d='M19 14h1'/%3E%3Cpath stroke='%23de4018' d='M1 15h1'/%3E%3Cpath stroke='%23e1512e' d='M2 15h1'/%3E%3Cpath stroke='%23f5c1b5' d='M5 15h1'/%3E%3Cpath stroke='%23e66543' d='M7 15h1'/%3E%3Cpath stroke='%23e66541' d='M8 15h1'/%3E%3Cpath stroke='%23e6643d' d='M9 15h1'/%3E%3Cpath stroke='%23e76238' d='M10 15h1'/%3E%3Cpath stroke='%23e86032' d='M11 15h1'/%3E%3Cpath stroke='%23e95c2a' d='M12 15h1'/%3E%3Cpath stroke='%23ea5924' d='M13 15h1'/%3E%3Cpath stroke='%23f7b8a1' d='M15 15h1'/%3E%3Cpath stroke='%23e9480e' d='M16 15h1'/%3E%3Cpath stroke='%23e54009' d='M17 15h1'/%3E%3Cpath stroke='%23d73605' d='M18 15h1'/%3E%3Cpath stroke='%23b02702' d='M19 15h1'/%3E%3Cpath stroke='%23dd3c14' d='M1 16h1'/%3E%3Cpath stroke='%23e15431' d='M3 16h1'/%3E%3Cpath stroke='%23e35b39' d='M4 16h1'/%3E%3Cpath stroke='%23e45e3d' d='M5 16h1'/%3E%3Cpath stroke='%23e45f3d' d='M6 16h1'/%3E%3Cpath stroke='%23e45e3b' d='M7 16h1'/%3E%3Cpath stroke='%23e55e39' d='M8 16h1'/%3E%3Cpath stroke='%23e55e37' d='M9 16h1'/%3E%3Cpath stroke='%23e65d32' d='M10 16h1'/%3E%3Cpath stroke='%23e75b2c' d='M11 16h1'/%3E%3Cpath stroke='%23e85725' d='M12 16h1'/%3E%3Cpath stroke='%23e9541f' d='M13 16h1'/%3E%3Cpath stroke='%23e8440b' d='M16 16h1'/%3E%3Cpath stroke='%23e43d05' d='M17 16h1'/%3E%3Cpath stroke='%23d63302' d='M18 16h1'/%3E%3Cpath stroke='%23af2601' d='M19 16h1'/%3E%3Cpath stroke='%23d8370e' d='M1 17h1'/%3E%3Cpath stroke='%23db431c' d='M2 17h1'/%3E%3Cpath stroke='%23dd4c28' d='M3 17h1'/%3E%3Cpath stroke='%23de522f' d='M4 17h1'/%3E%3Cpath stroke='%23df5533' d='M5 17h1'/%3E%3Cpath stroke='%23e05734' d='M6 17h1'/%3E%3Cpath stroke='%23e05531' d='M7 17h1'/%3E%3Cpath stroke='%23e05631' d='M8 17h1'/%3E%3Cpath stroke='%23e1562e' d='M9 17h1'/%3E%3Cpath stroke='%23e2552a' d='M10 17h1'/%3E%3Cpath stroke='%23e45325' d='M11 17h1'/%3E%3Cpath stroke='%23e4501f' d='M12 17h1'/%3E%3Cpath stroke='%23e54c19' d='M13 17h1'/%3E%3Cpath stroke='%23e54813' d='M14 17h1'/%3E%3Cpath stroke='%23e5430d' d='M15 17h1'/%3E%3Cpath stroke='%23e43e07' d='M16 17h1'/%3E%3Cpath stroke='%23e03802' d='M17 17h1'/%3E%3Cpath stroke='%23d12f00' d='M18 17h1'/%3E%3Cpath stroke='%23aa2300' d='M19 17h1'/%3E%3Cpath stroke='%23cd4928' d='M1 18h1'/%3E%3Cpath stroke='%23cc3813' d='M2 18h1'/%3E%3Cpath stroke='%23cc3e1b' d='M3 18h1'/%3E%3Cpath stroke='%23cf4421' d='M4 18h1'/%3E%3Cpath stroke='%23cf4725' d='M5 18h1'/%3E%3Cpath stroke='%23cf4726' d='M6 18h1'/%3E%3Cpath stroke='%23cf4624' d='M7 18h1'/%3E%3Cpath stroke='%23d04723' d='M8 18h1'/%3E%3Cpath stroke='%23d14621' d='M9 18h1'/%3E%3Cpath stroke='%23d2451e' d='M10 18h1'/%3E%3Cpath stroke='%23d5451b' d='M11 18h1'/%3E%3Cpath stroke='%23d54216' d='M12 18h1'/%3E%3Cpath stroke='%23d64013' d='M13 18h1'/%3E%3Cpath stroke='%23d53d0e' d='M14 18h1'/%3E%3Cpath stroke='%23d63909' d='M15 18h1'/%3E%3Cpath stroke='%23d53504' d='M16 18h1'/%3E%3Cpath stroke='%23d13001' d='M17 18h1'/%3E%3Cpath stroke='%23c22a00' d='M18 18h1'/%3E%3Cpath stroke='%23ab3c1f' d='M19 18h1'/%3E%3Cpath stroke='%23eed6d0' d='M1 19h1'/%3E%3Cpath stroke='%23b54428' d='M2 19h1'/%3E%3Cpath stroke='%23a62b0d' d='M3 19h1'/%3E%3Cpath stroke='%23ac3011' d='M4 19h1'/%3E%3Cpath stroke='%23ab3112' d='M5 19h1'/%3E%3Cpath stroke='%23a93214' d='M6 19h1'/%3E%3Cpath stroke='%23a93012' d='M7 19h1'/%3E%3Cpath stroke='%23ac3213' d='M8 19h1'/%3E%3Cpath stroke='%23ad3213' d='M9 19h1'/%3E%3Cpath stroke='%23ae3110' d='M10 19h1'/%3E%3Cpath stroke='%23b1300d' d='M11 19h1'/%3E%3Cpath stroke='%23b22e0a' d='M12 19h1'/%3E%3Cpath stroke='%23b42d08' d='M13 19h1'/%3E%3Cpath stroke='%23b12a06' d='M14 19h1'/%3E%3Cpath stroke='%23b12803' d='M15 19h1'/%3E%3Cpath stroke='%23b42701' d='M16 19h1'/%3E%3Cpath stroke='%23ae2400' d='M17 19h1'/%3E%3Cpath stroke='%23ac3c1f' d='M18 19h1'/%3E%3Cpath stroke='%23ead4cf' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h3m5 0h7'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23ffe4e1' d='M1 1h1'/%3E%3Cpath stroke='%23ff9285' d='M2 1h1m4 3h1M2 7h1'/%3E%3Cpath stroke='%23ff8c7f' d='M3 1h1'/%3E%3Cpath stroke='%23ff8375' d='M4 1h1m5 3h1'/%3E%3Cpath stroke='%23ff7b6c' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23ff7868' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%23ff7362' d='M7 1h1'/%3E%3Cpath stroke='%23ff7363' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%23ff705f' d='M9 1h1M6 16h1'/%3E%3Cpath stroke='%23ff6f5f' d='M10 1h1'/%3E%3Cpath stroke='%23ff6e5d' d='M11 1h1m4 1h1m-5 3h1M2 13h1'/%3E%3Cpath stroke='%23ff6b5a' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%23f65' d='M13 1h2'/%3E%3Cpath stroke='%23ff6250' d='M15 1h1M2 15h1'/%3E%3Cpath stroke='%23ff5d4a' d='M16 1h1'/%3E%3Cpath stroke='%23fa5643' d='M17 1h1'/%3E%3Cpath stroke='%23eb6151' d='M18 1h1'/%3E%3Cpath stroke='%23f5dad7' d='M19 1h1'/%3E%3Cpath stroke='%23ff9386' d='M1 2h1'/%3E%3Cpath stroke='%23ffaea5' d='M2 2h1'/%3E%3Cpath stroke='%23ffb2a9' d='M3 2h1'/%3E%3Cpath stroke='%23ffa99f' d='M4 2h1'/%3E%3Cpath stroke='%23ff9e93' d='M5 2h1m0 1h1M5 4h1'/%3E%3Cpath stroke='%23ff998d' d='M6 2h1M4 6h1'/%3E%3Cpath stroke='%23ff9488' d='M7 2h1m0 1h1'/%3E%3Cpath stroke='%23ff9083' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%23ff8e80' d='M9 2h1'/%3E%3Cpath stroke='%23ff8b7d' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%23ff887a' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%23ff8475' d='M12 2h1M8 5h1'/%3E%3Cpath stroke='%23ff8172' d='M13 2h1M7 9h1m-3 3h1'/%3E%3Cpath stroke='%23ff7c6d' d='M14 2h1'/%3E%3Cpath stroke='%23ff7666' d='M15 2h1M1 7h1m1 6h1m0 1h1'/%3E%3Cpath stroke='%23fc6352' d='M17 2h1'/%3E%3Cpath stroke='%23e54' d='M18 2h1'/%3E%3Cpath stroke='%23d3594b' d='M19 2h1'/%3E%3Cpath stroke='%23ff8d80' d='M1 3h1'/%3E%3Cpath stroke='%23ffb3ab' d='M2 3h1'/%3E%3Cpath stroke='%23ffb8b0' d='M3 3h1'/%3E%3Cpath stroke='%23ffb0a6' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23ffa49a' d='M5 3h1'/%3E%3Cpath stroke='%23ff988d' d='M7 3h1M6 4h1'/%3E%3Cpath stroke='%23ff9184' d='M9 3h1'/%3E%3Cpath stroke='%23ff8e81' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23ff8c7e' d='M11 3h1M2 8h1'/%3E%3Cpath stroke='%23ff8576' d='M13 3h1M6 9h1m-4 1h1'/%3E%3Cpath stroke='%23ff7f70' d='M14 3h1M1 5h1m0 5h1m1 2h1'/%3E%3Cpath stroke='%23ff796a' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%23ff7161' d='M16 3h1M3 14h1'/%3E%3Cpath stroke='%23fc6857' d='M17 3h1'/%3E%3Cpath stroke='%23ed5948' d='M18 3h1M6 18h1'/%3E%3Cpath stroke='%23cb4233' d='M19 3h1'/%3E%3Cpath stroke='%23ff8577' d='M1 4h1m0 5h1'/%3E%3Cpath stroke='%23ffaaa0' d='M2 4h1'/%3E%3Cpath stroke='%23ffa89e' d='M4 4h1'/%3E%3Cpath stroke='%23ff8d7f' d='M8 4h1'/%3E%3Cpath stroke='%23ff8879' d='M9 4h1'/%3E%3Cpath stroke='%23ff8071' d='M11 4h1M8 6h1'/%3E%3Cpath stroke='%23ff7a6b' d='M12 4h1M1 6h1m7 0h1m-6 7h1'/%3E%3Cpath stroke='%23ff7969' d='M13 4h1'/%3E%3Cpath stroke='%23ff7464' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%23ff7060' d='M15 4h1'/%3E%3Cpath stroke='%23ff6c5b' d='M16 4h1m-4 1h1'/%3E%3Cpath stroke='%23fc6655' d='M17 4h1'/%3E%3Cpath stroke='%23ef5c4b' d='M18 4h1'/%3E%3Cpath stroke='%23cc4636' d='M19 4h1'/%3E%3Cpath stroke='%23ffa095' d='M2 5h1'/%3E%3Cpath stroke='%23ffa59b' d='M3 5h1'/%3E%3Cpath stroke='%23ff9f94' d='M4 5h1'/%3E%3Cpath stroke='%23ffd5d1' d='M5 5h1'/%3E%3Cpath stroke='%23ff8a7c' d='M7 5h1'/%3E%3Cpath stroke='%23ff7e6f' d='M9 5h1'/%3E%3Cpath stroke='%23ffc2bb' d='M15 5h1'/%3E%3Cpath stroke='%23ff6554' d='M16 5h1'/%3E%3Cpath stroke='%23fc6453' d='M17 5h1'/%3E%3Cpath stroke='%23ee5d4d' d='M18 5h1'/%3E%3Cpath stroke='%23cd4939' d='M19 5h1'/%3E%3Cpath stroke='%23ff998e' d='M2 6h1'/%3E%3Cpath stroke='%23ff9d92' d='M3 6h1'/%3E%3Cpath stroke='%23ff6f5e' d='M11 6h1'/%3E%3Cpath stroke='%23ff6a58' d='M12 6h1'/%3E%3Cpath stroke='%23ff6451' d='M16 6h1'/%3E%3Cpath stroke='%23fd6451' d='M17 6h1'/%3E%3Cpath stroke='%23ee5e4d' d='M18 6h1'/%3E%3Cpath stroke='%23ce4a3a' d='M19 6h1'/%3E%3Cpath stroke='%23ff968a' d='M3 7h1'/%3E%3Cpath stroke='%23ff9487' d='M4 7h1'/%3E%3Cpath stroke='%23ff8f82' d='M5 7h1'/%3E%3Cpath stroke='%23ff7968' d='M9 7h1m-3 8h1'/%3E%3Cpath stroke='%23ff7463' d='M10 7h1'/%3E%3Cpath stroke='%23ff6f5d' d='M11 7h1'/%3E%3Cpath stroke='%23ff6450' d='M15 7h1'/%3E%3Cpath stroke='%23ff6552' d='M16 7h1'/%3E%3Cpath stroke='%23fd6653' d='M17 7h1'/%3E%3Cpath stroke='%23f0604e' d='M18 7h1'/%3E%3Cpath stroke='%23ce4a3b' d='M19 7h1'/%3E%3Cpath stroke='%23ff7565' d='M1 8h1'/%3E%3Cpath stroke='%23ff8677' d='M6 8h1m-2 2h1'/%3E%3Cpath stroke='%23ff7664' d='M10 8h1'/%3E%3Cpath stroke='%23ff6a53' d='M14 8h1'/%3E%3Cpath stroke='%23ff6953' d='M15 8h1'/%3E%3Cpath stroke='%23ff6b55' d='M16 8h1'/%3E%3Cpath stroke='%23fd6b56' d='M17 8h1'/%3E%3Cpath stroke='%23f06350' d='M18 8h1'/%3E%3Cpath stroke='%23cf4c3b' d='M19 8h1'/%3E%3Cpath stroke='%23ff6d5d' d='M1 9h1'/%3E%3Cpath stroke='%23ff8b7c' d='M4 9h1'/%3E%3Cpath stroke='%23ff775d' d='M13 9h1'/%3E%3Cpath stroke='%23ff745a' d='M14 9h1'/%3E%3Cpath stroke='%23ff7359' d='M15 9h1'/%3E%3Cpath stroke='%23ff735a' d='M16 9h1'/%3E%3Cpath stroke='%23fd715a' d='M17 9h1'/%3E%3Cpath stroke='%23f16752' d='M18 9h1'/%3E%3Cpath stroke='%23d24e3c' d='M19 9h1'/%3E%3Cpath stroke='%23ff6a59' d='M1 10h1m2 6h1'/%3E%3Cpath stroke='%23ff8778' d='M4 10h1'/%3E%3Cpath stroke='%23ff8374' d='M6 10h1m-3 1h2'/%3E%3Cpath stroke='%23ff8171' d='M7 10h1m-5 1h1'/%3E%3Cpath stroke='%23ff8271' d='M8 10h1m-2 1h1'/%3E%3Cpath stroke='%23ff8369' d='M12 10h1'/%3E%3Cpath stroke='%23ff8165' d='M13 10h1'/%3E%3Cpath stroke='%23ff7e61' d='M14 10h1'/%3E%3Cpath stroke='%23ff7d5f' d='M15 10h1'/%3E%3Cpath stroke='%23ff7b5f' d='M16 10h1'/%3E%3Cpath stroke='%23fd775d' d='M17 10h1'/%3E%3Cpath stroke='%23f36a53' d='M18 10h1'/%3E%3Cpath stroke='%23d34e3c' d='M19 10h1'/%3E%3Cpath stroke='%23ff6553' d='M1 11h1'/%3E%3Cpath stroke='%23ff8273' d='M6 11h1'/%3E%3Cpath stroke='%23ff8c6c' d='M13 11h1'/%3E%3Cpath stroke='%23ff8969' d='M14 11h1'/%3E%3Cpath stroke='%23ff8665' d='M15 11h1'/%3E%3Cpath stroke='%23ff8262' d='M16 11h1'/%3E%3Cpath stroke='%23fd7c5e' d='M17 11h1'/%3E%3Cpath stroke='%23f46d54' d='M18 11h1'/%3E%3Cpath stroke='%23d64f3b' d='M19 11h1'/%3E%3Cpath stroke='%23ff5f4d' d='M1 12h1'/%3E%3Cpath stroke='%23ff8070' d='M6 12h1'/%3E%3Cpath stroke='%23ff9279' d='M10 12h1'/%3E%3Cpath stroke='%23fff8f6' d='M13 12h1'/%3E%3Cpath stroke='%23ff936f' d='M14 12h1'/%3E%3Cpath stroke='%23ff906c' d='M15 12h1'/%3E%3Cpath stroke='%23ff8967' d='M16 12h1'/%3E%3Cpath stroke='%23fe7f5f' d='M17 12h1'/%3E%3Cpath stroke='%23f56e52' d='M18 12h1'/%3E%3Cpath stroke='%23d84f39' d='M19 12h1'/%3E%3Cpath stroke='%23ff5c4a' d='M1 13h1'/%3E%3Cpath stroke='%23ff7d6e' d='M5 13h1'/%3E%3Cpath stroke='%23ff907a' d='M9 13h1'/%3E%3Cpath stroke='%23ff957c' d='M10 13h1'/%3E%3Cpath stroke='%23ff9a7e' d='M11 13h1'/%3E%3Cpath stroke='%23ff9670' d='M15 13h1'/%3E%3Cpath stroke='%23ff8e68' d='M16 13h1'/%3E%3Cpath stroke='%23fe815e' d='M17 13h1'/%3E%3Cpath stroke='%23f66c4f' d='M18 13h1'/%3E%3Cpath stroke='%23da4d36' d='M19 13h1'/%3E%3Cpath stroke='%23ff5744' d='M1 14h1'/%3E%3Cpath stroke='%23ff6857' d='M2 14h1'/%3E%3Cpath stroke='%23ff8672' d='M8 14h1'/%3E%3Cpath stroke='%23ff8f78' d='M9 14h1'/%3E%3Cpath stroke='%23ff967c' d='M10 14h1'/%3E%3Cpath stroke='%23ff9c7e' d='M11 14h1'/%3E%3Cpath stroke='%23ffa07e' d='M12 14h1'/%3E%3Cpath stroke='%23ff8e66' d='M16 14h1'/%3E%3Cpath stroke='%23fe7f5a' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%23f76a4b' d='M18 14h1'/%3E%3Cpath stroke='%23da4a33' d='M19 14h1'/%3E%3Cpath stroke='%23ff523f' d='M1 15h1'/%3E%3Cpath stroke='%23ff7160' d='M4 15h1'/%3E%3Cpath stroke='%23ffc7c1' d='M5 15h1'/%3E%3Cpath stroke='%23ff836f' d='M8 15h1'/%3E%3Cpath stroke='%23ff8b74' d='M9 15h1'/%3E%3Cpath stroke='%23ff9379' d='M10 15h1'/%3E%3Cpath stroke='%23ff9a7c' d='M11 15h1'/%3E%3Cpath stroke='%23ff9e7c' d='M12 15h1'/%3E%3Cpath stroke='%23ffa07a' d='M13 15h1'/%3E%3Cpath stroke='%23ffd5c5' d='M15 15h1'/%3E%3Cpath stroke='%23ff8b62' d='M16 15h1'/%3E%3Cpath stroke='%23fe7c56' d='M17 15h1'/%3E%3Cpath stroke='%23f76545' d='M18 15h1'/%3E%3Cpath stroke='%23db4931' d='M19 15h1'/%3E%3Cpath stroke='%23ff4f3a' d='M1 16h1'/%3E%3Cpath stroke='%23ff5c49' d='M2 16h1'/%3E%3Cpath stroke='%23ff6452' d='M3 16h1'/%3E%3Cpath stroke='%23ff6e5e' d='M5 16h1'/%3E%3Cpath stroke='%23ff7462' d='M7 16h1'/%3E%3Cpath stroke='%23ff7c68' d='M8 16h1'/%3E%3Cpath stroke='%23ff846d' d='M9 16h1'/%3E%3Cpath stroke='%23ff8b71' d='M10 16h1'/%3E%3Cpath stroke='%23ff9174' d='M11 16h1'/%3E%3Cpath stroke='%23ff9674' d='M12 16h1'/%3E%3Cpath stroke='%23ff9571' d='M13 16h1'/%3E%3Cpath stroke='%23ff946d' d='M14 16h1'/%3E%3Cpath stroke='%23ff8d66' d='M15 16h1'/%3E%3Cpath stroke='%23ff855c' d='M16 16h1'/%3E%3Cpath stroke='%23fe7650' d='M17 16h1'/%3E%3Cpath stroke='%23f66141' d='M18 16h1'/%3E%3Cpath stroke='%23da462f' d='M19 16h1'/%3E%3Cpath stroke='%23fa4935' d='M1 17h1'/%3E%3Cpath stroke='%23fb5441' d='M2 17h1'/%3E%3Cpath stroke='%23fc5c4a' d='M3 17h1'/%3E%3Cpath stroke='%23fb6150' d='M4 17h1'/%3E%3Cpath stroke='%23fc6554' d='M5 17h1'/%3E%3Cpath stroke='%23fc6756' d='M6 17h1'/%3E%3Cpath stroke='%23fc6a58' d='M7 17h1'/%3E%3Cpath stroke='%23fc715c' d='M8 17h1'/%3E%3Cpath stroke='%23fc7761' d='M9 17h1'/%3E%3Cpath stroke='%23fd7e64' d='M10 17h1'/%3E%3Cpath stroke='%23fd8367' d='M11 17h1'/%3E%3Cpath stroke='%23fe8566' d='M12 17h1'/%3E%3Cpath stroke='%23fe8664' d='M13 17h1'/%3E%3Cpath stroke='%23fe8460' d='M14 17h1'/%3E%3Cpath stroke='%23fe7651' d='M16 17h1'/%3E%3Cpath stroke='%23fc6b47' d='M17 17h1'/%3E%3Cpath stroke='%23f2573a' d='M18 17h1'/%3E%3Cpath stroke='%23d4402a' d='M19 17h1'/%3E%3Cpath stroke='%23e85848' d='M1 18h1'/%3E%3Cpath stroke='%23ed4a37' d='M2 18h1'/%3E%3Cpath stroke='%23ec4f3d' d='M3 18h1'/%3E%3Cpath stroke='%23ee5443' d='M4 18h1'/%3E%3Cpath stroke='%23ed5746' d='M5 18h1'/%3E%3Cpath stroke='%23ee5a48' d='M7 18h1'/%3E%3Cpath stroke='%23ef5e4b' d='M8 18h1'/%3E%3Cpath stroke='%23f0644e' d='M9 18h1'/%3E%3Cpath stroke='%23f16750' d='M10 18h1'/%3E%3Cpath stroke='%23f46c52' d='M11 18h1'/%3E%3Cpath stroke='%23f66d51' d='M12 18h1'/%3E%3Cpath stroke='%23f66e51' d='M13 18h1'/%3E%3Cpath stroke='%23f66c4e' d='M14 18h1'/%3E%3Cpath stroke='%23f86a4a' d='M15 18h1'/%3E%3Cpath stroke='%23f76343' d='M16 18h1'/%3E%3Cpath stroke='%23f3583a' d='M17 18h1'/%3E%3Cpath stroke='%23e54930' d='M18 18h1'/%3E%3Cpath stroke='%23cd5140' d='M19 18h1'/%3E%3Cpath stroke='%23f6d9d6' d='M1 19h1'/%3E%3Cpath stroke='%23d25344' d='M2 19h1'/%3E%3Cpath stroke='%23c93c2b' d='M3 19h1'/%3E%3Cpath stroke='%23ca3f2f' d='M4 19h1'/%3E%3Cpath stroke='%23ca4131' d='M5 19h1'/%3E%3Cpath stroke='%23ca4333' d='M6 19h1'/%3E%3Cpath stroke='%23cc4332' d='M7 19h1'/%3E%3Cpath stroke='%23cf4434' d='M8 19h1'/%3E%3Cpath stroke='%23d24936' d='M9 19h1'/%3E%3Cpath stroke='%23d34936' d='M10 19h1'/%3E%3Cpath stroke='%23d84b37' d='M11 19h1'/%3E%3Cpath stroke='%23da4c36' d='M12 19h1'/%3E%3Cpath stroke='%23dc4d36' d='M13 19h1'/%3E%3Cpath stroke='%23d94933' d='M14 19h1'/%3E%3Cpath stroke='%23de4a32' d='M15 19h1'/%3E%3Cpath stroke='%23dd482f' d='M16 19h1'/%3E%3Cpath stroke='%23d6402a' d='M17 19h1'/%3E%3Cpath stroke='%23cf5140' d='M18 19h1'/%3E%3Cpath stroke='%23f1d8d5' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M6 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M7 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M8 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bced' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7baec' d='M19 0h1m0 1h1'/%3E%3Cpath stroke='%23dad2d0' d='M1 1h1'/%3E%3Cpath stroke='%23643529' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%235a1d0d' d='M3 1h1'/%3E%3Cpath stroke='%235d1e0d' d='M4 1h1'/%3E%3Cpath stroke='%235f1e0e' d='M5 1h1'/%3E%3Cpath stroke='%2363200e' d='M6 1h1'/%3E%3Cpath stroke='%2368210f' d='M7 1h1'/%3E%3Cpath stroke='%236f2310' d='M8 1h1'/%3E%3Cpath stroke='%23732511' d='M9 1h1'/%3E%3Cpath stroke='%23752511' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%237c2712' d='M11 1h1'/%3E%3Cpath stroke='%23822912' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%23852a13' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%23892b13' d='M14 1h1'/%3E%3Cpath stroke='%238a2b14' d='M15 1h1M6 2h1'/%3E%3Cpath stroke='%238e2d14' d='M16 1h1M7 2h1'/%3E%3Cpath stroke='%238c2c14' d='M17 1h1M2 6h1'/%3E%3Cpath stroke='%239d4732' d='M18 1h1M1 18h1'/%3E%3Cpath stroke='%23ebd8d3' d='M19 1h1'/%3E%3Cpath stroke='%2369220f' d='M2 2h1'/%3E%3Cpath stroke='%23782611' d='M3 2h1'/%3E%3Cpath stroke='%237e2812' d='M4 2h1'/%3E%3Cpath stroke='%23932e15' d='M8 2h1'/%3E%3Cpath stroke='%239a3016' d='M9 2h1'/%3E%3Cpath stroke='%239c3116' d='M10 2h1'/%3E%3Cpath stroke='%23a03217' d='M11 2h1'/%3E%3Cpath stroke='%23a43418' d='M12 2h1'/%3E%3Cpath stroke='%23a73518' d='M13 2h1'/%3E%3Cpath stroke='%23aa3618' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%23ab3618' d='M15 2h1'/%3E%3Cpath stroke='%23ad3719' d='M16 2h1m1 0h1M2 16h1m-1 1h1'/%3E%3Cpath stroke='%23ac3618' d='M17 2h1'/%3E%3Cpath stroke='%23b24e35' d='M19 2h1'/%3E%3Cpath stroke='%23591c0d' d='M1 3h1M1 4h1'/%3E%3Cpath stroke='%23792711' d='M2 3h1'/%3E%3Cpath stroke='%238d2c14' d='M3 3h1'/%3E%3Cpath stroke='%23962e15' d='M4 3h1'/%3E%3Cpath stroke='%239a2f16' d='M5 3h1'/%3E%3Cpath stroke='%23a13117' d='M6 3h1'/%3E%3Cpath stroke='%23a63317' d='M7 3h1'/%3E%3Cpath stroke='%23aa3418' d='M8 3h1'/%3E%3Cpath stroke='%23af3619' d='M9 3h1'/%3E%3Cpath stroke='%23b23719' d='M10 3h1M8 4h1M4 8h1'/%3E%3Cpath stroke='%23b5391a' d='M11 3h1'/%3E%3Cpath stroke='%23b73a1b' d='M12 3h1'/%3E%3Cpath stroke='%23b93b1b' d='M13 3h1'/%3E%3Cpath stroke='%23ba3b1b' d='M14 3h2m3 0h1M3 13h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23bb3b1b' d='M16 3h3M3 15h1'/%3E%3Cpath stroke='%23802812' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23962f15' d='M3 4h1'/%3E%3Cpath stroke='%239e3016' d='M4 4h1'/%3E%3Cpath stroke='%23a43216' d='M5 4h1'/%3E%3Cpath stroke='%23aa3317' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%23ae3518' d='M7 4h1'/%3E%3Cpath stroke='%23b5381a' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%23b8391a' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%23ba3a1b' d='M11 4h1m-8 7h2'/%3E%3Cpath stroke='%23bc3b1c' d='M12 4h1m-9 8h1'/%3E%3Cpath stroke='%23bd3c1c' d='M13 4h1m-1 1h1m-2 1h1m-7 6h1m-3 1h2'/%3E%3Cpath stroke='%23be3d1c' d='M14 4h3m-1 1h1m-1 1h1M4 14h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23bf3d1c' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1M4 17h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%235b1d0d' d='M1 5h1'/%3E%3Cpath stroke='%239c3016' d='M3 5h1'/%3E%3Cpath stroke='%23a43217' d='M4 5h1'/%3E%3Cpath stroke='%23b8553e' d='M5 5h1'/%3E%3Cpath stroke='%23d59485' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%23b33619' d='M7 5h1'/%3E%3Cpath stroke='%23b53719' d='M8 5h1'/%3E%3Cpath stroke='%23b8381a' d='M9 5h1M6 8h1'/%3E%3Cpath stroke='%23b9391b' d='M10 5h1'/%3E%3Cpath stroke='%23ba391b' d='M11 5h1M6 9h1m-2 1h1'/%3E%3Cpath stroke='%23bc3b1b' d='M12 5h1m-2 1h1m-6 5h1m-2 1h1'/%3E%3Cpath stroke='%23dc9887' d='M14 5h1'/%3E%3Cpath stroke='%23c85d42' d='M15 5h1M5 15h1'/%3E%3Cpath stroke='%23611f0e' d='M1 6h1'/%3E%3Cpath stroke='%23a23217' d='M3 6h1'/%3E%3Cpath stroke='%23d79585' d='M6 6h1'/%3E%3Cpath stroke='%23d89585' d='M7 6h1'/%3E%3Cpath stroke='%23b8371a' d='M8 6h1'/%3E%3Cpath stroke='%23ba391a' d='M9 6h1'/%3E%3Cpath stroke='%23bb3a1b' d='M10 6h1m-5 4h1'/%3E%3Cpath stroke='%23dd9887' d='M13 6h3m-4 1h1m-2 1h1M9 9h1m-2 2h1m-2 1h1m-2 1h1m-2 1h2'/%3E%3Cpath stroke='%23c03e1d' d='M17 6h1m-2 1h3m0 1h1m-1 1h1M7 16h1m-2 1h2m0 1h1'/%3E%3Cpath stroke='%2365200e' d='M1 7h1'/%3E%3Cpath stroke='%23902d15' d='M2 7h1'/%3E%3Cpath stroke='%23a73418' d='M3 7h1'/%3E%3Cpath stroke='%23af3518' d='M4 7h1'/%3E%3Cpath stroke='%23b43619' d='M5 7h1'/%3E%3Cpath stroke='%23d99585' d='M6 7h1'/%3E%3Cpath stroke='%23da9686' d='M7 7h1'/%3E%3Cpath stroke='%23db9686' d='M8 7h1M7 8h1'/%3E%3Cpath stroke='%23bc3a1b' d='M9 7h1M7 9h1'/%3E%3Cpath stroke='%23bd3b1b' d='M10 7h1m-4 3h1'/%3E%3Cpath stroke='%23be3c1c' d='M11 7h1m-2 1h1m-3 2h1m-2 1h1'/%3E%3Cpath stroke='%23de9987' d='M13 7h2m-3 1h2m-4 1h2m-3 1h1m-2 2h1m-2 2h1'/%3E%3Cpath stroke='%23c03f1d' d='M15 7h1m-9 8h1'/%3E%3Cpath stroke='%236a220f' d='M1 8h1'/%3E%3Cpath stroke='%23952f15' d='M2 8h1'/%3E%3Cpath stroke='%23ac3518' d='M3 8h1'/%3E%3Cpath stroke='%23b63719' d='M5 8h1'/%3E%3Cpath stroke='%23dc9786' d='M8 8h2M8 9h1'/%3E%3Cpath stroke='%23c2401d' d='M14 8h1m2 0h1m1 3h1M8 14h1m-1 2h1m-1 1h1m0 1h1m1 1h1'/%3E%3Cpath stroke='%23c2401e' d='M15 8h2m1 1h1M8 15h1'/%3E%3Cpath stroke='%23c13f1d' d='M18 8h1m0 2h1M9 19h2'/%3E%3Cpath stroke='%23702410' d='M1 9h1'/%3E%3Cpath stroke='%239b3016' d='M2 9h1'/%3E%3Cpath stroke='%23b03619' d='M3 9h1'/%3E%3Cpath stroke='%23b9381a' d='M5 9h1'/%3E%3Cpath stroke='%23df9a88' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23c4421e' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1m-1 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h3'/%3E%3Cpath stroke='%23c5431e' d='M14 9h1'/%3E%3Cpath stroke='%23c5431f' d='M15 9h1m-4 1h1m5 1h1m-9 1h1m-2 2h1m-1 1h1m0 2h1m0 1h1m6 0h1'/%3E%3Cpath stroke='%239e3217' d='M2 10h1'/%3E%3Cpath stroke='%23b4381a' d='M3 10h1'/%3E%3Cpath stroke='%23df9a87' d='M10 10h1m-2 1h1m-2 2h1'/%3E%3Cpath stroke='%23c6441f' d='M13 10h1m3 0h1m-8 3h1m-1 3h1'/%3E%3Cpath stroke='%23c74520' d='M14 10h2m-6 4h1m-1 1h1m7 2h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23c7451f' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%237b2711' d='M1 11h1'/%3E%3Cpath stroke='%23a13217' d='M2 11h1'/%3E%3Cpath stroke='%23b7391a' d='M3 11h1'/%3E%3Cpath stroke='%23e09b88' d='M11 11h1'/%3E%3Cpath stroke='%23e29d89' d='M12 11h1'/%3E%3Cpath stroke='%23c94621' d='M13 11h1m-3 2h1'/%3E%3Cpath stroke='%23ca4721' d='M14 11h1m2 1h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%23ca4821' d='M15 11h1m1 6h1'/%3E%3Cpath stroke='%23c94620' d='M16 11h1m1 3h1m-8 2h1m6 0h1'/%3E%3Cpath stroke='%23c84620' d='M17 11h1m0 2h1'/%3E%3Cpath stroke='%23a53418' d='M2 12h1'/%3E%3Cpath stroke='%23b83a1b' d='M3 12h1'/%3E%3Cpath stroke='%23e19d89' d='M11 12h1'/%3E%3Cpath stroke='%23e39e89' d='M12 12h1'/%3E%3Cpath stroke='%23e0947c' d='M13 12h1'/%3E%3Cpath stroke='%23cc4a22' d='M14 12h1m-3 2h1m4 0h1m-6 1h1'/%3E%3Cpath stroke='%23cd4a22' d='M15 12h1m0 1h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23cb4922' d='M16 12h1m0 1h1m-5 4h1'/%3E%3Cpath stroke='%23c3411e' d='M19 12h1m-1 1h1m-1 4h1m-8 2h2m3 0h1'/%3E%3Cpath stroke='%23a93618' d='M2 13h1'/%3E%3Cpath stroke='%23dd9987' d='M7 13h1m-2 2h1'/%3E%3Cpath stroke='%23e39f8a' d='M12 13h1'/%3E%3Cpath stroke='%23e59f8b' d='M13 13h1'/%3E%3Cpath stroke='%23e5a08b' d='M14 13h1m-2 1h1'/%3E%3Cpath stroke='%23ce4c23' d='M15 13h1m0 3h1'/%3E%3Cpath stroke='%23882b13' d='M1 14h1'/%3E%3Cpath stroke='%23e6a08b' d='M14 14h1'/%3E%3Cpath stroke='%23e6a18b' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23ce4b23' d='M16 14h1m-4 1h1'/%3E%3Cpath stroke='%238b2c14' d='M1 15h1m-1 1h1'/%3E%3Cpath stroke='%23ac3619' d='M2 15h1'/%3E%3Cpath stroke='%23d76b48' d='M15 15h1'/%3E%3Cpath stroke='%23cf4c23' d='M16 15h1m-2 1h1'/%3E%3Cpath stroke='%23c94721' d='M18 15h1m-3 3h1'/%3E%3Cpath stroke='%23bb3c1b' d='M3 16h1'/%3E%3Cpath stroke='%23bf3e1d' d='M6 16h1'/%3E%3Cpath stroke='%23cb4821' d='M12 16h1'/%3E%3Cpath stroke='%23cd4b23' d='M14 16h1'/%3E%3Cpath stroke='%23cc4922' d='M17 16h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%238d2d14' d='M1 17h1'/%3E%3Cpath stroke='%23bc3c1b' d='M3 17h1m-1 1h1'/%3E%3Cpath stroke='%23c84520' d='M11 17h1m1 1h1'/%3E%3Cpath stroke='%23ae3719' d='M2 18h1'/%3E%3Cpath stroke='%23c94720' d='M14 18h1'/%3E%3Cpath stroke='%23c95839' d='M19 18h1'/%3E%3Cpath stroke='%23a7bdf0' d='M0 19h1m0 1h1'/%3E%3Cpath stroke='%23ead7d3' d='M1 19h1'/%3E%3Cpath stroke='%23b34e35' d='M2 19h1'/%3E%3Cpath stroke='%23c03e1c' d='M8 19h1'/%3E%3Cpath stroke='%23c9583a' d='M18 19h1'/%3E%3Cpath stroke='%23f3dbd4' d='M19 19h1'/%3E%3Cpath stroke='%23a7bcef' d='M20 19h1m-2 1h1'/%3E%3C/svg%3E")
}
.status-bar{
margin: 0 3px;
box-shadow: inset 0 1px 2px grey;
padding: 2px 1px;
gap: 0
}
.status-bar-field{
-webkit-font-smoothing: antialiased;
box-shadow: none;
padding: 1px 2px;
border-right: 1px solid rgba(208,206,191,.75);
border-left: 1px solid hsla(0,0%,100%,.75)
}
.status-bar-field: first-of-type{
border-left: none
}
.status-bar-field: last-of-type{
border-right: none
}
button{
-webkit-font-smoothing: antialiased;
box-sizing: border-box;
border: 1px solid #003c74;
background: linear-gradient(180deg,#fff,#ecebe5 86%,#d8d0c4);
box-shadow: none;
border-radius: 3px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: none;
background: linear-gradient(180deg,#cdcac3,#e3e3db 8%,#e5e5de 94%,#f2f2f1)
}
button: not(: disabled): hover{
box-shadow: inset -1px 1px #fff0cf,inset 1px 2px #fdd889,inset -2px 2px #fbc761,inset 2px -2px #e5a01a
}
button.focused,button: focus{
box-shadow: inset -1px 1px #cee7ff,inset 1px 2px #98b8ea,inset -2px 2px #bcd4f6,inset 1px -1px #89ade4,inset 2px -2px #89ade4
}
button: :-moz-focus-inner{
border: 0
}
input,label,option,select,textarea{
-webkit-font-smoothing: antialiased
}
input[type=radio]{
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
margin: 0;
background: 0;
position: fixed;
opacity: 0;
border: none
}
input[type=radio]+label{
line-height: 16px
}
input[type=radio]+label: before{
background: linear-gradient(135deg,#dcdcd7,#fff);
border-radius: 50%;
border: 1px solid #1d5281
}
input[type=radio]: not([disabled]): not(: active)+label: hover: before{
box-shadow: inset -2px -2px #f8b636,inset 2px 2px #fedf9c
}
input[type=radio]: active+label: before{
background: linear-gradient(135deg,#b0b0a7,#e3e1d2)
}
input[type=radio]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a9dca6' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%234dbf4a' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23a0d29e' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%2355d551' d='M1 1h1'/%3E%3Cpath stroke='%2343c33f' d='M2 1h1'/%3E%3Cpath stroke='%2329a826' d='M3 1h1'/%3E%3Cpath stroke='%239acc98' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%2342c33f' d='M1 2h1'/%3E%3Cpath stroke='%2338b935' d='M2 2h1'/%3E%3Cpath stroke='%2321a121' d='M3 2h1'/%3E%3Cpath stroke='%23269623' d='M4 2h1'/%3E%3Cpath stroke='%232aa827' d='M1 3h1'/%3E%3Cpath stroke='%2322a220' d='M2 3h1'/%3E%3Cpath stroke='%23139210' d='M3 3h1'/%3E%3Cpath stroke='%2398c897' d='M4 3h1'/%3E%3Cpath stroke='%23249624' d='M2 4h1'/%3E%3Cpath stroke='%2398c997' d='M3 4h1'/%3E%3C/svg%3E")
}
input[type=radio]: focus+label{
outline: 1px dotted #000
}
input[type=radio][disabled]+label: before{
border: 1px solid #cac8bb;
background: #fff
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e8e6da' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23d2ceb5' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23e5e3d4' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%23d7d3bd' d='M1 1h1'/%3E%3Cpath stroke='%23d0ccb2' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23c7c2a2' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%23e2dfd0' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%23cdc8ac' d='M2 2h1'/%3E%3Cpath stroke='%23c5bf9f' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%23c3bd9c' d='M4 2h1'/%3E%3Cpath stroke='%23bfb995' d='M3 3h1'/%3E%3Cpath stroke='%23e2dfcf' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23c4be9d' d='M2 4h1'/%3E%3C/svg%3E")
}
input[type=email],input[type=password],textarea: :selection{
background: #2267cb;
color: #fff
}
input[type=range]: :-webkit-slider-thumb{
height: 21px;
width: 11px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(-8px)
}
input[type=range]: :-moz-range-thumb{
height: 21px;
width: 11px;
border: 0;
border-radius: 0;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(2px)
}
input[type=range]: :-webkit-slider-runnable-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range]: :-moz-range-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(-10px)
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(0)
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
fieldset{
box-shadow: none;
background: #fff;
border: 1px solid #d0d0bf;
border-radius: 4px;
padding-top: 10px
}
legend{
background: transparent;
color: #0046d5
}
.field-row{
display: flex;
align-items: center
}
.field-row>*+*{
margin-left: 6px
}
[class^=field-row]+[class^=field-row]{
margin-top: 6px
}
.field-row-stacked{
display: flex;
flex-direction: column
}
.field-row-stacked *+*{
margin-top: 6px
}
menu[role=tablist] button{
background: linear-gradient(180deg,#fff,#fafaf9 26%,#f0f0ea 95%,#ecebe5);
margin-left: -1px;
margin-right: 2px;
border-radius: 0;
border-color: #91a7b4;
border-top-right-radius: 3px;
border-top-left-radius: 3px;
padding: 0 12px 3px
}
menu[role=tablist] button: hover{
box-shadow: unset;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]{
border-color: #919b9c;
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]: first-of-type: before{
content: "";
display: block;
position: absolute;
z-index: -1;
top: 100%;
left: -1px;
height: 2px;
width: 0;
border-left: 1px solid #919b9c
}
[role=tabpanel]{
box-shadow: inset 1px 1px #fcfcfe,inset -1px -1px #fcfcfe,1px 2px 2px 0 rgba(208,206,191,.75)
}
ul.tree-view{
-webkit-font-smoothing: auto;
border: 1px solid #7f9db9;
padding: 2px 5px
}
@keyframes sliding{
0%{
transform: translateX(-30px)
}
to{
transform: translateX(100%)
}
}
progress{
box-sizing: border-box;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
height: 14px;
border: 1px solid #686868;
border-radius: 4px;
padding: 1px 2px 1px 0;
overflow: hidden;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress,progress: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px
}
progress[value]: :-webkit-progress-bar{
background-color: transparent
}
progress[value]: :-webkit-progress-value{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress[value]: :-moz-progress-bar{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-webkit-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-webkit-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]){
position: relative
}
progress: not([value]): before{
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before,progress: not([value]): before: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): after{
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): after,progress: not([value]): after: not([value]){
animation: sliding 2s linear 0s infinite
}
progress: not([value]): after: not([value]){
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-moz-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-moz-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
</style>
</head>
<body>
<script>
var log = console.log;
var theme = 'light';
var special_col_names = ["trial_index","arm_name","trial_status","generation_method","generation_node","hostname","run_time","start_time","exit_code","signal","end_time","program_string"]
var result_names = [];
var result_min_max = [];
var tab_results_headers_json = [
"trial_index",
"arm_name",
"trial_status",
"generation_method",
"result",
"n_samples",
"n_permutations",
"update_interval",
"n_consecutive_deviations"
];
var tab_results_csv_json = [
[
0,
"0_0",
"COMPLETED",
"Sobol",
0.3143285821455364,
249,
31,
230,
1
],
[
1,
"1_0",
"COMPLETED",
"Sobol",
0.2728182045511378,
276,
27,
149,
4
],
[
2,
"2_0",
"COMPLETED",
"Sobol",
0.30032508127031754,
915,
30,
103,
1
],
[
3,
"3_0",
"COMPLETED",
"Sobol",
0.3115778944736184,
827,
46,
184,
3
],
[
4,
"4_0",
"COMPLETED",
"Sobol",
0.2865716429107277,
135,
30,
239,
2
],
[
5,
"5_0",
"COMPLETED",
"Sobol",
0.30757689422355594,
519,
37,
156,
5
],
[
6,
"6_0",
"COMPLETED",
"Sobol",
0.24656164041010253,
460,
32,
72,
3
],
[
7,
"7_0",
"COMPLETED",
"Sobol",
0.3085771442860715,
662,
44,
250,
1
],
[
8,
"8_0",
"COMPLETED",
"Sobol",
0.2915728932233058,
438,
11,
186,
2
],
[
9,
"9_0",
"COMPLETED",
"Sobol",
0.29032258064516125,
499,
36,
160,
4
],
[
10,
"10_0",
"COMPLETED",
"Sobol",
0.31107776944236054,
871,
50,
138,
1
],
[
11,
"11_0",
"COMPLETED",
"Sobol",
0.28857214303575895,
699,
37,
209,
5
],
[
12,
"12_0",
"COMPLETED",
"Sobol",
0.32608152038009497,
830,
29,
205,
3
],
[
13,
"13_0",
"COMPLETED",
"Sobol",
0.2998249562390598,
573,
31,
219,
1
],
[
14,
"14_0",
"COMPLETED",
"Sobol",
0.20955238809702426,
245,
31,
54,
2
],
[
15,
"15_0",
"COMPLETED",
"Sobol",
0.3248312078019505,
958,
14,
228,
3
],
[
16,
"16_0",
"COMPLETED",
"Sobol",
0.2835708927231808,
261,
27,
202,
2
],
[
17,
"17_0",
"COMPLETED",
"Sobol",
0.2928232058014504,
396,
44,
240,
3
],
[
18,
"18_0",
"COMPLETED",
"Sobol",
0.2648162040510128,
380,
33,
166,
2
],
[
19,
"19_0",
"COMPLETED",
"Sobol",
0.2610652663165791,
338,
13,
87,
5
],
[
20,
"20_0",
"COMPLETED",
"BoTorch",
0.20805201300325082,
164,
26,
50,
2
],
[
21,
"21_0",
"COMPLETED",
"BoTorch",
0.22905726431607898,
209,
40,
50,
2
],
[
22,
"22_0",
"COMPLETED",
"BoTorch",
0.21255313828457112,
304,
26,
50,
2
],
[
23,
"23_0",
"COMPLETED",
"BoTorch",
0.22505626406601653,
164,
31,
50,
3
],
[
24,
"24_0",
"COMPLETED",
"BoTorch",
0.2180545136284071,
282,
32,
50,
1
],
[
25,
"25_0",
"COMPLETED",
"BoTorch",
0.23305826456614154,
186,
32,
80,
2
],
[
26,
"26_0",
"COMPLETED",
"BoTorch",
0.23580895223805953,
100,
32,
50,
2
],
[
27,
"27_0",
"COMPLETED",
"BoTorch",
0.2253063265816454,
208,
18,
51,
2
],
[
28,
"28_0",
"COMPLETED",
"BoTorch",
0.22230557639409854,
307,
39,
50,
2
],
[
29,
"29_0",
"COMPLETED",
"BoTorch",
0.24031007751937983,
129,
26,
83,
2
],
[
30,
"30_0",
"COMPLETED",
"BoTorch",
0.21880470117529383,
161,
41,
50,
3
],
[
31,
"31_0",
"COMPLETED",
"BoTorch",
0.2090522630657664,
126,
18,
50,
3
],
[
32,
"32_0",
"COMPLETED",
"BoTorch",
0.21055263815953984,
204,
22,
50,
1
],
[
33,
"33_0",
"COMPLETED",
"BoTorch",
0.24831207801950483,
100,
42,
61,
2
],
[
34,
"34_0",
"COMPLETED",
"BoTorch",
0.21580395098774696,
234,
40,
71,
1
],
[
35,
"35_0",
"COMPLETED",
"BoTorch",
0.25356339084771196,
285,
36,
72,
2
],
[
36,
"36_0",
"COMPLETED",
"BoTorch",
0.21405351337834455,
141,
30,
50,
1
],
[
37,
"37_0",
"COMPLETED",
"BoTorch",
0.21755438859714926,
322,
17,
50,
1
],
[
38,
"38_0",
"COMPLETED",
"BoTorch",
0.25181295323830954,
100,
36,
82,
1
],
[
39,
"39_0",
"COMPLETED",
"BoTorch",
0.24081020255063768,
229,
25,
73,
2
],
[
40,
"40_0",
"COMPLETED",
"BoTorch",
0.202050512628157,
213,
27,
50,
2
],
[
41,
"41_0",
"COMPLETED",
"BoTorch",
0.23980995248812198,
133,
19,
78,
2
],
[
42,
"42_0",
"COMPLETED",
"BoTorch",
0.20505126281570396,
143,
12,
50,
3
],
[
43,
"43_0",
"COMPLETED",
"BoTorch",
0.2145536384096024,
103,
11,
50,
1
],
[
44,
"44_0",
"COMPLETED",
"BoTorch",
0.22605651412853212,
100,
21,
50,
1
],
[
45,
"45_0",
"COMPLETED",
"BoTorch",
0.20405101275318827,
202,
10,
50,
1
],
[
46,
"46_0",
"COMPLETED",
"BoTorch",
0.23130782695673924,
100,
14,
50,
5
],
[
47,
"47_0",
"COMPLETED",
"BoTorch",
0.22205551387846967,
290,
10,
50,
3
],
[
48,
"48_0",
"COMPLETED",
"BoTorch",
0.22205551387846967,
100,
26,
50,
5
],
[
49,
"49_0",
"COMPLETED",
"BoTorch",
0.2110527631907977,
246,
20,
50,
3
],
[
50,
"50_0",
"COMPLETED",
"BoTorch",
0.20955238809702426,
303,
29,
50,
1
],
[
51,
"51_0",
"COMPLETED",
"BoTorch",
0.2343085771442861,
100,
10,
50,
4
],
[
52,
"52_0",
"COMPLETED",
"BoTorch",
0.22955738934733683,
419,
50,
50,
1
],
[
53,
"53_0",
"COMPLETED",
"BoTorch",
0.20055013753438355,
244,
28,
50,
1
],
[
54,
"54_0",
"COMPLETED",
"BoTorch",
0.23455863965991497,
100,
10,
50,
2
],
[
55,
"55_0",
"COMPLETED",
"BoTorch",
0.2145536384096024,
112,
24,
50,
3
],
[
56,
"56_0",
"COMPLETED",
"BoTorch",
0.24381095273818454,
408,
15,
50,
3
],
[
57,
"57_0",
"COMPLETED",
"BoTorch",
0.22605651412853212,
271,
38,
50,
5
],
[
58,
"58_0",
"COMPLETED",
"BoTorch",
0.23305826456614154,
197,
10,
50,
3
],
[
59,
"59_0",
"COMPLETED",
"BoTorch",
0.2145536384096024,
195,
10,
50,
2
],
[
60,
"60_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
235,
10,
50,
1
],
[
61,
"61_0",
"COMPLETED",
"BoTorch",
0.2010502625656414,
245,
19,
50,
1
],
[
62,
"62_0",
"COMPLETED",
"BoTorch",
0.23305826456614154,
365,
50,
50,
5
],
[
63,
"63_0",
"COMPLETED",
"BoTorch",
0.1975493873468367,
147,
10,
50,
2
],
[
64,
"64_0",
"COMPLETED",
"BoTorch",
0.2073018254563641,
234,
16,
50,
2
],
[
65,
"65_0",
"COMPLETED",
"BoTorch",
0.22030507626906726,
343,
10,
50,
1
],
[
66,
"66_0",
"COMPLETED",
"BoTorch",
0.23480870217554384,
201,
50,
50,
5
],
[
67,
"67_0",
"COMPLETED",
"BoTorch",
0.2200550137534384,
504,
10,
50,
1
],
[
68,
"68_0",
"COMPLETED",
"BoTorch",
0.2263065766441611,
194,
22,
50,
4
],
[
69,
"69_0",
"COMPLETED",
"BoTorch",
0.20405101275318827,
233,
33,
50,
4
],
[
70,
"70_0",
"COMPLETED",
"BoTorch",
0.24531132783195797,
230,
36,
50,
5
],
[
71,
"71_0",
"COMPLETED",
"BoTorch",
0.2083020755188797,
242,
21,
50,
1
],
[
72,
"72_0",
"COMPLETED",
"BoTorch",
0.21355338834708681,
236,
27,
50,
4
],
[
73,
"73_0",
"COMPLETED",
"BoTorch",
0.23455863965991497,
278,
38,
50,
5
],
[
74,
"74_0",
"COMPLETED",
"BoTorch",
0.21930482620655167,
100,
50,
50,
5
],
[
75,
"75_0",
"COMPLETED",
"BoTorch",
0.26706676669167295,
668,
50,
50,
5
],
[
76,
"76_0",
"COMPLETED",
"BoTorch",
0.2288072018004501,
220,
19,
50,
1
],
[
77,
"77_0",
"COMPLETED",
"BoTorch",
0.22655663915978996,
159,
45,
50,
5
],
[
78,
"78_0",
"COMPLETED",
"BoTorch",
0.2198049512378094,
535,
12,
50,
1
],
[
79,
"79_0",
"COMPLETED",
"BoTorch",
0.2628157039259815,
689,
37,
50,
3
],
[
80,
"80_0",
"COMPLETED",
"BoTorch",
0.24256064016003998,
362,
44,
50,
5
],
[
81,
"74_0",
"COMPLETED",
"BoTorch",
0.2180545136284071,
100,
50,
50,
5
],
[
82,
"82_0",
"COMPLETED",
"BoTorch",
0.20530132533133283,
257,
18,
50,
1
],
[
83,
"83_0",
"COMPLETED",
"BoTorch",
0.23305826456614154,
260,
20,
50,
1
],
[
84,
"84_0",
"COMPLETED",
"BoTorch",
0.24381095273818454,
713,
45,
50,
4
],
[
85,
"85_0",
"COMPLETED",
"BoTorch",
0.2190547636909227,
241,
21,
50,
2
],
[
86,
"86_0",
"COMPLETED",
"BoTorch",
0.2558139534883721,
562,
50,
57,
4
],
[
87,
"87_0",
"COMPLETED",
"BoTorch",
0.24756189047261812,
563,
50,
57,
4
],
[
88,
"88_0",
"COMPLETED",
"BoTorch",
0.27431857964491124,
766,
50,
91,
4
],
[
89,
"86_0",
"COMPLETED",
"BoTorch",
0.2558139534883721,
562,
50,
57,
4
],
[
90,
"90_0",
"COMPLETED",
"BoTorch",
0.24306076519129782,
697,
10,
50,
1
],
[
91,
"91_0",
"COMPLETED",
"BoTorch",
0.23505876469117282,
493,
50,
50,
3
],
[
92,
"92_0",
"COMPLETED",
"BoTorch",
0.2513128282070518,
721,
44,
50,
4
],
[
93,
"93_0",
"COMPLETED",
"BoTorch",
0.2065516379094774,
278,
10,
50,
1
],
[
94,
"94_0",
"COMPLETED",
"BoTorch",
0.21430357589397353,
336,
23,
50,
1
],
[
95,
"95_0",
"COMPLETED",
"BoTorch",
0.23205801450362595,
310,
20,
50,
1
],
[
96,
"96_0",
"COMPLETED",
"BoTorch",
0.22405601400350084,
252,
13,
50,
2
],
[
97,
"97_0",
"COMPLETED",
"BoTorch",
0.22230557639409854,
319,
23,
50,
1
],
[
98,
"98_0",
"COMPLETED",
"BoTorch",
0.20305076269067268,
127,
50,
50,
1
],
[
99,
"99_0",
"COMPLETED",
"BoTorch",
0.22030507626906726,
273,
50,
50,
1
],
[
100,
"100_0",
"COMPLETED",
"BoTorch",
0.22405601400350084,
100,
34,
50,
4
],
[
101,
"101_0",
"COMPLETED",
"BoTorch",
0.21780445111277824,
265,
50,
50,
3
],
[
102,
"102_0",
"COMPLETED",
"BoTorch",
0.21080270067516882,
123,
50,
50,
1
],
[
103,
"103_0",
"COMPLETED",
"BoTorch",
0.2198049512378094,
221,
42,
50,
3
],
[
104,
"104_0",
"COMPLETED",
"BoTorch",
0.22405601400350084,
100,
50,
50,
4
],
[
105,
"105_0",
"COMPLETED",
"BoTorch",
0.22405601400350084,
100,
36,
50,
4
],
[
106,
"106_0",
"COMPLETED",
"BoTorch",
0.2585646411602901,
100,
50,
104,
5
],
[
107,
"107_0",
"COMPLETED",
"BoTorch",
0.2468117029257314,
103,
42,
83,
5
],
[
108,
"108_0",
"COMPLETED",
"BoTorch",
0.22605651412853212,
222,
50,
50,
1
],
[
109,
"109_0",
"COMPLETED",
"BoTorch",
0.2745686421605401,
100,
38,
118,
5
],
[
110,
"110_0",
"COMPLETED",
"BoTorch",
0.2045511377844461,
258,
10,
50,
1
],
[
111,
"111_0",
"COMPLETED",
"BoTorch",
0.26331582895723926,
100,
50,
88,
5
],
[
112,
"112_0",
"COMPLETED",
"BoTorch",
0.22230557639409854,
203,
22,
50,
3
],
[
113,
"100_0",
"COMPLETED",
"BoTorch",
0.22405601400350084,
100,
34,
50,
4
],
[
114,
"114_0",
"COMPLETED",
"BoTorch",
0.22155538884721182,
100,
27,
50,
4
],
[
115,
"115_0",
"COMPLETED",
"BoTorch",
0.2773193298324581,
322,
10,
149,
4
],
[
116,
"116_0",
"COMPLETED",
"BoTorch",
0.22830707676919226,
100,
50,
50,
3
],
[
117,
"117_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
100,
50,
50,
1
],
[
118,
"118_0",
"COMPLETED",
"BoTorch",
0.2038009502375594,
235,
30,
50,
1
],
[
119,
"119_0",
"COMPLETED",
"BoTorch",
0.3103275818954738,
1000,
10,
50,
5
],
[
120,
"120_0",
"COMPLETED",
"BoTorch",
0.23905976494123526,
100,
50,
50,
2
],
[
121,
"119_0",
"COMPLETED",
"BoTorch",
0.3103275818954738,
1000,
10,
50,
5
],
[
122,
"122_0",
"COMPLETED",
"BoTorch",
0.2073018254563641,
214,
32,
50,
1
],
[
123,
"123_0",
"COMPLETED",
"BoTorch",
0.2198049512378094,
201,
50,
50,
1
],
[
124,
"124_0",
"COMPLETED",
"BoTorch",
0.2208052013003251,
162,
50,
50,
2
],
[
125,
"125_0",
"COMPLETED",
"BoTorch",
0.2110527631907977,
196,
23,
50,
2
],
[
126,
"126_0",
"COMPLETED",
"BoTorch",
0.24256064016003998,
714,
35,
50,
5
],
[
127,
"127_0",
"COMPLETED",
"BoTorch",
0.19704926231557884,
227,
28,
50,
1
],
[
128,
"128_0",
"COMPLETED",
"BoTorch",
0.22305576394098525,
334,
50,
50,
2
],
[
129,
"129_0",
"COMPLETED",
"BoTorch",
0.24131032758189552,
299,
50,
50,
3
],
[
130,
"130_0",
"COMPLETED",
"BoTorch",
0.22505626406601653,
221,
14,
50,
1
],
[
131,
"131_0",
"COMPLETED",
"BoTorch",
0.22405601400350084,
268,
32,
50,
3
],
[
132,
"132_0",
"COMPLETED",
"BoTorch",
0.2935733933483371,
100,
10,
250,
5
],
[
133,
"133_0",
"COMPLETED",
"BoTorch",
0.20705176294073513,
242,
10,
50,
1
],
[
134,
"134_0",
"COMPLETED",
"BoTorch",
0.3053263315828957,
266,
42,
225,
1
],
[
135,
"135_0",
"COMPLETED",
"BoTorch",
0.3008252063015754,
265,
42,
225,
1
],
[
136,
"136_0",
"COMPLETED",
"BoTorch",
0.2783195798949737,
100,
10,
185,
5
],
[
137,
"137_0",
"COMPLETED",
"BoTorch",
0.24006001500375096,
281,
28,
50,
2
],
[
138,
"138_0",
"COMPLETED",
"BoTorch",
0.29482370592648166,
226,
11,
241,
5
],
[
139,
"139_0",
"COMPLETED",
"BoTorch",
0.22130532633158284,
201,
21,
50,
1
],
[
140,
"140_0",
"COMPLETED",
"BoTorch",
0.2683170792698174,
101,
31,
229,
5
],
[
141,
"141_0",
"COMPLETED",
"BoTorch",
0.29407351837959494,
100,
20,
194,
5
],
[
142,
"142_0",
"COMPLETED",
"BoTorch",
0.3520880220055014,
163,
12,
249,
5
],
[
143,
"143_0",
"COMPLETED",
"BoTorch",
0.2828207051762941,
222,
19,
250,
4
],
[
144,
"144_0",
"COMPLETED",
"BoTorch",
0.19529882470617654,
227,
30,
50,
1
],
[
145,
"145_0",
"COMPLETED",
"BoTorch",
0.22155538884721182,
251,
10,
50,
1
],
[
146,
"146_0",
"COMPLETED",
"BoTorch",
0.20805201300325082,
239,
10,
50,
1
],
[
147,
"147_0",
"COMPLETED",
"BoTorch",
0.20230057514378597,
225,
29,
50,
1
],
[
148,
"148_0",
"COMPLETED",
"BoTorch",
0.2773193298324581,
679,
31,
65,
5
],
[
149,
"149_0",
"COMPLETED",
"BoTorch",
0.24281070267566895,
338,
27,
96,
2
],
[
150,
"150_0",
"COMPLETED",
"BoTorch",
0.20080020005001253,
233,
10,
50,
1
],
[
151,
"151_0",
"COMPLETED",
"BoTorch",
0.1992998249562391,
243,
10,
50,
1
],
[
152,
"146_0",
"COMPLETED",
"BoTorch",
0.20705176294073513,
239,
10,
50,
1
],
[
153,
"74_0",
"COMPLETED",
"BoTorch",
0.2180545136284071,
100,
50,
50,
5
],
[
154,
"154_0",
"COMPLETED",
"BoTorch",
0.1937984496124031,
226,
28,
50,
1
],
[
155,
"155_0",
"COMPLETED",
"BoTorch",
0.2388097024256064,
148,
10,
61,
3
],
[
156,
"156_0",
"COMPLETED",
"BoTorch",
0.22330582645661412,
257,
12,
71,
1
],
[
157,
"157_0",
"COMPLETED",
"BoTorch",
0.20230057514378597,
225,
30,
50,
1
],
[
158,
"158_0",
"COMPLETED",
"BoTorch",
0.23630907726931738,
190,
19,
50,
1
],
[
159,
"159_0",
"COMPLETED",
"BoTorch",
0.22680670167541883,
148,
10,
50,
3
],
[
160,
"160_0",
"COMPLETED",
"BoTorch",
0.22955738934733683,
185,
38,
66,
3
],
[
161,
"161_0",
"COMPLETED",
"BoTorch",
0.20080020005001253,
232,
31,
50,
1
],
[
162,
"162_0",
"COMPLETED",
"BoTorch",
0.2610652663165791,
100,
10,
92,
3
],
[
163,
"163_0",
"COMPLETED",
"BoTorch",
0.20605151287821954,
236,
19,
54,
2
],
[
164,
"164_0",
"COMPLETED",
"BoTorch",
0.24081020255063768,
104,
28,
86,
3
],
[
165,
"165_0",
"COMPLETED",
"BoTorch",
0.23930982745686424,
107,
29,
85,
3
],
[
166,
"166_0",
"COMPLETED",
"BoTorch",
0.24756189047261812,
200,
14,
97,
1
],
[
167,
"167_0",
"COMPLETED",
"BoTorch",
0.2343085771442861,
214,
50,
96,
3
],
[
168,
"160_0",
"COMPLETED",
"BoTorch",
0.22955738934733683,
185,
38,
66,
3
],
[
169,
"169_0",
"COMPLETED",
"BoTorch",
0.21680420105026255,
186,
43,
51,
3
],
[
170,
"160_0",
"COMPLETED",
"BoTorch",
0.22955738934733683,
185,
38,
66,
3
],
[
171,
"171_0",
"COMPLETED",
"BoTorch",
0.2513128282070518,
599,
50,
50,
1
],
[
172,
"172_0",
"COMPLETED",
"BoTorch",
0.2818204551137784,
1000,
50,
50,
1
],
[
173,
"173_0",
"COMPLETED",
"BoTorch",
0.23905976494123526,
298,
38,
65,
3
],
[
174,
"174_0",
"COMPLETED",
"BoTorch",
0.22830707676919226,
245,
23,
77,
2
],
[
175,
"175_0",
"COMPLETED",
"BoTorch",
0.20230057514378597,
238,
32,
50,
1
],
[
176,
"176_0",
"COMPLETED",
"BoTorch",
0.22455613903475868,
270,
10,
50,
1
],
[
177,
"177_0",
"COMPLETED",
"BoTorch",
0.23680920230057512,
489,
38,
64,
1
],
[
178,
"178_0",
"COMPLETED",
"BoTorch",
0.21880470117529383,
356,
10,
50,
2
],
[
179,
"179_0",
"COMPLETED",
"BoTorch",
0.21505376344086025,
240,
31,
50,
1
],
[
180,
"180_0",
"COMPLETED",
"BoTorch",
0.2093023255813954,
466,
18,
50,
2
],
[
181,
"181_0",
"COMPLETED",
"BoTorch",
0.2745686421605401,
690,
47,
59,
1
],
[
182,
"182_0",
"COMPLETED",
"BoTorch",
0.202050512628157,
238,
31,
50,
1
],
[
183,
"183_0",
"COMPLETED",
"BoTorch",
0.20530132533133283,
108,
28,
51,
1
],
[
184,
"184_0",
"COMPLETED",
"BoTorch",
0.2655663915978995,
700,
42,
64,
1
],
[
185,
"185_0",
"COMPLETED",
"BoTorch",
0.22330582645661412,
222,
10,
50,
2
],
[
186,
"186_0",
"COMPLETED",
"BoTorch",
0.25606401600400097,
872,
23,
50,
1
],
[
187,
"187_0",
"COMPLETED",
"BoTorch",
0.2863215803950988,
677,
42,
58,
5
],
[
188,
"188_0",
"COMPLETED",
"BoTorch",
0.23680920230057512,
289,
10,
50,
3
],
[
189,
"189_0",
"COMPLETED",
"BoTorch",
0.22380595148787197,
358,
16,
65,
2
],
[
190,
"190_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
239,
31,
50,
1
],
[
191,
"191_0",
"COMPLETED",
"BoTorch",
0.20755188797199298,
223,
32,
50,
1
],
[
192,
"192_0",
"COMPLETED",
"BoTorch",
0.23505876469117282,
280,
10,
50,
1
],
[
193,
"193_0",
"COMPLETED",
"BoTorch",
0.2093023255813954,
219,
32,
50,
1
],
[
194,
"194_0",
"COMPLETED",
"BoTorch",
0.25556389097274324,
791,
25,
55,
1
],
[
195,
"191_0",
"COMPLETED",
"BoTorch",
0.20755188797199298,
223,
32,
50,
1
],
[
196,
"196_0",
"COMPLETED",
"BoTorch",
0.23030757689422354,
263,
10,
50,
1
],
[
197,
"197_0",
"COMPLETED",
"BoTorch",
0.22330582645661412,
221,
32,
50,
1
],
[
198,
"198_0",
"COMPLETED",
"BoTorch",
0.20755188797199298,
223,
33,
50,
1
],
[
199,
"199_0",
"COMPLETED",
"BoTorch",
0.22755688922230555,
222,
33,
50,
1
],
[
200,
"193_0",
"COMPLETED",
"BoTorch",
0.2093023255813954,
219,
32,
50,
1
],
[
201,
"201_0",
"COMPLETED",
"BoTorch",
0.21080270067516882,
268,
10,
50,
1
],
[
202,
"202_0",
"COMPLETED",
"BoTorch",
0.1937984496124031,
226,
32,
50,
1
],
[
203,
"203_0",
"COMPLETED",
"BoTorch",
0.24481120280070012,
320,
10,
74,
1
],
[
204,
"204_0",
"COMPLETED",
"BoTorch",
0.23555888972243055,
353,
10,
86,
2
],
[
205,
"205_0",
"COMPLETED",
"BoTorch",
0.25906476619154784,
336,
25,
134,
2
],
[
206,
"206_0",
"COMPLETED",
"BoTorch",
0.20355088772193053,
217,
32,
50,
1
],
[
207,
"207_0",
"COMPLETED",
"BoTorch",
0.26906726681670423,
232,
39,
135,
3
],
[
208,
"208_0",
"COMPLETED",
"BoTorch",
0.21080270067516882,
216,
25,
50,
1
],
[
209,
"122_0",
"COMPLETED",
"BoTorch",
0.2073018254563641,
214,
32,
50,
1
],
[
210,
"210_0",
"COMPLETED",
"BoTorch",
0.2083020755188797,
213,
32,
50,
1
],
[
211,
"211_0",
"COMPLETED",
"BoTorch",
0.24206051512878224,
258,
35,
108,
2
],
[
212,
"212_0",
"COMPLETED",
"BoTorch",
0.22130532633158284,
100,
10,
50,
1
],
[
213,
"213_0",
"COMPLETED",
"BoTorch",
0.23130782695673924,
100,
19,
50,
5
],
[
214,
"214_0",
"COMPLETED",
"BoTorch",
0.2388097024256064,
157,
46,
50,
4
],
[
215,
"215_0",
"COMPLETED",
"BoTorch",
0.2838209552388097,
844,
31,
105,
2
],
[
216,
"216_0",
"COMPLETED",
"BoTorch",
0.2110527631907977,
216,
32,
50,
1
],
[
217,
"217_0",
"COMPLETED",
"BoTorch",
0.20530132533133283,
218,
32,
50,
1
],
[
218,
"218_0",
"COMPLETED",
"BoTorch",
0.21505376344086025,
240,
26,
50,
1
],
[
219,
"122_0",
"COMPLETED",
"BoTorch",
0.2073018254563641,
214,
32,
50,
1
],
[
220,
"217_0",
"COMPLETED",
"BoTorch",
0.20530132533133283,
218,
32,
50,
1
],
[
221,
"221_0",
"COMPLETED",
"BoTorch",
0.2333083270817704,
100,
10,
50,
5
],
[
222,
"222_0",
"COMPLETED",
"BoTorch",
0.2028007001750438,
237,
28,
50,
1
],
[
223,
"223_0",
"COMPLETED",
"BoTorch",
0.2645661415353838,
178,
33,
106,
4
],
[
224,
"216_0",
"COMPLETED",
"BoTorch",
0.2110527631907977,
216,
32,
50,
1
],
[
225,
"225_0",
"COMPLETED",
"BoTorch",
0.21655413853463368,
215,
32,
50,
1
],
[
226,
"225_0",
"COMPLETED",
"BoTorch",
0.21655413853463368,
215,
32,
50,
1
],
[
227,
"122_0",
"COMPLETED",
"BoTorch",
0.2073018254563641,
214,
32,
50,
1
],
[
228,
"228_0",
"COMPLETED",
"BoTorch",
0.24656164041010253,
695,
45,
70,
2
],
[
229,
"122_0",
"COMPLETED",
"BoTorch",
0.2073018254563641,
214,
32,
50,
1
],
[
230,
"230_0",
"COMPLETED",
"BoTorch",
0.2198049512378094,
212,
33,
50,
1
],
[
231,
"212_0",
"COMPLETED",
"BoTorch",
0.22130532633158284,
100,
10,
50,
1
],
[
232,
"232_0",
"COMPLETED",
"BoTorch",
0.24731182795698925,
246,
50,
114,
1
],
[
233,
"122_0",
"COMPLETED",
"BoTorch",
0.2083020755188797,
214,
32,
50,
1
],
[
234,
"122_0",
"COMPLETED",
"BoTorch",
0.2073018254563641,
214,
32,
50,
1
],
[
235,
"235_0",
"COMPLETED",
"BoTorch",
0.23580895223805953,
100,
22,
50,
2
],
[
236,
"236_0",
"COMPLETED",
"BoTorch",
0.20780195048762196,
239,
27,
50,
1
],
[
237,
"237_0",
"COMPLETED",
"BoTorch",
0.2073018254563641,
214,
33,
50,
1
],
[
238,
"206_0",
"COMPLETED",
"BoTorch",
0.20355088772193053,
217,
32,
50,
1
],
[
239,
"239_0",
"COMPLETED",
"BoTorch",
0.21080270067516882,
267,
25,
50,
2
],
[
240,
"240_0",
"COMPLETED",
"BoTorch",
0.23855963990997753,
100,
16,
50,
2
],
[
241,
"241_0",
"COMPLETED",
"BoTorch",
0.2253063265816454,
180,
10,
50,
1
],
[
242,
"242_0",
"COMPLETED",
"BoTorch",
0.24481120280070012,
100,
31,
104,
2
],
[
243,
"243_0",
"RUNNING",
"BoTorch",
"",
210,
27,
50,
1
],
[
244,
"244_0",
"COMPLETED",
"BoTorch",
0.26256564141035255,
503,
41,
126,
1
],
[
245,
"245_0",
"COMPLETED",
"BoTorch",
0.24006001500375096,
352,
10,
57,
3
],
[
246,
"246_0",
"COMPLETED",
"BoTorch",
0.2370592648162041,
100,
28,
50,
2
],
[
247,
"247_0",
"RUNNING",
"BoTorch",
"",
223,
28,
50,
1
],
[
248,
"248_0",
"RUNNING",
"BoTorch",
"",
233,
27,
50,
1
],
[
249,
"249_0",
"COMPLETED",
"BoTorch",
0.21955488872218054,
191,
24,
50,
3
],
[
250,
"225_0",
"COMPLETED",
"BoTorch",
0.21655413853463368,
215,
32,
50,
1
],
[
251,
"251_0",
"COMPLETED",
"BoTorch",
0.25431357839459867,
713,
50,
63,
5
],
[
252,
"122_0",
"COMPLETED",
"BoTorch",
0.2073018254563641,
214,
32,
50,
1
],
[
253,
"253_0",
"COMPLETED",
"BoTorch",
0.23980995248812198,
321,
25,
50,
5
],
[
254,
"216_0",
"COMPLETED",
"BoTorch",
0.2110527631907977,
216,
32,
50,
1
],
[
255,
"255_0",
"COMPLETED",
"BoTorch",
0.2090522630657664,
219,
33,
50,
1
],
[
256,
"256_0",
"COMPLETED",
"BoTorch",
0.23030757689422354,
220,
33,
50,
1
],
[
257,
"257_0",
"COMPLETED",
"BoTorch",
0.2298074518629657,
263,
29,
50,
1
],
[
258,
"256_0",
"COMPLETED",
"BoTorch",
0.23030757689422354,
220,
33,
50,
1
],
[
259,
"259_0",
"COMPLETED",
"BoTorch",
0.27081770442610653,
768,
17,
105,
1
],
[
260,
"256_0",
"COMPLETED",
"BoTorch",
0.23030757689422354,
220,
33,
50,
1
],
[
261,
"261_0",
"COMPLETED",
"BoTorch",
0.23755938984746183,
100,
47,
73,
4
],
[
262,
"256_0",
"COMPLETED",
"BoTorch",
0.2288072018004501,
220,
33,
50,
1
],
[
263,
"256_0",
"COMPLETED",
"BoTorch",
0.2325581395348837,
220,
33,
50,
1
],
[
264,
"264_0",
"COMPLETED",
"BoTorch",
0.2253063265816454,
221,
33,
50,
1
],
[
265,
"265_0",
"COMPLETED",
"BoTorch",
0.20505126281570396,
218,
33,
50,
1
],
[
266,
"266_0",
"COMPLETED",
"BoTorch",
0.2370592648162041,
279,
50,
57,
2
],
[
267,
"267_0",
"COMPLETED",
"BoTorch",
0.26081520380095025,
164,
35,
94,
3
],
[
268,
"268_0",
"COMPLETED",
"BoTorch",
0.1957989497374344,
227,
29,
50,
1
],
[
269,
"269_0",
"COMPLETED",
"BoTorch",
0.21755438859714926,
275,
10,
50,
2
],
[
270,
"270_0",
"COMPLETED",
"BoTorch",
0.19454863715928983,
226,
30,
50,
1
],
[
271,
"147_0",
"COMPLETED",
"BoTorch",
0.20230057514378597,
225,
29,
50,
1
],
[
272,
"272_0",
"COMPLETED",
"BoTorch",
0.23755938984746183,
281,
43,
50,
1
],
[
273,
"273_0",
"COMPLETED",
"BoTorch",
0.20055013753438355,
232,
29,
50,
1
],
[
274,
"274_0",
"COMPLETED",
"BoTorch",
0.2495623905976494,
695,
35,
55,
1
],
[
275,
"275_0",
"COMPLETED",
"BoTorch",
0.21605401350337583,
267,
25,
50,
1
],
[
276,
"276_0",
"COMPLETED",
"BoTorch",
0.20805201300325082,
229,
29,
50,
1
],
[
277,
"277_0",
"COMPLETED",
"BoTorch",
0.21330332583145784,
176,
50,
50,
2
],
[
278,
"278_0",
"COMPLETED",
"BoTorch",
0.22555638909727427,
453,
50,
58,
2
],
[
279,
"147_0",
"COMPLETED",
"BoTorch",
0.20230057514378597,
225,
29,
50,
1
],
[
280,
"268_0",
"COMPLETED",
"BoTorch",
0.1957989497374344,
227,
29,
50,
1
],
[
281,
"281_0",
"COMPLETED",
"BoTorch",
0.20405101275318827,
258,
25,
50,
1
],
[
282,
"266_0",
"COMPLETED",
"BoTorch",
0.2370592648162041,
279,
50,
57,
2
],
[
283,
"283_0",
"COMPLETED",
"BoTorch",
0.20855213803450867,
224,
28,
50,
1
],
[
284,
"284_0",
"COMPLETED",
"BoTorch",
0.20230057514378597,
225,
28,
50,
1
],
[
285,
"283_0",
"COMPLETED",
"BoTorch",
0.20855213803450867,
224,
28,
50,
1
],
[
286,
"286_0",
"COMPLETED",
"BoTorch",
0.19454863715928983,
226,
27,
50,
1
],
[
287,
"284_0",
"COMPLETED",
"BoTorch",
0.20330082520630155,
225,
28,
50,
1
],
[
288,
"284_0",
"COMPLETED",
"BoTorch",
0.20330082520630155,
225,
28,
50,
1
],
[
289,
"289_0",
"COMPLETED",
"BoTorch",
0.2460615153788447,
315,
27,
121,
3
],
[
290,
"290_0",
"COMPLETED",
"BoTorch",
0.20855213803450867,
224,
27,
50,
1
],
[
291,
"291_0",
"COMPLETED",
"BoTorch",
0.22205551387846967,
255,
23,
60,
3
],
[
292,
"127_0",
"COMPLETED",
"BoTorch",
0.1955488872218054,
227,
28,
50,
1
],
[
293,
"284_0",
"COMPLETED",
"BoTorch",
0.20330082520630155,
225,
28,
50,
1
],
[
294,
"294_0",
"COMPLETED",
"BoTorch",
0.28332083020755183,
821,
17,
75,
2
],
[
295,
"295_0",
"COMPLETED",
"BoTorch",
0.22480620155038755,
230,
28,
50,
1
],
[
296,
"290_0",
"COMPLETED",
"BoTorch",
0.20855213803450867,
224,
27,
50,
1
],
[
297,
"297_0",
"COMPLETED",
"BoTorch",
0.20955238809702426,
229,
27,
50,
1
],
[
298,
"298_0",
"COMPLETED",
"BoTorch",
0.2613153288322081,
319,
13,
120,
2
],
[
299,
"299_0",
"COMPLETED",
"BoTorch",
0.19904976244061012,
228,
27,
50,
1
],
[
300,
"297_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
229,
27,
50,
1
],
[
301,
"297_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
229,
27,
50,
1
],
[
302,
"302_0",
"RUNNING",
"BoTorch",
"",
126,
44,
61,
4
],
[
303,
"303_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
230,
27,
50,
1
],
[
304,
"303_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
230,
27,
50,
1
],
[
305,
"305_0",
"COMPLETED",
"BoTorch",
0.22105526381595397,
318,
15,
87,
1
],
[
306,
"297_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
229,
27,
50,
1
],
[
307,
"303_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
230,
27,
50,
1
],
[
308,
"299_0",
"COMPLETED",
"BoTorch",
0.19904976244061012,
228,
27,
50,
1
],
[
309,
"303_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
230,
27,
50,
1
],
[
310,
"297_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
229,
27,
50,
1
],
[
311,
"218_0",
"COMPLETED",
"BoTorch",
0.21230307576894225,
240,
26,
50,
1
],
[
312,
"303_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
230,
27,
50,
1
],
[
313,
"248_0",
"COMPLETED",
"BoTorch",
0.1992998249562391,
233,
27,
50,
1
],
[
314,
"314_0",
"COMPLETED",
"BoTorch",
0.2200550137534384,
146,
31,
74,
2
],
[
315,
"315_0",
"COMPLETED",
"BoTorch",
0.20055013753438355,
232,
27,
50,
1
],
[
316,
"316_0",
"COMPLETED",
"BoTorch",
0.2063015753938484,
234,
27,
50,
1
],
[
317,
"317_0",
"COMPLETED",
"BoTorch",
0.21605401350337583,
231,
27,
50,
1
],
[
318,
"318_0",
"COMPLETED",
"BoTorch",
0.21405351337834455,
237,
21,
50,
3
],
[
319,
"319_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
248,
25,
50,
1
],
[
320,
"320_0",
"COMPLETED",
"BoTorch",
0.28857214303575895,
903,
40,
66,
4
],
[
321,
"248_0",
"COMPLETED",
"BoTorch",
0.1992998249562391,
233,
27,
50,
1
],
[
322,
"248_0",
"COMPLETED",
"BoTorch",
0.1992998249562391,
233,
27,
50,
1
],
[
323,
"315_0",
"COMPLETED",
"BoTorch",
0.20055013753438355,
232,
27,
50,
1
],
[
324,
"315_0",
"COMPLETED",
"BoTorch",
0.20055013753438355,
232,
27,
50,
1
],
[
325,
"325_0",
"COMPLETED",
"BoTorch",
0.20980245061265312,
236,
27,
50,
1
],
[
326,
"326_0",
"COMPLETED",
"BoTorch",
0.2063015753938484,
238,
27,
50,
1
],
[
327,
"327_0",
"COMPLETED",
"BoTorch",
0.23555888972243055,
188,
43,
94,
2
],
[
328,
"248_0",
"COMPLETED",
"BoTorch",
0.1992998249562391,
233,
27,
50,
1
],
[
329,
"329_0",
"COMPLETED",
"BoTorch",
0.26906726681670423,
452,
17,
108,
2
],
[
330,
"330_0",
"COMPLETED",
"BoTorch",
0.2003000750187547,
244,
26,
50,
1
],
[
331,
"331_0",
"COMPLETED",
"BoTorch",
0.22280570142535638,
241,
27,
50,
1
],
[
332,
"332_0",
"COMPLETED",
"BoTorch",
0.21605401350337583,
151,
50,
57,
3
],
[
333,
"316_0",
"COMPLETED",
"BoTorch",
0.2063015753938484,
234,
27,
50,
1
],
[
334,
"248_0",
"COMPLETED",
"BoTorch",
0.1992998249562391,
233,
27,
50,
1
],
[
335,
"335_0",
"COMPLETED",
"BoTorch",
0.24631157789447367,
130,
46,
79,
5
],
[
336,
"336_0",
"COMPLETED",
"BoTorch",
0.2583145786446611,
344,
50,
96,
4
],
[
337,
"316_0",
"COMPLETED",
"BoTorch",
0.2063015753938484,
234,
27,
50,
1
],
[
338,
"338_0",
"COMPLETED",
"BoTorch",
0.202050512628157,
238,
26,
50,
1
],
[
339,
"339_0",
"COMPLETED",
"BoTorch",
0.28232058014503625,
280,
21,
186,
5
],
[
340,
"340_0",
"COMPLETED",
"BoTorch",
0.2325581395348837,
199,
28,
65,
2
],
[
341,
"338_0",
"COMPLETED",
"BoTorch",
0.2063015753938484,
238,
26,
50,
1
],
[
342,
"338_0",
"COMPLETED",
"BoTorch",
0.2063015753938484,
238,
26,
50,
1
],
[
343,
"338_0",
"COMPLETED",
"BoTorch",
0.2063015753938484,
238,
26,
50,
1
],
[
344,
"218_0",
"COMPLETED",
"BoTorch",
0.21230307576894225,
240,
26,
50,
1
],
[
345,
"345_0",
"COMPLETED",
"BoTorch",
0.20255063765941483,
237,
26,
50,
1
],
[
346,
"346_0",
"COMPLETED",
"BoTorch",
0.24381095273818454,
421,
37,
88,
3
],
[
347,
"338_0",
"COMPLETED",
"BoTorch",
0.202050512628157,
238,
26,
50,
1
],
[
348,
"348_0",
"COMPLETED",
"BoTorch",
0.20855213803450867,
242,
25,
50,
1
],
[
349,
"345_0",
"COMPLETED",
"BoTorch",
0.2028007001750438,
237,
26,
50,
1
],
[
350,
"338_0",
"COMPLETED",
"BoTorch",
0.202050512628157,
238,
26,
50,
1
],
[
351,
"351_0",
"COMPLETED",
"BoTorch",
0.2675668917229307,
538,
12,
120,
2
],
[
352,
"345_0",
"COMPLETED",
"BoTorch",
0.2083020755188797,
237,
26,
50,
1
],
[
353,
"353_0",
"COMPLETED",
"BoTorch",
0.20855213803450867,
242,
26,
50,
1
],
[
354,
"354_0",
"COMPLETED",
"BoTorch",
0.2315578894723681,
476,
45,
65,
3
],
[
355,
"355_0",
"COMPLETED",
"BoTorch",
0.23905976494123526,
100,
40,
50,
2
],
[
356,
"356_0",
"COMPLETED",
"BoTorch",
0.20955238809702426,
239,
26,
50,
1
],
[
357,
"357_0",
"COMPLETED",
"BoTorch",
0.24981245311327827,
219,
27,
84,
2
],
[
358,
"358_0",
"COMPLETED",
"BoTorch",
0.22280570142535638,
241,
26,
50,
1
],
[
359,
"338_0",
"COMPLETED",
"BoTorch",
0.2063015753938484,
238,
26,
50,
1
],
[
360,
"358_0",
"COMPLETED",
"BoTorch",
0.22280570142535638,
241,
26,
50,
1
],
[
361,
"361_0",
"COMPLETED",
"BoTorch",
0.22480620155038755,
141,
23,
59,
1
],
[
362,
"218_0",
"COMPLETED",
"BoTorch",
0.21230307576894225,
240,
26,
50,
1
],
[
363,
"218_0",
"COMPLETED",
"BoTorch",
0.21230307576894225,
240,
26,
50,
1
],
[
364,
"364_0",
"COMPLETED",
"BoTorch",
0.25531382845711426,
127,
32,
126,
4
],
[
365,
"218_0",
"COMPLETED",
"BoTorch",
0.21230307576894225,
240,
26,
50,
1
],
[
366,
"366_0",
"COMPLETED",
"BoTorch",
0.2848212053013254,
144,
14,
132,
4
],
[
367,
"367_0",
"COMPLETED",
"BoTorch",
0.21080270067516882,
216,
34,
58,
1
],
[
368,
"326_0",
"COMPLETED",
"BoTorch",
0.2063015753938484,
238,
27,
50,
1
],
[
369,
"369_0",
"COMPLETED",
"BoTorch",
0.2468117029257314,
385,
41,
114,
4
],
[
370,
"370_0",
"COMPLETED",
"BoTorch",
0.2028007001750438,
237,
27,
50,
1
],
[
371,
"371_0",
"COMPLETED",
"BoTorch",
0.2190547636909227,
183,
50,
50,
1
],
[
372,
"117_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
100,
50,
50,
1
],
[
373,
"373_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
101,
27,
50,
4
],
[
374,
"370_0",
"COMPLETED",
"BoTorch",
0.2028007001750438,
237,
27,
50,
1
],
[
375,
"375_0",
"COMPLETED",
"BoTorch",
0.2218054513628407,
100,
32,
50,
3
],
[
376,
"236_0",
"COMPLETED",
"BoTorch",
0.20780195048762196,
239,
27,
50,
1
],
[
377,
"326_0",
"COMPLETED",
"BoTorch",
0.2063015753938484,
238,
27,
50,
1
],
[
378,
"378_0",
"COMPLETED",
"BoTorch",
0.2270567641910478,
100,
39,
50,
3
],
[
379,
"379_0",
"COMPLETED",
"BoTorch",
0.2118029507376844,
253,
25,
50,
1
],
[
380,
"380_0",
"COMPLETED",
"BoTorch",
0.24631157789447367,
306,
13,
100,
1
],
[
381,
"381_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
235,
27,
50,
1
],
[
382,
"381_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
235,
27,
50,
1
],
[
383,
"383_0",
"COMPLETED",
"BoTorch",
0.22555638909727427,
249,
26,
50,
1
],
[
384,
"384_0",
"COMPLETED",
"BoTorch",
0.24981245311327827,
500,
39,
56,
2
],
[
385,
"325_0",
"COMPLETED",
"BoTorch",
0.20980245061265312,
236,
27,
50,
1
],
[
386,
"386_0",
"COMPLETED",
"BoTorch",
0.27506876719179796,
536,
47,
92,
4
],
[
387,
"325_0",
"COMPLETED",
"BoTorch",
0.2038009502375594,
236,
27,
50,
1
],
[
388,
"326_0",
"COMPLETED",
"BoTorch",
0.20180045011252812,
238,
27,
50,
1
],
[
389,
"212_0",
"COMPLETED",
"BoTorch",
0.22130532633158284,
100,
10,
50,
1
],
[
390,
"381_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
235,
27,
50,
1
],
[
391,
"325_0",
"COMPLETED",
"BoTorch",
0.20980245061265312,
236,
27,
50,
1
],
[
392,
"392_0",
"COMPLETED",
"BoTorch",
0.22780695173793453,
404,
31,
64,
1
],
[
393,
"325_0",
"COMPLETED",
"BoTorch",
0.20980245061265312,
236,
27,
50,
1
],
[
394,
"394_0",
"COMPLETED",
"BoTorch",
0.20855213803450867,
242,
28,
50,
1
],
[
395,
"395_0",
"COMPLETED",
"BoTorch",
0.22280570142535638,
241,
28,
50,
1
],
[
396,
"396_0",
"COMPLETED",
"BoTorch",
0.1992998249562391,
243,
28,
50,
1
],
[
397,
"394_0",
"COMPLETED",
"BoTorch",
0.20855213803450867,
242,
28,
50,
1
],
[
398,
"395_0",
"COMPLETED",
"BoTorch",
0.22280570142535638,
241,
28,
50,
1
],
[
399,
"399_0",
"COMPLETED",
"BoTorch",
0.26531632908227054,
280,
27,
80,
1
],
[
400,
"117_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
100,
50,
50,
1
],
[
401,
"394_0",
"COMPLETED",
"BoTorch",
0.20855213803450867,
242,
28,
50,
1
],
[
402,
"396_0",
"COMPLETED",
"BoTorch",
0.1992998249562391,
243,
28,
50,
1
],
[
403,
"403_0",
"COMPLETED",
"BoTorch",
0.2650662665666417,
501,
23,
156,
1
],
[
404,
"396_0",
"COMPLETED",
"BoTorch",
0.1992998249562391,
243,
28,
50,
1
],
[
405,
"394_0",
"COMPLETED",
"BoTorch",
0.20855213803450867,
242,
28,
50,
1
],
[
406,
"406_0",
"COMPLETED",
"BoTorch",
0.2200550137534384,
348,
10,
50,
1
],
[
407,
"394_0",
"COMPLETED",
"BoTorch",
0.20855213803450867,
242,
28,
50,
1
],
[
408,
"408_0",
"COMPLETED",
"BoTorch",
0.21430357589397353,
446,
10,
50,
1
],
[
409,
"409_0",
"COMPLETED",
"BoTorch",
0.2083020755188797,
214,
25,
50,
1
],
[
410,
"410_0",
"COMPLETED",
"BoTorch",
0.21605401350337583,
445,
10,
50,
1
],
[
411,
"411_0",
"COMPLETED",
"BoTorch",
0.22280570142535638,
506,
10,
50,
1
],
[
412,
"412_0",
"COMPLETED",
"BoTorch",
0.22680670167541883,
441,
10,
50,
1
],
[
413,
"413_0",
"COMPLETED",
"BoTorch",
0.22505626406601653,
414,
38,
52,
1
],
[
414,
"413_0",
"COMPLETED",
"BoTorch",
0.22505626406601653,
414,
38,
52,
1
],
[
415,
"415_0",
"COMPLETED",
"BoTorch",
0.21430357589397353,
446,
16,
50,
1
],
[
416,
"416_0",
"COMPLETED",
"BoTorch",
0.2325581395348837,
525,
10,
50,
1
],
[
417,
"417_0",
"COMPLETED",
"BoTorch",
0.26631657914478624,
283,
33,
91,
5
],
[
418,
"412_0",
"COMPLETED",
"BoTorch",
0.22680670167541883,
441,
10,
50,
1
],
[
419,
"419_0",
"COMPLETED",
"BoTorch",
0.2378094523630908,
499,
10,
64,
1
],
[
420,
"420_0",
"COMPLETED",
"BoTorch",
0.22330582645661412,
484,
26,
50,
1
],
[
421,
"421_0",
"COMPLETED",
"BoTorch",
0.23030757689422354,
442,
10,
60,
1
],
[
422,
"422_0",
"COMPLETED",
"BoTorch",
0.22905726431607898,
419,
16,
50,
1
],
[
423,
"297_0",
"COMPLETED",
"BoTorch",
0.20805201300325082,
229,
27,
50,
1
],
[
424,
"303_0",
"COMPLETED",
"BoTorch",
0.22680670167541883,
230,
27,
50,
1
],
[
425,
"317_0",
"COMPLETED",
"BoTorch",
0.21505376344086025,
231,
27,
50,
1
],
[
426,
"426_0",
"COMPLETED",
"BoTorch",
0.2395598899724931,
128,
44,
61,
4
],
[
427,
"297_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
229,
27,
50,
1
],
[
428,
"303_0",
"COMPLETED",
"BoTorch",
0.22405601400350084,
230,
27,
50,
1
],
[
429,
"429_0",
"COMPLETED",
"BoTorch",
0.2055513878469617,
107,
42,
51,
3
],
[
430,
"299_0",
"COMPLETED",
"BoTorch",
0.19904976244061012,
228,
27,
50,
1
],
[
431,
"297_0",
"COMPLETED",
"BoTorch",
0.20955238809702426,
229,
27,
50,
1
],
[
432,
"297_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
229,
27,
50,
1
],
[
433,
"433_0",
"COMPLETED",
"BoTorch",
0.22955738934733683,
468,
49,
62,
2
],
[
434,
"297_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
229,
27,
50,
1
],
[
435,
"297_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
229,
27,
50,
1
],
[
436,
"297_0",
"COMPLETED",
"BoTorch",
0.20805201300325082,
229,
27,
50,
1
],
[
437,
"286_0",
"COMPLETED",
"BoTorch",
0.19454863715928983,
226,
27,
50,
1
],
[
438,
"438_0",
"COMPLETED",
"BoTorch",
0.19704926231557884,
227,
27,
50,
1
],
[
439,
"286_0",
"COMPLETED",
"BoTorch",
0.19454863715928983,
226,
27,
50,
1
],
[
440,
"440_0",
"COMPLETED",
"BoTorch",
0.2658164541135284,
100,
36,
149,
2
],
[
441,
"441_0",
"COMPLETED",
"BoTorch",
0.2915728932233058,
1000,
46,
60,
4
],
[
442,
"442_0",
"COMPLETED",
"BoTorch",
0.26256564141035255,
329,
31,
109,
2
],
[
443,
"443_0",
"COMPLETED",
"BoTorch",
0.2225556389097274,
101,
50,
50,
1
],
[
444,
"444_0",
"COMPLETED",
"BoTorch",
0.20180045011252812,
234,
49,
52,
1
],
[
445,
"286_0",
"COMPLETED",
"BoTorch",
0.19454863715928983,
226,
27,
50,
1
],
[
446,
"286_0",
"COMPLETED",
"BoTorch",
0.19454863715928983,
226,
27,
50,
1
],
[
447,
"447_0",
"COMPLETED",
"BoTorch",
0.21830457614403598,
235,
50,
69,
2
],
[
448,
"448_0",
"COMPLETED",
"BoTorch",
0.21430357589397353,
236,
41,
73,
2
],
[
449,
"438_0",
"COMPLETED",
"BoTorch",
0.1955488872218054,
227,
27,
50,
1
],
[
450,
"438_0",
"COMPLETED",
"BoTorch",
0.1955488872218054,
227,
27,
50,
1
],
[
451,
"451_0",
"COMPLETED",
"BoTorch",
0.21480370092523127,
215,
25,
50,
1
],
[
452,
"452_0",
"COMPLETED",
"BoTorch",
0.2198049512378094,
100,
26,
50,
1
],
[
453,
"208_0",
"COMPLETED",
"BoTorch",
0.20805201300325082,
216,
25,
50,
1
],
[
454,
"454_0",
"COMPLETED",
"BoTorch",
0.24306076519129782,
628,
25,
63,
2
],
[
455,
"208_0",
"COMPLETED",
"BoTorch",
0.20780195048762196,
216,
25,
50,
1
],
[
456,
"456_0",
"COMPLETED",
"BoTorch",
0.24456114028507125,
100,
50,
100,
3
],
[
457,
"208_0",
"COMPLETED",
"BoTorch",
0.20780195048762196,
216,
25,
50,
1
],
[
458,
"451_0",
"COMPLETED",
"BoTorch",
0.21430357589397353,
215,
25,
50,
1
],
[
459,
"459_0",
"COMPLETED",
"BoTorch",
0.22930732683170796,
189,
17,
50,
1
],
[
460,
"460_0",
"COMPLETED",
"BoTorch",
0.2173043260815204,
260,
10,
50,
2
],
[
461,
"461_0",
"COMPLETED",
"BoTorch",
0.23580895223805953,
105,
10,
90,
2
],
[
462,
"462_0",
"COMPLETED",
"BoTorch",
0.2513128282070518,
100,
13,
69,
5
],
[
463,
"208_0",
"COMPLETED",
"BoTorch",
0.20780195048762196,
216,
25,
50,
1
],
[
464,
"451_0",
"COMPLETED",
"BoTorch",
0.21430357589397353,
215,
25,
50,
1
],
[
465,
"465_0",
"COMPLETED",
"BoTorch",
0.25731432858214554,
100,
46,
99,
3
],
[
466,
"466_0",
"COMPLETED",
"BoTorch",
0.22680670167541883,
115,
36,
82,
2
],
[
467,
"467_0",
"COMPLETED",
"BoTorch",
0.24931232808202053,
261,
30,
107,
3
],
[
468,
"468_0",
"COMPLETED",
"BoTorch",
0.2388097024256064,
100,
50,
79,
1
],
[
469,
"469_0",
"COMPLETED",
"BoTorch",
0.23105776444111026,
105,
35,
80,
2
],
[
470,
"470_0",
"COMPLETED",
"BoTorch",
0.2628157039259815,
270,
27,
106,
3
],
[
471,
"471_0",
"COMPLETED",
"BoTorch",
0.2613153288322081,
267,
28,
105,
3
],
[
472,
"472_0",
"COMPLETED",
"BoTorch",
0.20980245061265312,
236,
28,
50,
1
],
[
473,
"472_0",
"COMPLETED",
"BoTorch",
0.2038009502375594,
236,
28,
50,
1
],
[
474,
"474_0",
"COMPLETED",
"BoTorch",
0.25256314078519626,
118,
45,
102,
3
],
[
475,
"475_0",
"COMPLETED",
"BoTorch",
0.2063015753938484,
234,
28,
50,
1
],
[
476,
"476_0",
"COMPLETED",
"BoTorch",
0.2620655163790948,
148,
46,
98,
3
],
[
477,
"477_0",
"COMPLETED",
"BoTorch",
0.2010502625656414,
293,
48,
50,
2
],
[
478,
"472_0",
"COMPLETED",
"BoTorch",
0.2038009502375594,
236,
28,
50,
1
],
[
479,
"472_0",
"COMPLETED",
"BoTorch",
0.2038009502375594,
236,
28,
50,
1
],
[
480,
"480_0",
"COMPLETED",
"BoTorch",
0.24256064016003998,
157,
46,
60,
4
],
[
481,
"303_0",
"COMPLETED",
"BoTorch",
0.22405601400350084,
230,
27,
50,
1
],
[
482,
"482_0",
"COMPLETED",
"BoTorch",
0.21605401350337583,
174,
27,
51,
1
],
[
483,
"303_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
230,
27,
50,
1
],
[
484,
"303_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
230,
27,
50,
1
],
[
485,
"485_0",
"COMPLETED",
"BoTorch",
0.22905726431607898,
108,
31,
58,
2
],
[
486,
"303_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
230,
27,
50,
1
],
[
487,
"303_0",
"COMPLETED",
"BoTorch",
0.22430607651912982,
230,
27,
50,
1
],
[
488,
"317_0",
"COMPLETED",
"BoTorch",
0.21155288822205554,
231,
27,
50,
1
],
[
489,
"303_0",
"COMPLETED",
"BoTorch",
0.22405601400350084,
230,
27,
50,
1
],
[
490,
"490_0",
"COMPLETED",
"BoTorch",
0.2360590147536884,
260,
26,
50,
3
],
[
491,
"491_0",
"COMPLETED",
"BoTorch",
0.2450612653163291,
100,
10,
68,
5
],
[
492,
"297_0",
"COMPLETED",
"BoTorch",
0.20805201300325082,
229,
27,
50,
1
],
[
493,
"303_0",
"COMPLETED",
"BoTorch",
0.22405601400350084,
230,
27,
50,
1
],
[
494,
"303_0",
"COMPLETED",
"BoTorch",
0.22680670167541883,
230,
27,
50,
1
],
[
495,
"495_0",
"COMPLETED",
"BoTorch",
0.24906226556639155,
193,
29,
114,
3
],
[
496,
"381_0",
"COMPLETED",
"BoTorch",
0.20680170042510626,
235,
27,
50,
1
],
[
497,
"495_0",
"COMPLETED",
"BoTorch",
0.24706176544136038,
193,
29,
114,
3
],
[
498,
"498_0",
"COMPLETED",
"BoTorch",
0.2505626406601651,
100,
50,
71,
1
],
[
499,
"316_0",
"COMPLETED",
"BoTorch",
0.2063015753938484,
234,
27,
50,
1
],
[
500,
"500_0",
"COMPLETED",
"BoTorch",
0.20055013753438355,
232,
26,
50,
1
],
[
501,
"501_0",
"RUNNING",
"BoTorch",
"",
169,
27,
87,
2
],
[
502,
"502_0",
"RUNNING",
"BoTorch",
"",
185,
31,
125,
3
],
[
503,
"248_0",
"RUNNING",
"BoTorch",
"",
233,
27,
50,
1
],
[
504,
"504_0",
"RUNNING",
"BoTorch",
"",
166,
28,
69,
1
],
[
505,
"248_0",
"RUNNING",
"BoTorch",
"",
233,
27,
50,
1
],
[
506,
"506_0",
"RUNNING",
"BoTorch",
"",
189,
28,
108,
3
],
[
507,
"507_0",
"RUNNING",
"BoTorch",
"",
158,
27,
50,
3
],
[
508,
"501_0",
"RUNNING",
"BoTorch",
"",
169,
27,
87,
2
],
[
509,
"509_0",
"RUNNING",
"BoTorch",
"",
162,
26,
73,
2
]
];
var tab_job_infos_headers_json = [
"start_time",
"end_time",
"run_time",
"program_string",
"n_samples",
"n_permutations",
"update_interval",
"n_consecutive_deviations",
"result",
"exit_code",
"signal",
"hostname",
"OO_Info_runtime",
"OO_Info_lpd"
];
var tab_job_infos_csv_json = [
[
1727501118,
1727501151,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 276 n_permutations 27 update_interval 149 n_consecutive_deviations 4",
276,
27,
149,
4,
0.2728182045511378,
0,
"None",
"i7186",
29,
0.018454613653413353
],
[
1727501118,
1727501152,
34,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 135 n_permutations 30 update_interval 239 n_consecutive_deviations 2",
135,
30,
239,
2,
0.2865716429107277,
0,
"None",
"i7186",
30,
0.01870204393203564
],
[
1727501118,
1727501154,
36,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 519 n_permutations 37 update_interval 156 n_consecutive_deviations 5",
519,
37,
156,
5,
0.30757689422355594,
0,
"None",
"i7186",
32,
0.023880970242560636
],
[
1727501118,
1727501155,
37,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 249 n_permutations 31 update_interval 230 n_consecutive_deviations 1",
249,
31,
230,
1,
0.3143285821455364,
0,
"None",
"i7186",
33,
0.021838793031591232
],
[
1727501118,
1727501155,
37,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 915 n_permutations 30 update_interval 103 n_consecutive_deviations 1",
915,
30,
103,
1,
0.30032508127031754,
0,
"None",
"i7186",
33,
0.017079269817454366
],
[
1727501118,
1727501156,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 827 n_permutations 46 update_interval 184 n_consecutive_deviations 3",
827,
46,
184,
3,
0.3115778944736184,
0,
"None",
"i7186",
34,
0.023595184510413317
],
[
1727501139,
1727501170,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 460 n_permutations 32 update_interval 72 n_consecutive_deviations 3",
460,
32,
72,
3,
0.24656164041010253,
0,
"None",
"i7186",
27,
0.01317829457364341
],
[
1727501138,
1727501174,
36,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 662 n_permutations 44 update_interval 250 n_consecutive_deviations 1",
662,
44,
250,
1,
0.3085771442860715,
0,
"None",
"i7186",
32,
0.023809523809523808
],
[
1727501156,
1727501217,
61,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 245 n_permutations 31 update_interval 54 n_consecutive_deviations 2",
245,
31,
54,
2,
0.20955238809702426,
0,
"None",
"i7177",
24,
0.008823634480048583
],
[
1727501166,
1727501220,
54,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 338 n_permutations 13 update_interval 87 n_consecutive_deviations 5",
338,
13,
87,
5,
0.2610652663165791,
0,
"None",
"i7173",
27,
0.019042260565141286
],
[
1727501166,
1727501220,
54,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 380 n_permutations 33 update_interval 166 n_consecutive_deviations 2",
380,
33,
166,
2,
0.2648162040510128,
0,
"None",
"i7173",
27,
0.02094968186491067
],
[
1727501156,
1727501221,
65,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 261 n_permutations 27 update_interval 202 n_consecutive_deviations 2",
261,
27,
202,
2,
0.2835708927231808,
0,
"None",
"i7177",
28,
0.02107879911154259
],
[
1727501156,
1727501222,
66,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 499 n_permutations 36 update_interval 160 n_consecutive_deviations 4",
499,
36,
160,
4,
0.29032258064516125,
0,
"None",
"i7177",
29,
0.021974243560890224
],
[
1727501166,
1727501223,
57,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 396 n_permutations 44 update_interval 240 n_consecutive_deviations 3",
396,
44,
240,
3,
0.2928232058014504,
0,
"None",
"i7173",
30,
0.026852867062919575
],
[
1727501156,
1727501223,
67,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 438 n_permutations 11 update_interval 186 n_consecutive_deviations 2",
438,
11,
186,
2,
0.2915728932233058,
0,
"None",
"i7177",
30,
0.02189609902475619
],
[
1727501156,
1727501223,
67,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 573 n_permutations 31 update_interval 219 n_consecutive_deviations 1",
573,
31,
219,
1,
0.2998249562390598,
0,
"None",
"i7177",
30,
0.019004751187796945
],
[
1727501156,
1727501223,
67,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 699 n_permutations 37 update_interval 209 n_consecutive_deviations 5",
699,
37,
209,
5,
0.28857214303575895,
0,
"None",
"i7177",
30,
0.027179871891049683
],
[
1727501156,
1727501223,
67,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 871 n_permutations 50 update_interval 138 n_consecutive_deviations 1",
871,
50,
138,
1,
0.31107776944236054,
0,
"None",
"i7177",
30,
0.019460747539826136
],
[
1727501156,
1727501224,
68,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 830 n_permutations 29 update_interval 205 n_consecutive_deviations 3",
830,
29,
205,
3,
0.32608152038009497,
0,
"None",
"i7177",
31,
0.022559211231379276
],
[
1727501156,
1727501226,
70,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 958 n_permutations 14 update_interval 228 n_consecutive_deviations 3",
958,
14,
228,
3,
0.3248312078019505,
0,
"None",
"i7177",
33,
0.02882538816522312
],
[
1727501358,
1727501388,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 209 n_permutations 40 update_interval 50 n_consecutive_deviations 2",
209,
40,
50,
2,
0.22905726431607898,
0,
"None",
"i7186",
25,
0.007789683269874073
],
[
1727501358,
1727501388,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 164 n_permutations 26 update_interval 50 n_consecutive_deviations 2",
164,
26,
50,
2,
0.20805201300325082,
0,
"None",
"i7186",
26,
0.007230974410269234
],
[
1727501359,
1727501389,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 282 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
282,
32,
50,
1,
0.2180545136284071,
0,
"None",
"i7186",
26,
0.006520860984476888
],
[
1727501358,
1727501389,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 164 n_permutations 31 update_interval 50 n_consecutive_deviations 3",
164,
31,
50,
3,
0.22505626406601653,
0,
"None",
"i7186",
27,
0.009062048120725833
],
[
1727501358,
1727501389,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 304 n_permutations 26 update_interval 50 n_consecutive_deviations 2",
304,
26,
50,
2,
0.21255313828457112,
0,
"None",
"i7186",
27,
0.008101081874242145
],
[
1727501379,
1727501407,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 32 update_interval 50 n_consecutive_deviations 2",
100,
32,
50,
2,
0.23580895223805953,
0,
"None",
"i7186",
25,
0.006657402055431891
],
[
1727501378,
1727501408,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 208 n_permutations 18 update_interval 51 n_consecutive_deviations 2",
208,
18,
51,
2,
0.2253063265816454,
0,
"None",
"i7186",
26,
0.008168708843877636
],
[
1727501378,
1727501409,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 186 n_permutations 32 update_interval 80 n_consecutive_deviations 2",
186,
32,
80,
2,
0.23305826456614154,
0,
"None",
"i7186",
27,
0.01168149180152181
],
[
1727501396,
1727501424,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 204 n_permutations 22 update_interval 50 n_consecutive_deviations 1",
204,
22,
50,
1,
0.21055263815953984,
0,
"None",
"i7174",
20,
0.007071439991145328
],
[
1727501396,
1727501424,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 126 n_permutations 18 update_interval 50 n_consecutive_deviations 3",
126,
18,
50,
3,
0.2090522630657664,
0,
"None",
"i7174",
20,
0.008167136123653555
],
[
1727501396,
1727501424,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 161 n_permutations 41 update_interval 50 n_consecutive_deviations 3",
161,
41,
50,
3,
0.21880470117529383,
0,
"None",
"i7174",
20,
0.008136649547002136
],
[
1727501396,
1727501425,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 40 update_interval 71 n_consecutive_deviations 1",
234,
40,
71,
1,
0.21580395098774696,
0,
"None",
"i7174",
21,
0.009469033925147953
],
[
1727501396,
1727501425,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 129 n_permutations 26 update_interval 83 n_consecutive_deviations 2",
129,
26,
83,
2,
0.24031007751937983,
0,
"None",
"i7174",
21,
0.010568431581579605
],
[
1727501396,
1727501425,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 42 update_interval 61 n_consecutive_deviations 2",
100,
42,
61,
2,
0.24831207801950483,
0,
"None",
"i7174",
21,
0.008374434034040425
],
[
1727501396,
1727501425,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 307 n_permutations 39 update_interval 50 n_consecutive_deviations 2",
307,
39,
50,
2,
0.22230557639409854,
0,
"None",
"i7174",
22,
0.007917073608024646
],
[
1727501398,
1727501426,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 141 n_permutations 30 update_interval 50 n_consecutive_deviations 1",
141,
30,
50,
1,
0.21405351337834455,
0,
"None",
"i7186",
24,
0.0062008255687110185
],
[
1727501398,
1727501430,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 285 n_permutations 36 update_interval 72 n_consecutive_deviations 2",
285,
36,
72,
2,
0.25356339084771196,
0,
"None",
"i7186",
28,
0.011421973140343909
],
[
1727501418,
1727501447,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 322 n_permutations 17 update_interval 50 n_consecutive_deviations 1",
322,
17,
50,
1,
0.21755438859714926,
0,
"None",
"i7186",
25,
0.007072601483704259
],
[
1727501418,
1727501448,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 25 update_interval 73 n_consecutive_deviations 2",
229,
25,
73,
2,
0.24081020255063768,
0,
"None",
"i7186",
26,
0.00955000654925636
],
[
1727501418,
1727501448,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 36 update_interval 82 n_consecutive_deviations 1",
100,
36,
82,
1,
0.25181295323830954,
0,
"None",
"i7186",
27,
0.009514573765392569
],
[
1727501498,
1727501529,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 213 n_permutations 27 update_interval 50 n_consecutive_deviations 2",
213,
27,
50,
2,
0.202050512628157,
0,
"None",
"i7186",
27,
0.007997453908931779
],
[
1727501511,
1727501540,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 21 update_interval 50 n_consecutive_deviations 1",
100,
21,
50,
1,
0.22605651412853212,
0,
"None",
"i7186",
25,
0.0059407709070124675
],
[
1727501511,
1727501540,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 103 n_permutations 11 update_interval 50 n_consecutive_deviations 1",
103,
11,
50,
1,
0.2145536384096024,
0,
"None",
"i7186",
25,
0.006892852245319394
],
[
1727501511,
1727501540,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 143 n_permutations 12 update_interval 50 n_consecutive_deviations 3",
143,
12,
50,
3,
0.20505126281570396,
0,
"None",
"i7186",
26,
0.008915494179667366
],
[
1727501511,
1727501541,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 133 n_permutations 19 update_interval 78 n_consecutive_deviations 2",
133,
19,
78,
2,
0.23980995248812198,
0,
"None",
"i7186",
26,
0.010310269875161098
],
[
1727501618,
1727501648,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 202 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
202,
10,
50,
1,
0.20405101275318827,
0,
"None",
"i7186",
26,
0.007062249433326073
],
[
1727501632,
1727501661,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 14 update_interval 50 n_consecutive_deviations 5",
100,
14,
50,
5,
0.23130782695673924,
0,
"None",
"i7186",
26,
0.009776253587206324
],
[
1727501632,
1727501662,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 290 n_permutations 10 update_interval 50 n_consecutive_deviations 3",
290,
10,
50,
3,
0.22205551387846967,
0,
"None",
"i7186",
26,
0.008397099274818704
],
[
1727501638,
1727501668,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 26 update_interval 50 n_consecutive_deviations 5",
100,
26,
50,
5,
0.22205551387846967,
0,
"None",
"i7186",
26,
0.009542158266839436
],
[
1727501638,
1727501668,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 246 n_permutations 20 update_interval 50 n_consecutive_deviations 3",
246,
20,
50,
3,
0.2110527631907977,
0,
"None",
"i7186",
26,
0.008976202383929316
],
[
1727501659,
1727501688,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 244 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
244,
28,
50,
1,
0.20055013753438355,
0,
"None",
"i7186",
26,
0.00788143464437538
],
[
1727501659,
1727501690,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 419 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
419,
50,
50,
1,
0.22955738934733683,
0,
"None",
"i7186",
27,
0.007929867082155154
],
[
1727501659,
1727501690,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 50 n_consecutive_deviations 4",
100,
10,
50,
4,
0.2343085771442861,
0,
"None",
"i7186",
27,
0.008860910879893885
],
[
1727501659,
1727501690,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 303 n_permutations 29 update_interval 50 n_consecutive_deviations 1",
303,
29,
50,
1,
0.20955238809702426,
0,
"None",
"i7186",
27,
0.006862826817815565
],
[
1727501676,
1727501704,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 50 n_consecutive_deviations 2",
100,
10,
50,
2,
0.23455863965991497,
0,
"None",
"i7181",
21,
0.006789197299324831
],
[
1727501676,
1727501705,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 112 n_permutations 24 update_interval 50 n_consecutive_deviations 3",
112,
24,
50,
3,
0.2145536384096024,
0,
"None",
"i7181",
22,
0.008721568147138826
],
[
1727501679,
1727501708,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 195 n_permutations 10 update_interval 50 n_consecutive_deviations 2",
195,
10,
50,
2,
0.2145536384096024,
0,
"None",
"i7186",
25,
0.008218400754034662
],
[
1727501679,
1727501709,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 271 n_permutations 38 update_interval 50 n_consecutive_deviations 5",
271,
38,
50,
5,
0.22605651412853212,
0,
"None",
"i7186",
26,
0.010142779597338359
],
[
1727501679,
1727501709,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 197 n_permutations 10 update_interval 50 n_consecutive_deviations 3",
197,
10,
50,
3,
0.23305826456614154,
0,
"None",
"i7186",
27,
0.009972005196421056
],
[
1727501679,
1727501709,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 408 n_permutations 15 update_interval 50 n_consecutive_deviations 3",
408,
15,
50,
3,
0.24381095273818454,
0,
"None",
"i7186",
27,
0.01075944661841136
],
[
1727501779,
1727501808,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
235,
10,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
26,
0.007501875468867217
],
[
1727501783,
1727501811,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 245 n_permutations 19 update_interval 50 n_consecutive_deviations 1",
245,
19,
50,
1,
0.2010502625656414,
0,
"None",
"i7186",
25,
0.007872503840245775
],
[
1727501799,
1727501828,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 147 n_permutations 10 update_interval 50 n_consecutive_deviations 2",
147,
10,
50,
2,
0.1975493873468367,
0,
"None",
"i7186",
26,
0.007284608037255216
],
[
1727501799,
1727501829,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 16 update_interval 50 n_consecutive_deviations 2",
234,
16,
50,
2,
0.2073018254563641,
0,
"None",
"i7186",
26,
0.008200163248359258
],
[
1727501799,
1727501829,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 343 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
343,
10,
50,
1,
0.22030507626906726,
0,
"None",
"i7186",
26,
0.007528667881256028
],
[
1727501799,
1727501831,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 365 n_permutations 50 update_interval 50 n_consecutive_deviations 5",
365,
50,
50,
5,
0.23305826456614154,
0,
"None",
"i7186",
28,
0.01168149180152181
],
[
1727501812,
1727501840,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 33 update_interval 50 n_consecutive_deviations 4",
233,
33,
50,
4,
0.20405101275318827,
0,
"None",
"i7173",
24,
0.010182778252702711
],
[
1727501813,
1727501842,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 194 n_permutations 22 update_interval 50 n_consecutive_deviations 4",
194,
22,
50,
4,
0.2263065766441611,
0,
"None",
"i7186",
26,
0.010656510281416506
],
[
1727501813,
1727501843,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 504 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
504,
10,
50,
1,
0.2200550137534384,
0,
"None",
"i7186",
27,
0.008437109277319329
],
[
1727501813,
1727501843,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 201 n_permutations 50 update_interval 50 n_consecutive_deviations 5",
201,
50,
50,
5,
0.23480870217554384,
0,
"None",
"i7186",
26,
0.010177544386096525
],
[
1727501963,
1727501994,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 36 update_interval 50 n_consecutive_deviations 5",
230,
36,
50,
5,
0.24531132783195797,
0,
"None",
"i7186",
28,
0.011664680876101379
],
[
1727501979,
1727502008,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 21 update_interval 50 n_consecutive_deviations 1",
242,
21,
50,
1,
0.2083020755188797,
0,
"None",
"i7186",
25,
0.007349294950856358
],
[
1727501979,
1727502009,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 27 update_interval 50 n_consecutive_deviations 4",
236,
27,
50,
4,
0.21355338834708681,
0,
"None",
"i7186",
26,
0.009735388392552682
],
[
1727501993,
1727502023,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 5",
100,
50,
50,
5,
0.21930482620655167,
0,
"None",
"i7186",
26,
0.009187079378540287
],
[
1727501993,
1727502024,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 278 n_permutations 38 update_interval 50 n_consecutive_deviations 5",
278,
38,
50,
5,
0.23455863965991497,
0,
"None",
"i7186",
27,
0.009698853284749759
],
[
1727501993,
1727502028,
35,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 668 n_permutations 50 update_interval 50 n_consecutive_deviations 5",
668,
50,
50,
5,
0.26706676669167295,
0,
"None",
"i7186",
30,
0.01388310040473081
],
[
1727501999,
1727502029,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 159 n_permutations 45 update_interval 50 n_consecutive_deviations 5",
159,
45,
50,
5,
0.22655663915978996,
0,
"None",
"i7186",
26,
0.009659391592084067
],
[
1727501999,
1727502030,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 220 n_permutations 19 update_interval 50 n_consecutive_deviations 1",
220,
19,
50,
1,
0.2288072018004501,
0,
"None",
"i7186",
27,
0.006885054596982579
],
[
1727502018,
1727502045,
27,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 5",
100,
50,
50,
5,
0.2180545136284071,
0,
"None",
"i7173",
23,
0.008830332583145787
],
[
1727502019,
1727502049,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 362 n_permutations 44 update_interval 50 n_consecutive_deviations 5",
362,
44,
50,
5,
0.24256064016003998,
0,
"None",
"i7186",
26,
0.010793238850253104
],
[
1727502019,
1727502049,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 535 n_permutations 12 update_interval 50 n_consecutive_deviations 1",
535,
12,
50,
1,
0.2198049512378094,
0,
"None",
"i7186",
26,
0.007405360111957814
],
[
1727502019,
1727502052,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 689 n_permutations 37 update_interval 50 n_consecutive_deviations 3",
689,
37,
50,
3,
0.2628157039259815,
0,
"None",
"i7186",
29,
0.012636492456447443
],
[
1727502174,
1727502204,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 257 n_permutations 18 update_interval 50 n_consecutive_deviations 1",
257,
18,
50,
1,
0.20530132533133283,
0,
"None",
"i7186",
26,
0.007042083101420516
],
[
1727502179,
1727502207,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 260 n_permutations 20 update_interval 50 n_consecutive_deviations 1",
260,
20,
50,
1,
0.23305826456614154,
0,
"None",
"i7186",
25,
0.006929698526326497
],
[
1727502199,
1727502229,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 241 n_permutations 21 update_interval 50 n_consecutive_deviations 2",
241,
21,
50,
2,
0.2190547636909227,
0,
"None",
"i7186",
26,
0.007978409696763814
],
[
1727502199,
1727502232,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 562 n_permutations 50 update_interval 57 n_consecutive_deviations 4",
562,
50,
57,
4,
0.2558139534883721,
0,
"None",
"i7186",
29,
0.012065516379094773
],
[
1727502199,
1727502233,
34,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 563 n_permutations 50 update_interval 57 n_consecutive_deviations 4",
563,
50,
57,
4,
0.24756189047261812,
0,
"None",
"i7186",
30,
0.012720922166025378
],
[
1727502199,
1727502233,
34,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 713 n_permutations 45 update_interval 50 n_consecutive_deviations 4",
713,
45,
50,
4,
0.24381095273818454,
0,
"None",
"i7186",
30,
0.012440610152538134
],
[
1727502205,
1727502240,
35,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 766 n_permutations 50 update_interval 91 n_consecutive_deviations 4",
766,
50,
91,
4,
0.27431857964491124,
0,
"None",
"i7186",
32,
0.01934694199865756
],
[
1727502219,
1727502251,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 493 n_permutations 50 update_interval 50 n_consecutive_deviations 3",
493,
50,
50,
3,
0.23505876469117282,
0,
"None",
"i7186",
28,
0.010432095203288
],
[
1727502219,
1727502252,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 697 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
697,
10,
50,
1,
0.24306076519129782,
0,
"None",
"i7186",
29,
0.009496421724478739
],
[
1727502220,
1727502253,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 562 n_permutations 50 update_interval 57 n_consecutive_deviations 4",
562,
50,
57,
4,
0.2558139534883721,
0,
"None",
"i7186",
29,
0.012065516379094773
],
[
1727502235,
1727502268,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 721 n_permutations 44 update_interval 50 n_consecutive_deviations 4",
721,
44,
50,
4,
0.2513128282070518,
0,
"None",
"i7186",
29,
0.012599924174592034
],
[
1727502339,
1727502369,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 278 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
278,
10,
50,
1,
0.2065516379094774,
0,
"None",
"i7186",
26,
0.006697828303229653
],
[
1727502356,
1727502385,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 310 n_permutations 20 update_interval 50 n_consecutive_deviations 1",
310,
20,
50,
1,
0.23205801450362595,
0,
"None",
"i7186",
26,
0.006505594652631411
],
[
1727502356,
1727502385,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 336 n_permutations 23 update_interval 50 n_consecutive_deviations 1",
336,
23,
50,
1,
0.21430357589397353,
0,
"None",
"i7186",
26,
0.006896885511700505
],
[
1727502380,
1727502409,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 127 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
127,
50,
50,
1,
0.20305076269067268,
0,
"None",
"i7186",
25,
0.006181122745475101
],
[
1727502380,
1727502410,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 319 n_permutations 23 update_interval 50 n_consecutive_deviations 1",
319,
23,
50,
1,
0.22230557639409854,
0,
"None",
"i7186",
26,
0.006878768872546005
],
[
1727502380,
1727502410,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 273 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
273,
50,
50,
1,
0.22030507626906726,
0,
"None",
"i7186",
27,
0.006911563956562911
],
[
1727502380,
1727502410,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 252 n_permutations 13 update_interval 50 n_consecutive_deviations 2",
252,
13,
50,
2,
0.22405601400350084,
0,
"None",
"i7186",
27,
0.008035662761844307
],
[
1727502386,
1727502415,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 34 update_interval 50 n_consecutive_deviations 4",
100,
34,
50,
4,
0.22405601400350084,
0,
"None",
"i7186",
26,
0.00835708927231808
],
[
1727502400,
1727502428,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 123 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
123,
50,
50,
1,
0.21080270067516882,
0,
"None",
"i7186",
25,
0.006531936014306607
],
[
1727502400,
1727502429,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 221 n_permutations 42 update_interval 50 n_consecutive_deviations 3",
221,
42,
50,
3,
0.2198049512378094,
0,
"None",
"i7186",
25,
0.008117413968876835
],
[
1727502400,
1727502429,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 265 n_permutations 50 update_interval 50 n_consecutive_deviations 3",
265,
50,
50,
3,
0.21780445111277824,
0,
"None",
"i7186",
26,
0.008482120530132533
],
[
1727502560,
1727502589,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 4",
100,
50,
50,
4,
0.22405601400350084,
0,
"None",
"i7186",
26,
0.00835708927231808
],
[
1727502567,
1727502595,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 36 update_interval 50 n_consecutive_deviations 4",
100,
36,
50,
4,
0.22405601400350084,
0,
"None",
"i7186",
25,
0.00835708927231808
],
[
1727502566,
1727502598,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 104 n_consecutive_deviations 5",
100,
50,
104,
5,
0.2585646411602901,
0,
"None",
"i7186",
28,
0.016667210280831075
],
[
1727502580,
1727502609,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 222 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
222,
50,
50,
1,
0.22605651412853212,
0,
"None",
"i7186",
26,
0.006817278090014307
],
[
1727502580,
1727502610,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 103 n_permutations 42 update_interval 83 n_consecutive_deviations 5",
103,
42,
83,
5,
0.2468117029257314,
0,
"None",
"i7186",
27,
0.013624095679092188
],
[
1727502597,
1727502626,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 258 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
258,
10,
50,
1,
0.2045511377844461,
0,
"None",
"i7186",
26,
0.0072893223305826454
],
[
1727502597,
1727502628,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 88 n_consecutive_deviations 5",
100,
50,
88,
5,
0.26331582895723926,
0,
"None",
"i7186",
28,
0.015774777027590232
],
[
1727502597,
1727502630,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 38 update_interval 118 n_consecutive_deviations 5",
100,
38,
118,
5,
0.2745686421605401,
0,
"None",
"i7186",
30,
0.019333780813624458
],
[
1727502620,
1727502648,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 34 update_interval 50 n_consecutive_deviations 4",
100,
34,
50,
4,
0.22405601400350084,
0,
"None",
"i7186",
25,
0.00835708927231808
],
[
1727502620,
1727502649,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 27 update_interval 50 n_consecutive_deviations 4",
100,
27,
50,
4,
0.22155538884721182,
0,
"None",
"i7186",
25,
0.00824225664259202
],
[
1727502620,
1727502649,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 203 n_permutations 22 update_interval 50 n_consecutive_deviations 3",
203,
22,
50,
3,
0.22230557639409854,
0,
"None",
"i7186",
25,
0.009121845678811007
],
[
1727502627,
1727502660,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 322 n_permutations 10 update_interval 149 n_consecutive_deviations 4",
322,
10,
149,
4,
0.2773193298324581,
0,
"None",
"i7186",
29,
0.019189007778260353
],
[
1727502778,
1727502807,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 3",
100,
50,
50,
3,
0.22830707676919226,
0,
"None",
"i7186",
26,
0.007131093118107113
],
[
1727502780,
1727502808,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
100,
50,
50,
1,
0.22430607651912982,
0,
"None",
"i7186",
24,
0.0054234337805230525
],
[
1727502800,
1727502829,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 2",
100,
50,
50,
2,
0.23905976494123526,
0,
"None",
"i7186",
25,
0.006714178544636159
],
[
1727502800,
1727502829,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 30 update_interval 50 n_consecutive_deviations 1",
235,
30,
50,
1,
0.2038009502375594,
0,
"None",
"i7186",
26,
0.007182123399702384
],
[
1727502800,
1727502837,
37,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 1000 n_permutations 10 update_interval 50 n_consecutive_deviations 5",
1000,
10,
50,
5,
0.3103275818954738,
0,
"None",
"i7186",
33,
0.013263315828957241
],
[
1727502808,
1727502845,
37,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 1000 n_permutations 10 update_interval 50 n_consecutive_deviations 5",
1000,
10,
50,
5,
0.3103275818954738,
0,
"None",
"i7186",
33,
0.013263315828957241
],
[
1727502820,
1727502849,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 201 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
201,
50,
50,
1,
0.2198049512378094,
0,
"None",
"i7186",
25,
0.006808153651316056
],
[
1727502820,
1727502850,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
214,
32,
50,
1,
0.2073018254563641,
0,
"None",
"i7186",
26,
0.0067907601900475114
],
[
1727502838,
1727502867,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 162 n_permutations 50 update_interval 50 n_consecutive_deviations 2",
162,
50,
50,
2,
0.2208052013003251,
0,
"None",
"i7186",
25,
0.007018421271984663
],
[
1727502838,
1727502867,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 196 n_permutations 23 update_interval 50 n_consecutive_deviations 2",
196,
23,
50,
2,
0.2110527631907977,
0,
"None",
"i7186",
25,
0.007833776625974676
],
[
1727502838,
1727502873,
35,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 714 n_permutations 35 update_interval 50 n_consecutive_deviations 5",
714,
35,
50,
5,
0.24256064016003998,
0,
"None",
"i7186",
32,
0.014262494194977316
],
[
1727502860,
1727502891,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
227,
28,
50,
1,
0.19704926231557884,
0,
"None",
"i7186",
25,
0.007061289131806762
],
[
1727502860,
1727502891,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 334 n_permutations 50 update_interval 50 n_consecutive_deviations 2",
334,
50,
50,
2,
0.22305576394098525,
0,
"None",
"i7186",
26,
0.007902919126007917
],
[
1727503040,
1727503070,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 299 n_permutations 50 update_interval 50 n_consecutive_deviations 3",
299,
50,
50,
3,
0.24131032758189552,
0,
"None",
"i7186",
26,
0.008902225556389096
],
[
1727503049,
1727503077,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 221 n_permutations 14 update_interval 50 n_consecutive_deviations 1",
221,
14,
50,
1,
0.22505626406601653,
0,
"None",
"i7186",
25,
0.006833675632022759
],
[
1727503049,
1727503078,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 268 n_permutations 32 update_interval 50 n_consecutive_deviations 3",
268,
32,
50,
3,
0.22405601400350084,
0,
"None",
"i7186",
26,
0.008890520502466043
],
[
1727503060,
1727503094,
34,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 250 n_consecutive_deviations 5",
100,
10,
250,
5,
0.2935733933483371,
0,
"None",
"i7186",
30,
0.02488122030507627
],
[
1727503079,
1727503109,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
242,
10,
50,
1,
0.20705176294073513,
0,
"None",
"i7186",
26,
0.00749756404618396
],
[
1727503079,
1727503114,
35,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 266 n_permutations 42 update_interval 225 n_consecutive_deviations 1",
266,
42,
225,
1,
0.3053263315828957,
0,
"None",
"i7186",
31,
0.019799067413912304
],
[
1727503079,
1727503114,
35,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 265 n_permutations 42 update_interval 225 n_consecutive_deviations 1",
265,
42,
225,
1,
0.3008252063015754,
0,
"None",
"i7186",
32,
0.02131782945736434
],
[
1727503101,
1727503131,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 281 n_permutations 28 update_interval 50 n_consecutive_deviations 2",
281,
28,
50,
2,
0.24006001500375096,
0,
"None",
"i7186",
26,
0.007306372047557344
],
[
1727503101,
1727503134,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 185 n_consecutive_deviations 5",
100,
10,
185,
5,
0.2783195798949737,
0,
"None",
"i7186",
29,
0.021387699866143008
],
[
1727503101,
1727503137,
36,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 11 update_interval 241 n_consecutive_deviations 5",
226,
11,
241,
5,
0.29482370592648166,
0,
"None",
"i7186",
33,
0.02892389764107693
],
[
1727503109,
1727503138,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 201 n_permutations 21 update_interval 50 n_consecutive_deviations 1",
201,
21,
50,
1,
0.22130532633158284,
0,
"None",
"i7186",
25,
0.007010085854797034
],
[
1727503121,
1727503154,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 101 n_permutations 31 update_interval 229 n_consecutive_deviations 5",
101,
31,
229,
5,
0.2683170792698174,
0,
"None",
"i7186",
30,
0.01966281043945197
],
[
1727503139,
1727503173,
34,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 222 n_permutations 19 update_interval 250 n_consecutive_deviations 4",
222,
19,
250,
4,
0.2828207051762941,
0,
"None",
"i7186",
31,
0.025649269460222196
],
[
1727503139,
1727503174,
35,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 20 update_interval 194 n_consecutive_deviations 5",
100,
20,
194,
5,
0.29407351837959494,
0,
"None",
"i7186",
31,
0.02484549708855785
],
[
1727503139,
1727503177,
38,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 163 n_permutations 12 update_interval 249 n_consecutive_deviations 5",
163,
12,
249,
5,
0.3520880220055014,
0,
"None",
"i7186",
34,
0.026347495964900314
],
[
1727503341,
1727503369,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 251 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
251,
10,
50,
1,
0.22155538884721182,
0,
"None",
"i7186",
25,
0.007374650680213913
],
[
1727503341,
1727503371,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 30 update_interval 50 n_consecutive_deviations 1",
227,
30,
50,
1,
0.19529882470617654,
0,
"None",
"i7186",
26,
0.006870948506357359
],
[
1727503350,
1727503379,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 239 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
239,
10,
50,
1,
0.20805201300325082,
0,
"None",
"i7186",
26,
0.00788833572029371
],
[
1727503361,
1727503389,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 29 update_interval 50 n_consecutive_deviations 1",
225,
29,
50,
1,
0.20230057514378597,
0,
"None",
"i7186",
25,
0.006977934959930458
],
[
1727503361,
1727503394,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 679 n_permutations 31 update_interval 65 n_consecutive_deviations 5",
679,
31,
65,
5,
0.2773193298324581,
0,
"None",
"i7186",
30,
0.015191297824456114
],
[
1727503380,
1727503409,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
233,
10,
50,
1,
0.20080020005001253,
0,
"None",
"i7186",
25,
0.007351837959489872
],
[
1727503380,
1727503411,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 338 n_permutations 27 update_interval 96 n_consecutive_deviations 2",
338,
27,
96,
2,
0.24281070267566895,
0,
"None",
"i7186",
27,
0.012093932574052602
],
[
1727503401,
1727503430,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 243 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
243,
10,
50,
1,
0.1992998249562391,
0,
"None",
"i7186",
26,
0.007903761654699389
],
[
1727503401,
1727503430,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 239 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
239,
10,
50,
1,
0.20705176294073513,
0,
"None",
"i7186",
26,
0.007906522085066722
],
[
1727503410,
1727503439,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 5",
100,
50,
50,
5,
0.2180545136284071,
0,
"None",
"i7186",
25,
0.008830332583145787
],
[
1727503421,
1727503450,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
226,
28,
50,
1,
0.1937984496124031,
0,
"None",
"i7186",
25,
0.006894031200107719
],
[
1727503441,
1727503470,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 30 update_interval 50 n_consecutive_deviations 1",
225,
30,
50,
1,
0.20230057514378597,
0,
"None",
"i7186",
25,
0.006977934959930458
],
[
1727503441,
1727503470,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 148 n_permutations 10 update_interval 61 n_consecutive_deviations 3",
148,
10,
61,
3,
0.2388097024256064,
0,
"None",
"i7186",
26,
0.0103359173126615
],
[
1727503441,
1727503470,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 257 n_permutations 12 update_interval 71 n_consecutive_deviations 1",
257,
12,
71,
1,
0.22330582645661412,
0,
"None",
"i7186",
26,
0.009513742071881607
],
[
1727503461,
1727503489,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 190 n_permutations 19 update_interval 50 n_consecutive_deviations 1",
190,
19,
50,
1,
0.23630907726931738,
0,
"None",
"i7186",
24,
0.006649203284427663
],
[
1727503461,
1727503490,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 148 n_permutations 10 update_interval 50 n_consecutive_deviations 3",
148,
10,
50,
3,
0.22680670167541883,
0,
"None",
"i7186",
25,
0.009023995129217087
],
[
1727503713,
1727503743,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 185 n_permutations 38 update_interval 66 n_consecutive_deviations 3",
185,
38,
66,
3,
0.22955738934733683,
0,
"None",
"i7186",
26,
0.012886034008502125
],
[
1727503721,
1727503749,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 31 update_interval 50 n_consecutive_deviations 1",
232,
31,
50,
1,
0.20080020005001253,
0,
"None",
"i7186",
25,
0.006683489054081702
],
[
1727503741,
1727503770,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 19 update_interval 54 n_consecutive_deviations 2",
236,
19,
54,
2,
0.20605151287821954,
0,
"None",
"i7186",
26,
0.008895080913085414
],
[
1727503741,
1727503771,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 104 n_permutations 28 update_interval 86 n_consecutive_deviations 3",
104,
28,
86,
3,
0.24081020255063768,
0,
"None",
"i7186",
26,
0.012938718550605393
],
[
1727503741,
1727503772,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 92 n_consecutive_deviations 3",
100,
10,
92,
3,
0.2610652663165791,
0,
"None",
"i7186",
27,
0.012694840376760858
],
[
1727503761,
1727503792,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 200 n_permutations 14 update_interval 97 n_consecutive_deviations 1",
200,
14,
97,
1,
0.24756189047261812,
0,
"None",
"i7186",
27,
0.011949957186266263
],
[
1727503761,
1727503793,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 107 n_permutations 29 update_interval 85 n_consecutive_deviations 3",
107,
29,
85,
3,
0.23930982745686424,
0,
"None",
"i7186",
27,
0.013420021672084687
],
[
1727503773,
1727503804,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 50 update_interval 96 n_consecutive_deviations 3",
214,
50,
96,
3,
0.2343085771442861,
0,
"None",
"i7186",
27,
0.01455721073125424
],
[
1727503781,
1727503810,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 185 n_permutations 38 update_interval 66 n_consecutive_deviations 3",
185,
38,
66,
3,
0.22955738934733683,
0,
"None",
"i7186",
26,
0.012886034008502125
],
[
1727503801,
1727503831,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 185 n_permutations 38 update_interval 66 n_consecutive_deviations 3",
185,
38,
66,
3,
0.22955738934733683,
0,
"None",
"i7186",
26,
0.012886034008502125
],
[
1727503801,
1727503831,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 186 n_permutations 43 update_interval 51 n_consecutive_deviations 3",
186,
43,
51,
3,
0.21680420105026255,
0,
"None",
"i7186",
26,
0.009886192478352146
],
[
1727503821,
1727503853,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 599 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
599,
50,
50,
1,
0.2513128282070518,
0,
"None",
"i7186",
28,
0.008137451029424021
],
[
1727503821,
1727503855,
34,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 1000 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
1000,
50,
50,
1,
0.2818204551137784,
0,
"None",
"i7186",
31,
0.008002000500125032
],
[
1727503833,
1727503863,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 298 n_permutations 38 update_interval 65 n_consecutive_deviations 3",
298,
38,
65,
3,
0.23905976494123526,
0,
"None",
"i7186",
27,
0.010887857099409988
],
[
1727503841,
1727503871,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 245 n_permutations 23 update_interval 77 n_consecutive_deviations 2",
245,
23,
77,
2,
0.22830707676919226,
0,
"None",
"i7186",
26,
0.011488983356950349
],
[
1727504102,
1727504131,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
238,
32,
50,
1,
0.20230057514378597,
0,
"None",
"i7186",
25,
0.007850176829921765
],
[
1727504122,
1727504150,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 270 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
270,
10,
50,
1,
0.22455613903475868,
0,
"None",
"i7186",
25,
0.007073802348892308
],
[
1727504122,
1727504152,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 489 n_permutations 38 update_interval 64 n_consecutive_deviations 1",
489,
38,
64,
1,
0.23680920230057512,
0,
"None",
"i7186",
27,
0.009002250562640661
],
[
1727504134,
1727504164,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 356 n_permutations 10 update_interval 50 n_consecutive_deviations 2",
356,
10,
50,
2,
0.21880470117529383,
0,
"None",
"i7186",
26,
0.00829619169498257
],
[
1727504142,
1727504171,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 31 update_interval 50 n_consecutive_deviations 1",
240,
31,
50,
1,
0.21505376344086025,
0,
"None",
"i7186",
25,
0.0074887142838341155
],
[
1727504162,
1727504192,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 466 n_permutations 18 update_interval 50 n_consecutive_deviations 2",
466,
18,
50,
2,
0.2093023255813954,
0,
"None",
"i7186",
26,
0.009404525044304553
],
[
1727504162,
1727504195,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 690 n_permutations 47 update_interval 59 n_consecutive_deviations 1",
690,
47,
59,
1,
0.2745686421605401,
0,
"None",
"i7186",
29,
0.010203939873857353
],
[
1727504182,
1727504211,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 108 n_permutations 28 update_interval 51 n_consecutive_deviations 1",
108,
28,
51,
1,
0.20530132533133283,
0,
"None",
"i7186",
25,
0.0069303040045725715
],
[
1727504182,
1727504212,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 31 update_interval 50 n_consecutive_deviations 1",
238,
31,
50,
1,
0.202050512628157,
0,
"None",
"i7186",
26,
0.007854642231986569
],
[
1727504195,
1727504224,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 222 n_permutations 10 update_interval 50 n_consecutive_deviations 2",
222,
10,
50,
2,
0.22330582645661412,
0,
"None",
"i7186",
25,
0.008050089445438283
],
[
1727504195,
1727504227,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 700 n_permutations 42 update_interval 64 n_consecutive_deviations 1",
700,
42,
64,
1,
0.2655663915978995,
0,
"None",
"i7186",
29,
0.009903791737408034
],
[
1727504222,
1727504255,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 677 n_permutations 42 update_interval 58 n_consecutive_deviations 5",
677,
42,
58,
5,
0.2863215803950988,
0,
"None",
"i7186",
30,
0.015460386835839392
],
[
1727504222,
1727504256,
34,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 872 n_permutations 23 update_interval 50 n_consecutive_deviations 1",
872,
23,
50,
1,
0.25606401600400097,
0,
"None",
"i7186",
30,
0.007874417583987834
],
[
1727504242,
1727504271,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 289 n_permutations 10 update_interval 50 n_consecutive_deviations 3",
289,
10,
50,
3,
0.23680920230057512,
0,
"None",
"i7186",
25,
0.008102025506376594
],
[
1727504242,
1727504272,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 358 n_permutations 16 update_interval 65 n_consecutive_deviations 2",
358,
16,
65,
2,
0.22380595148787197,
0,
"None",
"i7186",
27,
0.010197671369061778
],
[
1727504255,
1727504284,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 239 n_permutations 31 update_interval 50 n_consecutive_deviations 1",
239,
31,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
25,
0.007769799592755332
],
[
1727504436,
1727504466,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 223 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
223,
32,
50,
1,
0.20755188797199298,
0,
"None",
"i7186",
26,
0.006682439840729413
],
[
1727504442,
1727504471,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 280 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
280,
10,
50,
1,
0.23505876469117282,
0,
"None",
"i7186",
25,
0.006562124402068259
],
[
1727504462,
1727504491,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 219 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
219,
32,
50,
1,
0.2093023255813954,
0,
"None",
"i7186",
25,
0.007091936918655893
],
[
1727504462,
1727504495,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 791 n_permutations 25 update_interval 55 n_consecutive_deviations 1",
791,
25,
55,
1,
0.25556389097274324,
0,
"None",
"i7186",
29,
0.010167015438070042
],
[
1727504482,
1727504511,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 263 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
263,
10,
50,
1,
0.23030757689422354,
0,
"None",
"i7186",
25,
0.006976320351274259
],
[
1727504482,
1727504512,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 223 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
223,
32,
50,
1,
0.20755188797199298,
0,
"None",
"i7186",
26,
0.006682439840729413
],
[
1727504496,
1727504525,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 221 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
221,
32,
50,
1,
0.22330582645661412,
0,
"None",
"i7186",
25,
0.006862371330537553
],
[
1727504502,
1727504531,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 223 n_permutations 33 update_interval 50 n_consecutive_deviations 1",
223,
33,
50,
1,
0.20755188797199298,
0,
"None",
"i7186",
25,
0.006682439840729413
],
[
1727504522,
1727504552,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 222 n_permutations 33 update_interval 50 n_consecutive_deviations 1",
222,
33,
50,
1,
0.22755688922230555,
0,
"None",
"i7186",
25,
0.006683122393501602
],
[
1727504522,
1727504552,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 219 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
219,
32,
50,
1,
0.2093023255813954,
0,
"None",
"i7186",
25,
0.007091936918655893
],
[
1727504542,
1727504572,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 268 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
268,
10,
50,
1,
0.21080270067516882,
0,
"None",
"i7186",
26,
0.007185129615737267
],
[
1727504557,
1727504586,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
226,
32,
50,
1,
0.1937984496124031,
0,
"None",
"i7186",
25,
0.006894031200107719
],
[
1727504557,
1727504586,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 320 n_permutations 10 update_interval 74 n_consecutive_deviations 1",
320,
10,
74,
1,
0.24481120280070012,
0,
"None",
"i7186",
26,
0.009454744638540588
],
[
1727504562,
1727504593,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 353 n_permutations 10 update_interval 86 n_consecutive_deviations 2",
353,
10,
86,
2,
0.23555888972243055,
0,
"None",
"i7186",
27,
0.011951517291087479
],
[
1727504582,
1727504615,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 336 n_permutations 25 update_interval 134 n_consecutive_deviations 2",
336,
25,
134,
2,
0.25906476619154784,
0,
"None",
"i7186",
29,
0.015951904642827374
],
[
1727504858,
1727504888,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 217 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
217,
32,
50,
1,
0.20355088772193053,
0,
"None",
"i7186",
26,
0.006958088728531338
],
[
1727504883,
1727504911,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
216,
25,
50,
1,
0.21080270067516882,
0,
"None",
"i7186",
25,
0.006953351241036065
],
[
1727504883,
1727504915,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 39 update_interval 135 n_consecutive_deviations 3",
232,
39,
135,
3,
0.26906726681670423,
0,
"None",
"i7186",
29,
0.019623326884352664
],
[
1727504888,
1727504918,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
214,
32,
50,
1,
0.2073018254563641,
0,
"None",
"i7186",
26,
0.0067907601900475114
],
[
1727504903,
1727504932,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 213 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
213,
32,
50,
1,
0.2083020755188797,
0,
"None",
"i7186",
25,
0.0069936839048471795
],
[
1727504918,
1727504947,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
100,
10,
50,
1,
0.22130532633158284,
0,
"None",
"i7186",
25,
0.005924016215321437
],
[
1727504918,
1727504949,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 258 n_permutations 35 update_interval 108 n_consecutive_deviations 2",
258,
35,
108,
2,
0.24206051512878224,
0,
"None",
"i7186",
27,
0.012898385886794277
],
[
1727504943,
1727504972,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 157 n_permutations 46 update_interval 50 n_consecutive_deviations 4",
157,
46,
50,
4,
0.2388097024256064,
0,
"None",
"i7186",
25,
0.008957795004306632
],
[
1727504943,
1727504973,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 19 update_interval 50 n_consecutive_deviations 5",
100,
19,
50,
5,
0.23130782695673924,
0,
"None",
"i7186",
26,
0.009776253587206324
],
[
1727504963,
1727504997,
34,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 844 n_permutations 31 update_interval 105 n_consecutive_deviations 2",
844,
31,
105,
2,
0.2838209552388097,
0,
"None",
"i7186",
31,
0.016276796471845236
],
[
1727504979,
1727505008,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 218 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
218,
32,
50,
1,
0.20530132533133283,
0,
"None",
"i7186",
25,
0.007157527086689705
],
[
1727504979,
1727505009,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
216,
32,
50,
1,
0.2110527631907977,
0,
"None",
"i7186",
26,
0.006839011340136622
],
[
1727505003,
1727505031,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
214,
32,
50,
1,
0.2073018254563641,
0,
"None",
"i7186",
25,
0.0067907601900475114
],
[
1727505003,
1727505031,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
240,
26,
50,
1,
0.21505376344086025,
0,
"None",
"i7186",
25,
0.0074887142838341155
],
[
1727505023,
1727505052,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 218 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
218,
32,
50,
1,
0.20530132533133283,
0,
"None",
"i7186",
26,
0.007157527086689705
],
[
1727505039,
1727505068,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 50 n_consecutive_deviations 5",
100,
10,
50,
5,
0.2333083270817704,
0,
"None",
"i7186",
25,
0.00996590611067401
],
[
1727505383,
1727505413,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
237,
28,
50,
1,
0.2028007001750438,
0,
"None",
"i7186",
25,
0.007983814135352018
],
[
1727505401,
1727505429,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
216,
32,
50,
1,
0.2110527631907977,
0,
"None",
"i7186",
25,
0.006839011340136622
],
[
1727505401,
1727505432,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 178 n_permutations 33 update_interval 106 n_consecutive_deviations 4",
178,
33,
106,
4,
0.2645661415353838,
0,
"None",
"i7186",
27,
0.01451324369553927
],
[
1727505424,
1727505452,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 215 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
215,
32,
50,
1,
0.21655413853463368,
0,
"None",
"i7186",
25,
0.006751687921980495
],
[
1727505424,
1727505453,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 215 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
215,
32,
50,
1,
0.21655413853463368,
0,
"None",
"i7186",
26,
0.006751687921980495
],
[
1727505431,
1727505459,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
214,
32,
50,
1,
0.2073018254563641,
0,
"None",
"i7186",
25,
0.0067907601900475114
],
[
1727505443,
1727505475,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 695 n_permutations 45 update_interval 70 n_consecutive_deviations 2",
695,
45,
70,
2,
0.24656164041010253,
0,
"None",
"i7186",
28,
0.011980267794221282
],
[
1727505461,
1727505489,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
214,
32,
50,
1,
0.2073018254563641,
0,
"None",
"i7186",
25,
0.0067907601900475114
],
[
1727505484,
1727505512,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
100,
10,
50,
1,
0.22130532633158284,
0,
"None",
"i7186",
24,
0.005924016215321437
],
[
1727505484,
1727505512,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 212 n_permutations 33 update_interval 50 n_consecutive_deviations 1",
212,
33,
50,
1,
0.2198049512378094,
0,
"None",
"i7186",
25,
0.006700087720342785
],
[
1727505504,
1727505535,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 246 n_permutations 50 update_interval 114 n_consecutive_deviations 1",
246,
50,
114,
1,
0.24731182795698925,
0,
"None",
"i7186",
28,
0.012331207801950487
],
[
1727505521,
1727505550,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
214,
32,
50,
1,
0.2073018254563641,
0,
"None",
"i7186",
25,
0.0067907601900475114
],
[
1727505522,
1727505550,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
214,
32,
50,
1,
0.2083020755188797,
0,
"None",
"i7186",
25,
0.006882673049214685
],
[
1727505544,
1727505573,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 22 update_interval 50 n_consecutive_deviations 2",
100,
22,
50,
2,
0.23580895223805953,
0,
"None",
"i7186",
25,
0.006657402055431891
],
[
1727505544,
1727505573,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 239 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
239,
27,
50,
1,
0.20780195048762196,
0,
"None",
"i7186",
25,
0.007751937984496123
],
[
1727505551,
1727505579,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 33 update_interval 50 n_consecutive_deviations 1",
214,
33,
50,
1,
0.2073018254563641,
0,
"None",
"i7186",
25,
0.0067907601900475114
],
[
1727506064,
1727506093,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 267 n_permutations 25 update_interval 50 n_consecutive_deviations 2",
267,
25,
50,
2,
0.21080270067516882,
0,
"None",
"i7186",
25,
0.008134108998947849
],
[
1727506064,
1727506094,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 217 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
217,
32,
50,
1,
0.20355088772193053,
0,
"None",
"i7186",
26,
0.006958088728531338
],
[
1727506084,
1727506113,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 180 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
180,
10,
50,
1,
0.2253063265816454,
0,
"None",
"i7186",
25,
0.006829576246520646
],
[
1727506084,
1727506113,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 16 update_interval 50 n_consecutive_deviations 2",
100,
16,
50,
2,
0.23855963990997753,
0,
"None",
"i7186",
25,
0.006612308814908645
],
[
1727506094,
1727506124,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 31 update_interval 104 n_consecutive_deviations 2",
100,
31,
104,
2,
0.24481120280070012,
0,
"None",
"i7186",
26,
0.011030535411630687
],
[
1727506104,
1727506133,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 210 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
210,
27,
50,
1,
0.23480870217554384,
0,
"None",
"i7186",
25,
0.005986790815350897
],
[
1727506124,
1727506156,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 503 n_permutations 41 update_interval 126 n_consecutive_deviations 1",
503,
41,
126,
1,
0.26256564141035255,
0,
"None",
"i7186",
28,
0.014049808748483418
],
[
1727506144,
1727506175,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 352 n_permutations 10 update_interval 57 n_consecutive_deviations 3",
352,
10,
57,
3,
0.24006001500375096,
0,
"None",
"i7186",
27,
0.010575012174096154
],
[
1727506154,
1727506183,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 28 update_interval 50 n_consecutive_deviations 2",
100,
28,
50,
2,
0.2370592648162041,
0,
"None",
"i7186",
25,
0.006636905127921324
],
[
1727506164,
1727506193,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 223 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
223,
28,
50,
1,
0.20755188797199298,
0,
"None",
"i7186",
24,
0.006682439840729413
],
[
1727506185,
1727506213,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 191 n_permutations 24 update_interval 50 n_consecutive_deviations 3",
191,
24,
50,
3,
0.21955488872218054,
0,
"None",
"i7186",
25,
0.008986289125472858
],
[
1727506185,
1727506214,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
233,
27,
50,
1,
0.19879969992498125,
0,
"None",
"i7186",
26,
0.007264111109744649
],
[
1727506205,
1727506233,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 215 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
215,
32,
50,
1,
0.21655413853463368,
0,
"None",
"i7186",
25,
0.006751687921980495
],
[
1727506215,
1727506249,
34,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 713 n_permutations 50 update_interval 63 n_consecutive_deviations 5",
713,
50,
63,
5,
0.25431357839459867,
0,
"None",
"i7186",
30,
0.01614987080103359
],
[
1727506225,
1727506253,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
214,
32,
50,
1,
0.2073018254563641,
0,
"None",
"i7186",
25,
0.0067907601900475114
],
[
1727506245,
1727506273,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 32 update_interval 50 n_consecutive_deviations 1",
216,
32,
50,
1,
0.2110527631907977,
0,
"None",
"i7186",
25,
0.006839011340136622
],
[
1727506245,
1727506275,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 321 n_permutations 25 update_interval 50 n_consecutive_deviations 5",
321,
25,
50,
5,
0.23980995248812198,
0,
"None",
"i7186",
26,
0.012184864397917662
],
[
1727506517,
1727506546,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 219 n_permutations 33 update_interval 50 n_consecutive_deviations 1",
219,
33,
50,
1,
0.2090522630657664,
0,
"None",
"i7186",
25,
0.006981584105703846
],
[
1727506545,
1727506574,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 220 n_permutations 33 update_interval 50 n_consecutive_deviations 1",
220,
33,
50,
1,
0.23030757689422354,
0,
"None",
"i7186",
25,
0.006747588536478382
],
[
1727506545,
1727506574,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 263 n_permutations 29 update_interval 50 n_consecutive_deviations 1",
263,
29,
50,
1,
0.2298074518629657,
0,
"None",
"i7186",
25,
0.006868383762607319
],
[
1727506565,
1727506594,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 220 n_permutations 33 update_interval 50 n_consecutive_deviations 1",
220,
33,
50,
1,
0.23030757689422354,
0,
"None",
"i7186",
26,
0.006747588536478382
],
[
1727506577,
1727506611,
34,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 768 n_permutations 17 update_interval 105 n_consecutive_deviations 1",
768,
17,
105,
1,
0.27081770442610653,
0,
"None",
"i7186",
31,
0.015462198883054097
],
[
1727506585,
1727506613,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 220 n_permutations 33 update_interval 50 n_consecutive_deviations 1",
220,
33,
50,
1,
0.23030757689422354,
0,
"None",
"i7186",
25,
0.006747588536478382
],
[
1727506605,
1727506634,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 220 n_permutations 33 update_interval 50 n_consecutive_deviations 1",
220,
33,
50,
1,
0.2288072018004501,
0,
"None",
"i7186",
25,
0.006772184849491061
],
[
1727506605,
1727506636,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 47 update_interval 73 n_consecutive_deviations 4",
100,
47,
73,
4,
0.23755938984746183,
0,
"None",
"i7186",
27,
0.011552888222055515
],
[
1727506625,
1727506653,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 220 n_permutations 33 update_interval 50 n_consecutive_deviations 1",
220,
33,
50,
1,
0.2325581395348837,
0,
"None",
"i7186",
25,
0.006710694066959363
],
[
1727506637,
1727506666,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 221 n_permutations 33 update_interval 50 n_consecutive_deviations 1",
221,
33,
50,
1,
0.2253063265816454,
0,
"None",
"i7186",
25,
0.006829576246520646
],
[
1727506645,
1727506675,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 218 n_permutations 33 update_interval 50 n_consecutive_deviations 1",
218,
33,
50,
1,
0.20505126281570396,
0,
"None",
"i7186",
26,
0.007161626472191818
],
[
1727506665,
1727506694,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 279 n_permutations 50 update_interval 57 n_consecutive_deviations 2",
279,
50,
57,
2,
0.2370592648162041,
0,
"None",
"i7186",
25,
0.007638702128362278
],
[
1727506685,
1727506716,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 164 n_permutations 35 update_interval 94 n_consecutive_deviations 3",
164,
35,
94,
3,
0.26081520380095025,
0,
"None",
"i7186",
27,
0.013610545493516235
],
[
1727507126,
1727507155,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 29 update_interval 50 n_consecutive_deviations 1",
227,
29,
50,
1,
0.1957989497374344,
0,
"None",
"i7186",
25,
0.006863254275107237
],
[
1727507146,
1727507174,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 275 n_permutations 10 update_interval 50 n_consecutive_deviations 2",
275,
10,
50,
2,
0.21755438859714926,
0,
"None",
"i7186",
25,
0.007858446093004732
],
[
1727507166,
1727507195,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 30 update_interval 50 n_consecutive_deviations 1",
226,
30,
50,
1,
0.19454863715928983,
0,
"None",
"i7186",
25,
0.0066770423949270895
],
[
1727507166,
1727507195,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 29 update_interval 50 n_consecutive_deviations 1",
225,
29,
50,
1,
0.20230057514378597,
0,
"None",
"i7186",
25,
0.006977934959930458
],
[
1727507180,
1727507208,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 281 n_permutations 43 update_interval 50 n_consecutive_deviations 1",
281,
43,
50,
1,
0.23755938984746183,
0,
"None",
"i7186",
25,
0.006035090862267806
],
[
1727507206,
1727507235,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 29 update_interval 50 n_consecutive_deviations 1",
232,
29,
50,
1,
0.20055013753438355,
0,
"None",
"i7186",
25,
0.00668727788007608
],
[
1727507206,
1727507238,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 695 n_permutations 35 update_interval 55 n_consecutive_deviations 1",
695,
35,
55,
1,
0.2495623905976494,
0,
"None",
"i7186",
29,
0.00912437411678501
],
[
1727507226,
1727507254,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 267 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
267,
25,
50,
1,
0.21605401350337583,
0,
"None",
"i7186",
25,
0.006981253510098836
],
[
1727507240,
1727507270,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 29 update_interval 50 n_consecutive_deviations 1",
229,
29,
50,
1,
0.20805201300325082,
0,
"None",
"i7186",
26,
0.0067790385096274065
],
[
1727507246,
1727507275,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 176 n_permutations 50 update_interval 50 n_consecutive_deviations 2",
176,
50,
50,
2,
0.21330332583145784,
0,
"None",
"i7186",
25,
0.008242445226691288
],
[
1727507266,
1727507296,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 453 n_permutations 50 update_interval 58 n_consecutive_deviations 2",
453,
50,
58,
2,
0.22555638909727427,
0,
"None",
"i7186",
27,
0.010408852213053264
],
[
1727507286,
1727507315,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 29 update_interval 50 n_consecutive_deviations 1",
225,
29,
50,
1,
0.20230057514378597,
0,
"None",
"i7186",
25,
0.006977934959930458
],
[
1727507301,
1727507329,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 29 update_interval 50 n_consecutive_deviations 1",
227,
29,
50,
1,
0.1957989497374344,
0,
"None",
"i7186",
25,
0.006863254275107237
],
[
1727507306,
1727507334,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 258 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
258,
25,
50,
1,
0.20405101275318827,
0,
"None",
"i7186",
25,
0.007178024014200272
],
[
1727507326,
1727507356,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 279 n_permutations 50 update_interval 57 n_consecutive_deviations 2",
279,
50,
57,
2,
0.2370592648162041,
0,
"None",
"i7186",
27,
0.007638702128362278
],
[
1727507687,
1727507716,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 224 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
224,
28,
50,
1,
0.20855213803450867,
0,
"None",
"i7186",
26,
0.00687870380293486
],
[
1727507706,
1727507735,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
225,
28,
50,
1,
0.20230057514378597,
0,
"None",
"i7186",
25,
0.006977934959930458
],
[
1727507723,
1727507752,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 224 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
224,
28,
50,
1,
0.20855213803450867,
0,
"None",
"i7186",
26,
0.00687870380293486
],
[
1727507727,
1727507756,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
226,
27,
50,
1,
0.19454863715928983,
0,
"None",
"i7186",
25,
0.0066770423949270895
],
[
1727507746,
1727507775,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
225,
28,
50,
1,
0.20330082520630155,
0,
"None",
"i7186",
25,
0.006747840806355435
],
[
1727507753,
1727507782,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
225,
28,
50,
1,
0.20330082520630155,
0,
"None",
"i7186",
25,
0.006747840806355435
],
[
1727507767,
1727507798,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 315 n_permutations 27 update_interval 121 n_consecutive_deviations 3",
315,
27,
121,
3,
0.2460615153788447,
0,
"None",
"i7186",
28,
0.01649370676002334
],
[
1727507783,
1727507811,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 224 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
224,
27,
50,
1,
0.20855213803450867,
0,
"None",
"i7186",
24,
0.00687870380293486
],
[
1727507807,
1727507837,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 255 n_permutations 23 update_interval 60 n_consecutive_deviations 3",
255,
23,
60,
3,
0.22205551387846967,
0,
"None",
"i7186",
26,
0.009330110305354114
],
[
1727507814,
1727507842,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
227,
28,
50,
1,
0.1955488872218054,
0,
"None",
"i7186",
25,
0.0068671013907322985
],
[
1727507827,
1727507855,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 225 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
225,
28,
50,
1,
0.20330082520630155,
0,
"None",
"i7186",
25,
0.006747840806355435
],
[
1727507844,
1727507877,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 821 n_permutations 17 update_interval 75 n_consecutive_deviations 2",
821,
17,
75,
2,
0.28332083020755183,
0,
"None",
"i7186",
30,
0.01434358589647412
],
[
1727507867,
1727507895,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
230,
28,
50,
1,
0.22480620155038755,
0,
"None",
"i7186",
25,
0.006044989508246628
],
[
1727507874,
1727507902,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 224 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
224,
27,
50,
1,
0.20855213803450867,
0,
"None",
"i7186",
25,
0.00687870380293486
],
[
1727508206,
1727508238,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20955238809702426,
0,
"None",
"i7186",
26,
0.006651662915728932
],
[
1727508227,
1727508257,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 319 n_permutations 13 update_interval 120 n_consecutive_deviations 2",
319,
13,
120,
2,
0.2613153288322081,
0,
"None",
"i7186",
27,
0.01522380595148787
],
[
1727508236,
1727508265,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 228 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
228,
27,
50,
1,
0.19904976244061012,
0,
"None",
"i7186",
25,
0.0069196986746686675
],
[
1727508247,
1727508276,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
25,
0.006798574643660915
],
[
1727508266,
1727508295,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
25,
0.006798574643660915
],
[
1727508287,
1727508316,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22430607651912982,
0,
"None",
"i7186",
25,
0.006141241192651103
],
[
1727508287,
1727508317,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 126 n_permutations 44 update_interval 61 n_consecutive_deviations 4",
126,
44,
61,
4,
0.22905726431607898,
0,
"None",
"i7186",
26,
0.011158194954143942
],
[
1727508307,
1727508335,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22430607651912982,
0,
"None",
"i7186",
25,
0.006141241192651103
],
[
1727508327,
1727508357,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 318 n_permutations 15 update_interval 87 n_consecutive_deviations 1",
318,
15,
87,
1,
0.22105526381595397,
0,
"None",
"i7186",
26,
0.01026476131227929
],
[
1727508348,
1727508376,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
25,
0.006798574643660915
],
[
1727508348,
1727508376,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22430607651912982,
0,
"None",
"i7186",
25,
0.006141241192651103
],
[
1727508367,
1727508397,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 228 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
228,
27,
50,
1,
0.19904976244061012,
0,
"None",
"i7186",
26,
0.0069196986746686675
],
[
1727508387,
1727508416,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22430607651912982,
0,
"None",
"i7186",
25,
0.006141241192651103
],
[
1727508387,
1727508416,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
25,
0.006798574643660915
],
[
1727508408,
1727508437,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
240,
26,
50,
1,
0.21230307576894225,
0,
"None",
"i7186",
25,
0.007407024169835562
],
[
1727508779,
1727508808,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22430607651912982,
0,
"None",
"i7186",
25,
0.006141241192651103
],
[
1727508808,
1727508837,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
233,
27,
50,
1,
0.1992998249562391,
0,
"None",
"i7186",
25,
0.007138881494567189
],
[
1727508808,
1727508837,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 146 n_permutations 31 update_interval 74 n_consecutive_deviations 2",
146,
31,
74,
2,
0.2200550137534384,
0,
"None",
"i7186",
25,
0.009170770953607967
],
[
1727508828,
1727508857,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
232,
27,
50,
1,
0.20055013753438355,
0,
"None",
"i7186",
26,
0.00668727788007608
],
[
1727508839,
1727508868,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
234,
27,
50,
1,
0.2063015753938484,
0,
"None",
"i7186",
25,
0.007141129544681253
],
[
1727508848,
1727508877,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 231 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
231,
27,
50,
1,
0.21605401350337583,
0,
"None",
"i7186",
25,
0.006654007251812953
],
[
1727508868,
1727508898,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 21 update_interval 50 n_consecutive_deviations 3",
237,
21,
50,
3,
0.21405351337834455,
0,
"None",
"i7186",
26,
0.009301238353066527
],
[
1727508888,
1727508916,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 248 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
248,
25,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
24,
0.008057569948042567
],
[
1727508908,
1727508943,
35,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 903 n_permutations 40 update_interval 66 n_consecutive_deviations 4",
903,
40,
66,
4,
0.28857214303575895,
0,
"None",
"i7186",
31,
0.014722430607651911
],
[
1727508928,
1727508956,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
233,
27,
50,
1,
0.1992998249562391,
0,
"None",
"i7186",
25,
0.007138881494567189
],
[
1727508948,
1727508978,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
232,
27,
50,
1,
0.20055013753438355,
0,
"None",
"i7186",
25,
0.00668727788007608
],
[
1727508948,
1727508979,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
233,
27,
50,
1,
0.1992998249562391,
0,
"None",
"i7186",
26,
0.007138881494567189
],
[
1727508968,
1727508996,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
232,
27,
50,
1,
0.20055013753438355,
0,
"None",
"i7186",
24,
0.00668727788007608
],
[
1727509331,
1727509360,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
236,
27,
50,
1,
0.20980245061265312,
0,
"None",
"i7186",
25,
0.007716214767977709
],
[
1727509351,
1727509380,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
238,
27,
50,
1,
0.2063015753938484,
0,
"None",
"i7186",
25,
0.00792016185864648
],
[
1727509372,
1727509400,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
233,
27,
50,
1,
0.1992998249562391,
0,
"None",
"i7186",
25,
0.007138881494567189
],
[
1727509372,
1727509402,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 188 n_permutations 43 update_interval 94 n_consecutive_deviations 2",
188,
43,
94,
2,
0.23555888972243055,
0,
"None",
"i7186",
27,
0.012313684481726494
],
[
1727509391,
1727509424,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 452 n_permutations 17 update_interval 108 n_consecutive_deviations 2",
452,
17,
108,
2,
0.26906726681670423,
0,
"None",
"i7186",
29,
0.016947418672850028
],
[
1727509412,
1727509441,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 244 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
244,
26,
50,
1,
0.2003000750187547,
0,
"None",
"i7186",
25,
0.007747550922818424
],
[
1727509432,
1727509460,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 241 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
241,
27,
50,
1,
0.22280570142535638,
0,
"None",
"i7186",
25,
0.007484013860608008
],
[
1727509442,
1727509470,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 151 n_permutations 50 update_interval 57 n_consecutive_deviations 3",
151,
50,
57,
3,
0.21605401350337583,
0,
"None",
"i7186",
25,
0.009257749219913675
],
[
1727509472,
1727509500,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 233 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
233,
27,
50,
1,
0.1992998249562391,
0,
"None",
"i7186",
25,
0.007138881494567189
],
[
1727509472,
1727509501,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
234,
27,
50,
1,
0.2063015753938484,
0,
"None",
"i7186",
26,
0.007141129544681253
],
[
1727509492,
1727509521,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 130 n_permutations 46 update_interval 79 n_consecutive_deviations 5",
130,
46,
79,
5,
0.24631157789447367,
0,
"None",
"i7186",
26,
0.013186629990831039
],
[
1727509502,
1727509534,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 344 n_permutations 50 update_interval 96 n_consecutive_deviations 4",
344,
50,
96,
4,
0.2583145786446611,
0,
"None",
"i7186",
28,
0.016678082564119293
],
[
1727509533,
1727509562,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
234,
27,
50,
1,
0.2063015753938484,
0,
"None",
"i7186",
25,
0.007141129544681253
],
[
1727509912,
1727509942,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
238,
26,
50,
1,
0.202050512628157,
0,
"None",
"i7186",
26,
0.007997453908931779
],
[
1727509932,
1727509964,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 280 n_permutations 21 update_interval 186 n_consecutive_deviations 5",
280,
21,
186,
5,
0.28232058014503625,
0,
"None",
"i7186",
28,
0.01997721652635381
],
[
1727509952,
1727509982,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 199 n_permutations 28 update_interval 65 n_consecutive_deviations 2",
199,
28,
65,
2,
0.2325581395348837,
0,
"None",
"i7186",
26,
0.00998420336791515
],
[
1727509972,
1727510001,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
238,
26,
50,
1,
0.2063015753938484,
0,
"None",
"i7186",
25,
0.00792016185864648
],
[
1727509985,
1727510013,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
238,
26,
50,
1,
0.2063015753938484,
0,
"None",
"i7186",
25,
0.00792016185864648
],
[
1727509993,
1727510022,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
238,
26,
50,
1,
0.2063015753938484,
0,
"None",
"i7186",
26,
0.00792016185864648
],
[
1727510012,
1727510041,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
240,
26,
50,
1,
0.21230307576894225,
0,
"None",
"i7186",
25,
0.007407024169835562
],
[
1727510032,
1727510061,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
237,
26,
50,
1,
0.20255063765941483,
0,
"None",
"i7186",
25,
0.008136293332592408
],
[
1727510052,
1727510083,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 421 n_permutations 37 update_interval 88 n_consecutive_deviations 3",
421,
37,
88,
3,
0.24381095273818454,
0,
"None",
"i7186",
27,
0.013727569823490356
],
[
1727510073,
1727510101,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
238,
26,
50,
1,
0.202050512628157,
0,
"None",
"i7186",
25,
0.007997453908931779
],
[
1727510093,
1727510121,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
242,
25,
50,
1,
0.20855213803450867,
0,
"None",
"i7186",
25,
0.007345056603133834
],
[
1727510106,
1727510135,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
237,
26,
50,
1,
0.2028007001750438,
0,
"None",
"i7186",
26,
0.007983814135352018
],
[
1727510113,
1727510141,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
238,
26,
50,
1,
0.202050512628157,
0,
"None",
"i7186",
25,
0.007854642231986569
],
[
1727510133,
1727510165,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 538 n_permutations 12 update_interval 120 n_consecutive_deviations 2",
538,
12,
120,
2,
0.2675668917229307,
0,
"None",
"i7186",
29,
0.015597649412353089
],
[
1727510534,
1727510563,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
237,
26,
50,
1,
0.2083020755188797,
0,
"None",
"i7186",
25,
0.0080297852240838
],
[
1727510554,
1727510582,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
242,
26,
50,
1,
0.20855213803450867,
0,
"None",
"i7186",
25,
0.007345056603133834
],
[
1727510574,
1727510607,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 476 n_permutations 45 update_interval 65 n_consecutive_deviations 3",
476,
45,
65,
3,
0.2315578894723681,
0,
"None",
"i7186",
28,
0.012069193769030493
],
[
1727510588,
1727510616,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 40 update_interval 50 n_consecutive_deviations 2",
100,
40,
50,
2,
0.23905976494123526,
0,
"None",
"i7186",
24,
0.006714178544636159
],
[
1727510614,
1727510644,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 239 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
239,
26,
50,
1,
0.20955238809702426,
0,
"None",
"i7186",
25,
0.00772068017004251
],
[
1727510618,
1727510648,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 219 n_permutations 27 update_interval 84 n_consecutive_deviations 2",
219,
27,
84,
2,
0.24981245311327827,
0,
"None",
"i7186",
26,
0.011881758318367472
],
[
1727510648,
1727510677,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 241 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
241,
26,
50,
1,
0.22280570142535638,
0,
"None",
"i7186",
25,
0.007484013860608008
],
[
1727510654,
1727510683,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
238,
26,
50,
1,
0.2063015753938484,
0,
"None",
"i7186",
25,
0.00792016185864648
],
[
1727510674,
1727510703,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 241 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
241,
26,
50,
1,
0.22280570142535638,
0,
"None",
"i7186",
25,
0.007484013860608008
],
[
1727510695,
1727510724,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 141 n_permutations 23 update_interval 59 n_consecutive_deviations 1",
141,
23,
59,
1,
0.22480620155038755,
0,
"None",
"i7186",
25,
0.007191453035672712
],
[
1727510708,
1727510737,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
240,
26,
50,
1,
0.21230307576894225,
0,
"None",
"i7186",
25,
0.007407024169835562
],
[
1727510735,
1727510764,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
240,
26,
50,
1,
0.21230307576894225,
0,
"None",
"i7186",
26,
0.007407024169835562
],
[
1727510739,
1727510769,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 127 n_permutations 32 update_interval 126 n_consecutive_deviations 4",
127,
32,
126,
4,
0.25531382845711426,
0,
"None",
"i7186",
27,
0.018409364245823363
],
[
1727510769,
1727510798,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 240 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
240,
26,
50,
1,
0.21230307576894225,
0,
"None",
"i7186",
25,
0.007407024169835562
],
[
1727511256,
1727511289,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 144 n_permutations 14 update_interval 132 n_consecutive_deviations 4",
144,
14,
132,
4,
0.2848212053013254,
0,
"None",
"i7186",
29,
0.022318079519879967
],
[
1727511281,
1727511310,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 34 update_interval 58 n_consecutive_deviations 1",
216,
34,
58,
1,
0.21080270067516882,
0,
"None",
"i7186",
25,
0.008798117896821143
],
[
1727511296,
1727511325,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
238,
27,
50,
1,
0.2063015753938484,
0,
"None",
"i7186",
25,
0.00792016185864648
],
[
1727511311,
1727511343,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 385 n_permutations 41 update_interval 114 n_consecutive_deviations 4",
385,
41,
114,
4,
0.2468117029257314,
0,
"None",
"i7186",
28,
0.01795903521334879
],
[
1727511336,
1727511365,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
237,
27,
50,
1,
0.2028007001750438,
0,
"None",
"i7186",
26,
0.007983814135352018
],
[
1727511356,
1727511384,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 183 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
183,
50,
50,
1,
0.2190547636909227,
0,
"None",
"i7186",
25,
0.0066071205301325335
],
[
1727511372,
1727511400,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
100,
50,
50,
1,
0.22430607651912982,
0,
"None",
"i7186",
25,
0.0054234337805230525
],
[
1727511396,
1727511425,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 237 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
237,
27,
50,
1,
0.2028007001750438,
0,
"None",
"i7186",
25,
0.007983814135352018
],
[
1727511396,
1727511425,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 101 n_permutations 27 update_interval 50 n_consecutive_deviations 4",
101,
27,
50,
4,
0.22430607651912982,
0,
"None",
"i7186",
25,
0.009280097802228333
],
[
1727511416,
1727511445,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 32 update_interval 50 n_consecutive_deviations 3",
100,
32,
50,
3,
0.2218054513628407,
0,
"None",
"i7186",
25,
0.007779722708454891
],
[
1727511432,
1727511461,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 239 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
239,
27,
50,
1,
0.20780195048762196,
0,
"None",
"i7186",
25,
0.007751937984496123
],
[
1727511456,
1727511486,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
238,
27,
50,
1,
0.2063015753938484,
0,
"None",
"i7186",
26,
0.00792016185864648
],
[
1727511476,
1727511506,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 39 update_interval 50 n_consecutive_deviations 3",
100,
39,
50,
3,
0.2270567641910478,
0,
"None",
"i7186",
26,
0.0075427947896064915
],
[
1727511493,
1727511521,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 253 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
253,
25,
50,
1,
0.2118029507376844,
0,
"None",
"i7186",
25,
0.007545746085644218
],
[
1727511997,
1727512028,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 306 n_permutations 13 update_interval 100 n_consecutive_deviations 1",
306,
13,
100,
1,
0.24631157789447367,
0,
"None",
"i7186",
27,
0.0123624656164041
],
[
1727512017,
1727512045,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
235,
27,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
25,
0.007132930773677026
],
[
1727512036,
1727512064,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
235,
27,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
25,
0.007132930773677026
],
[
1727512057,
1727512085,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 249 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
249,
26,
50,
1,
0.22555638909727427,
0,
"None",
"i7186",
25,
0.007434894437895189
],
[
1727512066,
1727512096,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 500 n_permutations 39 update_interval 56 n_consecutive_deviations 2",
500,
39,
56,
2,
0.24981245311327827,
0,
"None",
"i7186",
27,
0.00956336645136894
],
[
1727512077,
1727512106,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
236,
27,
50,
1,
0.20980245061265312,
0,
"None",
"i7186",
25,
0.007716214767977709
],
[
1727512096,
1727512129,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 536 n_permutations 47 update_interval 92 n_consecutive_deviations 4",
536,
47,
92,
4,
0.27506876719179796,
0,
"None",
"i7186",
29,
0.019307458443558256
],
[
1727512118,
1727512147,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
236,
27,
50,
1,
0.2038009502375594,
0,
"None",
"i7186",
25,
0.007686132059330622
],
[
1727512137,
1727512166,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 238 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
238,
27,
50,
1,
0.20180045011252812,
0,
"None",
"i7186",
25,
0.008002000500125032
],
[
1727512156,
1727512185,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
100,
10,
50,
1,
0.22130532633158284,
0,
"None",
"i7186",
25,
0.005924016215321437
],
[
1727512177,
1727512205,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
235,
27,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
24,
0.007132930773677026
],
[
1727512197,
1727512227,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
236,
27,
50,
1,
0.20980245061265312,
0,
"None",
"i7186",
26,
0.007716214767977709
],
[
1727512217,
1727512246,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 404 n_permutations 31 update_interval 64 n_consecutive_deviations 1",
404,
31,
64,
1,
0.22780695173793453,
0,
"None",
"i7186",
26,
0.010100085997109032
],
[
1727512238,
1727512267,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
236,
27,
50,
1,
0.20980245061265312,
0,
"None",
"i7186",
25,
0.007716214767977709
],
[
1727512718,
1727512747,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
242,
28,
50,
1,
0.20855213803450867,
0,
"None",
"i7186",
25,
0.007345056603133834
],
[
1727512729,
1727512757,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 241 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
241,
28,
50,
1,
0.22280570142535638,
0,
"None",
"i7186",
25,
0.007484013860608008
],
[
1727512758,
1727512788,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 243 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
243,
28,
50,
1,
0.1992998249562391,
0,
"None",
"i7186",
25,
0.007765099169529223
],
[
1727512778,
1727512806,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
242,
28,
50,
1,
0.20855213803450867,
0,
"None",
"i7186",
25,
0.007345056603133834
],
[
1727512789,
1727512817,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 241 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
241,
28,
50,
1,
0.22280570142535638,
0,
"None",
"i7186",
25,
0.007484013860608008
],
[
1727512798,
1727512829,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 280 n_permutations 27 update_interval 80 n_consecutive_deviations 1",
280,
27,
80,
1,
0.26531632908227054,
0,
"None",
"i7186",
27,
0.00965626021890088
],
[
1727512818,
1727512846,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
100,
50,
50,
1,
0.22430607651912982,
0,
"None",
"i7186",
24,
0.0054234337805230525
],
[
1727512850,
1727512878,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
242,
28,
50,
1,
0.20855213803450867,
0,
"None",
"i7186",
25,
0.007345056603133834
],
[
1727512878,
1727512907,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 243 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
243,
28,
50,
1,
0.1992998249562391,
0,
"None",
"i7186",
25,
0.007765099169529223
],
[
1727512899,
1727512932,
33,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 501 n_permutations 23 update_interval 156 n_consecutive_deviations 1",
501,
23,
156,
1,
0.2650662665666417,
0,
"None",
"i7186",
30,
0.017129282320580145
],
[
1727512910,
1727512938,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 243 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
243,
28,
50,
1,
0.1992998249562391,
0,
"None",
"i7186",
25,
0.007765099169529223
],
[
1727512918,
1727512947,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
242,
28,
50,
1,
0.20855213803450867,
0,
"None",
"i7186",
24,
0.007345056603133834
],
[
1727512939,
1727512969,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 348 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
348,
10,
50,
1,
0.2200550137534384,
0,
"None",
"i7186",
26,
0.007400973050280113
],
[
1727512958,
1727512987,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 242 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
242,
28,
50,
1,
0.20855213803450867,
0,
"None",
"i7186",
25,
0.007345056603133834
],
[
1727513782,
1727513812,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 446 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
446,
10,
50,
1,
0.21430357589397353,
0,
"None",
"i7186",
26,
0.00838444905343983
],
[
1727513801,
1727513829,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 214 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
214,
25,
50,
1,
0.2083020755188797,
0,
"None",
"i7186",
24,
0.006882673049214685
],
[
1727513822,
1727513852,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 445 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
445,
10,
50,
1,
0.21605401350337583,
0,
"None",
"i7186",
26,
0.008690948247265897
],
[
1727513842,
1727513871,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 506 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
506,
10,
50,
1,
0.22280570142535638,
0,
"None",
"i7186",
26,
0.008217740709687225
],
[
1727513862,
1727513892,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 441 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
441,
10,
50,
1,
0.22680670167541883,
0,
"None",
"i7186",
27,
0.008139289724391882
],
[
1727513881,
1727513911,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 414 n_permutations 38 update_interval 52 n_consecutive_deviations 1",
414,
38,
52,
1,
0.22505626406601653,
0,
"None",
"i7186",
26,
0.008337084271067767
],
[
1727513902,
1727513932,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 414 n_permutations 38 update_interval 52 n_consecutive_deviations 1",
414,
38,
52,
1,
0.22505626406601653,
0,
"None",
"i7186",
27,
0.008337084271067767
],
[
1727513922,
1727513951,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 446 n_permutations 16 update_interval 50 n_consecutive_deviations 1",
446,
16,
50,
1,
0.21430357589397353,
0,
"None",
"i7186",
26,
0.00838444905343983
],
[
1727513942,
1727513973,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 525 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
525,
10,
50,
1,
0.2325581395348837,
0,
"None",
"i7186",
27,
0.008026516433029826
],
[
1727513962,
1727513992,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 283 n_permutations 33 update_interval 91 n_consecutive_deviations 5",
283,
33,
91,
5,
0.26631657914478624,
0,
"None",
"i7186",
27,
0.015649745769775774
],
[
1727513982,
1727514012,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 441 n_permutations 10 update_interval 50 n_consecutive_deviations 1",
441,
10,
50,
1,
0.22680670167541883,
0,
"None",
"i7186",
27,
0.008139289724391882
],
[
1727514002,
1727514032,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 499 n_permutations 10 update_interval 64 n_consecutive_deviations 1",
499,
10,
64,
1,
0.2378094523630908,
0,
"None",
"i7186",
27,
0.009397698261774745
],
[
1727514022,
1727514053,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 484 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
484,
26,
50,
1,
0.22330582645661412,
0,
"None",
"i7186",
27,
0.008050089445438283
],
[
1727514042,
1727514072,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 442 n_permutations 10 update_interval 60 n_consecutive_deviations 1",
442,
10,
60,
1,
0.23030757689422354,
0,
"None",
"i7186",
27,
0.00914673112722625
],
[
1727514062,
1727514092,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 419 n_permutations 16 update_interval 50 n_consecutive_deviations 1",
419,
16,
50,
1,
0.22905726431607898,
0,
"None",
"i7186",
27,
0.008095161045163252
],
[
1727514599,
1727514628,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20805201300325082,
0,
"None",
"i7186",
25,
0.0067790385096274065
],
[
1727514623,
1727514653,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22680670167541883,
0,
"None",
"i7186",
25,
0.006104467293293912
],
[
1727514643,
1727514672,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 231 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
231,
27,
50,
1,
0.21505376344086025,
0,
"None",
"i7186",
26,
0.006567026371977609
],
[
1727514659,
1727514688,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 128 n_permutations 44 update_interval 61 n_consecutive_deviations 4",
128,
44,
61,
4,
0.2395598899724931,
0,
"None",
"i7186",
25,
0.010588173359129255
],
[
1727514683,
1727514712,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
26,
0.006798574643660915
],
[
1727514689,
1727514718,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22405601400350084,
0,
"None",
"i7186",
25,
0.00605586179153484
],
[
1727514720,
1727514749,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 107 n_permutations 42 update_interval 51 n_consecutive_deviations 3",
107,
42,
51,
3,
0.2055513878469617,
0,
"None",
"i7186",
25,
0.008556060583773395
],
[
1727514743,
1727514771,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 228 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
228,
27,
50,
1,
0.19904976244061012,
0,
"None",
"i7186",
25,
0.0069196986746686675
],
[
1727514763,
1727514792,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20955238809702426,
0,
"None",
"i7186",
25,
0.006651662915728932
],
[
1727514780,
1727514808,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
25,
0.006798574643660915
],
[
1727514803,
1727514834,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 468 n_permutations 49 update_interval 62 n_consecutive_deviations 2",
468,
49,
62,
2,
0.22955738934733683,
0,
"None",
"i7186",
27,
0.010573156109540205
],
[
1727514810,
1727514838,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
25,
0.006798574643660915
],
[
1727514840,
1727514870,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
26,
0.006798574643660915
],
[
1727514863,
1727514891,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20805201300325082,
0,
"None",
"i7186",
25,
0.0067790385096274065
],
[
1727515404,
1727515433,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
226,
27,
50,
1,
0.19454863715928983,
0,
"None",
"i7186",
25,
0.0066770423949270895
],
[
1727515444,
1727515472,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
226,
27,
50,
1,
0.19454863715928983,
0,
"None",
"i7186",
25,
0.0066770423949270895
],
[
1727515444,
1727515474,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
227,
27,
50,
1,
0.19704926231557884,
0,
"None",
"i7186",
26,
0.007061289131806762
],
[
1727515464,
1727515495,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 36 update_interval 149 n_consecutive_deviations 2",
100,
36,
149,
2,
0.2658164541135284,
0,
"None",
"i7186",
27,
0.015043760940235058
],
[
1727515484,
1727515519,
35,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 1000 n_permutations 46 update_interval 60 n_consecutive_deviations 4",
1000,
46,
60,
4,
0.2915728932233058,
0,
"None",
"i7186",
32,
0.012975466088744407
],
[
1727515524,
1727515556,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 329 n_permutations 31 update_interval 109 n_consecutive_deviations 2",
329,
31,
109,
2,
0.26256564141035255,
0,
"None",
"i7186",
28,
0.014049808748483418
],
[
1727515534,
1727515562,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 101 n_permutations 50 update_interval 50 n_consecutive_deviations 1",
101,
50,
50,
1,
0.2225556389097274,
0,
"None",
"i7186",
24,
0.005666957279860506
],
[
1727515564,
1727515593,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
226,
27,
50,
1,
0.19454863715928983,
0,
"None",
"i7186",
25,
0.0066770423949270895
],
[
1727515564,
1727515596,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 49 update_interval 52 n_consecutive_deviations 1",
234,
49,
52,
1,
0.20180045011252812,
0,
"None",
"i7186",
28,
0.006985873452490107
],
[
1727515595,
1727515623,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 226 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
226,
27,
50,
1,
0.19454863715928983,
0,
"None",
"i7186",
24,
0.0066770423949270895
],
[
1727515624,
1727515654,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 50 update_interval 69 n_consecutive_deviations 2",
235,
50,
69,
2,
0.21830457614403598,
0,
"None",
"i7186",
26,
0.010861689781419714
],
[
1727515644,
1727515674,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 41 update_interval 73 n_consecutive_deviations 2",
236,
41,
73,
2,
0.21430357589397353,
0,
"None",
"i7186",
27,
0.011252813203300824
],
[
1727515655,
1727515683,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
227,
27,
50,
1,
0.1955488872218054,
0,
"None",
"i7186",
25,
0.0068671013907322985
],
[
1727515684,
1727515713,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 227 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
227,
27,
50,
1,
0.1955488872218054,
0,
"None",
"i7186",
25,
0.0068671013907322985
],
[
1727516259,
1727516288,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 215 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
215,
25,
50,
1,
0.21480370092523127,
0,
"None",
"i7186",
26,
0.006888818978938283
],
[
1727516285,
1727516312,
27,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
100,
26,
50,
1,
0.2198049512378094,
0,
"None",
"i7186",
24,
0.005704128734886424
],
[
1727516305,
1727516334,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
216,
25,
50,
1,
0.20805201300325082,
0,
"None",
"i7186",
25,
0.006997717171228291
],
[
1727516319,
1727516351,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 628 n_permutations 25 update_interval 63 n_consecutive_deviations 2",
628,
25,
63,
2,
0.24306076519129782,
0,
"None",
"i7186",
28,
0.010779721957516405
],
[
1727516345,
1727516374,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
216,
25,
50,
1,
0.20780195048762196,
0,
"None",
"i7186",
26,
0.007001750437609401
],
[
1727516365,
1727516394,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 100 n_consecutive_deviations 3",
100,
50,
100,
3,
0.24456114028507125,
0,
"None",
"i7186",
26,
0.013244977911144453
],
[
1727516385,
1727516414,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
216,
25,
50,
1,
0.20780195048762196,
0,
"None",
"i7186",
26,
0.007001750437609401
],
[
1727516405,
1727516433,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 215 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
215,
25,
50,
1,
0.21430357589397353,
0,
"None",
"i7186",
25,
0.006896885511700505
],
[
1727516440,
1727516469,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 189 n_permutations 17 update_interval 50 n_consecutive_deviations 1",
189,
17,
50,
1,
0.22930732683170796,
0,
"None",
"i7186",
25,
0.00665488952883382
],
[
1727516465,
1727516493,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 260 n_permutations 10 update_interval 50 n_consecutive_deviations 2",
260,
10,
50,
2,
0.2173043260815204,
0,
"None",
"i7186",
25,
0.008325610814468323
],
[
1727516470,
1727516499,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 105 n_permutations 10 update_interval 90 n_consecutive_deviations 2",
105,
10,
90,
2,
0.23580895223805953,
0,
"None",
"i7186",
25,
0.011944162511216038
],
[
1727516501,
1727516531,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 13 update_interval 69 n_consecutive_deviations 5",
100,
13,
69,
5,
0.2513128282070518,
0,
"None",
"i7186",
26,
0.012599924174592034
],
[
1727516525,
1727516553,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 216 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
216,
25,
50,
1,
0.20780195048762196,
0,
"None",
"i7186",
25,
0.007001750437609401
],
[
1727516545,
1727516574,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 215 n_permutations 25 update_interval 50 n_consecutive_deviations 1",
215,
25,
50,
1,
0.21430357589397353,
0,
"None",
"i7186",
25,
0.006896885511700505
],
[
1727516561,
1727516590,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 46 update_interval 99 n_consecutive_deviations 3",
100,
46,
99,
3,
0.25731432858214554,
0,
"None",
"i7186",
26,
0.013261936173698597
],
[
1727517211,
1727517242,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 115 n_permutations 36 update_interval 82 n_consecutive_deviations 2",
115,
36,
82,
2,
0.22680670167541883,
0,
"None",
"i7186",
25,
0.01012448234009722
],
[
1727517231,
1727517261,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 261 n_permutations 30 update_interval 107 n_consecutive_deviations 3",
261,
30,
107,
3,
0.24931232808202053,
0,
"None",
"i7186",
26,
0.014021362483478012
],
[
1727517251,
1727517281,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 79 n_consecutive_deviations 1",
100,
50,
79,
1,
0.2388097024256064,
0,
"None",
"i7186",
26,
0.008576612238165924
],
[
1727517271,
1727517300,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 105 n_permutations 35 update_interval 80 n_consecutive_deviations 2",
105,
35,
80,
2,
0.23105776444111026,
0,
"None",
"i7186",
25,
0.010534684953289604
],
[
1727517291,
1727517322,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 270 n_permutations 27 update_interval 106 n_consecutive_deviations 3",
270,
27,
106,
3,
0.2628157039259815,
0,
"None",
"i7186",
27,
0.015163790947736932
],
[
1727517316,
1727517347,
31,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 267 n_permutations 28 update_interval 105 n_consecutive_deviations 3",
267,
28,
105,
3,
0.2613153288322081,
0,
"None",
"i7186",
27,
0.01522380595148787
],
[
1727517346,
1727517375,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
236,
28,
50,
1,
0.20980245061265312,
0,
"None",
"i7186",
25,
0.007716214767977709
],
[
1727517371,
1727517400,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
236,
28,
50,
1,
0.2038009502375594,
0,
"None",
"i7186",
25,
0.007823384417532954
],
[
1727517391,
1727517423,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 118 n_permutations 45 update_interval 102 n_consecutive_deviations 3",
118,
45,
102,
3,
0.25256314078519626,
0,
"None",
"i7186",
28,
0.012559591510780921
],
[
1727517407,
1727517435,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
234,
28,
50,
1,
0.2063015753938484,
0,
"None",
"i7186",
25,
0.007141129544681253
],
[
1727517431,
1727517463,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 148 n_permutations 46 update_interval 98 n_consecutive_deviations 3",
148,
46,
98,
3,
0.2620655163790948,
0,
"None",
"i7186",
28,
0.01460942158616577
],
[
1727517451,
1727517480,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 293 n_permutations 48 update_interval 50 n_consecutive_deviations 2",
293,
48,
50,
2,
0.2010502625656414,
0,
"None",
"i7186",
25,
0.007734389737785324
],
[
1727517471,
1727517501,
30,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
236,
28,
50,
1,
0.2038009502375594,
0,
"None",
"i7186",
25,
0.007686132059330622
],
[
1727517491,
1727517519,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 236 n_permutations 28 update_interval 50 n_consecutive_deviations 1",
236,
28,
50,
1,
0.2038009502375594,
0,
"None",
"i7186",
24,
0.007823384417532954
],
[
1727518414,
1727518443,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 157 n_permutations 46 update_interval 60 n_consecutive_deviations 4",
157,
46,
60,
4,
0.24256064016003998,
0,
"None",
"i7186",
25,
0.010793238850253104
],
[
1727518454,
1727518483,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22405601400350084,
0,
"None",
"i7186",
25,
0.00605586179153484
],
[
1727518463,
1727518492,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 174 n_permutations 27 update_interval 51 n_consecutive_deviations 1",
174,
27,
51,
1,
0.21605401350337583,
0,
"None",
"i7186",
25,
0.00709760773526715
],
[
1727518494,
1727518523,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22430607651912982,
0,
"None",
"i7186",
25,
0.006141241192651103
],
[
1727518514,
1727518542,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22430607651912982,
0,
"None",
"i7186",
25,
0.006141241192651103
],
[
1727518524,
1727518553,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 108 n_permutations 31 update_interval 58 n_consecutive_deviations 2",
108,
31,
58,
2,
0.22905726431607898,
0,
"None",
"i7186",
25,
0.008257064266066517
],
[
1727518554,
1727518583,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22430607651912982,
0,
"None",
"i7186",
25,
0.006141241192651103
],
[
1727518574,
1727518602,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22430607651912982,
0,
"None",
"i7186",
24,
0.006141241192651103
],
[
1727518594,
1727518623,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 231 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
231,
27,
50,
1,
0.21155288822205554,
0,
"None",
"i7186",
25,
0.006620885990728451
],
[
1727518614,
1727518643,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22405601400350084,
0,
"None",
"i7186",
25,
0.00605586179153484
],
[
1727518645,
1727518674,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 260 n_permutations 26 update_interval 50 n_consecutive_deviations 3",
260,
26,
50,
3,
0.2360590147536884,
0,
"None",
"i7186",
26,
0.00882285788838514
],
[
1727518674,
1727518703,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 10 update_interval 68 n_consecutive_deviations 5",
100,
10,
68,
5,
0.2450612653163291,
0,
"None",
"i7186",
25,
0.011672035655972815
],
[
1727518695,
1727518724,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 229 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
229,
27,
50,
1,
0.20805201300325082,
0,
"None",
"i7186",
26,
0.0067790385096274065
],
[
1727518714,
1727518742,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22405601400350084,
0,
"None",
"i7186",
24,
0.00605586179153484
],
[
1727518735,
1727518763,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 230 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
230,
27,
50,
1,
0.22680670167541883,
0,
"None",
"i7186",
25,
0.006104467293293912
],
[
1727519702,
1727519738,
36,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 193 n_permutations 29 update_interval 114 n_consecutive_deviations 3",
193,
29,
114,
3,
0.24906226556639155,
0,
"None",
"i7186",
28,
0.017080357045783187
],
[
1727519729,
1727519757,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 235 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
235,
27,
50,
1,
0.20680170042510626,
0,
"None",
"i7186",
25,
0.007132930773677026
],
[
1727519749,
1727519781,
32,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 193 n_permutations 29 update_interval 114 n_consecutive_deviations 3",
193,
29,
114,
3,
0.24706176544136038,
0,
"None",
"i7186",
28,
0.01716733531208889
],
[
1727519769,
1727519797,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 100 n_permutations 50 update_interval 71 n_consecutive_deviations 1",
100,
50,
71,
1,
0.2505626406601651,
0,
"None",
"i7186",
25,
0.0071154152174407225
],
[
1727519793,
1727519822,
29,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 234 n_permutations 27 update_interval 50 n_consecutive_deviations 1",
234,
27,
50,
1,
0.2063015753938484,
0,
"None",
"i7186",
25,
0.007141129544681253
],
[
1727519823,
1727519851,
28,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py OutdoorObjects 1000 ImageBasedDriftDetector n_samples 232 n_permutations 26 update_interval 50 n_consecutive_deviations 1",
232,
26,
50,
1,
0.20055013753438355,
0,
"None",
"i7186",
24,
0.00668727788007608
]
];
var tab_main_worker_cpu_ram_csv_json = [
[
1727501100,
475.75,
49.8
],
[
1727501100,
475.75,
50
],
[
1727501100,
475.97265625,
49.7
],
[
1727501100,
475.97265625,
55.6
],
[
1727501100,
475.97265625,
39.4
],
[
1727501100,
475.97265625,
50
],
[
1727501100,
475.97265625,
55.6
],
[
1727501146,
480.82421875,
49.8
],
[
1727501146,
480.82421875,
54.3
],
[
1727501146,
480.82421875,
49.2
],
[
1727501146,
480.82421875,
55.6
],
[
1727501147,
480.82421875,
49.7
],
[
1727501147,
480.82421875,
53.3
],
[
1727501147,
480.82421875,
48.1
],
[
1727501147,
480.82421875,
37.5
],
[
1727501149,
480.828125,
49.8
],
[
1727501149,
480.828125,
54.5
],
[
1727501149,
480.828125,
48.1
],
[
1727501149,
480.828125,
40.6
],
[
1727501150,
480.828125,
49.7
],
[
1727501150,
480.828125,
54.3
],
[
1727501150,
480.828125,
47.7
],
[
1727501150,
480.828125,
58.7
],
[
1727501151,
480.828125,
49.7
],
[
1727501151,
480.828125,
38.2
],
[
1727501151,
480.828125,
52.5
],
[
1727501151,
480.828125,
39.4
],
[
1727501154,
484.109375,
49.9
],
[
1727501154,
484.109375,
38.2
],
[
1727501154,
484.109375,
53.8
],
[
1727501154,
484.109375,
37.1
],
[
1727501158,
484.109375,
49.9
],
[
1727501158,
484.109375,
54.2
],
[
1727501158,
484.109375,
47.7
],
[
1727501158,
484.109375,
56.5
],
[
1727501160,
484.1796875,
49.9
],
[
1727501160,
484.1796875,
38.2
],
[
1727501160,
484.1796875,
52
],
[
1727501160,
484.1796875,
44.1
],
[
1727501162,
484.1796875,
49.9
],
[
1727501162,
484.1796875,
55.3
],
[
1727501162,
484.1796875,
47.2
],
[
1727501162,
484.1796875,
57.8
],
[
1727501165,
484.1796875,
49.9
],
[
1727501165,
484.1796875,
56.3
],
[
1727501165,
484.1796875,
47.2
],
[
1727501165,
484.1796875,
55.6
],
[
1727501167,
484.1796875,
49.8
],
[
1727501167,
484.1796875,
55.3
],
[
1727501167,
484.1796875,
47.2
],
[
1727501167,
484.1796875,
47.4
],
[
1727501169,
484.1796875,
49.9
],
[
1727501169,
484.1796875,
57.4
],
[
1727501169,
484.1796875,
48.1
],
[
1727501169,
484.1796875,
55.6
],
[
1727501172,
484.1875,
49.9
],
[
1727501172,
484.1875,
54.3
],
[
1727501172,
484.1875,
46.7
],
[
1727501172,
484.1875,
57.8
],
[
1727501174,
484.1875,
49.9
],
[
1727501174,
484.1875,
56.2
],
[
1727501174,
484.1875,
46.8
],
[
1727501174,
484.1875,
56.8
],
[
1727501176,
484.1875,
49.9
],
[
1727501176,
484.1875,
55.3
],
[
1727501176,
484.1875,
47.2
],
[
1727501176,
484.1875,
55.6
],
[
1727501179,
484.234375,
49.8
],
[
1727501179,
484.234375,
38.2
],
[
1727501179,
484.234375,
52.5
],
[
1727501179,
484.234375,
37.5
],
[
1727501181,
484.234375,
49.9
],
[
1727501181,
484.234375,
37.5
],
[
1727501181,
484.234375,
52.5
],
[
1727501181,
484.234375,
40.6
],
[
1727501183,
484.234375,
49.9
],
[
1727501183,
484.234375,
40
],
[
1727501183,
484.234375,
52.5
],
[
1727501183,
484.234375,
47.2
],
[
1727501186,
484.234375,
49.9
],
[
1727501186,
484.234375,
54.3
],
[
1727501186,
484.234375,
45.9
],
[
1727501186,
484.234375,
57.4
],
[
1727501188,
484.234375,
49.8
],
[
1727501188,
484.234375,
54.3
],
[
1727501188,
484.234375,
51.7
],
[
1727501188,
484.234375,
37.5
],
[
1727501190,
484.234375,
49.9
],
[
1727501190,
484.234375,
36.4
],
[
1727501190,
484.234375,
52.5
],
[
1727501190,
484.234375,
42.4
],
[
1727501192,
484.234375,
49.9
],
[
1727501192,
484.234375,
51.2
],
[
1727501192,
484.234375,
51.6
],
[
1727501192,
484.234375,
39.4
],
[
1727501194,
484.234375,
49.9
],
[
1727501194,
484.234375,
47.5
],
[
1727501194,
484.234375,
52
],
[
1727501194,
484.234375,
41.9
],
[
1727501196,
484.234375,
49.8
],
[
1727501196,
484.234375,
54.2
],
[
1727501196,
484.234375,
48.1
],
[
1727501196,
484.234375,
54.5
],
[
1727501199,
484.234375,
49.9
],
[
1727501199,
484.234375,
52.3
],
[
1727501199,
484.234375,
52.1
],
[
1727501199,
484.234375,
37.5
],
[
1727501201,
484.234375,
49.9
],
[
1727501201,
484.234375,
55.3
],
[
1727501201,
484.234375,
50
],
[
1727501201,
484.234375,
45.7
],
[
1727501203,
484.234375,
49.9
],
[
1727501203,
484.234375,
43.6
],
[
1727501203,
484.234375,
50
],
[
1727501203,
484.234375,
55.6
],
[
1727501205,
484.234375,
49.9
],
[
1727501205,
484.234375,
54.3
],
[
1727501205,
484.234375,
47.7
],
[
1727501205,
484.234375,
57.8
],
[
1727501207,
484.234375,
49.8
],
[
1727501207,
484.234375,
45
],
[
1727501207,
484.234375,
52.1
],
[
1727501207,
484.234375,
37.5
],
[
1727501210,
484.234375,
49.9
],
[
1727501210,
484.234375,
54.2
],
[
1727501210,
484.234375,
45.5
],
[
1727501210,
484.234375,
57.4
],
[
1727501212,
484.234375,
49.8
],
[
1727501212,
484.234375,
55.3
],
[
1727501212,
484.234375,
47.8
],
[
1727501212,
484.234375,
52.4
],
[
1727501214,
484.234375,
49.9
],
[
1727501214,
484.234375,
56.5
],
[
1727501214,
484.234375,
46.8
],
[
1727501214,
484.234375,
55.6
],
[
1727501216,
484.234375,
49.9
],
[
1727501216,
484.234375,
36.4
],
[
1727501216,
484.234375,
50.8
],
[
1727501216,
484.234375,
56.8
],
[
1727501219,
484.29296875,
49.9
],
[
1727501219,
484.29296875,
41.2
],
[
1727501219,
484.29296875,
52.1
],
[
1727501219,
484.29296875,
54.5
],
[
1727501221,
484.29296875,
49.9
],
[
1727501221,
484.29296875,
40
],
[
1727501221,
484.29296875,
50.8
],
[
1727501221,
484.29296875,
57.8
],
[
1727501226,
484.359375,
49.9
],
[
1727501226,
484.359375,
55.3
],
[
1727501226,
484.359375,
50.4
],
[
1727501226,
484.359375,
37.5
],
[
1727501404,
523.09375,
50.2
],
[
1727501404,
523.09375,
46.3
],
[
1727501404,
523.09375,
50.7
],
[
1727501404,
523.09375,
39.4
],
[
1727501508,
525.35546875,
50.3
],
[
1727501508,
525.35546875,
56.5
],
[
1727501508,
525.35546875,
49.2
],
[
1727501508,
525.35546875,
57.8
],
[
1727501676,
527.859375,
50.2
],
[
1727501676,
527.859375,
56.5
],
[
1727501676,
527.859375,
47.8
],
[
1727501676,
527.859375,
56.8
],
[
1727501812,
531.20703125,
50.2
],
[
1727501812,
531.20703125,
37.5
],
[
1727501812,
531.20703125,
50
],
[
1727501812,
531.20703125,
55.6
],
[
1727502018,
532.015625,
50.3
],
[
1727502018,
532.015625,
43.2
],
[
1727502018,
532.015625,
51.4
],
[
1727502018,
532.015625,
38.7
],
[
1727502221,
537.26171875,
50.3
],
[
1727502221,
537.26171875,
55.3
],
[
1727502221,
537.26171875,
49.3
],
[
1727502221,
537.26171875,
45.9
],
[
1727502398,
542.203125,
50.2
],
[
1727502398,
542.203125,
54.3
],
[
1727502398,
542.203125,
48.4
],
[
1727502398,
542.203125,
53.2
],
[
1727502620,
538.48046875,
50.2
],
[
1727502620,
538.48046875,
50
],
[
1727502620,
538.48046875,
51.4
],
[
1727502620,
538.48046875,
38.7
],
[
1727502853,
540.24609375,
50.2
],
[
1727502853,
540.24609375,
54.3
],
[
1727502853,
540.24609375,
50.6
],
[
1727502853,
540.24609375,
39.4
],
[
1727503143,
544.8359375,
50.2
],
[
1727503143,
544.8359375,
53.2
],
[
1727503143,
544.8359375,
50
],
[
1727503143,
544.8359375,
57.8
],
[
1727503457,
553.62109375,
50.2
],
[
1727503457,
553.62109375,
55.6
],
[
1727503457,
553.62109375,
48.6
],
[
1727503457,
553.62109375,
55.3
],
[
1727503837,
549.03125,
50.2
],
[
1727503837,
549.03125,
55.3
],
[
1727503837,
549.03125,
48.9
],
[
1727503837,
549.03125,
57.8
],
[
1727504247,
564.171875,
50.2
],
[
1727504247,
564.171875,
55.6
],
[
1727504247,
564.171875,
47.6
],
[
1727504247,
564.171875,
55.6
],
[
1727504576,
567.57421875,
50.2
],
[
1727504576,
567.57421875,
46.3
],
[
1727504576,
567.57421875,
49.8
],
[
1727504576,
567.57421875,
53.7
],
[
1727505024,
453.2890625,
50.2
],
[
1727505024,
453.2890625,
46.9
],
[
1727505024,
453.2890625,
50.4
],
[
1727505024,
453.2890625,
57.8
],
[
1727505550,
462.609375,
50.2
],
[
1727505550,
462.609375,
38.2
],
[
1727505550,
462.609375,
50.4
],
[
1727505550,
462.609375,
56.8
],
[
1727506241,
467.7265625,
50.3
],
[
1727506241,
467.7265625,
50
],
[
1727506241,
467.7265625,
50.6
],
[
1727506241,
467.7265625,
40.6
],
[
1727506675,
466.37890625,
50.2
],
[
1727506675,
466.37890625,
52.4
],
[
1727506675,
466.37890625,
50
],
[
1727506675,
466.37890625,
55.6
],
[
1727507319,
477.09765625,
50.2
],
[
1727507319,
477.09765625,
38.2
],
[
1727507319,
477.09765625,
50
],
[
1727507319,
477.09765625,
57.8
],
[
1727507872,
429.55859375,
50.2
],
[
1727507872,
429.55859375,
54.3
],
[
1727507872,
429.55859375,
48.6
],
[
1727507872,
429.55859375,
52.4
],
[
1727508408,
437.63671875,
50.2
],
[
1727508408,
437.63671875,
52.3
],
[
1727508408,
437.63671875,
50.2
],
[
1727508408,
437.63671875,
44.1
],
[
1727508966,
444.6171875,
50.2
],
[
1727508966,
444.6171875,
36.1
],
[
1727508966,
444.6171875,
51.3
],
[
1727508966,
444.6171875,
41.9
],
[
1727509521,
441.0078125,
50.2
],
[
1727509521,
441.0078125,
54.3
],
[
1727509521,
441.0078125,
48.3
],
[
1727509521,
441.0078125,
55.6
],
[
1727510131,
447.29296875,
50.2
],
[
1727510131,
447.29296875,
39.4
],
[
1727510131,
447.29296875,
50.4
],
[
1727510131,
447.29296875,
56.8
],
[
1727510757,
461.29296875,
50.2
],
[
1727510757,
461.29296875,
48.7
],
[
1727510757,
461.29296875,
49.2
],
[
1727510757,
461.29296875,
56.8
],
[
1727511493,
457.1328125,
50.2
],
[
1727511493,
457.1328125,
51.2
],
[
1727511493,
457.1328125,
49.3
],
[
1727511493,
457.1328125,
58.7
],
[
1727512236,
456.42578125,
50.2
],
[
1727512236,
456.42578125,
55.6
],
[
1727512236,
456.42578125,
48.8
],
[
1727512236,
456.42578125,
58.7
],
[
1727512962,
462.6953125,
50.2
],
[
1727512962,
462.6953125,
51
],
[
1727512962,
462.6953125,
49.8
],
[
1727512962,
462.6953125,
56.5
],
[
1727514062,
475.1796875,
50.2
],
[
1727514062,
475.1796875,
38.2
],
[
1727514062,
475.1796875,
50.8
],
[
1727514062,
475.1796875,
40.6
],
[
1727514856,
486.19140625,
50.2
],
[
1727514856,
486.19140625,
55.3
],
[
1727514856,
486.19140625,
50.2
],
[
1727514856,
486.19140625,
38.7
],
[
1727515674,
501.7578125,
50.2
],
[
1727515674,
501.7578125,
56.2
],
[
1727515674,
501.7578125,
50.2
],
[
1727515674,
501.7578125,
42.9
],
[
1727516563,
485.72265625,
50.2
],
[
1727516563,
485.72265625,
46.2
],
[
1727516563,
485.72265625,
50.6
],
[
1727516563,
485.72265625,
44.4
],
[
1727517497,
499.53125,
50.2
],
[
1727517497,
499.53125,
53.1
],
[
1727517497,
499.53125,
50.3
],
[
1727517497,
499.53125,
40.6
],
[
1727518736,
483.0234375,
50.2
],
[
1727518736,
483.0234375,
42.9
],
[
1727518736,
483.0234375,
49.9
],
[
1727518736,
483.0234375,
56.8
],
[
1727519833,
527.46875,
50.3
],
[
1727519833,
527.46875,
55.3
],
[
1727519857,
527.51953125,
49.7
],
[
1727519857,
527.51953125,
55.3
]
];
var tab_main_worker_cpu_ram_headers_json = [
"timestamp",
"ram_usage_mb",
"cpu_usage_percent"
];
"use strict";
function add_default_layout_data (layout) {
layout["width"] = get_graph_width();
layout["height"] = get_graph_height();
layout["paper_bgcolor"] = 'rgba(0,0,0,0)';
layout["plot_bgcolor"] = 'rgba(0,0,0,0)';
return layout;
}
function get_marker_size() {
return 12;
}
function get_text_color() {
return theme == "dark" ? "white" : "black";
}
function get_font_size() {
return 14;
}
function get_graph_height() {
return 800;
}
function get_font_data() {
return {
size: get_font_size(),
color: get_text_color()
}
}
function get_axis_title_data(name, axis_type = "") {
if(axis_type) {
return {
text: name,
type: axis_type,
font: get_font_data()
};
}
return {
text: name,
font: get_font_data()
};
}
function get_graph_width() {
var width = document.body.clientWidth || window.innerWidth || document.documentElement.clientWidth;
return Math.max(800, Math.floor(width * 0.9));
}
function createTable(data, headers, table_name) {
if (!$("#" + table_name).length) {
console.error("#" + table_name + " not found");
return;
}
new gridjs.Grid({
columns: headers,
data: data,
search: true,
sort: true
}).render(document.getElementById(table_name));
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
colorize_table_entries();
add_colorize_to_gridjs_table();
}
function download_as_file(id, filename) {
var text = $("#" + id).text();
var blob = new Blob([text], {
type: "text/plain"
});
var link = document.createElement("a");
link.href = URL.createObjectURL(blob);
link.download = filename;
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
}
function copy_to_clipboard_from_id (id) {
var text = $("#" + id).text();
copy_to_clipboard(text);
}
function copy_to_clipboard(text) {
if (!navigator.clipboard) {
let textarea = document.createElement("textarea");
textarea.value = text;
document.body.appendChild(textarea);
textarea.select();
try {
document.execCommand("copy");
} catch (err) {
console.error("Copy failed:", err);
}
document.body.removeChild(textarea);
return;
}
navigator.clipboard.writeText(text).then(() => {
console.log("Text copied to clipboard");
}).catch(err => {
console.error("Failed to copy text:", err);
});
}
function filterNonEmptyRows(data) {
var new_data = [];
for (var row_idx = 0; row_idx < data.length; row_idx++) {
var line = data[row_idx];
var line_has_empty_data = false;
for (var col_idx = 0; col_idx < line.length; col_idx++) {
var col_header_name = tab_results_headers_json[col_idx];
var single_data_point = line[col_idx];
if(single_data_point === "" && !special_col_names.includes(col_header_name)) {
line_has_empty_data = true;
continue;
}
}
if(!line_has_empty_data) {
new_data.push(line);
}
}
return new_data;
}
function make_text_in_parallel_plot_nicer() {
$(".parcoords g > g > text").each(function() {
if (theme == "dark") {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "white")
.css("stroke", "black")
.css("stroke-width", "2px")
.css("paint-order", "stroke fill");
} else {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "black")
.css("stroke", "unset")
.css("stroke-width", "unset")
.css("paint-order", "stroke fill");
}
});
}
function createParallelPlot(dataArray, headers, resultNames, ignoreColumns = []) {
if ($("#parallel-plot").data("loaded") == "true") {
return;
}
dataArray = filterNonEmptyRows(dataArray);
const ignoreSet = new Set(ignoreColumns);
const numericalCols = [];
const categoricalCols = [];
const categoryMappings = {};
headers.forEach((header, colIndex) => {
if (ignoreSet.has(header)) return;
const values = dataArray.map(row => row[colIndex]);
if (values.every(val => !isNaN(parseFloat(val)))) {
numericalCols.push({ name: header, index: colIndex });
} else {
categoricalCols.push({ name: header, index: colIndex });
const uniqueValues = [...new Set(values)];
categoryMappings[header] = Object.fromEntries(uniqueValues.map((val, i) => [val, i]));
}
});
const dimensions = [];
numericalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => parseFloat(row[col.index])),
range: [
Math.min(...dataArray.map(row => parseFloat(row[col.index]))),
Math.max(...dataArray.map(row => parseFloat(row[col.index])))
]
});
});
categoricalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => categoryMappings[col.name][row[col.index]]),
tickvals: Object.values(categoryMappings[col.name]),
ticktext: Object.keys(categoryMappings[col.name])
});
});
let colorScale = null;
let colorValues = null;
if (resultNames.length > 1) {
let selectBox = '<select id="result-select" style="margin-bottom: 10px;">';
selectBox += '<option value="none">No color</option>';
var k = 0;
resultNames.forEach(resultName => {
var minMax = result_min_max[k];
if(minMax === undefined) {
minMax = "min [automatically chosen]"
}
selectBox += `<option value="${resultName}">${resultName} (${minMax})</option>`;
k = k + 1;
});
selectBox += '</select>';
$("#parallel-plot").before(selectBox);
$("#result-select").change(function() {
const selectedResult = $(this).val();
if (selectedResult === "none") {
colorValues = null;
colorScale = null;
} else {
const resultCol = numericalCols.find(col => col.name.toLowerCase() === selectedResult.toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
let minResult = Math.min(...colorValues);
let maxResult = Math.max(...colorValues);
var _result_min_max_idx = result_names.indexOf(selectedResult);
let invertColor = false;
if (result_min_max.length > _result_min_max_idx) {
invertColor = result_min_max[_result_min_max_idx] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
}
updatePlot();
});
} else {
let invertColor = false;
if (Object.keys(result_min_max).length == 1) {
invertColor = result_min_max[0] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
const resultCol = numericalCols.find(col => col.name.toLowerCase() === resultNames[0].toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
}
function updatePlot() {
const trace = {
type: 'parcoords',
dimensions: dimensions,
line: colorValues ? { color: colorValues, colorscale: colorScale } : {},
unselected: {
line: {
color: get_text_color(),
opacity: 0
}
},
};
dimensions.forEach(dim => {
if (!dim.line) {
dim.line = {};
}
if (!dim.line.color) {
dim.line.color = 'rgba(169,169,169, 0.01)';
}
});
Plotly.newPlot('parallel-plot', [trace], add_default_layout_data({}));
make_text_in_parallel_plot_nicer();
}
updatePlot();
$("#parallel-plot").data("loaded", "true");
make_text_in_parallel_plot_nicer();
}
function plotWorkerUsage() {
if($("#workerUsagePlot").data("loaded") == "true") {
return;
}
var data = tab_worker_usage_csv_json;
if (!Array.isArray(data) || data.length === 0) {
console.error("Invalid or empty data provided.");
return;
}
let timestamps = [];
let desiredWorkers = [];
let realWorkers = [];
for (let i = 0; i < data.length; i++) {
let entry = data[i];
if (!Array.isArray(entry) || entry.length < 3) {
console.warn("Skipping invalid entry:", entry);
continue;
}
let unixTime = parseFloat(entry[0]);
let desired = parseInt(entry[1], 10);
let real = parseInt(entry[2], 10);
if (isNaN(unixTime) || isNaN(desired) || isNaN(real)) {
console.warn("Skipping invalid numerical values:", entry);
continue;
}
timestamps.push(new Date(unixTime * 1000).toISOString());
desiredWorkers.push(desired);
realWorkers.push(real);
}
let trace1 = {
x: timestamps,
y: desiredWorkers,
mode: 'lines+markers',
name: 'Desired Workers',
line: {
color: 'blue'
}
};
let trace2 = {
x: timestamps,
y: realWorkers,
mode: 'lines+markers',
name: 'Real Workers',
line: {
color: 'red'
}
};
let layout = {
title: "Worker Usage Over Time",
xaxis: {
title: get_axis_title_data("Time", "date")
},
yaxis: {
title: get_axis_title_data("Number of Workers")
},
legend: {
x: 0,
y: 1
}
};
Plotly.newPlot('workerUsagePlot', [trace1, trace2], add_default_layout_data(layout));
$("#workerUsagePlot").data("loaded", "true");
}
function plotCPUAndRAMUsage() {
if($("#mainWorkerCPURAM").data("loaded") == "true") {
return;
}
var timestamps = tab_main_worker_cpu_ram_csv_json.map(row => new Date(row[0] * 1000));
var ramUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[1]);
var cpuUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[2]);
var trace1 = {
x: timestamps,
y: cpuUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'CPU Usage (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: ramUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'RAM Usage (MB)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'CPU and RAM Usage Over Time',
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
overlaying: 'y',
side: 'right',
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var data = [trace1, trace2];
Plotly.newPlot('mainWorkerCPURAM', data, add_default_layout_data(layout));
$("#mainWorkerCPURAM").data("loaded", "true");
}
function plotScatter2d() {
if ($("#plotScatter2d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter2d");
var minInput = document.getElementById("minValue");
var maxInput = document.getElementById("maxValue");
if (!minInput || !maxInput) {
minInput = document.createElement("input");
minInput.id = "minValue";
minInput.type = "number";
minInput.placeholder = "Min Value";
minInput.step = "any";
maxInput = document.createElement("input");
maxInput.id = "maxValue";
maxInput.type = "number";
maxInput.placeholder = "Max Value";
maxInput.step = "any";
var inputContainer = document.createElement("div");
inputContainer.style.marginBottom = "10px";
inputContainer.appendChild(minInput);
inputContainer.appendChild(maxInput);
plotDiv.appendChild(inputContainer);
}
var resultSelect = document.getElementById("resultSelect");
if (result_names.length > 1 && !resultSelect) {
resultSelect = document.createElement("select");
resultSelect.id = "resultSelect";
resultSelect.style.marginBottom = "10px";
var sortedResults = [...result_names].sort();
sortedResults.forEach(result => {
var option = document.createElement("option");
option.value = result;
option.textContent = result;
resultSelect.appendChild(option);
});
var selectContainer = document.createElement("div");
selectContainer.style.marginBottom = "10px";
selectContainer.appendChild(resultSelect);
plotDiv.appendChild(selectContainer);
}
minInput.addEventListener("input", updatePlots);
maxInput.addEventListener("input", updatePlots);
if (resultSelect) {
resultSelect.addEventListener("change", updatePlots);
}
updatePlots();
async function updatePlots() {
var minValue = parseFloat(minInput.value);
var maxValue = parseFloat(maxInput.value);
if (isNaN(minValue)) minValue = -Infinity;
if (isNaN(maxValue)) maxValue = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var selectedResult = resultSelect ? resultSelect.value : result_names[0];
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue !== -Infinity) minResult = Math.max(minResult, minValue);
if (maxValue !== Infinity) maxResult = Math.min(maxResult, maxValue);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 2) {
console.error("Not enough columns for Scatter-Plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
showlegend: false
};
let subDiv = document.createElement("div");
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
symbol: data.map(d => d.result === null ? 'x' : 'circle'),
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter',
showlegend: false
};
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
$("#plotScatter2d").data("loaded", "true");
}
function plotScatter3d() {
if ($("#plotScatter3d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter3d");
if (!plotDiv) {
console.error("Div element with id 'plotScatter3d' not found");
return;
}
plotDiv.innerHTML = "";
var minInput3d = document.getElementById("minValue3d");
var maxInput3d = document.getElementById("maxValue3d");
if (!minInput3d || !maxInput3d) {
minInput3d = document.createElement("input");
minInput3d.id = "minValue3d";
minInput3d.type = "number";
minInput3d.placeholder = "Min Value";
minInput3d.step = "any";
maxInput3d = document.createElement("input");
maxInput3d.id = "maxValue3d";
maxInput3d.type = "number";
maxInput3d.placeholder = "Max Value";
maxInput3d.step = "any";
var inputContainer3d = document.createElement("div");
inputContainer3d.style.marginBottom = "10px";
inputContainer3d.appendChild(minInput3d);
inputContainer3d.appendChild(maxInput3d);
plotDiv.appendChild(inputContainer3d);
}
var select3d = document.getElementById("select3dScatter");
if (result_names.length > 1 && !select3d) {
if (!select3d) {
select3d = document.createElement("select");
select3d.id = "select3dScatter";
select3d.style.marginBottom = "10px";
select3d.innerHTML = result_names.map(name => `<option value="${name}">${name}</option>`).join("");
select3d.addEventListener("change", updatePlots3d);
plotDiv.appendChild(select3d);
}
}
minInput3d.addEventListener("input", updatePlots3d);
maxInput3d.addEventListener("input", updatePlots3d);
updatePlots3d();
async function updatePlots3d() {
var selectedResult = select3d ? select3d.value : result_names[0];
var minValue3d = parseFloat(minInput3d.value);
var maxValue3d = parseFloat(maxInput3d.value);
if (isNaN(minValue3d)) minValue3d = -Infinity;
if (isNaN(maxValue3d)) maxValue3d = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue3d !== -Infinity) minResult = Math.max(minResult, minValue3d);
if (maxValue3d !== Infinity) maxResult = Math.min(maxResult, maxValue3d);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 3) {
console.error("Not enough columns for 3D scatter plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
for (let k = j + 1; k < numericColumns.length; k++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let zCol = numericColumns[k];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let zIndex = tab_results_headers_json.indexOf(zCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
z: parseFloat(row[zIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y) vs ${zCol} (z), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
scene: {
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
zaxis: {
title: get_axis_title_data(zCol)
}
},
showlegend: false
};
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
z: data.map(d => d.z),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter3d',
showlegend: false
};
let subDiv = document.createElement("div");
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
}
$("#plotScatter3d").data("loaded", "true");
}
async function load_pareto_graph() {
if($("#tab_pareto_fronts").data("loaded") == "true") {
return;
}
var data = pareto_front_data;
if (!data || typeof data !== "object") {
console.error("Invalid data format for pareto_front_data");
return;
}
if (!Object.keys(data).length) {
console.warn("No data found in pareto_front_data");
return;
}
let categories = Object.keys(data);
let allMetrics = new Set();
function extractMetrics(obj, prefix = "") {
let keys = Object.keys(obj);
for (let key of keys) {
let newPrefix = prefix ? `${prefix} -> ${key}` : key;
if (typeof obj[key] === "object" && !Array.isArray(obj[key])) {
extractMetrics(obj[key], newPrefix);
} else {
if (!newPrefix.includes("param_dicts") && !newPrefix.includes(" -> sems -> ") && !newPrefix.includes("absolute_metrics")) {
allMetrics.add(newPrefix);
}
}
}
}
for (let cat of categories) {
extractMetrics(data[cat]);
}
allMetrics = Array.from(allMetrics);
function extractValues(obj, metricPath, values) {
let parts = metricPath.split(" -> ");
let data = obj;
for (let part of parts) {
if (data && typeof data === "object") {
data = data[part];
} else {
return;
}
}
if (Array.isArray(data)) {
values.push(...data);
}
}
let graphContainer = document.getElementById("pareto_front_graphs_container");
graphContainer.classList.add("invert_in_dark_mode");
graphContainer.innerHTML = "";
var already_plotted = [];
for (let i = 0; i < allMetrics.length; i++) {
for (let j = i + 1; j < allMetrics.length; j++) {
let xMetric = allMetrics[i];
let yMetric = allMetrics[j];
let xValues = [];
let yValues = [];
for (let cat of categories) {
let metricData = data[cat];
extractValues(metricData, xMetric, xValues);
extractValues(metricData, yMetric, yValues);
}
xValues = xValues.filter(v => v !== undefined && v !== null);
yValues = yValues.filter(v => v !== undefined && v !== null);
let cleanXMetric = xMetric.replace(/.* -> /g, "");
let cleanYMetric = yMetric.replace(/.* -> /g, "");
let plot_key = `${cleanXMetric}-${cleanYMetric}`;
if (xValues.length > 0 && yValues.length > 0 && xValues.length === yValues.length && !already_plotted.includes(plot_key)) {
let div = document.createElement("div");
div.id = `pareto_front_graph_${i}_${j}`;
div.style.marginBottom = "20px";
graphContainer.appendChild(div);
let layout = {
title: `${cleanXMetric} vs ${cleanYMetric}`,
xaxis: {
title: get_axis_title_data(cleanXMetric)
},
yaxis: {
title: get_axis_title_data(cleanYMetric)
},
hovermode: "closest"
};
let trace = {
x: xValues,
y: yValues,
mode: "markers",
marker: {
size: get_marker_size(),
},
type: "scatter",
name: `${cleanXMetric} vs ${cleanYMetric}`
};
Plotly.newPlot(div.id, [trace], add_default_layout_data(layout));
already_plotted.push(plot_key);
}
}
}
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
$("#tab_pareto_fronts").data("loaded", "true");
}
async function plot_worker_cpu_ram() {
if($("#worker_cpu_ram_pre").data("loaded") == "true") {
return;
}
const logData = $("#worker_cpu_ram_pre").text();
const regex = /^Unix-Timestamp: (\d+), Hostname: ([\w-]+), CPU: ([\d.]+)%, RAM: ([\d.]+) MB \/ ([\d.]+) MB$/;
const hostData = {};
logData.split("\n").forEach(line => {
line = line.trim();
const match = line.match(regex);
if (match) {
const timestamp = new Date(parseInt(match[1]) * 1000);
const hostname = match[2];
const cpu = parseFloat(match[3]);
const ram = parseFloat(match[4]);
if (!hostData[hostname]) {
hostData[hostname] = { timestamps: [], cpuUsage: [], ramUsage: [] };
}
hostData[hostname].timestamps.push(timestamp);
hostData[hostname].cpuUsage.push(cpu);
hostData[hostname].ramUsage.push(ram);
}
});
if (!Object.keys(hostData).length) {
console.log("No valid data found");
return;
}
const container = document.getElementById("cpuRamWorkerChartContainer");
container.innerHTML = "";
var i = 1;
Object.entries(hostData).forEach(([hostname, { timestamps, cpuUsage, ramUsage }], index) => {
const chartId = `workerChart_${index}`;
const chartDiv = document.createElement("div");
chartDiv.id = chartId;
chartDiv.style.marginBottom = "40px";
container.appendChild(chartDiv);
const cpuTrace = {
x: timestamps,
y: cpuUsage,
mode: "lines+markers",
name: "CPU Usage (%)",
yaxis: "y1",
line: {
color: "red"
}
};
const ramTrace = {
x: timestamps,
y: ramUsage,
mode: "lines+markers",
name: "RAM Usage (MB)",
yaxis: "y2",
line: {
color: "blue"
}
};
const layout = {
title: `Worker CPU and RAM Usage - ${hostname}`,
xaxis: {
title: get_axis_title_data("Timestamp", "date")
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
side: "left",
color: "red"
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
side: "right",
overlaying: "y",
color: "blue"
},
showlegend: true
};
Plotly.newPlot(chartId, [cpuTrace, ramTrace], add_default_layout_data(layout));
i++;
});
$("#plot_worker_cpu_ram_button").remove();
$("#worker_cpu_ram_pre").data("loaded", "true");
}
function load_log_file(log_nr, filename) {
var pre_id = `single_run_${log_nr}_pre`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}&filename=${filename}`;
fetch(url)
.then(response => response.json())
.then(data => {
if (data.data) {
$("#" + pre_id).html(data.data);
$("#" + pre_id).data("loaded", true);
} else {
log(`No 'data' key found in response.`);
}
$("#spinner_log_" + log_nr).remove();
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#spinner_log_" + log_nr).remove();
});
}
}
function load_debug_log () {
var pre_id = `here_debuglogs_go`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_debug_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}`;
fetch(url)
.then(response => response.json())
.then(data => {
$("#debug_log_spinner").remove();
if (data.data) {
try {
$("#" + pre_id).html(data.data);
} catch (err) {
$("#" + pre_id).text(`Error loading data: ${err}`);
}
$("#" + pre_id).data("loaded", true);
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
} else {
log(`No 'data' key found in response.`);
}
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#debug_log_spinner").remove();
});
}
}
function plotBoxplot() {
if ($("#plotBoxplot").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough numeric columns for Boxplot");
return;
}
var resultIndex = tab_results_headers_json.findIndex(function(header) {
return result_names.includes(header.toLowerCase());
});
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
var plotDiv = document.getElementById("plotBoxplot");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'box',
name: col,
boxmean: 'sd',
marker: {
color: 'rgb(0, 255, 0)'
},
};
});
let layout = {
title: 'Boxplot of Numerical Columns',
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Value")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotBoxplot").data("loaded", "true");
}
function plotHeatmap() {
if ($("#plotHeatmap").data("loaded") === "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col => {
if (special_col_names.includes(col) || result_names.includes(col)) {
return false;
}
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.every(row => {
let value = parseFloat(row[index]);
return !isNaN(value) && isFinite(value);
});
});
if (numericColumns.length < 2) {
console.error("Not enough valid numeric columns for Heatmap");
return;
}
var columnData = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.map(row => parseFloat(row[index]));
});
var dataMatrix = numericColumns.map((_, i) =>
numericColumns.map((_, j) => {
let values = columnData[i].map((val, index) => (val + columnData[j][index]) / 2);
return values.reduce((a, b) => a + b, 0) / values.length;
})
);
var trace = {
z: dataMatrix,
x: numericColumns,
y: numericColumns,
colorscale: 'Viridis',
type: 'heatmap'
};
var layout = {
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
var plotDiv = document.getElementById("plotHeatmap");
plotDiv.innerHTML = "";
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotHeatmap").data("loaded", "true");
}
function plotHistogram() {
if ($("#plotHistogram").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Histogram");
return;
}
var plotDiv = document.getElementById("plotHistogram");
plotDiv.innerHTML = "";
const colorPalette = ['#ff9999', '#66b3ff', '#99ff99', '#ffcc99', '#c2c2f0', '#ffb3e6'];
let traces = numericColumns.map((col, index) => {
let data = tab_results_csv_json.map(row => parseFloat(row[tab_results_headers_json.indexOf(col)]));
return {
x: data,
type: 'histogram',
name: col,
opacity: 0.7,
marker: {
color: colorPalette[index % colorPalette.length]
},
autobinx: true
};
});
let layout = {
title: 'Histogram of Numerical Columns',
xaxis: {
title: get_axis_title_data("Value")
},
yaxis: {
title: get_axis_title_data("Frequency")
},
showlegend: true,
barmode: 'overlay'
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotHistogram").data("loaded", "true");
}
function plotViolin() {
if ($("#plotViolin").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Violin Plot");
return;
}
var plotDiv = document.getElementById("plotViolin");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'violin',
name: col,
box: {
visible: true
},
line: {
color: 'rgb(0, 255, 0)'
},
marker: {
color: 'rgb(0, 255, 0)'
},
meanline: {
visible: true
},
};
});
let layout = {
title: 'Violin Plot of Numerical Columns',
yaxis: {
title: get_axis_title_data("Value")
},
xaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotViolin").data("loaded", "true");
}
function plotExitCodesPieChart() {
if ($("#plotExitCodesPieChart").data("loaded") == "true") {
return;
}
var exitCodes = tab_job_infos_csv_json.map(row => row[tab_job_infos_headers_json.indexOf("exit_code")]);
var exitCodeCounts = exitCodes.reduce(function(counts, exitCode) {
counts[exitCode] = (counts[exitCode] || 0) + 1;
return counts;
}, {});
var labels = Object.keys(exitCodeCounts);
var values = Object.values(exitCodeCounts);
var plotDiv = document.getElementById("plotExitCodesPieChart");
plotDiv.innerHTML = "";
var trace = {
labels: labels,
values: values,
type: 'pie',
hoverinfo: 'label+percent',
textinfo: 'label+value',
marker: {
colors: ['#ff9999','#66b3ff','#99ff99','#ffcc99','#c2c2f0']
}
};
var layout = {
title: 'Exit Code Distribution',
showlegend: true
};
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotExitCodesPieChart").data("loaded", "true");
}
function plotResultEvolution() {
if ($("#plotResultEvolution").data("loaded") == "true") {
return;
}
result_names.forEach(resultName => {
var relevantColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !col.startsWith("OO_Info") && col.toLowerCase() !== resultName.toLowerCase()
);
var xColumnIndex = tab_results_headers_json.indexOf("trial_index");
var resultIndex = tab_results_headers_json.indexOf(resultName);
let data = tab_results_csv_json.map(row => ({
x: row[xColumnIndex],
y: parseFloat(row[resultIndex])
}));
data.sort((a, b) => a.x - b.x);
let xData = data.map(item => item.x);
let yData = data.map(item => item.y);
let trace = {
x: xData,
y: yData,
mode: 'lines+markers',
name: resultName,
line: {
shape: 'linear'
},
marker: {
size: get_marker_size()
}
};
let layout = {
title: `Evolution of ${resultName} over time`,
xaxis: {
title: get_axis_title_data("Trial-Index")
},
yaxis: {
title: get_axis_title_data(resultName)
},
showlegend: true
};
let subDiv = document.createElement("div");
document.getElementById("plotResultEvolution").appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
});
$("#plotResultEvolution").data("loaded", "true");
}
function plotResultPairs() {
if ($("#plotResultPairs").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotResultPairs");
plotDiv.innerHTML = "";
for (let i = 0; i < result_names.length; i++) {
for (let j = i + 1; j < result_names.length; j++) {
let xName = result_names[i];
let yName = result_names[j];
let xIndex = tab_results_headers_json.indexOf(xName);
let yIndex = tab_results_headers_json.indexOf(yName);
let data = tab_results_csv_json
.filter(row => row[xIndex] !== "" && row[yIndex] !== "")
.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
status: row[tab_results_headers_json.indexOf("trial_status")]
}));
let colors = data.map(d => d.status === "COMPLETED" ? 'green' : (d.status === "FAILED" ? 'red' : 'gray'));
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: colors
},
text: data.map(d => `Status: ${d.status}`),
type: 'scatter',
showlegend: false
};
let layout = {
xaxis: {
title: get_axis_title_data(xName)
},
yaxis: {
title: get_axis_title_data(yName)
},
showlegend: false
};
let subDiv = document.createElement("div");
plotDiv.appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
$("#plotResultPairs").data("loaded", "true");
}
function add_up_down_arrows_for_scrolling () {
const upArrow = document.createElement('div');
const downArrow = document.createElement('div');
const style = document.createElement('style');
style.innerHTML = `
.scroll-arrow {
position: fixed;
right: 10px;
z-index: 100;
cursor: pointer;
font-size: 25px;
display: none;
background-color: green;
color: white;
padding: 5px;
outline: 2px solid white;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.5);
transition: background-color 0.3s, transform 0.3s;
}
.scroll-arrow:hover {
background-color: darkgreen;
transform: scale(1.1);
}
#up-arrow {
top: 10px;
}
#down-arrow {
bottom: 10px;
}
`;
document.head.appendChild(style);
upArrow.id = "up-arrow";
upArrow.classList.add("scroll-arrow");
upArrow.classList.add("invert_in_dark_mode");
upArrow.innerHTML = "↑";
downArrow.id = "down-arrow";
downArrow.classList.add("scroll-arrow");
downArrow.classList.add("invert_in_dark_mode");
downArrow.innerHTML = "↓";
document.body.appendChild(upArrow);
document.body.appendChild(downArrow);
function checkScrollPosition() {
const scrollPosition = window.scrollY;
const pageHeight = document.documentElement.scrollHeight;
const windowHeight = window.innerHeight;
if (scrollPosition > 0) {
upArrow.style.display = "block";
} else {
upArrow.style.display = "none";
}
if (scrollPosition + windowHeight < pageHeight) {
downArrow.style.display = "block";
} else {
downArrow.style.display = "none";
}
}
window.addEventListener("scroll", checkScrollPosition);
upArrow.addEventListener("click", function () {
window.scrollTo({ top: 0, behavior: 'smooth' });
});
downArrow.addEventListener("click", function () {
window.scrollTo({ top: document.documentElement.scrollHeight, behavior: 'smooth' });
});
checkScrollPosition();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
function plotGPUUsage() {
if ($("#tab_gpu_usage").data("loaded") === "true") {
return;
}
Object.keys(gpu_usage).forEach(node => {
const nodeData = gpu_usage[node];
var timestamps = [];
var gpuUtilizations = [];
var temperatures = [];
nodeData.forEach(entry => {
try {
var timestamp = new Date(entry[0]* 1000);
var utilization = parseFloat(entry[1]);
var temperature = parseFloat(entry[2]);
if (!isNaN(timestamp) && !isNaN(utilization) && !isNaN(temperature)) {
timestamps.push(timestamp);
gpuUtilizations.push(utilization);
temperatures.push(temperature);
} else {
console.warn("Invalid data point:", entry);
}
} catch (error) {
console.error("Error processing GPU data entry:", error, entry);
}
});
var trace1 = {
x: timestamps,
y: gpuUtilizations,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Utilization (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: temperatures,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Temperature (°C)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'GPU Usage Over Time - ' + node,
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("GPU Utilization (%)"),
overlaying: 'y',
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("GPU Temperature (°C)"),
overlaying: 'y',
side: 'right',
position: 0.85,
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var divId = 'gpu_usage_plot_' + node;
if (!document.getElementById(divId)) {
var div = document.createElement('div');
div.id = divId;
div.className = 'gpu-usage-plot';
document.getElementById('tab_gpu_usage').appendChild(div);
}
var plotData = [trace1, trace2];
Plotly.newPlot(divId, plotData, add_default_layout_data(layout));
});
$("#tab_gpu_usage").data("loaded", "true");
}
function plotResultsDistributionByGenerationMethod() {
if ("true" === $("#plotResultsDistributionByGenerationMethod").data("loaded")) {
return;
}
var res_col = result_names[0];
var gen_method_col = "generation_method";
var data = {};
tab_results_csv_json.forEach(row => {
var gen_method = row[tab_results_headers_json.indexOf(gen_method_col)];
var result = row[tab_results_headers_json.indexOf(res_col)];
if (!data[gen_method]) {
data[gen_method] = [];
}
data[gen_method].push(result);
});
var traces = Object.keys(data).map(method => {
return {
y: data[method],
type: 'box',
name: method,
boxpoints: 'outliers', // Zeigt nur Ausreißer außerhalb der Whiskers
jitter: 0.5, // Erhöht die Streuung der Punkte für bessere Sichtbarkeit
pointpos: 0 // Position der Punkte innerhalb der Box
};
});
var layout = {
title: 'Distribution of Results by Generation Method',
yaxis: {
title: get_axis_title_data(res_col)
},
xaxis: {
title: "Generation Method"
},
boxmode: 'group' // Gruppiert die Boxplots nach Generation Method
};
Plotly.newPlot("plotResultsDistributionByGenerationMethod", traces, add_default_layout_data(layout));
$("#plotResultsDistributionByGenerationMethod").data("loaded", "true");
}
function plotJobStatusDistribution() {
if ($("#plotJobStatusDistribution").data("loaded") === "true") {
return;
}
var status_col = "trial_status";
var status_counts = {};
tab_results_csv_json.forEach(row => {
var status = row[tab_results_headers_json.indexOf(status_col)];
if (status) {
status_counts[status] = (status_counts[status] || 0) + 1;
}
});
var statuses = Object.keys(status_counts);
var counts = Object.values(status_counts);
var colors = statuses.map((status, i) =>
status === "FAILED" ? "#FF0000" : `hsl(${30 + ((i * 137) % 330)}, 70%, 50%)`
);
var trace = {
x: statuses,
y: counts,
type: 'bar',
marker: { color: colors }
};
var layout = {
title: 'Distribution of Job Status',
xaxis: { title: 'Trial Status' },
yaxis: { title: 'Nr. of jobs' }
};
Plotly.newPlot("plotJobStatusDistribution", [trace], add_default_layout_data(layout));
$("#plotJobStatusDistribution").data("loaded", "true");
}
function _colorize_table_entries_by_generation_method () {
document.querySelectorAll('[data-column-id="generation_method"]').forEach(el => {
let color = el.textContent.includes("Manual") ? "green" :
el.textContent.includes("Sobol") ? "orange" :
el.textContent.includes("SAASBO") ? "pink" :
el.textContent.includes("Uniform") ? "lightblue" :
el.textContent.includes("Legacy_GPEI") ? "Sienna" :
el.textContent.includes("BO_MIXED") ? "Aqua" :
el.textContent.includes("RANDOMFOREST") ? "DarkSeaGreen" :
el.textContent.includes("EXTERNAL_GENERATOR") ? "Purple" :
el.textContent.includes("BoTorch") ? "yellow" : "";
if (color) el.style.backgroundColor = color;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_trial_status () {
document.querySelectorAll('[data-column-id="trial_status"]').forEach(el => {
let color = el.textContent.includes("COMPLETED") ? "lightgreen" :
el.textContent.includes("RUNNING") ? "orange" :
el.textContent.includes("FAILED") ? "red" : "";
if (color) el.style.backgroundColor = color;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_run_time() {
let cells = [...document.querySelectorAll('[data-column-id="run_time"]')];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => !isNaN(v));
if (values.length === 0) return;
let min = Math.min(...values);
let max = Math.max(...values);
let range = max - min || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value)) return;
let ratio = (value - min) / range;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_results() {
result_names.forEach((name, index) => {
let minMax = result_min_max[index];
let selector_query = `[data-column-id="${name}"]`;
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => v > 0 && !isNaN(v));
if (values.length === 0) return;
let logValues = values.map(v => Math.log(v));
let logMin = Math.min(...logValues);
let logMax = Math.max(...logValues);
let logRange = logMax - logMin || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value) || value <= 0) return;
let logValue = Math.log(value);
let ratio = (logValue - logMin) / logRange;
if (minMax === "max") ratio = 1 - ratio;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
});
}
function _colorize_table_entries_by_generation_node_or_hostname() {
["hostname", "generation_node"].forEach(element => {
let selector_query = '[data-column-id="' + element + '"]:not(.gridjs-th)';
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let uniqueValues = [...new Set(cells.map(el => el.textContent.trim()))];
let colorMap = {};
uniqueValues.forEach((value, index) => {
let hue = Math.round((360 / uniqueValues.length) * index);
colorMap[value] = `hsl(${hue}, 70%, 60%)`;
});
cells.forEach(el => {
let value = el.textContent.trim();
if (colorMap[value]) {
el.style.backgroundColor = colorMap[value];
el.classList.add("invert_in_dark_mode");
}
});
});
}
function colorize_table_entries () {
setTimeout(() => {
if (typeof result_names !== "undefined" && Array.isArray(result_names) && result_names.length > 0) {
_colorize_table_entries_by_trial_status();
_colorize_table_entries_by_results();
_colorize_table_entries_by_run_time();
_colorize_table_entries_by_generation_method();
_colorize_table_entries_by_generation_node_or_hostname();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
}, 300);
}
function add_colorize_to_gridjs_table () {
let searchInput = document.querySelector(".gridjs-search-input");
if (searchInput) {
searchInput.addEventListener("input", colorize_table_entries);
}
}
function updatePreWidths() {
var width = window.innerWidth * 0.95;
var pres = document.getElementsByTagName('pre');
for (var i = 0; i < pres.length; i++) {
pres[i].style.width = width + 'px';
}
}
window.addEventListener('load', updatePreWidths);
window.addEventListener('resize', updatePreWidths);
$(document).ready(function() {
colorize_table_entries();
add_up_down_arrows_for_scrolling();
add_colorize_to_gridjs_table();
});
$(document).ready(function() {
colorize_table_entries();;
plotCPUAndRAMUsage();;
createParallelPlot(tab_results_csv_json, tab_results_headers_json, result_names, special_col_names);;
plotJobStatusDistribution();;
plotBoxplot();;
plotViolin();;
plotHistogram();;
plotHeatmap();
colorize_table_entries();
});
</script>
<h1> Overview</h1>
<h2>Best parameter (total: 0): </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> n_samples</th><th>n_permutations</th><th>update_interval</th><th>n_consecutive_dev…</th><th>result </th></tr></thead><tbody><tr><td> 226</td><td>32</td><td>50</td><td>1</td><td>0.193798 </td></tr></tbody></table><h2>Experiment parameters: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Name</th><th>Type</th><th>Lower bound</th><th>Upper bound</th><th>Values</th><th>Type </th></tr></thead><tbody><tr><td> n_samples</td><td>range</td><td>100</td><td>1000</td><td></td><td>int </td></tr><tr><td> n_permutations</td><td>range</td><td>10</td><td>50</td><td></td><td>int </td></tr><tr><td> update_interval</td><td>range</td><td>50</td><td>250</td><td></td><td>int </td></tr><tr><td> n_consecutive_deviations</td><td>range</td><td>1</td><td>5</td><td></td><td>int </td></tr></tbody></table><br><h2>Number of evaluations:</h2>
<table>
<tbody>
<tr>
<th>Failed</th>
<th>Succeeded</th>
<th>Running</th>
<th>Total</th>
</tr>
<tr>
<td>0</td>
<td>497</td>
<td>13</td>
<td>510</td>
</tr>
</tbody>
</table>
<h1> Results</h1>
<div id='tab_results_csv_table'></div>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<pre id='tab_results_csv_table_pre'>trial_index,arm_name,trial_status,generation_method,result,n_samples,n_permutations,update_interval,n_consecutive_deviations
0,0_0,COMPLETED,Sobol,0.314328582145536383762873811065,249,31,230,1
1,1_0,COMPLETED,Sobol,0.272818204551137810653926862869,276,27,149,4
2,2_0,COMPLETED,Sobol,0.300325081270317539861025579739,915,30,103,1
3,3_0,COMPLETED,Sobol,0.311577894473618388637703446875,827,46,184,3
4,4_0,COMPLETED,Sobol,0.286571642910727675257476221304,135,30,239,2
5,5_0,COMPLETED,Sobol,0.307576894223555941110248568293,519,37,156,5
6,6_0,COMPLETED,Sobol,0.246561640410102533849112660391,460,32,72,3
7,7_0,COMPLETED,Sobol,0.308577144286071525236536672310,662,44,250,1
8,8_0,COMPLETED,Sobol,0.291572893223305817933521666419,438,11,186,2
9,9_0,COMPLETED,Sobol,0.290322580645161254508934689511,499,36,160,4
10,10_0,COMPLETED,Sobol,0.311077769442360541063408163609,871,50,138,1
11,11_0,COMPLETED,Sobol,0.288572143035758954532354891853,699,37,209,5
12,12_0,COMPLETED,Sobol,0.326081520380094969091544498951,830,29,205,3
13,13_0,COMPLETED,Sobol,0.299824956239059803309032758989,573,31,219,1
14,14_0,COMPLETED,Sobol,0.209552388097024255841915874043,245,31,54,2
15,15_0,COMPLETED,Sobol,0.324831207801950516689259984560,958,14,228,3
16,16_0,COMPLETED,Sobol,0.283570892723180811856309446739,261,27,202,2
17,17_0,COMPLETED,Sobol,0.292823205801450381358108643326,396,44,240,3
18,18_0,COMPLETED,Sobol,0.264816204051012804576714643190,380,33,166,2
19,19_0,COMPLETED,Sobol,0.261065266316579114302953712468,338,13,87,5
20,20_0,COMPLETED,BoTorch,0.208052013003250824141332486761,164,26,50,2
21,21_0,COMPLETED,BoTorch,0.229057264316078978971802371234,209,40,50,2
22,22_0,COMPLETED,BoTorch,0.212553138284571119243082648609,304,26,50,2
23,23_0,COMPLETED,BoTorch,0.225056264066016531444347492652,164,31,50,3
24,24_0,COMPLETED,BoTorch,0.218054513628407109493423376989,282,32,50,1
25,25_0,COMPLETED,BoTorch,0.233058264566141537521559712332,186,32,80,2
26,26_0,COMPLETED,BoTorch,0.235808952238059532646730076522,100,32,50,2
27,27_0,COMPLETED,BoTorch,0.225306326581645399720343903027,208,18,51,2
28,28_0,COMPLETED,BoTorch,0.222305576394098536319177128462,307,39,50,2
29,29_0,COMPLETED,BoTorch,0.240310077519379827748480238370,129,26,83,2
30,30_0,COMPLETED,BoTorch,0.218804701175293825343715070630,161,41,50,3
31,31_0,COMPLETED,BoTorch,0.209052263065766408267620590777,126,18,50,3
32,32_0,COMPLETED,BoTorch,0.210552638159539839968203978060,204,22,50,1
33,33_0,COMPLETED,BoTorch,0.248312078019504833825692458049,100,42,61,2
34,34_0,COMPLETED,BoTorch,0.215803950987746961942548296065,234,40,71,1
35,35_0,COMPLETED,BoTorch,0.253563390847711955800036776054,285,36,72,2
36,36_0,COMPLETED,BoTorch,0.214053513378344550943666035892,141,30,50,1
37,37_0,COMPLETED,BoTorch,0.217554388597149261919128093723,322,17,50,1
38,38_0,COMPLETED,BoTorch,0.251812953238309544801154515881,100,36,82,1
39,39_0,COMPLETED,BoTorch,0.240810202550637675322775521636,229,25,73,2
40,40_0,COMPLETED,BoTorch,0.202050512628156986316696475114,213,27,50,2
41,41_0,COMPLETED,BoTorch,0.239809952488121980174184955104,133,19,78,2
42,42_0,COMPLETED,BoTorch,0.205051262815703960740165712195,143,12,50,3
43,43_0,COMPLETED,BoTorch,0.214553638409602398517961319158,103,11,50,1
44,44_0,COMPLETED,BoTorch,0.226056514128532115570635596669,100,21,50,1
45,45_0,COMPLETED,BoTorch,0.204051012753188265591575145663,202,10,50,1
46,46_0,COMPLETED,BoTorch,0.231307826956739237544979914674,100,14,50,5
47,47_0,COMPLETED,BoTorch,0.222055513878469668043180718087,290,10,50,3
48,48_0,COMPLETED,BoTorch,0.222055513878469668043180718087,100,26,50,5
49,49_0,COMPLETED,BoTorch,0.211052763190797687542499261326,246,20,50,3
50,50_0,COMPLETED,BoTorch,0.209552388097024255841915874043,303,29,50,1
51,51_0,COMPLETED,BoTorch,0.234308577144286100946146689239,100,10,50,4
52,52_0,COMPLETED,BoTorch,0.229557389347336826546097654500,419,50,50,1
53,53_0,COMPLETED,BoTorch,0.200550137534383554616113087832,244,28,50,1
54,54_0,COMPLETED,BoTorch,0.234558639659914969222143099614,100,10,50,2
55,55_0,COMPLETED,BoTorch,0.214553638409602398517961319158,112,24,50,3
56,56_0,COMPLETED,BoTorch,0.243810952738184538723942296201,408,15,50,3
57,57_0,COMPLETED,BoTorch,0.226056514128532115570635596669,271,38,50,5
58,58_0,COMPLETED,BoTorch,0.233058264566141537521559712332,197,10,50,3
59,59_0,COMPLETED,BoTorch,0.214553638409602398517961319158,195,10,50,2
60,60_0,COMPLETED,BoTorch,0.206801700425106260716745509853,235,10,50,1
61,61_0,COMPLETED,BoTorch,0.201050262565641402190408371098,245,19,50,1
62,62_0,COMPLETED,BoTorch,0.233058264566141537521559712332,365,50,50,5
63,63_0,COMPLETED,BoTorch,0.197549387346836691214946313266,147,10,50,2
64,64_0,COMPLETED,BoTorch,0.207301825456364108291040793119,234,16,50,2
65,65_0,COMPLETED,BoTorch,0.220305076269067257044298457913,343,10,50,1
66,66_0,COMPLETED,BoTorch,0.234808702175543837498139509989,201,50,50,5
67,67_0,COMPLETED,BoTorch,0.220055013753438388768302047538,504,10,50,1
68,68_0,COMPLETED,BoTorch,0.226306576644161094868934469559,194,22,50,4
69,69_0,COMPLETED,BoTorch,0.204051012753188265591575145663,233,33,50,4
70,70_0,COMPLETED,BoTorch,0.245311327831957970424525683484,230,36,50,5
71,71_0,COMPLETED,BoTorch,0.208302075518879692417328897136,242,21,50,1
72,72_0,COMPLETED,BoTorch,0.213553388347086814391673215141,236,27,50,4
73,73_0,COMPLETED,BoTorch,0.234558639659914969222143099614,278,38,50,5
74,74_0,COMPLETED,BoTorch,0.219304826206551672918010353897,100,50,50,5
75,75_0,COMPLETED,BoTorch,0.267066766691672952127589724114,668,50,50,5
76,76_0,COMPLETED,BoTorch,0.228807201800450110695805960859,220,19,50,1
77,77_0,COMPLETED,BoTorch,0.226556639159789963144930879935,159,45,50,5
78,78_0,COMPLETED,BoTorch,0.219804951237809409470003174647,535,12,50,1
79,79_0,COMPLETED,BoTorch,0.262815703925981525301835972641,689,37,50,3
80,80_0,COMPLETED,BoTorch,0.242560640160039975299355319294,362,44,50,5
81,74_0,COMPLETED,BoTorch,0.218054513628407109493423376989,100,50,50,5
82,82_0,COMPLETED,BoTorch,0.205301325331332829016162122571,257,18,50,1
83,83_0,COMPLETED,BoTorch,0.233058264566141537521559712332,260,20,50,1
84,84_0,COMPLETED,BoTorch,0.243810952738184538723942296201,713,45,50,4
85,85_0,COMPLETED,BoTorch,0.219054763690922693619711481006,241,21,50,2
86,86_0,COMPLETED,BoTorch,0.255813953488372103350911856978,562,50,57,4
87,87_0,COMPLETED,BoTorch,0.247561890472618117975400764408,563,50,57,4
88,88_0,COMPLETED,BoTorch,0.274318579644911242354510250152,766,50,91,4
89,86_0,COMPLETED,BoTorch,0.255813953488372103350911856978,562,50,57,4
90,90_0,COMPLETED,BoTorch,0.243060765191297822873650602560,697,10,50,1
91,91_0,COMPLETED,BoTorch,0.235058764691172816796438382880,493,50,50,3
92,92_0,COMPLETED,BoTorch,0.251312828207051808249161695130,721,44,50,4
93,93_0,COMPLETED,BoTorch,0.206551637909477392440749099478,278,10,50,1
94,94_0,COMPLETED,BoTorch,0.214303575893973530241964908782,336,23,50,1
95,95_0,COMPLETED,BoTorch,0.232058014503625953395271608315,310,20,50,1
96,96_0,COMPLETED,BoTorch,0.224056014003500836295756926120,252,13,50,2
97,97_0,COMPLETED,BoTorch,0.222305576394098536319177128462,319,23,50,1
98,98_0,COMPLETED,BoTorch,0.203050762690672681465287041647,127,50,50,1
99,99_0,COMPLETED,BoTorch,0.220305076269067257044298457913,273,50,50,1
100,100_0,COMPLETED,BoTorch,0.224056014003500836295756926120,100,34,50,4
101,101_0,COMPLETED,BoTorch,0.217804451112778241217426966614,265,50,50,3
102,102_0,COMPLETED,BoTorch,0.210802700675168819266502850951,123,50,50,1
103,103_0,COMPLETED,BoTorch,0.219804951237809409470003174647,221,42,50,3
104,104_0,COMPLETED,BoTorch,0.224056014003500836295756926120,100,50,50,4
105,105_0,COMPLETED,BoTorch,0.224056014003500836295756926120,100,36,50,4
106,106_0,COMPLETED,BoTorch,0.258564641160290098476082221168,100,50,104,5
107,107_0,COMPLETED,BoTorch,0.246811702925731402125109070766,103,42,83,5
108,108_0,COMPLETED,BoTorch,0.226056514128532115570635596669,222,50,50,1
109,109_0,COMPLETED,BoTorch,0.274568642160540110630506660527,100,38,118,5
110,110_0,COMPLETED,BoTorch,0.204551137784446113165870428929,258,10,50,1
111,111_0,COMPLETED,BoTorch,0.263315828957239261853828793392,100,50,88,5
112,112_0,COMPLETED,BoTorch,0.222305576394098536319177128462,203,22,50,3
113,100_0,COMPLETED,BoTorch,0.224056014003500836295756926120,100,34,50,4
114,114_0,COMPLETED,BoTorch,0.221555388847211820468885434821,100,27,50,4
115,115_0,COMPLETED,BoTorch,0.277319329832458105755677024717,322,10,149,4
116,116_0,COMPLETED,BoTorch,0.228307076769192263121510677593,100,50,50,3
117,117_0,COMPLETED,BoTorch,0.224306076519129815594055799011,100,50,50,1
118,118_0,COMPLETED,BoTorch,0.203800950237559397315578735288,235,30,50,1
119,119_0,COMPLETED,BoTorch,0.310327581895473825213116469968,1000,10,50,5
120,120_0,COMPLETED,BoTorch,0.239059764941235264323893261462,100,50,50,2
121,119_0,COMPLETED,BoTorch,0.310327581895473825213116469968,1000,10,50,5
122,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
123,123_0,COMPLETED,BoTorch,0.219804951237809409470003174647,201,50,50,1
124,124_0,COMPLETED,BoTorch,0.220805201300325104618593741179,162,50,50,2
125,125_0,COMPLETED,BoTorch,0.211052763190797687542499261326,196,23,50,2
126,126_0,COMPLETED,BoTorch,0.242560640160039975299355319294,714,35,50,5
127,127_0,COMPLETED,BoTorch,0.197049262315578843640651030000,227,28,50,1
128,128_0,COMPLETED,BoTorch,0.223055763940985252169468822103,334,50,50,2
129,129_0,COMPLETED,BoTorch,0.241310327581895522897070804902,299,50,50,3
130,130_0,COMPLETED,BoTorch,0.225056264066016531444347492652,221,14,50,1
131,131_0,COMPLETED,BoTorch,0.224056014003500836295756926120,268,32,50,3
132,132_0,COMPLETED,BoTorch,0.293573393348337097208400336967,100,10,250,5
133,133_0,COMPLETED,BoTorch,0.207051762940735128992741920229,242,10,50,1
134,134_0,COMPLETED,BoTorch,0.305326331582895682537071024854,266,42,225,1
135,135_0,COMPLETED,BoTorch,0.300825206301575387435320863005,265,42,225,1
136,136_0,COMPLETED,BoTorch,0.278319579894973689881965128734,100,10,185,5
137,137_0,COMPLETED,BoTorch,0.240060015003750959472483827994,281,28,50,2
138,138_0,COMPLETED,BoTorch,0.294823705926481660632987313875,226,11,241,5
139,139_0,COMPLETED,BoTorch,0.221305326331582841170586561930,201,21,50,1
140,140_0,COMPLETED,BoTorch,0.268317079269817404529874238506,101,31,229,5
141,141_0,COMPLETED,BoTorch,0.294073518379594944782695620233,100,20,194,5
142,142_0,COMPLETED,BoTorch,0.352088022005501377620362291054,163,12,249,5
143,143_0,COMPLETED,BoTorch,0.282820705176294096006017753098,222,19,250,4
144,144_0,COMPLETED,BoTorch,0.195298824706176543664071232342,227,30,50,1
145,145_0,COMPLETED,BoTorch,0.221555388847211820468885434821,251,10,50,1
146,146_0,COMPLETED,BoTorch,0.208052013003250824141332486761,239,10,50,1
147,147_0,COMPLETED,BoTorch,0.202300575143785965614995348005,225,29,50,1
148,148_0,COMPLETED,BoTorch,0.277319329832458105755677024717,679,31,65,5
149,149_0,COMPLETED,BoTorch,0.242810702675668954597654192185,338,27,96,2
150,150_0,COMPLETED,BoTorch,0.200800200050012533914411960723,233,10,50,1
151,151_0,COMPLETED,BoTorch,0.199299824956239102213828573440,243,10,50,1
152,146_0,COMPLETED,BoTorch,0.207051762940735128992741920229,239,10,50,1
153,74_0,COMPLETED,BoTorch,0.218054513628407109493423376989,100,50,50,5
154,154_0,COMPLETED,BoTorch,0.193798449612403111963487845060,226,28,50,1
155,155_0,COMPLETED,BoTorch,0.238809702425606396047896851087,148,10,61,3
156,156_0,COMPLETED,BoTorch,0.223305826456614120445465232478,257,12,71,1
157,157_0,COMPLETED,BoTorch,0.202300575143785965614995348005,225,30,50,1
158,158_0,COMPLETED,BoTorch,0.236309077269317380221025359788,190,19,50,1
159,159_0,COMPLETED,BoTorch,0.226806701675418831420927290310,148,10,50,3
160,160_0,COMPLETED,BoTorch,0.229557389347336826546097654500,185,38,66,3
161,161_0,COMPLETED,BoTorch,0.200800200050012533914411960723,232,31,50,1
162,162_0,COMPLETED,BoTorch,0.261065266316579114302953712468,100,10,92,3
163,163_0,COMPLETED,BoTorch,0.206051512878219544866453816212,236,19,54,2
164,164_0,COMPLETED,BoTorch,0.240810202550637675322775521636,104,28,86,3
165,165_0,COMPLETED,BoTorch,0.239309827456864243622192134353,107,29,85,3
166,166_0,COMPLETED,BoTorch,0.247561890472618117975400764408,200,14,97,1
167,167_0,COMPLETED,BoTorch,0.234308577144286100946146689239,214,50,96,3
168,160_0,COMPLETED,BoTorch,0.229557389347336826546097654500,185,38,66,3
169,169_0,COMPLETED,BoTorch,0.216804201050262546068836400082,186,43,51,3
170,160_0,COMPLETED,BoTorch,0.229557389347336826546097654500,185,38,66,3
171,171_0,COMPLETED,BoTorch,0.251312828207051808249161695130,599,50,50,1
172,172_0,COMPLETED,BoTorch,0.281820455113778400857427186565,1000,50,50,1
173,173_0,COMPLETED,BoTorch,0.239059764941235264323893261462,298,38,65,3
174,174_0,COMPLETED,BoTorch,0.228307076769192263121510677593,245,23,77,2
175,175_0,COMPLETED,BoTorch,0.202300575143785965614995348005,238,32,50,1
176,176_0,COMPLETED,BoTorch,0.224556139034758683870052209386,270,10,50,1
177,177_0,COMPLETED,BoTorch,0.236809202300575116773018180538,489,38,64,1
178,178_0,COMPLETED,BoTorch,0.218804701175293825343715070630,356,10,50,2
179,179_0,COMPLETED,BoTorch,0.215053763440860246092256602424,240,31,50,1
180,180_0,COMPLETED,BoTorch,0.209302325581395387565919463668,466,18,50,2
181,181_0,COMPLETED,BoTorch,0.274568642160540110630506660527,690,47,59,1
182,182_0,COMPLETED,BoTorch,0.202050512628156986316696475114,238,31,50,1
183,183_0,COMPLETED,BoTorch,0.205301325331332829016162122571,108,28,51,1
184,184_0,COMPLETED,BoTorch,0.265566391597899520427006336831,700,42,64,1
185,185_0,COMPLETED,BoTorch,0.223305826456614120445465232478,222,10,50,2
186,186_0,COMPLETED,BoTorch,0.256064016004000971626908267353,872,23,50,1
187,187_0,COMPLETED,BoTorch,0.286321580395098806981479810929,677,42,58,5
188,188_0,COMPLETED,BoTorch,0.236809202300575116773018180538,289,10,50,3
189,189_0,COMPLETED,BoTorch,0.223805951487871968019760515745,358,16,65,2
190,190_0,COMPLETED,BoTorch,0.206801700425106260716745509853,239,31,50,1
191,191_0,COMPLETED,BoTorch,0.207551887971992976567037203495,223,32,50,1
192,192_0,COMPLETED,BoTorch,0.235058764691172816796438382880,280,10,50,1
193,193_0,COMPLETED,BoTorch,0.209302325581395387565919463668,219,32,50,1
194,194_0,COMPLETED,BoTorch,0.255563890972743235074915446603,791,25,55,1
195,191_0,COMPLETED,BoTorch,0.207551887971992976567037203495,223,32,50,1
196,196_0,COMPLETED,BoTorch,0.230307576894223542396389348141,263,10,50,1
197,197_0,COMPLETED,BoTorch,0.223305826456614120445465232478,221,32,50,1
198,198_0,COMPLETED,BoTorch,0.207551887971992976567037203495,223,33,50,1
199,199_0,COMPLETED,BoTorch,0.227556889222305547271218983951,222,33,50,1
200,193_0,COMPLETED,BoTorch,0.209302325581395387565919463668,219,32,50,1
201,201_0,COMPLETED,BoTorch,0.210802700675168819266502850951,268,10,50,1
202,202_0,COMPLETED,BoTorch,0.193798449612403111963487845060,226,32,50,1
203,203_0,COMPLETED,BoTorch,0.244811202800700122850230400218,320,10,74,1
204,204_0,COMPLETED,BoTorch,0.235558889722430553348431203631,353,10,86,2
205,205_0,COMPLETED,BoTorch,0.259064766191547835028075041919,336,25,134,2
206,206_0,COMPLETED,BoTorch,0.203550887721930529039582324913,217,32,50,1
207,207_0,COMPLETED,BoTorch,0.269067266816704231402468394663,232,39,135,3
208,208_0,COMPLETED,BoTorch,0.210802700675168819266502850951,216,25,50,1
209,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
210,210_0,COMPLETED,BoTorch,0.208302075518879692417328897136,213,32,50,1
211,211_0,COMPLETED,BoTorch,0.242060515128782238747362498543,258,35,108,2
212,212_0,COMPLETED,BoTorch,0.221305326331582841170586561930,100,10,50,1
213,213_0,COMPLETED,BoTorch,0.231307826956739237544979914674,100,19,50,5
214,214_0,COMPLETED,BoTorch,0.238809702425606396047896851087,157,46,50,4
215,215_0,COMPLETED,BoTorch,0.283820955238809680132305857114,844,31,105,2
216,216_0,COMPLETED,BoTorch,0.211052763190797687542499261326,216,32,50,1
217,217_0,COMPLETED,BoTorch,0.205301325331332829016162122571,218,32,50,1
218,218_0,COMPLETED,BoTorch,0.215053763440860246092256602424,240,26,50,1
219,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
220,217_0,COMPLETED,BoTorch,0.205301325331332829016162122571,218,32,50,1
221,221_0,COMPLETED,BoTorch,0.233308327081770405797556122707,100,10,50,5
222,222_0,COMPLETED,BoTorch,0.202800700175043813189290631271,237,28,50,1
223,223_0,COMPLETED,BoTorch,0.264566141535383825278415770299,178,33,106,4
224,216_0,COMPLETED,BoTorch,0.211052763190797687542499261326,216,32,50,1
225,225_0,COMPLETED,BoTorch,0.216554138534633677792839989706,215,32,50,1
226,225_0,COMPLETED,BoTorch,0.216554138534633677792839989706,215,32,50,1
227,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
228,228_0,COMPLETED,BoTorch,0.246561640410102533849112660391,695,45,70,2
229,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
230,230_0,COMPLETED,BoTorch,0.219804951237809409470003174647,212,33,50,1
231,212_0,COMPLETED,BoTorch,0.221305326331582841170586561930,100,10,50,1
232,232_0,COMPLETED,BoTorch,0.247311827956989249699404354033,246,50,114,1
233,122_0,COMPLETED,BoTorch,0.208302075518879692417328897136,214,32,50,1
234,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
235,235_0,COMPLETED,BoTorch,0.235808952238059532646730076522,100,22,50,2
236,236_0,COMPLETED,BoTorch,0.207801950487621955865336076386,239,27,50,1
237,237_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,33,50,1
238,206_0,COMPLETED,BoTorch,0.203550887721930529039582324913,217,32,50,1
239,239_0,COMPLETED,BoTorch,0.210802700675168819266502850951,267,25,50,2
240,240_0,COMPLETED,BoTorch,0.238559639909977527771900440712,100,16,50,2
241,241_0,COMPLETED,BoTorch,0.225306326581645399720343903027,180,10,50,1
242,242_0,COMPLETED,BoTorch,0.244811202800700122850230400218,100,31,104,2
243,243_0,RUNNING,BoTorch,,210,27,50,1
244,244_0,COMPLETED,BoTorch,0.262565641410352546003537099750,503,41,126,1
245,245_0,COMPLETED,BoTorch,0.240060015003750959472483827994,352,10,57,3
246,246_0,COMPLETED,BoTorch,0.237059264816204096071317053429,100,28,50,2
247,247_0,RUNNING,BoTorch,,223,28,50,1
248,248_0,RUNNING,BoTorch,,233,27,50,1
249,249_0,COMPLETED,BoTorch,0.219554888722180541194006764272,191,24,50,3
250,225_0,COMPLETED,BoTorch,0.216554138534633677792839989706,215,32,50,1
251,251_0,COMPLETED,BoTorch,0.254313578394598671650328469696,713,50,63,5
252,122_0,COMPLETED,BoTorch,0.207301825456364108291040793119,214,32,50,1
253,253_0,COMPLETED,BoTorch,0.239809952488121980174184955104,321,25,50,5
254,216_0,COMPLETED,BoTorch,0.211052763190797687542499261326,216,32,50,1
255,255_0,COMPLETED,BoTorch,0.209052263065766408267620590777,219,33,50,1
256,256_0,COMPLETED,BoTorch,0.230307576894223542396389348141,220,33,50,1
257,257_0,COMPLETED,BoTorch,0.229807451862965694822094064875,263,29,50,1
258,256_0,COMPLETED,BoTorch,0.230307576894223542396389348141,220,33,50,1
259,259_0,COMPLETED,BoTorch,0.270817704426106531379048192321,768,17,105,1
260,256_0,COMPLETED,BoTorch,0.230307576894223542396389348141,220,33,50,1
261,261_0,COMPLETED,BoTorch,0.237559389847461832623309874180,100,47,73,4
262,256_0,COMPLETED,BoTorch,0.228807201800450110695805960859,220,33,50,1
263,256_0,COMPLETED,BoTorch,0.232558139534883689947264429065,220,33,50,1
264,264_0,COMPLETED,BoTorch,0.225306326581645399720343903027,221,33,50,1
265,265_0,COMPLETED,BoTorch,0.205051262815703960740165712195,218,33,50,1
266,266_0,COMPLETED,BoTorch,0.237059264816204096071317053429,279,50,57,2
267,267_0,COMPLETED,BoTorch,0.260815203800950246026957302092,164,35,94,3
268,268_0,COMPLETED,BoTorch,0.195798949737434391238366515609,227,29,50,1
269,269_0,COMPLETED,BoTorch,0.217554388597149261919128093723,275,10,50,2
270,270_0,COMPLETED,BoTorch,0.194548637159289827813779538701,226,30,50,1
271,147_0,COMPLETED,BoTorch,0.202300575143785965614995348005,225,29,50,1
272,272_0,COMPLETED,BoTorch,0.237559389847461832623309874180,281,43,50,1
273,273_0,COMPLETED,BoTorch,0.200550137534383554616113087832,232,29,50,1
274,274_0,COMPLETED,BoTorch,0.249562390597649397250279434957,695,35,55,1
275,275_0,COMPLETED,BoTorch,0.216054013503375830218544706440,267,25,50,1
276,276_0,COMPLETED,BoTorch,0.208052013003250824141332486761,229,29,50,1
277,277_0,COMPLETED,BoTorch,0.213303325831457835093374342250,176,50,50,2
278,278_0,COMPLETED,BoTorch,0.225556389097274267996340313402,453,50,58,2
279,147_0,COMPLETED,BoTorch,0.202300575143785965614995348005,225,29,50,1
280,268_0,COMPLETED,BoTorch,0.195798949737434391238366515609,227,29,50,1
281,281_0,COMPLETED,BoTorch,0.204051012753188265591575145663,258,25,50,1
282,266_0,COMPLETED,BoTorch,0.237059264816204096071317053429,279,50,57,2
283,283_0,COMPLETED,BoTorch,0.208552138034508671715627770027,224,28,50,1
284,284_0,COMPLETED,BoTorch,0.202300575143785965614995348005,225,28,50,1
285,283_0,COMPLETED,BoTorch,0.208552138034508671715627770027,224,28,50,1
286,286_0,COMPLETED,BoTorch,0.194548637159289827813779538701,226,27,50,1
287,284_0,COMPLETED,BoTorch,0.203300825206301549741283452022,225,28,50,1
288,284_0,COMPLETED,BoTorch,0.203300825206301549741283452022,225,28,50,1
289,289_0,COMPLETED,BoTorch,0.246061515378844686274817377125,315,27,121,3
290,290_0,COMPLETED,BoTorch,0.208552138034508671715627770027,224,27,50,1
291,291_0,COMPLETED,BoTorch,0.222055513878469668043180718087,255,23,60,3
292,127_0,COMPLETED,BoTorch,0.195548887221805411940067642718,227,28,50,1
293,284_0,COMPLETED,BoTorch,0.203300825206301549741283452022,225,28,50,1
294,294_0,COMPLETED,BoTorch,0.283320830207551832558010573848,821,17,75,2
295,295_0,COMPLETED,BoTorch,0.224806201550387552146048619761,230,28,50,1
296,290_0,COMPLETED,BoTorch,0.208552138034508671715627770027,224,27,50,1
297,297_0,COMPLETED,BoTorch,0.209552388097024255841915874043,229,27,50,1
298,298_0,COMPLETED,BoTorch,0.261315328832208093601252585358,319,13,120,2
299,299_0,COMPLETED,BoTorch,0.199049762440610122915529700549,228,27,50,1
300,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
301,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
302,302_0,RUNNING,BoTorch,,126,44,61,4
303,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
304,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
305,305_0,COMPLETED,BoTorch,0.221055263815953972894590151554,318,15,87,1
306,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
307,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
308,299_0,COMPLETED,BoTorch,0.199049762440610122915529700549,228,27,50,1
309,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
310,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
311,218_0,COMPLETED,BoTorch,0.212303075768942250967086238234,240,26,50,1
312,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
313,248_0,COMPLETED,BoTorch,0.199299824956239102213828573440,233,27,50,1
314,314_0,COMPLETED,BoTorch,0.220055013753438388768302047538,146,31,74,2
315,315_0,COMPLETED,BoTorch,0.200550137534383554616113087832,232,27,50,1
316,316_0,COMPLETED,BoTorch,0.206301575393848413142450226587,234,27,50,1
317,317_0,COMPLETED,BoTorch,0.216054013503375830218544706440,231,27,50,1
318,318_0,COMPLETED,BoTorch,0.214053513378344550943666035892,237,21,50,3
319,319_0,COMPLETED,BoTorch,0.206801700425106260716745509853,248,25,50,1
320,320_0,COMPLETED,BoTorch,0.288572143035758954532354891853,903,40,66,4
321,248_0,COMPLETED,BoTorch,0.199299824956239102213828573440,233,27,50,1
322,248_0,COMPLETED,BoTorch,0.199299824956239102213828573440,233,27,50,1
323,315_0,COMPLETED,BoTorch,0.200550137534383554616113087832,232,27,50,1
324,315_0,COMPLETED,BoTorch,0.200550137534383554616113087832,232,27,50,1
325,325_0,COMPLETED,BoTorch,0.209802450612653124117912284419,236,27,50,1
326,326_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,27,50,1
327,327_0,COMPLETED,BoTorch,0.235558889722430553348431203631,188,43,94,2
328,248_0,COMPLETED,BoTorch,0.199299824956239102213828573440,233,27,50,1
329,329_0,COMPLETED,BoTorch,0.269067266816704231402468394663,452,17,108,2
330,330_0,COMPLETED,BoTorch,0.200300075018754686340116677457,244,26,50,1
331,331_0,COMPLETED,BoTorch,0.222805701425356383893472411728,241,27,50,1
332,332_0,COMPLETED,BoTorch,0.216054013503375830218544706440,151,50,57,3
333,316_0,COMPLETED,BoTorch,0.206301575393848413142450226587,234,27,50,1
334,248_0,COMPLETED,BoTorch,0.199299824956239102213828573440,233,27,50,1
335,335_0,COMPLETED,BoTorch,0.246311577894473665573116250016,130,46,79,5
336,336_0,COMPLETED,BoTorch,0.258314578644661119177783348277,344,50,96,4
337,316_0,COMPLETED,BoTorch,0.206301575393848413142450226587,234,27,50,1
338,338_0,COMPLETED,BoTorch,0.202050512628156986316696475114,238,26,50,1
339,339_0,COMPLETED,BoTorch,0.282320580145036248431722469832,280,21,186,5
340,340_0,COMPLETED,BoTorch,0.232558139534883689947264429065,199,28,65,2
341,338_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,26,50,1
342,338_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,26,50,1
343,338_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,26,50,1
344,218_0,COMPLETED,BoTorch,0.212303075768942250967086238234,240,26,50,1
345,345_0,COMPLETED,BoTorch,0.202550637659414833890991758381,237,26,50,1
346,346_0,COMPLETED,BoTorch,0.243810952738184538723942296201,421,37,88,3
347,338_0,COMPLETED,BoTorch,0.202050512628156986316696475114,238,26,50,1
348,348_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,25,50,1
349,345_0,COMPLETED,BoTorch,0.202800700175043813189290631271,237,26,50,1
350,338_0,COMPLETED,BoTorch,0.202050512628156986316696475114,238,26,50,1
351,351_0,COMPLETED,BoTorch,0.267566891722930688679582544864,538,12,120,2
352,345_0,COMPLETED,BoTorch,0.208302075518879692417328897136,237,26,50,1
353,353_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,26,50,1
354,354_0,COMPLETED,BoTorch,0.231557889472368105820976325049,476,45,65,3
355,355_0,COMPLETED,BoTorch,0.239059764941235264323893261462,100,40,50,2
356,356_0,COMPLETED,BoTorch,0.209552388097024255841915874043,239,26,50,1
357,357_0,COMPLETED,BoTorch,0.249812453113278265526275845332,219,27,84,2
358,358_0,COMPLETED,BoTorch,0.222805701425356383893472411728,241,26,50,1
359,338_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,26,50,1
360,358_0,COMPLETED,BoTorch,0.222805701425356383893472411728,241,26,50,1
361,361_0,COMPLETED,BoTorch,0.224806201550387552146048619761,141,23,59,1
362,218_0,COMPLETED,BoTorch,0.212303075768942250967086238234,240,26,50,1
363,218_0,COMPLETED,BoTorch,0.212303075768942250967086238234,240,26,50,1
364,364_0,COMPLETED,BoTorch,0.255313828457114255776616573712,127,32,126,4
365,218_0,COMPLETED,BoTorch,0.212303075768942250967086238234,240,26,50,1
366,366_0,COMPLETED,BoTorch,0.284821205301325375280896423646,144,14,132,4
367,367_0,COMPLETED,BoTorch,0.210802700675168819266502850951,216,34,58,1
368,326_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,27,50,1
369,369_0,COMPLETED,BoTorch,0.246811702925731402125109070766,385,41,114,4
370,370_0,COMPLETED,BoTorch,0.202800700175043813189290631271,237,27,50,1
371,371_0,COMPLETED,BoTorch,0.219054763690922693619711481006,183,50,50,1
372,117_0,COMPLETED,BoTorch,0.224306076519129815594055799011,100,50,50,1
373,373_0,COMPLETED,BoTorch,0.224306076519129815594055799011,101,27,50,4
374,370_0,COMPLETED,BoTorch,0.202800700175043813189290631271,237,27,50,1
375,375_0,COMPLETED,BoTorch,0.221805451362840688744881845196,100,32,50,3
376,236_0,COMPLETED,BoTorch,0.207801950487621955865336076386,239,27,50,1
377,326_0,COMPLETED,BoTorch,0.206301575393848413142450226587,238,27,50,1
378,378_0,COMPLETED,BoTorch,0.227056764191047810719226163201,100,39,50,3
379,379_0,COMPLETED,BoTorch,0.211802950737684403392790954967,253,25,50,1
380,380_0,COMPLETED,BoTorch,0.246311577894473665573116250016,306,13,100,1
381,381_0,COMPLETED,BoTorch,0.206801700425106260716745509853,235,27,50,1
382,381_0,COMPLETED,BoTorch,0.206801700425106260716745509853,235,27,50,1
383,383_0,COMPLETED,BoTorch,0.225556389097274267996340313402,249,26,50,1
384,384_0,COMPLETED,BoTorch,0.249812453113278265526275845332,500,39,56,2
385,325_0,COMPLETED,BoTorch,0.209802450612653124117912284419,236,27,50,1
386,386_0,COMPLETED,BoTorch,0.275068767191797958204801943793,536,47,92,4
387,325_0,COMPLETED,BoTorch,0.203800950237559397315578735288,236,27,50,1
388,326_0,COMPLETED,BoTorch,0.201800450112528118040700064739,238,27,50,1
389,212_0,COMPLETED,BoTorch,0.221305326331582841170586561930,100,10,50,1
390,381_0,COMPLETED,BoTorch,0.206801700425106260716745509853,235,27,50,1
391,325_0,COMPLETED,BoTorch,0.209802450612653124117912284419,236,27,50,1
392,392_0,COMPLETED,BoTorch,0.227806951737934526569517856842,404,31,64,1
393,325_0,COMPLETED,BoTorch,0.209802450612653124117912284419,236,27,50,1
394,394_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,28,50,1
395,395_0,COMPLETED,BoTorch,0.222805701425356383893472411728,241,28,50,1
396,396_0,COMPLETED,BoTorch,0.199299824956239102213828573440,243,28,50,1
397,394_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,28,50,1
398,395_0,COMPLETED,BoTorch,0.222805701425356383893472411728,241,28,50,1
399,399_0,COMPLETED,BoTorch,0.265316329082270541128707463940,280,27,80,1
400,117_0,COMPLETED,BoTorch,0.224306076519129815594055799011,100,50,50,1
401,394_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,28,50,1
402,396_0,COMPLETED,BoTorch,0.199299824956239102213828573440,243,28,50,1
403,403_0,COMPLETED,BoTorch,0.265066266566641672852711053565,501,23,156,1
404,396_0,COMPLETED,BoTorch,0.199299824956239102213828573440,243,28,50,1
405,394_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,28,50,1
406,406_0,COMPLETED,BoTorch,0.220055013753438388768302047538,348,10,50,1
407,394_0,COMPLETED,BoTorch,0.208552138034508671715627770027,242,28,50,1
408,408_0,COMPLETED,BoTorch,0.214303575893973530241964908782,446,10,50,1
409,409_0,COMPLETED,BoTorch,0.208302075518879692417328897136,214,25,50,1
410,410_0,COMPLETED,BoTorch,0.216054013503375830218544706440,445,10,50,1
411,411_0,COMPLETED,BoTorch,0.222805701425356383893472411728,506,10,50,1
412,412_0,COMPLETED,BoTorch,0.226806701675418831420927290310,441,10,50,1
413,413_0,COMPLETED,BoTorch,0.225056264066016531444347492652,414,38,52,1
414,413_0,COMPLETED,BoTorch,0.225056264066016531444347492652,414,38,52,1
415,415_0,COMPLETED,BoTorch,0.214303575893973530241964908782,446,16,50,1
416,416_0,COMPLETED,BoTorch,0.232558139534883689947264429065,525,10,50,1
417,417_0,COMPLETED,BoTorch,0.266316579144786236277298030473,283,33,91,5
418,412_0,COMPLETED,BoTorch,0.226806701675418831420927290310,441,10,50,1
419,419_0,COMPLETED,BoTorch,0.237809452363090811921608747070,499,10,64,1
420,420_0,COMPLETED,BoTorch,0.223305826456614120445465232478,484,26,50,1
421,421_0,COMPLETED,BoTorch,0.230307576894223542396389348141,442,10,60,1
422,422_0,COMPLETED,BoTorch,0.229057264316078978971802371234,419,16,50,1
423,297_0,COMPLETED,BoTorch,0.208052013003250824141332486761,229,27,50,1
424,303_0,COMPLETED,BoTorch,0.226806701675418831420927290310,230,27,50,1
425,317_0,COMPLETED,BoTorch,0.215053763440860246092256602424,231,27,50,1
426,426_0,COMPLETED,BoTorch,0.239559889972493111898188544728,128,44,61,4
427,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
428,303_0,COMPLETED,BoTorch,0.224056014003500836295756926120,230,27,50,1
429,429_0,COMPLETED,BoTorch,0.205551387846961697292158532946,107,42,51,3
430,299_0,COMPLETED,BoTorch,0.199049762440610122915529700549,228,27,50,1
431,297_0,COMPLETED,BoTorch,0.209552388097024255841915874043,229,27,50,1
432,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
433,433_0,COMPLETED,BoTorch,0.229557389347336826546097654500,468,49,62,2
434,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
435,297_0,COMPLETED,BoTorch,0.206801700425106260716745509853,229,27,50,1
436,297_0,COMPLETED,BoTorch,0.208052013003250824141332486761,229,27,50,1
437,286_0,COMPLETED,BoTorch,0.194548637159289827813779538701,226,27,50,1
438,438_0,COMPLETED,BoTorch,0.197049262315578843640651030000,227,27,50,1
439,286_0,COMPLETED,BoTorch,0.194548637159289827813779538701,226,27,50,1
440,440_0,COMPLETED,BoTorch,0.265816454113528388703002747206,100,36,149,2
441,441_0,COMPLETED,BoTorch,0.291572893223305817933521666419,1000,46,60,4
442,442_0,COMPLETED,BoTorch,0.262565641410352546003537099750,329,31,109,2
443,443_0,COMPLETED,BoTorch,0.222555638909727404595173538837,101,50,50,1
444,444_0,COMPLETED,BoTorch,0.201800450112528118040700064739,234,49,52,1
445,286_0,COMPLETED,BoTorch,0.194548637159289827813779538701,226,27,50,1
446,286_0,COMPLETED,BoTorch,0.194548637159289827813779538701,226,27,50,1
447,447_0,COMPLETED,BoTorch,0.218304576144035977769419787364,235,50,69,2
448,448_0,COMPLETED,BoTorch,0.214303575893973530241964908782,236,41,73,2
449,438_0,COMPLETED,BoTorch,0.195548887221805411940067642718,227,27,50,1
450,438_0,COMPLETED,BoTorch,0.195548887221805411940067642718,227,27,50,1
451,451_0,COMPLETED,BoTorch,0.214803700925231266793957729533,215,25,50,1
452,452_0,COMPLETED,BoTorch,0.219804951237809409470003174647,100,26,50,1
453,208_0,COMPLETED,BoTorch,0.208052013003250824141332486761,216,25,50,1
454,454_0,COMPLETED,BoTorch,0.243060765191297822873650602560,628,25,63,2
455,208_0,COMPLETED,BoTorch,0.207801950487621955865336076386,216,25,50,1
456,456_0,COMPLETED,BoTorch,0.244561140285071254574233989842,100,50,100,3
457,208_0,COMPLETED,BoTorch,0.207801950487621955865336076386,216,25,50,1
458,451_0,COMPLETED,BoTorch,0.214303575893973530241964908782,215,25,50,1
459,459_0,COMPLETED,BoTorch,0.229307326831707958270101244125,189,17,50,1
460,460_0,COMPLETED,BoTorch,0.217304326081520393643131683348,260,10,50,2
461,461_0,COMPLETED,BoTorch,0.235808952238059532646730076522,105,10,90,2
462,462_0,COMPLETED,BoTorch,0.251312828207051808249161695130,100,13,69,5
463,208_0,COMPLETED,BoTorch,0.207801950487621955865336076386,216,25,50,1
464,451_0,COMPLETED,BoTorch,0.214303575893973530241964908782,215,25,50,1
465,465_0,COMPLETED,BoTorch,0.257314328582145535051495244261,100,46,99,3
466,466_0,COMPLETED,BoTorch,0.226806701675418831420927290310,115,36,82,2
467,467_0,COMPLETED,BoTorch,0.249312328082020528974283024581,261,30,107,3
468,468_0,COMPLETED,BoTorch,0.238809702425606396047896851087,100,50,79,1
469,469_0,COMPLETED,BoTorch,0.231057764441110258246681041783,105,35,80,2
470,470_0,COMPLETED,BoTorch,0.262815703925981525301835972641,270,27,106,3
471,471_0,COMPLETED,BoTorch,0.261315328832208093601252585358,267,28,105,3
472,472_0,COMPLETED,BoTorch,0.209802450612653124117912284419,236,28,50,1
473,472_0,COMPLETED,BoTorch,0.203800950237559397315578735288,236,28,50,1
474,474_0,COMPLETED,BoTorch,0.252563140785196260651446209522,118,45,102,3
475,475_0,COMPLETED,BoTorch,0.206301575393848413142450226587,234,28,50,1
476,476_0,COMPLETED,BoTorch,0.262065516379094809451544279000,148,46,98,3
477,477_0,COMPLETED,BoTorch,0.201050262565641402190408371098,293,48,50,2
478,472_0,COMPLETED,BoTorch,0.203800950237559397315578735288,236,28,50,1
479,472_0,COMPLETED,BoTorch,0.203800950237559397315578735288,236,28,50,1
480,480_0,COMPLETED,BoTorch,0.242560640160039975299355319294,157,46,60,4
481,303_0,COMPLETED,BoTorch,0.224056014003500836295756926120,230,27,50,1
482,482_0,COMPLETED,BoTorch,0.216054013503375830218544706440,174,27,51,1
483,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
484,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
485,485_0,COMPLETED,BoTorch,0.229057264316078978971802371234,108,31,58,2
486,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
487,303_0,COMPLETED,BoTorch,0.224306076519129815594055799011,230,27,50,1
488,317_0,COMPLETED,BoTorch,0.211552888222055535116794544592,231,27,50,1
489,303_0,COMPLETED,BoTorch,0.224056014003500836295756926120,230,27,50,1
490,490_0,COMPLETED,BoTorch,0.236059014753688400922726486897,260,26,50,3
491,491_0,COMPLETED,BoTorch,0.245061265316329102148529273109,100,10,68,5
492,297_0,COMPLETED,BoTorch,0.208052013003250824141332486761,229,27,50,1
493,303_0,COMPLETED,BoTorch,0.224056014003500836295756926120,230,27,50,1
494,303_0,COMPLETED,BoTorch,0.226806701675418831420927290310,230,27,50,1
495,495_0,COMPLETED,BoTorch,0.249062265566391549675984151690,193,29,114,3
496,381_0,COMPLETED,BoTorch,0.206801700425106260716745509853,235,27,50,1
497,495_0,COMPLETED,BoTorch,0.247061765441360381423407943657,193,29,114,3
498,498_0,COMPLETED,BoTorch,0.250562640660165092398870001489,100,50,71,1
499,316_0,COMPLETED,BoTorch,0.206301575393848413142450226587,234,27,50,1
500,500_0,COMPLETED,BoTorch,0.200550137534383554616113087832,232,26,50,1
501,501_0,RUNNING,BoTorch,,169,27,87,2
502,502_0,RUNNING,BoTorch,,185,31,125,3
503,248_0,RUNNING,BoTorch,,233,27,50,1
504,504_0,RUNNING,BoTorch,,166,28,69,1
505,248_0,RUNNING,BoTorch,,233,27,50,1
506,506_0,RUNNING,BoTorch,,189,28,108,3
507,507_0,RUNNING,BoTorch,,158,27,50,3
508,501_0,RUNNING,BoTorch,,169,27,87,2
509,509_0,RUNNING,BoTorch,,162,26,73,2
</pre>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<script>
createTable(tab_results_csv_json, tab_results_headers_json, 'tab_results_csv_table');</script>
<h1> CPU/RAM-Usage (main)</h1>
<div class='invert_in_dark_mode' id='mainWorkerCPURAM'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<pre id="pre_tab_main_worker_cpu_ram">timestamp,ram_usage_mb,cpu_usage_percent
1727501100,475.75,49.8
1727501100,475.75,50.0
1727501100,475.97265625,49.7
1727501100,475.97265625,55.6
1727501100,475.97265625,39.4
1727501100,475.97265625,50.0
1727501100,475.97265625,55.6
1727501146,480.82421875,49.8
1727501146,480.82421875,54.3
1727501146,480.82421875,49.2
1727501146,480.82421875,55.6
1727501147,480.82421875,49.7
1727501147,480.82421875,53.3
1727501147,480.82421875,48.1
1727501147,480.82421875,37.5
1727501149,480.828125,49.8
1727501149,480.828125,54.5
1727501149,480.828125,48.1
1727501149,480.828125,40.6
1727501150,480.828125,49.7
1727501150,480.828125,54.3
1727501150,480.828125,47.7
1727501150,480.828125,58.7
1727501151,480.828125,49.7
1727501151,480.828125,38.2
1727501151,480.828125,52.5
1727501151,480.828125,39.4
1727501154,484.109375,49.9
1727501154,484.109375,38.2
1727501154,484.109375,53.8
1727501154,484.109375,37.1
1727501158,484.109375,49.9
1727501158,484.109375,54.2
1727501158,484.109375,47.7
1727501158,484.109375,56.5
1727501160,484.1796875,49.9
1727501160,484.1796875,38.2
1727501160,484.1796875,52.0
1727501160,484.1796875,44.1
1727501162,484.1796875,49.9
1727501162,484.1796875,55.3
1727501162,484.1796875,47.2
1727501162,484.1796875,57.8
1727501165,484.1796875,49.9
1727501165,484.1796875,56.3
1727501165,484.1796875,47.2
1727501165,484.1796875,55.6
1727501167,484.1796875,49.8
1727501167,484.1796875,55.3
1727501167,484.1796875,47.2
1727501167,484.1796875,47.4
1727501169,484.1796875,49.9
1727501169,484.1796875,57.4
1727501169,484.1796875,48.1
1727501169,484.1796875,55.6
1727501172,484.1875,49.9
1727501172,484.1875,54.3
1727501172,484.1875,46.7
1727501172,484.1875,57.8
1727501174,484.1875,49.9
1727501174,484.1875,56.2
1727501174,484.1875,46.8
1727501174,484.1875,56.8
1727501176,484.1875,49.9
1727501176,484.1875,55.3
1727501176,484.1875,47.2
1727501176,484.1875,55.6
1727501179,484.234375,49.8
1727501179,484.234375,38.2
1727501179,484.234375,52.5
1727501179,484.234375,37.5
1727501181,484.234375,49.9
1727501181,484.234375,37.5
1727501181,484.234375,52.5
1727501181,484.234375,40.6
1727501183,484.234375,49.9
1727501183,484.234375,40.0
1727501183,484.234375,52.5
1727501183,484.234375,47.2
1727501186,484.234375,49.9
1727501186,484.234375,54.3
1727501186,484.234375,45.9
1727501186,484.234375,57.4
1727501188,484.234375,49.8
1727501188,484.234375,54.3
1727501188,484.234375,51.7
1727501188,484.234375,37.5
1727501190,484.234375,49.9
1727501190,484.234375,36.4
1727501190,484.234375,52.5
1727501190,484.234375,42.4
1727501192,484.234375,49.9
1727501192,484.234375,51.2
1727501192,484.234375,51.6
1727501192,484.234375,39.4
1727501194,484.234375,49.9
1727501194,484.234375,47.5
1727501194,484.234375,52.0
1727501194,484.234375,41.9
1727501196,484.234375,49.8
1727501196,484.234375,54.2
1727501196,484.234375,48.1
1727501196,484.234375,54.5
1727501199,484.234375,49.9
1727501199,484.234375,52.3
1727501199,484.234375,52.1
1727501199,484.234375,37.5
1727501201,484.234375,49.9
1727501201,484.234375,55.3
1727501201,484.234375,50.0
1727501201,484.234375,45.7
1727501203,484.234375,49.9
1727501203,484.234375,43.6
1727501203,484.234375,50.0
1727501203,484.234375,55.6
1727501205,484.234375,49.9
1727501205,484.234375,54.3
1727501205,484.234375,47.7
1727501205,484.234375,57.8
1727501207,484.234375,49.8
1727501207,484.234375,45.0
1727501207,484.234375,52.1
1727501207,484.234375,37.5
1727501210,484.234375,49.9
1727501210,484.234375,54.2
1727501210,484.234375,45.5
1727501210,484.234375,57.4
1727501212,484.234375,49.8
1727501212,484.234375,55.3
1727501212,484.234375,47.8
1727501212,484.234375,52.4
1727501214,484.234375,49.9
1727501214,484.234375,56.5
1727501214,484.234375,46.8
1727501214,484.234375,55.6
1727501216,484.234375,49.9
1727501216,484.234375,36.4
1727501216,484.234375,50.8
1727501216,484.234375,56.8
1727501219,484.29296875,49.9
1727501219,484.29296875,41.2
1727501219,484.29296875,52.1
1727501219,484.29296875,54.5
1727501221,484.29296875,49.9
1727501221,484.29296875,40.0
1727501221,484.29296875,50.8
1727501221,484.29296875,57.8
1727501226,484.359375,49.9
1727501226,484.359375,55.3
1727501226,484.359375,50.4
1727501226,484.359375,37.5
1727501404,523.09375,50.2
1727501404,523.09375,46.3
1727501404,523.09375,50.7
1727501404,523.09375,39.4
1727501508,525.35546875,50.3
1727501508,525.35546875,56.5
1727501508,525.35546875,49.2
1727501508,525.35546875,57.8
1727501676,527.859375,50.2
1727501676,527.859375,56.5
1727501676,527.859375,47.8
1727501676,527.859375,56.8
1727501812,531.20703125,50.2
1727501812,531.20703125,37.5
1727501812,531.20703125,50.0
1727501812,531.20703125,55.6
1727502018,532.015625,50.3
1727502018,532.015625,43.2
1727502018,532.015625,51.4
1727502018,532.015625,38.7
1727502221,537.26171875,50.3
1727502221,537.26171875,55.3
1727502221,537.26171875,49.3
1727502221,537.26171875,45.9
1727502398,542.203125,50.2
1727502398,542.203125,54.3
1727502398,542.203125,48.4
1727502398,542.203125,53.2
1727502620,538.48046875,50.2
1727502620,538.48046875,50.0
1727502620,538.48046875,51.4
1727502620,538.48046875,38.7
1727502853,540.24609375,50.2
1727502853,540.24609375,54.3
1727502853,540.24609375,50.6
1727502853,540.24609375,39.4
1727503143,544.8359375,50.2
1727503143,544.8359375,53.2
1727503143,544.8359375,50.0
1727503143,544.8359375,57.8
1727503457,553.62109375,50.2
1727503457,553.62109375,55.6
1727503457,553.62109375,48.6
1727503457,553.62109375,55.3
1727503837,549.03125,50.2
1727503837,549.03125,55.3
1727503837,549.03125,48.9
1727503837,549.03125,57.8
1727504247,564.171875,50.2
1727504247,564.171875,55.6
1727504247,564.171875,47.6
1727504247,564.171875,55.6
1727504576,567.57421875,50.2
1727504576,567.57421875,46.3
1727504576,567.57421875,49.8
1727504576,567.57421875,53.7
1727505024,453.2890625,50.2
1727505024,453.2890625,46.9
1727505024,453.2890625,50.4
1727505024,453.2890625,57.8
1727505550,462.609375,50.2
1727505550,462.609375,38.2
1727505550,462.609375,50.4
1727505550,462.609375,56.8
1727506241,467.7265625,50.3
1727506241,467.7265625,50.0
1727506241,467.7265625,50.6
1727506241,467.7265625,40.6
1727506675,466.37890625,50.2
1727506675,466.37890625,52.4
1727506675,466.37890625,50.0
1727506675,466.37890625,55.6
1727507319,477.09765625,50.2
1727507319,477.09765625,38.2
1727507319,477.09765625,50.0
1727507319,477.09765625,57.8
1727507872,429.55859375,50.2
1727507872,429.55859375,54.3
1727507872,429.55859375,48.6
1727507872,429.55859375,52.4
1727508408,437.63671875,50.2
1727508408,437.63671875,52.3
1727508408,437.63671875,50.2
1727508408,437.63671875,44.1
1727508966,444.6171875,50.2
1727508966,444.6171875,36.1
1727508966,444.6171875,51.3
1727508966,444.6171875,41.9
1727509521,441.0078125,50.2
1727509521,441.0078125,54.3
1727509521,441.0078125,48.3
1727509521,441.0078125,55.6
1727510131,447.29296875,50.2
1727510131,447.29296875,39.4
1727510131,447.29296875,50.4
1727510131,447.29296875,56.8
1727510757,461.29296875,50.2
1727510757,461.29296875,48.7
1727510757,461.29296875,49.2
1727510757,461.29296875,56.8
1727511493,457.1328125,50.2
1727511493,457.1328125,51.2
1727511493,457.1328125,49.3
1727511493,457.1328125,58.7
1727512236,456.42578125,50.2
1727512236,456.42578125,55.6
1727512236,456.42578125,48.8
1727512236,456.42578125,58.7
1727512962,462.6953125,50.2
1727512962,462.6953125,51.0
1727512962,462.6953125,49.8
1727512962,462.6953125,56.5
1727514062,475.1796875,50.2
1727514062,475.1796875,38.2
1727514062,475.1796875,50.8
1727514062,475.1796875,40.6
1727514856,486.19140625,50.2
1727514856,486.19140625,55.3
1727514856,486.19140625,50.2
1727514856,486.19140625,38.7
1727515674,501.7578125,50.2
1727515674,501.7578125,56.2
1727515674,501.7578125,50.2
1727515674,501.7578125,42.9
1727516563,485.72265625,50.2
1727516563,485.72265625,46.2
1727516563,485.72265625,50.6
1727516563,485.72265625,44.4
1727517497,499.53125,50.2
1727517497,499.53125,53.1
1727517497,499.53125,50.3
1727517497,499.53125,40.6
1727518736,483.0234375,50.2
1727518736,483.0234375,42.9
1727518736,483.0234375,49.9
1727518736,483.0234375,56.8
1727519833,527.46875,50.3
1727519833,527.46875,55.3
1727519857,527.51953125,49.7
1727519857,527.51953125,55.3
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<h1> Parallel Plot</h1>
<div class="invert_in_dark_mode" id="parallel-plot"></div>
<h1> Job Status Distribution</h1>
<div class="invert_in_dark_mode" id="plotJobStatusDistribution"></div>
<h1> Boxplots</h1>
<div class="invert_in_dark_mode" id="plotBoxplot"></div>
<h1> Violin</h1>
<div class="invert_in_dark_mode" id="plotViolin"></div>
<h1> Histogram</h1>
<div class="invert_in_dark_mode" id="plotHistogram"></div>
<h1> Heatmap</h1>
<div class="invert_in_dark_mode" id="plotHeatmap"></div><br>
<h1>Correlation Heatmap Explanation</h1>
<p>
This is a heatmap that visualizes the correlation between numerical columns in a dataset. The values represented in the heatmap show the strength and direction of relationships between different variables.
</p>
<h2>How It Works</h2>
<p>
The heatmap uses a matrix to represent correlations between each pair of numerical columns. The calculation behind this is based on the concept of "correlation," which measures how strongly two variables are related. A correlation can be positive, negative, or zero:
</p>
<ul>
<li><strong>Positive correlation</strong>: Both variables increase or decrease together (e.g., if the temperature rises, ice cream sales increase).</li>
<li><strong>Negative correlation</strong>: As one variable increases, the other decreases (e.g., as the price of a product rises, the demand for it decreases).</li>
<li><strong>Zero correlation</strong>: There is no relationship between the two variables (e.g., height and shoe size might show zero correlation in some contexts).</li>
</ul>
<h2>Color Scale: Yellow to Purple (Viridis)</h2>
<p>
The heatmap uses a color scale called "Viridis," which ranges from yellow to purple. Here's what the colors represent:
</p>
<ul>
<li><strong>Yellow (brightest)</strong>: A strong positive correlation (close to +1). This indicates that as one variable increases, the other increases in a very predictable manner.</li>
<li><strong>Green</strong>: A moderate positive correlation. Variables are still positively related, but the relationship is not as strong.</li>
<li><strong>Blue</strong>: A weak or near-zero correlation. There is a small or no discernible relationship between the variables.</li>
<li><strong>Purple (darkest)</strong>: A strong negative correlation (close to -1). This indicates that as one variable increases, the other decreases in a very predictable manner.</li>
</ul>
<h2>What the Heatmap Shows</h2>
<p>
In the heatmap, each cell represents the correlation between two numerical columns. The color of the cell is determined by the correlation coefficient: from yellow for strong positive correlations, through green and blue for weaker correlations, to purple for strong negative correlations.
</p>
</body>
</html>
Copy raw data to clipboard
Download »export.html« as file