Copy raw data to clipboard
Download »results.csv« as file
trial_index,arm_name,trial_status,generation_method,result,n_samples,confidence,feature_proportion,n_clusters
0,0_0,COMPLETED,Sobol,0.841681424800347466330663337430,697,0.010000000000000000208166817117,0.054493993520736694335937500000,2
1,1_0,COMPLETED,Sobol,0.851505329635446228664363843563,531,0.050000000000000002775557561563,0.089709608070552351866133733438,3
2,2_0,COMPLETED,Sobol,0.848598255755672159494906736654,165,0.050000000000000002775557561563,0.133431331813335413150056751874,1
3,3_0,COMPLETED,Sobol,0.841714839442643802946975029045,970,0.005000000000000000104083408559,0.180374011769890790768400279376,1
4,4_0,COMPLETED,Sobol,0.841848498011828816345314407954,164,0.001000000000000000020816681712,0.050916207581758500533286593281,2
5,5_0,COMPLETED,Sobol,0.844855815818491673319101664674,880,0.250000000000000000000000000000,0.032522250898182392120361328125,4
6,6_0,COMPLETED,Sobol,0.841013131954422399338966442883,156,0.010000000000000000208166817117,0.064752514474093914031982421875,1
7,7_0,COMPLETED,Sobol,0.849333377886189788696924551914,743,0.005000000000000000104083408559,0.050803099945187571440108342813,4
8,8_0,COMPLETED,Sobol,0.847562401844488277902200934477,401,0.010000000000000000208166817117,0.017815119586884975433349609375,3
9,9_0,COMPLETED,Sobol,0.849433621813078465478952239209,612,0.050000000000000002775557561563,0.028564392961561681921756061797,4
10,10_0,COMPLETED,Sobol,0.861228990543656203193734199886,267,0.050000000000000002775557561563,0.136976843513548385278255636877,3
11,11_0,COMPLETED,Sobol,0.842483376215457546720699610887,903,0.001000000000000000020816681712,0.168821467645466349871696820628,4
12,12_0,COMPLETED,Sobol,0.841982156581013829743653786863,545,0.010000000000000000208166817117,0.014081121794879436839864617070,1
13,13_0,COMPLETED,Sobol,0.850736792862632373868336799205,129,0.005000000000000000104083408559,0.124128070846199992094405217813,4
14,14_0,COMPLETED,Sobol,0.848330938617302132698227978835,269,0.005000000000000000104083408559,0.022765718959271909194175265156,3
15,15_0,COMPLETED,Sobol,0.838941424132054636153554838529,218,0.001000000000000000020816681712,0.153062728978693496362240011877,1
16,16_0,COMPLETED,Sobol,0.843151669061382724734698967950,916,0.050000000000000002775557561563,0.003580087795853614807128906250,3
17,17_0,COMPLETED,Sobol,0.843218498345975175922717426147,701,0.010000000000000000208166817117,0.053518407605588437514487765156,2
18,18_0,COMPLETED,Sobol,0.848097036121228331495558450115,187,0.010000000000000000208166817117,0.168143008649349223748714621252,4
19,19_0,COMPLETED,Sobol,0.844388010826344070913762607233,856,0.005000000000000000104083408559,0.150274576433002959863216574377,2
20,20_0,COMPLETED,BoTorch,0.842048985865606280931672245060,281,0.001000000000000000020816681712,0.095511931688158177577996355012,1
21,21_0,COMPLETED,BoTorch,0.843920205834196579530726012308,462,0.001000000000000000020816681712,0.168500437375803557848996661050,1
22,22_0,COMPLETED,BoTorch,0.850436061081966121477648812288,100,0.001000000000000000020816681712,0.116121120229294508274797692593,1
23,23_0,COMPLETED,BoTorch,0.850436061081966121477648812288,100,0.001000000000000000020816681712,0.049297150296263164692689429103,1
24,24_0,COMPLETED,BoTorch,0.850436061081966121477648812288,100,0.001000000000000000020816681712,0.196277381682319645994638790398,1
25,25_0,COMPLETED,BoTorch,0.846125572225749356114476995572,514,0.001000000000000000020816681712,0.111283680291679329399379128063,1
26,26_0,FAILED,BoTorch,,1000,0.100000000000000005551115123126,0.000000000000000000000000000000,1
27,27_0,COMPLETED,BoTorch,0.838172887359240781357527794171,1000,0.001000000000000000020816681712,0.078333816082492915833235258560,1
28,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
29,29_0,FAILED,BoTorch,,100,0.001000000000000000020816681712,0.000000000000000000000000000000,1
30,30_0,COMPLETED,BoTorch,0.844454840110936633124083527946,411,0.001000000000000000020816681712,0.200000000000000011102230246252,1
31,31_0,COMPLETED,BoTorch,0.842483376215457546720699610887,1000,0.025000000000000001387778780781,0.082678555004395748451173631111,1
32,32_0,FAILED,BoTorch,,543,0.250000000000000000000000000000,0.000000000000000000000000000000,1
33,33_0,COMPLETED,BoTorch,0.836101179536873018172116189817,1000,0.050000000000000002775557561563,0.200000000000000011102230246252,1
34,34_0,COMPLETED,BoTorch,0.845290206168342939108129030501,100,0.001000000000000000020816681712,0.200000000000000011102230246252,2
35,35_0,COMPLETED,BoTorch,0.842884351923012697938020210131,1000,0.250000000000000000000000000000,0.116724986725779869556340884174,1
36,36_0,COMPLETED,BoTorch,0.844621913322417872116432135954,917,0.100000000000000005551115123126,0.039491857602488959766429132969,1
37,37_0,COMPLETED,BoTorch,0.840411668393089783535288006533,1000,0.001000000000000000020816681712,0.022693055889432149629936219526,2
38,38_0,FAILED,BoTorch,,100,0.100000000000000005551115123126,0.000000000000000000000000000000,1
39,39_0,COMPLETED,BoTorch,0.846559962575600621903504361399,491,0.001000000000000000020816681712,0.134851359300241835370570697705,1
40,40_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,2
41,41_0,COMPLETED,BoTorch,0.842249473719383856540332544682,391,0.001000000000000000020816681712,0.088530554386544446643370065431,1
42,42_0,FAILED,BoTorch,,626,0.250000000000000000000000000000,0.000000000000000000000000000000,1
43,29_0,FAILED,BoTorch,,100,0.001000000000000000020816681712,0.000000000000000000000000000000,1
44,44_0,COMPLETED,BoTorch,0.836836301667390647374134005076,988,0.050000000000000002775557561563,0.200000000000000011102230246252,2
45,45_0,COMPLETED,BoTorch,0.850135329301299869086960825371,236,0.005000000000000000104083408559,0.163511983093401397360011628734,1
46,46_0,COMPLETED,BoTorch,0.843118254419086499140689738852,947,0.001000000000000000020816681712,0.044674076127555001347602114947,1
47,47_0,COMPLETED,BoTorch,0.840612156246867359143948306155,1000,0.001000000000000000020816681712,0.150188058050470196747028239770,2
48,48_0,COMPLETED,BoTorch,0.842483376215457546720699610887,1000,0.025000000000000001387778780781,0.200000000000000011102230246252,1
49,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
50,50_0,COMPLETED,BoTorch,0.837972399505463316771169957065,1000,0.100000000000000005551115123126,0.200000000000000011102230246252,1
51,51_0,COMPLETED,BoTorch,0.843886791191900353936716783210,938,0.050000000000000002775557561563,0.200000000000000011102230246252,1
52,52_0,COMPLETED,BoTorch,0.842349717646272644344662694493,239,0.001000000000000000020816681712,0.196681510834082223793117805144,2
53,53_0,COMPLETED,BoTorch,0.847094596852340675496861877036,948,0.100000000000000005551115123126,0.200000000000000011102230246252,1
54,54_0,COMPLETED,BoTorch,0.837972399505463316771169957065,1000,0.100000000000000005551115123126,0.161267362247732248814457989283,1
55,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
56,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
57,57_0,COMPLETED,BoTorch,0.841948741938717493127342095249,1000,0.010000000000000000208166817117,0.122306006176385206885015577427,3
58,58_0,COMPLETED,BoTorch,0.838172887359240781357527794171,1000,0.001000000000000000020816681712,0.164751269798091320994970487845,1
59,59_0,COMPLETED,BoTorch,0.838039228790055767959188415261,1000,0.001000000000000000020816681712,0.200000000000000011102230246252,3
60,60_0,COMPLETED,BoTorch,0.849299963243893452080612860300,219,0.005000000000000000104083408559,0.093164711561329383027185713217,1
61,61_0,COMPLETED,BoTorch,0.841414107661977439533984579612,929,0.001000000000000000020816681712,0.001804314210812638617775771621,1
62,62_0,FAILED,BoTorch,,922,0.001000000000000000020816681712,0.000000000000000000000000000000,1
63,63_0,FAILED,BoTorch,,680,0.010000000000000000208166817117,0.000000000000000000000000000000,1
64,64_0,COMPLETED,BoTorch,0.840511912319978682361920618860,1000,0.005000000000000000104083408559,0.199963376911347967546106474401,3
65,65_0,COMPLETED,BoTorch,0.844822401176195447725092435576,1000,0.050000000000000002775557561563,0.136985669248943897624570809057,2
66,66_0,COMPLETED,BoTorch,0.842717278711531347923369139608,1000,0.100000000000000005551115123126,0.200000000000000011102230246252,3
67,67_0,COMPLETED,BoTorch,0.839877034116349729941930490895,1000,0.010000000000000000208166817117,0.120525135066867267186196954754,2
68,68_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.200000000000000011102230246252,2
69,69_0,COMPLETED,BoTorch,0.841514351588866227338314729423,1000,0.025000000000000001387778780781,0.196387355196368795784422900397,2
70,70_0,COMPLETED,BoTorch,0.839877034116349729941930490895,1000,0.010000000000000000208166817117,0.036178118103656724258154753215,2
71,71_0,COMPLETED,BoTorch,0.837671667724797064380481970147,1000,0.001000000000000000020816681712,0.041099193598007593974941187298,3
72,72_0,COMPLETED,BoTorch,0.841480936946570001744305500324,1000,0.025000000000000001387778780781,0.200000000000000011102230246252,3
73,73_0,COMPLETED,BoTorch,0.842550205500050108931020531600,1000,0.050000000000000002775557561563,0.137913496287657311167862417278,3
74,74_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.156104640761024149320235210325,3
75,75_0,FAILED,BoTorch,,759,0.001000000000000000020816681712,0.000000000000000000000000000000,1
76,76_0,COMPLETED,BoTorch,0.842683864069235122329359910509,1000,0.100000000000000005551115123126,0.132336088654343403403501611137,2
77,77_0,FAILED,BoTorch,,798,0.001000000000000000020816681712,0.000000000000000000000000000000,2
78,78_0,COMPLETED,BoTorch,0.840411668393089783535288006533,1000,0.001000000000000000020816681712,0.200000000000000011102230246252,2
79,79_0,COMPLETED,BoTorch,0.838172887359240781357527794171,1000,0.001000000000000000020816681712,0.200000000000000011102230246252,1
80,80_0,FAILED,BoTorch,,613,0.001000000000000000020816681712,0.000000000000000000000000000000,1
81,81_0,COMPLETED,BoTorch,0.840612156246867359143948306155,1000,0.001000000000000000020816681712,0.095136665646274654051239849650,2
82,82_0,FAILED,BoTorch,,643,0.050000000000000002775557561563,0.000000000000000000000000000000,1
83,83_0,COMPLETED,BoTorch,0.842216059077087519924020853068,1000,0.025000000000000001387778780781,0.200000000000000011102230246252,4
84,84_0,COMPLETED,BoTorch,0.842149229792495068736002394871,853,0.001000000000000000020816681712,0.200000000000000011102230246252,2
85,85_0,FAILED,BoTorch,,1000,0.010000000000000000208166817117,0.000000000000000000000000000000,1
86,86_0,COMPLETED,BoTorch,0.839542887693387251957233274879,1000,0.005000000000000000104083408559,0.125480464875883351849594760097,1
87,87_0,COMPLETED,BoTorch,0.838172887359240781357527794171,1000,0.001000000000000000020816681712,0.120728018491730412775631009481,1
88,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
89,89_0,COMPLETED,BoTorch,0.839108497343535875145903446537,1000,0.001000000000000000020816681712,0.111585437177154703225490095519,3
90,90_0,FAILED,BoTorch,,736,0.001000000000000000020816681712,0.000000000000000000000000000000,1
91,91_0,FAILED,BoTorch,,742,0.025000000000000001387778780781,0.000000000000000000000000000000,1
92,92_0,COMPLETED,BoTorch,0.840946302669829948150947984686,1000,0.001000000000000000020816681712,0.102829485131717024426478701571,4
93,93_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,3
94,94_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,2
95,95_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,3
96,96_0,COMPLETED,BoTorch,0.840612156246867359143948306155,1000,0.001000000000000000020816681712,0.200000000000000011102230246252,4
97,97_0,FAILED,BoTorch,,639,0.001000000000000000020816681712,0.000000000000000000000000000000,1
98,98_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,4
99,99_0,COMPLETED,BoTorch,0.836869716309686872968143234175,1000,0.001000000000000000020816681712,0.157408464426212507669688989154,4
100,100_0,COMPLETED,BoTorch,0.841915327296421267533332866151,1000,0.025000000000000001387778780781,0.121584838410418255572054135882,4
101,101_0,RUNNING,BoTorch,,990,0.050000000000000002775557561563,0.200000000000000011102230246252,1
102,102_0,COMPLETED,BoTorch,0.842416546930865095532681152690,977,0.050000000000000002775557561563,0.200000000000000011102230246252,2
103,103_0,COMPLETED,BoTorch,0.842282888361680082134341773781,978,0.025000000000000001387778780781,0.200000000000000011102230246252,2
104,104_0,COMPLETED,BoTorch,0.841881912654125041939323637052,977,0.050000000000000002775557561563,0.200000000000000011102230246252,3
105,105_0,FAILED,BoTorch,,987,0.001000000000000000020816681712,0.000000000000000000000000000000,3
106,106_0,COMPLETED,BoTorch,0.846727035787081860895852969406,985,0.001000000000000000020816681712,0.200000000000000011102230246252,4
107,107_0,COMPLETED,BoTorch,0.837671667724797064380481970147,987,0.050000000000000002775557561563,0.200000000000000011102230246252,1
108,108_0,COMPLETED,BoTorch,0.845256791526046713514119801403,974,0.010000000000000000208166817117,0.035122731151610186994815876460,2
109,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
110,110_0,COMPLETED,BoTorch,0.839977278043238517746260640706,978,0.100000000000000005551115123126,0.200000000000000011102230246252,2
111,111_0,COMPLETED,BoTorch,0.844488254753232858718092757044,974,0.025000000000000001387778780781,0.112830492604275980927930334019,3
112,112_0,COMPLETED,BoTorch,0.844755571891602885514771514863,981,0.001000000000000000020816681712,0.200000000000000011102230246252,3
113,113_0,COMPLETED,BoTorch,0.852507768904333884663060416642,670,0.010000000000000000208166817117,0.065467168958601135164698803237,2
114,114_0,COMPLETED,BoTorch,0.849868012162929842290282067552,973,0.005000000000000000104083408559,0.200000000000000011102230246252,3
115,115_0,COMPLETED,BoTorch,0.847061182210044449902852647938,677,0.010000000000000000208166817117,0.064885476415393231186534706012,1
116,116_0,COMPLETED,BoTorch,0.842015571223310055337663015962,202,0.001000000000000000020816681712,0.200000000000000011102230246252,1
117,117_0,COMPLETED,BoTorch,0.837170448090353236381133683608,899,0.001000000000000000020816681712,0.145199366594284118292534913053,1
118,118_0,COMPLETED,BoTorch,0.840779229458348709158599376678,332,0.001000000000000000020816681712,0.101228831414884881678695194296,1
119,98_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,4
120,120_0,COMPLETED,BoTorch,0.842850937280716472344010981033,909,0.010000000000000000208166817117,0.104310504741430179476147088735,1
121,121_0,COMPLETED,BoTorch,0.838774350920573397161206230521,889,0.001000000000000000020816681712,0.009651100271967950894325127820,1
122,122_0,COMPLETED,BoTorch,0.842282888361680082134341773781,662,0.001000000000000000020816681712,0.083601222593334148514010450981,1
123,123_0,FAILED,BoTorch,,573,0.001000000000000000020816681712,0.000000000000000000000000000000,1
124,124_0,FAILED,BoTorch,,902,0.005000000000000000104083408559,0.000000000000000000000000000000,4
125,125_0,FAILED,BoTorch,,900,0.010000000000000000208166817117,0.000000000000000000000000000000,1
126,126_0,COMPLETED,BoTorch,0.851572158920038790874684764276,680,0.005000000000000000104083408559,0.200000000000000011102230246252,1
127,127_0,COMPLETED,BoTorch,0.838540448424499595958536701801,920,0.005000000000000000104083408559,0.200000000000000011102230246252,1
128,128_0,COMPLETED,BoTorch,0.845925084371971780505816695950,319,0.001000000000000000020816681712,0.200000000000000011102230246252,1
129,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
130,130_0,COMPLETED,BoTorch,0.838607277709092158168857622513,1000,0.001000000000000000020816681712,0.050536297826837009439238102004,4
131,131_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.200000000000000011102230246252,4
132,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
133,133_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.082610991424067137245401681866,4
134,134_0,FAILED,BoTorch,,682,0.001000000000000000020816681712,0.000000000000000000000000000000,1
135,135_0,FAILED,BoTorch,,1000,0.010000000000000000208166817117,0.000000000000000000000000000000,4
136,136_0,COMPLETED,BoTorch,0.842884351923012697938020210131,1000,0.250000000000000000000000000000,0.200000000000000011102230246252,1
137,137_0,FAILED,BoTorch,,653,0.250000000000000000000000000000,0.000000000000000000000000000000,1
138,131_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.200000000000000011102230246252,4
139,139_0,FAILED,BoTorch,,412,0.001000000000000000020816681712,0.000000000000000000000000000000,1
140,140_0,COMPLETED,BoTorch,0.845524108664416740310798559221,800,0.001000000000000000020816681712,0.031895402522216786955766565370,1
141,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
142,142_0,FAILED,BoTorch,,648,0.001000000000000000020816681712,0.000000000000000000000000000000,1
143,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
144,144_0,FAILED,BoTorch,,744,0.001000000000000000020816681712,0.000000000000000000000000000000,1
145,145_0,FAILED,BoTorch,,944,0.001000000000000000020816681712,0.000000000000000000000000000000,3
146,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
147,147_0,COMPLETED,BoTorch,0.843385571557456525937368496670,827,0.250000000000000000000000000000,0.200000000000000011102230246252,4
148,135_0,FAILED,BoTorch,,1000,0.010000000000000000208166817117,0.000000000000000000000000000000,4
149,149_0,FAILED,BoTorch,,483,0.001000000000000000020816681712,0.000000000000000000000000000000,1
150,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
151,95_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,3
152,152_0,FAILED,BoTorch,,421,0.001000000000000000020816681712,0.000000000000000000000000000000,1
153,153_0,FAILED,BoTorch,,852,0.001000000000000000020816681712,0.000000000000000000000000000000,2
154,154_0,FAILED,BoTorch,,679,0.250000000000000000000000000000,0.000000000000000000000000000000,1
155,155_0,FAILED,BoTorch,,490,0.250000000000000000000000000000,0.000000000000000000000000000000,1
156,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
157,157_0,FAILED,BoTorch,,419,0.001000000000000000020816681712,0.000000000000000000000000000000,1
158,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
159,135_0,FAILED,BoTorch,,1000,0.010000000000000000208166817117,0.000000000000000000000000000000,4
160,160_0,COMPLETED,BoTorch,0.838674106993684609356876080710,1000,0.001000000000000000020816681712,0.079668850794297974005075957393,3
161,161_0,COMPLETED,BoTorch,0.843218498345975175922717426147,1000,0.005000000000000000104083408559,0.031497912163918916073068743344,4
162,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
163,163_0,FAILED,BoTorch,,454,0.001000000000000000020816681712,0.000000000000000000000000000000,2
164,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
165,165_0,RUNNING,BoTorch,,1000,0.250000000000000000000000000000,0.140743753073893668181781890780,4
166,166_0,FAILED,BoTorch,,965,0.025000000000000001387778780781,0.000000000000000000000000000000,3
167,93_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,3
168,168_0,FAILED,BoTorch,,1000,0.025000000000000001387778780781,0.000000000000000000000000000000,4
169,135_0,FAILED,BoTorch,,1000,0.010000000000000000208166817117,0.000000000000000000000000000000,4
170,95_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,3
171,98_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,4
172,172_0,COMPLETED,BoTorch,0.843719717980419003922065712686,1000,0.010000000000000000208166817117,0.072570910156620455078169129592,4
173,173_0,COMPLETED,BoTorch,0.842683864069235122329359910509,1000,0.010000000000000000208166817117,0.200000000000000011102230246252,1
174,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
175,152_0,FAILED,BoTorch,,421,0.001000000000000000020816681712,0.000000000000000000000000000000,1
176,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
177,177_0,FAILED,BoTorch,,100,0.250000000000000000000000000000,0.000000000000000000000000000000,1
178,95_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,3
179,179_0,FAILED,BoTorch,,640,0.250000000000000000000000000000,0.000000000000000000000000000000,1
180,180_0,FAILED,BoTorch,,510,0.001000000000000000020816681712,0.000000000000000000000000000000,1
181,181_0,COMPLETED,BoTorch,0.838172887359240781357527794171,1000,0.001000000000000000020816681712,0.145277293813302343927773563337,1
182,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
183,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
184,184_0,COMPLETED,BoTorch,0.840612156246867359143948306155,1000,0.001000000000000000020816681712,0.079814653597244183957926111361,2
185,185_0,FAILED,BoTorch,,465,0.250000000000000000000000000000,0.000000000000000000000000000000,1
186,186_0,FAILED,BoTorch,,224,0.250000000000000000000000000000,0.000000000000000000000000000000,1
187,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
188,188_0,COMPLETED,BoTorch,0.841748254084940028540984258143,1000,0.001000000000000000020816681712,0.058638395449828718819507145099,4
189,189_0,FAILED,BoTorch,,246,0.250000000000000000000000000000,0.000000000000000000000000000000,1
190,190_0,FAILED,BoTorch,,408,0.001000000000000000020816681712,0.000000000000000000000000000000,1
191,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
192,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
193,193_0,FAILED,BoTorch,,670,0.250000000000000000000000000000,0.000000000000000000000000000000,1
194,194_0,FAILED,BoTorch,,455,0.001000000000000000020816681712,0.000000000000000000000000000000,1
195,28_0,RUNNING,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
196,196_0,FAILED,BoTorch,,559,0.001000000000000000020816681712,0.000000000000000000000000000000,1
197,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
198,198_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,3
199,95_0,RUNNING,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,3
200,200_0,FAILED,BoTorch,,424,0.001000000000000000020816681712,0.000000000000000000000000000000,1
201,177_0,FAILED,BoTorch,,100,0.250000000000000000000000000000,0.000000000000000000000000000000,1
202,40_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,2
203,85_0,FAILED,BoTorch,,1000,0.010000000000000000208166817117,0.000000000000000000000000000000,1
204,204_0,FAILED,BoTorch,,353,0.001000000000000000020816681712,0.000000000000000000000000000000,1
205,205_0,COMPLETED,BoTorch,0.858522404517659598610634930083,356,0.250000000000000000000000000000,0.010170518095815836087658645681,1
206,206_0,FAILED,BoTorch,,407,0.250000000000000000000000000000,0.000000000000000000000000000000,1
207,207_0,FAILED,BoTorch,,403,0.001000000000000000020816681712,0.000000000000000000000000000000,1
208,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
209,209_0,FAILED,BoTorch,,416,0.001000000000000000020816681712,0.000000000000000000000000000000,1
210,95_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,3
211,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
212,198_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,3
213,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
214,214_0,FAILED,BoTorch,,1000,0.050000000000000002775557561563,0.000000000000000000000000000000,1
215,215_0,FAILED,BoTorch,,719,0.250000000000000000000000000000,0.000000000000000000000000000000,1
216,216_0,COMPLETED,BoTorch,0.846626791860193073091522819595,812,0.250000000000000000000000000000,0.200000000000000011102230246252,1
217,217_0,FAILED,BoTorch,,806,0.250000000000000000000000000000,0.000000000000000000000000000000,1
218,218_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,2
219,219_0,COMPLETED,BoTorch,0.846125572225749356114476995572,551,0.010000000000000000208166817117,0.021834769656869645881869246296,1
220,220_0,COMPLETED,BoTorch,0.845423864737527952506468409410,742,0.250000000000000000000000000000,0.148382318208447216978385085895,1
221,221_0,COMPLETED,BoTorch,0.839977278043238517746260640706,911,0.001000000000000000020816681712,0.190363033361253264352797032188,1
222,222_0,COMPLETED,BoTorch,0.840278009823904881159251090139,904,0.001000000000000000020816681712,0.072089437293909916504297541451,2
223,223_0,COMPLETED,BoTorch,0.842683864069235122329359910509,888,0.001000000000000000020816681712,0.200000000000000011102230246252,1
224,224_0,COMPLETED,BoTorch,0.839442643766498464152903125068,904,0.001000000000000000020816681712,0.049333454538326923510815902318,1
225,225_0,COMPLETED,BoTorch,0.842784107996123910133690060320,893,0.001000000000000000020816681712,0.200000000000000011102230246252,2
226,226_0,COMPLETED,BoTorch,0.838440204497610919176509014505,915,0.001000000000000000020816681712,0.200000000000000011102230246252,2
227,227_0,COMPLETED,BoTorch,0.840445083035386120151599698147,354,0.001000000000000000020816681712,0.022174112886802592459201122210,1
228,228_0,COMPLETED,BoTorch,0.842583620142346445547332223214,355,0.001000000000000000020816681712,0.200000000000000011102230246252,1
229,229_0,COMPLETED,BoTorch,0.840511912319978682361920618860,988,0.001000000000000000020816681712,0.142672710143254860559736130199,1
230,230_0,COMPLETED,BoTorch,0.850135329301299869086960825371,349,0.001000000000000000020816681712,0.015762747529365114806942926862,2
231,231_0,COMPLETED,BoTorch,0.842583620142346445547332223214,981,0.250000000000000000000000000000,0.200000000000000011102230246252,3
232,232_0,COMPLETED,BoTorch,0.839609716977979703145251733076,901,0.005000000000000000104083408559,0.091054695575964281206715611461,2
233,233_0,COMPLETED,BoTorch,0.847929962909747092503209842107,353,0.005000000000000000104083408559,0.140399676928489897109741946224,1
234,234_0,COMPLETED,BoTorch,0.840278009823904881159251090139,930,0.001000000000000000020816681712,0.200000000000000011102230246252,1
235,235_0,FAILED,BoTorch,,333,0.001000000000000000020816681712,0.000000000000000000000000000000,3
236,236_0,COMPLETED,BoTorch,0.844321181541751619725744149036,921,0.005000000000000000104083408559,0.200000000000000011102230246252,3
237,237_0,FAILED,BoTorch,,358,0.001000000000000000020816681712,0.000000000000000000000000000000,3
238,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
239,239_0,FAILED,BoTorch,,869,0.001000000000000000020816681712,0.000000000000000000000000000000,1
240,240_0,COMPLETED,BoTorch,0.842182644434791294330011623970,974,0.250000000000000000000000000000,0.127576543277154758060376593676,4
241,241_0,COMPLETED,BoTorch,0.841146790523607412737305821793,920,0.001000000000000000020816681712,0.144808163674682910393443080466,1
242,242_0,FAILED,BoTorch,,713,0.025000000000000001387778780781,0.000000000000000000000000000000,1
243,243_0,COMPLETED,BoTorch,0.842784107996123910133690060320,348,0.001000000000000000020816681712,0.055481838679636158451202732067,4
244,244_0,COMPLETED,BoTorch,0.843185083703678950328708197048,899,0.025000000000000001387778780781,0.200000000000000011102230246252,4
245,245_0,FAILED,BoTorch,,644,0.001000000000000000020816681712,0.000000000000000000000000000000,1
246,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
247,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
248,248_0,COMPLETED,BoTorch,0.840411668393089783535288006533,1000,0.001000000000000000020816681712,0.120948394532869235584726652633,2
249,249_0,COMPLETED,BoTorch,0.845323620810639164702138259599,690,0.250000000000000000000000000000,0.200000000000000011102230246252,4
250,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
251,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
252,252_0,FAILED,BoTorch,,1000,0.050000000000000002775557561563,0.000000000000000000000000000000,4
253,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
254,254_0,FAILED,BoTorch,,717,0.001000000000000000020816681712,0.000000000000000000000000000000,1
255,255_0,FAILED,BoTorch,,924,0.005000000000000000104083408559,0.000000000000000000000000000000,1
256,256_0,FAILED,BoTorch,,832,0.025000000000000001387778780781,0.000000000000000000000000000000,1
257,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
258,258_0,FAILED,BoTorch,,1000,0.100000000000000005551115123126,0.000000000000000000000000000000,4
259,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
260,260_0,FAILED,BoTorch,,953,0.001000000000000000020816681712,0.000000000000000000000000000000,3
261,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
262,262_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.155225728258488848698704032358,2
263,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
264,264_0,FAILED,BoTorch,,523,0.001000000000000000020816681712,0.000000000000000000000000000000,1
265,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
266,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
267,252_0,FAILED,BoTorch,,1000,0.050000000000000002775557561563,0.000000000000000000000000000000,4
268,260_0,FAILED,BoTorch,,953,0.001000000000000000020816681712,0.000000000000000000000000000000,3
269,269_0,COMPLETED,BoTorch,0.844020449761085256312753699603,901,0.050000000000000002775557561563,0.007906343953206008620671063625,3
270,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
271,271_0,FAILED,BoTorch,,991,0.100000000000000005551115123126,0.000000000000000000000000000000,3
272,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
273,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
274,274_0,FAILED,BoTorch,,632,0.001000000000000000020816681712,0.000000000000000000000000000000,1
275,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
276,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
277,277_0,FAILED,BoTorch,,893,0.005000000000000000104083408559,0.000000000000000000000000000000,1
278,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
279,279_0,FAILED,BoTorch,,863,0.010000000000000000208166817117,0.000000000000000000000000000000,1
280,280_0,FAILED,BoTorch,,506,0.001000000000000000020816681712,0.000000000000000000000000000000,1
281,281_0,COMPLETED,BoTorch,0.853343134961740190647105919197,327,0.001000000000000000020816681712,0.200000000000000011102230246252,4
282,258_0,FAILED,BoTorch,,1000,0.100000000000000005551115123126,0.000000000000000000000000000000,4
283,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
284,284_0,FAILED,BoTorch,,643,0.001000000000000000020816681712,0.000000000000000000000000000000,1
285,285_0,FAILED,BoTorch,,538,0.001000000000000000020816681712,0.000000000000000000000000000000,4
286,286_0,FAILED,BoTorch,,560,0.001000000000000000020816681712,0.000000000000000000000000000000,1
287,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
288,218_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,2
289,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
290,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
291,291_0,COMPLETED,BoTorch,0.844621913322417872116432135954,917,0.100000000000000005551115123126,0.039495576573283820709381330971,1
292,40_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,2
293,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
294,294_0,FAILED,BoTorch,,452,0.001000000000000000020816681712,0.000000000000000000000000000000,1
295,295_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.117482891287608026686939410865,3
296,296_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.100000000000000005551115123126,0.200000000000000011102230246252,4
297,297_0,COMPLETED,BoTorch,0.843753132622715229516074941785,359,0.001000000000000000020816681712,0.024196096071949932393430060529,1
298,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
299,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
300,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
301,301_0,COMPLETED,BoTorch,0.842182644434791294330011623970,1000,0.100000000000000005551115123126,0.118353408697022405293708402496,4
302,302_0,COMPLETED,BoTorch,0.840110936612423531144600019616,995,0.050000000000000002775557561563,0.200000000000000011102230246252,1
303,303_0,COMPLETED,BoTorch,0.837170448090353236381133683608,896,0.005000000000000000104083408559,0.013358932732360865106024938598,1
304,304_0,COMPLETED,BoTorch,0.845858255087379329317798237753,913,0.005000000000000000104083408559,0.200000000000000011102230246252,2
305,305_0,FAILED,BoTorch,,895,0.001000000000000000020816681712,0.000000000000000000000000000000,1
306,306_0,COMPLETED,BoTorch,0.842483376215457546720699610887,929,0.005000000000000000104083408559,0.200000000000000011102230246252,1
307,307_0,COMPLETED,BoTorch,0.840311424466201106753260319238,932,0.010000000000000000208166817117,0.200000000000000011102230246252,1
308,308_0,COMPLETED,BoTorch,0.838005814147759542365179186163,217,0.001000000000000000020816681712,0.200000000000000011102230246252,2
309,309_0,COMPLETED,BoTorch,0.838807765562869622755215459620,903,0.005000000000000000104083408559,0.200000000000000011102230246252,1
310,310_0,COMPLETED,BoTorch,0.841648010158051240736654108332,996,0.050000000000000002775557561563,0.200000000000000011102230246252,1
311,311_0,COMPLETED,BoTorch,0.842015571223310055337663015962,924,0.005000000000000000104083408559,0.200000000000000011102230246252,2
312,312_0,COMPLETED,BoTorch,0.837471179871019488771821670525,158,0.001000000000000000020816681712,0.008219790664827255136093420163,1
313,313_0,COMPLETED,BoTorch,0.837270692017241913163161370903,165,0.005000000000000000104083408559,0.140777008799616937251286685751,1
314,314_0,FAILED,BoTorch,,991,0.005000000000000000104083408559,0.000000000000000000000000000000,1
315,315_0,FAILED,BoTorch,,987,0.100000000000000005551115123126,0.000000000000000000000000000000,4
316,316_0,COMPLETED,BoTorch,0.843084839776790162524378047237,986,0.100000000000000005551115123126,0.184930903161941134760226645994,4
317,317_0,COMPLETED,BoTorch,0.830287031777324768810899513483,164,0.001000000000000000020816681712,0.084980383925100724806789287413,1
318,318_0,RUNNING,BoTorch,,165,0.005000000000000000104083408559,0.029829687685756223203270565136,1
319,319_0,COMPLETED,BoTorch,0.840445083035386120151599698147,159,0.001000000000000000020816681712,0.123440122463064183566672227244,1
320,320_0,FAILED,BoTorch,,885,0.005000000000000000104083408559,0.000000000000000000000000000000,1
321,321_0,COMPLETED,BoTorch,0.831356300330804987019917007274,168,0.001000000000000000020816681712,0.040692450743706837235080797655,1
322,322_0,FAILED,BoTorch,,874,0.001000000000000000020816681712,0.000000000000000000000000000000,3
323,323_0,COMPLETED,BoTorch,0.840511912319978682361920618860,175,0.001000000000000000020816681712,0.002339118748376654757098469517,1
324,324_0,FAILED,BoTorch,,723,0.025000000000000001387778780781,0.000000000000000000000000000000,1
325,325_0,COMPLETED,BoTorch,0.838005814147759542365179186163,156,0.005000000000000000104083408559,0.083567982087696418558309119362,1
326,326_0,FAILED,BoTorch,,861,0.001000000000000000020816681712,0.000000000000000000000000000000,4
327,327_0,COMPLETED,BoTorch,0.828649714304808382436817737471,169,0.001000000000000000020816681712,0.100332095958836395310775913003,1
328,328_0,FAILED,BoTorch,,886,0.005000000000000000104083408559,0.000000000000000000000000000000,2
329,329_0,FAILED,BoTorch,,716,0.050000000000000002775557561563,0.000000000000000000000000000000,2
330,330_0,FAILED,BoTorch,,730,0.010000000000000000208166817117,0.000000000000000000000000000000,1
331,331_0,COMPLETED,BoTorch,0.842216059077087519924020853068,986,0.100000000000000005551115123126,0.200000000000000011102230246252,1
332,332_0,FAILED,BoTorch,,877,0.010000000000000000208166817117,0.000000000000000000000000000000,1
333,333_0,COMPLETED,BoTorch,0.834363618137467843993704263994,172,0.001000000000000000020816681712,0.084898414484966266968513082247,1
334,334_0,FAILED,BoTorch,,873,0.001000000000000000020816681712,0.000000000000000000000000000000,3
335,335_0,COMPLETED,BoTorch,0.843786547265011566132386633399,889,0.005000000000000000104083408559,0.008676660294084570165806802322,3
336,336_0,COMPLETED,BoTorch,0.834363618137467843993704263994,172,0.001000000000000000020816681712,0.085852013275284078108740004609,1
337,337_0,FAILED,BoTorch,,872,0.005000000000000000104083408559,0.000000000000000000000000000000,2
338,338_0,FAILED,BoTorch,,711,0.001000000000000000020816681712,0.000000000000000000000000000000,1
339,339_0,FAILED,BoTorch,,863,0.025000000000000001387778780781,0.000000000000000000000000000000,1
340,340_0,FAILED,BoTorch,,875,0.001000000000000000020816681712,0.000000000000000000000000000000,4
341,341_0,FAILED,BoTorch,,871,0.010000000000000000208166817117,0.000000000000000000000000000000,2
342,342_0,FAILED,BoTorch,,897,0.001000000000000000020816681712,0.000000000000000000000000000000,4
343,343_0,COMPLETED,BoTorch,0.837571423797908276576151820336,171,0.001000000000000000020816681712,0.085041675570839858622207430017,1
344,344_0,FAILED,BoTorch,,852,0.050000000000000002775557561563,0.000000000000000000000000000000,1
345,345_0,FAILED,BoTorch,,871,0.025000000000000001387778780781,0.000000000000000000000000000000,1
346,346_0,FAILED,BoTorch,,859,0.001000000000000000020816681712,0.000000000000000000000000000000,1
347,347_0,COMPLETED,BoTorch,0.843686303338122778328056483588,933,0.100000000000000005551115123126,0.054333929002806674590786428780,1
348,332_0,FAILED,BoTorch,,877,0.010000000000000000208166817117,0.000000000000000000000000000000,1
349,349_0,COMPLETED,BoTorch,0.843251912988271401516726655245,851,0.025000000000000001387778780781,0.040025767910441205355009941513,1
350,350_0,COMPLETED,BoTorch,0.843385571557456525937368496670,831,0.025000000000000001387778780781,0.101709554600000778856738747891,1
351,338_0,FAILED,BoTorch,,711,0.001000000000000000020816681712,0.000000000000000000000000000000,1
352,352_0,COMPLETED,BoTorch,0.840912888027533611534636293072,853,0.025000000000000001387778780781,0.028619189780432263692233618713,1
353,353_0,FAILED,BoTorch,,873,0.005000000000000000104083408559,0.000000000000000000000000000000,1
354,354_0,FAILED,BoTorch,,732,0.010000000000000000208166817117,0.000000000000000000000000000000,1
355,355_0,RUNNING,BoTorch,,847,0.010000000000000000208166817117,0.110757259339255800800749796053,1
356,356_0,FAILED,BoTorch,,857,0.050000000000000002775557561563,0.000000000000000000000000000000,1
357,357_0,FAILED,BoTorch,,859,0.250000000000000000000000000000,0.000000000000000000000000000000,1
358,358_0,FAILED,BoTorch,,877,0.001000000000000000020816681712,0.000000000000000000000000000000,1
359,359_0,FAILED,BoTorch,,771,0.250000000000000000000000000000,0.000000000000000000000000000000,4
360,360_0,FAILED,BoTorch,,738,0.010000000000000000208166817117,0.000000000000000000000000000000,1
361,361_0,FAILED,BoTorch,,765,0.100000000000000005551115123126,0.000000000000000000000000000000,3
362,362_0,FAILED,BoTorch,,714,0.001000000000000000020816681712,0.000000000000000000000000000000,1
363,363_0,COMPLETED,BoTorch,0.842850937280716472344010981033,742,0.005000000000000000104083408559,0.055052424409314459907704986108,1
364,364_0,FAILED,BoTorch,,606,0.001000000000000000020816681712,0.000000000000000000000000000000,1
365,365_0,FAILED,BoTorch,,751,0.025000000000000001387778780781,0.000000000000000000000000000000,2
366,366_0,COMPLETED,BoTorch,0.861228990543656203193734199886,100,0.250000000000000000000000000000,0.200000000000000011102230246252,4
367,367_0,FAILED,BoTorch,,733,0.050000000000000002775557561563,0.000000000000000000000000000000,1
368,368_0,FAILED,BoTorch,,719,0.010000000000000000208166817117,0.000000000000000000000000000000,1
369,369_0,COMPLETED,BoTorch,0.846292645437230595106825603580,737,0.025000000000000001387778780781,0.038154239066357273357787960322,1
370,370_0,FAILED,BoTorch,,754,0.050000000000000002775557561563,0.000000000000000000000000000000,2
371,371_0,COMPLETED,BoTorch,0.861228990543656203193734199886,100,0.250000000000000000000000000000,0.200000000000000011102230246252,3
372,372_0,FAILED,BoTorch,,761,0.050000000000000002775557561563,0.000000000000000000000000000000,1
373,373_0,FAILED,BoTorch,,703,0.001000000000000000020816681712,0.000000000000000000000000000000,1
374,374_0,COMPLETED,BoTorch,0.834363618137467843993704263994,172,0.001000000000000000020816681712,0.090442087505985466200364442102,1
375,375_0,FAILED,BoTorch,,769,0.250000000000000000000000000000,0.000000000000000000000000000000,4
376,376_0,COMPLETED,BoTorch,0.845323620810639164702138259599,760,0.250000000000000000000000000000,0.071603655009983099843928755490,4
377,377_0,FAILED,BoTorch,,434,0.001000000000000000020816681712,0.000000000000000000000000000000,1
378,378_0,FAILED,BoTorch,,863,0.001000000000000000020816681712,0.000000000000000000000000000000,1
379,379_0,FAILED,BoTorch,,443,0.001000000000000000020816681712,0.000000000000000000000000000000,3
380,380_0,COMPLETED,BoTorch,0.844254352257159057515423228324,436,0.001000000000000000020816681712,0.000000000000000000298907180617,1
381,381_0,COMPLETED,BoTorch,0.849934841447522293478300525749,763,0.100000000000000005551115123126,0.035206496838175102559453932827,3
382,382_0,COMPLETED,BoTorch,0.846593377217896847497513590497,738,0.025000000000000001387778780781,0.036793639676769289426072617744,1
383,383_0,COMPLETED,BoTorch,0.850770207504928599462346028304,422,0.001000000000000000020816681712,0.044328048130094027667880141053,2
384,384_0,FAILED,BoTorch,,445,0.001000000000000000020816681712,0.000000000000000000000000000000,4
385,385_0,FAILED,BoTorch,,602,0.001000000000000000020816681712,0.000000000000000000000000000000,1
386,386_0,FAILED,BoTorch,,576,0.001000000000000000020816681712,0.000000000000000000000000000000,4
387,387_0,FAILED,BoTorch,,616,0.001000000000000000020816681712,0.000000000000000000000000000000,3
388,388_0,FAILED,BoTorch,,858,0.001000000000000000020816681712,0.000000000000000000000000000000,1
389,389_0,FAILED,BoTorch,,572,0.001000000000000000020816681712,0.000000000000000000000000000000,2
390,390_0,FAILED,BoTorch,,842,0.001000000000000000020816681712,0.000000000000000000000000000000,4
391,391_0,COMPLETED,BoTorch,0.851271427139372427461694314843,597,0.001000000000000000020816681712,0.031408823450167593083204309323,4
392,392_0,FAILED,BoTorch,,538,0.001000000000000000020816681712,0.000000000000000000000000000000,3
393,393_0,FAILED,BoTorch,,545,0.001000000000000000020816681712,0.000000000000000000000000000000,4
394,394_0,FAILED,BoTorch,,543,0.001000000000000000020816681712,0.000000000000000000000000000000,3
395,395_0,FAILED,BoTorch,,868,0.001000000000000000020816681712,0.000000000000000000000000000000,1
396,396_0,FAILED,BoTorch,,844,0.001000000000000000020816681712,0.000000000000000000000000000000,4
397,397_0,FAILED,BoTorch,,859,0.001000000000000000020816681712,0.000000000000000000000000000000,3
398,398_0,COMPLETED,BoTorch,0.845824840445082992701486546139,839,0.005000000000000000104083408559,0.068559442791628247282353925129,4
399,373_0,FAILED,BoTorch,,703,0.001000000000000000020816681712,0.000000000000000000000000000000,1
400,400_0,FAILED,BoTorch,,860,0.001000000000000000020816681712,0.000000000000000000000000000000,1
401,401_0,FAILED,BoTorch,,707,0.001000000000000000020816681712,0.000000000000000000000000000000,1
402,402_0,COMPLETED,BoTorch,0.854245330303739058841472342465,478,0.250000000000000000000000000000,0.200000000000000011102230246252,1
403,403_0,COMPLETED,BoTorch,0.843953620476492805124735241407,849,0.005000000000000000104083408559,0.044349552237808925747586386024,3
404,404_0,FAILED,BoTorch,,867,0.001000000000000000020816681712,0.000000000000000000000000000000,1
405,405_0,COMPLETED,BoTorch,0.844688742607010434326753056666,674,0.001000000000000000020816681712,0.009341796367090933472798752746,1
406,406_0,COMPLETED,BoTorch,0.847061182210044449902852647938,841,0.005000000000000000104083408559,0.068689304510479470833317350298,4
407,407_0,COMPLETED,BoTorch,0.846158986868045581708486224670,835,0.010000000000000000208166817117,0.200000000000000011102230246252,4
408,408_0,COMPLETED,BoTorch,0.844688742607010434326753056666,850,0.001000000000000000020816681712,0.067445689928380250788286787156,4
409,409_0,FAILED,BoTorch,,870,0.005000000000000000104083408559,0.000000000000000000000000000000,1
410,410_0,FAILED,BoTorch,,616,0.250000000000000000000000000000,0.000000000000000000000000000000,1
411,411_0,FAILED,BoTorch,,658,0.250000000000000000000000000000,0.000000000000000000000000000000,1
412,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
413,413_0,RUNNING,BoTorch,,977,0.001000000000000000020816681712,0.035353581424803895427722011391,1
414,414_0,FAILED,BoTorch,,688,0.250000000000000000000000000000,0.000000000000000000000000000000,1
415,415_0,FAILED,BoTorch,,647,0.250000000000000000000000000000,0.000000000000000000000000000000,1
416,416_0,RUNNING,BoTorch,,689,0.005000000000000000104083408559,0.088299343110396666389760866878,2
417,417_0,COMPLETED,BoTorch,0.851505329635446228664363843563,625,0.100000000000000005551115123126,0.046617598594046953663916355026,1
418,418_0,FAILED,BoTorch,,853,0.250000000000000000000000000000,0.000000000000000000000000000000,1
419,239_0,FAILED,BoTorch,,869,0.001000000000000000020816681712,0.000000000000000000000000000000,1
420,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
421,421_0,FAILED,BoTorch,,870,0.001000000000000000020816681712,0.000000000000000000000000000000,1
422,422_0,FAILED,BoTorch,,878,0.005000000000000000104083408559,0.000000000000000000000000000000,1
423,423_0,COMPLETED,BoTorch,0.839576302335683477551242503978,997,0.001000000000000000020816681712,0.151175894104641828086244004226,2
424,424_0,COMPLETED,BoTorch,0.834363618137467843993704263994,172,0.001000000000000000020816681712,0.091518382375551154961357269713,1
425,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
426,426_0,COMPLETED,BoTorch,0.839576302335683477551242503978,896,0.001000000000000000020816681712,0.064976667097237081338612085801,1
427,427_0,FAILED,BoTorch,,882,0.010000000000000000208166817117,0.000000000000000000000000000000,1
428,428_0,COMPLETED,BoTorch,0.854746549938182886840820629004,166,0.010000000000000000208166817117,0.007916691422013058185291889401,2
429,400_0,FAILED,BoTorch,,860,0.001000000000000000020816681712,0.000000000000000000000000000000,1
430,421_0,FAILED,BoTorch,,870,0.001000000000000000020816681712,0.000000000000000000000000000000,1
431,418_0,FAILED,BoTorch,,853,0.250000000000000000000000000000,0.000000000000000000000000000000,1
432,432_0,FAILED,BoTorch,,871,0.005000000000000000104083408559,0.000000000000000000000000000000,1
433,433_0,FAILED,BoTorch,,849,0.250000000000000000000000000000,0.000000000000000000000000000000,1
434,434_0,FAILED,BoTorch,,862,0.001000000000000000020816681712,0.000000000000000000000000000000,1
435,435_0,COMPLETED,BoTorch,0.837571423797908276576151820336,171,0.001000000000000000020816681712,0.081554789913772227083477162068,1
436,436_0,COMPLETED,BoTorch,0.845256791526046713514119801403,847,0.010000000000000000208166817117,0.110796472013699159875343980275,1
437,437_0,COMPLETED,BoTorch,0.845256791526046713514119801403,846,0.005000000000000000104083408559,0.073481745543256329900039247605,1
438,438_0,COMPLETED,BoTorch,0.844621913322417872116432135954,846,0.010000000000000000208166817117,0.119762452563734994592792304502,1
439,378_0,FAILED,BoTorch,,863,0.001000000000000000020816681712,0.000000000000000000000000000000,1
440,440_0,FAILED,BoTorch,,951,0.250000000000000000000000000000,0.000000000000000000000000000000,4
441,441_0,COMPLETED,BoTorch,0.847027767567748224308843418839,474,0.001000000000000000020816681712,0.200000000000000011102230246252,4
442,442_0,FAILED,BoTorch,,859,0.050000000000000002775557561563,0.000000000000000000000000000000,1
443,443_0,COMPLETED,BoTorch,0.841280449092792426135645200702,823,0.050000000000000002775557561563,0.054795325065888779436651390142,1
444,444_0,FAILED,BoTorch,,485,0.001000000000000000020816681712,0.000000000000000000000000000000,4
445,445_0,FAILED,BoTorch,,850,0.250000000000000000000000000000,0.000000000000000000000000000000,1
446,446_0,FAILED,BoTorch,,817,0.100000000000000005551115123126,0.000000000000000000000000000000,1
447,447_0,COMPLETED,BoTorch,0.844388010826344070913762607233,791,0.025000000000000001387778780781,0.061686006754933277174135497489,1
448,448_0,FAILED,BoTorch,,865,0.250000000000000000000000000000,0.000000000000000000000000000000,1
449,449_0,COMPLETED,BoTorch,0.841213619808199974947626742505,913,0.250000000000000000000000000000,0.200000000000000011102230246252,4
450,450_0,COMPLETED,BoTorch,0.844521669395529084312101986143,826,0.100000000000000005551115123126,0.024479787667490447711227119498,1
451,451_0,COMPLETED,BoTorch,0.844889230460787898913110893773,872,0.100000000000000005551115123126,0.087459538912774192898069713920,1
452,452_0,COMPLETED,BoTorch,0.845490694022120514716789330123,874,0.250000000000000000000000000000,0.142505053436539269595684231717,1
453,453_0,COMPLETED,BoTorch,0.839843619474053504347921261797,906,0.100000000000000005551115123126,0.122111802412221512326162553563,4
454,454_0,COMPLETED,BoTorch,0.829318007150733449428514632018,170,0.001000000000000000020816681712,0.082511324772335595256755880200,1
455,455_0,FAILED,BoTorch,,948,0.250000000000000000000000000000,0.000000000000000000000000000000,4
456,456_0,FAILED,BoTorch,,872,0.001000000000000000020816681712,0.000000000000000000000000000000,2
457,457_0,COMPLETED,BoTorch,0.843853376549604017320405091596,937,0.250000000000000000000000000000,0.032865611685334965297311526911,4
458,458_0,FAILED,BoTorch,,440,0.250000000000000000000000000000,0.000000000000000000000000000000,4
459,459_0,COMPLETED,BoTorch,0.852507768904333884663060416642,483,0.250000000000000000000000000000,0.138543368017125051450122441565,2
460,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
461,461_0,RUNNING,BoTorch,,917,0.250000000000000000000000000000,0.101099448492499285889856253107,4
462,462_0,FAILED,BoTorch,,958,0.250000000000000000000000000000,0.000000000000000000000000000000,4
463,463_0,COMPLETED,BoTorch,0.855782403849366768433526431181,419,0.250000000000000000000000000000,0.200000000000000011102230246252,4
464,464_0,COMPLETED,BoTorch,0.848364353259598358292237207934,744,0.001000000000000000020816681712,0.154140333250431804668068025421,2
465,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
466,466_0,COMPLETED,BoTorch,0.838239716643833343567848714883,995,0.001000000000000000020816681712,0.039936804951470949998082460297,1
467,467_0,COMPLETED,BoTorch,0.836635813813613182787776167970,992,0.001000000000000000020816681712,0.145731579467055089027738290497,2
468,468_0,COMPLETED,BoTorch,0.843285327630567738133038346859,587,0.001000000000000000020816681712,0.200000000000000011102230246252,1
469,469_0,FAILED,BoTorch,,592,0.001000000000000000020816681712,0.000000000000000000000000000000,1
470,470_0,FAILED,BoTorch,,578,0.001000000000000000020816681712,0.000000000000000000000000000000,1
471,471_0,COMPLETED,BoTorch,0.844655327964714097710441365052,764,0.001000000000000000020816681712,0.200000000000000011102230246252,1
472,472_0,COMPLETED,BoTorch,0.842048985865606280931672245060,620,0.001000000000000000020816681712,0.059614754602420799711737231519,1
473,473_0,COMPLETED,BoTorch,0.847295084706118251105522176658,569,0.001000000000000000020816681712,0.076344581826440008343048759798,1
474,474_0,FAILED,BoTorch,,591,0.001000000000000000020816681712,0.000000000000000000000000000000,1
475,475_0,COMPLETED,BoTorch,0.844020449761085256312753699603,553,0.005000000000000000104083408559,0.016882991409375016494953669621,1
476,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
477,477_0,COMPLETED,BoTorch,0.844922645103084235529422585387,597,0.001000000000000000020816681712,0.138171192439053180933683506737,1
478,478_0,FAILED,BoTorch,,627,0.005000000000000000104083408559,0.000000000000000000000000000000,1
479,479_0,FAILED,BoTorch,,482,0.025000000000000001387778780781,0.000000000000000000000000000000,1
480,480_0,COMPLETED,BoTorch,0.848364353259598358292237207934,536,0.025000000000000001387778780781,0.093540873183005385227417605165,1
481,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
482,482_0,COMPLETED,BoTorch,0.840411668393089783535288006533,1000,0.001000000000000000020816681712,0.190977909933611328385794081441,2
483,79_0,COMPLETED,BoTorch,0.838172887359240781357527794171,1000,0.001000000000000000020816681712,0.200000000000000011102230246252,1
484,484_0,FAILED,BoTorch,,901,0.010000000000000000208166817117,0.000000000000000000000000000000,1
485,485_0,COMPLETED,BoTorch,0.843452400842048977125386954867,970,0.001000000000000000020816681712,0.054632609609757000479479671640,1
486,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
487,487_0,FAILED,BoTorch,,933,0.001000000000000000020816681712,0.000000000000000000000000000000,4
488,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
489,214_0,FAILED,BoTorch,,1000,0.050000000000000002775557561563,0.000000000000000000000000000000,1
490,490_0,COMPLETED,BoTorch,0.837504594513315714365830899624,901,0.010000000000000000208166817117,0.014863759215553230472184331745,1
491,491_0,FAILED,BoTorch,,934,0.001000000000000000020816681712,0.000000000000000000000000000000,4
492,492_0,FAILED,BoTorch,,1000,0.025000000000000001387778780781,0.000000000000000000000000000000,1
493,493_0,COMPLETED,BoTorch,0.842683864069235122329359910509,969,0.001000000000000000020816681712,0.041497825915564869048157703446,1
494,494_0,COMPLETED,BoTorch,0.845357035452935501318449951214,886,0.010000000000000000208166817117,0.050868498622799768194013836364,1
495,495_0,FAILED,BoTorch,,909,0.010000000000000000208166817117,0.000000000000000000000000000000,1
496,496_0,RUNNING,BoTorch,,1000,0.010000000000000000208166817117,0.089052782861047646845165104423,2
497,497_0,FAILED,BoTorch,,932,0.001000000000000000020816681712,0.000000000000000000000000000000,4
498,498_0,COMPLETED,BoTorch,0.838507033782203370364527472702,1000,0.001000000000000000020816681712,0.050592622158597444492755812462,4
499,499_0,COMPLETED,BoTorch,0.845524108664416740310798559221,842,0.010000000000000000208166817117,0.118382806633066620105587674061,1
500,500_0,COMPLETED,BoTorch,0.841079961239014961549287363596,980,0.001000000000000000020816681712,0.130073246876293596718809908452,2
501,501_0,RUNNING,BoTorch,,980,0.001000000000000000020816681712,0.130061492637200015742848790978,2
Copy raw data to clipboard
Download »results.csv« as file
Copy raw data to clipboard
Download »job_infos.csv« as file
start_time,end_time,run_time,program_string,n_samples,confidence,feature_proportion,n_clusters,result,exit_code,signal,hostname,OO_Info_runtime,OO_Info_lpd
1727815916,1727815966,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 531 confidence 0.05 feature_proportion 0.08970960807055235 n_clusters 3,531,0.05,0.08970960807055235,3,0.8515053296354462,0,None,i7186,46,0.00018699347900403798
1727815925,1727815970,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 880 confidence 0.25 feature_proportion 0.03252225089818239 n_clusters 4,880,0.25,0.03252225089818239,4,0.8448558158184917,0,None,i7186,41,0.0004961568098534715
1727815916,1727815972,56,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 697 confidence 0.01 feature_proportion 0.054493993520736694 n_clusters 2,697,0.01,0.054493993520736694,2,0.8416814248003475,0,None,i7186,51,0.0005429879373141308
1727815926,1727815974,48,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 970 confidence 0.005 feature_proportion 0.1803740117698908 n_clusters 1,970,0.005,0.1803740117698908,1,0.8417148394426438,0,None,i7186,44,0.000696933967893302
1727815925,1727815981,56,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 165 confidence 0.05 feature_proportion 0.1334313318133354 n_clusters 1,165,0.05,0.1334313318133354,1,0.8485982557556722,0,None,i7186,52,0.00014518085963200115
1727815937,1727815983,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 612 confidence 0.05 feature_proportion 0.028564392961561682 n_clusters 4,612,0.05,0.028564392961561682,4,0.8494336218130785,0,None,i7181,42,0.0002564210593603856
1727815936,1727815986,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 267 confidence 0.05 feature_proportion 0.13697684351354839 n_clusters 3,267,0.05,0.13697684351354839,3,0.8612289905436562,0,None,i7181,45,-3.4096573771687094e-07
1727815936,1727815991,55,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 743 confidence 0.005 feature_proportion 0.05080309994518757 n_clusters 4,743,0.005,0.05080309994518757,4,0.8493333778861898,0,None,i7186,50,0.00033043368492962494
1727815937,1727815991,54,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 401 confidence 0.01 feature_proportion 0.017815119586884975 n_clusters 3,401,0.01,0.017815119586884975,3,0.8475624018444883,0,None,i7181,50,0.00022042884998658033
1727815925,1727815992,67,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 164 confidence 0.001 feature_proportion 0.0509162075817585 n_clusters 2,164,0.001,0.0509162075817585,2,0.8418484980118288,0,None,i7186,62,0.00028500724311510947
1727815937,1727815994,57,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 156 confidence 0.01 feature_proportion 0.06475251447409391 n_clusters 1,156,0.01,0.06475251447409391,1,0.8410131319544224,0,None,i7186,54,0.00025269823236542257
1727815955,1727816001,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 903 confidence 0.001 feature_proportion 0.16882146764546635 n_clusters 4,903,0.001,0.16882146764546635,4,0.8424833762154575,0,None,i7181,43,0.0006248538109399543
1727815955,1727816002,47,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 545 confidence 0.01 feature_proportion 0.014081121794879437 n_clusters 1,545,0.01,0.014081121794879437,1,0.8419821565810138,0,None,i7181,43,0.0004095071055881368
1727815955,1727816009,54,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 218 confidence 0.001 feature_proportion 0.1530627289786935 n_clusters 1,218,0.001,0.1530627289786935,1,0.8389414241320546,0,None,i7181,51,0.0003777553629085011
1727815955,1727816015,60,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 269 confidence 0.005 feature_proportion 0.02276571895927191 n_clusters 3,269,0.005,0.02276571895927191,3,0.8483309386173021,0,None,i7181,56,0.0001719740256847217
1727815955,1727816021,66,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 129 confidence 0.005 feature_proportion 0.12412807084619999 n_clusters 4,129,0.005,0.12412807084619999,4,0.8507367928626324,0,None,i7181,63,0.00010388314535667157
1727815972,1727816067,95,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 916 confidence 0.05 feature_proportion 0.003580087795853615 n_clusters 3,916,0.05,0.003580087795853615,3,0.8431516690613827,0,None,i7174,33,0.000583139402653985
1727815972,1727816070,98,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 856 confidence 0.005 feature_proportion 0.15027457643300296 n_clusters 2,856,0.005,0.15027457643300296,2,0.8443880108263441,0,None,i7174,36,0.0005432574102358752
1727815972,1727816070,98,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 701 confidence 0.01 feature_proportion 0.05351840760558844 n_clusters 2,701,0.01,0.05351840760558844,2,0.8432184983459752,0,None,i7174,37,0.00047396032099160596
1727815972,1727816084,112,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 187 confidence 0.01 feature_proportion 0.16814300864934922 n_clusters 4,187,0.01,0.16814300864934922,4,0.8480970361212283,0,None,i7174,50,0.00014755004969020113
1727816177,1727816182,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0 n_clusters 1,1000,0.1,0,1,None,1,None,i7186
1727816196,1727816200,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0 n_clusters 1,100,0.001,0,1,None,1,None,i7181
1727816195,1727816200,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1,1000,0.001,0,1,None,1,None,i7186
1727816196,1727816200,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 543 confidence 0.25 feature_proportion 0 n_clusters 1,543,0.25,0,1,None,1,None,i7181
1727816157,1727816219,62,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 281 confidence 0.001 feature_proportion 0.09551193168815818 n_clusters 1,281,0.001,0.09551193168815818,1,0.8420489858656063,0,None,i7186,58,0.0003196667446341654
1727816217,1727816220,3,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.1 feature_proportion 0 n_clusters 1,100,0.1,0,1,None,1,None,i7181
1727816165,1727816220,55,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0.11612112022929451 n_clusters 1,100,0.001,0.11612112022929451,1,0.8504360610819661,0,None,i7186,52,7.654559901907879e-05
1727816165,1727816222,57,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 462 confidence 0.001 feature_proportion 0.16850043737580356 n_clusters 1,462,0.001,0.16850043737580356,1,0.8439202058341966,0,None,i7186,53,0.00036827201509488677
1727816177,1727816232,55,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0.19627738168231965 n_clusters 1,100,0.001,0.19627738168231965,1,0.8504360610819661,0,None,i7186,52,7.654559901907879e-05
1727816177,1727816233,56,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0.049297150296263165 n_clusters 1,100,0.001,0.049297150296263165,1,0.8504360610819661,0,None,i7186,52,7.654559901907879e-05
1727816177,1727816233,56,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 514 confidence 0.001 feature_proportion 0.11128368029167933 n_clusters 1,514,0.001,0.11128368029167933,1,0.8461255722257494,0,None,i7186,53,0.0003512422864629512
1727816196,1727816239,43,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0.08267855500439575 n_clusters 1,1000,0.025,0.08267855500439575,1,0.8424833762154575,0,None,i7181,39,0.0006694862260070939
1727816196,1727816241,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0.2 n_clusters 1,1000,0.05,0.2,1,0.836101179536873,0,None,i7181,41,0.0009306596669178957
1727816195,1727816249,54,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.07833381608249292 n_clusters 1,1000,0.001,0.07833381608249292,1,0.8381728873592408,0,None,i7186,50,0.0009222441273766169
1727816196,1727816250,54,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 411 confidence 0.001 feature_proportion 0.2 n_clusters 1,411,0.001,0.2,1,0.8444548401109366,0,None,i7181,50,0.0003106324154207338
1727816255,1727816258,3,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0 n_clusters 1,100,0.001,0,1,None,1,None,i7186
1727816255,1727816259,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 626 confidence 0.25 feature_proportion 0 n_clusters 1,626,0.25,0,1,None,1,None,i7186
1727816255,1727816260,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 2,1000,0.25,0,2,None,1,None,i7186
1727816217,1727816260,43,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 917 confidence 0.1 feature_proportion 0.03949185760248896 n_clusters 1,917,0.1,0.03949185760248896,1,0.8446219133224179,0,None,i7181,40,0.0005357121684270438
1727816217,1727816261,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.11672498672577987 n_clusters 1,1000,0.25,0.11672498672577987,1,0.8428843519230127,0,None,i7181,40,0.0006551656650229844
1727816217,1727816264,47,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.02269305588943215 n_clusters 2,1000,0.001,0.02269305588943215,2,0.8404116683930898,0,None,i7181,44,0.000771011931502459
1727816217,1727816271,54,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 491 confidence 0.001 feature_proportion 0.13485135930024184 n_clusters 1,491,0.001,0.13485135930024184,1,0.8465599625756006,0,None,i7181,50,0.0003333869992739911
1727816217,1727816282,65,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0.2 n_clusters 2,100,0.001,0.2,2,0.8452902061683429,0,None,i7186,62,0.00019203354669052126
1727816255,1727816312,57,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 391 confidence 0.001 feature_proportion 0.08853055438654445 n_clusters 1,391,0.001,0.08853055438654445,1,0.8422494737193839,0,None,i7186,53,0.00036499070815908464
1727816357,1727816362,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1,1000,0.001,0,1,None,1,None,i7186
1727816337,1727816388,51,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 988 confidence 0.05 feature_proportion 0.2 n_clusters 2,988,0.05,0.2,2,0.8368363016673906,0,None,i7186,47,0.0009034329213431697
1727816337,1727816392,55,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 236 confidence 0.005 feature_proportion 0.1635119830934014 n_clusters 1,236,0.005,0.1635119830934014,1,0.8501353293012999,0,None,i7186,51,0.00014407352262800507
1727816345,1727816395,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.1501880580504702 n_clusters 2,1000,0.001,0.1501880580504702,2,0.8406121562468674,0,None,i7186,46,0.0007635864554366239
1727816345,1727816397,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 947 confidence 0.001 feature_proportion 0.044674076127555 n_clusters 1,947,0.001,0.044674076127555,1,0.8431182544190865,0,None,i7186,48,0.0006707680046136958
1727816357,1727816402,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0.2 n_clusters 1,1000,0.025,0.2,1,0.8424833762154575,0,None,i7186,41,0.0006694862260070939
1727816357,1727816403,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 938 confidence 0.05 feature_proportion 0.2 n_clusters 1,938,0.05,0.2,1,0.8438867911919004,0,None,i7186,42,0.0005780733117251978
1727816357,1727816403,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0.2 n_clusters 1,1000,0.1,0.2,1,0.8379723995054633,0,None,i7186,43,0.0008305925370783193
1727816375,1727816418,43,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 948 confidence 0.1 feature_proportion 0.2 n_clusters 1,948,0.1,0.2,1,0.8470945968523407,0,None,i7181,40,0.00047114645637718423
1727816375,1727816418,43,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0.16126736224773225 n_clusters 1,1000,0.1,0.16126736224773225,1,0.8379723995054633,0,None,i7181,40,0.0008305925370783193
1727816375,1727816437,62,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 239 confidence 0.001 feature_proportion 0.19668151083408222 n_clusters 2,239,0.001,0.19668151083408222,2,0.8423497176462726,0,None,i7186,59,0.0003094962770062892
1727816435,1727816440,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1,1000,0.001,0,1,None,1,None,i7186
1727816457,1727816462,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1,1000,0.005,0,1,None,1,None,i7186
1727816465,1727816469,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 922 confidence 0.001 feature_proportion 0 n_clusters 1,922,0.001,0,1,None,1,None,i7186
1727816477,1727816481,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 680 confidence 0.01 feature_proportion 0 n_clusters 1,680,0.01,0,1,None,1,None,i7186
1727816457,1727816504,47,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0.1223060061763852 n_clusters 3,1000,0.01,0.1223060061763852,3,0.8419487419387175,0,None,i7186,43,0.0006885803073192387
1727816457,1727816509,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.2 n_clusters 3,1000,0.001,0.2,3,0.8380392287900558,0,None,i7186,48,0.0008588800649481643
1727816457,1727816512,55,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.16475126979809132 n_clusters 1,1000,0.001,0.16475126979809132,1,0.8381728873592408,0,None,i7186,51,0.0009222441273766169
1727816457,1727816512,55,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 219 confidence 0.005 feature_proportion 0.09316471156132938 n_clusters 1,219,0.005,0.09316471156132938,1,0.8492999632438935,0,None,i7186,51,0.00014727194197237963
1727816465,1727816517,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 929 confidence 0.001 feature_proportion 0.0018043142108126386 n_clusters 1,929,0.001,0.0018043142108126386,1,0.8414141076619774,0,None,i7186,48,0.0007338845511732875
1727816477,1727816527,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0.19996337691134797 n_clusters 3,1000,0.005,0.19996337691134797,3,0.8405119123199787,0,None,i7186,46,0.0007672991934695409
1727816555,1727816599,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0.2 n_clusters 3,1000,0.1,0.2,3,0.8427172787115313,0,None,i7186,41,0.0006611325654330295
1727816597,1727816601,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 759 confidence 0.001 feature_proportion 0 n_clusters 1,759,0.001,0,1,None,1,None,i7181
1727816555,1727816601,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0.1369856692489439 n_clusters 2,1000,0.05,0.1369856692489439,2,0.8448224011761954,0,None,i7186,42,0.0005859496202664576
1727816615,1727816620,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 798 confidence 0.001 feature_proportion 0 n_clusters 2,798,0.001,0,2,None,1,None,i7186
1727816577,1727816622,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.2 n_clusters 2,1000,0.25,0.2,2,0.8408126441006449,0,None,i7186,41,0.0007291552301075473
1727816577,1727816623,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0.1963873551963688 n_clusters 2,1000,0.025,0.1963873551963688,2,0.8415143515888662,0,None,i7186,43,0.0007040942483853573
1727816577,1727816624,47,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0.036178118103656724 n_clusters 2,1000,0.01,0.036178118103656724,2,0.8398770341163497,0,None,i7186,43,0.0007625698724038016
1727816577,1727816625,48,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0.12052513506686727 n_clusters 2,1000,0.01,0.12052513506686727,2,0.8398770341163497,0,None,i7186,44,0.0007625698724038016
1727816585,1727816631,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0.2 n_clusters 3,1000,0.025,0.2,3,0.84148093694657,0,None,i7186,42,0.0007052876284673663
1727816585,1727816636,51,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.041099193598007594 n_clusters 3,1000,0.001,0.041099193598007594,3,0.8376716677247971,0,None,i7186,46,0.0008724934377355268
1727816597,1727816638,41,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.15610464076102415 n_clusters 3,1000,0.25,0.15610464076102415,3,0.8408126441006449,0,None,i7181,38,0.0007291552301075473
1727816597,1727816639,42,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0.1379134962876573 n_clusters 3,1000,0.05,0.1379134962876573,3,0.8425502055000501,0,None,i7181,39,0.0006670994658430758
1727816615,1727816660,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0.1323360886543434 n_clusters 2,1000,0.1,0.1323360886543434,2,0.8426838640692351,0,None,i7186,41,0.0006623259455150386
1727816697,1727816701,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 643 confidence 0.05 feature_proportion 0 n_clusters 1,643,0.05,0,1,None,1,None,i7186
1727816697,1727816701,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 613 confidence 0.001 feature_proportion 0 n_clusters 1,613,0.001,0,1,None,1,None,i7186
1727816705,1727816710,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 1,1000,0.01,0,1,None,1,None,i7186
1727816675,1727816726,51,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.2 n_clusters 2,1000,0.001,0.2,2,0.8404116683930898,0,None,i7186,47,0.000771011931502459
1727816675,1727816729,54,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.2 n_clusters 1,1000,0.001,0.2,1,0.8381728873592408,0,None,i7186,50,0.0009222441273766169
1727816697,1727816743,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0.2 n_clusters 4,1000,0.025,0.2,4,0.8422160590770875,0,None,i7186,43,0.0006790332666631663
1727816697,1727816747,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.09513666564627465 n_clusters 2,1000,0.001,0.09513666564627465,2,0.8406121562468674,0,None,i7186,46,0.0007635864554366239
1727816705,1727816762,57,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 853 confidence 0.001 feature_proportion 0.2 n_clusters 2,853,0.001,0.2,2,0.8421492297924951,0,None,i7186,53,0.0006814200268271843
1727816717,1727816765,48,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0.12548046487588335 n_clusters 1,1000,0.005,0.12548046487588335,1,0.8395428876933873,0,None,i7186,44,0.0008031889944544067
1727816717,1727816771,54,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.12072801849173041 n_clusters 1,1000,0.001,0.12072801849173041,1,0.8381728873592408,0,None,i7186,50,0.0009222441273766169
1727816795,1727816800,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727816818,1727816822,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 736 confidence 0.001 feature_proportion 0 n_clusters 1,736,0.001,0,1,None,1,None,i7186
1727816825,1727816830,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 742 confidence 0.025 feature_proportion 0 n_clusters 1,742,0.025,0,1,None,1,None,i7186
1727816837,1727816842,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 2,1000,0.005,0,2,None,1,None,i7186
1727816837,1727816842,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 3,1000,0.005,0,3,None,1,None,i7186
1727816855,1727816860,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 639 confidence 0.001 feature_proportion 0 n_clusters 1,639,0.001,0,1,None,1,None,i7186
1727816856,1727816860,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3,1000,0.001,0,3,None,1,None,i7186
1727816817,1727816869,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.1115854371771547 n_clusters 3,1000,0.001,0.1115854371771547,3,0.8391084973435359,0,None,i7186,49,0.0008192775259303815
1727816825,1727816876,51,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.10282948513171702 n_clusters 4,1000,0.001,0.10282948513171702,4,0.84094630266983,0,None,i7186,47,0.000751210661993567
1727816877,1727816882,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 4,1000,0.005,0,4,None,1,None,i7186
1727816856,1727816904,48,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.2 n_clusters 4,1000,0.001,0.2,4,0.8406121562468674,0,None,i7186,44,0.0007363155105996015
1727816877,1727816921,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0.12158483841041826 n_clusters 4,1000,0.025,0.12158483841041826,4,0.8419153272964213,0,None,i7186,40,0.0006897736874012477
1727816877,1727816928,51,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.1574084644262125 n_clusters 4,1000,0.001,0.1574084644262125,4,0.8368697163096869,0,None,i7186,47,0.0009021953419988641
1727817177,1727817182,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 987 confidence 0.001 feature_proportion 0 n_clusters 3,987,0.001,0,3,None,1,None,i7186
1727817156,1727817201,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 978 confidence 0.025 feature_proportion 0.2 n_clusters 2,978,0.025,0.2,2,0.8422828883616801,0,None,i7186,41,0.0006533138683440051
1727817156,1727817201,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 977 confidence 0.05 feature_proportion 0.2 n_clusters 2,977,0.05,0.2,2,0.8424165469308651,0,None,i7186,41,0.0006487049521652115
1727817197,1727817202,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727817156,1727817203,47,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 990 confidence 0.05 feature_proportion 0.2 n_clusters 1,990,0.05,0.2,1,0.8373375213018345,0,None,i7186,43,0.0008532667586364913
1727817177,1727817221,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 977 confidence 0.05 feature_proportion 0.2 n_clusters 3,977,0.05,0.2,3,0.841881912654125,0,None,i7186,41,0.0006671406168803858
1727817177,1727817229,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 985 confidence 0.001 feature_proportion 0.2 n_clusters 4,985,0.001,0.2,4,0.8467270357870819,0,None,i7186,49,0.0005371094354286794
1727817186,1727817231,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 987 confidence 0.05 feature_proportion 0.2 n_clusters 1,987,0.05,0.2,1,0.8376716677247971,0,None,i7181,41,0.0008413329578164008
1727817186,1727817231,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 974 confidence 0.01 feature_proportion 0.03512273115161019 n_clusters 2,974,0.01,0.03512273115161019,2,0.8452567915260467,0,None,i7181,41,0.00057043567920034
1727817216,1727817262,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 978 confidence 0.1 feature_proportion 0.2 n_clusters 2,978,0.1,0.2,2,0.8399772780432385,0,None,i7186,41,0.000732817672428196
1727817216,1727817266,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 974 confidence 0.025 feature_proportion 0.11283049260427598 n_clusters 3,974,0.025,0.11283049260427598,3,0.8444882547532329,0,None,i7186,46,0.000597883421086549
1727817216,1727817270,54,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 981 confidence 0.001 feature_proportion 0.2 n_clusters 3,981,0.001,0.2,3,0.8447555718916029,0,None,i7186,50,0.0006101266167427155
1727817237,1727817285,48,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 677 confidence 0.01 feature_proportion 0.06488547641539323 n_clusters 1,677,0.01,0.06488547641539323,1,0.8470611822100444,0,None,i7186,44,0.0003541952083402945
1727817237,1727817287,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 973 confidence 0.005 feature_proportion 0.2 n_clusters 3,973,0.005,0.2,3,0.8498680121629298,0,None,i7186,46,0.0004057492278830873
1727817237,1727817287,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 670 confidence 0.01 feature_proportion 0.06546716895860114 n_clusters 2,670,0.01,0.06546716895860114,2,0.8525077689043339,0,None,i7186,46,0.00021803054098305867
1727817437,1727817442,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 4,1000,0.005,0,4,None,1,None,i7186
1727817426,1727817477,51,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 899 confidence 0.001 feature_proportion 0.14519936659428412 n_clusters 1,899,0.001,0.14519936659428412,1,0.8371704480903532,0,None,i7186,48,0.0008592336590465375
1727817417,1727817478,61,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 202 confidence 0.001 feature_proportion 0.2 n_clusters 1,202,0.001,0.2,1,0.84201557122331,0,None,i7186,57,0.00032565117492112163
1727817477,1727817481,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 573 confidence 0.001 feature_proportion 0 n_clusters 1,573,0.001,0,1,None,1,None,i7186
1727817477,1727817482,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 902 confidence 0.005 feature_proportion 0 n_clusters 4,902,0.005,0,4,None,1,None,i7186
1727817478,1727817482,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 900 confidence 0.01 feature_proportion 0 n_clusters 1,900,0.01,0,1,None,1,None,i7181
1727817437,1727817501,64,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 332 confidence 0.001 feature_proportion 0.10122883141488488 n_clusters 1,332,0.001,0.10122883141488488,1,0.8407792294583487,0,None,i7186,60,0.0004260366892772412
1727817456,1727817506,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 889 confidence 0.001 feature_proportion 0.009651100271967951 n_clusters 1,889,0.001,0.009651100271967951,1,0.8387743509205734,0,None,i7186,46,0.0007742979180373391
1727817456,1727817506,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 909 confidence 0.01 feature_proportion 0.10431050474143018 n_clusters 1,909,0.01,0.10431050474143018,1,0.8428509372807165,0,None,i7186,46,0.0006337259745841315
1727817456,1727817509,53,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 662 confidence 0.001 feature_proportion 0.08360122259333415 n_clusters 1,662,0.001,0.08360122259333415,1,0.8422828883616801,0,None,i7186,49,0.0005120568157290851
1727817478,1727817528,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 680 confidence 0.005 feature_proportion 0.2 n_clusters 1,680,0.005,0.2,1,0.8515721589200388,0,None,i7181,47,0.0002691233352509121
1727817486,1727817537,51,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 920 confidence 0.005 feature_proportion 0.2 n_clusters 1,920,0.005,0.2,1,0.8385404484244996,0,None,i7186,47,0.0008103050756841645
1727817497,1727817557,60,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 319 confidence 0.001 feature_proportion 0.2 n_clusters 1,319,0.001,0.2,1,0.8459250843719718,0,None,i7186,57,0.00028875294663555513
1727817606,1727817611,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727817636,1727817641,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4,1000,0.25,0,4,None,1,None,i7186
1727817657,1727817661,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 682 confidence 0.001 feature_proportion 0 n_clusters 1,682,0.001,0,1,None,1,None,i7186
1727817657,1727817662,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 4,1000,0.01,0,4,None,1,None,i7186
1727817617,1727817669,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.05053629782683701 n_clusters 4,1000,0.001,0.05053629782683701,4,0.8386072777090922,0,None,i7186,48,0.0008378412160949667
1727817666,1727817670,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 653 confidence 0.25 feature_proportion 0 n_clusters 1,653,0.25,0,1,None,1,None,i7186
1727817636,1727817680,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.2 n_clusters 4,1000,0.25,0.2,4,0.8408126441006449,0,None,i7186,40,0.0007291552301075473
1727817637,1727817682,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.08261099142406714 n_clusters 4,1000,0.25,0.08261099142406714,4,0.8408126441006449,0,None,i7186,41,0.0007291552301075473
1727817696,1727817700,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 412 confidence 0.001 feature_proportion 0 n_clusters 1,412,0.001,0,1,None,1,None,i7186
1727817666,1727817711,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.2 n_clusters 1,1000,0.25,0.2,1,0.8428843519230127,0,None,i7186,40,0.0006551656650229844
1727817677,1727817722,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.2 n_clusters 4,1000,0.25,0.2,4,0.8408126441006449,0,None,i7186,41,0.0007291552301075473
1727817696,1727817745,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 800 confidence 0.001 feature_proportion 0.03189540252221679 n_clusters 1,800,0.001,0.03189540252221679,1,0.8455241086644167,0,None,i7186,44,0.00047590551149210577
1727817832,1727817837,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727817846,1727817851,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 648 confidence 0.001 feature_proportion 0 n_clusters 1,648,0.001,0,1,None,1,None,i7186
1727817872,1727817877,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 744 confidence 0.001 feature_proportion 0 n_clusters 1,744,0.001,0,1,None,1,None,i7186
1727817872,1727817877,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 944 confidence 0.001 feature_proportion 0 n_clusters 3,944,0.001,0,3,None,1,None,i7186
1727817872,1727817877,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727817892,1727817897,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1,1000,0.001,0,1,None,1,None,i7186
1727817908,1727817912,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 483 confidence 0.001 feature_proportion 0 n_clusters 1,483,0.001,0,1,None,1,None,i7186
1727817908,1727817913,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 4,1000,0.01,0,4,None,1,None,i7186
1727817892,1727817936,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 827 confidence 0.25 feature_proportion 0.2 n_clusters 4,827,0.25,0.2,4,0.8433855715574565,0,None,i7186,40,0.0005098119710342789
1727817932,1727817936,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 421 confidence 0.001 feature_proportion 0 n_clusters 1,421,0.001,0,1,None,1,None,i7186
1727817932,1727817937,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3,1000,0.001,0,3,None,1,None,i7186
1727817932,1727817937,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727817952,1727817956,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 679 confidence 0.25 feature_proportion 0 n_clusters 1,679,0.25,0,1,None,1,None,i7186
1727817952,1727817957,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 852 confidence 0.001 feature_proportion 0 n_clusters 2,852,0.001,0,2,None,1,None,i7186
1727817967,1727817971,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 490 confidence 0.25 feature_proportion 0 n_clusters 1,490,0.25,0,1,None,1,None,i7186
1727818130,1727818135,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727818147,1727818151,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 419 confidence 0.001 feature_proportion 0 n_clusters 1,419,0.001,0,1,None,1,None,i7186
1727818150,1727818155,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1,1000,0.001,0,1,None,1,None,i7186
1727818170,1727818175,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 4,1000,0.01,0,4,None,1,None,i7186
1727818190,1727818195,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727818207,1727818211,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 454 confidence 0.001 feature_proportion 0 n_clusters 2,454,0.001,0,2,None,1,None,i7186
1727818207,1727818211,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4,1000,0.25,0,4,None,1,None,i7186
1727818170,1727818222,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.07966885079429797 n_clusters 3,1000,0.001,0.07966885079429797,3,0.8386741069936846,0,None,i7186,48,0.0008353660574063553
1727818177,1727818222,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0.031497912163918916 n_clusters 4,1000,0.005,0.031497912163918916,4,0.8432184983459752,0,None,i7186,42,0.0006432318642028938
1727818230,1727818235,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 3,1000,0.005,0,3,None,1,None,i7186
1727818230,1727818235,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 965 confidence 0.025 feature_proportion 0 n_clusters 3,965,0.025,0,3,None,1,None,i7186
1727818250,1727818255,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0 n_clusters 4,1000,0.025,0,4,None,1,None,i7186
1727818267,1727818272,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 4,1000,0.01,0,4,None,1,None,i7186
1727818267,1727818272,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3,1000,0.001,0,3,None,1,None,i7186
1727818270,1727818275,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 4,1000,0.005,0,4,None,1,None,i7186
1727818230,1727818277,47,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.14074375307389367 n_clusters 4,1000,0.25,0.14074375307389367,4,0.8408126441006449,0,None,i7186,42,0.0007291552301075473
1727818290,1727818335,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0.07257091015662046 n_clusters 4,1000,0.01,0.07257091015662046,4,0.843719717980419,0,None,i7186,41,0.0006253311629727572
1727818297,1727818345,48,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0.2 n_clusters 1,1000,0.01,0.2,1,0.8426838640692351,0,None,i7186,44,0.0006868565360896696
1727818447,1727818452,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1,1000,0.001,0,1,None,1,None,i7186
1727818470,1727818474,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 421 confidence 0.001 feature_proportion 0 n_clusters 1,421,0.001,0,1,None,1,None,i7186
1727818470,1727818475,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727818477,1727818480,3,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.25 feature_proportion 0 n_clusters 1,100,0.25,0,1,None,1,None,i7186
1727818490,1727818495,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3,1000,0.001,0,3,None,1,None,i7186
1727818507,1727818511,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 510 confidence 0.001 feature_proportion 0 n_clusters 1,510,0.001,0,1,None,1,None,i7186
1727818507,1727818512,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 640 confidence 0.25 feature_proportion 0 n_clusters 1,640,0.25,0,1,None,1,None,i7186
1727818530,1727818535,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4,1000,0.25,0,4,None,1,None,i7186
1727818537,1727818542,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727818567,1727818571,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 224 confidence 0.25 feature_proportion 0 n_clusters 1,224,0.25,0,1,None,1,None,i7186
1727818567,1727818571,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 465 confidence 0.25 feature_proportion 0 n_clusters 1,465,0.25,0,1,None,1,None,i7186
1727818530,1727818585,55,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.14527729381330234 n_clusters 1,1000,0.001,0.14527729381330234,1,0.8381728873592408,0,None,i7186,51,0.0009222441273766169
1727818590,1727818596,6,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727818550,1727818599,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.07981465359724418 n_clusters 2,1000,0.001,0.07981465359724418,2,0.8406121562468674,0,None,i7186,45,0.0007635864554366239
1727818597,1727818601,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 246 confidence 0.25 feature_proportion 0 n_clusters 1,246,0.25,0,1,None,1,None,i7186
1727818590,1727818642,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.05863839544982872 n_clusters 4,1000,0.001,0.05863839544982872,4,0.84174825408494,0,None,i7186,48,0.0007215087577302297
1727818777,1727818781,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 408 confidence 0.001 feature_proportion 0 n_clusters 1,408,0.001,0,1,None,1,None,i7186
1727818790,1727818795,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727818807,1727818812,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4,1000,0.25,0,4,None,1,None,i7186
1727818810,1727818814,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 670 confidence 0.25 feature_proportion 0 n_clusters 1,670,0.25,0,1,None,1,None,i7186
1727818830,1727818834,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 455 confidence 0.001 feature_proportion 0 n_clusters 1,455,0.001,0,1,None,1,None,i7186
1727818837,1727818842,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1,1000,0.001,0,1,None,1,None,i7186
1727818850,1727818854,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 559 confidence 0.001 feature_proportion 0 n_clusters 1,559,0.001,0,1,None,1,None,i7186
1727818867,1727818872,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 3,1000,0.25,0,3,None,1,None,i7186
1727818867,1727818872,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727818890,1727818894,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 424 confidence 0.001 feature_proportion 0 n_clusters 1,424,0.001,0,1,None,1,None,i7186
1727818890,1727818895,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3,1000,0.001,0,3,None,1,None,i7186
1727818897,1727818900,3,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.25 feature_proportion 0 n_clusters 1,100,0.25,0,1,None,1,None,i7186
1727818910,1727818915,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 2,1000,0.25,0,2,None,1,None,i7186
1727818927,1727818932,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 1,1000,0.01,0,1,None,1,None,i7186
1727818950,1727818954,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 353 confidence 0.001 feature_proportion 0 n_clusters 1,353,0.001,0,1,None,1,None,i7186
1727818958,1727818962,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 407 confidence 0.25 feature_proportion 0 n_clusters 1,407,0.25,0,1,None,1,None,i7186
1727818950,1727818997,47,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 356 confidence 0.25 feature_proportion 0.010170518095815836 n_clusters 1,356,0.25,0.010170518095815836,1,0.8585224045176596,0,None,i7186,43,3.5150467870085774e-05
1727819138,1727819143,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 403 confidence 0.001 feature_proportion 0 n_clusters 1,403,0.001,0,1,None,1,None,i7186
1727819144,1727819149,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727819164,1727819168,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 416 confidence 0.001 feature_proportion 0 n_clusters 1,416,0.001,0,1,None,1,None,i7186
1727819168,1727819172,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3,1000,0.001,0,3,None,1,None,i7186
1727819184,1727819189,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727819198,1727819202,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 3,1000,0.25,0,3,None,1,None,i7186
1727819204,1727819209,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4,1000,0.25,0,4,None,1,None,i7186
1727819224,1727819229,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0 n_clusters 1,1000,0.05,0,1,None,1,None,i7186
1727819228,1727819232,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 719 confidence 0.25 feature_proportion 0 n_clusters 1,719,0.25,0,1,None,1,None,i7186
1727819258,1727819262,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 806 confidence 0.25 feature_proportion 0 n_clusters 1,806,0.25,0,1,None,1,None,i7186
1727819264,1727819269,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 2,1000,0.001,0,2,None,1,None,i7186
1727819244,1727819290,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 812 confidence 0.25 feature_proportion 0.2 n_clusters 1,812,0.25,0.2,1,0.8466267918601931,0,None,i7186,42,0.00042947643186656186
1727819287,1727819331,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 742 confidence 0.25 feature_proportion 0.14838231820844722 n_clusters 1,742,0.25,0.14838231820844722,1,0.845423864737528,0,None,i7186,40,0.00040525963605457055
1727819284,1727819334,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 551 confidence 0.01 feature_proportion 0.021834769656869646 n_clusters 1,551,0.01,0.021834769656869646,1,0.8461255722257494,0,None,i7186,46,0.0003283351808240631
1727819558,1727819615,57,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 911 confidence 0.001 feature_proportion 0.19036303336125326 n_clusters 1,911,0.001,0.19036303336125326,1,0.8399772780432385,0,None,i7186,51,0.0008173735577083725
1727819582,1727819632,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 888 confidence 0.001 feature_proportion 0.2 n_clusters 1,888,0.001,0.2,1,0.8426838640692351,0,None,i7186,46,0.0006394871198076235
1727819582,1727819632,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 904 confidence 0.001 feature_proportion 0.07208943729390992 n_clusters 2,904,0.001,0.07208943729390992,2,0.8402780098239049,0,None,i7186,46,0.0007224476110259105
1727819588,1727819639,51,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 904 confidence 0.001 feature_proportion 0.049333454538326924 n_clusters 1,904,0.001,0.049333454538326924,1,0.8394426437664985,0,None,i7186,48,0.0007780838134699193
1727819602,1727819662,60,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 893 confidence 0.001 feature_proportion 0.2 n_clusters 2,893,0.001,0.2,2,0.8427841079961239,0,None,i7186,56,0.0007094185595204739
1727819618,1727819670,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 915 confidence 0.001 feature_proportion 0.2 n_clusters 2,915,0.001,0.2,2,0.8384402044976109,0,None,i7186,49,0.0008138852159301917
1727819618,1727819679,61,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 354 confidence 0.001 feature_proportion 0.022174112886802592 n_clusters 1,354,0.001,0.022174112886802592,1,0.8404450830353861,0,None,i7186,57,0.0004156781501654028
1727819642,1727819695,53,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 988 confidence 0.001 feature_proportion 0.14267271014325486 n_clusters 1,988,0.001,0.14267271014325486,1,0.8405119123199787,0,None,i7186,49,0.0008286831289471042
1727819642,1727819704,62,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 355 confidence 0.001 feature_proportion 0.2 n_clusters 1,355,0.001,0.2,1,0.8425836201423464,0,None,i7186,57,0.00036559549806489887
1727819678,1727819722,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 981 confidence 0.25 feature_proportion 0.2 n_clusters 3,981,0.25,0.2,3,0.8425836201423464,0,None,i7186,41,0.0006429438069417186
1727819662,1727819725,63,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 349 confidence 0.001 feature_proportion 0.015762747529365115 n_clusters 2,349,0.001,0.015762747529365115,2,0.8501353293012999,0,None,i7186,59,0.00019810109361350695
1727819682,1727819732,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 901 confidence 0.005 feature_proportion 0.09105469557596428 n_clusters 2,901,0.005,0.09105469557596428,2,0.8396097169779797,0,None,i7186,46,0.0007454921919198784
1727819702,1727819760,58,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 353 confidence 0.005 feature_proportion 0.1403996769284899 n_clusters 1,353,0.005,0.1403996769284899,1,0.8479299629097471,0,None,i7186,55,0.0002509250496963994
1727819942,1727819946,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 333 confidence 0.001 feature_proportion 0 n_clusters 3,333,0.001,0,3,None,1,None,i7186
1727819948,1727819952,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 358 confidence 0.001 feature_proportion 0 n_clusters 3,358,0.001,0,3,None,1,None,i7186
1727819902,1727819959,57,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 930 confidence 0.001 feature_proportion 0.2 n_clusters 1,930,0.001,0.2,1,0.8402780098239049,0,None,i7186,48,0.0007759622488796817
1727819962,1727819967,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1,1000,0.005,0,1,None,1,None,i7186
1727819978,1727819983,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 869 confidence 0.001 feature_proportion 0 n_clusters 1,869,0.001,0,1,None,1,None,i7186
1727819942,1727819991,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 921 confidence 0.005 feature_proportion 0.2 n_clusters 3,921,0.005,0.2,3,0.8443211815417516,0,None,i7186,45,0.0005830278966174014
1727820022,1727820027,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 713 confidence 0.025 feature_proportion 0 n_clusters 1,713,0.025,0,1,None,1,None,i7186
1727820002,1727820047,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 974 confidence 0.25 feature_proportion 0.12757654327715476 n_clusters 4,974,0.25,0.12757654327715476,4,0.8421826444347913,0,None,i7186,41,0.0006567705554781004
1727820002,1727820055,53,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 920 confidence 0.001 feature_proportion 0.1448081636746829 n_clusters 1,920,0.001,0.1448081636746829,1,0.8411467905236074,0,None,i7186,48,0.000743785185927733
1727820038,1727820083,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 899 confidence 0.025 feature_proportion 0.2 n_clusters 4,899,0.025,0.2,4,0.843185083703679,0,None,i7186,40,0.00056387208874929
1727820022,1727820098,76,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 348 confidence 0.001 feature_proportion 0.05548183867963616 n_clusters 4,348,0.001,0.05548183867963616,4,0.8427841079961239,0,None,i7186,72,0.00035470927976023693
1727820202,1727820210,8,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 644 confidence 0.001 feature_proportion 0 n_clusters 1,644,0.001,0,1,None,1,None,i7186
1727820218,1727820223,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727820242,1727820247,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727820278,1727820283,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4,1000,0.25,0,4,None,1,None,i7186
1727820282,1727820287,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4,1000,0.25,0,4,None,1,None,i7186
1727820248,1727820297,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.12094839453286924 n_clusters 2,1000,0.001,0.12094839453286924,2,0.8404116683930898,0,None,i7186,45,0.000771011931502459
1727820302,1727820307,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0 n_clusters 4,1000,0.05,0,4,None,1,None,i7186
1727820262,1727820307,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 690 confidence 0.25 feature_proportion 0.2 n_clusters 4,690,0.25,0.2,4,0.8453236208106392,0,None,i7186,41,0.00037869927935754786
1727820322,1727820327,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1,1000,0.005,0,1,None,1,None,i7186
1727820338,1727820344,6,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 717 confidence 0.001 feature_proportion 0 n_clusters 1,717,0.001,0,1,None,1,None,i7186
1727820342,1727820347,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 924 confidence 0.005 feature_proportion 0 n_clusters 1,924,0.005,0,1,None,1,None,i7186
1727820362,1727820367,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 832 confidence 0.025 feature_proportion 0 n_clusters 1,832,0.025,0,1,None,1,None,i7186
1727820562,1727820572,10,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4,1000,0.25,0,4,None,1,None,i7186
1727820578,1727820584,6,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0 n_clusters 4,1000,0.1,0,4,None,1,None,i7186
1727820602,1727820608,6,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727820608,1727820613,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 953 confidence 0.001 feature_proportion 0 n_clusters 3,953,0.001,0,3,None,1,None,i7186
1727820622,1727820629,7,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727820663,1727820667,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 523 confidence 0.001 feature_proportion 0 n_clusters 1,523,0.001,0,1,None,1,None,i7186
1727820663,1727820667,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727820639,1727820683,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.15522572825848885 n_clusters 2,1000,0.25,0.15522572825848885,2,0.8408126441006449,0,None,i7186,41,0.0007291552301075473
1727820682,1727820687,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1,1000,0.005,0,1,None,1,None,i7186
1727820699,1727820703,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4,1000,0.25,0,4,None,1,None,i7186
1727820723,1727820727,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 953 confidence 0.001 feature_proportion 0 n_clusters 3,953,0.001,0,3,None,1,None,i7186
1727820723,1727820728,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0 n_clusters 4,1000,0.05,0,4,None,1,None,i7186
1727820758,1727820763,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1,1000,0.005,0,1,None,1,None,i7186
1727820763,1727820767,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 991 confidence 0.1 feature_proportion 0 n_clusters 3,991,0.1,0,3,None,1,None,i7186
1727820743,1727820787,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 901 confidence 0.05 feature_proportion 0.007906343953206009 n_clusters 3,901,0.05,0.007906343953206009,3,0.8440204497610853,0,None,i7186,41,0.0005551142187926103
1727820957,1727820962,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727820977,1727820982,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727820997,1727821001,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 632 confidence 0.001 feature_proportion 0 n_clusters 1,632,0.001,0,1,None,1,None,i7186
1727821017,1727821022,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727821029,1727821033,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1,1000,0.005,0,1,None,1,None,i7186
1727821037,1727821041,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 893 confidence 0.005 feature_proportion 0 n_clusters 1,893,0.005,0,1,None,1,None,i7186
1727821057,1727821062,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727821077,1727821082,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 863 confidence 0.01 feature_proportion 0 n_clusters 1,863,0.01,0,1,None,1,None,i7186
1727821089,1727821093,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 506 confidence 0.001 feature_proportion 0 n_clusters 1,506,0.001,0,1,None,1,None,i7186
1727821117,1727821122,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0 n_clusters 4,1000,0.1,0,4,None,1,None,i7186
1727821137,1727821141,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 643 confidence 0.001 feature_proportion 0 n_clusters 1,643,0.001,0,1,None,1,None,i7186
1727821137,1727821142,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4,1000,0.25,0,4,None,1,None,i7186
1727821157,1727821161,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 538 confidence 0.001 feature_proportion 0 n_clusters 4,538,0.001,0,4,None,1,None,i7186
1727821097,1727821175,78,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 327 confidence 0.001 feature_proportion 0.2 n_clusters 4,327,0.001,0.2,4,0.8533431349617402,0,None,i7186,74,0.00015165106888299972
1727821177,1727821181,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 560 confidence 0.001 feature_proportion 0 n_clusters 1,560,0.001,0,1,None,1,None,i7186
1727821397,1727821402,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727821417,1727821422,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 2,1000,0.001,0,2,None,1,None,i7186
1727821437,1727821442,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727821449,1727821454,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4,1000,0.25,0,4,None,1,None,i7186
1727821477,1727821482,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 2,1000,0.25,0,2,None,1,None,i7186
1727821457,1727821500,43,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 917 confidence 0.1 feature_proportion 0.03949557657328382 n_clusters 1,917,0.1,0.03949557657328382,1,0.8446219133224179,0,None,i7186,40,0.0005357121684270438
1727821497,1727821502,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4,1000,0.001,0,4,None,1,None,i7186
1727821509,1727821513,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 452 confidence 0.001 feature_proportion 0 n_clusters 1,452,0.001,0,1,None,1,None,i7186
1727821569,1727821574,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727821537,1727821582,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.11748289128760803 n_clusters 3,1000,0.25,0.11748289128760803,3,0.8408126441006449,0,None,i7186,41,0.0007291552301075473
1727821557,1727821601,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0.2 n_clusters 4,1000,0.1,0.2,4,0.8408126441006449,0,None,i7186,40,0.0007291552301075473
1727821597,1727821602,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727821597,1727821602,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727821557,1727821617,60,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 359 confidence 0.001 feature_proportion 0.024196096071949932 n_clusters 1,359,0.001,0.024196096071949932,1,0.8437531326227152,0,None,i7186,56,0.0003495171584188189
1727821617,1727821661,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0.1183534086970224 n_clusters 4,1000,0.1,0.1183534086970224,4,0.8421826444347913,0,None,i7186,40,0.0006802266467451753
1727821982,1727822027,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 995 confidence 0.05 feature_proportion 0.2 n_clusters 1,995,0.05,0.2,1,0.8401109366124235,0,None,i7186,42,0.0007542162118297383
1727822042,1727822047,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 895 confidence 0.001 feature_proportion 0 n_clusters 1,895,0.001,0,1,None,1,None,i7186
1727822002,1727822051,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 896 confidence 0.005 feature_proportion 0.013358932732360865 n_clusters 1,896,0.005,0.013358932732360865,1,0.8371704480903532,0,None,i7186,45,0.0008296049121828638
1727822019,1727822065,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 913 confidence 0.005 feature_proportion 0.2 n_clusters 2,913,0.005,0.2,2,0.8458582550873793,0,None,i7186,42,0.0005123578485425643
1727822042,1727822089,47,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 929 confidence 0.005 feature_proportion 0.2 n_clusters 1,929,0.005,0.2,1,0.8424833762154575,0,None,i7186,43,0.0006464004940758148
1727822062,1727822111,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 932 confidence 0.01 feature_proportion 0.2 n_clusters 1,932,0.01,0.2,1,0.8403114244662011,0,None,i7186,45,0.000747055931337684
1727822079,1727822143,64,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 217 confidence 0.001 feature_proportion 0.2 n_clusters 2,217,0.001,0.2,2,0.8380058141477595,0,None,i7186,60,0.0003686218475539157
1727822102,1727822152,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 903 confidence 0.005 feature_proportion 0.2 n_clusters 1,903,0.005,0.2,1,0.8388077655628696,0,None,i7186,46,0.0007731456889926408
1727822122,1727822169,47,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 996 confidence 0.05 feature_proportion 0.2 n_clusters 1,996,0.05,0.2,1,0.8416480101580512,0,None,i7186,43,0.0007052876284673654
1727822183,1727822188,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 991 confidence 0.005 feature_proportion 0 n_clusters 1,991,0.005,0,1,None,1,None,i7186
1727822140,1727822193,53,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 924 confidence 0.005 feature_proportion 0.2 n_clusters 2,924,0.005,0.2,2,0.84201557122331,0,None,i7186,50,0.0006861935471552205
1727822142,1727822201,59,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 158 confidence 0.001 feature_proportion 0.008219790664827255 n_clusters 1,158,0.001,0.008219790664827255,1,0.8374711798710195,0,None,i7186,55,0.0003712157917599491
1727822200,1727822204,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 987 confidence 0.1 feature_proportion 0 n_clusters 4,987,0.1,0,4,None,1,None,i7186
1727822162,1727822221,59,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 165 confidence 0.005 feature_proportion 0.14077700879961694 n_clusters 1,165,0.005,0.14077700879961694,1,0.8372706920172419,0,None,i7186,55,0.0003993049754402377
1727822222,1727822266,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 986 confidence 0.1 feature_proportion 0.18493090316194113 n_clusters 4,986,0.1,0.18493090316194113,4,0.8430848397767902,0,None,i7186,40,0.0006256603712712428
1727822582,1727822586,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 885 confidence 0.005 feature_proportion 0 n_clusters 1,885,0.005,0,1,None,1,None,i7186
1727822530,1727822591,61,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 164 confidence 0.001 feature_proportion 0.08498038392510072 n_clusters 1,164,0.001,0.08498038392510072,1,0.8302870317773248,0,None,i7186,57,0.0005428413818654633
1727822602,1727822607,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 874 confidence 0.001 feature_proportion 0 n_clusters 3,874,0.001,0,3,None,1,None,i7186
1727822560,1727822619,59,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 165 confidence 0.005 feature_proportion 0.029829687685756223 n_clusters 1,165,0.005,0.029829687685756223,1,0.8372706920172419,0,None,i7186,56,0.0003993049754402377
1727822560,1727822620,60,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 159 confidence 0.001 feature_proportion 0.12344012246306418 n_clusters 1,159,0.001,0.12344012246306418,1,0.8404450830353861,0,None,i7186,56,0.0003247485548167209
1727822642,1727822646,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 723 confidence 0.025 feature_proportion 0 n_clusters 1,723,0.025,0,1,None,1,None,i7186
1727822590,1727822650,60,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 168 confidence 0.001 feature_proportion 0.04069245074370684 n_clusters 1,168,0.001,0.04069245074370684,1,0.831356300330805,0,None,i7186,56,0.0005857390237813975
1727822620,1727822680,60,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 175 confidence 0.001 feature_proportion 0.0023391187483766548 n_clusters 1,175,0.001,0.0023391187483766548,1,0.8405119123199787,0,None,i7186,56,0.0003452846370612934
1727822680,1727822685,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 861 confidence 0.001 feature_proportion 0 n_clusters 4,861,0.001,0,4,None,1,None,i7186
1727822710,1727822714,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 886 confidence 0.005 feature_proportion 0 n_clusters 2,886,0.005,0,2,None,1,None,i7186
1727822662,1727822719,57,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 156 confidence 0.005 feature_proportion 0.08356798208769642 n_clusters 1,156,0.005,0.08356798208769642,1,0.8380058141477595,0,None,i7186,53,0.00032254411660967625
1727822722,1727822726,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 716 confidence 0.05 feature_proportion 0 n_clusters 2,716,0.05,0,2,None,1,None,i7186
1727822742,1727822748,6,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 730 confidence 0.01 feature_proportion 0 n_clusters 1,730,0.01,0,1,None,1,None,i7186
1727822702,1727822764,62,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 169 confidence 0.001 feature_proportion 0.1003320959588364 n_clusters 1,169,0.001,0.1003320959588364,1,0.8286497143048084,0,None,i7186,58,0.0005923504770699614
1727822762,1727822807,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 986 confidence 0.1 feature_proportion 0.2 n_clusters 1,986,0.1,0.2,1,0.8422160590770875,0,None,i7186,40,0.000655618326433402
1727823023,1727823037,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 873 confidence 0.001 feature_proportion 0 n_clusters 3,873,0.001,0,3,None,1,None,i7186
1727823023,1727823037,14,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 877 confidence 0.01 feature_proportion 0 n_clusters 1,877,0.01,0,1,None,1,None,i7186
1727823042,1727823047,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 872 confidence 0.005 feature_proportion 0 n_clusters 2,872,0.005,0,2,None,1,None,i7186
1727823070,1727823074,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 711 confidence 0.001 feature_proportion 0 n_clusters 1,711,0.001,0,1,None,1,None,i7186
1727823023,1727823080,57,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 889 confidence 0.005 feature_proportion 0.00867666029408457 n_clusters 3,889,0.005,0.00867666029408457,3,0.8437865472650116,0,None,i7186,43,0.0005626594606014417
1727823082,1727823087,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 863 confidence 0.025 feature_proportion 0 n_clusters 1,863,0.025,0,1,None,1,None,i7186
1727823023,1727823093,70,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 172 confidence 0.001 feature_proportion 0.08489841448496627 n_clusters 1,172,0.001,0.08489841448496627,1,0.8343636181374678,0,None,i7186,56,0.0004884613164761525
1727823040,1727823099,59,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 172 confidence 0.001 feature_proportion 0.08585201327528408 n_clusters 1,172,0.001,0.08585201327528408,1,0.8343636181374678,0,None,i7186,55,0.0004884613164761525
1727823122,1727823127,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 875 confidence 0.001 feature_proportion 0 n_clusters 4,875,0.001,0,4,None,1,None,i7186
1727823130,1727823134,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 871 confidence 0.01 feature_proportion 0 n_clusters 2,871,0.01,0,2,None,1,None,i7186
1727823142,1727823147,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 897 confidence 0.001 feature_proportion 0 n_clusters 4,897,0.001,0,4,None,1,None,i7186
1727823182,1727823187,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 852 confidence 0.05 feature_proportion 0 n_clusters 1,852,0.05,0,1,None,1,None,i7186
1727823203,1727823207,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 871 confidence 0.025 feature_proportion 0 n_clusters 1,871,0.025,0,1,None,1,None,i7186
1727823162,1727823222,60,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 171 confidence 0.001 feature_proportion 0.08504167557083986 n_clusters 1,171,0.001,0.08504167557083986,1,0.8375714237979083,0,None,i7186,56,0.00038157365718948357
1727823422,1727823427,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 859 confidence 0.001 feature_proportion 0 n_clusters 1,859,0.001,0,1,None,1,None,i7186
1727823460,1727823465,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 877 confidence 0.01 feature_proportion 0 n_clusters 1,877,0.01,0,1,None,1,None,i7186
1727823430,1727823475,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 933 confidence 0.1 feature_proportion 0.054333929002806675 n_clusters 1,933,0.1,0.054333929002806675,1,0.8436863033381228,0,None,i7186,41,0.0005847562401844485
1727823502,1727823506,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 711 confidence 0.001 feature_proportion 0 n_clusters 1,711,0.001,0,1,None,1,None,i7186
1727823462,1727823510,48,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 851 confidence 0.025 feature_proportion 0.040025767910441205 n_clusters 1,851,0.025,0.040025767910441205,1,0.8432519129882714,0,None,i7186,44,0.0005799057275930572
1727823482,1727823530,48,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 831 confidence 0.025 feature_proportion 0.10170955460000078 n_clusters 1,831,0.025,0.10170955460000078,1,0.8433855715574565,0,None,i7186,44,0.0005576068433187425
1727823542,1727823547,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 873 confidence 0.005 feature_proportion 0 n_clusters 1,873,0.005,0,1,None,1,None,i7186
1727823562,1727823567,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 732 confidence 0.01 feature_proportion 0 n_clusters 1,732,0.01,0,1,None,1,None,i7186
1727823520,1727823568,48,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 853 confidence 0.025 feature_proportion 0.028619189780432264 n_clusters 1,853,0.025,0.028619189780432264,1,0.8409128880275336,0,None,i7186,44,0.000655358145681373
1727823602,1727823607,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 857 confidence 0.05 feature_proportion 0 n_clusters 1,857,0.05,0,1,None,1,None,i7186
1727823622,1727823627,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 859 confidence 0.25 feature_proportion 0 n_clusters 1,859,0.25,0,1,None,1,None,i7186
1727823580,1727823630,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 847 confidence 0.01 feature_proportion 0.1107572593392558 n_clusters 1,847,0.01,0.1107572593392558,1,0.8452567915260467,0,None,i7186,45,0.0005152322263745005
1727823640,1727823645,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 877 confidence 0.001 feature_proportion 0 n_clusters 1,877,0.001,0,1,None,1,None,i7186
1727823851,1727823855,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 771 confidence 0.25 feature_proportion 0 n_clusters 4,771,0.25,0,4,None,1,None,i7186
1727823880,1727823885,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 738 confidence 0.01 feature_proportion 0 n_clusters 1,738,0.01,0,1,None,1,None,i7186
1727823903,1727823907,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 765 confidence 0.1 feature_proportion 0 n_clusters 3,765,0.1,0,3,None,1,None,i7186
1727823910,1727823915,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 714 confidence 0.001 feature_proportion 0 n_clusters 1,714,0.001,0,1,None,1,None,i7186
1727823963,1727823967,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 606 confidence 0.001 feature_proportion 0 n_clusters 1,606,0.001,0,1,None,1,None,i7186
1727823971,1727823975,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 751 confidence 0.025 feature_proportion 0 n_clusters 2,751,0.025,0,2,None,1,None,i7186
1727823940,1727823992,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 742 confidence 0.005 feature_proportion 0.05505242440931446 n_clusters 1,742,0.005,0.05505242440931446,1,0.8428509372807165,0,None,i7186,47,0.0005405309783217592
1727824003,1727824007,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 733 confidence 0.05 feature_proportion 0 n_clusters 1,733,0.05,0,1,None,1,None,i7186
1727823983,1727824027,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.25 feature_proportion 0.2 n_clusters 4,100,0.25,0.2,4,0.8612289905436562,0,None,i7186,40,-9.966979214140432e-05
1727824023,1727824027,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 719 confidence 0.01 feature_proportion 0 n_clusters 1,719,0.01,0,1,None,1,None,i7186
1727824083,1727824087,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 754 confidence 0.05 feature_proportion 0 n_clusters 2,754,0.05,0,2,None,1,None,i7186
1727824043,1727824088,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 737 confidence 0.025 feature_proportion 0.03815423906635727 n_clusters 1,737,0.025,0.03815423906635727,1,0.8462926454372306,0,None,i7186,42,0.0003930617133269904
1727824083,1727824127,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.25 feature_proportion 0.2 n_clusters 3,100,0.25,0.2,3,0.8612289905436562,0,None,i7186,40,-0.00010653100244276169
1727824334,1727824339,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 761 confidence 0.05 feature_proportion 0 n_clusters 1,761,0.05,0,1,None,1,None,i7186
1727824361,1727824365,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 703 confidence 0.001 feature_proportion 0 n_clusters 1,703,0.001,0,1,None,1,None,i7186
1727824414,1727824419,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 769 confidence 0.25 feature_proportion 0 n_clusters 4,769,0.25,0,4,None,1,None,i7186
1727824434,1727824438,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 434 confidence 0.001 feature_proportion 0 n_clusters 1,434,0.001,0,1,None,1,None,i7186
1727824391,1727824451,60,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 172 confidence 0.001 feature_proportion 0.09044208750598547 n_clusters 1,172,0.001,0.09044208750598547,1,0.8343636181374678,0,None,i7186,57,0.0004884613164761525
1727824451,1727824455,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 863 confidence 0.001 feature_proportion 0 n_clusters 1,863,0.001,0,1,None,1,None,i7186
1727824414,1727824458,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 760 confidence 0.25 feature_proportion 0.0716036550099831 n_clusters 4,760,0.25,0.0716036550099831,4,0.8453236208106392,0,None,i7186,40,0.0004185623613951845
1727824474,1727824478,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 443 confidence 0.001 feature_proportion 0 n_clusters 3,443,0.001,0,3,None,1,None,i7186
1727824494,1727824549,55,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 436 confidence 0.001 feature_proportion 2.9890718061719497e-19 n_clusters 1,436,0.001,0.0000000000000000003,1,0.8442543522571591,0,None,i7186,51,0.00033283604483327737
1727824514,1727824558,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 763 confidence 0.1 feature_proportion 0.0352064968381751 n_clusters 3,763,0.1,0.0352064968381751,3,0.8499348414475223,0,None,i7186,40,0.0002972144498982615
1727824534,1727824578,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 738 confidence 0.025 feature_proportion 0.03679363967676929 n_clusters 1,738,0.025,0.03679363967676929,1,0.8465933772178968,0,None,i7186,41,0.00038514771909893043
1727824554,1727824615,61,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 422 confidence 0.001 feature_proportion 0.04432804813009403 n_clusters 2,422,0.001,0.04432804813009403,2,0.8507702075049286,0,None,i7186,57,0.00021344455181076686
1727824751,1727824755,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 445 confidence 0.001 feature_proportion 0 n_clusters 4,445,0.001,0,4,None,1,None,i7186
1727824781,1727824785,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 602 confidence 0.001 feature_proportion 0 n_clusters 1,602,0.001,0,1,None,1,None,i7186
1727824794,1727824798,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 576 confidence 0.001 feature_proportion 0 n_clusters 4,576,0.001,0,4,None,1,None,i7186
1727824834,1727824838,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 616 confidence 0.001 feature_proportion 0 n_clusters 3,616,0.001,0,3,None,1,None,i7186
1727824841,1727824845,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 858 confidence 0.001 feature_proportion 0 n_clusters 1,858,0.001,0,1,None,1,None,i7186
1727824854,1727824858,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 572 confidence 0.001 feature_proportion 0 n_clusters 2,572,0.001,0,2,None,1,None,i7186
1727824894,1727824899,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 842 confidence 0.001 feature_proportion 0 n_clusters 4,842,0.001,0,4,None,1,None,i7186
1727824914,1727824918,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 538 confidence 0.001 feature_proportion 0 n_clusters 3,538,0.001,0,3,None,1,None,i7186
1727824934,1727824941,7,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 545 confidence 0.001 feature_proportion 0 n_clusters 4,545,0.001,0,4,None,1,None,i7186
1727824901,1727824958,57,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 597 confidence 0.001 feature_proportion 0.03140882345016759 n_clusters 4,597,0.001,0.03140882345016759,4,0.8512714271393724,0,None,i7186,54,0.00023708484295913686
1727824954,1727824959,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 543 confidence 0.001 feature_proportion 0 n_clusters 3,543,0.001,0,3,None,1,None,i7186
1727825231,1727825236,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 868 confidence 0.001 feature_proportion 0 n_clusters 1,868,0.001,0,1,None,1,None,i7186
1727825254,1727825259,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 844 confidence 0.001 feature_proportion 0 n_clusters 4,844,0.001,0,4,None,1,None,i7186
1727825274,1727825279,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 859 confidence 0.001 feature_proportion 0 n_clusters 3,859,0.001,0,3,None,1,None,i7186
1727825314,1727825318,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 703 confidence 0.001 feature_proportion 0 n_clusters 1,703,0.001,0,1,None,1,None,i7186
1727825292,1727825338,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 839 confidence 0.005 feature_proportion 0.06855944279162825 n_clusters 4,839,0.005,0.06855944279162825,4,0.845824840445083,0,None,i7186,42,0.0004530632381933289
1727825334,1727825339,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 860 confidence 0.001 feature_proportion 0 n_clusters 1,860,0.001,0,1,None,1,None,i7186
1727825351,1727825355,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 707 confidence 0.001 feature_proportion 0 n_clusters 1,707,0.001,0,1,None,1,None,i7186
1727825411,1727825415,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 867 confidence 0.001 feature_proportion 0 n_clusters 1,867,0.001,0,1,None,1,None,i7186
1727825374,1727825420,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 478 confidence 0.25 feature_proportion 0.2 n_clusters 1,478,0.25,0.2,1,0.8542453303037391,0,None,i7186,42,0.00011836712271046008
1727825394,1727825443,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 849 confidence 0.005 feature_proportion 0.044349552237808926 n_clusters 3,849,0.005,0.044349552237808926,3,0.8439536204764928,0,None,i7186,45,0.0005398553145988571
1727825434,1727825490,56,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 674 confidence 0.001 feature_proportion 0.009341796367090933 n_clusters 1,674,0.001,0.009341796367090933,1,0.8446887426070104,0,None,i7186,52,0.0004864778804895839
1727825454,1727825503,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 841 confidence 0.005 feature_proportion 0.06868930451047947 n_clusters 4,841,0.005,0.06868930451047947,4,0.8470611822100444,0,None,i7186,45,0.0004384406095235776
1727825474,1727825521,47,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 835 confidence 0.01 feature_proportion 0.2 n_clusters 4,835,0.01,0.2,4,0.8461589868680456,0,None,i7186,43,0.00045666677804880756
1727825494,1727825546,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 850 confidence 0.001 feature_proportion 0.06744568992838025 n_clusters 4,850,0.001,0.06744568992838025,4,0.8446887426070104,0,None,i7186,48,0.0005168827480201829
1727825714,1727825719,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 870 confidence 0.005 feature_proportion 0 n_clusters 1,870,0.005,0,1,None,1,None,i7186
1727825753,1727825757,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 616 confidence 0.25 feature_proportion 0 n_clusters 1,616,0.25,0,1,None,1,None,i7186
1727825771,1727825775,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 658 confidence 0.25 feature_proportion 0 n_clusters 1,658,0.25,0,1,None,1,None,i7186
1727825793,1727825798,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1,1000,0.001,0,1,None,1,None,i7186
1727825831,1727825835,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 688 confidence 0.25 feature_proportion 0 n_clusters 1,688,0.25,0,1,None,1,None,i7186
1727825853,1727825857,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 647 confidence 0.25 feature_proportion 0 n_clusters 1,647,0.25,0,1,None,1,None,i7186
1727825813,1727825866,53,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 977 confidence 0.001 feature_proportion 0.035353581424803895 n_clusters 1,977,0.001,0.035353581424803895,1,0.8441541083302704,0,None,i7186,49,0.0006829952885354363
1727825913,1727825917,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 853 confidence 0.25 feature_proportion 0 n_clusters 1,853,0.25,0,1,None,1,None,i7186
1727825873,1727825922,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 689 confidence 0.005 feature_proportion 0.08829934311039667 n_clusters 2,689,0.005,0.08829934311039667,2,0.846359474721823,0,None,i7186,45,0.0003717378955458282
1727825921,1727825925,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 869 confidence 0.001 feature_proportion 0 n_clusters 1,869,0.001,0,1,None,1,None,i7186
1727825891,1727825936,45,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 625 confidence 0.1 feature_proportion 0.046617598594046954 n_clusters 1,625,0.1,0.046617598594046954,1,0.8515053296354462,0,None,i7186,41,0.00021608135351577722
1727826131,1727826136,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1,1000,0.005,0,1,None,1,None,i7186
1727826158,1727826163,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 870 confidence 0.001 feature_proportion 0 n_clusters 1,870,0.001,0,1,None,1,None,i7186
1727826178,1727826183,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 878 confidence 0.005 feature_proportion 0 n_clusters 1,878,0.005,0,1,None,1,None,i7186
1727826191,1727826241,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 997 confidence 0.001 feature_proportion 0.15117589410464183 n_clusters 2,997,0.001,0.15117589410464183,2,0.8395763023356835,0,None,i7186,46,0.000813089629208852
1727826238,1727826243,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1,1000,0.001,0,1,None,1,None,i7186
1727826218,1727826276,58,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 172 confidence 0.001 feature_proportion 0.09151838237555115 n_clusters 1,172,0.001,0.09151838237555115,1,0.8343636181374678,0,None,i7186,54,0.0004884613164761525
1727826278,1727826282,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 882 confidence 0.01 feature_proportion 0 n_clusters 1,882,0.01,0,1,None,1,None,i7186
1727826251,1727826302,51,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 896 confidence 0.001 feature_proportion 0.06497666709723708 n_clusters 1,896,0.001,0.06497666709723708,1,0.8395763023356835,0,None,i7186,47,0.0007733102931418831
1727826338,1727826343,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 860 confidence 0.001 feature_proportion 0 n_clusters 1,860,0.001,0,1,None,1,None,i7186
1727826298,1727826356,58,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 166 confidence 0.01 feature_proportion 0.007916691422013058 n_clusters 2,166,0.01,0.007916691422013058,2,0.8547465499381829,0,None,i7186,54,7.123561104915732e-05
1727826358,1727826363,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 870 confidence 0.001 feature_proportion 0 n_clusters 1,870,0.001,0,1,None,1,None,i7186
1727826371,1727826376,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 853 confidence 0.25 feature_proportion 0 n_clusters 1,853,0.25,0,1,None,1,None,i7186
1727826641,1727826646,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 862 confidence 0.001 feature_proportion 0 n_clusters 1,862,0.001,0,1,None,1,None,i7186
1727826630,1727826725,95,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 871 confidence 0.005 feature_proportion 0 n_clusters 1,871,0.005,0,1,None,1,None,i7181
1727826631,1727826725,94,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 849 confidence 0.25 feature_proportion 0 n_clusters 1,849,0.25,0,1,None,1,None,i7181
1727826671,1727826730,59,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 171 confidence 0.001 feature_proportion 0.08155478991377223 n_clusters 1,171,0.001,0.08155478991377223,1,0.8375714237979083,0,None,i7186,55,0.00038157365718948357
1727826691,1727826739,48,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 847 confidence 0.01 feature_proportion 0.11079647201369916 n_clusters 1,847,0.01,0.11079647201369916,1,0.8452567915260467,0,None,i7186,44,0.0005152322263745005
1727826701,1727826753,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 846 confidence 0.005 feature_proportion 0.07348174554325633 n_clusters 1,846,0.005,0.07348174554325633,1,0.8452567915260467,0,None,i7186,49,0.0005507654833658454
1727826751,1727826756,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 863 confidence 0.001 feature_proportion 0 n_clusters 1,863,0.001,0,1,None,1,None,i7186
1727826771,1727826776,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 951 confidence 0.25 feature_proportion 0 n_clusters 4,951,0.25,0,4,None,1,None,i7186
1727826731,1727826779,48,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 846 confidence 0.01 feature_proportion 0.119762452563735 n_clusters 1,846,0.01,0.119762452563735,1,0.8446219133224179,0,None,i7186,44,0.0005454131936098271
1727826821,1727826825,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 859 confidence 0.05 feature_proportion 0 n_clusters 1,859,0.05,0,1,None,1,None,i7186
1727826811,1727826873,62,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 474 confidence 0.001 feature_proportion 0.2 n_clusters 4,474,0.001,0.2,4,0.8470277675677482,0,None,i7186,58,0.00028982087705934766
1727826852,1727826896,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 823 confidence 0.05 feature_proportion 0.05479532506588878 n_clusters 1,823,0.05,0.05479532506588878,1,0.8412804490927924,0,None,i7186,41,0.0005867218073783464
1727827071,1727827075,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 485 confidence 0.001 feature_proportion 0 n_clusters 4,485,0.001,0,4,None,1,None,i7186
1727827091,1727827096,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 850 confidence 0.25 feature_proportion 0 n_clusters 1,850,0.25,0,1,None,1,None,i7186
1727827121,1727827126,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 817 confidence 0.1 feature_proportion 0 n_clusters 1,817,0.1,0,1,None,1,None,i7186
1727827171,1727827175,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 865 confidence 0.25 feature_proportion 0 n_clusters 1,865,0.25,0,1,None,1,None,i7186
1727827151,1727827197,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 791 confidence 0.025 feature_proportion 0.06168600675493328 n_clusters 1,791,0.025,0.06168600675493328,1,0.8443880108263441,0,None,i7186,42,0.0004811708490660609
1727827181,1727827224,43,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 913 confidence 0.25 feature_proportion 0.2 n_clusters 4,913,0.25,0.2,4,0.8412136198082,0,None,i7186,39,0.0006456571204985898
1727827211,1727827257,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 826 confidence 0.1 feature_proportion 0.024479787667490448 n_clusters 1,826,0.1,0.024479787667490448,1,0.8445216693955291,0,None,i7186,42,0.000491391798474327
1727827231,1727827274,43,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 872 confidence 0.1 feature_proportion 0.08745953891277419 n_clusters 1,872,0.1,0.08745953891277419,1,0.8448892304607879,0,None,i7186,39,0.0004951442449354031
1727827251,1727827294,43,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 874 confidence 0.25 feature_proportion 0.14250505343653927 n_clusters 1,874,0.25,0.14250505343653927,1,0.8454906940221205,0,None,i7186,39,0.00047691807641017404
1727827271,1727827315,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 906 confidence 0.1 feature_proportion 0.12211180241222151 n_clusters 4,906,0.1,0.12211180241222151,4,0.8398436194740535,0,None,i7186,40,0.0006682928459250843
1727827501,1727827505,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 948 confidence 0.25 feature_proportion 0 n_clusters 4,948,0.25,0,4,None,1,None,i7186
1727827511,1727827515,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 872 confidence 0.001 feature_proportion 0 n_clusters 2,872,0.001,0,2,None,1,None,i7186
1727827461,1727827521,60,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 170 confidence 0.001 feature_proportion 0.0825113247723356 n_clusters 1,170,0.001,0.0825113247723356,1,0.8293180071507334,0,None,i7186,56,0.0005801996980531414
1727827561,1727827565,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 440 confidence 0.25 feature_proportion 0 n_clusters 4,440,0.25,0,4,None,1,None,i7186
1727827541,1727827585,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 937 confidence 0.25 feature_proportion 0.032865611685334965 n_clusters 4,937,0.25,0.032865611685334965,4,0.843853376549604,0,None,i7186,41,0.0005791871331350728
1727827581,1727827624,43,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 483 confidence 0.25 feature_proportion 0.13854336801712505 n_clusters 2,483,0.25,0.13854336801712505,2,0.8525077689043339,0,None,i7186,39,0.00014535369398870578
1727827621,1727827626,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4,1000,0.25,0,4,None,1,None,i7186
1727827661,1727827665,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 958 confidence 0.25 feature_proportion 0 n_clusters 4,958,0.25,0,4,None,1,None,i7186
1727827631,1727827674,43,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 917 confidence 0.25 feature_proportion 0.10109944849249929 n_clusters 4,917,0.25,0.10109944849249929,4,0.8422160590770875,0,None,i7186,39,0.0006133203698893114
1727827681,1727827725,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 419 confidence 0.25 feature_proportion 0.2 n_clusters 4,419,0.25,0.2,4,0.8557824038493668,0,None,i7186,40,7.893603904767296e-05
1727827931,1727827936,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1,1000,0.001,0,1,None,1,None,i7186
1727827901,1727827957,56,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 744 confidence 0.001 feature_proportion 0.1541403332504318 n_clusters 2,744,0.001,0.1541403332504318,2,0.8483643532595984,0,None,i7186,51,0.0003898374934562992
1727827952,1727828002,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 995 confidence 0.001 feature_proportion 0.03993680495147095 n_clusters 1,995,0.001,0.03993680495147095,1,0.8382397166438333,0,None,i7186,46,0.0009195709559929166
1727827961,1727828011,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 992 confidence 0.001 feature_proportion 0.1457315794670551 n_clusters 2,992,0.001,0.1457315794670551,2,0.8366358138136132,0,None,i7186,46,0.0009108583974090039
1727828012,1727828016,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 592 confidence 0.001 feature_proportion 0 n_clusters 1,592,0.001,0,1,None,1,None,i7186
1727828032,1727828036,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 578 confidence 0.001 feature_proportion 0 n_clusters 1,578,0.001,0,1,None,1,None,i7186
1727827991,1727828040,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 587 confidence 0.001 feature_proportion 0.2 n_clusters 1,587,0.001,0.2,1,0.8432853276305677,0,None,i7186,45,0.00041729448635089583
1727828072,1727828120,48,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 764 confidence 0.001 feature_proportion 0.2 n_clusters 1,764,0.001,0.2,1,0.8446553279647141,0,None,i7186,44,0.00047353321654120304
1727828092,1727828144,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 620 confidence 0.001 feature_proportion 0.0596147546024208 n_clusters 1,620,0.001,0.0596147546024208,1,0.8420489858656063,0,None,i7186,48,0.0004917949917448698
1727828111,1727828162,51,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 569 confidence 0.001 feature_proportion 0.07634458182644001 n_clusters 1,569,0.001,0.07634458182644001,1,0.8472950847061183,0,None,i7186,47,0.000331759662798524
1727828278,1727828282,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 591 confidence 0.001 feature_proportion 0 n_clusters 1,591,0.001,0,1,None,1,None,i7186
1727828338,1727828343,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1,1000,0.001,0,1,None,1,None,i7186
1727828318,1727828367,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 553 confidence 0.005 feature_proportion 0.016882991409375016 n_clusters 1,553,0.005,0.016882991409375016,1,0.8440204497610853,0,None,i7186,45,0.0003740987126645852
1727828378,1727828382,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 627 confidence 0.005 feature_proportion 0 n_clusters 1,627,0.005,0,1,None,1,None,i7186
1727828358,1727828408,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 597 confidence 0.001 feature_proportion 0.13817119243905318 n_clusters 1,597,0.001,0.13817119243905318,1,0.8449226451030842,0,None,i7186,46,0.0003882463200136203
1727828411,1727828415,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 482 confidence 0.025 feature_proportion 0 n_clusters 1,482,0.025,0,1,None,1,None,i7186
1727828458,1727828463,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1,1000,0.001,0,1,None,1,None,i7186
1727828438,1727828485,47,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 536 confidence 0.025 feature_proportion 0.09354087318300539 n_clusters 1,536,0.025,0.09354087318300539,1,0.8483643532595984,0,None,i7186,43,0.0002522477898834877
1727828635,1727828684,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.19097790993361133 n_clusters 2,1000,0.001,0.19097790993361133,2,0.8404116683930898,0,None,i7186,45,0.000771011931502459
1727828680,1727828684,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 901 confidence 0.01 feature_proportion 0 n_clusters 1,901,0.01,0,1,None,1,None,i7186
1727828660,1727828712,52,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.2 n_clusters 1,1000,0.001,0.2,1,0.8381728873592408,0,None,i7186,48,0.0009222441273766169
1727828740,1727828745,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1,1000,0.25,0,1,None,1,None,i7186
1727828700,1727828750,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 970 confidence 0.001 feature_proportion 0.054632609609757 n_clusters 1,970,0.001,0.054632609609757,1,0.843452400842049,0,None,i7186,47,0.0006837149885233559
1727828760,1727828765,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 933 confidence 0.001 feature_proportion 0 n_clusters 4,933,0.001,0,4,None,1,None,i7186
1727828800,1727828805,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1,1000,0.005,0,1,None,1,None,i7186
1727828820,1727828825,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0 n_clusters 1,1000,0.05,0,1,None,1,None,i7186
1727828860,1727828864,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 934 confidence 0.001 feature_proportion 0 n_clusters 4,934,0.001,0,4,None,1,None,i7186
1727828840,1727828890,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 901 confidence 0.01 feature_proportion 0.01486375921555323 n_clusters 1,901,0.01,0.01486375921555323,1,0.8375045945133157,0,None,i7186,46,0.000818082621735879
1727829058,1727829063,5,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0 n_clusters 1,1000,0.025,0,1,None,1,None,i7186
1727829131,1727829135,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 909 confidence 0.01 feature_proportion 0 n_clusters 1,909,0.01,0,1,None,1,None,i7186
1727829098,1727829148,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 969 confidence 0.001 feature_proportion 0.04149782591556487 n_clusters 1,969,0.001,0.04149782591556487,1,0.8426838640692351,0,None,i7186,46,0.0006868565360896696
1727829118,1727829162,44,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 886 confidence 0.01 feature_proportion 0.05086849862279977 n_clusters 1,886,0.01,0.05086849862279977,1,0.8453570354529355,0,None,i7186,41,0.0005119985513135729
1727829191,1727829195,4,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 932 confidence 0.001 feature_proportion 0 n_clusters 4,932,0.001,0,4,None,1,None,i7186
1727829158,1727829204,46,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0.08905278286104765 n_clusters 2,1000,0.01,0.08905278286104765,2,0.837805326293982,0,None,i7186,42,0.0008365594374883646
1727829218,1727829268,50,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.050592622158597444 n_clusters 4,1000,0.001,0.050592622158597444,4,0.8385070337822034,0,None,i7186,46,0.0008415539541278837
1727829238,1727829287,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 842 confidence 0.01 feature_proportion 0.11838280663306662 n_clusters 1,842,0.01,0.11838280663306662,1,0.8455241086644167,0,None,i7186,45,0.0005066090928786932
1727829251,1727829300,49,module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 980 confidence 0.001 feature_proportion 0.1300732468762936 n_clusters 2,980,0.001,0.1300732468762936,2,0.841079961239015,0,None,i7186,46,0.0007462603446163444
Copy raw data to clipboard
Download »job_infos.csv« as file
Skipped tabs:
Job-Infos
Single Logs
Copy raw data to clipboard
Download »export.html« as file
<!DOCTYPE html>
<html lang='en'>
<head>
<meta charset='UTF-8'>
<meta name='viewport' content='width=device-width, initial-scale=1.0'>
<title>Exported »s4122485/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0« from OmniOpt2-Share</title>
<script src='https://code.jquery.com/jquery-3.7.1.js'></script>
<script src='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/gridjs.production.min.js'></script>
<script src='https://cdn.jsdelivr.net/npm/plotly.js-dist@3.0.1/plotly.min.js'></script>
<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/gridjs/6.2.0/theme/mermaid.css'>
<style>
#share_path {
color: black;
}
.debug_log_pre {
min-width: 300px;
}
body.dark-mode {
background-color: #1e1e1e; color: #fff;
}
.plot-container {
margin-bottom: 2rem;
}
.spinner {
border: 4px solid #f3f3f3;
border-top: 4px solid #3498db;
border-radius: 50%;
width: 40px;
height: 40px;
animation: spin 2s linear infinite;
margin: auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
.tabs {
margin-bottom: 20px;
}
.tab-content {
display: none;
}
.tab-content.active {
display: block;
}
pre {
color: #00CC00 !important;
background-color: black !important;
font-family: monospace !important;
line-break: anywhere;
}
menu[role="tablist"] {
display: flex;
flex-wrap: wrap;
gap: 4px;
max-width: 100%;
max-height: 100px;
overflow: scroll;
}
menu[role="tablist"] button {
white-space: nowrap;
min-width: 100px;
}
.container {
max-width: 100% !important;
}
.gridjs-sort {
min-width: 1px !important;
}
td.gridjs-td {
overflow: clip;
}
.title-bar-text {
font-size: 22px;
display: block ruby;
}
.title-bar {
height: fit-content;
}
.window {
width: fit-content;
min-width: 100%;
}
.top_link {
display: inline-block;
padding: 5px 5px;
background-color: #007bff; /* Blau, kannst du anpassen */
color: white;
text-decoration: none;
font-size: 16px;
font-weight: bold;
border-radius: 6px;
border: 2px solid #0056b3;
text-align: center;
transition: all 0.3s ease-in-out;
}
.top_link:hover {
background-color: #0056b3;
border-color: #004494;
}
.top_link:active {
background-color: #003366;
border-color: #002244;
}
button {
color: black;
}
.share_folder_buttons {
width: fit-content;
}
button {
background: #fcfcfe;
border-color: #919b9c;
border-top-color: rgb(145, 155, 156);
border-bottom-color: rgb(145, 155, 156);
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c;
}
button {
padding-bottom: 2px;
margin-top: -2px;
background-color: #ece9d8;
position: relative;
z-index: 8;
margin-left: -3px;
margin-bottom: 1px;
}
.window {
min-width: 1100px;
}
.error_text {
color: red;
}
[role="tab"] {
padding: 10px !important;
}
[role="tabpanel"] {
min-width: fit-content;
}
select {
border: 1px solid #7f9db9;
background-image: url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 -0.5 15 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e6eefc' d='M0 0h1'/%3E%3Cpath stroke='%23d1e0fd' d='M1 0h1M0 1h1m3 0h2M2 3h1M2 4h1'/%3E%3Cpath stroke='%23cad8f9' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23c4d3f7' d='M3 0h1M0 3h1M0 4h1'/%3E%3Cpath stroke='%23bfd0f8' d='M4 0h2M0 5h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 0h1M0 6h1'/%3E%3Cpath stroke='%23baccf4' d='M7 0h1m6 2h1m-1 5h1m-1 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M8 0h1M0 7h1M0 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M9 0h2M0 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 0h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 0h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 0h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 0h1'/%3E%3Cpath stroke='%23e1eafe' d='M1 1h1'/%3E%3Cpath stroke='%23dae6fe' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23d4e1fc' d='M3 1h1M1 3h1M1 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 1h1M1 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 1h1M4 2h2'/%3E%3Cpath stroke='%23cad9fd' d='M8 1h1M6 2h1M3 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M9 1h2'/%3E%3Cpath stroke='%23c5d6fc' d='M11 1h1M2 11h4'/%3E%3Cpath stroke='%23c2d3fc' d='M12 1h1m-2 1h1M1 11h1m0 1h2m-2 1h2'/%3E%3Cpath stroke='%23bccefa' d='M13 1h1m-1 1h1m-1 1h1m-1 1h1M3 15h4'/%3E%3Cpath stroke='%23b9c9f3' d='M14 1h1M3 16h4'/%3E%3Cpath stroke='%23d8e3fc' d='M2 2h1'/%3E%3Cpath stroke='%23d1defd' d='M3 2h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 2h1M4 3h3M4 4h3M3 6h1m1 0h2M1 7h1M1 8h1'/%3E%3Cpath stroke='%23c5d5fc' d='M8 2h1m-8 8h5'/%3E%3Cpath stroke='%23c5d3fc' d='M9 2h2'/%3E%3Cpath stroke='%23bed0fc' d='M12 2h1M8 3h1M8 4h1m-8 8h1m-1 1h1m0 1h1m1 0h3'/%3E%3Cpath stroke='%23cddbfc' d='M3 3h1M3 4h1M1 6h2'/%3E%3Cpath stroke='%23c8d5fb' d='M7 3h1M7 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M9 3h4M9 4h4M8 5h1M7 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 3h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23ceddfd' d='M2 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M4 5h4M1 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M9 5h2m1 0h2M1 14h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M8 6h2m2 0h2m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%234d6185' d='M4 6h1m5 0h1M3 7h3m3 0h3M4 8h3m1 0h3M5 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1m-1 1h1'/%3E%3Cpath stroke='%23cad8fd' d='M2 7h1M2 8h2'/%3E%3Cpath stroke='%23c1d3fb' d='M6 7h2M7 8h1M4 9h1'/%3E%3Cpath stroke='%23b6cefb' d='M8 7h1m2 1h1m-2 1h3m-2 1h2'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-6 6h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b4c8f6' d='M0 10h1'/%3E%3Cpath stroke='%23bdd3fb' d='M9 10h2m-4 4h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 10h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 10h1'/%3E%3Cpath stroke='%23b1c7f6' d='M0 11h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M8 11h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M9 11h4m-2 3h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 11h1m-3 4h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 11h1m-7 5h3'/%3E%3Cpath stroke='%23adc3f6' d='M0 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c2d5fc' d='M4 12h4m-4 1h4'/%3E%3Cpath stroke='%23b7d3fc' d='M9 12h2m-2 1h2m-3 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 12h1m-1 1h1'/%3E%3Cpath stroke='%23afcdfb' d='M12 12h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afcbfa' d='M13 12h1m-1 1h1'/%3E%3Cpath stroke='%23b2c8f4' d='M14 12h1m-1 1h1m-4 3h1'/%3E%3Cpath stroke='%23c1d2fb' d='M3 14h1'/%3E%3Cpath stroke='%23b6d1fb' d='M9 14h2'/%3E%3Cpath stroke='%23adc9f9' d='M13 14h1m-2 1h1'/%3E%3Cpath stroke='%23b1c6f3' d='M14 14h1m-3 2h1'/%3E%3Cpath stroke='%23abc1f4' d='M0 15h1'/%3E%3Cpath stroke='%23b7cbf9' d='M1 15h1'/%3E%3Cpath stroke='%23b9cefb' d='M2 15h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 15h1'/%3E%3Cpath stroke='%23b2cdfb' d='M9 15h2'/%3E%3Cpath stroke='%23aec8f7' d='M13 15h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 15h1m-2 1h1'/%3E%3Cpath stroke='%23dbe3f8' d='M0 16h1'/%3E%3Cpath stroke='%23b7c6f1' d='M1 16h1'/%3E%3Cpath stroke='%23b8c9f2' d='M2 16h1m4 0h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 16h1'/%3E%3C/svg%3E");
background-size: 15px;
font-size: 11px;
border: none;
background-color: #fff;
box-sizing: border-box;
height: 21px;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
position: relative;
padding: 5px 32px 32px 5px;
background-position: top 50% right 2px;
background-repeat: no-repeat;
border-radius: 0;
border: 1px solid black;
}
body {
font-family: 'IBM Plex Sans', 'Source Sans Pro', sans-serif;
background-color: #fafafa;
font-variant: oldstyle-nums;
text-shadow: 0 0.05em 0.1em rgba(0,0,0,0.2);
scroll-behavior: smooth;
text-wrap: balance;
text-rendering: optimizeLegibility;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
font-feature-settings: "ss02", "liga", "onum";
}
.marked_text {
background-color: yellow;
}
.time_picker_container {
font-variant: small-caps;
width: 100%;
}
.time_picker_container > input {
width: 50px;
}
#loader {
display: grid;
justify-content: center;
align-items: center;
height: 100%;
}
.no_linebreak {
line-break: auto;
}
.dark_code_bg {
background-color: #363636;
color: white;
}
.code_bg {
background-color: #C0C0C0;
}
#commands {
line-break: anywhere;
}
.color_red {
color: red;
}
.color_orange {
color: orange;
}
table > tbody > tr:nth-child(odd) {
background-color: #fafafa;
}
table > tbody > tr:nth-child(even) {
background-color: #ddd;
}
table {
border-collapse: collapse;
margin: 25px 0;
min-width: 200px;
}
th {
background-color: #4eae46;
color: #ffffff;
text-align: left;
border: 0px;
}
.error_element {
background-color: #e57373;
border-radius: 10px;
padding: 4px;
display: none;
}
button {
background-color: #4eae46;
border: 1px solid #2A8387;
border-radius: 4px;
box-shadow: rgba(0, 0, 0, 0.12) 0 1px 1px;
cursor: pointer;
display: block;
line-height: 100%;
outline: 0;
padding: 11px 15px 12px;
text-align: center;
transition: box-shadow .05s ease-in-out, opacity .05s ease-in-out;
user-select: none;
-webkit-user-select: none;
touch-action: manipulation;
}
button:hover {
box-shadow: rgba(255, 255, 255, 0.3) 0 0 2px inset, rgba(0, 0, 0, 0.4) 0 1px 2px;
text-decoration: none;
transition-duration: .15s, .15s;
}
button:active {
box-shadow: rgba(0, 0, 0, 0.15) 0 2px 4px inset, rgba(0, 0, 0, 0.4) 0 1px 1px;
}
button:disabled {
cursor: not-allowed;
opacity: .6;
}
button:disabled:active {
pointer-events: none;
}
button:disabled:hover {
box-shadow: none;
}
.half_width_td {
vertical-align: baseline;
width: 50%;
}
#scads_bar {
width: 100%;
min-height: 80px;
margin: 0;
padding: 0;
user-select: none;
user-drag: none;
-webkit-user-drag: none;
user-select: none;
-moz-user-select: none;
-webkit-user-select: none;
-ms-user-select: none;
display: -webkit-box;
}
.tab {
display: inline-block;
padding: 0px;
margin: 0px;
font-size: 16px;
font-weight: bold;
text-align: center;
border-radius: 25px;
text-decoration: none !important;
transition: background-color 0.3s, color 0.3s;
color: unset !important;
}
.tooltipster-base {
border: 1px solid black;
position: absolute;
border-radius: 8px;
padding: 2px;
color: white;
background-color: #61686f;
width: 70%;
min-width: 200px;
pointer-events: none;
}
td {
padding-top: 3px;
padding-bottom: 3px;
}
.left_side {
text-align: right;
}
.right_side {
text-align: left;
}
.spinner {
border: 8px solid rgba(0, 0, 0, 0.1);
border-left: 8px solid #3498db;
border-radius: 50%;
width: 50px;
height: 50px;
animation: spin 1s linear infinite;
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
#spinner-overlay {
-webkit-text-stroke: 1px black;
white !important;
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
display: flex;
justify-content: center;
align-items: center;
z-index: 9999;
}
#spinner-container {
text-align: center;
color: #fff;
display: contents;
}
#spinner-text {
font-size: 3vw;
margin-left: 10px;
}
a, a:visited, a:active, a:hover, a:link {
color: #007bff;
text-decoration: none;
}
.copy-container {
display: inline-block;
position: relative;
cursor: pointer;
margin-left: 10px;
color: blue;
}
.copy-container:hover {
text-decoration: underline;
}
.clipboard-icon {
position: absolute;
top: 5px;
right: 5px;
font-size: 1.5em;
}
#main_tab {
overflow: scroll;
width: max-content;
}
.ui-tabs .ui-tabs-nav li {
user-select: none;
}
.stacktrace_table {
background-color: black !important;
color: white !important;
}
#breadcrumb {
user-select: none;
}
#statusBar {
user-select: none;
}
.error_line {
background-color: red !important;
color: white !important;
}
.header_table {
border: 0px !important;
padding: 0px !important;
width: revert !important;
min-width: revert !important;
}
.img_auto_width {
max-width: revert !important;
}
#main_dir_or_plot_view {
display: inline-grid;
}
#refresh_button {
width: 300px;
}
._share_link {
color: black !important;
}
#footer_element {
height: 30px;
background-color: #f8f9fa;
padding: 0px;
text-align: center;
border-top: 1px solid #dee2e6;
width: 100%;
box-sizing: border-box;
position: fixed;
bottom: 0;
z-index: 2;
margin-left: -9px;
z-index: 99;
}
.switch {
position: relative;
display: inline-block;
width: 50px;
height: 26px;
}
.switch input {
opacity: 0;
width: 0;
height: 0;
}
.slider {
position: absolute;
cursor: pointer;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #ccc;
transition: .4s;
border-radius: 26px;
}
.slider:before {
position: absolute;
content: "";
height: 20px;
width: 20px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #444;
}
input:checked + .slider:before {
transform: translateX(24px);
}
.mode-text {
position: absolute;
top: 5px;
left: 65px;
font-size: 14px;
color: black;
transition: .4s;
width: 60px;
display: block;
font-size: 0.7rem;
text-align: center;
}
input:checked + .slider .mode-text {
content: "Dark Mode";
color: white;
}
#mainContent {
height: fit-content;
min-height: 100%;
}
li {
text-align: left;
}
#share_path {
margin-bottom: 20px;
margin-top: 20px;
}
#sortForm {
margin-bottom: 20px;
}
.share_folder_buttons {
margin-top: 10px;
margin-bottom: 10px;
}
.nav_tab_button {
margin: 10px;
}
.header_table {
margin: 10px;
}
.no_border {
border: unset !important;
}
.gui_table {
padding: 5px !important;
}
.gui_parameter_row {
}
.gui_parameter_row_cell {
border: unset !important;
}
.gui_param_table {
width: 95%;
margin: unset !important;
}
table td, table tr,
.parameterRow table {
padding: 2px !important;
}
.parameterRow table {
margin: 0px;
border: unset;
}
.parameterRow > td {
border: 0px !important;
}
.parameter_config_table td, .parameter_config_table tr, #config_table th, #config_table td, #hidden_config_table th, #hidden_config_table td {
border: 0px !important;
}
.green_text {
color: green;
}
.remove_parameter {
white-space: pre;
}
select {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
background-color: #fff;
color: #222;
padding: 5px 30px 5px 5px;
border: 1px solid #555;
border-radius: 5px;
cursor: pointer;
outline: none;
transition: all 0.3s ease;
background:
url("data:image/svg+xml;charset=UTF-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 10 6'%3E%3Cpath fill='%23888' d='M0 0l5 6 5-6z'/%3E%3C/svg%3E")
no-repeat right 10px center,
linear-gradient(180deg, #fff, #ecebe5 86%, #d8d0c4);
background-size: 12px, auto;
}
select:hover {
border-color: #888;
}
select:focus {
border-color: #4caf50;
box-shadow: 0 0 5px rgba(76, 175, 80, 0.5);
}
select::-ms-expand {
display: none;
}
input, textarea {
border-radius: 5px;
}
#search {
width: 200px;
max-width: 70%;
background-image: url(images/search.svg);
background-repeat: no-repeat;
background-size: auto 40px;
height: 40px;
line-height: 40px;
padding-left: 40px;
box-sizing: border-box;
}
input[type="checkbox"] {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
width: 25px;
height: 25px;
border: 2px solid #3498db;
border-radius: 5px;
background-color: #fff;
position: relative;
cursor: pointer;
transition: all 0.3s ease;
width: 25px !important;
}
input[type="checkbox"]:checked {
background-color: #3498db;
border-color: #2980b9;
}
input[type="checkbox"]:checked::before {
content: '✔';
position: absolute;
left: 4px;
top: 2px;
color: #fff;
}
input[type="checkbox"]:hover {
border-color: #2980b9;
background-color: #3caffc;
}
.toc {
margin-bottom: 20px;
}
.toc li {
margin-bottom: 5px;
}
.toc a {
text-decoration: none;
color: #007bff;
}
.toc a:hover {
text-decoration: underline;
}
.table-container {
width: 100%;
overflow-x: auto;
}
.section-header {
background-color: #1d6f9a !important;
color: white;
}
.warning {
color: red;
}
.li_list a {
text-decoration: none;
color: #007bff;
}
.gridjs-td {
white-space: nowrap;
}
th, td {
border: 1px solid gray !important;
}
.no_border {
border: 0px !important;
}
.no_break {
}
img {
user-select: none;
pointer-events: none;
}
#config_table, #hidden_config_table {
user-select: none;
}
.copy_clipboard_button {
margin-bottom: 10px;
}
.badge_table {
background-color: unset !important;
}
.make_markable {
user-select: text;
}
.header-container {
display: flex;
flex-wrap: wrap;
align-items: center;
justify-content: space-between;
gap: 1rem;
padding: 10px;
background: var(--header-bg, #fff);
border-bottom: 1px solid #ccc;
}
.header-logo-group {
display: flex;
gap: 1rem;
align-items: center;
flex: 1 1 auto;
min-width: 200px;
}
.logo-img {
max-height: 45px;
height: auto;
width: auto;
object-fit: contain;
pointer-events: unset;
}
.header-badges {
flex-direction: column;
gap: 5px;
align-items: flex-start;
flex: 0 1 auto;
margin-top: auto;
margin-bottom: auto;
}
.badge-img {
height: auto;
max-width: 130px;
}
.header-tabs {
margin-top: 10px;
display: flex;
flex-wrap: wrap;
gap: 10px;
flex: 2 1 100%;
justify-content: center;
}
.nav-tab {
display: inline-block;
text-decoration: none;
padding: 8px 16px;
border-radius: 20px;
background: linear-gradient(to right, #4a90e2, #357ABD);
color: white;
font-weight: bold;
white-space: nowrap;
transition: background 0.2s ease-in-out, transform 0.2s;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
}
.nav-tab:hover {
background: linear-gradient(to right, #5aa0f2, #4a90e2);
transform: translateY(-2px);
}
.current-tag {
padding-left: 10px;
font-size: 0.9rem;
color: #666;
}
.header-theme-toggle {
flex: 1 1 auto;
align-items: center;
margin-top: 20px;
min-width: 120px;
}
.switch {
position: relative;
display: inline-block;
width: 60px;
height: 30px;
}
.switch input {
display: none;
}
.slider {
position: absolute;
top: 0; left: 0; right: 0; bottom: 0;
background-color: #ccc;
border-radius: 34px;
cursor: pointer;
}
.slider::before {
content: "";
position: absolute;
height: 24px;
width: 24px;
left: 3px;
bottom: 3px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: #2196F3;
}
input:checked + .slider::before {
transform: translateX(30px);
}
@media (max-width: 768px) {
.header-logo-group,
.header-badges,
.header-theme-toggle {
justify-content: center;
flex: 1 1 100%;
text-align: center;
}
.logo-img {
max-height: 50px;
pointer-events: unset;
}
.badge-img {
max-width: 100px;
}
.nav-tab {
font-size: 0.9rem;
padding: 6px 12px;
}
.header_button {
font-size: 2em;
}
}
.header_button {
margin-top: 20px;
margin: 5px;
}
.line_break_anywhere {
line-break: anywhere;
}
.responsive-container {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
gap: 20px;
}
.responsive-container .half {
flex: 1 1 48%;
box-sizing: border-box;
min-width: 500px;
}
.config-section table {
width: 100%;
border-collapse: collapse;
}
@media (max-width: 768px) {
.responsive-container .half {
flex: 1 1 100%;
}
}
@keyframes spin {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
.rotate {
animation: spin 2s linear infinite;
display: inline-block;
}
/*! XP.css v0.2.6 - https: //botoxparty.github.io/XP.css/ */
body{
color: #222
}
.surface{
background: #ece9d8
}
u{
text-decoration: none;
border-bottom: .5px solid #222
}
a{
color: #00f
}
a: focus{
outline: 1px dotted #00f
}
code,code *{
font-family: monospace
}
pre{
display: block;
padding: 12px 8px;
background-color: #000;
color: silver;
font-size: 1rem;
margin: 0;
overflow: scroll;
}
summary: focus{
outline: 1px dotted #000
}
: :-webkit-scrollbar{
width: 16px
}
: :-webkit-scrollbar: horizontal{
height: 17px
}
: :-webkit-scrollbar-track{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='2' height='2' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 0H0v1h1v1h1V1H1V0z' fill='silver'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 0H1v1H0v1h1V1h1V0z' fill='%23fff'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-color: #dfdfdf;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
: :-webkit-scrollbar-button: horizontal: end: increment,: :-webkit-scrollbar-button: horizontal: start: decrement,: :-webkit-scrollbar-button: vertical: end: increment,: :-webkit-scrollbar-button: vertical: start: decrement{
display: block
}
: :-webkit-scrollbar-button: vertical: start{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 6H7v1H6v1H5v1H4v1h7V9h-1V8H9V7H8V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 6H4v1h1v1h1v1h1v1h1V9h1V8h1V7h1V6z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 4H8v1H7v1H6v1H5v1h1v1h1v1h1v1h1V4z' fill='%23000'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 16px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='16' height='17' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 0H0v16h1V1h14V0z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M2 1H1v14h1V2h12V1H2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M16 17H0v-1h15V0h1v17z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M15 1h-1v14H1v1h14V1z' fill='gray'/%3E%3Cpath fill='silver' d='M2 2h12v13H2z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M7 4H6v7h1v-1h1V9h1V8h1V7H9V6H8V5H7V4z' fill='%23000'/%3E%3C/svg%3E")
}
button{
border: none;
background: #ece9d8;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf;
border-radius: 0;
min-width: 75px;
min-height: 23px;
padding: 0 12px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: inset -1px -1px #fff,inset 1px 1px #0a0a0a,inset -2px -2px #dfdfdf,inset 2px 2px grey
}
button.focused,button: focus{
outline: 1px dotted #000;
outline-offset: -4px
}
label{
display: inline-flex;
align-items: center
}
textarea{
padding: 3px 4px;
border: none;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0
}
textarea: focus{
outline: none
}
select: focus option{
color: #000;
background-color: #fff
}
.vertical-bar{
width: 4px;
height: 20px;
background: silver;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #fff,inset -2px -2px grey,inset 2px 2px #dfdfdf
}
&: disabled,&: disabled+label{
color: grey;
text-shadow: 1px 1px 0 #fff
}
input[type=radio]+label{
line-height: 13px;
position: relative;
margin-left: 19px
}
input[type=radio]+label: before{
content: "";
position: absolute;
top: 0;
left: -19px;
display: inline-block;
width: 13px;
height: 13px;
margin-right: 6px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='%23fff'/%3E%3C/svg%3E")
}
input[type=radio]: active+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio]: checked+label: after{
content: "";
display: block;
width: 5px;
height: 5px;
top: 5px;
left: -14px;
position: absolute;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=radio][disabled]+label: before{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='12' height='12' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 0H4v1H2v1H1v2H0v4h1v2h1V8H1V4h1V2h2V1h4v1h2V1H8V0z' fill='gray'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M8 1H4v1H2v2H1v4h1v1h1V8H2V4h1V3h1V2h4v1h2V2H8V1z' fill='%23000'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 3h1v1H9V3zm1 5V4h1v4h-1zm-2 2V9h1V8h1v2H8zm-4 0v1h4v-1H4zm0 0V9H2v1h2z' fill='%23DFDFDF'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 2h-1v2h1v4h-1v2H8v1H4v-1H2v1h2v1h4v-1h2v-1h1V8h1V4h-1V2z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M4 2h4v1h1v1h1v4H9v1H8v1H4V9H3V8H2V4h1V3h1V2z' fill='silver'/%3E%3C/svg%3E")
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='4' height='4' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M3 0H1v1H0v2h1v1h2V3h1V1H3V0z' fill='gray'/%3E%3C/svg%3E")
}
input[type=email],input[type=password]{
padding: 3px 4px;
border: 1px solid #7f9db9;
background-color: #fff;
box-sizing: border-box;
-webkit-appearance: none;
-moz-appearance: none;
appearance: none;
border-radius: 0;
height: 21px;
line-height: 2
}
input[type=email]: focus,input[type=password]: focus{
outline: none
}
input[type=range]{
-webkit-appearance: none;
width: 100%;
background: transparent
}
input[type=range]: focus{
outline: none
}
input[type=range]: :-webkit-slider-thumb{
-webkit-appearance: none;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v16h2v2h2v2h1v-1H3v-2H1V1h9V0z' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M1 1v15h1v1h1v1h1v1h2v-1h1v-1h1v-1h1V1z' fill='%23C0C7C8'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v15H8v2H6v2H5v-1h2v-2h2z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v16H9v2H7v2H5v1h1v-2h2v-2h2z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range]: :-webkit-slider-runnable-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range]: :-moz-range-track{
background: #000;
border-right: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #a9a9a9,-1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,-1px 1px 0 #fff,1px -1px #a9a9a9
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg width='11' height='21' fill='none' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0v20h1V1h9V0z' fill='%23fff'/%3E%3Cpath fill='%23C0C7C8' d='M1 1h8v18H1z'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M9 1h1v19H1v-1h8z' fill='%2387888F'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M10 0h1v21H0v-1h10z' fill='%23000'/%3E%3C/svg%3E")
}
.is-vertical{
display: inline-block;
width: 4px;
height: 150px;
transform: translateY(50%)
}
.is-vertical>input[type=range]{
width: 150px;
height: 4px;
margin: 0 16px 0 10px;
transform-origin: left;
transform: rotate(270deg) translateX(calc(-50% + 8px))
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid grey;
border-bottom: 1px solid grey;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #a9a9a9,1px -1px 0 #a9a9a9,0 -1px 0 #a9a9a9,1px 1px 0 #fff,-1px -1px #a9a9a9
}
.is-vertical>input[type=range]: :-webkit-slider-thumb{
transform: translateY(-8px) scaleX(-1)
}
.is-vertical>input[type=range]: :-moz-range-thumb{
transform: translateY(2px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-webkit-slider-thumb{
transform: translateY(-10px) scaleX(-1)
}
.is-vertical>input[type=range].has-box-indicator: :-moz-range-thumb{
transform: translateY(0) scaleX(-1)
}
.window{
font-size: 11px;
box-shadow: inset -1px -1px #0a0a0a,inset 1px 1px #dfdfdf,inset -2px -2px grey,inset 2px 2px #fff;
background: #ece9d8;
padding: 3px
}
.window fieldset{
margin-bottom: 9px
}
.title-bar{
background: #000;
padding: 3px 2px 3px 3px;
display: flex;
justify-content: space-between;
align-items: center
}
.title-bar-text{
font-weight: 700;
color: #fff;
letter-spacing: 0;
margin-right: 24px
}
.title-bar-controls button{
padding: 0;
display: block;
min-width: 16px;
min-height: 14px
}
.title-bar-controls button: focus{
outline: none
}
.window-body{
margin: 8px
}
.window-body pre{
margin: -8px
}
.status-bar{
margin: 0 1px;
display: flex;
gap: 1px
}
.status-bar-field{
box-shadow: inset -1px -1px #dfdfdf,inset 1px 1px grey;
flex-grow: 1;
padding: 2px 3px;
margin: 0
}
ul.tree-view{
display: block;
background: #fff;
padding: 6px;
margin: 0
}
ul.tree-view li{
list-style-type: none;
margin-top: 3px
}
ul.tree-view a{
text-decoration: none;
color: #000
}
ul.tree-view a: focus{
background-color: #2267cb;
color: #fff
}
ul.tree-view ul{
margin-top: 3px;
margin-left: 16px;
padding-left: 16px;
border-left: 1px dotted grey
}
ul.tree-view ul>li{
position: relative
}
ul.tree-view ul>li: before{
content: "";
display: block;
position: absolute;
left: -16px;
top: 6px;
width: 12px;
border-bottom: 1px dotted grey
}
ul.tree-view ul>li: last-child: after{
content: "";
display: block;
position: absolute;
left: -20px;
top: 7px;
bottom: 0;
width: 8px;
background: #fff
}
ul.tree-view ul details>summary: before{
margin-left: -22px;
position: relative;
z-index: 1
}
ul.tree-view details{
margin-top: 0
}
ul.tree-view details>summary: before{
text-align: center;
display: block;
float: left;
content: "+";
border: 1px solid grey;
width: 8px;
height: 9px;
line-height: 9px;
margin-right: 5px;
padding-left: 1px;
background-color: #fff
}
ul.tree-view details[open] summary{
margin-bottom: 0
}
ul.tree-view details[open]>summary: before{
content: "-"
}
fieldset{
border-image: url("data: image/svg+xml;charset=utf-8,%3Csvg width='5' height='5' fill='gray' xmlns='http: //www.w3.org/2000/svg'%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h5v5H0V2h2v1h1V2H0' fill='%23fff'/%3E%3Cpath fill-rule='evenodd' clip-rule='evenodd' d='M0 0h4v4H0V1h1v2h2V1H0'/%3E%3C/svg%3E") 2;
padding: 10px;
padding-block-start: 8px;
margin: 0
}
legend{
background: #ece9d8
}
menu[role=tablist]{
position: relative;
margin: 0 0 -2px;
text-indent: 0;
list-style-type: none;
display: flex;
padding-left: 3px
}
menu[role=tablist] button{
z-index: 1;
display: block;
color: #222;
text-decoration: none;
min-width: unset
}
menu[role=tablist] button[aria-selected=true]{
padding-bottom: 2px;margin-top: -2px;background-color: #ece9d8;position: relative;z-index: 8;margin-left: -3px;margin-bottom: 1px
}
menu[role=tablist] button: focus{
outline: 1px dotted #222;outline-offset: -4px
}
menu[role=tablist].justified button{
flex-grow: 1;text-align: center
}
[role=tabpanel]{
padding: 14px;clear: both;background: linear-gradient(180deg,#fcfcfe,#f4f3ee);border: 1px solid #919b9c;position: relative;z-index: 2;margin-bottom: 9px
}
: :-webkit-scrollbar{
width: 17px
}
: :-webkit-scrollbar-corner{
background: #dfdfdf
}
: :-webkit-scrollbar-track: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 1' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1'/%3E%3Cpath stroke='%23f3f1ec' d='M1 0h1'/%3E%3Cpath stroke='%23f4f1ec' d='M2 0h1'/%3E%3Cpath stroke='%23f4f3ee' d='M3 0h1'/%3E%3Cpath stroke='%23f5f4ef' d='M4 0h1'/%3E%3Cpath stroke='%23f6f5f0' d='M5 0h1'/%3E%3Cpath stroke='%23f7f7f3' d='M6 0h1'/%3E%3Cpath stroke='%23f9f8f4' d='M7 0h1'/%3E%3Cpath stroke='%23f9f9f7' d='M8 0h1'/%3E%3Cpath stroke='%23fbfbf8' d='M9 0h1'/%3E%3Cpath stroke='%23fbfbf9' d='M10 0h2'/%3E%3Cpath stroke='%23fdfdfa' d='M12 0h1'/%3E%3Cpath stroke='%23fefefb' d='M13 0h3'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-track: horizontal{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 1 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1M0 16h1'/%3E%3Cpath stroke='%23f3f1ec' d='M0 1h1'/%3E%3Cpath stroke='%23f4f1ec' d='M0 2h1'/%3E%3Cpath stroke='%23f4f3ee' d='M0 3h1'/%3E%3Cpath stroke='%23f5f4ef' d='M0 4h1'/%3E%3Cpath stroke='%23f6f5f0' d='M0 5h1'/%3E%3Cpath stroke='%23f7f7f3' d='M0 6h1'/%3E%3Cpath stroke='%23f9f8f4' d='M0 7h1'/%3E%3Cpath stroke='%23f9f9f7' d='M0 8h1'/%3E%3Cpath stroke='%23fbfbf8' d='M0 9h1'/%3E%3Cpath stroke='%23fbfbf9' d='M0 10h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 12h1'/%3E%3Cpath stroke='%23fefefb' d='M0 13h1m-1 1h1m-1 1h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb{
background-position: 50%;
background-repeat: no-repeat;
background-color: #c8d6fb;
background-size: 7px;
border: 1px solid #fff;
border-radius: 2px;
box-shadow: inset -3px 0 #bad1fc,inset 1px 1px #b7caf5
}
: :-webkit-scrollbar-thumb: vertical{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 7 8' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h6M0 2h6M0 4h6M0 6h6'/%3E%3Cpath stroke='%23bad1fc' d='M6 0h1M6 2h1M6 4h1'/%3E%3Cpath stroke='%23c8d6fb' d='M0 1h1M0 3h1M0 5h1M0 7h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h6M1 3h6M1 5h6M1 7h6'/%3E%3Cpath stroke='%23bad3fc' d='M6 6h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-thumb: horizontal{
background-size: 8px;background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 8 7' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eef4fe' d='M0 0h1m1 0h1m1 0h1m1 0h1M0 1h1m1 0h1m1 0h1m1 0h1M0 2h1m1 0h1m1 0h1m1 0h1M0 3h1m1 0h1m1 0h1m1 0h1M0 4h1m1 0h1m1 0h1m1 0h1M0 5h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23c8d6fb' d='M1 0h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%238cb0f8' d='M1 1h1m1 0h1m1 0h1m1 0h1M1 2h1m1 0h1m1 0h1m1 0h1M1 3h1m1 0h1m1 0h1m1 0h1M1 4h1m1 0h1m1 0h1m1 0h1M1 5h1m1 0h1m1 0h1m1 0h1M1 6h1m1 0h1m1 0h1m1 0h1'/%3E%3Cpath stroke='%23bad1fc' d='M0 6h1m1 0h1'/%3E%3Cpath stroke='%23bad3fc' d='M4 6h1m1 0h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: start{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h1m1 0h1'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M5 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h1m3 0h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h2M3 8h2'/%3E%3Cpath stroke='%234d6185' d='M8 5h1M7 6h3M6 7h5M5 8h3m1 0h3M4 9h3m3 0h3m-8 1h1m5 0h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1m-2 1h1m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 6h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23cad8fd' d='M4 7h2'/%3E%3Cpath stroke='%23b6cefb' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23c1d3fb' d='M8 8h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M8 9h1m-1 1h1m-3 1h2'/%3E%3Cpath stroke='%23bdd3fb' d='M9 9h1m-2 3h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M7 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1m-1 1h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h1m1 0h1m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c1d5fb' d='M8 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: vertical: end{
height: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h1m15 0h1M0 1h1M0 2h1M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m15 0h1M0 16h1m15 0h1'/%3E%3Cpath stroke='%23fdfdfa' d='M1 0h1'/%3E%3Cpath stroke='%23fff' d='M2 0h14M1 1h1m13 0h1M1 2h1m13 0h1M1 3h1m13 0h1M1 4h1m13 0h1M1 5h1m13 0h1M1 6h1m13 0h1M1 7h1m13 0h1M1 8h1m13 0h1M1 9h1m13 0h1M1 10h1m13 0h1M1 11h1m13 0h1M1 12h1m13 0h1M1 13h1m13 0h1M1 14h1m13 0h1M2 15h13'/%3E%3Cpath stroke='%23e6eefc' d='M2 1h1'/%3E%3Cpath stroke='%23d0dffc' d='M3 1h1M2 2h1'/%3E%3Cpath stroke='%23cad8f9' d='M4 1h1M2 3h1'/%3E%3Cpath stroke='%23c4d2f7' d='M5 1h1'/%3E%3Cpath stroke='%23c0d0f7' d='M6 1h1'/%3E%3Cpath stroke='%23bdcef7' d='M7 1h1M2 6h1'/%3E%3Cpath stroke='%23bbcdf5' d='M8 1h1'/%3E%3Cpath stroke='%23b8cbf6' d='M9 1h1M2 7h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 1h1M2 8h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 1h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 1h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 1h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 1h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 1h1'/%3E%3Cpath stroke='%23e1eafe' d='M3 2h1'/%3E%3Cpath stroke='%23dae6fe' d='M4 2h1M3 3h1'/%3E%3Cpath stroke='%23d4e1fc' d='M5 2h1M3 4h1'/%3E%3Cpath stroke='%23d1e0fd' d='M6 2h1M4 4h1'/%3E%3Cpath stroke='%23d0ddfc' d='M7 2h1M3 5h1'/%3E%3Cpath stroke='%23cedbfd' d='M8 2h1M6 3h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 2h1M7 3h1M5 5h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 2h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 2h1m-8 8h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 2h1m-2 1h1m-9 7h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 2h1m-1 2h1m-9 9h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 2h1M5 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 2h1'/%3E%3Cpath stroke='%23d8e3fc' d='M4 3h1'/%3E%3Cpath stroke='%23d1defd' d='M5 3h1'/%3E%3Cpath stroke='%23c9d8fc' d='M8 3h1M6 4h2M6 6h2M3 7h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 3h1M3 9h3'/%3E%3Cpath stroke='%23c5d3fc' d='M10 3h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 3h1M9 4h1m-7 7h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 3h1'/%3E%3Cpath stroke='%23baccf4' d='M14 3h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 3h1'/%3E%3Cpath stroke='%23c4d4f7' d='M2 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M5 4h1M3 6h1'/%3E%3Cpath stroke='%23c8d5fb' d='M8 4h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 4h3M9 5h1M8 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 4h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 4h1'/%3E%3Cpath stroke='%23bed0f8' d='M2 5h1'/%3E%3Cpath stroke='%23ceddfd' d='M4 5h1'/%3E%3Cpath stroke='%23c8d6fb' d='M6 5h3M3 8h2'/%3E%3Cpath stroke='%23bacdfc' d='M10 5h1m1 0h2M3 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 5h1M9 6h2m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 5h1'/%3E%3Cpath stroke='%23cddafc' d='M4 6h1'/%3E%3Cpath stroke='%234d6185' d='M5 6h1m5 0h1M4 7h3m3 0h3M5 8h3m1 0h3M6 9h5m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 6h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 7h2M8 8h1'/%3E%3Cpath stroke='%23b6cefb' d='M9 7h1m2 1h1m-2 1h2'/%3E%3Cpath stroke='%23bacbf4' d='M14 7h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 7h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 8h1m-5 5h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 8h1'/%3E%3Cpath stroke='%23b4c8f6' d='M2 9h1'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M2 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M2 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M5 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M6 11h2'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M2 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M5 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M6 12h2'/%3E%3Cpath stroke='%23bdd3fb' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M2 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M3 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M4 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M7 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M2 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M3 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M4 14h1m3 0h1'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M1 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M1 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M2 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M3 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M4 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M5 16h1'/%3E%3Cpath stroke='%237da0d4' d='M6 16h1m3 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M7 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M8 16h2'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: start{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1M1 9h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%23c9d8fc' d='M7 4h1M5 5h2M4 7h1M2 8h1'/%3E%3Cpath stroke='%234d6185' d='M8 4h1M7 5h3M6 6h3M5 7h3M4 8h3M5 9h3m-2 1h3m-2 1h3m-2 1h1'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M2 11h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M9 6h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23c8d6fb' d='M5 6h1M2 9h3'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1M8 7h3m1 0h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h1'/%3E%3Cpath stroke='%23c1d3fb' d='M7 8h2'/%3E%3Cpath stroke='%23b6cefb' d='M9 8h3M9 9h4'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 1h1m-1 4h1'/%3E%3Cpath stroke='%23bdd3fb' d='M8 9h1m-2 3h1'/%3E%3Cpath stroke='%23b6cdfb' d='M13 9h1m-5 4h1'/%3E%3Cpath stroke='%23b9cbf3' d='M14 9h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%239fb5d2' d='M16 10h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23c2d5fc' d='M5 11h2'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
: :-webkit-scrollbar-button: horizontal: end{
width: 17px;
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 17 17' shape-rendering='crispEdges'%3E%3Cpath stroke='%23eeede5' d='M0 0h17m-1 1h1m-1 14h1m-1 1h1'/%3E%3Cpath stroke='%23fdfdfa' d='M0 1h1'/%3E%3Cpath stroke='%23fff' d='M1 1h15M0 2h1m14 0h1M0 3h1m14 0h1M0 4h1m14 0h1M0 5h1m14 0h1M0 6h1m14 0h1M0 7h1m14 0h1M0 8h1m14 0h1M0 9h1m14 0h1M0 10h1m14 0h1M0 11h1m14 0h1M0 12h1m14 0h1M0 13h1m14 0h1M0 14h1m14 0h1M1 15h14'/%3E%3Cpath stroke='%23e6eefc' d='M1 2h1'/%3E%3Cpath stroke='%23d0dffc' d='M2 2h1M1 3h1'/%3E%3Cpath stroke='%23cad8f9' d='M3 2h1M1 4h1'/%3E%3Cpath stroke='%23c4d2f7' d='M4 2h1'/%3E%3Cpath stroke='%23c0d0f7' d='M5 2h1'/%3E%3Cpath stroke='%23bdcef7' d='M6 2h1M1 7h1'/%3E%3Cpath stroke='%23bbcdf5' d='M7 2h2'/%3E%3Cpath stroke='%23b8cbf6' d='M9 2h1M1 8h1'/%3E%3Cpath stroke='%23b7caf5' d='M10 2h1'/%3E%3Cpath stroke='%23b5c8f7' d='M11 2h1'/%3E%3Cpath stroke='%23b3c7f5' d='M12 2h1'/%3E%3Cpath stroke='%23afc5f4' d='M13 2h1'/%3E%3Cpath stroke='%23dce6f9' d='M14 2h1'/%3E%3Cpath stroke='%23dfe2e1' d='M16 2h1'/%3E%3Cpath stroke='%23e1eafe' d='M2 3h1'/%3E%3Cpath stroke='%23dae6fe' d='M3 3h1M2 4h1'/%3E%3Cpath stroke='%23d4e1fc' d='M4 3h1M2 5h1'/%3E%3Cpath stroke='%23d1e0fd' d='M5 3h1M3 5h1'/%3E%3Cpath stroke='%23d0ddfc' d='M6 3h1M2 6h1'/%3E%3Cpath stroke='%23cedbfd' d='M7 3h1M5 4h1'/%3E%3Cpath stroke='%23cddbfc' d='M8 3h1M4 5h1M2 7h1'/%3E%3Cpath stroke='%23cad9fd' d='M9 3h1M6 4h1M4 6h1'/%3E%3Cpath stroke='%23c8d8fb' d='M10 3h1'/%3E%3Cpath stroke='%23c5d6fc' d='M11 3h1m-9 7h3'/%3E%3Cpath stroke='%23c2d3fc' d='M12 3h1m-2 1h1M2 10h1m0 1h1'/%3E%3Cpath stroke='%23bccefa' d='M13 3h1m-1 2h1M4 13h2'/%3E%3Cpath stroke='%23b9c9f3' d='M14 3h1M4 14h3'/%3E%3Cpath stroke='%23cfd7dd' d='M16 3h1'/%3E%3Cpath stroke='%23d8e3fc' d='M3 4h1'/%3E%3Cpath stroke='%23d1defd' d='M4 4h1'/%3E%3Cpath stroke='%234d6185' d='M7 4h1M6 5h3M7 6h3M8 7h3M9 8h3M8 9h3m-4 1h3m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23c8d6fb' d='M8 4h1M5 6h2'/%3E%3Cpath stroke='%23c5d5fc' d='M9 4h1M2 9h5'/%3E%3Cpath stroke='%23c5d3fc' d='M10 4h1'/%3E%3Cpath stroke='%23bed0fc' d='M12 4h1M9 5h1m-8 6h1m0 1h1'/%3E%3Cpath stroke='%23bccdfa' d='M13 4h1'/%3E%3Cpath stroke='%23baccf4' d='M14 4h1'/%3E%3Cpath stroke='%23bdcbda' d='M16 4h1'/%3E%3Cpath stroke='%23c4d4f7' d='M1 5h1'/%3E%3Cpath stroke='%23c9d8fc' d='M5 5h1M4 7h3M2 8h1'/%3E%3Cpath stroke='%23bbcefd' d='M10 5h3M7 7h1'/%3E%3Cpath stroke='%23bcccf3' d='M14 5h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c2d5' d='M16 5h1'/%3E%3Cpath stroke='%23bed0f8' d='M1 6h1'/%3E%3Cpath stroke='%23ceddfd' d='M3 6h1'/%3E%3Cpath stroke='%23bacdfc' d='M10 6h1m1 0h2M2 12h1'/%3E%3Cpath stroke='%23b9cdfb' d='M11 6h1m0 1h2m-1 1h1'/%3E%3Cpath stroke='%23a8bbd4' d='M16 6h1'/%3E%3Cpath stroke='%23cddafc' d='M3 7h1'/%3E%3Cpath stroke='%23b7cdfc' d='M11 7h1m0 1h1'/%3E%3Cpath stroke='%23a4b8d3' d='M16 7h1'/%3E%3Cpath stroke='%23cad8fd' d='M3 8h3'/%3E%3Cpath stroke='%23c1d3fb' d='M6 8h3'/%3E%3Cpath stroke='%23bacbf4' d='M14 8h1'/%3E%3Cpath stroke='%23a0b5d3' d='M16 8h1m-1 5h1'/%3E%3Cpath stroke='%23b4c8f6' d='M1 9h1'/%3E%3Cpath stroke='%23c2d5fc' d='M7 9h1m-3 2h1'/%3E%3Cpath stroke='%23b6cefb' d='M11 9h2'/%3E%3Cpath stroke='%23b5cdfa' d='M13 9h1'/%3E%3Cpath stroke='%23b5c9f3' d='M14 9h1'/%3E%3Cpath stroke='%239fb5d2' d='M16 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b1c7f6' d='M1 10h1'/%3E%3Cpath stroke='%23c3d5fd' d='M6 10h1'/%3E%3Cpath stroke='%23b2cffb' d='M10 10h3m-2 2h1'/%3E%3Cpath stroke='%23b1cbfa' d='M13 10h1'/%3E%3Cpath stroke='%23b3c8f5' d='M14 10h1m-6 4h2'/%3E%3Cpath stroke='%23adc3f6' d='M1 11h1'/%3E%3Cpath stroke='%23c3d3fd' d='M4 11h1'/%3E%3Cpath stroke='%23bad4fc' d='M9 11h1'/%3E%3Cpath stroke='%23b7d3fc' d='M10 11h1m-2 1h1'/%3E%3Cpath stroke='%23b3d1fc' d='M11 11h1'/%3E%3Cpath stroke='%23afcefb' d='M12 11h1'/%3E%3Cpath stroke='%23aecafa' d='M13 11h1'/%3E%3Cpath stroke='%23b1c8f3' d='M14 11h1'/%3E%3Cpath stroke='%23acc2f5' d='M1 12h1'/%3E%3Cpath stroke='%23c1d2fb' d='M4 12h1'/%3E%3Cpath stroke='%23bed1fc' d='M5 12h2'/%3E%3Cpath stroke='%23bbd3fd' d='M8 12h1'/%3E%3Cpath stroke='%23b6d1fb' d='M10 12h1'/%3E%3Cpath stroke='%23afccfb' d='M12 12h1'/%3E%3Cpath stroke='%23adc9f9' d='M13 12h1m-2 1h1'/%3E%3Cpath stroke='%23b1c5f3' d='M14 12h1'/%3E%3Cpath stroke='%23aac0f3' d='M1 13h1'/%3E%3Cpath stroke='%23b7cbf9' d='M2 13h1'/%3E%3Cpath stroke='%23b9cefb' d='M3 13h1'/%3E%3Cpath stroke='%23bbcef9' d='M6 13h1'/%3E%3Cpath stroke='%23b9cffb' d='M7 13h1'/%3E%3Cpath stroke='%23b8cffa' d='M8 13h1'/%3E%3Cpath stroke='%23b6cdfb' d='M9 13h1'/%3E%3Cpath stroke='%23b2cdfb' d='M10 13h1'/%3E%3Cpath stroke='%23b0cbf9' d='M11 13h1'/%3E%3Cpath stroke='%23aec8f7' d='M13 13h1'/%3E%3Cpath stroke='%23b0c5f2' d='M14 13h1'/%3E%3Cpath stroke='%23dbe3f8' d='M1 14h1'/%3E%3Cpath stroke='%23b7c6f1' d='M2 14h1'/%3E%3Cpath stroke='%23b8c9f2' d='M3 14h1m3 0h2'/%3E%3Cpath stroke='%23b2c8f4' d='M11 14h1'/%3E%3Cpath stroke='%23b1c6f3' d='M12 14h1'/%3E%3Cpath stroke='%23b0c4f2' d='M13 14h1'/%3E%3Cpath stroke='%23d9e3f6' d='M14 14h1'/%3E%3Cpath stroke='%23aec0d6' d='M16 14h1'/%3E%3Cpath stroke='%23c3d4e7' d='M0 15h1'/%3E%3Cpath stroke='%23aec4e5' d='M15 15h1'/%3E%3Cpath stroke='%23edf1f3' d='M0 16h1'/%3E%3Cpath stroke='%23aac0e1' d='M1 16h1'/%3E%3Cpath stroke='%2394b1d9' d='M2 16h1'/%3E%3Cpath stroke='%2388a7d8' d='M3 16h1'/%3E%3Cpath stroke='%2383a4d3' d='M4 16h1'/%3E%3Cpath stroke='%237da0d4' d='M5 16h1m4 0h3'/%3E%3Cpath stroke='%237e9fd2' d='M6 16h1'/%3E%3Cpath stroke='%237c9fd3' d='M7 16h3'/%3E%3Cpath stroke='%2382a4d6' d='M13 16h1'/%3E%3Cpath stroke='%2394b0dd' d='M14 16h1'/%3E%3Cpath stroke='%23ecf2f7' d='M15 16h1'/%3E%3C/svg%3E")
}
.window{
box-shadow: inset -1px -1px #00138c,inset 1px 1px #0831d9,inset -2px -2px #001ea0,inset 2px 2px #166aee,inset -3px -3px #003bda,inset 3px 3px #0855dd;
border-top-left-radius: 8px;
border-top-right-radius: 8px;
padding: 0 0 3px;
-webkit-font-smoothing: antialiased
}
.title-bar{
background: linear-gradient(180deg,#0997ff,#0053ee 8%,#0050ee 40%,#06f 88%,#06f 93%,#005bff 95%,#003dd7 96%,#003dd7);
padding: 3px 5px 3px 3px;
border-top: 1px solid #0831d9;
border-left: 1px solid #0831d9;
border-right: 1px solid #001ea0;
border-top-left-radius: 8px;
border-top-right-radius: 7px;
font-size: 13px;
text-shadow: 1px 1px #0f1089;
height: 21px
}
.title-bar-text{
padding-left: 3px
}
.title-bar-controls{
display: flex
}
.title-bar-controls button{
min-width: 21px;
min-height: 21px;
margin-left: 2px;
background-repeat: no-repeat;
background-position: 50%;
box-shadow: none;
background-color: #0050ee;
transition: background .1s;
border: none
}
.title-bar-controls button: active,.title-bar-controls button: focus,.title-bar-controls button: hover{
box-shadow: none!important
}
.title-bar-controls button[aria-label=Minimize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%235985f7' d='M7 5h1'/%3E%3Cpath stroke='%235381f6' d='M8 5h1M6 9h1'/%3E%3Cpath stroke='%234d7bf6' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%234677f5' d='M10 5h1'/%3E%3Cpath stroke='%234173f5' d='M11 5h1'/%3E%3Cpath stroke='%233a6ff4' d='M12 5h1'/%3E%3Cpath stroke='%23386ef4' d='M13 5h1'/%3E%3Cpath stroke='%23346cf4' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%235480f7' d='M7 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%233a6ff5' d='M11 6h1'/%3E%3Cpath stroke='%23346df4' d='M12 6h1'/%3E%3Cpath stroke='%23306bf4' d='M13 6h1'/%3E%3Cpath stroke='%232d69f4' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23507ef6' d='M7 7h1'/%3E%3Cpath stroke='%234a79f6' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Minimize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236694eb' d='M19 0h1'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1m-6 6h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%233472f5' d='M11 9h1'/%3E%3Cpath stroke='%232c6ff5' d='M12 9h1'/%3E%3Cpath stroke='%23276cf5' d='M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234179f6' d='M9 10h1'/%3E%3Cpath stroke='%233b77f5' d='M10 10h1'/%3E%3Cpath stroke='%233474f5' d='M11 10h1'/%3E%3Cpath stroke='%232c72f6' d='M12 10h1'/%3E%3Cpath stroke='%23266ff6' d='M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232d76f6' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23427ff6' d='M9 13h1'/%3E%3Cpath stroke='%233c7ff6' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23366ef4' d='M2 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%236699f3' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23afc2ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m4 0h11m4 0h1M0 6h1m4 0h11m4 0h1M0 7h1m4 0h11m4 0h1M0 8h1m4 0h1m9 0h1m4 0h1M0 9h1m4 0h1m9 0h1m4 0h1M0 10h1m4 0h1m9 0h1m4 0h1M0 11h1m4 0h1m9 0h1m4 0h1M0 12h1m4 0h1m9 0h1m4 0h1M0 13h1m4 0h1m9 0h1m4 0h1M0 14h1m4 0h1m9 0h1m4 0h1M0 15h1m4 0h11m4 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h1'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1m-5 6h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M6 13h1'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23539fff' d='M9 13h1'/%3E%3Cpath stroke='%234fa4ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Maximize]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-7 7h1m-3 1h1'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m-7 7h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-1 1h1m-1 1h1M7 12h1m-2 1h1m-3 1h1m1 0h1m-3 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 5h11M5 6h11M5 7h11M5 8h1m9 0h1M5 9h1m9 0h1M5 10h1m9 0h1M5 11h1m9 0h1M5 12h1m9 0h1M5 13h1m9 0h1M5 14h1m9 0h1M5 15h11'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%23004fb4' d='M16 7h2m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1'/%3E%3Cpath stroke='%230049ae' d='M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M10 8h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 2h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h1m-6 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230051b6' d='M18 9h1m0 2h1m-1 1h1M8 14h1m10 3h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 1h1m-1 3h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h1m-4 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230049ac' d='M4 11h1m-2 1h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h1m-3 1h1m4 0h1m-7 2h1m0 3h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-1 2h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 3h1'/%3E%3Cpath stroke='%23005ec3' d='M13 13h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230060c5' d='M14 14h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23b2c3ee' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%236696eb' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23e5edfb' d='M2 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%236693e9' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%23e5ecfb' d='M20 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23648ef7' d='M7 4h1'/%3E%3Cpath stroke='%235e8af7' d='M8 4h1'/%3E%3Cpath stroke='%235986f7' d='M9 4h1M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235482f6' d='M10 4h1'/%3E%3Cpath stroke='%235180f6' d='M11 4h1'/%3E%3Cpath stroke='%234b7cf5' d='M12 4h1'/%3E%3Cpath stroke='%234a7cf5' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%23608bf7' d='M6 5h1M4 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 5h1M8 5h1M6 9h1M9 5h1M8 6h1M10 5h1M11 5h1M12 5h1M13 5h1M14 5h1M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%235b86f7' d='M6 6h1'/%3E%3Cpath stroke='%23FFF' d='M7 6h1M8 6h1M9 6h1M10 6h1M11 6h1M12 6h1M13 6h1M14 6h1M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%235783f7' d='M6 7h1'/%3E%3Cpath stroke='%23FFF' d='M7 7h1'/%3E%3Cpath stroke='%234375f5' d='M8 7h1M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%232f6bf5' d='M12 7h1'/%3E%3Cpath stroke='%232b69f5' d='M13 7h1'/%3E%3Cpath stroke='%232867f5' d='M14 7h1'/%3E%3Cpath stroke='%23FFF' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%23FFF' d='M7 8h1'/%3E%3Cpath stroke='%234174f5' d='M8 8h1M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%232d6bf5' d='M12 8h1'/%3E%3Cpath stroke='%232869f5' d='M13 8h1'/%3E%3Cpath stroke='%232467f5' d='M14 8h1'/%3E%3Cpath stroke='%23FFF' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%23FFF' d='M5 9h1M6 9h1M7 9h1M8 9h1M9 9h1M10 9h1M11 9h1M12 9h1M13 9h1'/%3E%3Cpath stroke='%23236af6' d='M14 9h1'/%3E%3Cpath stroke='%23FFF' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1M4 10h1'/%3E%3Cpath stroke='%23FFF' d='M5 10h1M6 10h1M7 10h1M8 10h1M9 10h1M10 10h1M11 10h1M12 10h1M13 10h1'/%3E%3Cpath stroke='%23226df6' d='M14 10h1'/%3E%3Cpath stroke='%23FFF' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%23FFF' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23427cf6' d='M9 11h1'/%3E%3Cpath stroke='%233c7af6' d='M10 11h1'/%3E%3Cpath stroke='%233478f6' d='M11 11h1'/%3E%3Cpath stroke='%232673f7' d='M12 11h1'/%3E%3Cpath stroke='%23FFF' d='M13 11h1M14 11h1M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%23FFF' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23437ff6' d='M9 12h1'/%3E%3Cpath stroke='%233d7ef6' d='M10 12h1'/%3E%3Cpath stroke='%23357cf6' d='M11 12h1'/%3E%3Cpath stroke='%232677f7' d='M12 12h1'/%3E%3Cpath stroke='%23FFF' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1M6 13h1M7 13h1'/%3E%3Cpath stroke='%23437ff6' d='M8 13h1'/%3E%3Cpath stroke='%232d7df7' d='M9 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M10 13h1M11 13h1'/%3E%3Cpath stroke='%232679f8' d='M12 13h1'/%3E%3Cpath stroke='%23FFF' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1M6 14h1'/%3E%3Cpath stroke='%232d7df7' d='M7 14h1M8 14h1M9 14h1M10 14h1M11 14h1'/%3E%3Cpath stroke='%23257af8' d='M12 14h1'/%3E%3Cpath stroke='%23FFF' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23FFF' d='M11 15h1M12 15h1M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%233777f5' d='M9 16h1'/%3E%3Cpath stroke='%233278f6' d='M10 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23e5eefd' d='M0 18h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23679ef6' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3Cpath stroke='%23669bf5' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23e5edfd' d='M18 20h1'/%3E%3Cpath stroke='%23FFF' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m4 0h7m8 0h1M0 14h1m4 0h7m8 0h1M0 15h1m4 0h7m8 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h11'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b0ec' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m4 3h1M5 6h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1m-5 3h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1M8 5h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1'/%3E%3Cpath stroke='%236b9dff' d='M8 4h1'/%3E%3Cpath stroke='%236598ff' d='M9 4h1'/%3E%3Cpath stroke='%235f95ff' d='M10 4h1M7 7h1m-2 3h1'/%3E%3Cpath stroke='%235b92ff' d='M11 4h1'/%3E%3Cpath stroke='%23548dff' d='M12 4h1M1 6h1m2 7h1'/%3E%3Cpath stroke='%23528cff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1m7 0h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%2370a0ff' d='M6 5h1'/%3E%3Cpath stroke='%23679aff' d='M7 5h1'/%3E%3Cpath stroke='%234180ff' d='M13 5h1'/%3E%3Cpath stroke='%233d7eff' d='M14 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%236b9cff' d='M6 6h1'/%3E%3Cpath stroke='%236297ff' d='M7 6h1m-3 4h1'/%3E%3Cpath stroke='%235c93ff' d='M8 6h1M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%234483ff' d='M11 6h1M5 16h1'/%3E%3Cpath stroke='%233d7fff' d='M12 6h1'/%3E%3Cpath stroke='%23387bff' d='M13 6h1'/%3E%3Cpath stroke='%233679ff' d='M14 6h1m1 0h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23669aff' d='M6 7h1'/%3E%3Cpath stroke='%235890ff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%233a7fff' d='M12 7h1'/%3E%3Cpath stroke='%23357bff' d='M13 7h1'/%3E%3Cpath stroke='%23317aff' d='M14 7h2'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%233983ff' d='M12 8h1'/%3E%3Cpath stroke='%233380ff' d='M13 8h1'/%3E%3Cpath stroke='%232f7fff' d='M14 8h2'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%23428eff' d='M11 9h1'/%3E%3Cpath stroke='%233b8dff' d='M12 9h1'/%3E%3Cpath stroke='%23348aff' d='M13 9h1'/%3E%3Cpath stroke='%233189ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235093ff' d='M9 10h1'/%3E%3Cpath stroke='%234a95ff' d='M10 10h1'/%3E%3Cpath stroke='%234496ff' d='M11 10h1'/%3E%3Cpath stroke='%233d96ff' d='M12 10h1'/%3E%3Cpath stroke='%233694ff' d='M13 10h1'/%3E%3Cpath stroke='%233193ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%235298ff' d='M9 11h1'/%3E%3Cpath stroke='%234d9cff' d='M10 11h1'/%3E%3Cpath stroke='%23479eff' d='M11 11h1'/%3E%3Cpath stroke='%23409fff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23529cff' d='M9 12h1'/%3E%3Cpath stroke='%234fa1ff' d='M10 12h1'/%3E%3Cpath stroke='%234aa6ff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23548DFF' d='M5 13h1'/%3E%3Cpath stroke='%235991FF' d='M6 13h1'/%3E%3Cpath stroke='%235792FF' d='M7 13h1'/%3E%3Cpath stroke='%235496FF' d='M8 13h1'/%3E%3Cpath stroke='%23539CFF' d='M9 13h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 13h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23548DFF' d='M5 14h1'/%3E%3Cpath stroke='%235991FF' d='M6 14h1'/%3E%3Cpath stroke='%235792FF' d='M7 14h1'/%3E%3Cpath stroke='%235496FF' d='M8 14h1'/%3E%3Cpath stroke='%23539CFF' d='M9 14h1'/%3E%3Cpath stroke='%234FA1FF' d='M10 14h1'/%3E%3Cpath stroke='%2344AFFE' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%234696ff' d='M9 16h1'/%3E%3Cpath stroke='%23439cff' d='M10 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1m19 0h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M1 20h1m17 0h1'/%3E%3Cpath stroke='%23fefefe' d='M14 20h1'/%3E%3Cpath stroke='%23fdfdfd' d='M15 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M16 20h1'/%3E%3Cpath stroke='%23f2f5fc' d='M18 20h1M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Restore]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ed' d='M1 0h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7bcee' d='M0 1h1m19 0h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1m-3 2h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1m-5 2h1m-7 5h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230043a1' d='M7 4h1'/%3E%3Cpath stroke='%230045a4' d='M8 4h1'/%3E%3Cpath stroke='%230047a8' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%230048ab' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%230049ad' d='M11 4h1m-2 2h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M12 4h1m-1 1h1m-2 1h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%23004cb0' d='M13 4h1m0 1h1m-8 6h1m-4 2h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-4 1h4M7 12h1m-4 2h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-8 1h1m6 0h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230042a1' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%230044a5' d='M7 5h1M6 6h1'/%3E%3Cpath stroke='%230046a8' d='M8 5h1M5 8h1'/%3E%3Cpath stroke='%230047aa' d='M9 5h1'/%3E%3Cpath stroke='%230049ac' d='M11 5h1m-7 5h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230045a9' d='M7 6h1'/%3E%3Cpath stroke='%230046aa' d='M8 6h1M6 7h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1M7 7h1'/%3E%3Cpath stroke='%23004bb0' d='M12 6h1M8 9h1m-3 3h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m-5 1h1m4 0h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%230048ad' d='M8 7h1M6 9h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%23004fb3' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m-6 1h1m5 0h1m0 1h1M8 12h1m-1 6h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%230050b5' d='M13 8h2m1 0h2m-7 1h1m-2 1h1m8 0h1M9 11h1m-2 5h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1m-1 5h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230052b7' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1m9 1h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%230053b8' d='M13 9h1m2 0h2m0 1h1m0 4h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%230054b9' d='M14 9h2m2 9h1m-4 1h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230055ba' d='M12 10h1m4 0h1m-7 1h1m6 0h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%230056bb' d='M13 10h1m2 0h1m1 2h1m-9 4h1'/%3E%3Cpath stroke='%230057bc' d='M14 10h2m-5 2h1m6 5h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%230058bd' d='M12 11h1m4 0h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 5h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M12 12h1m4 0h1m-6 5h1m2 1h1'/%3E%3Cpath stroke='%230055b9' d='M10 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 13h7m-7 1h7m-7 1h7M5 13h1'/%3E%3Cpath stroke='%23004BB0' d='M6 13h1'/%3E%3Cpath stroke='%23004DB1' d='M7 13h1'/%3E%3Cpath stroke='%23004FB4' d='M8 13h1'/%3E%3Cpath stroke='%230052B7' d='M9 13h1'/%3E%3Cpath stroke='%230055B9' d='M10 13h1'/%3E%3Cpath stroke='%230157BC' d='M11 13h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m1 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23004BB0' d='M6 14h1'/%3E%3Cpath stroke='%23004DB1' d='M7 14h1'/%3E%3Cpath stroke='%23004FB4' d='M8 14h1'/%3E%3Cpath stroke='%230052B7' d='M9 14h1'/%3E%3Cpath stroke='%230055B9' d='M10 14h1'/%3E%3Cpath stroke='%230157BC' d='M11 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 14h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%2378a2d8' d='M12 15h1M13 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%23004eb2' d='M6 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m0 1h1m17 0h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%2393b4f2' d='M20 19h1'/%3E%3Cpath stroke='%2378a2d8' d='M5 15h9M5 9h9M5 10h9M5.5 8.5v7M13.5 8.5v7M7 5h9M7 6h9M14 11h2M7.5 5v4M15.5 5v6'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23dce5fd' d='M1 1h1'/%3E%3Cpath stroke='%23739af8' d='M2 1h1'/%3E%3Cpath stroke='%23608cf7' d='M3 1h1M2 8h1'/%3E%3Cpath stroke='%235584f6' d='M4 1h1'/%3E%3Cpath stroke='%234d7ef6' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23487af5' d='M6 1h1'/%3E%3Cpath stroke='%234276f5' d='M7 1h1M3 14h1'/%3E%3Cpath stroke='%234478f5' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%233e73f5' d='M9 1h2'/%3E%3Cpath stroke='%233b71f5' d='M11 1h2'/%3E%3Cpath stroke='%23336cf4' d='M13 1h2'/%3E%3Cpath stroke='%23306af4' d='M15 1h1'/%3E%3Cpath stroke='%232864f4' d='M16 1h1'/%3E%3Cpath stroke='%231f5def' d='M17 1h1'/%3E%3Cpath stroke='%233467e0' d='M18 1h1'/%3E%3Cpath stroke='%23d2dbf2' d='M19 1h1'/%3E%3Cpath stroke='%23769cf8' d='M1 2h1'/%3E%3Cpath stroke='%2390aff9' d='M2 2h1'/%3E%3Cpath stroke='%2394b2f9' d='M3 2h1'/%3E%3Cpath stroke='%2385a7f8' d='M4 2h1'/%3E%3Cpath stroke='%23759cf8' d='M5 2h1'/%3E%3Cpath stroke='%236e97f8' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%236892f7' d='M7 2h1'/%3E%3Cpath stroke='%236690f7' d='M8 2h1'/%3E%3Cpath stroke='%23628ef7' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%235f8cf7' d='M10 2h1'/%3E%3Cpath stroke='%235e8bf7' d='M11 2h1'/%3E%3Cpath stroke='%235988f6' d='M12 2h1'/%3E%3Cpath stroke='%235685f6' d='M13 2h1'/%3E%3Cpath stroke='%235082f6' d='M14 2h1'/%3E%3Cpath stroke='%23497cf5' d='M15 2h1'/%3E%3Cpath stroke='%233f75f5' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23326bf2' d='M17 2h1'/%3E%3Cpath stroke='%23235ce3' d='M18 2h1'/%3E%3Cpath stroke='%23305cc5' d='M19 2h1'/%3E%3Cpath stroke='%236590f7' d='M1 3h1'/%3E%3Cpath stroke='%2397b4f9' d='M2 3h1'/%3E%3Cpath stroke='%239ab7fa' d='M3 3h1'/%3E%3Cpath stroke='%2389aaf9' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%237aa0f8' d='M5 3h1'/%3E%3Cpath stroke='%23729af8' d='M6 3h1'/%3E%3Cpath stroke='%236d95f8' d='M7 3h1'/%3E%3Cpath stroke='%236892f8' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23658ff7' d='M9 3h1'/%3E%3Cpath stroke='%23618df7' d='M11 3h1'/%3E%3Cpath stroke='%235d8af7' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%235987f6' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%235283f6' d='M14 3h1'/%3E%3Cpath stroke='%234c7ef6' d='M15 3h1M5 14h1'/%3E%3Cpath stroke='%234377f5' d='M16 3h1'/%3E%3Cpath stroke='%23376ef2' d='M17 3h1'/%3E%3Cpath stroke='%23285fe3' d='M18 3h1'/%3E%3Cpath stroke='%231546b9' d='M19 3h1'/%3E%3Cpath stroke='%235886f6' d='M1 4h1'/%3E%3Cpath stroke='%238dadf9' d='M3 4h1'/%3E%3Cpath stroke='%237fa3f8' d='M4 4h1'/%3E%3Cpath stroke='%237199f8' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%236a93f8' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%2392aff9' d='M7 4h1'/%3E%3Cpath stroke='%23e1e9fd' d='M8 4h1'/%3E%3Cpath stroke='%23e0e8fd' d='M12 4h1'/%3E%3Cpath stroke='%2381a4f8' d='M13 4h1'/%3E%3Cpath stroke='%233a72f4' d='M16 4h1'/%3E%3Cpath stroke='%23346cf2' d='M17 4h1'/%3E%3Cpath stroke='%232a61e3' d='M18 4h1'/%3E%3Cpath stroke='%231848bb' d='M19 4h1'/%3E%3Cpath stroke='%235282f6' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23799ff8' d='M2 5h1'/%3E%3Cpath stroke='%237ca1f8' d='M3 5h1'/%3E%3Cpath stroke='%236791f8' d='M5 5h1'/%3E%3Cpath stroke='%238eacf9' d='M6 5h1'/%3E%3Cpath stroke='%23f3f6fe' d='M7 5h1'/%3E%3Cpath stroke='%23d8e2fd' d='M9 5h1'/%3E%3Cpath stroke='%23cfdcfc' d='M10 5h1'/%3E%3Cpath stroke='%23ecf1fe' d='M11 5h1'/%3E%3Cpath stroke='%23eff4fe' d='M13 5h1'/%3E%3Cpath stroke='%23749af7' d='M14 5h1'/%3E%3Cpath stroke='%23326cf4' d='M15 5h1'/%3E%3Cpath stroke='%23316bf4' d='M16 5h1M3 16h1'/%3E%3Cpath stroke='%233069f1' d='M17 5h1'/%3E%3Cpath stroke='%232c62e4' d='M18 5h1'/%3E%3Cpath stroke='%231d4cbc' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%237099f8' d='M3 6h1'/%3E%3Cpath stroke='%23628cf8' d='M5 6h1'/%3E%3Cpath stroke='%23d3dffd' d='M6 6h1'/%3E%3Cpath stroke='%23b2c6fb' d='M8 6h1'/%3E%3Cpath stroke='%234777f6' d='M9 6h1'/%3E%3Cpath stroke='%234072f5' d='M10 6h1'/%3E%3Cpath stroke='%234a7bf6' d='M11 6h1'/%3E%3Cpath stroke='%23c8d7fc' d='M12 6h1'/%3E%3Cpath stroke='%23c6d6fc' d='M14 6h1'/%3E%3Cpath stroke='%232c69f5' d='M15 6h1'/%3E%3Cpath stroke='%232d69f5' d='M16 6h1'/%3E%3Cpath stroke='%232e69f2' d='M17 6h1'/%3E%3Cpath stroke='%232c63e5' d='M18 6h1'/%3E%3Cpath stroke='%234679f5' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23658ff8' d='M4 7h1'/%3E%3Cpath stroke='%235e89f7' d='M5 7h1'/%3E%3Cpath stroke='%23e6edfe' d='M6 7h1'/%3E%3Cpath stroke='%23e5ecfe' d='M7 7h1'/%3E%3Cpath stroke='%235a85f7' d='M8 7h1'/%3E%3Cpath stroke='%234375f5' d='M9 7h1'/%3E%3Cpath stroke='%233d71f5' d='M10 7h1'/%3E%3Cpath stroke='%23366ef4' d='M11 7h1M2 14h1'/%3E%3Cpath stroke='%236c97f8' d='M12 7h1'/%3E%3Cpath stroke='%23cfddfd' d='M14 7h1'/%3E%3Cpath stroke='%232766f5' d='M15 7h1'/%3E%3Cpath stroke='%232a68f5' d='M16 7h1'/%3E%3Cpath stroke='%232c69f2' d='M17 7h1'/%3E%3Cpath stroke='%232a62e4' d='M18 7h1'/%3E%3Cpath stroke='%231c4cbd' d='M19 7h1'/%3E%3Cpath stroke='%23628df8' d='M3 8h1'/%3E%3Cpath stroke='%23608bf7' d='M4 8h1'/%3E%3Cpath stroke='%235b87f7' d='M5 8h1'/%3E%3Cpath stroke='%235482f7' d='M6 8h1'/%3E%3Cpath stroke='%234e7cf6' d='M7 8h1'/%3E%3Cpath stroke='%234778f6' d='M8 8h1'/%3E%3Cpath stroke='%234174f5' d='M9 8h1'/%3E%3Cpath stroke='%233a71f5' d='M10 8h1'/%3E%3Cpath stroke='%23346ef4' d='M11 8h1'/%3E%3Cpath stroke='%2385a9f9' d='M12 8h1'/%3E%3Cpath stroke='%23cbdbfd' d='M14 8h1'/%3E%3Cpath stroke='%232266f5' d='M15 8h1'/%3E%3Cpath stroke='%232567f5' d='M16 8h1'/%3E%3Cpath stroke='%232968f2' d='M17 8h1'/%3E%3Cpath stroke='%232963e4' d='M18 8h1'/%3E%3Cpath stroke='%231b4bbd' d='M19 8h1'/%3E%3Cpath stroke='%233c72f4' d='M1 9h1'/%3E%3Cpath stroke='%235d89f7' d='M4 9h1'/%3E%3Cpath stroke='%235986f7' d='M5 9h1m-2 1h1'/%3E%3Cpath stroke='%235381f6' d='M6 9h1'/%3E%3Cpath stroke='%234e7ef6' d='M7 9h1'/%3E%3Cpath stroke='%23477af5' d='M8 9h1'/%3E%3Cpath stroke='%234178f5' d='M9 9h1'/%3E%3Cpath stroke='%233a74f5' d='M10 9h1'/%3E%3Cpath stroke='%2396b6fa' d='M11 9h1'/%3E%3Cpath stroke='%23f2f6fe' d='M12 9h1'/%3E%3Cpath stroke='%2393b6fb' d='M14 9h1'/%3E%3Cpath stroke='%232069f6' d='M15 9h1'/%3E%3Cpath stroke='%232268f5' d='M16 9h1'/%3E%3Cpath stroke='%232569f2' d='M17 9h1'/%3E%3Cpath stroke='%232562e6' d='M18 9h1'/%3E%3Cpath stroke='%23194bbe' d='M19 9h1'/%3E%3Cpath stroke='%23376ef4' d='M1 10h1'/%3E%3Cpath stroke='%235181f6' d='M2 10h1'/%3E%3Cpath stroke='%235785f7' d='M3 10h1m1 0h1'/%3E%3Cpath stroke='%235281f6' d='M6 10h1'/%3E%3Cpath stroke='%23477bf6' d='M8 10h1'/%3E%3Cpath stroke='%234e82f7' d='M9 10h1'/%3E%3Cpath stroke='%23cadafc' d='M10 10h1'/%3E%3Cpath stroke='%23a0c0fb' d='M13 10h1'/%3E%3Cpath stroke='%232a72f6' d='M14 10h1'/%3E%3Cpath stroke='%231e6bf6' d='M15 10h1'/%3E%3Cpath stroke='%231f6af6' d='M16 10h1'/%3E%3Cpath stroke='%23216af3' d='M17 10h1'/%3E%3Cpath stroke='%232162e6' d='M18 10h1'/%3E%3Cpath stroke='%231649be' d='M19 10h1'/%3E%3Cpath stroke='%23326bf4' d='M1 11h1'/%3E%3Cpath stroke='%234b7df5' d='M2 11h1'/%3E%3Cpath stroke='%235483f6' d='M3 11h1'/%3E%3Cpath stroke='%235684f7' d='M4 11h1'/%3E%3Cpath stroke='%235583f7' d='M5 11h1'/%3E%3Cpath stroke='%234d80f6' d='M7 11h1'/%3E%3Cpath stroke='%23487df6' d='M8 11h1'/%3E%3Cpath stroke='%23bcd1fc' d='M9 11h1'/%3E%3Cpath stroke='%23dde8fd' d='M11 11h1'/%3E%3Cpath stroke='%235f97f8' d='M12 11h1'/%3E%3Cpath stroke='%232673f7' d='M13 11h1'/%3E%3Cpath stroke='%232171f7' d='M14 11h1'/%3E%3Cpath stroke='%231c6ff6' d='M15 11h1'/%3E%3Cpath stroke='%231c6df6' d='M16 11h1'/%3E%3Cpath stroke='%231c6af4' d='M17 11h1'/%3E%3Cpath stroke='%231c61e6' d='M18 11h1'/%3E%3Cpath stroke='%231248bf' d='M19 11h1'/%3E%3Cpath stroke='%232b66f4' d='M1 12h1'/%3E%3Cpath stroke='%234e7ff6' d='M3 12h1'/%3E%3Cpath stroke='%235383f6' d='M5 12h1'/%3E%3Cpath stroke='%235182f6' d='M6 12h1'/%3E%3Cpath stroke='%234d81f7' d='M7 12h1'/%3E%3Cpath stroke='%23487ff6' d='M8 12h1'/%3E%3Cpath stroke='%23dfe9fd' d='M9 12h1'/%3E%3Cpath stroke='%234687f7' d='M11 12h1'/%3E%3Cpath stroke='%232d7af7' d='M12 12h1'/%3E%3Cpath stroke='%232677f7' d='M13 12h1'/%3E%3Cpath stroke='%232174f7' d='M14 12h1'/%3E%3Cpath stroke='%231b71f7' d='M15 12h1'/%3E%3Cpath stroke='%23186ef7' d='M16 12h1'/%3E%3Cpath stroke='%23186af4' d='M17 12h1'/%3E%3Cpath stroke='%23165fe7' d='M18 12h1'/%3E%3Cpath stroke='%230f47c0' d='M19 12h1'/%3E%3Cpath stroke='%232562f3' d='M1 13h1'/%3E%3Cpath stroke='%233d73f4' d='M2 13h1'/%3E%3Cpath stroke='%23487bf5' d='M3 13h1'/%3E%3Cpath stroke='%234e80f6' d='M4 13h1'/%3E%3Cpath stroke='%235081f6' d='M5 13h1'/%3E%3Cpath stroke='%234e81f6' d='M6 13h1'/%3E%3Cpath stroke='%234b80f6' d='M7 13h1'/%3E%3Cpath stroke='%23477ff6' d='M8 13h1'/%3E%3Cpath stroke='%23d2e0fd' d='M9 13h1'/%3E%3Cpath stroke='%23edf3fe' d='M10 13h1'/%3E%3Cpath stroke='%23367ff7' d='M11 13h1'/%3E%3Cpath stroke='%232d7cf7' d='M12 13h1'/%3E%3Cpath stroke='%232679f8' d='M13 13h1'/%3E%3Cpath stroke='%232077f7' d='M14 13h1'/%3E%3Cpath stroke='%231973f7' d='M15 13h1'/%3E%3Cpath stroke='%23166ff7' d='M16 13h1'/%3E%3Cpath stroke='%231369f4' d='M17 13h1'/%3E%3Cpath stroke='%23105de8' d='M18 13h1'/%3E%3Cpath stroke='%230a44bf' d='M19 13h1'/%3E%3Cpath stroke='%231e5df3' d='M1 14h1'/%3E%3Cpath stroke='%23497bf5' d='M4 14h1'/%3E%3Cpath stroke='%234a7ef7' d='M6 14h1'/%3E%3Cpath stroke='%23487ef6' d='M7 14h1'/%3E%3Cpath stroke='%23457ff6' d='M8 14h1'/%3E%3Cpath stroke='%234180f6' d='M9 14h1'/%3E%3Cpath stroke='%233b7ff6' d='M10 14h1'/%3E%3Cpath stroke='%23357ff7' d='M11 14h1'/%3E%3Cpath stroke='%232d7df7' d='M12 14h1'/%3E%3Cpath stroke='%23257af8' d='M13 14h1'/%3E%3Cpath stroke='%231e77f8' d='M14 14h1'/%3E%3Cpath stroke='%231773f8' d='M15 14h1'/%3E%3Cpath stroke='%23116df7' d='M16 14h1'/%3E%3Cpath stroke='%230d66f4' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%230b59e7' d='M18 14h1'/%3E%3Cpath stroke='%230641c0' d='M19 14h1m-6 5h1'/%3E%3Cpath stroke='%231859f3' d='M1 15h1'/%3E%3Cpath stroke='%232e68f4' d='M2 15h1'/%3E%3Cpath stroke='%233a71f4' d='M3 15h1'/%3E%3Cpath stroke='%234277f5' d='M4 15h1'/%3E%3Cpath stroke='%23467af5' d='M5 15h1'/%3E%3Cpath stroke='%23457af6' d='M6 15h1'/%3E%3Cpath stroke='%23437bf6' d='M7 15h1'/%3E%3Cpath stroke='%23417cf6' d='M8 15h1'/%3E%3Cpath stroke='%23cbdcfd' d='M9 15h1'/%3E%3Cpath stroke='%23327df7' d='M11 15h1'/%3E%3Cpath stroke='%232a7cf8' d='M12 15h1'/%3E%3Cpath stroke='%23247af8' d='M13 15h1'/%3E%3Cpath stroke='%231d77f8' d='M14 15h1'/%3E%3Cpath stroke='%231573f8' d='M15 15h1'/%3E%3Cpath stroke='%230e6cf8' d='M16 15h1'/%3E%3Cpath stroke='%230963f4' d='M17 15h1'/%3E%3Cpath stroke='%230556e7' d='M18 15h1'/%3E%3Cpath stroke='%23023fbf' d='M19 15h1'/%3E%3Cpath stroke='%231456f3' d='M1 16h1'/%3E%3Cpath stroke='%232562f4' d='M2 16h1'/%3E%3Cpath stroke='%233971f4' d='M4 16h1'/%3E%3Cpath stroke='%233d74f5' d='M5 16h1'/%3E%3Cpath stroke='%233d74f6' d='M6 16h1'/%3E%3Cpath stroke='%233b75f5' d='M7 16h1'/%3E%3Cpath stroke='%233976f5' d='M8 16h1'/%3E%3Cpath stroke='%23f5f8fe' d='M9 16h1'/%3E%3Cpath stroke='%232c78f7' d='M11 16h1'/%3E%3Cpath stroke='%232577f7' d='M12 16h1'/%3E%3Cpath stroke='%231f76f7' d='M13 16h1'/%3E%3Cpath stroke='%231972f7' d='M14 16h1'/%3E%3Cpath stroke='%23116ef8' d='M15 16h1'/%3E%3Cpath stroke='%230b68f7' d='M16 16h1'/%3E%3Cpath stroke='%230560f4' d='M17 16h1'/%3E%3Cpath stroke='%230253e6' d='M18 16h1'/%3E%3Cpath stroke='%23013dbe' d='M19 16h1'/%3E%3Cpath stroke='%230e50ed' d='M1 17h1'/%3E%3Cpath stroke='%231c5bef' d='M2 17h1'/%3E%3Cpath stroke='%232863f0' d='M3 17h1'/%3E%3Cpath stroke='%232f68f0' d='M4 17h1'/%3E%3Cpath stroke='%23336bf1' d='M5 17h1'/%3E%3Cpath stroke='%23346cf1' d='M6 17h1'/%3E%3Cpath stroke='%23316cf2' d='M7 17h1'/%3E%3Cpath stroke='%23316df2' d='M8 17h1'/%3E%3Cpath stroke='%232e6ff2' d='M9 17h1'/%3E%3Cpath stroke='%232a70f2' d='M10 17h1'/%3E%3Cpath stroke='%232570f3' d='M11 17h1'/%3E%3Cpath stroke='%231f6ff3' d='M12 17h1'/%3E%3Cpath stroke='%23196df4' d='M13 17h1'/%3E%3Cpath stroke='%23136af4' d='M14 17h1'/%3E%3Cpath stroke='%230760f3' d='M16 17h1'/%3E%3Cpath stroke='%23025af0' d='M17 17h1'/%3E%3Cpath stroke='%23004de2' d='M18 17h1'/%3E%3Cpath stroke='%23003ab9' d='M19 17h1'/%3E%3Cpath stroke='%23285edf' d='M1 18h1'/%3E%3Cpath stroke='%23134fdf' d='M2 18h1'/%3E%3Cpath stroke='%231b55df' d='M3 18h1'/%3E%3Cpath stroke='%23215ae2' d='M4 18h1'/%3E%3Cpath stroke='%23255ce1' d='M5 18h1'/%3E%3Cpath stroke='%23265de0' d='M6 18h1'/%3E%3Cpath stroke='%23245ce1' d='M7 18h1'/%3E%3Cpath stroke='%23235ee2' d='M8 18h1'/%3E%3Cpath stroke='%23215ee2' d='M9 18h1'/%3E%3Cpath stroke='%231e5ee2' d='M10 18h1'/%3E%3Cpath stroke='%231b5fe5' d='M11 18h1'/%3E%3Cpath stroke='%23165ee5' d='M12 18h1'/%3E%3Cpath stroke='%23135de6' d='M13 18h1'/%3E%3Cpath stroke='%230e5be5' d='M14 18h1'/%3E%3Cpath stroke='%230958e6' d='M15 18h1'/%3E%3Cpath stroke='%230454e6' d='M16 18h1'/%3E%3Cpath stroke='%23014ee2' d='M17 18h1'/%3E%3Cpath stroke='%230045d3' d='M18 18h1'/%3E%3Cpath stroke='%231f4eb8' d='M19 18h1'/%3E%3Cpath stroke='%23d0daf1' d='M1 19h1'/%3E%3Cpath stroke='%232856c3' d='M2 19h1'/%3E%3Cpath stroke='%230d3fb6' d='M3 19h1'/%3E%3Cpath stroke='%231144bd' d='M4 19h1'/%3E%3Cpath stroke='%231245bb' d='M5 19h1'/%3E%3Cpath stroke='%231445b9' d='M6 19h1'/%3E%3Cpath stroke='%231244b9' d='M7 19h1'/%3E%3Cpath stroke='%231345bc' d='M8 19h1'/%3E%3Cpath stroke='%231346bd' d='M9 19h1'/%3E%3Cpath stroke='%231045be' d='M10 19h1'/%3E%3Cpath stroke='%230d45c0' d='M11 19h1'/%3E%3Cpath stroke='%230a45c1' d='M12 19h1'/%3E%3Cpath stroke='%230844c3' d='M13 19h1'/%3E%3Cpath stroke='%23033fc0' d='M15 19h1'/%3E%3Cpath stroke='%23013fc3' d='M16 19h1'/%3E%3Cpath stroke='%23003bbe' d='M17 19h1'/%3E%3Cpath stroke='%231f4eb9' d='M18 19h1'/%3E%3Cpath stroke='%23cfd8ed' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%2393b1ee' d='M1 0h1'/%3E%3Cpath stroke='%23f3f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m8 0h3m8 0h1M0 5h1m7 0h1m3 0h1m7 0h1M0 6h1m6 0h1m5 0h1m6 0h1M0 7h1m12 0h1m6 0h1M0 8h1m12 0h1m6 0h1M0 9h1m12 0h1m6 0h1M0 10h1m10 0h2m7 0h1M0 11h1m9 0h1m9 0h1M0 12h1m9 0h1m9 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m9 0h1m9 0h1M0 16h1m9 0h1m9 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%2393b1ed' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23dce7ff' d='M1 1h1'/%3E%3Cpath stroke='%2372a1ff' d='M2 1h1m2 5h1'/%3E%3Cpath stroke='%236a9cff' d='M3 1h1'/%3E%3Cpath stroke='%235f94ff' d='M4 1h1M4 11h2'/%3E%3Cpath stroke='%23558eff' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23518bff' d='M6 1h1'/%3E%3Cpath stroke='%234a86ff' d='M7 1h1'/%3E%3Cpath stroke='%234b87ff' d='M8 1h1M2 12h1'/%3E%3Cpath stroke='%234684ff' d='M9 1h2'/%3E%3Cpath stroke='%234482ff' d='M11 1h1m4 1h1M1 9h1m0 4h1'/%3E%3Cpath stroke='%234080ff' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%233b7cff' d='M13 1h1'/%3E%3Cpath stroke='%233a7bff' d='M14 1h1'/%3E%3Cpath stroke='%233678ff' d='M15 1h1'/%3E%3Cpath stroke='%232e73ff' d='M16 1h1'/%3E%3Cpath stroke='%23276cf9' d='M17 1h1'/%3E%3Cpath stroke='%233a73e7' d='M18 1h1'/%3E%3Cpath stroke='%23d3ddf3' d='M19 1h1'/%3E%3Cpath stroke='%2393b0ed' d='M20 1h1'/%3E%3Cpath stroke='%2373a1ff' d='M1 2h1'/%3E%3Cpath stroke='%2397b9ff' d='M2 2h1'/%3E%3Cpath stroke='%239cbdff' d='M3 2h1'/%3E%3Cpath stroke='%2390b5ff' d='M4 2h1'/%3E%3Cpath stroke='%2382acff' d='M5 2h1M5 4h1'/%3E%3Cpath stroke='%237ba7ff' d='M6 2h1M2 6h1'/%3E%3Cpath stroke='%2375a3ff' d='M7 2h1'/%3E%3Cpath stroke='%236f9fff' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%236c9dff' d='M9 2h1M1 3h1'/%3E%3Cpath stroke='%23689bff' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%236599ff' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%236095ff' d='M12 2h1m0 1h1'/%3E%3Cpath stroke='%235d93ff' d='M13 2h1'/%3E%3Cpath stroke='%23568eff' d='M14 2h1'/%3E%3Cpath stroke='%234f8aff' d='M15 2h1M3 13h1m0 1h1'/%3E%3Cpath stroke='%233878fb' d='M17 2h1'/%3E%3Cpath stroke='%232969eb' d='M18 2h1'/%3E%3Cpath stroke='%233566cb' d='M19 2h1'/%3E%3Cpath stroke='%239ebeff' d='M2 3h1'/%3E%3Cpath stroke='%23a4c2ff' d='M3 3h1'/%3E%3Cpath stroke='%2399baff' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%238ab0ff' d='M5 3h1'/%3E%3Cpath stroke='%2382abff' d='M6 3h1'/%3E%3Cpath stroke='%2379a6ff' d='M7 3h1'/%3E%3Cpath stroke='%2374a3ff' d='M8 3h1'/%3E%3Cpath stroke='%2371a0ff' d='M9 3h1'/%3E%3Cpath stroke='%236d9eff' d='M10 3h1M5 7h1M4 8h1'/%3E%3Cpath stroke='%23699bff' d='M11 3h1'/%3E%3Cpath stroke='%235a91ff' d='M14 3h1M2 10h1m1 2h1'/%3E%3Cpath stroke='%23538cff' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%234986ff' d='M16 3h1'/%3E%3Cpath stroke='%233d7cfc' d='M17 3h1'/%3E%3Cpath stroke='%232e6cea' d='M18 3h1'/%3E%3Cpath stroke='%231b52c2' d='M19 3h1'/%3E%3Cpath stroke='%236296ff' d='M1 4h1'/%3E%3Cpath stroke='%2391b5ff' d='M2 4h1'/%3E%3Cpath stroke='%238fb4ff' d='M4 4h1'/%3E%3Cpath stroke='%237aa6ff' d='M6 4h1m7 1h1'/%3E%3Cpath stroke='%239bbdff' d='M7 4h1'/%3E%3Cpath stroke='%23e3edff' d='M8 4h1'/%3E%3Cpath stroke='%23e1ebff' d='M12 4h1'/%3E%3Cpath stroke='%2387afff' d='M13 4h1'/%3E%3Cpath stroke='%234c88ff' d='M14 4h1m-5 2h1m-6 9h1'/%3E%3Cpath stroke='%234785ff' d='M15 4h1'/%3E%3Cpath stroke='%234280ff' d='M16 4h1'/%3E%3Cpath stroke='%233b7afb' d='M17 4h1'/%3E%3Cpath stroke='%23316fec' d='M18 4h1'/%3E%3Cpath stroke='%231f55c3' d='M19 4h1'/%3E%3Cpath stroke='%235990ff' d='M1 5h1'/%3E%3Cpath stroke='%2385adff' d='M2 5h1'/%3E%3Cpath stroke='%238bb1ff' d='M3 5h1'/%3E%3Cpath stroke='%2384acff' d='M4 5h1'/%3E%3Cpath stroke='%2378a5ff' d='M5 5h1'/%3E%3Cpath stroke='%239bf' d='M6 5h1'/%3E%3Cpath stroke='%23f4f7ff' d='M7 5h1'/%3E%3Cpath stroke='%23dbe7ff' d='M9 5h1'/%3E%3Cpath stroke='%23d2e1ff' d='M10 5h1'/%3E%3Cpath stroke='%23edf3ff' d='M11 5h1'/%3E%3Cpath stroke='%23f0f5ff' d='M13 5h1'/%3E%3Cpath stroke='%233b7bff' d='M15 5h1'/%3E%3Cpath stroke='%23397aff' d='M16 5h1M1 11h1'/%3E%3Cpath stroke='%233979fc' d='M17 5h1'/%3E%3Cpath stroke='%233370ec' d='M18 5h1m-1 1h1'/%3E%3Cpath stroke='%232357c3' d='M19 5h1'/%3E%3Cpath stroke='%23548dff' d='M1 6h1m2 7h1'/%3E%3Cpath stroke='%2381aaff' d='M3 6h1'/%3E%3Cpath stroke='%237aa7ff' d='M4 6h1'/%3E%3Cpath stroke='%23d8e5ff' d='M6 6h1'/%3E%3Cpath stroke='%23b9d0ff' d='M8 6h1'/%3E%3Cpath stroke='%23548eff' d='M9 6h1'/%3E%3Cpath stroke='%23538dff' d='M11 6h1'/%3E%3Cpath stroke='%23cbdcff' d='M12 6h1'/%3E%3Cpath stroke='%23c9dbff' d='M14 6h1'/%3E%3Cpath stroke='%233579ff' d='M15 6h1'/%3E%3Cpath stroke='%233679ff' d='M16 6h1'/%3E%3Cpath stroke='%233879fc' d='M17 6h1'/%3E%3Cpath stroke='%232358c5' d='M19 6h1'/%3E%3Cpath stroke='%234e89ff' d='M1 7h1'/%3E%3Cpath stroke='%2371a1ff' d='M2 7h1'/%3E%3Cpath stroke='%2377a5ff' d='M3 7h1'/%3E%3Cpath stroke='%2374a2ff' d='M4 7h1'/%3E%3Cpath stroke='%23e8f0ff' d='M6 7h1'/%3E%3Cpath stroke='%23e7efff' d='M7 7h1'/%3E%3Cpath stroke='%23679aff' d='M8 7h1'/%3E%3Cpath stroke='%23508dff' d='M9 7h1'/%3E%3Cpath stroke='%234989ff' d='M10 7h1'/%3E%3Cpath stroke='%234183ff' d='M11 7h1'/%3E%3Cpath stroke='%2374a5ff' d='M12 7h1'/%3E%3Cpath stroke='%23d1e1ff' d='M14 7h1'/%3E%3Cpath stroke='%23317aff' d='M15 7h1'/%3E%3Cpath stroke='%23337aff' d='M16 7h1'/%3E%3Cpath stroke='%23367bfc' d='M17 7h1'/%3E%3Cpath stroke='%233372ed' d='M18 7h1'/%3E%3Cpath stroke='%232359c5' d='M19 7h1'/%3E%3Cpath stroke='%234d88ff' d='M1 8h1'/%3E%3Cpath stroke='%23699cff' d='M2 8h1'/%3E%3Cpath stroke='%236398ff' d='M6 8h1'/%3E%3Cpath stroke='%235c93ff' d='M7 8h1m-2 3h1'/%3E%3Cpath stroke='%23548fff' d='M8 8h1'/%3E%3Cpath stroke='%234d8cff' d='M9 8h1'/%3E%3Cpath stroke='%23468aff' d='M10 8h1'/%3E%3Cpath stroke='%233f86ff' d='M11 8h1'/%3E%3Cpath stroke='%238cb7ff' d='M12 8h1'/%3E%3Cpath stroke='%23cde0ff' d='M14 8h1'/%3E%3Cpath stroke='%232f7fff' d='M15 8h1'/%3E%3Cpath stroke='%233280ff' d='M16 8h1'/%3E%3Cpath stroke='%233580fc' d='M17 8h1'/%3E%3Cpath stroke='%233276ed' d='M18 8h1'/%3E%3Cpath stroke='%23235ac6' d='M19 8h1'/%3E%3Cpath stroke='%236196ff' d='M2 9h1m3 0h1m-4 1h1'/%3E%3Cpath stroke='%23689aff' d='M4 9h1'/%3E%3Cpath stroke='%235b93ff' d='M7 9h1'/%3E%3Cpath stroke='%235491ff' d='M8 9h1'/%3E%3Cpath stroke='%234f90ff' d='M9 9h1'/%3E%3Cpath stroke='%234890ff' d='M10 9h1'/%3E%3Cpath stroke='%239dc5ff' d='M11 9h1'/%3E%3Cpath stroke='%23f3f8ff' d='M12 9h1'/%3E%3Cpath stroke='%239ac5ff' d='M14 9h1'/%3E%3Cpath stroke='%232f88ff' d='M15 9h1'/%3E%3Cpath stroke='%233188ff' d='M16 9h1'/%3E%3Cpath stroke='%233385fc' d='M17 9h1'/%3E%3Cpath stroke='%233079ed' d='M18 9h1'/%3E%3Cpath stroke='%23215cc8' d='M19 9h1'/%3E%3Cpath stroke='%233f7fff' d='M1 10h1'/%3E%3Cpath stroke='%236397ff' d='M4 10h1'/%3E%3Cpath stroke='%236297ff' d='M5 10h1'/%3E%3Cpath stroke='%235f95ff' d='M6 10h1'/%3E%3Cpath stroke='%235993ff' d='M7 10h1'/%3E%3Cpath stroke='%235492ff' d='M8 10h1'/%3E%3Cpath stroke='%235c9aff' d='M9 10h1'/%3E%3Cpath stroke='%23cee2ff' d='M10 10h1'/%3E%3Cpath stroke='%23a7d0ff' d='M13 10h1'/%3E%3Cpath stroke='%233897ff' d='M14 10h1'/%3E%3Cpath stroke='%232f92ff' d='M15 10h1'/%3E%3Cpath stroke='%233090ff' d='M16 10h1'/%3E%3Cpath stroke='%23328cfc' d='M17 10h1'/%3E%3Cpath stroke='%232e7def' d='M18 10h1'/%3E%3Cpath stroke='%231e5dc9' d='M19 10h1'/%3E%3Cpath stroke='%235c92ff' d='M3 11h1m1 1h1'/%3E%3Cpath stroke='%235792ff' d='M7 11h1m-1 1h1'/%3E%3Cpath stroke='%235594ff' d='M8 11h1'/%3E%3Cpath stroke='%23c2dbff' d='M9 11h1'/%3E%3Cpath stroke='%23e0efff' d='M11 11h1'/%3E%3Cpath stroke='%236eb6ff' d='M12 11h1'/%3E%3Cpath stroke='%23379fff' d='M13 11h1'/%3E%3Cpath stroke='%23339dff' d='M14 11h1'/%3E%3Cpath stroke='%232f9bff' d='M15 11h1'/%3E%3Cpath stroke='%232e97ff' d='M16 11h1'/%3E%3Cpath stroke='%232e91fc' d='M17 11h1'/%3E%3Cpath stroke='%232a80f0' d='M18 11h1'/%3E%3Cpath stroke='%231b5dcb' d='M19 11h1'/%3E%3Cpath stroke='%233275ff' d='M1 12h1'/%3E%3Cpath stroke='%235991ff' d='M6 12h1'/%3E%3Cpath stroke='%235596ff' d='M8 12h1'/%3E%3Cpath stroke='%23e2eeff' d='M9 12h1'/%3E%3Cpath stroke='%2359adff' d='M11 12h1'/%3E%3Cpath stroke='%2342a9ff' d='M12 12h1'/%3E%3Cpath stroke='%233aa9ff' d='M13 12h1'/%3E%3Cpath stroke='%2334a7ff' d='M14 12h1'/%3E%3Cpath stroke='%2330a5ff' d='M15 12h1'/%3E%3Cpath stroke='%232ca0ff' d='M16 12h1'/%3E%3Cpath stroke='%232a96fd' d='M17 12h1'/%3E%3Cpath stroke='%232581f1' d='M18 12h1'/%3E%3Cpath stroke='%23185dcc' d='M19 12h1'/%3E%3Cpath stroke='%232d72ff' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%235790ff' d='M5 13h2'/%3E%3Cpath stroke='%235490ff' d='M7 13h1'/%3E%3Cpath stroke='%235597ff' d='M8 13h1'/%3E%3Cpath stroke='%23d6e8ff' d='M9 13h1'/%3E%3Cpath stroke='%23eef6ff' d='M10 13h1'/%3E%3Cpath stroke='%234aaaff' d='M11 13h1'/%3E%3Cpath stroke='%2344afff' d='M12 13h1'/%3E%3Cpath stroke='%233eb1ff' d='M13 13h1'/%3E%3Cpath stroke='%2337afff' d='M14 13h1'/%3E%3Cpath stroke='%232fabff' d='M15 13h1'/%3E%3Cpath stroke='%2329a4ff' d='M16 13h1'/%3E%3Cpath stroke='%232599fd' d='M17 13h1'/%3E%3Cpath stroke='%231e80f2' d='M18 13h1'/%3E%3Cpath stroke='%23145bcd' d='M19 13h1'/%3E%3Cpath stroke='%23276eff' d='M1 14h1'/%3E%3Cpath stroke='%233d7dff' d='M2 14h1'/%3E%3Cpath stroke='%234985ff' d='M3 14h1'/%3E%3Cpath stroke='%23528cff' d='M5 14h1'/%3E%3Cpath stroke='%23528dff' d='M6 14h1'/%3E%3Cpath stroke='%23518fff' d='M7 14h1'/%3E%3Cpath stroke='%235196ff' d='M8 14h1'/%3E%3Cpath stroke='%23509fff' d='M9 14h1'/%3E%3Cpath stroke='%234ea6ff' d='M10 14h1'/%3E%3Cpath stroke='%2349acff' d='M11 14h1'/%3E%3Cpath stroke='%2343b1ff' d='M12 14h1'/%3E%3Cpath stroke='%233eb4ff' d='M13 14h1'/%3E%3Cpath stroke='%2335b2ff' d='M14 14h1'/%3E%3Cpath stroke='%232caeff' d='M15 14h1'/%3E%3Cpath stroke='%2324a5ff' d='M16 14h1'/%3E%3Cpath stroke='%231f97fd' d='M17 14h1'/%3E%3Cpath stroke='%231980f3' d='M18 14h1'/%3E%3Cpath stroke='%23105ace' d='M19 14h1'/%3E%3Cpath stroke='%23216aff' d='M1 15h1'/%3E%3Cpath stroke='%233578ff' d='M2 15h1'/%3E%3Cpath stroke='%234885ff' d='M4 15h1'/%3E%3Cpath stroke='%234d89ff' d='M6 15h1'/%3E%3Cpath stroke='%234c8cff' d='M7 15h1'/%3E%3Cpath stroke='%234d94ff' d='M8 15h1'/%3E%3Cpath stroke='%23cfe4ff' d='M9 15h1'/%3E%3Cpath stroke='%2347aaff' d='M11 15h1'/%3E%3Cpath stroke='%2341afff' d='M12 15h1'/%3E%3Cpath stroke='%233bb2ff' d='M13 15h1'/%3E%3Cpath stroke='%2333b1ff' d='M14 15h1'/%3E%3Cpath stroke='%232aadff' d='M15 15h1'/%3E%3Cpath stroke='%2321a3ff' d='M16 15h1'/%3E%3Cpath stroke='%231a95fd' d='M17 15h1'/%3E%3Cpath stroke='%23137cf2' d='M18 15h1'/%3E%3Cpath stroke='%230c59cf' d='M19 15h1'/%3E%3Cpath stroke='%231c66ff' d='M1 16h1'/%3E%3Cpath stroke='%233879ff' d='M3 16h1'/%3E%3Cpath stroke='%233f7eff' d='M4 16h1'/%3E%3Cpath stroke='%234483ff' d='M5 16h1'/%3E%3Cpath stroke='%234584ff' d='M6 16h1'/%3E%3Cpath stroke='%234587ff' d='M7 16h1'/%3E%3Cpath stroke='%23468eff' d='M8 16h1'/%3E%3Cpath stroke='%23f6faff' d='M9 16h1'/%3E%3Cpath stroke='%233fa3ff' d='M11 16h1'/%3E%3Cpath stroke='%233ba8ff' d='M12 16h1'/%3E%3Cpath stroke='%233af' d='M13 16h1'/%3E%3Cpath stroke='%232da9ff' d='M14 16h1'/%3E%3Cpath stroke='%2324a6ff' d='M15 16h1'/%3E%3Cpath stroke='%231d9eff' d='M16 16h1'/%3E%3Cpath stroke='%231690fd' d='M17 16h1'/%3E%3Cpath stroke='%231078f1' d='M18 16h1'/%3E%3Cpath stroke='%230b57ce' d='M19 16h1'/%3E%3Cpath stroke='%231761f9' d='M1 17h1'/%3E%3Cpath stroke='%23246bfa' d='M2 17h1'/%3E%3Cpath stroke='%232f72fb' d='M3 17h1'/%3E%3Cpath stroke='%233676fb' d='M4 17h1'/%3E%3Cpath stroke='%233a7afb' d='M5 17h1'/%3E%3Cpath stroke='%233b7bfc' d='M6 17h1'/%3E%3Cpath stroke='%233b7efc' d='M7 17h1'/%3E%3Cpath stroke='%233c84fc' d='M8 17h1'/%3E%3Cpath stroke='%233b8afc' d='M9 17h1'/%3E%3Cpath stroke='%233990fc' d='M10 17h1'/%3E%3Cpath stroke='%233695fc' d='M11 17h1'/%3E%3Cpath stroke='%233299fc' d='M12 17h1'/%3E%3Cpath stroke='%232c9cfd' d='M13 17h1'/%3E%3Cpath stroke='%23259bfd' d='M14 17h1'/%3E%3Cpath stroke='%231e97fd' d='M15 17h1'/%3E%3Cpath stroke='%231790fc' d='M16 17h1'/%3E%3Cpath stroke='%231184fa' d='M17 17h1'/%3E%3Cpath stroke='%230c6ded' d='M18 17h1'/%3E%3Cpath stroke='%230850c8' d='M19 17h1'/%3E%3Cpath stroke='%232f6ae4' d='M1 18h1'/%3E%3Cpath stroke='%231b5fe9' d='M2 18h1'/%3E%3Cpath stroke='%232163e8' d='M3 18h1'/%3E%3Cpath stroke='%232868eb' d='M4 18h1'/%3E%3Cpath stroke='%232c6aea' d='M5 18h1'/%3E%3Cpath stroke='%232e6dea' d='M6 18h1'/%3E%3Cpath stroke='%232d6deb' d='M7 18h1'/%3E%3Cpath stroke='%232c71ec' d='M8 18h1'/%3E%3Cpath stroke='%232c76ec' d='M9 18h1'/%3E%3Cpath stroke='%232a79ed' d='M10 18h1'/%3E%3Cpath stroke='%23287eef' d='M11 18h1'/%3E%3Cpath stroke='%232481f1' d='M12 18h1'/%3E%3Cpath stroke='%232182f1' d='M13 18h1'/%3E%3Cpath stroke='%231c80f1' d='M14 18h1'/%3E%3Cpath stroke='%231880f3' d='M15 18h1'/%3E%3Cpath stroke='%23117af2' d='M16 18h1'/%3E%3Cpath stroke='%230c6eed' d='M17 18h1'/%3E%3Cpath stroke='%230a5ddd' d='M18 18h1'/%3E%3Cpath stroke='%23265dc1' d='M19 18h1'/%3E%3Cpath stroke='%2393b4f2' d='M0 19h1'/%3E%3Cpath stroke='%23d1ddf4' d='M1 19h1'/%3E%3Cpath stroke='%232e61ca' d='M2 19h1'/%3E%3Cpath stroke='%23134bbf' d='M3 19h1'/%3E%3Cpath stroke='%23164fc2' d='M4 19h1'/%3E%3Cpath stroke='%231950c1' d='M5 19h1'/%3E%3Cpath stroke='%231b52c1' d='M6 19h1'/%3E%3Cpath stroke='%231a52c3' d='M7 19h1'/%3E%3Cpath stroke='%231954c6' d='M8 19h1'/%3E%3Cpath stroke='%231b58c9' d='M9 19h1'/%3E%3Cpath stroke='%231858c8' d='M10 19h1'/%3E%3Cpath stroke='%23165bcd' d='M11 19h1'/%3E%3Cpath stroke='%23145cd0' d='M12 19h1'/%3E%3Cpath stroke='%23135cd0' d='M13 19h1'/%3E%3Cpath stroke='%230f58cc' d='M14 19h1'/%3E%3Cpath stroke='%230d5ad2' d='M15 19h1'/%3E%3Cpath stroke='%230b58d1' d='M16 19h1'/%3E%3Cpath stroke='%230951cb' d='M17 19h1'/%3E%3Cpath stroke='%23265ec3' d='M18 19h1'/%3E%3Cpath stroke='%23d0daee' d='M19 19h1'/%3E%3Cpath stroke='%2393b3f2' d='M20 19h1M1 20h1'/%3E%3Cpath stroke='%2393b2f1' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Help]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bdef' d='M1 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h1m5 0h9'/%3E%3Cpath stroke='%23a7bdee' d='M19 0h1M0 1h1'/%3E%3Cpath stroke='%23cfd3da' d='M1 1h1'/%3E%3Cpath stroke='%231f3b5f' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23002453' d='M3 1h1M1 4h1'/%3E%3Cpath stroke='%23002557' d='M4 1h1'/%3E%3Cpath stroke='%23002658' d='M5 1h1'/%3E%3Cpath stroke='%2300285c' d='M6 1h1'/%3E%3Cpath stroke='%23002a61' d='M7 1h1'/%3E%3Cpath stroke='%23002d67' d='M8 1h1'/%3E%3Cpath stroke='%23002f6b' d='M9 1h1'/%3E%3Cpath stroke='%23002f6c' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%23003273' d='M11 1h1'/%3E%3Cpath stroke='%23003478' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%2300357b' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%2300377f' d='M14 1h1M6 2h1'/%3E%3Cpath stroke='%23003780' d='M15 1h1'/%3E%3Cpath stroke='%23003984' d='M16 1h1'/%3E%3Cpath stroke='%23003882' d='M17 1h1M3 3h1'/%3E%3Cpath stroke='%231f5295' d='M18 1h1'/%3E%3Cpath stroke='%23cfdae9' d='M19 1h1'/%3E%3Cpath stroke='%23a7bcee' d='M20 1h1'/%3E%3Cpath stroke='%23002a62' d='M2 2h1'/%3E%3Cpath stroke='%23003070' d='M3 2h1'/%3E%3Cpath stroke='%23003275' d='M4 2h1'/%3E%3Cpath stroke='%23003883' d='M7 2h1M1 17h1'/%3E%3Cpath stroke='%23003a88' d='M8 2h1'/%3E%3Cpath stroke='%23003d8f' d='M9 2h1M2 9h1'/%3E%3Cpath stroke='%23003e90' d='M10 2h1'/%3E%3Cpath stroke='%23004094' d='M11 2h1'/%3E%3Cpath stroke='%23004299' d='M12 2h1M2 12h1'/%3E%3Cpath stroke='%2300439b' d='M13 2h1'/%3E%3Cpath stroke='%2300449e' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%2300459f' d='M15 2h1'/%3E%3Cpath stroke='%230045a1' d='M16 2h1m1 0h1M2 17h1'/%3E%3Cpath stroke='%230045a0' d='M17 2h1M2 15h1'/%3E%3Cpath stroke='%231f5aa8' d='M19 2h1'/%3E%3Cpath stroke='%23002452' d='M1 3h1'/%3E%3Cpath stroke='%23003170' d='M2 3h1'/%3E%3Cpath stroke='%23003b8b' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23003c8f' d='M5 3h1'/%3E%3Cpath stroke='%23003e94' d='M6 3h1'/%3E%3Cpath stroke='%23004099' d='M7 3h1'/%3E%3Cpath stroke='%2300429d' d='M8 3h1'/%3E%3Cpath stroke='%230044a2' d='M9 3h1'/%3E%3Cpath stroke='%230046a5' d='M10 3h1'/%3E%3Cpath stroke='%230048a8' d='M11 3h1'/%3E%3Cpath stroke='%230049ab' d='M12 3h1'/%3E%3Cpath stroke='%23004aac' d='M13 3h1'/%3E%3Cpath stroke='%23004aad' d='M14 3h1'/%3E%3Cpath stroke='%23004bae' d='M15 3h2m1 0h1M3 14h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23004baf' d='M17 3h1M7 10h1m-5 7h1m-1 1h1'/%3E%3Cpath stroke='%23004bad' d='M19 3h1M3 13h1m-1 6h1'/%3E%3Cpath stroke='%23037' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23003d92' d='M4 4h1'/%3E%3Cpath stroke='%23003f97' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%2300419d' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%230a4aa5' d='M7 4h1'/%3E%3Cpath stroke='%234e7ec0' d='M8 4h1'/%3E%3Cpath stroke='%23789ed1' d='M9 4h1'/%3E%3Cpath stroke='%23789ed3' d='M10 4h1'/%3E%3Cpath stroke='%23789fd4' d='M11 4h1m0 1h1'/%3E%3Cpath stroke='%235184c7' d='M12 4h1'/%3E%3Cpath stroke='%230b54b3' d='M13 4h1m0 1h1'/%3E%3Cpath stroke='%23004db1' d='M14 4h3m-2 1h2m-2 1h2M7 12h1m-2 1h1m-3 1h3m-3 1h2m-2 1h2'/%3E%3Cpath stroke='%23004db2' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1m-9 1h1m-4 3h1m-5 6h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%23002555' d='M1 5h1'/%3E%3Cpath stroke='%23003d90' d='M3 5h1'/%3E%3Cpath stroke='%2300409c' d='M5 5h1'/%3E%3Cpath stroke='%230949a4' d='M6 5h1'/%3E%3Cpath stroke='%23668ec8' d='M7 5h1'/%3E%3Cpath stroke='%23789dd1' d='M8 5h1M7 6h1'/%3E%3Cpath stroke='%23497cc1' d='M9 5h1'/%3E%3Cpath stroke='%234178c0' d='M10 5h1'/%3E%3Cpath stroke='%23608dcb' d='M11 5h1'/%3E%3Cpath stroke='%236693cf' d='M13 5h1'/%3E%3Cpath stroke='%2300275a' d='M1 6h1'/%3E%3Cpath stroke='%23003781' d='M2 6h1m-2 9h1'/%3E%3Cpath stroke='%23003f95' d='M3 6h1'/%3E%3Cpath stroke='%230042a1' d='M5 6h1'/%3E%3Cpath stroke='%234073bb' d='M6 6h1'/%3E%3Cpath stroke='%232661b6' d='M8 6h1'/%3E%3Cpath stroke='%230047ac' d='M9 6h1'/%3E%3Cpath stroke='%230049ad' d='M10 6h1m-6 5h1'/%3E%3Cpath stroke='%23004aae' d='M11 6h1m-6 5h1m-3 1h2'/%3E%3Cpath stroke='%234077c4' d='M12 6h1'/%3E%3Cpath stroke='%2378a1d6' d='M13 6h1'/%3E%3Cpath stroke='%234079c4' d='M14 6h1'/%3E%3Cpath stroke='%23004eb3' d='M17 6h1m0 1h1m0 1h1M10 9h1m-2 1h1m-3 6h1m-2 1h2m0 2h1'/%3E%3Cpath stroke='%2300295f' d='M1 7h1'/%3E%3Cpath stroke='%23003985' d='M2 7h1'/%3E%3Cpath stroke='%2300419b' d='M3 7h1'/%3E%3Cpath stroke='%230043a2' d='M4 7h1'/%3E%3Cpath stroke='%230044a6' d='M5 7h1'/%3E%3Cpath stroke='%235684c6' d='M6 7h1'/%3E%3Cpath stroke='%235686c8' d='M7 7h1'/%3E%3Cpath stroke='%230049ac' d='M8 7h1m-4 3h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%230049ae' d='M9 7h1M7 8h2m-3 2h1'/%3E%3Cpath stroke='%23004aaf' d='M10 7h1M9 8h1M7 9h1'/%3E%3Cpath stroke='%23004cb1' d='M11 7h1m-2 1h1M9 9h1m-2 1h1'/%3E%3Cpath stroke='%230a53b5' d='M12 7h1'/%3E%3Cpath stroke='%2378a1d7' d='M13 7h1'/%3E%3Cpath stroke='%234881c8' d='M14 7h1'/%3E%3Cpath stroke='%23004fb4' d='M15 7h3m0 1h1m0 1h1M8 12h1m-2 3h1m0 3h1m0 1h1'/%3E%3Cpath stroke='%23002b63' d='M1 8h1'/%3E%3Cpath stroke='%23003b8a' d='M2 8h1'/%3E%3Cpath stroke='%2300439f' d='M3 8h1'/%3E%3Cpath stroke='%230045a5' d='M4 8h1'/%3E%3Cpath stroke='%230046a8' d='M5 8h1'/%3E%3Cpath stroke='%230047ab' d='M6 8h1M5 9h1'/%3E%3Cpath stroke='%23145db9' d='M12 8h1'/%3E%3Cpath stroke='%2378a2d8' d='M13 8h1'/%3E%3Cpath stroke='%23457fc8' d='M14 8h1'/%3E%3Cpath stroke='%230051b6' d='M15 8h1m2 1h1m0 2h1m-1 1h1M8 14h1m-1 1h1m10 2h1M9 18h1m1 1h1'/%3E%3Cpath stroke='%230050b5' d='M16 8h2m1 2h1M8 13h1m-1 3h1m-1 1h1m1 2h1'/%3E%3Cpath stroke='%23002d68' d='M1 9h1'/%3E%3Cpath stroke='%230045a3' d='M3 9h1'/%3E%3Cpath stroke='%230047a8' d='M4 9h1'/%3E%3Cpath stroke='%230048ad' d='M6 9h1'/%3E%3Cpath stroke='%23004bb0' d='M8 9h1m-3 3h1m-2 1h1'/%3E%3Cpath stroke='%231b62bd' d='M11 9h1'/%3E%3Cpath stroke='%236899d4' d='M12 9h1'/%3E%3Cpath stroke='%2378a4d9' d='M13 9h1'/%3E%3Cpath stroke='%231f68c1' d='M14 9h1'/%3E%3Cpath stroke='%230054b9' d='M15 9h1m-7 5h1m8 4h1m-4 1h1'/%3E%3Cpath stroke='%230053b8' d='M16 9h2m0 1h1m0 4h1m-1 2h1M9 17h1m0 1h1m3 1h1m1 0h1'/%3E%3Cpath stroke='%23003f93' d='M2 10h1'/%3E%3Cpath stroke='%230047a7' d='M3 10h1'/%3E%3Cpath stroke='%230048ab' d='M4 10h1'/%3E%3Cpath stroke='%23407cc7' d='M10 10h1'/%3E%3Cpath stroke='%2378a3d9' d='M11 10h1m-2 1h1'/%3E%3Cpath stroke='%2378a5da' d='M12 10h1m-3 2h1'/%3E%3Cpath stroke='%23256ec4' d='M13 10h1'/%3E%3Cpath stroke='%230057bb' d='M14 10h1'/%3E%3Cpath stroke='%230057bc' d='M15 10h1m-5 2h1m-2 2h1m7 3h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%230056bb' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%230055ba' d='M17 10h1m0 1h1m-9 6h1m0 1h1'/%3E%3Cpath stroke='%23003172' d='M1 11h1'/%3E%3Cpath stroke='%23004095' d='M2 11h1'/%3E%3Cpath stroke='%230048aa' d='M3 11h1'/%3E%3Cpath stroke='%23004cb0' d='M7 11h1m-4 2h1'/%3E%3Cpath stroke='%233272c4' d='M9 11h1'/%3E%3Cpath stroke='%23538cd0' d='M11 11h1'/%3E%3Cpath stroke='%23065cbf' d='M12 11h1'/%3E%3Cpath stroke='%230059be' d='M13 11h1m2 0h1m-6 2h1m-1 3h1m6 0h1m-5 2h1m1 0h1'/%3E%3Cpath stroke='%23005abf' d='M14 11h2m-4 1h1m4 0h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%230058bd' d='M17 11h1m0 2h1m-6 5h1'/%3E%3Cpath stroke='%23538ace' d='M9 12h1'/%3E%3Cpath stroke='%23005cc1' d='M13 12h1m2 0h1m-5 1h1m4 0h1m-5 4h1'/%3E%3Cpath stroke='%23005dc2' d='M14 12h1m-3 2h1m4 0h1m-6 1h1m4 1h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%23005ec3' d='M15 12h1m-3 1h1m2 0h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%2300449d' d='M2 13h1'/%3E%3Cpath stroke='%23004eb2' d='M7 13h1m-2 2h1m-1 1h1'/%3E%3Cpath stroke='%234581cb' d='M9 13h1'/%3E%3Cpath stroke='%236297d5' d='M10 13h1'/%3E%3Cpath stroke='%23005fc4' d='M14 13h1m-2 1h1m2 0h1m-4 1h1'/%3E%3Cpath stroke='%230060c5' d='M15 13h1m-2 1h1m1 1h1m-2 1h1'/%3E%3Cpath stroke='%230052b7' d='M19 13h1m-8 6h2m3 0h1'/%3E%3Cpath stroke='%2300367e' d='M1 14h1'/%3E%3Cpath stroke='%23004fb3' d='M7 14h1'/%3E%3Cpath stroke='%230061c6' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%230059bd' d='M18 14h1'/%3E%3Cpath stroke='%23407fca' d='M9 15h1'/%3E%3Cpath stroke='%2378a6dc' d='M10 15h1'/%3E%3Cpath stroke='%230062c6' d='M15 15h1'/%3E%3Cpath stroke='%23005abe' d='M18 15h1'/%3E%3Cpath stroke='%230054b8' d='M19 15h1'/%3E%3Cpath stroke='%23003881' d='M1 16h1'/%3E%3Cpath stroke='%230046a1' d='M2 16h1'/%3E%3Cpath stroke='%236c9bd5' d='M9 16h1'/%3E%3Cpath stroke='%2378a6db' d='M10 16h1'/%3E%3Cpath stroke='%23005cc0' d='M12 16h1'/%3E%3Cpath stroke='%23005fc3' d='M14 16h1'/%3E%3Cpath stroke='%230060c4' d='M16 16h1'/%3E%3Cpath stroke='%230058bc' d='M11 17h1'/%3E%3Cpath stroke='%23005bc0' d='M17 17h1'/%3E%3Cpath stroke='%231f5294' d='M1 18h1'/%3E%3Cpath stroke='%230046a2' d='M2 18h1'/%3E%3Cpath stroke='%231f66be' d='M19 18h1'/%3E%3Cpath stroke='%23a7bef0' d='M0 19h1m19 0h1M1 20h1'/%3E%3Cpath stroke='%23cfdae8' d='M1 19h1'/%3E%3Cpath stroke='%231f5ba9' d='M2 19h1'/%3E%3Cpath stroke='%231f66bf' d='M18 19h1'/%3E%3Cpath stroke='%23cfdef1' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M4 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M5 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M6 20h1'/%3E%3Cpath stroke='%23a7bdf0' d='M19 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b3c4ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h16M0 2h1M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1m-1 1h1M2 20h16'/%3E%3Cpath stroke='%23fae1dc' d='M1 1h1'/%3E%3Cpath stroke='%23eb8b73' d='M2 1h1'/%3E%3Cpath stroke='%23e97b60' d='M3 1h1'/%3E%3Cpath stroke='%23e77155' d='M4 1h1'/%3E%3Cpath stroke='%23e66a4d' d='M5 1h1M1 6h1m5 4h1'/%3E%3Cpath stroke='%23e56648' d='M6 1h1'/%3E%3Cpath stroke='%23e46142' d='M7 1h1'/%3E%3Cpath stroke='%23e46344' d='M8 1h1m5 3h1M2 12h1'/%3E%3Cpath stroke='%23e45f3e' d='M9 1h2'/%3E%3Cpath stroke='%23e35c3b' d='M11 1h2'/%3E%3Cpath stroke='%23e25633' d='M13 1h2'/%3E%3Cpath stroke='%23e25330' d='M15 1h1'/%3E%3Cpath stroke='%23e04d28' d='M16 1h1'/%3E%3Cpath stroke='%23dc451f' d='M17 1h1'/%3E%3Cpath stroke='%23d05334' d='M18 1h1'/%3E%3Cpath stroke='%23efd8d2' d='M19 1h1'/%3E%3Cpath stroke='%23ec8d76' d='M1 2h1'/%3E%3Cpath stroke='%23efa390' d='M2 2h1'/%3E%3Cpath stroke='%23f0a694' d='M3 2h1'/%3E%3Cpath stroke='%23ee9a85' d='M4 2h1'/%3E%3Cpath stroke='%23eb8d75' d='M5 2h1'/%3E%3Cpath stroke='%23ea876e' d='M6 2h1'/%3E%3Cpath stroke='%23ea8168' d='M7 2h1'/%3E%3Cpath stroke='%23e97f66' d='M8 2h1'/%3E%3Cpath stroke='%23e97c62' d='M9 2h1m0 1h1'/%3E%3Cpath stroke='%23e8795f' d='M10 2h1'/%3E%3Cpath stroke='%23e8795e' d='M11 2h1'/%3E%3Cpath stroke='%23e87559' d='M12 2h1'/%3E%3Cpath stroke='%23e77256' d='M13 2h1'/%3E%3Cpath stroke='%23e66e50' d='M14 2h1'/%3E%3Cpath stroke='%23e56849' d='M15 2h1'/%3E%3Cpath stroke='%23e4603f' d='M16 2h1m-2 2h1'/%3E%3Cpath stroke='%23e05532' d='M17 2h1'/%3E%3Cpath stroke='%23d04623' d='M18 2h1'/%3E%3Cpath stroke='%23b64b30' d='M19 2h1'/%3E%3Cpath stroke='%23e97f65' d='M1 3h1'/%3E%3Cpath stroke='%23f0a997' d='M2 3h1'/%3E%3Cpath stroke='%23f1ac9a' d='M3 3h1'/%3E%3Cpath stroke='%23ee9d89' d='M4 3h1M2 4h1'/%3E%3Cpath stroke='%23ec917a' d='M5 3h1'/%3E%3Cpath stroke='%23eb8b72' d='M6 3h1'/%3E%3Cpath stroke='%23ea856d' d='M7 3h1'/%3E%3Cpath stroke='%23e98168' d='M8 3h1M2 7h1'/%3E%3Cpath stroke='%23e87e65' d='M9 3h1'/%3E%3Cpath stroke='%23e97b61' d='M11 3h1'/%3E%3Cpath stroke='%23e8775d' d='M12 3h1M3 9h1'/%3E%3Cpath stroke='%23e87459' d='M13 3h1M2 9h1'/%3E%3Cpath stroke='%23e66f52' d='M14 3h1'/%3E%3Cpath stroke='%23e56a4c' d='M15 3h1'/%3E%3Cpath stroke='%23e46343' d='M16 3h1'/%3E%3Cpath stroke='%23e15937' d='M17 3h1'/%3E%3Cpath stroke='%23d24a28' d='M18 3h1'/%3E%3Cpath stroke='%23aa3315' d='M19 3h1'/%3E%3Cpath stroke='%23e87458' d='M1 4h1'/%3E%3Cpath stroke='%23efa18d' d='M3 4h1'/%3E%3Cpath stroke='%23ed957f' d='M4 4h1'/%3E%3Cpath stroke='%23eb8a71' d='M5 4h1M4 5h1'/%3E%3Cpath stroke='%23ea836a' d='M6 4h1M4 6h1M3 7h1'/%3E%3Cpath stroke='%23e97d64' d='M7 4h1'/%3E%3Cpath stroke='%23e8785e' d='M8 4h1'/%3E%3Cpath stroke='%23e77359' d='M9 4h1'/%3E%3Cpath stroke='%23e76f54' d='M10 4h1'/%3E%3Cpath stroke='%23e66d51' d='M11 4h1'/%3E%3Cpath stroke='%23e5684b' d='M12 4h1'/%3E%3Cpath stroke='%23e5684a' d='M13 4h1'/%3E%3Cpath stroke='%23e35c3a' d='M16 4h1m-7 4h1m-8 7h1'/%3E%3Cpath stroke='%23e05634' d='M17 4h1'/%3E%3Cpath stroke='%23d24c2a' d='M18 4h1'/%3E%3Cpath stroke='%23ac3618' d='M19 4h1'/%3E%3Cpath stroke='%23e76f52' d='M1 5h1m4 6h1m-3 1h1'/%3E%3Cpath stroke='%23ec9179' d='M2 5h1'/%3E%3Cpath stroke='%23ec937c' d='M3 5h1'/%3E%3Cpath stroke='%23f7ccc2' d='M5 5h1'/%3E%3Cpath stroke='%23e77259' d='M7 5h1M5 9h1'/%3E%3Cpath stroke='%23e76d53' d='M8 5h1'/%3E%3Cpath stroke='%23e5684d' d='M9 5h1M8 6h1'/%3E%3Cpath stroke='%23e46446' d='M10 5h1'/%3E%3Cpath stroke='%23e45f41' d='M11 5h1'/%3E%3Cpath stroke='%23e35b3a' d='M12 5h1m-2 1h1'/%3E%3Cpath stroke='%23e35938' d='M13 5h1'/%3E%3Cpath stroke='%23f3bbad' d='M15 5h1'/%3E%3Cpath stroke='%23e25531' d='M16 5h1'/%3E%3Cpath stroke='%23df5330' d='M17 5h1'/%3E%3Cpath stroke='%23d34e2c' d='M18 5h1'/%3E%3Cpath stroke='%23ad3a1d' d='M19 5h1m-1 1h1'/%3E%3Cpath stroke='%23eb876e' d='M2 6h1'/%3E%3Cpath stroke='%23eb8a70' d='M3 6h1'/%3E%3Cpath stroke='%23e46447' d='M9 6h1'/%3E%3Cpath stroke='%23e45f40' d='M10 6h1'/%3E%3Cpath stroke='%23e25634' d='M12 6h1'/%3E%3Cpath stroke='%23e2522d' d='M16 6h1'/%3E%3Cpath stroke='%23df522e' d='M17 6h1'/%3E%3Cpath stroke='%23d34d2c' d='M18 6h1'/%3E%3Cpath stroke='%23e56546' d='M1 7h1M1 8h1'/%3E%3Cpath stroke='%23e97e65' d='M4 7h1'/%3E%3Cpath stroke='%23e8775e' d='M5 7h1'/%3E%3Cpath stroke='%23e46143' d='M9 7h1'/%3E%3Cpath stroke='%23e45d3d' d='M10 7h1'/%3E%3Cpath stroke='%23e35836' d='M11 7h1'/%3E%3Cpath stroke='%23e24e27' d='M15 7h1'/%3E%3Cpath stroke='%23e2502a' d='M16 7h1'/%3E%3Cpath stroke='%23e0512c' d='M17 7h1'/%3E%3Cpath stroke='%23d34d2a' d='M18 7h1'/%3E%3Cpath stroke='%23ad391c' d='M19 7h1'/%3E%3Cpath stroke='%23e87a60' d='M2 8h1m1 0h1'/%3E%3Cpath stroke='%23e87c62' d='M3 8h1'/%3E%3Cpath stroke='%23e8745b' d='M5 8h1'/%3E%3Cpath stroke='%23e76e54' d='M6 8h1'/%3E%3Cpath stroke='%23e24d24' d='M14 8h1'/%3E%3Cpath stroke='%23e24b22' d='M15 8h1'/%3E%3Cpath stroke='%23e24d25' d='M16 8h1'/%3E%3Cpath stroke='%23e05029' d='M17 8h1'/%3E%3Cpath stroke='%23d44c29' d='M18 8h1'/%3E%3Cpath stroke='%23ae391b' d='M19 8h1'/%3E%3Cpath stroke='%23e35d3c' d='M1 9h1'/%3E%3Cpath stroke='%23e8765d' d='M4 9h1'/%3E%3Cpath stroke='%23e66f53' d='M6 9h1'/%3E%3Cpath stroke='%23e56b4e' d='M7 9h1'/%3E%3Cpath stroke='%23e45127' d='M13 9h1'/%3E%3Cpath stroke='%23e44f23' d='M14 9h1'/%3E%3Cpath stroke='%23e34c20' d='M15 9h1'/%3E%3Cpath stroke='%23e34d22' d='M16 9h1'/%3E%3Cpath stroke='%23e14f25' d='M17 9h1'/%3E%3Cpath stroke='%23d54a25' d='M18 9h1'/%3E%3Cpath stroke='%23af3719' d='M19 9h1'/%3E%3Cpath stroke='%23e35937' d='M1 10h1'/%3E%3Cpath stroke='%23e76d51' d='M2 10h1'/%3E%3Cpath stroke='%23e87257' d='M3 10h1'/%3E%3Cpath stroke='%23e87359' d='M4 10h1'/%3E%3Cpath stroke='%23e77157' d='M5 10h1'/%3E%3Cpath stroke='%23e66e52' d='M6 10h1'/%3E%3Cpath stroke='%23e56747' d='M8 10h1'/%3E%3Cpath stroke='%23e5572c' d='M12 10h1'/%3E%3Cpath stroke='%23e55326' d='M13 10h1'/%3E%3Cpath stroke='%23e55022' d='M14 10h1'/%3E%3Cpath stroke='%23e54d1e' d='M15 10h1'/%3E%3Cpath stroke='%23e54d1f' d='M16 10h1'/%3E%3Cpath stroke='%23e24e21' d='M17 10h1'/%3E%3Cpath stroke='%23d64921' d='M18 10h1'/%3E%3Cpath stroke='%23af3516' d='M19 10h1'/%3E%3Cpath stroke='%23e25432' d='M1 11h1'/%3E%3Cpath stroke='%23e5694b' d='M2 11h1'/%3E%3Cpath stroke='%23e77054' d='M3 11h1'/%3E%3Cpath stroke='%23e77156' d='M4 11h1'/%3E%3Cpath stroke='%23e87055' d='M5 11h1'/%3E%3Cpath stroke='%23e66c4d' d='M7 11h1'/%3E%3Cpath stroke='%23e75526' d='M13 11h1'/%3E%3Cpath stroke='%23e75221' d='M14 11h1'/%3E%3Cpath stroke='%23e64e1c' d='M15 11h1'/%3E%3Cpath stroke='%23e64d1c' d='M16 11h1'/%3E%3Cpath stroke='%23e34c1c' d='M17 11h1'/%3E%3Cpath stroke='%23d6461c' d='M18 11h1'/%3E%3Cpath stroke='%23b03312' d='M19 11h1'/%3E%3Cpath stroke='%23e14f2b' d='M1 12h1'/%3E%3Cpath stroke='%23e66b4e' d='M3 12h1'/%3E%3Cpath stroke='%23e76f53' d='M5 12h1'/%3E%3Cpath stroke='%23e66e51' d='M6 12h1'/%3E%3Cpath stroke='%23e7653d' d='M10 12h1'/%3E%3Cpath stroke='%23fef5f1' d='M13 12h1'/%3E%3Cpath stroke='%23e85421' d='M14 12h1'/%3E%3Cpath stroke='%23e8501b' d='M15 12h1'/%3E%3Cpath stroke='%23e74d18' d='M16 12h1'/%3E%3Cpath stroke='%23e44a18' d='M17 12h1'/%3E%3Cpath stroke='%23d74216' d='M18 12h1'/%3E%3Cpath stroke='%23b2310f' d='M19 12h1'/%3E%3Cpath stroke='%23e04b25' d='M1 13h1m0 3h1'/%3E%3Cpath stroke='%23e35e3d' d='M2 13h1'/%3E%3Cpath stroke='%23e56748' d='M3 13h1'/%3E%3Cpath stroke='%23e66c4e' d='M4 13h1'/%3E%3Cpath stroke='%23e66d50' d='M5 13h1'/%3E%3Cpath stroke='%23e76842' d='M9 13h1'/%3E%3Cpath stroke='%23e7653c' d='M10 13h1'/%3E%3Cpath stroke='%23e86236' d='M11 13h1'/%3E%3Cpath stroke='%23e95019' d='M15 13h1m-2 3h1'/%3E%3Cpath stroke='%23e84c16' d='M16 13h1'/%3E%3Cpath stroke='%23e44713' d='M17 13h1'/%3E%3Cpath stroke='%23d83f10' d='M18 13h1'/%3E%3Cpath stroke='%23b12d0a' d='M19 13h1'/%3E%3Cpath stroke='%23df451e' d='M1 14h1'/%3E%3Cpath stroke='%23e25836' d='M2 14h1'/%3E%3Cpath stroke='%23e46242' d='M3 14h1m0 1h1'/%3E%3Cpath stroke='%23e56749' d='M4 14h1'/%3E%3Cpath stroke='%23e66845' d='M8 14h1'/%3E%3Cpath stroke='%23e76741' d='M9 14h1'/%3E%3Cpath stroke='%23e7643b' d='M10 14h1'/%3E%3Cpath stroke='%23e86235' d='M11 14h1'/%3E%3Cpath stroke='%23ea5e2d' d='M12 14h1'/%3E%3Cpath stroke='%23e94a11' d='M16 14h1m-2 2h1'/%3E%3Cpath stroke='%23e6440d' d='M17 14h1'/%3E%3Cpath stroke='%23d73b0b' d='M18 14h1'/%3E%3Cpath stroke='%23b12b06' d='M19 14h1'/%3E%3Cpath stroke='%23de4018' d='M1 15h1'/%3E%3Cpath stroke='%23e1512e' d='M2 15h1'/%3E%3Cpath stroke='%23f5c1b5' d='M5 15h1'/%3E%3Cpath stroke='%23e66543' d='M7 15h1'/%3E%3Cpath stroke='%23e66541' d='M8 15h1'/%3E%3Cpath stroke='%23e6643d' d='M9 15h1'/%3E%3Cpath stroke='%23e76238' d='M10 15h1'/%3E%3Cpath stroke='%23e86032' d='M11 15h1'/%3E%3Cpath stroke='%23e95c2a' d='M12 15h1'/%3E%3Cpath stroke='%23ea5924' d='M13 15h1'/%3E%3Cpath stroke='%23f7b8a1' d='M15 15h1'/%3E%3Cpath stroke='%23e9480e' d='M16 15h1'/%3E%3Cpath stroke='%23e54009' d='M17 15h1'/%3E%3Cpath stroke='%23d73605' d='M18 15h1'/%3E%3Cpath stroke='%23b02702' d='M19 15h1'/%3E%3Cpath stroke='%23dd3c14' d='M1 16h1'/%3E%3Cpath stroke='%23e15431' d='M3 16h1'/%3E%3Cpath stroke='%23e35b39' d='M4 16h1'/%3E%3Cpath stroke='%23e45e3d' d='M5 16h1'/%3E%3Cpath stroke='%23e45f3d' d='M6 16h1'/%3E%3Cpath stroke='%23e45e3b' d='M7 16h1'/%3E%3Cpath stroke='%23e55e39' d='M8 16h1'/%3E%3Cpath stroke='%23e55e37' d='M9 16h1'/%3E%3Cpath stroke='%23e65d32' d='M10 16h1'/%3E%3Cpath stroke='%23e75b2c' d='M11 16h1'/%3E%3Cpath stroke='%23e85725' d='M12 16h1'/%3E%3Cpath stroke='%23e9541f' d='M13 16h1'/%3E%3Cpath stroke='%23e8440b' d='M16 16h1'/%3E%3Cpath stroke='%23e43d05' d='M17 16h1'/%3E%3Cpath stroke='%23d63302' d='M18 16h1'/%3E%3Cpath stroke='%23af2601' d='M19 16h1'/%3E%3Cpath stroke='%23d8370e' d='M1 17h1'/%3E%3Cpath stroke='%23db431c' d='M2 17h1'/%3E%3Cpath stroke='%23dd4c28' d='M3 17h1'/%3E%3Cpath stroke='%23de522f' d='M4 17h1'/%3E%3Cpath stroke='%23df5533' d='M5 17h1'/%3E%3Cpath stroke='%23e05734' d='M6 17h1'/%3E%3Cpath stroke='%23e05531' d='M7 17h1'/%3E%3Cpath stroke='%23e05631' d='M8 17h1'/%3E%3Cpath stroke='%23e1562e' d='M9 17h1'/%3E%3Cpath stroke='%23e2552a' d='M10 17h1'/%3E%3Cpath stroke='%23e45325' d='M11 17h1'/%3E%3Cpath stroke='%23e4501f' d='M12 17h1'/%3E%3Cpath stroke='%23e54c19' d='M13 17h1'/%3E%3Cpath stroke='%23e54813' d='M14 17h1'/%3E%3Cpath stroke='%23e5430d' d='M15 17h1'/%3E%3Cpath stroke='%23e43e07' d='M16 17h1'/%3E%3Cpath stroke='%23e03802' d='M17 17h1'/%3E%3Cpath stroke='%23d12f00' d='M18 17h1'/%3E%3Cpath stroke='%23aa2300' d='M19 17h1'/%3E%3Cpath stroke='%23cd4928' d='M1 18h1'/%3E%3Cpath stroke='%23cc3813' d='M2 18h1'/%3E%3Cpath stroke='%23cc3e1b' d='M3 18h1'/%3E%3Cpath stroke='%23cf4421' d='M4 18h1'/%3E%3Cpath stroke='%23cf4725' d='M5 18h1'/%3E%3Cpath stroke='%23cf4726' d='M6 18h1'/%3E%3Cpath stroke='%23cf4624' d='M7 18h1'/%3E%3Cpath stroke='%23d04723' d='M8 18h1'/%3E%3Cpath stroke='%23d14621' d='M9 18h1'/%3E%3Cpath stroke='%23d2451e' d='M10 18h1'/%3E%3Cpath stroke='%23d5451b' d='M11 18h1'/%3E%3Cpath stroke='%23d54216' d='M12 18h1'/%3E%3Cpath stroke='%23d64013' d='M13 18h1'/%3E%3Cpath stroke='%23d53d0e' d='M14 18h1'/%3E%3Cpath stroke='%23d63909' d='M15 18h1'/%3E%3Cpath stroke='%23d53504' d='M16 18h1'/%3E%3Cpath stroke='%23d13001' d='M17 18h1'/%3E%3Cpath stroke='%23c22a00' d='M18 18h1'/%3E%3Cpath stroke='%23ab3c1f' d='M19 18h1'/%3E%3Cpath stroke='%23eed6d0' d='M1 19h1'/%3E%3Cpath stroke='%23b54428' d='M2 19h1'/%3E%3Cpath stroke='%23a62b0d' d='M3 19h1'/%3E%3Cpath stroke='%23ac3011' d='M4 19h1'/%3E%3Cpath stroke='%23ab3112' d='M5 19h1'/%3E%3Cpath stroke='%23a93214' d='M6 19h1'/%3E%3Cpath stroke='%23a93012' d='M7 19h1'/%3E%3Cpath stroke='%23ac3213' d='M8 19h1'/%3E%3Cpath stroke='%23ad3213' d='M9 19h1'/%3E%3Cpath stroke='%23ae3110' d='M10 19h1'/%3E%3Cpath stroke='%23b1300d' d='M11 19h1'/%3E%3Cpath stroke='%23b22e0a' d='M12 19h1'/%3E%3Cpath stroke='%23b42d08' d='M13 19h1'/%3E%3Cpath stroke='%23b12a06' d='M14 19h1'/%3E%3Cpath stroke='%23b12803' d='M15 19h1'/%3E%3Cpath stroke='%23b42701' d='M16 19h1'/%3E%3Cpath stroke='%23ae2400' d='M17 19h1'/%3E%3Cpath stroke='%23ac3c1f' d='M18 19h1'/%3E%3Cpath stroke='%23ead4cf' d='M19 19h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: hover{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23b5c6ef' d='M1 0h1m17 0h1M0 1h1m19 0h1M0 19h1m19 0h1M1 20h1m17 0h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m17 2h1M0 18h1m17 2h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m5 0h1m7 0h1m5 0h1M0 6h1m4 0h3m5 0h3m4 0h1M0 7h1m5 0h3m3 0h3m5 0h1M0 8h1m6 0h3m1 0h3m6 0h1M0 9h1m7 0h5m7 0h1M0 10h1m8 0h3m8 0h1M0 11h1m7 0h5m7 0h1M0 12h1m6 0h3m1 0h2m7 0h1M0 13h1m5 0h3m3 0h3m5 0h1M0 14h1m4 0h3m5 0h3m4 0h1M0 15h1m5 0h1m7 0h1m5 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h3m5 0h7'/%3E%3Cpath stroke='%23f5f7fd' d='M18 0h1M0 2h1m19 16h1M2 20h1'/%3E%3Cpath stroke='%23ffe4e1' d='M1 1h1'/%3E%3Cpath stroke='%23ff9285' d='M2 1h1m4 3h1M2 7h1'/%3E%3Cpath stroke='%23ff8c7f' d='M3 1h1'/%3E%3Cpath stroke='%23ff8375' d='M4 1h1m5 3h1'/%3E%3Cpath stroke='%23ff7b6c' d='M5 1h1M3 12h1'/%3E%3Cpath stroke='%23ff7868' d='M6 1h1m3 4h1'/%3E%3Cpath stroke='%23ff7362' d='M7 1h1'/%3E%3Cpath stroke='%23ff7363' d='M8 1h1m2 4h1M2 12h1'/%3E%3Cpath stroke='%23ff705f' d='M9 1h1M6 16h1'/%3E%3Cpath stroke='%23ff6f5f' d='M10 1h1'/%3E%3Cpath stroke='%23ff6e5d' d='M11 1h1m4 1h1m-5 3h1M2 13h1'/%3E%3Cpath stroke='%23ff6b5a' d='M12 1h1M3 15h1'/%3E%3Cpath stroke='%23f65' d='M13 1h2'/%3E%3Cpath stroke='%23ff6250' d='M15 1h1M2 15h1'/%3E%3Cpath stroke='%23ff5d4a' d='M16 1h1'/%3E%3Cpath stroke='%23fa5643' d='M17 1h1'/%3E%3Cpath stroke='%23eb6151' d='M18 1h1'/%3E%3Cpath stroke='%23f5dad7' d='M19 1h1'/%3E%3Cpath stroke='%23ff9386' d='M1 2h1'/%3E%3Cpath stroke='%23ffaea5' d='M2 2h1'/%3E%3Cpath stroke='%23ffb2a9' d='M3 2h1'/%3E%3Cpath stroke='%23ffa99f' d='M4 2h1'/%3E%3Cpath stroke='%23ff9e93' d='M5 2h1m0 1h1M5 4h1'/%3E%3Cpath stroke='%23ff998d' d='M6 2h1M4 6h1'/%3E%3Cpath stroke='%23ff9488' d='M7 2h1m0 1h1'/%3E%3Cpath stroke='%23ff9083' d='M8 2h1M3 8h1'/%3E%3Cpath stroke='%23ff8e80' d='M9 2h1'/%3E%3Cpath stroke='%23ff8b7d' d='M10 2h1M5 8h1M3 9h1'/%3E%3Cpath stroke='%23ff887a' d='M11 2h1m0 1h1M5 9h1'/%3E%3Cpath stroke='%23ff8475' d='M12 2h1M8 5h1'/%3E%3Cpath stroke='%23ff8172' d='M13 2h1M7 9h1m-3 3h1'/%3E%3Cpath stroke='%23ff7c6d' d='M14 2h1'/%3E%3Cpath stroke='%23ff7666' d='M15 2h1M1 7h1m1 6h1m0 1h1'/%3E%3Cpath stroke='%23fc6352' d='M17 2h1'/%3E%3Cpath stroke='%23e54' d='M18 2h1'/%3E%3Cpath stroke='%23d3594b' d='M19 2h1'/%3E%3Cpath stroke='%23ff8d80' d='M1 3h1'/%3E%3Cpath stroke='%23ffb3ab' d='M2 3h1'/%3E%3Cpath stroke='%23ffb8b0' d='M3 3h1'/%3E%3Cpath stroke='%23ffb0a6' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23ffa49a' d='M5 3h1'/%3E%3Cpath stroke='%23ff988d' d='M7 3h1M6 4h1'/%3E%3Cpath stroke='%23ff9184' d='M9 3h1'/%3E%3Cpath stroke='%23ff8e81' d='M10 3h1M4 8h1'/%3E%3Cpath stroke='%23ff8c7e' d='M11 3h1M2 8h1'/%3E%3Cpath stroke='%23ff8576' d='M13 3h1M6 9h1m-4 1h1'/%3E%3Cpath stroke='%23ff7f70' d='M14 3h1M1 5h1m0 5h1m1 2h1'/%3E%3Cpath stroke='%23ff796a' d='M15 3h1M2 11h1'/%3E%3Cpath stroke='%23ff7161' d='M16 3h1M3 14h1'/%3E%3Cpath stroke='%23fc6857' d='M17 3h1'/%3E%3Cpath stroke='%23ed5948' d='M18 3h1M6 18h1'/%3E%3Cpath stroke='%23cb4233' d='M19 3h1'/%3E%3Cpath stroke='%23ff8577' d='M1 4h1m0 5h1'/%3E%3Cpath stroke='%23ffaaa0' d='M2 4h1'/%3E%3Cpath stroke='%23ffa89e' d='M4 4h1'/%3E%3Cpath stroke='%23ff8d7f' d='M8 4h1'/%3E%3Cpath stroke='%23ff8879' d='M9 4h1'/%3E%3Cpath stroke='%23ff8071' d='M11 4h1M8 6h1'/%3E%3Cpath stroke='%23ff7a6b' d='M12 4h1M1 6h1m7 0h1m-6 7h1'/%3E%3Cpath stroke='%23ff7969' d='M13 4h1'/%3E%3Cpath stroke='%23ff7464' d='M14 4h1m-5 2h1'/%3E%3Cpath stroke='%23ff7060' d='M15 4h1'/%3E%3Cpath stroke='%23ff6c5b' d='M16 4h1m-4 1h1'/%3E%3Cpath stroke='%23fc6655' d='M17 4h1'/%3E%3Cpath stroke='%23ef5c4b' d='M18 4h1'/%3E%3Cpath stroke='%23cc4636' d='M19 4h1'/%3E%3Cpath stroke='%23ffa095' d='M2 5h1'/%3E%3Cpath stroke='%23ffa59b' d='M3 5h1'/%3E%3Cpath stroke='%23ff9f94' d='M4 5h1'/%3E%3Cpath stroke='%23ffd5d1' d='M5 5h1'/%3E%3Cpath stroke='%23ff8a7c' d='M7 5h1'/%3E%3Cpath stroke='%23ff7e6f' d='M9 5h1'/%3E%3Cpath stroke='%23ffc2bb' d='M15 5h1'/%3E%3Cpath stroke='%23ff6554' d='M16 5h1'/%3E%3Cpath stroke='%23fc6453' d='M17 5h1'/%3E%3Cpath stroke='%23ee5d4d' d='M18 5h1'/%3E%3Cpath stroke='%23cd4939' d='M19 5h1'/%3E%3Cpath stroke='%23ff998e' d='M2 6h1'/%3E%3Cpath stroke='%23ff9d92' d='M3 6h1'/%3E%3Cpath stroke='%23ff6f5e' d='M11 6h1'/%3E%3Cpath stroke='%23ff6a58' d='M12 6h1'/%3E%3Cpath stroke='%23ff6451' d='M16 6h1'/%3E%3Cpath stroke='%23fd6451' d='M17 6h1'/%3E%3Cpath stroke='%23ee5e4d' d='M18 6h1'/%3E%3Cpath stroke='%23ce4a3a' d='M19 6h1'/%3E%3Cpath stroke='%23ff968a' d='M3 7h1'/%3E%3Cpath stroke='%23ff9487' d='M4 7h1'/%3E%3Cpath stroke='%23ff8f82' d='M5 7h1'/%3E%3Cpath stroke='%23ff7968' d='M9 7h1m-3 8h1'/%3E%3Cpath stroke='%23ff7463' d='M10 7h1'/%3E%3Cpath stroke='%23ff6f5d' d='M11 7h1'/%3E%3Cpath stroke='%23ff6450' d='M15 7h1'/%3E%3Cpath stroke='%23ff6552' d='M16 7h1'/%3E%3Cpath stroke='%23fd6653' d='M17 7h1'/%3E%3Cpath stroke='%23f0604e' d='M18 7h1'/%3E%3Cpath stroke='%23ce4a3b' d='M19 7h1'/%3E%3Cpath stroke='%23ff7565' d='M1 8h1'/%3E%3Cpath stroke='%23ff8677' d='M6 8h1m-2 2h1'/%3E%3Cpath stroke='%23ff7664' d='M10 8h1'/%3E%3Cpath stroke='%23ff6a53' d='M14 8h1'/%3E%3Cpath stroke='%23ff6953' d='M15 8h1'/%3E%3Cpath stroke='%23ff6b55' d='M16 8h1'/%3E%3Cpath stroke='%23fd6b56' d='M17 8h1'/%3E%3Cpath stroke='%23f06350' d='M18 8h1'/%3E%3Cpath stroke='%23cf4c3b' d='M19 8h1'/%3E%3Cpath stroke='%23ff6d5d' d='M1 9h1'/%3E%3Cpath stroke='%23ff8b7c' d='M4 9h1'/%3E%3Cpath stroke='%23ff775d' d='M13 9h1'/%3E%3Cpath stroke='%23ff745a' d='M14 9h1'/%3E%3Cpath stroke='%23ff7359' d='M15 9h1'/%3E%3Cpath stroke='%23ff735a' d='M16 9h1'/%3E%3Cpath stroke='%23fd715a' d='M17 9h1'/%3E%3Cpath stroke='%23f16752' d='M18 9h1'/%3E%3Cpath stroke='%23d24e3c' d='M19 9h1'/%3E%3Cpath stroke='%23ff6a59' d='M1 10h1m2 6h1'/%3E%3Cpath stroke='%23ff8778' d='M4 10h1'/%3E%3Cpath stroke='%23ff8374' d='M6 10h1m-3 1h2'/%3E%3Cpath stroke='%23ff8171' d='M7 10h1m-5 1h1'/%3E%3Cpath stroke='%23ff8271' d='M8 10h1m-2 1h1'/%3E%3Cpath stroke='%23ff8369' d='M12 10h1'/%3E%3Cpath stroke='%23ff8165' d='M13 10h1'/%3E%3Cpath stroke='%23ff7e61' d='M14 10h1'/%3E%3Cpath stroke='%23ff7d5f' d='M15 10h1'/%3E%3Cpath stroke='%23ff7b5f' d='M16 10h1'/%3E%3Cpath stroke='%23fd775d' d='M17 10h1'/%3E%3Cpath stroke='%23f36a53' d='M18 10h1'/%3E%3Cpath stroke='%23d34e3c' d='M19 10h1'/%3E%3Cpath stroke='%23ff6553' d='M1 11h1'/%3E%3Cpath stroke='%23ff8273' d='M6 11h1'/%3E%3Cpath stroke='%23ff8c6c' d='M13 11h1'/%3E%3Cpath stroke='%23ff8969' d='M14 11h1'/%3E%3Cpath stroke='%23ff8665' d='M15 11h1'/%3E%3Cpath stroke='%23ff8262' d='M16 11h1'/%3E%3Cpath stroke='%23fd7c5e' d='M17 11h1'/%3E%3Cpath stroke='%23f46d54' d='M18 11h1'/%3E%3Cpath stroke='%23d64f3b' d='M19 11h1'/%3E%3Cpath stroke='%23ff5f4d' d='M1 12h1'/%3E%3Cpath stroke='%23ff8070' d='M6 12h1'/%3E%3Cpath stroke='%23ff9279' d='M10 12h1'/%3E%3Cpath stroke='%23fff8f6' d='M13 12h1'/%3E%3Cpath stroke='%23ff936f' d='M14 12h1'/%3E%3Cpath stroke='%23ff906c' d='M15 12h1'/%3E%3Cpath stroke='%23ff8967' d='M16 12h1'/%3E%3Cpath stroke='%23fe7f5f' d='M17 12h1'/%3E%3Cpath stroke='%23f56e52' d='M18 12h1'/%3E%3Cpath stroke='%23d84f39' d='M19 12h1'/%3E%3Cpath stroke='%23ff5c4a' d='M1 13h1'/%3E%3Cpath stroke='%23ff7d6e' d='M5 13h1'/%3E%3Cpath stroke='%23ff907a' d='M9 13h1'/%3E%3Cpath stroke='%23ff957c' d='M10 13h1'/%3E%3Cpath stroke='%23ff9a7e' d='M11 13h1'/%3E%3Cpath stroke='%23ff9670' d='M15 13h1'/%3E%3Cpath stroke='%23ff8e68' d='M16 13h1'/%3E%3Cpath stroke='%23fe815e' d='M17 13h1'/%3E%3Cpath stroke='%23f66c4f' d='M18 13h1'/%3E%3Cpath stroke='%23da4d36' d='M19 13h1'/%3E%3Cpath stroke='%23ff5744' d='M1 14h1'/%3E%3Cpath stroke='%23ff6857' d='M2 14h1'/%3E%3Cpath stroke='%23ff8672' d='M8 14h1'/%3E%3Cpath stroke='%23ff8f78' d='M9 14h1'/%3E%3Cpath stroke='%23ff967c' d='M10 14h1'/%3E%3Cpath stroke='%23ff9c7e' d='M11 14h1'/%3E%3Cpath stroke='%23ffa07e' d='M12 14h1'/%3E%3Cpath stroke='%23ff8e66' d='M16 14h1'/%3E%3Cpath stroke='%23fe7f5a' d='M17 14h1m-3 3h1'/%3E%3Cpath stroke='%23f76a4b' d='M18 14h1'/%3E%3Cpath stroke='%23da4a33' d='M19 14h1'/%3E%3Cpath stroke='%23ff523f' d='M1 15h1'/%3E%3Cpath stroke='%23ff7160' d='M4 15h1'/%3E%3Cpath stroke='%23ffc7c1' d='M5 15h1'/%3E%3Cpath stroke='%23ff836f' d='M8 15h1'/%3E%3Cpath stroke='%23ff8b74' d='M9 15h1'/%3E%3Cpath stroke='%23ff9379' d='M10 15h1'/%3E%3Cpath stroke='%23ff9a7c' d='M11 15h1'/%3E%3Cpath stroke='%23ff9e7c' d='M12 15h1'/%3E%3Cpath stroke='%23ffa07a' d='M13 15h1'/%3E%3Cpath stroke='%23ffd5c5' d='M15 15h1'/%3E%3Cpath stroke='%23ff8b62' d='M16 15h1'/%3E%3Cpath stroke='%23fe7c56' d='M17 15h1'/%3E%3Cpath stroke='%23f76545' d='M18 15h1'/%3E%3Cpath stroke='%23db4931' d='M19 15h1'/%3E%3Cpath stroke='%23ff4f3a' d='M1 16h1'/%3E%3Cpath stroke='%23ff5c49' d='M2 16h1'/%3E%3Cpath stroke='%23ff6452' d='M3 16h1'/%3E%3Cpath stroke='%23ff6e5e' d='M5 16h1'/%3E%3Cpath stroke='%23ff7462' d='M7 16h1'/%3E%3Cpath stroke='%23ff7c68' d='M8 16h1'/%3E%3Cpath stroke='%23ff846d' d='M9 16h1'/%3E%3Cpath stroke='%23ff8b71' d='M10 16h1'/%3E%3Cpath stroke='%23ff9174' d='M11 16h1'/%3E%3Cpath stroke='%23ff9674' d='M12 16h1'/%3E%3Cpath stroke='%23ff9571' d='M13 16h1'/%3E%3Cpath stroke='%23ff946d' d='M14 16h1'/%3E%3Cpath stroke='%23ff8d66' d='M15 16h1'/%3E%3Cpath stroke='%23ff855c' d='M16 16h1'/%3E%3Cpath stroke='%23fe7650' d='M17 16h1'/%3E%3Cpath stroke='%23f66141' d='M18 16h1'/%3E%3Cpath stroke='%23da462f' d='M19 16h1'/%3E%3Cpath stroke='%23fa4935' d='M1 17h1'/%3E%3Cpath stroke='%23fb5441' d='M2 17h1'/%3E%3Cpath stroke='%23fc5c4a' d='M3 17h1'/%3E%3Cpath stroke='%23fb6150' d='M4 17h1'/%3E%3Cpath stroke='%23fc6554' d='M5 17h1'/%3E%3Cpath stroke='%23fc6756' d='M6 17h1'/%3E%3Cpath stroke='%23fc6a58' d='M7 17h1'/%3E%3Cpath stroke='%23fc715c' d='M8 17h1'/%3E%3Cpath stroke='%23fc7761' d='M9 17h1'/%3E%3Cpath stroke='%23fd7e64' d='M10 17h1'/%3E%3Cpath stroke='%23fd8367' d='M11 17h1'/%3E%3Cpath stroke='%23fe8566' d='M12 17h1'/%3E%3Cpath stroke='%23fe8664' d='M13 17h1'/%3E%3Cpath stroke='%23fe8460' d='M14 17h1'/%3E%3Cpath stroke='%23fe7651' d='M16 17h1'/%3E%3Cpath stroke='%23fc6b47' d='M17 17h1'/%3E%3Cpath stroke='%23f2573a' d='M18 17h1'/%3E%3Cpath stroke='%23d4402a' d='M19 17h1'/%3E%3Cpath stroke='%23e85848' d='M1 18h1'/%3E%3Cpath stroke='%23ed4a37' d='M2 18h1'/%3E%3Cpath stroke='%23ec4f3d' d='M3 18h1'/%3E%3Cpath stroke='%23ee5443' d='M4 18h1'/%3E%3Cpath stroke='%23ed5746' d='M5 18h1'/%3E%3Cpath stroke='%23ee5a48' d='M7 18h1'/%3E%3Cpath stroke='%23ef5e4b' d='M8 18h1'/%3E%3Cpath stroke='%23f0644e' d='M9 18h1'/%3E%3Cpath stroke='%23f16750' d='M10 18h1'/%3E%3Cpath stroke='%23f46c52' d='M11 18h1'/%3E%3Cpath stroke='%23f66d51' d='M12 18h1'/%3E%3Cpath stroke='%23f66e51' d='M13 18h1'/%3E%3Cpath stroke='%23f66c4e' d='M14 18h1'/%3E%3Cpath stroke='%23f86a4a' d='M15 18h1'/%3E%3Cpath stroke='%23f76343' d='M16 18h1'/%3E%3Cpath stroke='%23f3583a' d='M17 18h1'/%3E%3Cpath stroke='%23e54930' d='M18 18h1'/%3E%3Cpath stroke='%23cd5140' d='M19 18h1'/%3E%3Cpath stroke='%23f6d9d6' d='M1 19h1'/%3E%3Cpath stroke='%23d25344' d='M2 19h1'/%3E%3Cpath stroke='%23c93c2b' d='M3 19h1'/%3E%3Cpath stroke='%23ca3f2f' d='M4 19h1'/%3E%3Cpath stroke='%23ca4131' d='M5 19h1'/%3E%3Cpath stroke='%23ca4333' d='M6 19h1'/%3E%3Cpath stroke='%23cc4332' d='M7 19h1'/%3E%3Cpath stroke='%23cf4434' d='M8 19h1'/%3E%3Cpath stroke='%23d24936' d='M9 19h1'/%3E%3Cpath stroke='%23d34936' d='M10 19h1'/%3E%3Cpath stroke='%23d84b37' d='M11 19h1'/%3E%3Cpath stroke='%23da4c36' d='M12 19h1'/%3E%3Cpath stroke='%23dc4d36' d='M13 19h1'/%3E%3Cpath stroke='%23d94933' d='M14 19h1'/%3E%3Cpath stroke='%23de4a32' d='M15 19h1'/%3E%3Cpath stroke='%23dd482f' d='M16 19h1'/%3E%3Cpath stroke='%23d6402a' d='M17 19h1'/%3E%3Cpath stroke='%23cf5140' d='M18 19h1'/%3E%3Cpath stroke='%23f1d8d5' d='M19 19h1'/%3E%3Cpath stroke='%23fefefe' d='M6 20h1m3 0h1'/%3E%3Cpath stroke='%23fdfdfd' d='M7 20h1m1 0h1'/%3E%3Cpath stroke='%23fcfcfc' d='M8 20h1'/%3E%3C/svg%3E")
}
.title-bar-controls button[aria-label=Close]: not(: disabled): active{
background-image: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 21 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a7bced' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23f4f6fd' d='M2 0h1m15 0h1M0 2h1m19 0h1M0 18h1m19 0h1M2 20h1m15 0h1'/%3E%3Cpath stroke='%23fff' d='M3 0h15M0 3h1m19 0h1M0 4h1m19 0h1M0 5h1m19 0h1M0 6h1m19 0h1M0 7h1m19 0h1M0 8h1m19 0h1M0 9h1m19 0h1M0 10h1m19 0h1M0 11h1m19 0h1M0 12h1m19 0h1M0 13h1m19 0h1M0 14h1m19 0h1M0 15h1m19 0h1M0 16h1m19 0h1M0 17h1m19 0h1M3 20h15'/%3E%3Cpath stroke='%23a7baec' d='M19 0h1m0 1h1'/%3E%3Cpath stroke='%23dad2d0' d='M1 1h1'/%3E%3Cpath stroke='%23643529' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%235a1d0d' d='M3 1h1'/%3E%3Cpath stroke='%235d1e0d' d='M4 1h1'/%3E%3Cpath stroke='%235f1e0e' d='M5 1h1'/%3E%3Cpath stroke='%2363200e' d='M6 1h1'/%3E%3Cpath stroke='%2368210f' d='M7 1h1'/%3E%3Cpath stroke='%236f2310' d='M8 1h1'/%3E%3Cpath stroke='%23732511' d='M9 1h1'/%3E%3Cpath stroke='%23752511' d='M10 1h1M1 10h1'/%3E%3Cpath stroke='%237c2712' d='M11 1h1'/%3E%3Cpath stroke='%23822912' d='M12 1h1M5 2h1'/%3E%3Cpath stroke='%23852a13' d='M13 1h1M2 5h1m-2 8h1'/%3E%3Cpath stroke='%23892b13' d='M14 1h1'/%3E%3Cpath stroke='%238a2b14' d='M15 1h1M6 2h1'/%3E%3Cpath stroke='%238e2d14' d='M16 1h1M7 2h1'/%3E%3Cpath stroke='%238c2c14' d='M17 1h1M2 6h1'/%3E%3Cpath stroke='%239d4732' d='M18 1h1M1 18h1'/%3E%3Cpath stroke='%23ebd8d3' d='M19 1h1'/%3E%3Cpath stroke='%2369220f' d='M2 2h1'/%3E%3Cpath stroke='%23782611' d='M3 2h1'/%3E%3Cpath stroke='%237e2812' d='M4 2h1'/%3E%3Cpath stroke='%23932e15' d='M8 2h1'/%3E%3Cpath stroke='%239a3016' d='M9 2h1'/%3E%3Cpath stroke='%239c3116' d='M10 2h1'/%3E%3Cpath stroke='%23a03217' d='M11 2h1'/%3E%3Cpath stroke='%23a43418' d='M12 2h1'/%3E%3Cpath stroke='%23a73518' d='M13 2h1'/%3E%3Cpath stroke='%23aa3618' d='M14 2h1M2 14h1'/%3E%3Cpath stroke='%23ab3618' d='M15 2h1'/%3E%3Cpath stroke='%23ad3719' d='M16 2h1m1 0h1M2 16h1m-1 1h1'/%3E%3Cpath stroke='%23ac3618' d='M17 2h1'/%3E%3Cpath stroke='%23b24e35' d='M19 2h1'/%3E%3Cpath stroke='%23591c0d' d='M1 3h1M1 4h1'/%3E%3Cpath stroke='%23792711' d='M2 3h1'/%3E%3Cpath stroke='%238d2c14' d='M3 3h1'/%3E%3Cpath stroke='%23962e15' d='M4 3h1'/%3E%3Cpath stroke='%239a2f16' d='M5 3h1'/%3E%3Cpath stroke='%23a13117' d='M6 3h1'/%3E%3Cpath stroke='%23a63317' d='M7 3h1'/%3E%3Cpath stroke='%23aa3418' d='M8 3h1'/%3E%3Cpath stroke='%23af3619' d='M9 3h1'/%3E%3Cpath stroke='%23b23719' d='M10 3h1M8 4h1M4 8h1'/%3E%3Cpath stroke='%23b5391a' d='M11 3h1'/%3E%3Cpath stroke='%23b73a1b' d='M12 3h1'/%3E%3Cpath stroke='%23b93b1b' d='M13 3h1'/%3E%3Cpath stroke='%23ba3b1b' d='M14 3h2m3 0h1M3 13h1m-1 1h1m-1 5h1'/%3E%3Cpath stroke='%23bb3b1b' d='M16 3h3M3 15h1'/%3E%3Cpath stroke='%23802812' d='M2 4h1m-2 8h1'/%3E%3Cpath stroke='%23962f15' d='M3 4h1'/%3E%3Cpath stroke='%239e3016' d='M4 4h1'/%3E%3Cpath stroke='%23a43216' d='M5 4h1'/%3E%3Cpath stroke='%23aa3317' d='M6 4h1M4 6h1'/%3E%3Cpath stroke='%23ae3518' d='M7 4h1'/%3E%3Cpath stroke='%23b5381a' d='M9 4h1M4 9h1'/%3E%3Cpath stroke='%23b8391a' d='M10 4h1m-7 6h1'/%3E%3Cpath stroke='%23ba3a1b' d='M11 4h1m-8 7h2'/%3E%3Cpath stroke='%23bc3b1c' d='M12 4h1m-9 8h1'/%3E%3Cpath stroke='%23bd3c1c' d='M13 4h1m-1 1h1m-2 1h1m-7 6h1m-3 1h2'/%3E%3Cpath stroke='%23be3d1c' d='M14 4h3m-1 1h1m-1 1h1M4 14h1m-1 1h1m-1 1h2'/%3E%3Cpath stroke='%23bf3d1c' d='M17 4h3m-3 1h3m-2 1h2m-1 1h1M4 17h2m-2 1h4m-4 1h4'/%3E%3Cpath stroke='%235b1d0d' d='M1 5h1'/%3E%3Cpath stroke='%239c3016' d='M3 5h1'/%3E%3Cpath stroke='%23a43217' d='M4 5h1'/%3E%3Cpath stroke='%23b8553e' d='M5 5h1'/%3E%3Cpath stroke='%23d59485' d='M6 5h1M5 6h1'/%3E%3Cpath stroke='%23b33619' d='M7 5h1'/%3E%3Cpath stroke='%23b53719' d='M8 5h1'/%3E%3Cpath stroke='%23b8381a' d='M9 5h1M6 8h1'/%3E%3Cpath stroke='%23b9391b' d='M10 5h1'/%3E%3Cpath stroke='%23ba391b' d='M11 5h1M6 9h1m-2 1h1'/%3E%3Cpath stroke='%23bc3b1b' d='M12 5h1m-2 1h1m-6 5h1m-2 1h1'/%3E%3Cpath stroke='%23dc9887' d='M14 5h1'/%3E%3Cpath stroke='%23c85d42' d='M15 5h1M5 15h1'/%3E%3Cpath stroke='%23611f0e' d='M1 6h1'/%3E%3Cpath stroke='%23a23217' d='M3 6h1'/%3E%3Cpath stroke='%23d79585' d='M6 6h1'/%3E%3Cpath stroke='%23d89585' d='M7 6h1'/%3E%3Cpath stroke='%23b8371a' d='M8 6h1'/%3E%3Cpath stroke='%23ba391a' d='M9 6h1'/%3E%3Cpath stroke='%23bb3a1b' d='M10 6h1m-5 4h1'/%3E%3Cpath stroke='%23dd9887' d='M13 6h3m-4 1h1m-2 1h1M9 9h1m-2 2h1m-2 1h1m-2 1h1m-2 1h2'/%3E%3Cpath stroke='%23c03e1d' d='M17 6h1m-2 1h3m0 1h1m-1 1h1M7 16h1m-2 1h2m0 1h1'/%3E%3Cpath stroke='%2365200e' d='M1 7h1'/%3E%3Cpath stroke='%23902d15' d='M2 7h1'/%3E%3Cpath stroke='%23a73418' d='M3 7h1'/%3E%3Cpath stroke='%23af3518' d='M4 7h1'/%3E%3Cpath stroke='%23b43619' d='M5 7h1'/%3E%3Cpath stroke='%23d99585' d='M6 7h1'/%3E%3Cpath stroke='%23da9686' d='M7 7h1'/%3E%3Cpath stroke='%23db9686' d='M8 7h1M7 8h1'/%3E%3Cpath stroke='%23bc3a1b' d='M9 7h1M7 9h1'/%3E%3Cpath stroke='%23bd3b1b' d='M10 7h1m-4 3h1'/%3E%3Cpath stroke='%23be3c1c' d='M11 7h1m-2 1h1m-3 2h1m-2 1h1'/%3E%3Cpath stroke='%23de9987' d='M13 7h2m-3 1h2m-4 1h2m-3 1h1m-2 2h1m-2 2h1'/%3E%3Cpath stroke='%23c03f1d' d='M15 7h1m-9 8h1'/%3E%3Cpath stroke='%236a220f' d='M1 8h1'/%3E%3Cpath stroke='%23952f15' d='M2 8h1'/%3E%3Cpath stroke='%23ac3518' d='M3 8h1'/%3E%3Cpath stroke='%23b63719' d='M5 8h1'/%3E%3Cpath stroke='%23dc9786' d='M8 8h2M8 9h1'/%3E%3Cpath stroke='%23c2401d' d='M14 8h1m2 0h1m1 3h1M8 14h1m-1 2h1m-1 1h1m0 1h1m1 1h1'/%3E%3Cpath stroke='%23c2401e' d='M15 8h2m1 1h1M8 15h1'/%3E%3Cpath stroke='%23c13f1d' d='M18 8h1m0 2h1M9 19h2'/%3E%3Cpath stroke='%23702410' d='M1 9h1'/%3E%3Cpath stroke='%239b3016' d='M2 9h1'/%3E%3Cpath stroke='%23b03619' d='M3 9h1'/%3E%3Cpath stroke='%23b9381a' d='M5 9h1'/%3E%3Cpath stroke='%23df9a88' d='M12 9h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23c4421e' d='M13 9h1m2 0h2m0 1h1M9 13h1m9 1h1m-1 1h1M9 16h1m9 0h1M9 17h1m0 1h1m3 1h3'/%3E%3Cpath stroke='%23c5431e' d='M14 9h1'/%3E%3Cpath stroke='%23c5431f' d='M15 9h1m-4 1h1m5 1h1m-9 1h1m-2 2h1m-1 1h1m0 2h1m0 1h1m6 0h1'/%3E%3Cpath stroke='%239e3217' d='M2 10h1'/%3E%3Cpath stroke='%23b4381a' d='M3 10h1'/%3E%3Cpath stroke='%23df9a87' d='M10 10h1m-2 1h1m-2 2h1'/%3E%3Cpath stroke='%23c6441f' d='M13 10h1m3 0h1m-8 3h1m-1 3h1'/%3E%3Cpath stroke='%23c74520' d='M14 10h2m-6 4h1m-1 1h1m7 2h1m-7 1h1m4 0h1'/%3E%3Cpath stroke='%23c7451f' d='M16 10h1m1 2h1'/%3E%3Cpath stroke='%237b2711' d='M1 11h1'/%3E%3Cpath stroke='%23a13217' d='M2 11h1'/%3E%3Cpath stroke='%23b7391a' d='M3 11h1'/%3E%3Cpath stroke='%23e09b88' d='M11 11h1'/%3E%3Cpath stroke='%23e29d89' d='M12 11h1'/%3E%3Cpath stroke='%23c94621' d='M13 11h1m-3 2h1'/%3E%3Cpath stroke='%23ca4721' d='M14 11h1m2 1h1m-7 2h1m-1 1h1m0 2h1m2 1h1'/%3E%3Cpath stroke='%23ca4821' d='M15 11h1m1 6h1'/%3E%3Cpath stroke='%23c94620' d='M16 11h1m1 3h1m-8 2h1m6 0h1'/%3E%3Cpath stroke='%23c84620' d='M17 11h1m0 2h1'/%3E%3Cpath stroke='%23a53418' d='M2 12h1'/%3E%3Cpath stroke='%23b83a1b' d='M3 12h1'/%3E%3Cpath stroke='%23e19d89' d='M11 12h1'/%3E%3Cpath stroke='%23e39e89' d='M12 12h1'/%3E%3Cpath stroke='%23e0947c' d='M13 12h1'/%3E%3Cpath stroke='%23cc4a22' d='M14 12h1m-3 2h1m4 0h1m-6 1h1'/%3E%3Cpath stroke='%23cd4a22' d='M15 12h1m0 1h1m0 2h1m-5 1h1m1 1h1'/%3E%3Cpath stroke='%23cb4922' d='M16 12h1m0 1h1m-5 4h1'/%3E%3Cpath stroke='%23c3411e' d='M19 12h1m-1 1h1m-1 4h1m-8 2h2m3 0h1'/%3E%3Cpath stroke='%23a93618' d='M2 13h1'/%3E%3Cpath stroke='%23dd9987' d='M7 13h1m-2 2h1'/%3E%3Cpath stroke='%23e39f8a' d='M12 13h1'/%3E%3Cpath stroke='%23e59f8b' d='M13 13h1'/%3E%3Cpath stroke='%23e5a08b' d='M14 13h1m-2 1h1'/%3E%3Cpath stroke='%23ce4c23' d='M15 13h1m0 3h1'/%3E%3Cpath stroke='%23882b13' d='M1 14h1'/%3E%3Cpath stroke='%23e6a08b' d='M14 14h1'/%3E%3Cpath stroke='%23e6a18b' d='M15 14h1m-2 1h1'/%3E%3Cpath stroke='%23ce4b23' d='M16 14h1m-4 1h1'/%3E%3Cpath stroke='%238b2c14' d='M1 15h1m-1 1h1'/%3E%3Cpath stroke='%23ac3619' d='M2 15h1'/%3E%3Cpath stroke='%23d76b48' d='M15 15h1'/%3E%3Cpath stroke='%23cf4c23' d='M16 15h1m-2 1h1'/%3E%3Cpath stroke='%23c94721' d='M18 15h1m-3 3h1'/%3E%3Cpath stroke='%23bb3c1b' d='M3 16h1'/%3E%3Cpath stroke='%23bf3e1d' d='M6 16h1'/%3E%3Cpath stroke='%23cb4821' d='M12 16h1'/%3E%3Cpath stroke='%23cd4b23' d='M14 16h1'/%3E%3Cpath stroke='%23cc4922' d='M17 16h1m-4 1h1m1 0h1'/%3E%3Cpath stroke='%238d2d14' d='M1 17h1'/%3E%3Cpath stroke='%23bc3c1b' d='M3 17h1m-1 1h1'/%3E%3Cpath stroke='%23c84520' d='M11 17h1m1 1h1'/%3E%3Cpath stroke='%23ae3719' d='M2 18h1'/%3E%3Cpath stroke='%23c94720' d='M14 18h1'/%3E%3Cpath stroke='%23c95839' d='M19 18h1'/%3E%3Cpath stroke='%23a7bdf0' d='M0 19h1m0 1h1'/%3E%3Cpath stroke='%23ead7d3' d='M1 19h1'/%3E%3Cpath stroke='%23b34e35' d='M2 19h1'/%3E%3Cpath stroke='%23c03e1c' d='M8 19h1'/%3E%3Cpath stroke='%23c9583a' d='M18 19h1'/%3E%3Cpath stroke='%23f3dbd4' d='M19 19h1'/%3E%3Cpath stroke='%23a7bcef' d='M20 19h1m-2 1h1'/%3E%3C/svg%3E")
}
.status-bar{
margin: 0 3px;
box-shadow: inset 0 1px 2px grey;
padding: 2px 1px;
gap: 0
}
.status-bar-field{
-webkit-font-smoothing: antialiased;
box-shadow: none;
padding: 1px 2px;
border-right: 1px solid rgba(208,206,191,.75);
border-left: 1px solid hsla(0,0%,100%,.75)
}
.status-bar-field: first-of-type{
border-left: none
}
.status-bar-field: last-of-type{
border-right: none
}
button{
-webkit-font-smoothing: antialiased;
box-sizing: border-box;
border: 1px solid #003c74;
background: linear-gradient(180deg,#fff,#ecebe5 86%,#d8d0c4);
box-shadow: none;
border-radius: 3px
}
button: not(: disabled).active,button: not(: disabled): active{
box-shadow: none;
background: linear-gradient(180deg,#cdcac3,#e3e3db 8%,#e5e5de 94%,#f2f2f1)
}
button: not(: disabled): hover{
box-shadow: inset -1px 1px #fff0cf,inset 1px 2px #fdd889,inset -2px 2px #fbc761,inset 2px -2px #e5a01a
}
button.focused,button: focus{
box-shadow: inset -1px 1px #cee7ff,inset 1px 2px #98b8ea,inset -2px 2px #bcd4f6,inset 1px -1px #89ade4,inset 2px -2px #89ade4
}
button: :-moz-focus-inner{
border: 0
}
input,label,option,select,textarea{
-webkit-font-smoothing: antialiased
}
input[type=radio]{
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
margin: 0;
background: 0;
position: fixed;
opacity: 0;
border: none
}
input[type=radio]+label{
line-height: 16px
}
input[type=radio]+label: before{
background: linear-gradient(135deg,#dcdcd7,#fff);
border-radius: 50%;
border: 1px solid #1d5281
}
input[type=radio]: not([disabled]): not(: active)+label: hover: before{
box-shadow: inset -2px -2px #f8b636,inset 2px 2px #fedf9c
}
input[type=radio]: active+label: before{
background: linear-gradient(135deg,#b0b0a7,#e3e1d2)
}
input[type=radio]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23a9dca6' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%234dbf4a' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23a0d29e' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%2355d551' d='M1 1h1'/%3E%3Cpath stroke='%2343c33f' d='M2 1h1'/%3E%3Cpath stroke='%2329a826' d='M3 1h1'/%3E%3Cpath stroke='%239acc98' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%2342c33f' d='M1 2h1'/%3E%3Cpath stroke='%2338b935' d='M2 2h1'/%3E%3Cpath stroke='%2321a121' d='M3 2h1'/%3E%3Cpath stroke='%23269623' d='M4 2h1'/%3E%3Cpath stroke='%232aa827' d='M1 3h1'/%3E%3Cpath stroke='%2322a220' d='M2 3h1'/%3E%3Cpath stroke='%23139210' d='M3 3h1'/%3E%3Cpath stroke='%2398c897' d='M4 3h1'/%3E%3Cpath stroke='%23249624' d='M2 4h1'/%3E%3Cpath stroke='%2398c997' d='M3 4h1'/%3E%3C/svg%3E")
}
input[type=radio]: focus+label{
outline: 1px dotted #000
}
input[type=radio][disabled]+label: before{
border: 1px solid #cac8bb;
background: #fff
}
input[type=radio][disabled]: checked+label: after{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 5 5' shape-rendering='crispEdges'%3E%3Cpath stroke='%23e8e6da' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23d2ceb5' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23e5e3d4' d='M3 0h1M0 3h1'/%3E%3Cpath stroke='%23d7d3bd' d='M1 1h1'/%3E%3Cpath stroke='%23d0ccb2' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%23c7c2a2' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%23e2dfd0' d='M4 1h1M1 4h1'/%3E%3Cpath stroke='%23cdc8ac' d='M2 2h1'/%3E%3Cpath stroke='%23c5bf9f' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%23c3bd9c' d='M4 2h1'/%3E%3Cpath stroke='%23bfb995' d='M3 3h1'/%3E%3Cpath stroke='%23e2dfcf' d='M4 3h1M3 4h1'/%3E%3Cpath stroke='%23c4be9d' d='M2 4h1'/%3E%3C/svg%3E")
}
input[type=email],input[type=password],textarea: :selection{
background: #2267cb;
color: #fff
}
input[type=range]: :-webkit-slider-thumb{
height: 21px;
width: 11px;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(-8px)
}
input[type=range]: :-moz-range-thumb{
height: 21px;
width: 11px;
border: 0;
border-radius: 0;
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 21' shape-rendering='crispEdges'%3E%3Cpath stroke='%23becbd3' d='M1 0h1M0 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M2 0h1M0 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M3 0h5M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M8 0h1M0 14h1'/%3E%3Cpath stroke='%239fb2be' d='M9 0h1M0 15h1'/%3E%3Cpath stroke='%23a6d1b1' d='M1 1h1'/%3E%3Cpath stroke='%236fd16e' d='M2 1h1M1 2h1'/%3E%3Cpath stroke='%2367ce65' d='M3 1h1M1 3h1'/%3E%3Cpath stroke='%2366ce64' d='M4 1h3'/%3E%3Cpath stroke='%2362cd61' d='M7 1h1'/%3E%3Cpath stroke='%2345c343' d='M8 1h1M7 2h1'/%3E%3Cpath stroke='%2363ac76' d='M9 1h1M2 16h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%23879aa6' d='M10 1h1'/%3E%3Cpath stroke='%2363cd62' d='M2 2h1'/%3E%3Cpath stroke='%2349c547' d='M3 2h1M2 3h1'/%3E%3Cpath stroke='%2347c446' d='M4 2h3'/%3E%3Cpath stroke='%2321b71f' d='M8 2h1'/%3E%3Cpath stroke='%231da41c' d='M9 2h1'/%3E%3Cpath stroke='%237d8e99' d='M10 2h1'/%3E%3Cpath stroke='%2325b923' d='M3 3h1'/%3E%3Cpath stroke='%2321b81f' d='M4 3h4M2 15h1'/%3E%3Cpath stroke='%231ea71c' d='M8 3h1'/%3E%3Cpath stroke='%231b9619' d='M9 3h1'/%3E%3Cpath stroke='%23778892' d='M10 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f7f7f4' d='M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h4m-4 1h3m-2 1h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 4h1M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 4h1M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f1f1ed' d='M7 13h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 13h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 13h1'/%3E%3Cpath stroke='%234bc549' d='M1 14h1'/%3E%3Cpath stroke='%23f4f4f1' d='M2 14h1'/%3E%3Cpath stroke='%23e6e6e2' d='M7 14h1m-2 1h1'/%3E%3Cpath stroke='%23cececa' d='M8 14h1'/%3E%3Cpath stroke='%231a9319' d='M9 14h1'/%3E%3Cpath stroke='%23788993' d='M10 14h1'/%3E%3Cpath stroke='%2369b17b' d='M1 15h1'/%3E%3Cpath stroke='%23f2f2ee' d='M3 15h1m0 1h1'/%3E%3Cpath stroke='%23d0d0cc' d='M7 15h1m-2 1h1'/%3E%3Cpath stroke='%231a9118' d='M8 15h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%234c845a' d='M9 15h1'/%3E%3Cpath stroke='%2372838d' d='M10 15h1'/%3E%3Cpath stroke='%2391a6b2' d='M1 16h1m0 1h1m0 1h1m0 1h1'/%3E%3Cpath stroke='%2321b61f' d='M3 16h1m0 1h1'/%3E%3Cpath stroke='%23e7e7e3' d='M5 16h1'/%3E%3Cpath stroke='%234b8259' d='M8 16h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%236e7e88' d='M9 16h1m-2 1h1m-2 1h1m-2 1h1'/%3E%3Cpath stroke='%23d7d7d4' d='M5 17h1'/%3E%3Cpath stroke='%231da21b' d='M5 18h1'/%3E%3Cpath stroke='%23589868' d='M5 19h1'/%3E%3Cpath stroke='%2380929e' d='M5 20h1'/%3E%3C/svg%3E");
transform: translateY(2px)
}
input[type=range]: :-webkit-slider-runnable-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range]: :-moz-range-track{
width: 100%;
height: 2px;
box-sizing: border-box;
background: #ecebe4;
border-right: 1px solid #f3f2ea;
border-bottom: 1px solid #f3f2ea;
border-radius: 2px;
box-shadow: 1px 0 0 #fff,1px 1px 0 #fff,0 1px 0 #fff,-1px 0 0 #9d9c99,-1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,-1px 1px 0 #fff,1px -1px #9d9c99
}
input[type=range].has-box-indicator: :-webkit-slider-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(-10px)
}
input[type=range].has-box-indicator: :-moz-range-thumb{
background: url("data: image/svg+xml;charset=utf-8,%3Csvg xmlns='http: //www.w3.org/2000/svg' viewBox='0 -0.5 11 22' shape-rendering='crispEdges'%3E%3Cpath stroke='%23f2f1e7' d='M0 0h1m9 0h1M0 21h1m9 0h1'/%3E%3Cpath stroke='%23879aa6' d='M1 0h1m8 20h1'/%3E%3Cpath stroke='%237d8e99' d='M2 0h1m7 19h1'/%3E%3Cpath stroke='%23778892' d='M3 0h5m2 3h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23788993' d='M8 0h1m1 2h1'/%3E%3Cpath stroke='%2372838d' d='M9 0h1m0 1h1'/%3E%3Cpath stroke='%239fb2be' d='M0 1h1m8 20h1'/%3E%3Cpath stroke='%2363af76' d='M1 1h1m7 19h1'/%3E%3Cpath stroke='%231eab1c' d='M2 1h1m6 18h1'/%3E%3Cpath stroke='%231c9d1a' d='M3 1h1'/%3E%3Cpath stroke='%231b9a1a' d='M4 1h3m1 0h1m0 1h1'/%3E%3Cpath stroke='%231b9b1a' d='M7 1h1'/%3E%3Cpath stroke='%234d875b' d='M9 1h1'/%3E%3Cpath stroke='%23afbfc8' d='M0 2h1m7 19h1'/%3E%3Cpath stroke='%2346ca44' d='M1 2h1m5 17h1m0 1h1'/%3E%3Cpath stroke='%2322be20' d='M2 2h1m5 17h1'/%3E%3Cpath stroke='%231faf1d' d='M3 2h1'/%3E%3Cpath stroke='%231fae1d' d='M4 2h3'/%3E%3Cpath stroke='%231fad1d' d='M7 2h1'/%3E%3Cpath stroke='%231da11b' d='M8 2h1'/%3E%3Cpath stroke='%23b5c4cd' d='M0 3h1M0 4h1M0 5h1M0 6h1M0 7h1M0 8h1M0 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m2 3h5'/%3E%3Cpath stroke='%23f7f7f4' d='M1 3h1M1 4h1M1 5h1M1 6h1M1 7h1M1 8h1M1 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f5f5f2' d='M2 3h1M2 4h1M2 5h1M2 6h1M2 7h1M2 8h1M2 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23f3f3ef' d='M3 3h4M3 4h5M3 5h5M3 6h5M3 7h5M3 8h5M3 9h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5m-5 1h5'/%3E%3Cpath stroke='%23f1f1ed' d='M7 3h1'/%3E%3Cpath stroke='%23dbdbd8' d='M8 3h1'/%3E%3Cpath stroke='%23c4c4c1' d='M9 3h1'/%3E%3Cpath stroke='%23ddddd9' d='M8 4h1M8 18h1'/%3E%3Cpath stroke='%23c6c6c3' d='M9 4h1M9 18h1'/%3E%3Cpath stroke='%23dcdcd9' d='M8 5h1M8 6h1M8 7h1M8 8h1M8 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23c3c3c0' d='M9 5h1M9 6h1M9 7h1M9 8h1M9 9h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1m-1 1h1'/%3E%3Cpath stroke='%23b6c5cd' d='M0 19h1m1 2h1'/%3E%3Cpath stroke='%2370d66f' d='M1 19h1m0 1h1'/%3E%3Cpath stroke='%2364d362' d='M2 19h1'/%3E%3Cpath stroke='%234acb48' d='M3 19h1'/%3E%3Cpath stroke='%2348cb46' d='M4 19h3'/%3E%3Cpath stroke='%23becbd3' d='M0 20h1m0 1h1'/%3E%3Cpath stroke='%23a6d2b1' d='M1 20h1'/%3E%3Cpath stroke='%2367d466' d='M3 20h1'/%3E%3Cpath stroke='%2366d465' d='M4 20h3'/%3E%3Cpath stroke='%2363d362' d='M7 20h1'/%3E%3C/svg%3E");transform: translateY(0)
}
.is-vertical>input[type=range]: :-webkit-slider-runnable-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
.is-vertical>input[type=range]: :-moz-range-track{
border-left: 1px solid #f3f2ea;
border-right: 0;
border-bottom: 1px solid #f3f2ea;
box-shadow: -1px 0 0 #fff,-1px 1px 0 #fff,0 1px 0 #fff,1px 0 0 #9d9c99,1px -1px 0 #9d9c99,0 -1px 0 #9d9c99,1px 1px 0 #fff,-1px -1px #9d9c99
}
fieldset{
box-shadow: none;
background: #fff;
border: 1px solid #d0d0bf;
border-radius: 4px;
padding-top: 10px
}
legend{
background: transparent;
color: #0046d5
}
.field-row{
display: flex;
align-items: center
}
.field-row>*+*{
margin-left: 6px
}
[class^=field-row]+[class^=field-row]{
margin-top: 6px
}
.field-row-stacked{
display: flex;
flex-direction: column
}
.field-row-stacked *+*{
margin-top: 6px
}
menu[role=tablist] button{
background: linear-gradient(180deg,#fff,#fafaf9 26%,#f0f0ea 95%,#ecebe5);
margin-left: -1px;
margin-right: 2px;
border-radius: 0;
border-color: #91a7b4;
border-top-right-radius: 3px;
border-top-left-radius: 3px;
padding: 0 12px 3px
}
menu[role=tablist] button: hover{
box-shadow: unset;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]{
border-color: #919b9c;
margin-right: -1px;
border-bottom: 1px solid transparent;
border-top: 1px solid #e68b2c;
box-shadow: inset 0 2px #ffc73c
}
menu[role=tablist] button[aria-selected=true]: first-of-type: before{
content: "";
display: block;
position: absolute;
z-index: -1;
top: 100%;
left: -1px;
height: 2px;
width: 0;
border-left: 1px solid #919b9c
}
[role=tabpanel]{
box-shadow: inset 1px 1px #fcfcfe,inset -1px -1px #fcfcfe,1px 2px 2px 0 rgba(208,206,191,.75)
}
ul.tree-view{
-webkit-font-smoothing: auto;
border: 1px solid #7f9db9;
padding: 2px 5px
}
@keyframes sliding{
0%{
transform: translateX(-30px)
}
to{
transform: translateX(100%)
}
}
progress{
box-sizing: border-box;
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
height: 14px;
border: 1px solid #686868;
border-radius: 4px;
padding: 1px 2px 1px 0;
overflow: hidden;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress,progress: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
height: 14px
}
progress[value]: :-webkit-progress-bar{
background-color: transparent
}
progress[value]: :-webkit-progress-value{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress[value]: :-moz-progress-bar{
border-radius: 2px;
background: repeating-linear-gradient(90deg,#fff 0,#fff 2px,transparent 0,transparent 10px),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-webkit-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-webkit-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]){
position: relative
}
progress: not([value]): before{
box-sizing: border-box;
content: "";
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #fff;
-webkit-box-shadow: inset 0 0 1px 0 #686868;
-moz-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before,progress: not([value]): before: not([value]){
box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): before: not([value]){
-moz-box-shadow: inset 0 0 1px 0 #686868;
-webkit-box-shadow: inset 0 0 1px 0 #686868
}
progress: not([value]): after{
box-sizing: border-box;
content: "";
position: absolute;
top: 1px;
left: 2px;
width: 100%;
height: calc(100% - 2px);
padding: 1px 2px;
border-radius: 2px;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): after,progress: not([value]): after: not([value]){
animation: sliding 2s linear 0s infinite
}
progress: not([value]): after: not([value]){
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
progress: not([value]): :-moz-progress-bar{
width: 100%;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff);
animation: sliding 2s linear 0s infinite
}
progress: not([value]): :-moz-progress-bar: not([value]){
animation: sliding 2s linear 0s infinite;
background: repeating-linear-gradient(90deg,transparent 0,transparent 8px,#fff 0,#fff 10px,transparent 0,transparent 18px,#fff 0,#fff 20px,transparent 0,transparent 28px,#fff 0,#fff),linear-gradient(180deg,#acedad 0,#7be47d 14%,#4cda50 28%,#2ed330 42%,#42d845 57%,#76e275 71%,#8fe791 85%,#fff)
}
</style>
</head>
<body>
<script>
var log = console.log;
var theme = 'light';
var special_col_names = ["trial_index","arm_name","trial_status","generation_method","generation_node","hostname","run_time","start_time","exit_code","signal","end_time","program_string"]
var result_names = [];
var result_min_max = [];
var tab_results_headers_json = [
"trial_index",
"arm_name",
"trial_status",
"generation_method",
"result",
"n_samples",
"confidence",
"feature_proportion",
"n_clusters"
];
var tab_results_csv_json = [
[
0,
"0_0",
"COMPLETED",
"Sobol",
0.8416814248003475,
697,
0.01,
0.054493993520736694,
2
],
[
1,
"1_0",
"COMPLETED",
"Sobol",
0.8515053296354462,
531,
0.05,
0.08970960807055235,
3
],
[
2,
"2_0",
"COMPLETED",
"Sobol",
0.8485982557556722,
165,
0.05,
0.1334313318133354,
1
],
[
3,
"3_0",
"COMPLETED",
"Sobol",
0.8417148394426438,
970,
0.005,
0.1803740117698908,
1
],
[
4,
"4_0",
"COMPLETED",
"Sobol",
0.8418484980118288,
164,
0.001,
0.0509162075817585,
2
],
[
5,
"5_0",
"COMPLETED",
"Sobol",
0.8448558158184917,
880,
0.25,
0.03252225089818239,
4
],
[
6,
"6_0",
"COMPLETED",
"Sobol",
0.8410131319544224,
156,
0.01,
0.06475251447409391,
1
],
[
7,
"7_0",
"COMPLETED",
"Sobol",
0.8493333778861898,
743,
0.005,
0.05080309994518757,
4
],
[
8,
"8_0",
"COMPLETED",
"Sobol",
0.8475624018444883,
401,
0.01,
0.017815119586884975,
3
],
[
9,
"9_0",
"COMPLETED",
"Sobol",
0.8494336218130785,
612,
0.05,
0.028564392961561682,
4
],
[
10,
"10_0",
"COMPLETED",
"Sobol",
0.8612289905436562,
267,
0.05,
0.13697684351354839,
3
],
[
11,
"11_0",
"COMPLETED",
"Sobol",
0.8424833762154575,
903,
0.001,
0.16882146764546635,
4
],
[
12,
"12_0",
"COMPLETED",
"Sobol",
0.8419821565810138,
545,
0.01,
0.014081121794879437,
1
],
[
13,
"13_0",
"COMPLETED",
"Sobol",
0.8507367928626324,
129,
0.005,
0.12412807084619999,
4
],
[
14,
"14_0",
"COMPLETED",
"Sobol",
0.8483309386173021,
269,
0.005,
0.02276571895927191,
3
],
[
15,
"15_0",
"COMPLETED",
"Sobol",
0.8389414241320546,
218,
0.001,
0.1530627289786935,
1
],
[
16,
"16_0",
"COMPLETED",
"Sobol",
0.8431516690613827,
916,
0.05,
0.003580087795853615,
3
],
[
17,
"17_0",
"COMPLETED",
"Sobol",
0.8432184983459752,
701,
0.01,
0.05351840760558844,
2
],
[
18,
"18_0",
"COMPLETED",
"Sobol",
0.8480970361212283,
187,
0.01,
0.16814300864934922,
4
],
[
19,
"19_0",
"COMPLETED",
"Sobol",
0.8443880108263441,
856,
0.005,
0.15027457643300296,
2
],
[
20,
"20_0",
"COMPLETED",
"BoTorch",
0.8420489858656063,
281,
0.001,
0.09551193168815818,
1
],
[
21,
"21_0",
"COMPLETED",
"BoTorch",
0.8439202058341966,
462,
0.001,
0.16850043737580356,
1
],
[
22,
"22_0",
"COMPLETED",
"BoTorch",
0.8504360610819661,
100,
0.001,
0.11612112022929451,
1
],
[
23,
"23_0",
"COMPLETED",
"BoTorch",
0.8504360610819661,
100,
0.001,
0.049297150296263165,
1
],
[
24,
"24_0",
"COMPLETED",
"BoTorch",
0.8504360610819661,
100,
0.001,
0.19627738168231965,
1
],
[
25,
"25_0",
"COMPLETED",
"BoTorch",
0.8461255722257494,
514,
0.001,
0.11128368029167933,
1
],
[
26,
"26_0",
"FAILED",
"BoTorch",
"",
1000,
0.1,
0,
1
],
[
27,
"27_0",
"COMPLETED",
"BoTorch",
0.8381728873592408,
1000,
0.001,
0.07833381608249292,
1
],
[
28,
"28_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
1
],
[
29,
"29_0",
"FAILED",
"BoTorch",
"",
100,
0.001,
0,
1
],
[
30,
"30_0",
"COMPLETED",
"BoTorch",
0.8444548401109366,
411,
0.001,
0.2,
1
],
[
31,
"31_0",
"COMPLETED",
"BoTorch",
0.8424833762154575,
1000,
0.025,
0.08267855500439575,
1
],
[
32,
"32_0",
"FAILED",
"BoTorch",
"",
543,
0.25,
0,
1
],
[
33,
"33_0",
"COMPLETED",
"BoTorch",
0.836101179536873,
1000,
0.05,
0.2,
1
],
[
34,
"34_0",
"COMPLETED",
"BoTorch",
0.8452902061683429,
100,
0.001,
0.2,
2
],
[
35,
"35_0",
"COMPLETED",
"BoTorch",
0.8428843519230127,
1000,
0.25,
0.11672498672577987,
1
],
[
36,
"36_0",
"COMPLETED",
"BoTorch",
0.8446219133224179,
917,
0.1,
0.03949185760248896,
1
],
[
37,
"37_0",
"COMPLETED",
"BoTorch",
0.8404116683930898,
1000,
0.001,
0.02269305588943215,
2
],
[
38,
"38_0",
"FAILED",
"BoTorch",
"",
100,
0.1,
0,
1
],
[
39,
"39_0",
"COMPLETED",
"BoTorch",
0.8465599625756006,
491,
0.001,
0.13485135930024184,
1
],
[
40,
"40_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
2
],
[
41,
"41_0",
"COMPLETED",
"BoTorch",
0.8422494737193839,
391,
0.001,
0.08853055438654445,
1
],
[
42,
"42_0",
"FAILED",
"BoTorch",
"",
626,
0.25,
0,
1
],
[
43,
"29_0",
"FAILED",
"BoTorch",
"",
100,
0.001,
0,
1
],
[
44,
"44_0",
"COMPLETED",
"BoTorch",
0.8368363016673906,
988,
0.05,
0.2,
2
],
[
45,
"45_0",
"COMPLETED",
"BoTorch",
0.8501353293012999,
236,
0.005,
0.1635119830934014,
1
],
[
46,
"46_0",
"COMPLETED",
"BoTorch",
0.8431182544190865,
947,
0.001,
0.044674076127555,
1
],
[
47,
"47_0",
"COMPLETED",
"BoTorch",
0.8406121562468674,
1000,
0.001,
0.1501880580504702,
2
],
[
48,
"48_0",
"COMPLETED",
"BoTorch",
0.8424833762154575,
1000,
0.025,
0.2,
1
],
[
49,
"28_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
1
],
[
50,
"50_0",
"COMPLETED",
"BoTorch",
0.8379723995054633,
1000,
0.1,
0.2,
1
],
[
51,
"51_0",
"COMPLETED",
"BoTorch",
0.8438867911919004,
938,
0.05,
0.2,
1
],
[
52,
"52_0",
"COMPLETED",
"BoTorch",
0.8423497176462726,
239,
0.001,
0.19668151083408222,
2
],
[
53,
"53_0",
"COMPLETED",
"BoTorch",
0.8470945968523407,
948,
0.1,
0.2,
1
],
[
54,
"54_0",
"COMPLETED",
"BoTorch",
0.8379723995054633,
1000,
0.1,
0.16126736224773225,
1
],
[
55,
"28_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
1
],
[
56,
"56_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
1
],
[
57,
"57_0",
"COMPLETED",
"BoTorch",
0.8419487419387175,
1000,
0.01,
0.1223060061763852,
3
],
[
58,
"58_0",
"COMPLETED",
"BoTorch",
0.8381728873592408,
1000,
0.001,
0.16475126979809132,
1
],
[
59,
"59_0",
"COMPLETED",
"BoTorch",
0.8380392287900558,
1000,
0.001,
0.2,
3
],
[
60,
"60_0",
"COMPLETED",
"BoTorch",
0.8492999632438935,
219,
0.005,
0.09316471156132938,
1
],
[
61,
"61_0",
"COMPLETED",
"BoTorch",
0.8414141076619774,
929,
0.001,
0.0018043142108126386,
1
],
[
62,
"62_0",
"FAILED",
"BoTorch",
"",
922,
0.001,
0,
1
],
[
63,
"63_0",
"FAILED",
"BoTorch",
"",
680,
0.01,
0,
1
],
[
64,
"64_0",
"COMPLETED",
"BoTorch",
0.8405119123199787,
1000,
0.005,
0.19996337691134797,
3
],
[
65,
"65_0",
"COMPLETED",
"BoTorch",
0.8448224011761954,
1000,
0.05,
0.1369856692489439,
2
],
[
66,
"66_0",
"COMPLETED",
"BoTorch",
0.8427172787115313,
1000,
0.1,
0.2,
3
],
[
67,
"67_0",
"COMPLETED",
"BoTorch",
0.8398770341163497,
1000,
0.01,
0.12052513506686727,
2
],
[
68,
"68_0",
"COMPLETED",
"BoTorch",
0.8408126441006449,
1000,
0.25,
0.2,
2
],
[
69,
"69_0",
"COMPLETED",
"BoTorch",
0.8415143515888662,
1000,
0.025,
0.1963873551963688,
2
],
[
70,
"70_0",
"COMPLETED",
"BoTorch",
0.8398770341163497,
1000,
0.01,
0.036178118103656724,
2
],
[
71,
"71_0",
"COMPLETED",
"BoTorch",
0.8376716677247971,
1000,
0.001,
0.041099193598007594,
3
],
[
72,
"72_0",
"COMPLETED",
"BoTorch",
0.84148093694657,
1000,
0.025,
0.2,
3
],
[
73,
"73_0",
"COMPLETED",
"BoTorch",
0.8425502055000501,
1000,
0.05,
0.1379134962876573,
3
],
[
74,
"74_0",
"COMPLETED",
"BoTorch",
0.8408126441006449,
1000,
0.25,
0.15610464076102415,
3
],
[
75,
"75_0",
"FAILED",
"BoTorch",
"",
759,
0.001,
0,
1
],
[
76,
"76_0",
"COMPLETED",
"BoTorch",
0.8426838640692351,
1000,
0.1,
0.1323360886543434,
2
],
[
77,
"77_0",
"FAILED",
"BoTorch",
"",
798,
0.001,
0,
2
],
[
78,
"78_0",
"COMPLETED",
"BoTorch",
0.8404116683930898,
1000,
0.001,
0.2,
2
],
[
79,
"79_0",
"COMPLETED",
"BoTorch",
0.8381728873592408,
1000,
0.001,
0.2,
1
],
[
80,
"80_0",
"FAILED",
"BoTorch",
"",
613,
0.001,
0,
1
],
[
81,
"81_0",
"COMPLETED",
"BoTorch",
0.8406121562468674,
1000,
0.001,
0.09513666564627465,
2
],
[
82,
"82_0",
"FAILED",
"BoTorch",
"",
643,
0.05,
0,
1
],
[
83,
"83_0",
"COMPLETED",
"BoTorch",
0.8422160590770875,
1000,
0.025,
0.2,
4
],
[
84,
"84_0",
"COMPLETED",
"BoTorch",
0.8421492297924951,
853,
0.001,
0.2,
2
],
[
85,
"85_0",
"FAILED",
"BoTorch",
"",
1000,
0.01,
0,
1
],
[
86,
"86_0",
"COMPLETED",
"BoTorch",
0.8395428876933873,
1000,
0.005,
0.12548046487588335,
1
],
[
87,
"87_0",
"COMPLETED",
"BoTorch",
0.8381728873592408,
1000,
0.001,
0.12072801849173041,
1
],
[
88,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
89,
"89_0",
"COMPLETED",
"BoTorch",
0.8391084973435359,
1000,
0.001,
0.1115854371771547,
3
],
[
90,
"90_0",
"FAILED",
"BoTorch",
"",
736,
0.001,
0,
1
],
[
91,
"91_0",
"FAILED",
"BoTorch",
"",
742,
0.025,
0,
1
],
[
92,
"92_0",
"COMPLETED",
"BoTorch",
0.84094630266983,
1000,
0.001,
0.10282948513171702,
4
],
[
93,
"93_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
3
],
[
94,
"94_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
2
],
[
95,
"95_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
3
],
[
96,
"96_0",
"COMPLETED",
"BoTorch",
0.8406121562468674,
1000,
0.001,
0.2,
4
],
[
97,
"97_0",
"FAILED",
"BoTorch",
"",
639,
0.001,
0,
1
],
[
98,
"98_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
4
],
[
99,
"99_0",
"COMPLETED",
"BoTorch",
0.8368697163096869,
1000,
0.001,
0.1574084644262125,
4
],
[
100,
"100_0",
"COMPLETED",
"BoTorch",
0.8419153272964213,
1000,
0.025,
0.12158483841041826,
4
],
[
101,
"101_0",
"RUNNING",
"BoTorch",
"",
990,
0.05,
0.2,
1
],
[
102,
"102_0",
"COMPLETED",
"BoTorch",
0.8424165469308651,
977,
0.05,
0.2,
2
],
[
103,
"103_0",
"COMPLETED",
"BoTorch",
0.8422828883616801,
978,
0.025,
0.2,
2
],
[
104,
"104_0",
"COMPLETED",
"BoTorch",
0.841881912654125,
977,
0.05,
0.2,
3
],
[
105,
"105_0",
"FAILED",
"BoTorch",
"",
987,
0.001,
0,
3
],
[
106,
"106_0",
"COMPLETED",
"BoTorch",
0.8467270357870819,
985,
0.001,
0.2,
4
],
[
107,
"107_0",
"COMPLETED",
"BoTorch",
0.8376716677247971,
987,
0.05,
0.2,
1
],
[
108,
"108_0",
"COMPLETED",
"BoTorch",
0.8452567915260467,
974,
0.01,
0.03512273115161019,
2
],
[
109,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
110,
"110_0",
"COMPLETED",
"BoTorch",
0.8399772780432385,
978,
0.1,
0.2,
2
],
[
111,
"111_0",
"COMPLETED",
"BoTorch",
0.8444882547532329,
974,
0.025,
0.11283049260427598,
3
],
[
112,
"112_0",
"COMPLETED",
"BoTorch",
0.8447555718916029,
981,
0.001,
0.2,
3
],
[
113,
"113_0",
"COMPLETED",
"BoTorch",
0.8525077689043339,
670,
0.01,
0.06546716895860114,
2
],
[
114,
"114_0",
"COMPLETED",
"BoTorch",
0.8498680121629298,
973,
0.005,
0.2,
3
],
[
115,
"115_0",
"COMPLETED",
"BoTorch",
0.8470611822100444,
677,
0.01,
0.06488547641539323,
1
],
[
116,
"116_0",
"COMPLETED",
"BoTorch",
0.84201557122331,
202,
0.001,
0.2,
1
],
[
117,
"117_0",
"COMPLETED",
"BoTorch",
0.8371704480903532,
899,
0.001,
0.14519936659428412,
1
],
[
118,
"118_0",
"COMPLETED",
"BoTorch",
0.8407792294583487,
332,
0.001,
0.10122883141488488,
1
],
[
119,
"98_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
4
],
[
120,
"120_0",
"COMPLETED",
"BoTorch",
0.8428509372807165,
909,
0.01,
0.10431050474143018,
1
],
[
121,
"121_0",
"COMPLETED",
"BoTorch",
0.8387743509205734,
889,
0.001,
0.009651100271967951,
1
],
[
122,
"122_0",
"COMPLETED",
"BoTorch",
0.8422828883616801,
662,
0.001,
0.08360122259333415,
1
],
[
123,
"123_0",
"FAILED",
"BoTorch",
"",
573,
0.001,
0,
1
],
[
124,
"124_0",
"FAILED",
"BoTorch",
"",
902,
0.005,
0,
4
],
[
125,
"125_0",
"FAILED",
"BoTorch",
"",
900,
0.01,
0,
1
],
[
126,
"126_0",
"COMPLETED",
"BoTorch",
0.8515721589200388,
680,
0.005,
0.2,
1
],
[
127,
"127_0",
"COMPLETED",
"BoTorch",
0.8385404484244996,
920,
0.005,
0.2,
1
],
[
128,
"128_0",
"COMPLETED",
"BoTorch",
0.8459250843719718,
319,
0.001,
0.2,
1
],
[
129,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
130,
"130_0",
"COMPLETED",
"BoTorch",
0.8386072777090922,
1000,
0.001,
0.05053629782683701,
4
],
[
131,
"131_0",
"COMPLETED",
"BoTorch",
0.8408126441006449,
1000,
0.25,
0.2,
4
],
[
132,
"132_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
4
],
[
133,
"133_0",
"COMPLETED",
"BoTorch",
0.8408126441006449,
1000,
0.25,
0.08261099142406714,
4
],
[
134,
"134_0",
"FAILED",
"BoTorch",
"",
682,
0.001,
0,
1
],
[
135,
"135_0",
"FAILED",
"BoTorch",
"",
1000,
0.01,
0,
4
],
[
136,
"136_0",
"COMPLETED",
"BoTorch",
0.8428843519230127,
1000,
0.25,
0.2,
1
],
[
137,
"137_0",
"FAILED",
"BoTorch",
"",
653,
0.25,
0,
1
],
[
138,
"131_0",
"COMPLETED",
"BoTorch",
0.8408126441006449,
1000,
0.25,
0.2,
4
],
[
139,
"139_0",
"FAILED",
"BoTorch",
"",
412,
0.001,
0,
1
],
[
140,
"140_0",
"COMPLETED",
"BoTorch",
0.8455241086644167,
800,
0.001,
0.03189540252221679,
1
],
[
141,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
142,
"142_0",
"FAILED",
"BoTorch",
"",
648,
0.001,
0,
1
],
[
143,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
144,
"144_0",
"FAILED",
"BoTorch",
"",
744,
0.001,
0,
1
],
[
145,
"145_0",
"FAILED",
"BoTorch",
"",
944,
0.001,
0,
3
],
[
146,
"28_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
1
],
[
147,
"147_0",
"COMPLETED",
"BoTorch",
0.8433855715574565,
827,
0.25,
0.2,
4
],
[
148,
"135_0",
"FAILED",
"BoTorch",
"",
1000,
0.01,
0,
4
],
[
149,
"149_0",
"FAILED",
"BoTorch",
"",
483,
0.001,
0,
1
],
[
150,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
151,
"95_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
3
],
[
152,
"152_0",
"FAILED",
"BoTorch",
"",
421,
0.001,
0,
1
],
[
153,
"153_0",
"FAILED",
"BoTorch",
"",
852,
0.001,
0,
2
],
[
154,
"154_0",
"FAILED",
"BoTorch",
"",
679,
0.25,
0,
1
],
[
155,
"155_0",
"FAILED",
"BoTorch",
"",
490,
0.25,
0,
1
],
[
156,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
157,
"157_0",
"FAILED",
"BoTorch",
"",
419,
0.001,
0,
1
],
[
158,
"28_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
1
],
[
159,
"135_0",
"FAILED",
"BoTorch",
"",
1000,
0.01,
0,
4
],
[
160,
"160_0",
"COMPLETED",
"BoTorch",
0.8386741069936846,
1000,
0.001,
0.07966885079429797,
3
],
[
161,
"161_0",
"COMPLETED",
"BoTorch",
0.8432184983459752,
1000,
0.005,
0.031497912163918916,
4
],
[
162,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
163,
"163_0",
"FAILED",
"BoTorch",
"",
454,
0.001,
0,
2
],
[
164,
"132_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
4
],
[
165,
"165_0",
"RUNNING",
"BoTorch",
"",
1000,
0.25,
0.14074375307389367,
4
],
[
166,
"166_0",
"FAILED",
"BoTorch",
"",
965,
0.025,
0,
3
],
[
167,
"93_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
3
],
[
168,
"168_0",
"FAILED",
"BoTorch",
"",
1000,
0.025,
0,
4
],
[
169,
"135_0",
"FAILED",
"BoTorch",
"",
1000,
0.01,
0,
4
],
[
170,
"95_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
3
],
[
171,
"98_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
4
],
[
172,
"172_0",
"COMPLETED",
"BoTorch",
0.843719717980419,
1000,
0.01,
0.07257091015662046,
4
],
[
173,
"173_0",
"COMPLETED",
"BoTorch",
0.8426838640692351,
1000,
0.01,
0.2,
1
],
[
174,
"28_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
1
],
[
175,
"152_0",
"FAILED",
"BoTorch",
"",
421,
0.001,
0,
1
],
[
176,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
177,
"177_0",
"FAILED",
"BoTorch",
"",
100,
0.25,
0,
1
],
[
178,
"95_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
3
],
[
179,
"179_0",
"FAILED",
"BoTorch",
"",
640,
0.25,
0,
1
],
[
180,
"180_0",
"FAILED",
"BoTorch",
"",
510,
0.001,
0,
1
],
[
181,
"181_0",
"COMPLETED",
"BoTorch",
0.8381728873592408,
1000,
0.001,
0.14527729381330234,
1
],
[
182,
"132_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
4
],
[
183,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
184,
"184_0",
"COMPLETED",
"BoTorch",
0.8406121562468674,
1000,
0.001,
0.07981465359724418,
2
],
[
185,
"185_0",
"FAILED",
"BoTorch",
"",
465,
0.25,
0,
1
],
[
186,
"186_0",
"FAILED",
"BoTorch",
"",
224,
0.25,
0,
1
],
[
187,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
188,
"188_0",
"COMPLETED",
"BoTorch",
0.84174825408494,
1000,
0.001,
0.05863839544982872,
4
],
[
189,
"189_0",
"FAILED",
"BoTorch",
"",
246,
0.25,
0,
1
],
[
190,
"190_0",
"FAILED",
"BoTorch",
"",
408,
0.001,
0,
1
],
[
191,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
192,
"132_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
4
],
[
193,
"193_0",
"FAILED",
"BoTorch",
"",
670,
0.25,
0,
1
],
[
194,
"194_0",
"FAILED",
"BoTorch",
"",
455,
0.001,
0,
1
],
[
195,
"28_0",
"RUNNING",
"BoTorch",
"",
1000,
0.001,
0,
1
],
[
196,
"196_0",
"FAILED",
"BoTorch",
"",
559,
0.001,
0,
1
],
[
197,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
198,
"198_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
3
],
[
199,
"95_0",
"RUNNING",
"BoTorch",
"",
1000,
0.001,
0,
3
],
[
200,
"200_0",
"FAILED",
"BoTorch",
"",
424,
0.001,
0,
1
],
[
201,
"177_0",
"FAILED",
"BoTorch",
"",
100,
0.25,
0,
1
],
[
202,
"40_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
2
],
[
203,
"85_0",
"FAILED",
"BoTorch",
"",
1000,
0.01,
0,
1
],
[
204,
"204_0",
"FAILED",
"BoTorch",
"",
353,
0.001,
0,
1
],
[
205,
"205_0",
"COMPLETED",
"BoTorch",
0.8585224045176596,
356,
0.25,
0.010170518095815836,
1
],
[
206,
"206_0",
"FAILED",
"BoTorch",
"",
407,
0.25,
0,
1
],
[
207,
"207_0",
"FAILED",
"BoTorch",
"",
403,
0.001,
0,
1
],
[
208,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
209,
"209_0",
"FAILED",
"BoTorch",
"",
416,
0.001,
0,
1
],
[
210,
"95_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
3
],
[
211,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
212,
"198_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
3
],
[
213,
"132_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
4
],
[
214,
"214_0",
"FAILED",
"BoTorch",
"",
1000,
0.05,
0,
1
],
[
215,
"215_0",
"FAILED",
"BoTorch",
"",
719,
0.25,
0,
1
],
[
216,
"216_0",
"COMPLETED",
"BoTorch",
0.8466267918601931,
812,
0.25,
0.2,
1
],
[
217,
"217_0",
"FAILED",
"BoTorch",
"",
806,
0.25,
0,
1
],
[
218,
"218_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
2
],
[
219,
"219_0",
"COMPLETED",
"BoTorch",
0.8461255722257494,
551,
0.01,
0.021834769656869646,
1
],
[
220,
"220_0",
"COMPLETED",
"BoTorch",
0.845423864737528,
742,
0.25,
0.14838231820844722,
1
],
[
221,
"221_0",
"COMPLETED",
"BoTorch",
0.8399772780432385,
911,
0.001,
0.19036303336125326,
1
],
[
222,
"222_0",
"COMPLETED",
"BoTorch",
0.8402780098239049,
904,
0.001,
0.07208943729390992,
2
],
[
223,
"223_0",
"COMPLETED",
"BoTorch",
0.8426838640692351,
888,
0.001,
0.2,
1
],
[
224,
"224_0",
"COMPLETED",
"BoTorch",
0.8394426437664985,
904,
0.001,
0.049333454538326924,
1
],
[
225,
"225_0",
"COMPLETED",
"BoTorch",
0.8427841079961239,
893,
0.001,
0.2,
2
],
[
226,
"226_0",
"COMPLETED",
"BoTorch",
0.8384402044976109,
915,
0.001,
0.2,
2
],
[
227,
"227_0",
"COMPLETED",
"BoTorch",
0.8404450830353861,
354,
0.001,
0.022174112886802592,
1
],
[
228,
"228_0",
"COMPLETED",
"BoTorch",
0.8425836201423464,
355,
0.001,
0.2,
1
],
[
229,
"229_0",
"COMPLETED",
"BoTorch",
0.8405119123199787,
988,
0.001,
0.14267271014325486,
1
],
[
230,
"230_0",
"COMPLETED",
"BoTorch",
0.8501353293012999,
349,
0.001,
0.015762747529365115,
2
],
[
231,
"231_0",
"COMPLETED",
"BoTorch",
0.8425836201423464,
981,
0.25,
0.2,
3
],
[
232,
"232_0",
"COMPLETED",
"BoTorch",
0.8396097169779797,
901,
0.005,
0.09105469557596428,
2
],
[
233,
"233_0",
"COMPLETED",
"BoTorch",
0.8479299629097471,
353,
0.005,
0.1403996769284899,
1
],
[
234,
"234_0",
"COMPLETED",
"BoTorch",
0.8402780098239049,
930,
0.001,
0.2,
1
],
[
235,
"235_0",
"FAILED",
"BoTorch",
"",
333,
0.001,
0,
3
],
[
236,
"236_0",
"COMPLETED",
"BoTorch",
0.8443211815417516,
921,
0.005,
0.2,
3
],
[
237,
"237_0",
"FAILED",
"BoTorch",
"",
358,
0.001,
0,
3
],
[
238,
"56_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
1
],
[
239,
"239_0",
"FAILED",
"BoTorch",
"",
869,
0.001,
0,
1
],
[
240,
"240_0",
"COMPLETED",
"BoTorch",
0.8421826444347913,
974,
0.25,
0.12757654327715476,
4
],
[
241,
"241_0",
"COMPLETED",
"BoTorch",
0.8411467905236074,
920,
0.001,
0.1448081636746829,
1
],
[
242,
"242_0",
"FAILED",
"BoTorch",
"",
713,
0.025,
0,
1
],
[
243,
"243_0",
"COMPLETED",
"BoTorch",
0.8427841079961239,
348,
0.001,
0.05548183867963616,
4
],
[
244,
"244_0",
"COMPLETED",
"BoTorch",
0.843185083703679,
899,
0.025,
0.2,
4
],
[
245,
"245_0",
"FAILED",
"BoTorch",
"",
644,
0.001,
0,
1
],
[
246,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
247,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
248,
"248_0",
"COMPLETED",
"BoTorch",
0.8404116683930898,
1000,
0.001,
0.12094839453286924,
2
],
[
249,
"249_0",
"COMPLETED",
"BoTorch",
0.8453236208106392,
690,
0.25,
0.2,
4
],
[
250,
"132_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
4
],
[
251,
"132_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
4
],
[
252,
"252_0",
"FAILED",
"BoTorch",
"",
1000,
0.05,
0,
4
],
[
253,
"56_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
1
],
[
254,
"254_0",
"FAILED",
"BoTorch",
"",
717,
0.001,
0,
1
],
[
255,
"255_0",
"FAILED",
"BoTorch",
"",
924,
0.005,
0,
1
],
[
256,
"256_0",
"FAILED",
"BoTorch",
"",
832,
0.025,
0,
1
],
[
257,
"132_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
4
],
[
258,
"258_0",
"FAILED",
"BoTorch",
"",
1000,
0.1,
0,
4
],
[
259,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
260,
"260_0",
"FAILED",
"BoTorch",
"",
953,
0.001,
0,
3
],
[
261,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
262,
"262_0",
"COMPLETED",
"BoTorch",
0.8408126441006449,
1000,
0.25,
0.15522572825848885,
2
],
[
263,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
264,
"264_0",
"FAILED",
"BoTorch",
"",
523,
0.001,
0,
1
],
[
265,
"56_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
1
],
[
266,
"132_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
4
],
[
267,
"252_0",
"FAILED",
"BoTorch",
"",
1000,
0.05,
0,
4
],
[
268,
"260_0",
"FAILED",
"BoTorch",
"",
953,
0.001,
0,
3
],
[
269,
"269_0",
"COMPLETED",
"BoTorch",
0.8440204497610853,
901,
0.05,
0.007906343953206009,
3
],
[
270,
"56_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
1
],
[
271,
"271_0",
"FAILED",
"BoTorch",
"",
991,
0.1,
0,
3
],
[
272,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
273,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
274,
"274_0",
"FAILED",
"BoTorch",
"",
632,
0.001,
0,
1
],
[
275,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
276,
"56_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
1
],
[
277,
"277_0",
"FAILED",
"BoTorch",
"",
893,
0.005,
0,
1
],
[
278,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
279,
"279_0",
"FAILED",
"BoTorch",
"",
863,
0.01,
0,
1
],
[
280,
"280_0",
"FAILED",
"BoTorch",
"",
506,
0.001,
0,
1
],
[
281,
"281_0",
"COMPLETED",
"BoTorch",
0.8533431349617402,
327,
0.001,
0.2,
4
],
[
282,
"258_0",
"FAILED",
"BoTorch",
"",
1000,
0.1,
0,
4
],
[
283,
"132_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
4
],
[
284,
"284_0",
"FAILED",
"BoTorch",
"",
643,
0.001,
0,
1
],
[
285,
"285_0",
"FAILED",
"BoTorch",
"",
538,
0.001,
0,
4
],
[
286,
"286_0",
"FAILED",
"BoTorch",
"",
560,
0.001,
0,
1
],
[
287,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
288,
"218_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
2
],
[
289,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
290,
"132_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
4
],
[
291,
"291_0",
"COMPLETED",
"BoTorch",
0.8446219133224179,
917,
0.1,
0.03949557657328382,
1
],
[
292,
"40_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
2
],
[
293,
"88_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
4
],
[
294,
"294_0",
"FAILED",
"BoTorch",
"",
452,
0.001,
0,
1
],
[
295,
"295_0",
"COMPLETED",
"BoTorch",
0.8408126441006449,
1000,
0.25,
0.11748289128760803,
3
],
[
296,
"296_0",
"COMPLETED",
"BoTorch",
0.8408126441006449,
1000,
0.1,
0.2,
4
],
[
297,
"297_0",
"COMPLETED",
"BoTorch",
0.8437531326227152,
359,
0.001,
0.024196096071949932,
1
],
[
298,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
299,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
300,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
301,
"301_0",
"COMPLETED",
"BoTorch",
0.8421826444347913,
1000,
0.1,
0.1183534086970224,
4
],
[
302,
"302_0",
"COMPLETED",
"BoTorch",
0.8401109366124235,
995,
0.05,
0.2,
1
],
[
303,
"303_0",
"COMPLETED",
"BoTorch",
0.8371704480903532,
896,
0.005,
0.013358932732360865,
1
],
[
304,
"304_0",
"COMPLETED",
"BoTorch",
0.8458582550873793,
913,
0.005,
0.2,
2
],
[
305,
"305_0",
"FAILED",
"BoTorch",
"",
895,
0.001,
0,
1
],
[
306,
"306_0",
"COMPLETED",
"BoTorch",
0.8424833762154575,
929,
0.005,
0.2,
1
],
[
307,
"307_0",
"COMPLETED",
"BoTorch",
0.8403114244662011,
932,
0.01,
0.2,
1
],
[
308,
"308_0",
"COMPLETED",
"BoTorch",
0.8380058141477595,
217,
0.001,
0.2,
2
],
[
309,
"309_0",
"COMPLETED",
"BoTorch",
0.8388077655628696,
903,
0.005,
0.2,
1
],
[
310,
"310_0",
"COMPLETED",
"BoTorch",
0.8416480101580512,
996,
0.05,
0.2,
1
],
[
311,
"311_0",
"COMPLETED",
"BoTorch",
0.84201557122331,
924,
0.005,
0.2,
2
],
[
312,
"312_0",
"COMPLETED",
"BoTorch",
0.8374711798710195,
158,
0.001,
0.008219790664827255,
1
],
[
313,
"313_0",
"COMPLETED",
"BoTorch",
0.8372706920172419,
165,
0.005,
0.14077700879961694,
1
],
[
314,
"314_0",
"FAILED",
"BoTorch",
"",
991,
0.005,
0,
1
],
[
315,
"315_0",
"FAILED",
"BoTorch",
"",
987,
0.1,
0,
4
],
[
316,
"316_0",
"COMPLETED",
"BoTorch",
0.8430848397767902,
986,
0.1,
0.18493090316194113,
4
],
[
317,
"317_0",
"COMPLETED",
"BoTorch",
0.8302870317773248,
164,
0.001,
0.08498038392510072,
1
],
[
318,
"318_0",
"RUNNING",
"BoTorch",
"",
165,
0.005,
0.029829687685756223,
1
],
[
319,
"319_0",
"COMPLETED",
"BoTorch",
0.8404450830353861,
159,
0.001,
0.12344012246306418,
1
],
[
320,
"320_0",
"FAILED",
"BoTorch",
"",
885,
0.005,
0,
1
],
[
321,
"321_0",
"COMPLETED",
"BoTorch",
0.831356300330805,
168,
0.001,
0.04069245074370684,
1
],
[
322,
"322_0",
"FAILED",
"BoTorch",
"",
874,
0.001,
0,
3
],
[
323,
"323_0",
"COMPLETED",
"BoTorch",
0.8405119123199787,
175,
0.001,
0.0023391187483766548,
1
],
[
324,
"324_0",
"FAILED",
"BoTorch",
"",
723,
0.025,
0,
1
],
[
325,
"325_0",
"COMPLETED",
"BoTorch",
0.8380058141477595,
156,
0.005,
0.08356798208769642,
1
],
[
326,
"326_0",
"FAILED",
"BoTorch",
"",
861,
0.001,
0,
4
],
[
327,
"327_0",
"COMPLETED",
"BoTorch",
0.8286497143048084,
169,
0.001,
0.1003320959588364,
1
],
[
328,
"328_0",
"FAILED",
"BoTorch",
"",
886,
0.005,
0,
2
],
[
329,
"329_0",
"FAILED",
"BoTorch",
"",
716,
0.05,
0,
2
],
[
330,
"330_0",
"FAILED",
"BoTorch",
"",
730,
0.01,
0,
1
],
[
331,
"331_0",
"COMPLETED",
"BoTorch",
0.8422160590770875,
986,
0.1,
0.2,
1
],
[
332,
"332_0",
"FAILED",
"BoTorch",
"",
877,
0.01,
0,
1
],
[
333,
"333_0",
"COMPLETED",
"BoTorch",
0.8343636181374678,
172,
0.001,
0.08489841448496627,
1
],
[
334,
"334_0",
"FAILED",
"BoTorch",
"",
873,
0.001,
0,
3
],
[
335,
"335_0",
"COMPLETED",
"BoTorch",
0.8437865472650116,
889,
0.005,
0.00867666029408457,
3
],
[
336,
"336_0",
"COMPLETED",
"BoTorch",
0.8343636181374678,
172,
0.001,
0.08585201327528408,
1
],
[
337,
"337_0",
"FAILED",
"BoTorch",
"",
872,
0.005,
0,
2
],
[
338,
"338_0",
"FAILED",
"BoTorch",
"",
711,
0.001,
0,
1
],
[
339,
"339_0",
"FAILED",
"BoTorch",
"",
863,
0.025,
0,
1
],
[
340,
"340_0",
"FAILED",
"BoTorch",
"",
875,
0.001,
0,
4
],
[
341,
"341_0",
"FAILED",
"BoTorch",
"",
871,
0.01,
0,
2
],
[
342,
"342_0",
"FAILED",
"BoTorch",
"",
897,
0.001,
0,
4
],
[
343,
"343_0",
"COMPLETED",
"BoTorch",
0.8375714237979083,
171,
0.001,
0.08504167557083986,
1
],
[
344,
"344_0",
"FAILED",
"BoTorch",
"",
852,
0.05,
0,
1
],
[
345,
"345_0",
"FAILED",
"BoTorch",
"",
871,
0.025,
0,
1
],
[
346,
"346_0",
"FAILED",
"BoTorch",
"",
859,
0.001,
0,
1
],
[
347,
"347_0",
"COMPLETED",
"BoTorch",
0.8436863033381228,
933,
0.1,
0.054333929002806675,
1
],
[
348,
"332_0",
"FAILED",
"BoTorch",
"",
877,
0.01,
0,
1
],
[
349,
"349_0",
"COMPLETED",
"BoTorch",
0.8432519129882714,
851,
0.025,
0.040025767910441205,
1
],
[
350,
"350_0",
"COMPLETED",
"BoTorch",
0.8433855715574565,
831,
0.025,
0.10170955460000078,
1
],
[
351,
"338_0",
"FAILED",
"BoTorch",
"",
711,
0.001,
0,
1
],
[
352,
"352_0",
"COMPLETED",
"BoTorch",
0.8409128880275336,
853,
0.025,
0.028619189780432264,
1
],
[
353,
"353_0",
"FAILED",
"BoTorch",
"",
873,
0.005,
0,
1
],
[
354,
"354_0",
"FAILED",
"BoTorch",
"",
732,
0.01,
0,
1
],
[
355,
"355_0",
"RUNNING",
"BoTorch",
"",
847,
0.01,
0.1107572593392558,
1
],
[
356,
"356_0",
"FAILED",
"BoTorch",
"",
857,
0.05,
0,
1
],
[
357,
"357_0",
"FAILED",
"BoTorch",
"",
859,
0.25,
0,
1
],
[
358,
"358_0",
"FAILED",
"BoTorch",
"",
877,
0.001,
0,
1
],
[
359,
"359_0",
"FAILED",
"BoTorch",
"",
771,
0.25,
0,
4
],
[
360,
"360_0",
"FAILED",
"BoTorch",
"",
738,
0.01,
0,
1
],
[
361,
"361_0",
"FAILED",
"BoTorch",
"",
765,
0.1,
0,
3
],
[
362,
"362_0",
"FAILED",
"BoTorch",
"",
714,
0.001,
0,
1
],
[
363,
"363_0",
"COMPLETED",
"BoTorch",
0.8428509372807165,
742,
0.005,
0.05505242440931446,
1
],
[
364,
"364_0",
"FAILED",
"BoTorch",
"",
606,
0.001,
0,
1
],
[
365,
"365_0",
"FAILED",
"BoTorch",
"",
751,
0.025,
0,
2
],
[
366,
"366_0",
"COMPLETED",
"BoTorch",
0.8612289905436562,
100,
0.25,
0.2,
4
],
[
367,
"367_0",
"FAILED",
"BoTorch",
"",
733,
0.05,
0,
1
],
[
368,
"368_0",
"FAILED",
"BoTorch",
"",
719,
0.01,
0,
1
],
[
369,
"369_0",
"COMPLETED",
"BoTorch",
0.8462926454372306,
737,
0.025,
0.03815423906635727,
1
],
[
370,
"370_0",
"FAILED",
"BoTorch",
"",
754,
0.05,
0,
2
],
[
371,
"371_0",
"COMPLETED",
"BoTorch",
0.8612289905436562,
100,
0.25,
0.2,
3
],
[
372,
"372_0",
"FAILED",
"BoTorch",
"",
761,
0.05,
0,
1
],
[
373,
"373_0",
"FAILED",
"BoTorch",
"",
703,
0.001,
0,
1
],
[
374,
"374_0",
"COMPLETED",
"BoTorch",
0.8343636181374678,
172,
0.001,
0.09044208750598547,
1
],
[
375,
"375_0",
"FAILED",
"BoTorch",
"",
769,
0.25,
0,
4
],
[
376,
"376_0",
"COMPLETED",
"BoTorch",
0.8453236208106392,
760,
0.25,
0.0716036550099831,
4
],
[
377,
"377_0",
"FAILED",
"BoTorch",
"",
434,
0.001,
0,
1
],
[
378,
"378_0",
"FAILED",
"BoTorch",
"",
863,
0.001,
0,
1
],
[
379,
"379_0",
"FAILED",
"BoTorch",
"",
443,
0.001,
0,
3
],
[
380,
"380_0",
"COMPLETED",
"BoTorch",
0.8442543522571591,
436,
0.001,
2.98907180617e-19,
1
],
[
381,
"381_0",
"COMPLETED",
"BoTorch",
0.8499348414475223,
763,
0.1,
0.0352064968381751,
3
],
[
382,
"382_0",
"COMPLETED",
"BoTorch",
0.8465933772178968,
738,
0.025,
0.03679363967676929,
1
],
[
383,
"383_0",
"COMPLETED",
"BoTorch",
0.8507702075049286,
422,
0.001,
0.04432804813009403,
2
],
[
384,
"384_0",
"FAILED",
"BoTorch",
"",
445,
0.001,
0,
4
],
[
385,
"385_0",
"FAILED",
"BoTorch",
"",
602,
0.001,
0,
1
],
[
386,
"386_0",
"FAILED",
"BoTorch",
"",
576,
0.001,
0,
4
],
[
387,
"387_0",
"FAILED",
"BoTorch",
"",
616,
0.001,
0,
3
],
[
388,
"388_0",
"FAILED",
"BoTorch",
"",
858,
0.001,
0,
1
],
[
389,
"389_0",
"FAILED",
"BoTorch",
"",
572,
0.001,
0,
2
],
[
390,
"390_0",
"FAILED",
"BoTorch",
"",
842,
0.001,
0,
4
],
[
391,
"391_0",
"COMPLETED",
"BoTorch",
0.8512714271393724,
597,
0.001,
0.03140882345016759,
4
],
[
392,
"392_0",
"FAILED",
"BoTorch",
"",
538,
0.001,
0,
3
],
[
393,
"393_0",
"FAILED",
"BoTorch",
"",
545,
0.001,
0,
4
],
[
394,
"394_0",
"FAILED",
"BoTorch",
"",
543,
0.001,
0,
3
],
[
395,
"395_0",
"FAILED",
"BoTorch",
"",
868,
0.001,
0,
1
],
[
396,
"396_0",
"FAILED",
"BoTorch",
"",
844,
0.001,
0,
4
],
[
397,
"397_0",
"FAILED",
"BoTorch",
"",
859,
0.001,
0,
3
],
[
398,
"398_0",
"COMPLETED",
"BoTorch",
0.845824840445083,
839,
0.005,
0.06855944279162825,
4
],
[
399,
"373_0",
"FAILED",
"BoTorch",
"",
703,
0.001,
0,
1
],
[
400,
"400_0",
"FAILED",
"BoTorch",
"",
860,
0.001,
0,
1
],
[
401,
"401_0",
"FAILED",
"BoTorch",
"",
707,
0.001,
0,
1
],
[
402,
"402_0",
"COMPLETED",
"BoTorch",
0.8542453303037391,
478,
0.25,
0.2,
1
],
[
403,
"403_0",
"COMPLETED",
"BoTorch",
0.8439536204764928,
849,
0.005,
0.044349552237808926,
3
],
[
404,
"404_0",
"FAILED",
"BoTorch",
"",
867,
0.001,
0,
1
],
[
405,
"405_0",
"COMPLETED",
"BoTorch",
0.8446887426070104,
674,
0.001,
0.009341796367090933,
1
],
[
406,
"406_0",
"COMPLETED",
"BoTorch",
0.8470611822100444,
841,
0.005,
0.06868930451047947,
4
],
[
407,
"407_0",
"COMPLETED",
"BoTorch",
0.8461589868680456,
835,
0.01,
0.2,
4
],
[
408,
"408_0",
"COMPLETED",
"BoTorch",
0.8446887426070104,
850,
0.001,
0.06744568992838025,
4
],
[
409,
"409_0",
"FAILED",
"BoTorch",
"",
870,
0.005,
0,
1
],
[
410,
"410_0",
"FAILED",
"BoTorch",
"",
616,
0.25,
0,
1
],
[
411,
"411_0",
"FAILED",
"BoTorch",
"",
658,
0.25,
0,
1
],
[
412,
"28_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
1
],
[
413,
"413_0",
"RUNNING",
"BoTorch",
"",
977,
0.001,
0.035353581424803895,
1
],
[
414,
"414_0",
"FAILED",
"BoTorch",
"",
688,
0.25,
0,
1
],
[
415,
"415_0",
"FAILED",
"BoTorch",
"",
647,
0.25,
0,
1
],
[
416,
"416_0",
"RUNNING",
"BoTorch",
"",
689,
0.005,
0.08829934311039667,
2
],
[
417,
"417_0",
"COMPLETED",
"BoTorch",
0.8515053296354462,
625,
0.1,
0.046617598594046954,
1
],
[
418,
"418_0",
"FAILED",
"BoTorch",
"",
853,
0.25,
0,
1
],
[
419,
"239_0",
"FAILED",
"BoTorch",
"",
869,
0.001,
0,
1
],
[
420,
"56_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
1
],
[
421,
"421_0",
"FAILED",
"BoTorch",
"",
870,
0.001,
0,
1
],
[
422,
"422_0",
"FAILED",
"BoTorch",
"",
878,
0.005,
0,
1
],
[
423,
"423_0",
"COMPLETED",
"BoTorch",
0.8395763023356835,
997,
0.001,
0.15117589410464183,
2
],
[
424,
"424_0",
"COMPLETED",
"BoTorch",
0.8343636181374678,
172,
0.001,
0.09151838237555115,
1
],
[
425,
"28_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
1
],
[
426,
"426_0",
"COMPLETED",
"BoTorch",
0.8395763023356835,
896,
0.001,
0.06497666709723708,
1
],
[
427,
"427_0",
"FAILED",
"BoTorch",
"",
882,
0.01,
0,
1
],
[
428,
"428_0",
"COMPLETED",
"BoTorch",
0.8547465499381829,
166,
0.01,
0.007916691422013058,
2
],
[
429,
"400_0",
"FAILED",
"BoTorch",
"",
860,
0.001,
0,
1
],
[
430,
"421_0",
"FAILED",
"BoTorch",
"",
870,
0.001,
0,
1
],
[
431,
"418_0",
"FAILED",
"BoTorch",
"",
853,
0.25,
0,
1
],
[
432,
"432_0",
"FAILED",
"BoTorch",
"",
871,
0.005,
0,
1
],
[
433,
"433_0",
"FAILED",
"BoTorch",
"",
849,
0.25,
0,
1
],
[
434,
"434_0",
"FAILED",
"BoTorch",
"",
862,
0.001,
0,
1
],
[
435,
"435_0",
"COMPLETED",
"BoTorch",
0.8375714237979083,
171,
0.001,
0.08155478991377223,
1
],
[
436,
"436_0",
"COMPLETED",
"BoTorch",
0.8452567915260467,
847,
0.01,
0.11079647201369916,
1
],
[
437,
"437_0",
"COMPLETED",
"BoTorch",
0.8452567915260467,
846,
0.005,
0.07348174554325633,
1
],
[
438,
"438_0",
"COMPLETED",
"BoTorch",
0.8446219133224179,
846,
0.01,
0.119762452563735,
1
],
[
439,
"378_0",
"FAILED",
"BoTorch",
"",
863,
0.001,
0,
1
],
[
440,
"440_0",
"FAILED",
"BoTorch",
"",
951,
0.25,
0,
4
],
[
441,
"441_0",
"COMPLETED",
"BoTorch",
0.8470277675677482,
474,
0.001,
0.2,
4
],
[
442,
"442_0",
"FAILED",
"BoTorch",
"",
859,
0.05,
0,
1
],
[
443,
"443_0",
"COMPLETED",
"BoTorch",
0.8412804490927924,
823,
0.05,
0.05479532506588878,
1
],
[
444,
"444_0",
"FAILED",
"BoTorch",
"",
485,
0.001,
0,
4
],
[
445,
"445_0",
"FAILED",
"BoTorch",
"",
850,
0.25,
0,
1
],
[
446,
"446_0",
"FAILED",
"BoTorch",
"",
817,
0.1,
0,
1
],
[
447,
"447_0",
"COMPLETED",
"BoTorch",
0.8443880108263441,
791,
0.025,
0.06168600675493328,
1
],
[
448,
"448_0",
"FAILED",
"BoTorch",
"",
865,
0.25,
0,
1
],
[
449,
"449_0",
"COMPLETED",
"BoTorch",
0.8412136198082,
913,
0.25,
0.2,
4
],
[
450,
"450_0",
"COMPLETED",
"BoTorch",
0.8445216693955291,
826,
0.1,
0.024479787667490448,
1
],
[
451,
"451_0",
"COMPLETED",
"BoTorch",
0.8448892304607879,
872,
0.1,
0.08745953891277419,
1
],
[
452,
"452_0",
"COMPLETED",
"BoTorch",
0.8454906940221205,
874,
0.25,
0.14250505343653927,
1
],
[
453,
"453_0",
"COMPLETED",
"BoTorch",
0.8398436194740535,
906,
0.1,
0.12211180241222151,
4
],
[
454,
"454_0",
"COMPLETED",
"BoTorch",
0.8293180071507334,
170,
0.001,
0.0825113247723356,
1
],
[
455,
"455_0",
"FAILED",
"BoTorch",
"",
948,
0.25,
0,
4
],
[
456,
"456_0",
"FAILED",
"BoTorch",
"",
872,
0.001,
0,
2
],
[
457,
"457_0",
"COMPLETED",
"BoTorch",
0.843853376549604,
937,
0.25,
0.032865611685334965,
4
],
[
458,
"458_0",
"FAILED",
"BoTorch",
"",
440,
0.25,
0,
4
],
[
459,
"459_0",
"COMPLETED",
"BoTorch",
0.8525077689043339,
483,
0.25,
0.13854336801712505,
2
],
[
460,
"132_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
4
],
[
461,
"461_0",
"RUNNING",
"BoTorch",
"",
917,
0.25,
0.10109944849249929,
4
],
[
462,
"462_0",
"FAILED",
"BoTorch",
"",
958,
0.25,
0,
4
],
[
463,
"463_0",
"COMPLETED",
"BoTorch",
0.8557824038493668,
419,
0.25,
0.2,
4
],
[
464,
"464_0",
"COMPLETED",
"BoTorch",
0.8483643532595984,
744,
0.001,
0.1541403332504318,
2
],
[
465,
"28_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
1
],
[
466,
"466_0",
"COMPLETED",
"BoTorch",
0.8382397166438333,
995,
0.001,
0.03993680495147095,
1
],
[
467,
"467_0",
"COMPLETED",
"BoTorch",
0.8366358138136132,
992,
0.001,
0.1457315794670551,
2
],
[
468,
"468_0",
"COMPLETED",
"BoTorch",
0.8432853276305677,
587,
0.001,
0.2,
1
],
[
469,
"469_0",
"FAILED",
"BoTorch",
"",
592,
0.001,
0,
1
],
[
470,
"470_0",
"FAILED",
"BoTorch",
"",
578,
0.001,
0,
1
],
[
471,
"471_0",
"COMPLETED",
"BoTorch",
0.8446553279647141,
764,
0.001,
0.2,
1
],
[
472,
"472_0",
"COMPLETED",
"BoTorch",
0.8420489858656063,
620,
0.001,
0.0596147546024208,
1
],
[
473,
"473_0",
"COMPLETED",
"BoTorch",
0.8472950847061183,
569,
0.001,
0.07634458182644001,
1
],
[
474,
"474_0",
"FAILED",
"BoTorch",
"",
591,
0.001,
0,
1
],
[
475,
"475_0",
"COMPLETED",
"BoTorch",
0.8440204497610853,
553,
0.005,
0.016882991409375016,
1
],
[
476,
"28_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
1
],
[
477,
"477_0",
"COMPLETED",
"BoTorch",
0.8449226451030842,
597,
0.001,
0.13817119243905318,
1
],
[
478,
"478_0",
"FAILED",
"BoTorch",
"",
627,
0.005,
0,
1
],
[
479,
"479_0",
"FAILED",
"BoTorch",
"",
482,
0.025,
0,
1
],
[
480,
"480_0",
"COMPLETED",
"BoTorch",
0.8483643532595984,
536,
0.025,
0.09354087318300539,
1
],
[
481,
"28_0",
"FAILED",
"BoTorch",
"",
1000,
0.001,
0,
1
],
[
482,
"482_0",
"COMPLETED",
"BoTorch",
0.8404116683930898,
1000,
0.001,
0.19097790993361133,
2
],
[
483,
"79_0",
"COMPLETED",
"BoTorch",
0.8381728873592408,
1000,
0.001,
0.2,
1
],
[
484,
"484_0",
"FAILED",
"BoTorch",
"",
901,
0.01,
0,
1
],
[
485,
"485_0",
"COMPLETED",
"BoTorch",
0.843452400842049,
970,
0.001,
0.054632609609757,
1
],
[
486,
"143_0",
"FAILED",
"BoTorch",
"",
1000,
0.25,
0,
1
],
[
487,
"487_0",
"FAILED",
"BoTorch",
"",
933,
0.001,
0,
4
],
[
488,
"56_0",
"FAILED",
"BoTorch",
"",
1000,
0.005,
0,
1
],
[
489,
"214_0",
"FAILED",
"BoTorch",
"",
1000,
0.05,
0,
1
],
[
490,
"490_0",
"COMPLETED",
"BoTorch",
0.8375045945133157,
901,
0.01,
0.01486375921555323,
1
],
[
491,
"491_0",
"FAILED",
"BoTorch",
"",
934,
0.001,
0,
4
],
[
492,
"492_0",
"FAILED",
"BoTorch",
"",
1000,
0.025,
0,
1
],
[
493,
"493_0",
"COMPLETED",
"BoTorch",
0.8426838640692351,
969,
0.001,
0.04149782591556487,
1
],
[
494,
"494_0",
"COMPLETED",
"BoTorch",
0.8453570354529355,
886,
0.01,
0.05086849862279977,
1
],
[
495,
"495_0",
"FAILED",
"BoTorch",
"",
909,
0.01,
0,
1
],
[
496,
"496_0",
"RUNNING",
"BoTorch",
"",
1000,
0.01,
0.08905278286104765,
2
],
[
497,
"497_0",
"FAILED",
"BoTorch",
"",
932,
0.001,
0,
4
],
[
498,
"498_0",
"COMPLETED",
"BoTorch",
0.8385070337822034,
1000,
0.001,
0.050592622158597444,
4
],
[
499,
"499_0",
"COMPLETED",
"BoTorch",
0.8455241086644167,
842,
0.01,
0.11838280663306662,
1
],
[
500,
"500_0",
"COMPLETED",
"BoTorch",
0.841079961239015,
980,
0.001,
0.1300732468762936,
2
],
[
501,
"501_0",
"RUNNING",
"BoTorch",
"",
980,
0.001,
0.13006149263720002,
2
]
];
var tab_job_infos_headers_json = [
"start_time",
"end_time",
"run_time",
"program_string",
"n_samples",
"confidence",
"feature_proportion",
"n_clusters",
"result",
"exit_code",
"signal",
"hostname",
"OO_Info_runtime",
"OO_Info_lpd"
];
var tab_job_infos_csv_json = [
[
1727815916,
1727815966,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 531 confidence 0.05 feature_proportion 0.08970960807055235 n_clusters 3",
531,
0.05,
0.08970960807055235,
3,
0.8515053296354462,
0,
"None",
"i7186",
46,
0.00018699347900403798
],
[
1727815925,
1727815970,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 880 confidence 0.25 feature_proportion 0.03252225089818239 n_clusters 4",
880,
0.25,
0.03252225089818239,
4,
0.8448558158184917,
0,
"None",
"i7186",
41,
0.0004961568098534715
],
[
1727815916,
1727815972,
56,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 697 confidence 0.01 feature_proportion 0.054493993520736694 n_clusters 2",
697,
0.01,
0.054493993520736694,
2,
0.8416814248003475,
0,
"None",
"i7186",
51,
0.0005429879373141308
],
[
1727815926,
1727815974,
48,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 970 confidence 0.005 feature_proportion 0.1803740117698908 n_clusters 1",
970,
0.005,
0.1803740117698908,
1,
0.8417148394426438,
0,
"None",
"i7186",
44,
0.000696933967893302
],
[
1727815925,
1727815981,
56,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 165 confidence 0.05 feature_proportion 0.1334313318133354 n_clusters 1",
165,
0.05,
0.1334313318133354,
1,
0.8485982557556722,
0,
"None",
"i7186",
52,
0.00014518085963200115
],
[
1727815937,
1727815983,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 612 confidence 0.05 feature_proportion 0.028564392961561682 n_clusters 4",
612,
0.05,
0.028564392961561682,
4,
0.8494336218130785,
0,
"None",
"i7181",
42,
0.0002564210593603856
],
[
1727815936,
1727815986,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 267 confidence 0.05 feature_proportion 0.13697684351354839 n_clusters 3",
267,
0.05,
0.13697684351354839,
3,
0.8612289905436562,
0,
"None",
"i7181",
45,
-3.4096573771687094e-7
],
[
1727815936,
1727815991,
55,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 743 confidence 0.005 feature_proportion 0.05080309994518757 n_clusters 4",
743,
0.005,
0.05080309994518757,
4,
0.8493333778861898,
0,
"None",
"i7186",
50,
0.00033043368492962494
],
[
1727815937,
1727815991,
54,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 401 confidence 0.01 feature_proportion 0.017815119586884975 n_clusters 3",
401,
0.01,
0.017815119586884975,
3,
0.8475624018444883,
0,
"None",
"i7181",
50,
0.00022042884998658033
],
[
1727815925,
1727815992,
67,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 164 confidence 0.001 feature_proportion 0.0509162075817585 n_clusters 2",
164,
0.001,
0.0509162075817585,
2,
0.8418484980118288,
0,
"None",
"i7186",
62,
0.00028500724311510947
],
[
1727815937,
1727815994,
57,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 156 confidence 0.01 feature_proportion 0.06475251447409391 n_clusters 1",
156,
0.01,
0.06475251447409391,
1,
0.8410131319544224,
0,
"None",
"i7186",
54,
0.00025269823236542257
],
[
1727815955,
1727816001,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 903 confidence 0.001 feature_proportion 0.16882146764546635 n_clusters 4",
903,
0.001,
0.16882146764546635,
4,
0.8424833762154575,
0,
"None",
"i7181",
43,
0.0006248538109399543
],
[
1727815955,
1727816002,
47,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 545 confidence 0.01 feature_proportion 0.014081121794879437 n_clusters 1",
545,
0.01,
0.014081121794879437,
1,
0.8419821565810138,
0,
"None",
"i7181",
43,
0.0004095071055881368
],
[
1727815955,
1727816009,
54,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 218 confidence 0.001 feature_proportion 0.1530627289786935 n_clusters 1",
218,
0.001,
0.1530627289786935,
1,
0.8389414241320546,
0,
"None",
"i7181",
51,
0.0003777553629085011
],
[
1727815955,
1727816015,
60,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 269 confidence 0.005 feature_proportion 0.02276571895927191 n_clusters 3",
269,
0.005,
0.02276571895927191,
3,
0.8483309386173021,
0,
"None",
"i7181",
56,
0.0001719740256847217
],
[
1727815955,
1727816021,
66,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 129 confidence 0.005 feature_proportion 0.12412807084619999 n_clusters 4",
129,
0.005,
0.12412807084619999,
4,
0.8507367928626324,
0,
"None",
"i7181",
63,
0.00010388314535667157
],
[
1727815972,
1727816067,
95,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 916 confidence 0.05 feature_proportion 0.003580087795853615 n_clusters 3",
916,
0.05,
0.003580087795853615,
3,
0.8431516690613827,
0,
"None",
"i7174",
33,
0.000583139402653985
],
[
1727815972,
1727816070,
98,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 856 confidence 0.005 feature_proportion 0.15027457643300296 n_clusters 2",
856,
0.005,
0.15027457643300296,
2,
0.8443880108263441,
0,
"None",
"i7174",
36,
0.0005432574102358752
],
[
1727815972,
1727816070,
98,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 701 confidence 0.01 feature_proportion 0.05351840760558844 n_clusters 2",
701,
0.01,
0.05351840760558844,
2,
0.8432184983459752,
0,
"None",
"i7174",
37,
0.00047396032099160596
],
[
1727815972,
1727816084,
112,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 187 confidence 0.01 feature_proportion 0.16814300864934922 n_clusters 4",
187,
0.01,
0.16814300864934922,
4,
0.8480970361212283,
0,
"None",
"i7174",
50,
0.00014755004969020113
],
[
1727816177,
1727816182,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0 n_clusters 1",
1000,
0.1,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816196,
1727816200,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0 n_clusters 1",
100,
0.001,
0,
1,
"None",
1,
"None",
"i7181"
],
[
1727816195,
1727816200,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1",
1000,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816196,
1727816200,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 543 confidence 0.25 feature_proportion 0 n_clusters 1",
543,
0.25,
0,
1,
"None",
1,
"None",
"i7181"
],
[
1727816157,
1727816219,
62,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 281 confidence 0.001 feature_proportion 0.09551193168815818 n_clusters 1",
281,
0.001,
0.09551193168815818,
1,
0.8420489858656063,
0,
"None",
"i7186",
58,
0.0003196667446341654
],
[
1727816217,
1727816220,
3,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.1 feature_proportion 0 n_clusters 1",
100,
0.1,
0,
1,
"None",
1,
"None",
"i7181"
],
[
1727816165,
1727816220,
55,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0.11612112022929451 n_clusters 1",
100,
0.001,
0.11612112022929451,
1,
0.8504360610819661,
0,
"None",
"i7186",
52,
7.654559901907879e-5
],
[
1727816165,
1727816222,
57,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 462 confidence 0.001 feature_proportion 0.16850043737580356 n_clusters 1",
462,
0.001,
0.16850043737580356,
1,
0.8439202058341966,
0,
"None",
"i7186",
53,
0.00036827201509488677
],
[
1727816177,
1727816232,
55,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0.19627738168231965 n_clusters 1",
100,
0.001,
0.19627738168231965,
1,
0.8504360610819661,
0,
"None",
"i7186",
52,
7.654559901907879e-5
],
[
1727816177,
1727816233,
56,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0.049297150296263165 n_clusters 1",
100,
0.001,
0.049297150296263165,
1,
0.8504360610819661,
0,
"None",
"i7186",
52,
7.654559901907879e-5
],
[
1727816177,
1727816233,
56,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 514 confidence 0.001 feature_proportion 0.11128368029167933 n_clusters 1",
514,
0.001,
0.11128368029167933,
1,
0.8461255722257494,
0,
"None",
"i7186",
53,
0.0003512422864629512
],
[
1727816196,
1727816239,
43,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0.08267855500439575 n_clusters 1",
1000,
0.025,
0.08267855500439575,
1,
0.8424833762154575,
0,
"None",
"i7181",
39,
0.0006694862260070939
],
[
1727816196,
1727816241,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0.2 n_clusters 1",
1000,
0.05,
0.2,
1,
0.836101179536873,
0,
"None",
"i7181",
41,
0.0009306596669178957
],
[
1727816195,
1727816249,
54,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.07833381608249292 n_clusters 1",
1000,
0.001,
0.07833381608249292,
1,
0.8381728873592408,
0,
"None",
"i7186",
50,
0.0009222441273766169
],
[
1727816196,
1727816250,
54,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 411 confidence 0.001 feature_proportion 0.2 n_clusters 1",
411,
0.001,
0.2,
1,
0.8444548401109366,
0,
"None",
"i7181",
50,
0.0003106324154207338
],
[
1727816255,
1727816258,
3,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0 n_clusters 1",
100,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816255,
1727816259,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 626 confidence 0.25 feature_proportion 0 n_clusters 1",
626,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816255,
1727816260,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 2",
1000,
0.25,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727816217,
1727816260,
43,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 917 confidence 0.1 feature_proportion 0.03949185760248896 n_clusters 1",
917,
0.1,
0.03949185760248896,
1,
0.8446219133224179,
0,
"None",
"i7181",
40,
0.0005357121684270438
],
[
1727816217,
1727816261,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.11672498672577987 n_clusters 1",
1000,
0.25,
0.11672498672577987,
1,
0.8428843519230127,
0,
"None",
"i7181",
40,
0.0006551656650229844
],
[
1727816217,
1727816264,
47,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.02269305588943215 n_clusters 2",
1000,
0.001,
0.02269305588943215,
2,
0.8404116683930898,
0,
"None",
"i7181",
44,
0.000771011931502459
],
[
1727816217,
1727816271,
54,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 491 confidence 0.001 feature_proportion 0.13485135930024184 n_clusters 1",
491,
0.001,
0.13485135930024184,
1,
0.8465599625756006,
0,
"None",
"i7181",
50,
0.0003333869992739911
],
[
1727816217,
1727816282,
65,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0.2 n_clusters 2",
100,
0.001,
0.2,
2,
0.8452902061683429,
0,
"None",
"i7186",
62,
0.00019203354669052126
],
[
1727816255,
1727816312,
57,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 391 confidence 0.001 feature_proportion 0.08853055438654445 n_clusters 1",
391,
0.001,
0.08853055438654445,
1,
0.8422494737193839,
0,
"None",
"i7186",
53,
0.00036499070815908464
],
[
1727816357,
1727816362,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1",
1000,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816337,
1727816388,
51,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 988 confidence 0.05 feature_proportion 0.2 n_clusters 2",
988,
0.05,
0.2,
2,
0.8368363016673906,
0,
"None",
"i7186",
47,
0.0009034329213431697
],
[
1727816337,
1727816392,
55,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 236 confidence 0.005 feature_proportion 0.1635119830934014 n_clusters 1",
236,
0.005,
0.1635119830934014,
1,
0.8501353293012999,
0,
"None",
"i7186",
51,
0.00014407352262800507
],
[
1727816345,
1727816395,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.1501880580504702 n_clusters 2",
1000,
0.001,
0.1501880580504702,
2,
0.8406121562468674,
0,
"None",
"i7186",
46,
0.0007635864554366239
],
[
1727816345,
1727816397,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 947 confidence 0.001 feature_proportion 0.044674076127555 n_clusters 1",
947,
0.001,
0.044674076127555,
1,
0.8431182544190865,
0,
"None",
"i7186",
48,
0.0006707680046136958
],
[
1727816357,
1727816402,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0.2 n_clusters 1",
1000,
0.025,
0.2,
1,
0.8424833762154575,
0,
"None",
"i7186",
41,
0.0006694862260070939
],
[
1727816357,
1727816403,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 938 confidence 0.05 feature_proportion 0.2 n_clusters 1",
938,
0.05,
0.2,
1,
0.8438867911919004,
0,
"None",
"i7186",
42,
0.0005780733117251978
],
[
1727816357,
1727816403,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0.2 n_clusters 1",
1000,
0.1,
0.2,
1,
0.8379723995054633,
0,
"None",
"i7186",
43,
0.0008305925370783193
],
[
1727816375,
1727816418,
43,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 948 confidence 0.1 feature_proportion 0.2 n_clusters 1",
948,
0.1,
0.2,
1,
0.8470945968523407,
0,
"None",
"i7181",
40,
0.00047114645637718423
],
[
1727816375,
1727816418,
43,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0.16126736224773225 n_clusters 1",
1000,
0.1,
0.16126736224773225,
1,
0.8379723995054633,
0,
"None",
"i7181",
40,
0.0008305925370783193
],
[
1727816375,
1727816437,
62,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 239 confidence 0.001 feature_proportion 0.19668151083408222 n_clusters 2",
239,
0.001,
0.19668151083408222,
2,
0.8423497176462726,
0,
"None",
"i7186",
59,
0.0003094962770062892
],
[
1727816435,
1727816440,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1",
1000,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816457,
1727816462,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1",
1000,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816465,
1727816469,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 922 confidence 0.001 feature_proportion 0 n_clusters 1",
922,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816477,
1727816481,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 680 confidence 0.01 feature_proportion 0 n_clusters 1",
680,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816457,
1727816504,
47,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0.1223060061763852 n_clusters 3",
1000,
0.01,
0.1223060061763852,
3,
0.8419487419387175,
0,
"None",
"i7186",
43,
0.0006885803073192387
],
[
1727816457,
1727816509,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.2 n_clusters 3",
1000,
0.001,
0.2,
3,
0.8380392287900558,
0,
"None",
"i7186",
48,
0.0008588800649481643
],
[
1727816457,
1727816512,
55,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.16475126979809132 n_clusters 1",
1000,
0.001,
0.16475126979809132,
1,
0.8381728873592408,
0,
"None",
"i7186",
51,
0.0009222441273766169
],
[
1727816457,
1727816512,
55,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 219 confidence 0.005 feature_proportion 0.09316471156132938 n_clusters 1",
219,
0.005,
0.09316471156132938,
1,
0.8492999632438935,
0,
"None",
"i7186",
51,
0.00014727194197237963
],
[
1727816465,
1727816517,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 929 confidence 0.001 feature_proportion 0.0018043142108126386 n_clusters 1",
929,
0.001,
0.0018043142108126386,
1,
0.8414141076619774,
0,
"None",
"i7186",
48,
0.0007338845511732875
],
[
1727816477,
1727816527,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0.19996337691134797 n_clusters 3",
1000,
0.005,
0.19996337691134797,
3,
0.8405119123199787,
0,
"None",
"i7186",
46,
0.0007672991934695409
],
[
1727816555,
1727816599,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0.2 n_clusters 3",
1000,
0.1,
0.2,
3,
0.8427172787115313,
0,
"None",
"i7186",
41,
0.0006611325654330295
],
[
1727816597,
1727816601,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 759 confidence 0.001 feature_proportion 0 n_clusters 1",
759,
0.001,
0,
1,
"None",
1,
"None",
"i7181"
],
[
1727816555,
1727816601,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0.1369856692489439 n_clusters 2",
1000,
0.05,
0.1369856692489439,
2,
0.8448224011761954,
0,
"None",
"i7186",
42,
0.0005859496202664576
],
[
1727816615,
1727816620,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 798 confidence 0.001 feature_proportion 0 n_clusters 2",
798,
0.001,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727816577,
1727816622,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.2 n_clusters 2",
1000,
0.25,
0.2,
2,
0.8408126441006449,
0,
"None",
"i7186",
41,
0.0007291552301075473
],
[
1727816577,
1727816623,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0.1963873551963688 n_clusters 2",
1000,
0.025,
0.1963873551963688,
2,
0.8415143515888662,
0,
"None",
"i7186",
43,
0.0007040942483853573
],
[
1727816577,
1727816624,
47,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0.036178118103656724 n_clusters 2",
1000,
0.01,
0.036178118103656724,
2,
0.8398770341163497,
0,
"None",
"i7186",
43,
0.0007625698724038016
],
[
1727816577,
1727816625,
48,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0.12052513506686727 n_clusters 2",
1000,
0.01,
0.12052513506686727,
2,
0.8398770341163497,
0,
"None",
"i7186",
44,
0.0007625698724038016
],
[
1727816585,
1727816631,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0.2 n_clusters 3",
1000,
0.025,
0.2,
3,
0.84148093694657,
0,
"None",
"i7186",
42,
0.0007052876284673663
],
[
1727816585,
1727816636,
51,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.041099193598007594 n_clusters 3",
1000,
0.001,
0.041099193598007594,
3,
0.8376716677247971,
0,
"None",
"i7186",
46,
0.0008724934377355268
],
[
1727816597,
1727816638,
41,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.15610464076102415 n_clusters 3",
1000,
0.25,
0.15610464076102415,
3,
0.8408126441006449,
0,
"None",
"i7181",
38,
0.0007291552301075473
],
[
1727816597,
1727816639,
42,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0.1379134962876573 n_clusters 3",
1000,
0.05,
0.1379134962876573,
3,
0.8425502055000501,
0,
"None",
"i7181",
39,
0.0006670994658430758
],
[
1727816615,
1727816660,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0.1323360886543434 n_clusters 2",
1000,
0.1,
0.1323360886543434,
2,
0.8426838640692351,
0,
"None",
"i7186",
41,
0.0006623259455150386
],
[
1727816697,
1727816701,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 643 confidence 0.05 feature_proportion 0 n_clusters 1",
643,
0.05,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816697,
1727816701,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 613 confidence 0.001 feature_proportion 0 n_clusters 1",
613,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816705,
1727816710,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 1",
1000,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816675,
1727816726,
51,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.2 n_clusters 2",
1000,
0.001,
0.2,
2,
0.8404116683930898,
0,
"None",
"i7186",
47,
0.000771011931502459
],
[
1727816675,
1727816729,
54,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.2 n_clusters 1",
1000,
0.001,
0.2,
1,
0.8381728873592408,
0,
"None",
"i7186",
50,
0.0009222441273766169
],
[
1727816697,
1727816743,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0.2 n_clusters 4",
1000,
0.025,
0.2,
4,
0.8422160590770875,
0,
"None",
"i7186",
43,
0.0006790332666631663
],
[
1727816697,
1727816747,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.09513666564627465 n_clusters 2",
1000,
0.001,
0.09513666564627465,
2,
0.8406121562468674,
0,
"None",
"i7186",
46,
0.0007635864554366239
],
[
1727816705,
1727816762,
57,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 853 confidence 0.001 feature_proportion 0.2 n_clusters 2",
853,
0.001,
0.2,
2,
0.8421492297924951,
0,
"None",
"i7186",
53,
0.0006814200268271843
],
[
1727816717,
1727816765,
48,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0.12548046487588335 n_clusters 1",
1000,
0.005,
0.12548046487588335,
1,
0.8395428876933873,
0,
"None",
"i7186",
44,
0.0008031889944544067
],
[
1727816717,
1727816771,
54,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.12072801849173041 n_clusters 1",
1000,
0.001,
0.12072801849173041,
1,
0.8381728873592408,
0,
"None",
"i7186",
50,
0.0009222441273766169
],
[
1727816795,
1727816800,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727816818,
1727816822,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 736 confidence 0.001 feature_proportion 0 n_clusters 1",
736,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816825,
1727816830,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 742 confidence 0.025 feature_proportion 0 n_clusters 1",
742,
0.025,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816837,
1727816842,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 2",
1000,
0.005,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727816837,
1727816842,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 3",
1000,
0.005,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727816855,
1727816860,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 639 confidence 0.001 feature_proportion 0 n_clusters 1",
639,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727816856,
1727816860,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3",
1000,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727816817,
1727816869,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.1115854371771547 n_clusters 3",
1000,
0.001,
0.1115854371771547,
3,
0.8391084973435359,
0,
"None",
"i7186",
49,
0.0008192775259303815
],
[
1727816825,
1727816876,
51,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.10282948513171702 n_clusters 4",
1000,
0.001,
0.10282948513171702,
4,
0.84094630266983,
0,
"None",
"i7186",
47,
0.000751210661993567
],
[
1727816877,
1727816882,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 4",
1000,
0.005,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727816856,
1727816904,
48,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.2 n_clusters 4",
1000,
0.001,
0.2,
4,
0.8406121562468674,
0,
"None",
"i7186",
44,
0.0007363155105996015
],
[
1727816877,
1727816921,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0.12158483841041826 n_clusters 4",
1000,
0.025,
0.12158483841041826,
4,
0.8419153272964213,
0,
"None",
"i7186",
40,
0.0006897736874012477
],
[
1727816877,
1727816928,
51,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.1574084644262125 n_clusters 4",
1000,
0.001,
0.1574084644262125,
4,
0.8368697163096869,
0,
"None",
"i7186",
47,
0.0009021953419988641
],
[
1727817177,
1727817182,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 987 confidence 0.001 feature_proportion 0 n_clusters 3",
987,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727817156,
1727817201,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 978 confidence 0.025 feature_proportion 0.2 n_clusters 2",
978,
0.025,
0.2,
2,
0.8422828883616801,
0,
"None",
"i7186",
41,
0.0006533138683440051
],
[
1727817156,
1727817201,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 977 confidence 0.05 feature_proportion 0.2 n_clusters 2",
977,
0.05,
0.2,
2,
0.8424165469308651,
0,
"None",
"i7186",
41,
0.0006487049521652115
],
[
1727817197,
1727817202,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727817156,
1727817203,
47,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 990 confidence 0.05 feature_proportion 0.2 n_clusters 1",
990,
0.05,
0.2,
1,
0.8373375213018345,
0,
"None",
"i7186",
43,
0.0008532667586364913
],
[
1727817177,
1727817221,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 977 confidence 0.05 feature_proportion 0.2 n_clusters 3",
977,
0.05,
0.2,
3,
0.841881912654125,
0,
"None",
"i7186",
41,
0.0006671406168803858
],
[
1727817177,
1727817229,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 985 confidence 0.001 feature_proportion 0.2 n_clusters 4",
985,
0.001,
0.2,
4,
0.8467270357870819,
0,
"None",
"i7186",
49,
0.0005371094354286794
],
[
1727817186,
1727817231,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 987 confidence 0.05 feature_proportion 0.2 n_clusters 1",
987,
0.05,
0.2,
1,
0.8376716677247971,
0,
"None",
"i7181",
41,
0.0008413329578164008
],
[
1727817186,
1727817231,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 974 confidence 0.01 feature_proportion 0.03512273115161019 n_clusters 2",
974,
0.01,
0.03512273115161019,
2,
0.8452567915260467,
0,
"None",
"i7181",
41,
0.00057043567920034
],
[
1727817216,
1727817262,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 978 confidence 0.1 feature_proportion 0.2 n_clusters 2",
978,
0.1,
0.2,
2,
0.8399772780432385,
0,
"None",
"i7186",
41,
0.000732817672428196
],
[
1727817216,
1727817266,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 974 confidence 0.025 feature_proportion 0.11283049260427598 n_clusters 3",
974,
0.025,
0.11283049260427598,
3,
0.8444882547532329,
0,
"None",
"i7186",
46,
0.000597883421086549
],
[
1727817216,
1727817270,
54,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 981 confidence 0.001 feature_proportion 0.2 n_clusters 3",
981,
0.001,
0.2,
3,
0.8447555718916029,
0,
"None",
"i7186",
50,
0.0006101266167427155
],
[
1727817237,
1727817285,
48,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 677 confidence 0.01 feature_proportion 0.06488547641539323 n_clusters 1",
677,
0.01,
0.06488547641539323,
1,
0.8470611822100444,
0,
"None",
"i7186",
44,
0.0003541952083402945
],
[
1727817237,
1727817287,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 973 confidence 0.005 feature_proportion 0.2 n_clusters 3",
973,
0.005,
0.2,
3,
0.8498680121629298,
0,
"None",
"i7186",
46,
0.0004057492278830873
],
[
1727817237,
1727817287,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 670 confidence 0.01 feature_proportion 0.06546716895860114 n_clusters 2",
670,
0.01,
0.06546716895860114,
2,
0.8525077689043339,
0,
"None",
"i7186",
46,
0.00021803054098305867
],
[
1727817437,
1727817442,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 4",
1000,
0.005,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727817426,
1727817477,
51,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 899 confidence 0.001 feature_proportion 0.14519936659428412 n_clusters 1",
899,
0.001,
0.14519936659428412,
1,
0.8371704480903532,
0,
"None",
"i7186",
48,
0.0008592336590465375
],
[
1727817417,
1727817478,
61,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 202 confidence 0.001 feature_proportion 0.2 n_clusters 1",
202,
0.001,
0.2,
1,
0.84201557122331,
0,
"None",
"i7186",
57,
0.00032565117492112163
],
[
1727817477,
1727817481,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 573 confidence 0.001 feature_proportion 0 n_clusters 1",
573,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727817477,
1727817482,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 902 confidence 0.005 feature_proportion 0 n_clusters 4",
902,
0.005,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727817478,
1727817482,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 900 confidence 0.01 feature_proportion 0 n_clusters 1",
900,
0.01,
0,
1,
"None",
1,
"None",
"i7181"
],
[
1727817437,
1727817501,
64,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 332 confidence 0.001 feature_proportion 0.10122883141488488 n_clusters 1",
332,
0.001,
0.10122883141488488,
1,
0.8407792294583487,
0,
"None",
"i7186",
60,
0.0004260366892772412
],
[
1727817456,
1727817506,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 889 confidence 0.001 feature_proportion 0.009651100271967951 n_clusters 1",
889,
0.001,
0.009651100271967951,
1,
0.8387743509205734,
0,
"None",
"i7186",
46,
0.0007742979180373391
],
[
1727817456,
1727817506,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 909 confidence 0.01 feature_proportion 0.10431050474143018 n_clusters 1",
909,
0.01,
0.10431050474143018,
1,
0.8428509372807165,
0,
"None",
"i7186",
46,
0.0006337259745841315
],
[
1727817456,
1727817509,
53,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 662 confidence 0.001 feature_proportion 0.08360122259333415 n_clusters 1",
662,
0.001,
0.08360122259333415,
1,
0.8422828883616801,
0,
"None",
"i7186",
49,
0.0005120568157290851
],
[
1727817478,
1727817528,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 680 confidence 0.005 feature_proportion 0.2 n_clusters 1",
680,
0.005,
0.2,
1,
0.8515721589200388,
0,
"None",
"i7181",
47,
0.0002691233352509121
],
[
1727817486,
1727817537,
51,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 920 confidence 0.005 feature_proportion 0.2 n_clusters 1",
920,
0.005,
0.2,
1,
0.8385404484244996,
0,
"None",
"i7186",
47,
0.0008103050756841645
],
[
1727817497,
1727817557,
60,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 319 confidence 0.001 feature_proportion 0.2 n_clusters 1",
319,
0.001,
0.2,
1,
0.8459250843719718,
0,
"None",
"i7186",
57,
0.00028875294663555513
],
[
1727817606,
1727817611,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727817636,
1727817641,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4",
1000,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727817657,
1727817661,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 682 confidence 0.001 feature_proportion 0 n_clusters 1",
682,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727817657,
1727817662,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 4",
1000,
0.01,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727817617,
1727817669,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.05053629782683701 n_clusters 4",
1000,
0.001,
0.05053629782683701,
4,
0.8386072777090922,
0,
"None",
"i7186",
48,
0.0008378412160949667
],
[
1727817666,
1727817670,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 653 confidence 0.25 feature_proportion 0 n_clusters 1",
653,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727817636,
1727817680,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.2 n_clusters 4",
1000,
0.25,
0.2,
4,
0.8408126441006449,
0,
"None",
"i7186",
40,
0.0007291552301075473
],
[
1727817637,
1727817682,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.08261099142406714 n_clusters 4",
1000,
0.25,
0.08261099142406714,
4,
0.8408126441006449,
0,
"None",
"i7186",
41,
0.0007291552301075473
],
[
1727817696,
1727817700,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 412 confidence 0.001 feature_proportion 0 n_clusters 1",
412,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727817666,
1727817711,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.2 n_clusters 1",
1000,
0.25,
0.2,
1,
0.8428843519230127,
0,
"None",
"i7186",
40,
0.0006551656650229844
],
[
1727817677,
1727817722,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.2 n_clusters 4",
1000,
0.25,
0.2,
4,
0.8408126441006449,
0,
"None",
"i7186",
41,
0.0007291552301075473
],
[
1727817696,
1727817745,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 800 confidence 0.001 feature_proportion 0.03189540252221679 n_clusters 1",
800,
0.001,
0.03189540252221679,
1,
0.8455241086644167,
0,
"None",
"i7186",
44,
0.00047590551149210577
],
[
1727817832,
1727817837,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727817846,
1727817851,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 648 confidence 0.001 feature_proportion 0 n_clusters 1",
648,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727817872,
1727817877,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 744 confidence 0.001 feature_proportion 0 n_clusters 1",
744,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727817872,
1727817877,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 944 confidence 0.001 feature_proportion 0 n_clusters 3",
944,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727817872,
1727817877,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727817892,
1727817897,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1",
1000,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727817908,
1727817912,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 483 confidence 0.001 feature_proportion 0 n_clusters 1",
483,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727817908,
1727817913,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 4",
1000,
0.01,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727817892,
1727817936,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 827 confidence 0.25 feature_proportion 0.2 n_clusters 4",
827,
0.25,
0.2,
4,
0.8433855715574565,
0,
"None",
"i7186",
40,
0.0005098119710342789
],
[
1727817932,
1727817936,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 421 confidence 0.001 feature_proportion 0 n_clusters 1",
421,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727817932,
1727817937,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3",
1000,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727817932,
1727817937,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727817952,
1727817956,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 679 confidence 0.25 feature_proportion 0 n_clusters 1",
679,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727817952,
1727817957,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 852 confidence 0.001 feature_proportion 0 n_clusters 2",
852,
0.001,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727817967,
1727817971,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 490 confidence 0.25 feature_proportion 0 n_clusters 1",
490,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818130,
1727818135,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727818147,
1727818151,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 419 confidence 0.001 feature_proportion 0 n_clusters 1",
419,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818150,
1727818155,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1",
1000,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818170,
1727818175,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 4",
1000,
0.01,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727818190,
1727818195,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818207,
1727818211,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 454 confidence 0.001 feature_proportion 0 n_clusters 2",
454,
0.001,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727818207,
1727818211,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4",
1000,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727818170,
1727818222,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.07966885079429797 n_clusters 3",
1000,
0.001,
0.07966885079429797,
3,
0.8386741069936846,
0,
"None",
"i7186",
48,
0.0008353660574063553
],
[
1727818177,
1727818222,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0.031497912163918916 n_clusters 4",
1000,
0.005,
0.031497912163918916,
4,
0.8432184983459752,
0,
"None",
"i7186",
42,
0.0006432318642028938
],
[
1727818230,
1727818235,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 3",
1000,
0.005,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727818230,
1727818235,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 965 confidence 0.025 feature_proportion 0 n_clusters 3",
965,
0.025,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727818250,
1727818255,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0 n_clusters 4",
1000,
0.025,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727818267,
1727818272,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 4",
1000,
0.01,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727818267,
1727818272,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3",
1000,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727818270,
1727818275,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 4",
1000,
0.005,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727818230,
1727818277,
47,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.14074375307389367 n_clusters 4",
1000,
0.25,
0.14074375307389367,
4,
0.8408126441006449,
0,
"None",
"i7186",
42,
0.0007291552301075473
],
[
1727818290,
1727818335,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0.07257091015662046 n_clusters 4",
1000,
0.01,
0.07257091015662046,
4,
0.843719717980419,
0,
"None",
"i7186",
41,
0.0006253311629727572
],
[
1727818297,
1727818345,
48,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0.2 n_clusters 1",
1000,
0.01,
0.2,
1,
0.8426838640692351,
0,
"None",
"i7186",
44,
0.0006868565360896696
],
[
1727818447,
1727818452,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1",
1000,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818470,
1727818474,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 421 confidence 0.001 feature_proportion 0 n_clusters 1",
421,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818470,
1727818475,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727818477,
1727818480,
3,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.25 feature_proportion 0 n_clusters 1",
100,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818490,
1727818495,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3",
1000,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727818507,
1727818511,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 510 confidence 0.001 feature_proportion 0 n_clusters 1",
510,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818507,
1727818512,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 640 confidence 0.25 feature_proportion 0 n_clusters 1",
640,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818530,
1727818535,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4",
1000,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727818537,
1727818542,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727818567,
1727818571,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 224 confidence 0.25 feature_proportion 0 n_clusters 1",
224,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818567,
1727818571,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 465 confidence 0.25 feature_proportion 0 n_clusters 1",
465,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818530,
1727818585,
55,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.14527729381330234 n_clusters 1",
1000,
0.001,
0.14527729381330234,
1,
0.8381728873592408,
0,
"None",
"i7186",
51,
0.0009222441273766169
],
[
1727818590,
1727818596,
6,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818550,
1727818599,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.07981465359724418 n_clusters 2",
1000,
0.001,
0.07981465359724418,
2,
0.8406121562468674,
0,
"None",
"i7186",
45,
0.0007635864554366239
],
[
1727818597,
1727818601,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 246 confidence 0.25 feature_proportion 0 n_clusters 1",
246,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818590,
1727818642,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.05863839544982872 n_clusters 4",
1000,
0.001,
0.05863839544982872,
4,
0.84174825408494,
0,
"None",
"i7186",
48,
0.0007215087577302297
],
[
1727818777,
1727818781,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 408 confidence 0.001 feature_proportion 0 n_clusters 1",
408,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818790,
1727818795,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727818807,
1727818812,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4",
1000,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727818810,
1727818814,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 670 confidence 0.25 feature_proportion 0 n_clusters 1",
670,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818830,
1727818834,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 455 confidence 0.001 feature_proportion 0 n_clusters 1",
455,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818837,
1727818842,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1",
1000,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818850,
1727818854,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 559 confidence 0.001 feature_proportion 0 n_clusters 1",
559,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818867,
1727818872,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 3",
1000,
0.25,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727818867,
1727818872,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818890,
1727818894,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 424 confidence 0.001 feature_proportion 0 n_clusters 1",
424,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818890,
1727818895,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3",
1000,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727818897,
1727818900,
3,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.25 feature_proportion 0 n_clusters 1",
100,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818910,
1727818915,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 2",
1000,
0.25,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727818927,
1727818932,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 1",
1000,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818950,
1727818954,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 353 confidence 0.001 feature_proportion 0 n_clusters 1",
353,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818958,
1727818962,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 407 confidence 0.25 feature_proportion 0 n_clusters 1",
407,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727818950,
1727818997,
47,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 356 confidence 0.25 feature_proportion 0.010170518095815836 n_clusters 1",
356,
0.25,
0.010170518095815836,
1,
0.8585224045176596,
0,
"None",
"i7186",
43,
3.5150467870085774e-5
],
[
1727819138,
1727819143,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 403 confidence 0.001 feature_proportion 0 n_clusters 1",
403,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727819144,
1727819149,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727819164,
1727819168,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 416 confidence 0.001 feature_proportion 0 n_clusters 1",
416,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727819168,
1727819172,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3",
1000,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727819184,
1727819189,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727819198,
1727819202,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 3",
1000,
0.25,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727819204,
1727819209,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4",
1000,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727819224,
1727819229,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0 n_clusters 1",
1000,
0.05,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727819228,
1727819232,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 719 confidence 0.25 feature_proportion 0 n_clusters 1",
719,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727819258,
1727819262,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 806 confidence 0.25 feature_proportion 0 n_clusters 1",
806,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727819264,
1727819269,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 2",
1000,
0.001,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727819244,
1727819290,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 812 confidence 0.25 feature_proportion 0.2 n_clusters 1",
812,
0.25,
0.2,
1,
0.8466267918601931,
0,
"None",
"i7186",
42,
0.00042947643186656186
],
[
1727819287,
1727819331,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 742 confidence 0.25 feature_proportion 0.14838231820844722 n_clusters 1",
742,
0.25,
0.14838231820844722,
1,
0.845423864737528,
0,
"None",
"i7186",
40,
0.00040525963605457055
],
[
1727819284,
1727819334,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 551 confidence 0.01 feature_proportion 0.021834769656869646 n_clusters 1",
551,
0.01,
0.021834769656869646,
1,
0.8461255722257494,
0,
"None",
"i7186",
46,
0.0003283351808240631
],
[
1727819558,
1727819615,
57,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 911 confidence 0.001 feature_proportion 0.19036303336125326 n_clusters 1",
911,
0.001,
0.19036303336125326,
1,
0.8399772780432385,
0,
"None",
"i7186",
51,
0.0008173735577083725
],
[
1727819582,
1727819632,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 888 confidence 0.001 feature_proportion 0.2 n_clusters 1",
888,
0.001,
0.2,
1,
0.8426838640692351,
0,
"None",
"i7186",
46,
0.0006394871198076235
],
[
1727819582,
1727819632,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 904 confidence 0.001 feature_proportion 0.07208943729390992 n_clusters 2",
904,
0.001,
0.07208943729390992,
2,
0.8402780098239049,
0,
"None",
"i7186",
46,
0.0007224476110259105
],
[
1727819588,
1727819639,
51,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 904 confidence 0.001 feature_proportion 0.049333454538326924 n_clusters 1",
904,
0.001,
0.049333454538326924,
1,
0.8394426437664985,
0,
"None",
"i7186",
48,
0.0007780838134699193
],
[
1727819602,
1727819662,
60,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 893 confidence 0.001 feature_proportion 0.2 n_clusters 2",
893,
0.001,
0.2,
2,
0.8427841079961239,
0,
"None",
"i7186",
56,
0.0007094185595204739
],
[
1727819618,
1727819670,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 915 confidence 0.001 feature_proportion 0.2 n_clusters 2",
915,
0.001,
0.2,
2,
0.8384402044976109,
0,
"None",
"i7186",
49,
0.0008138852159301917
],
[
1727819618,
1727819679,
61,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 354 confidence 0.001 feature_proportion 0.022174112886802592 n_clusters 1",
354,
0.001,
0.022174112886802592,
1,
0.8404450830353861,
0,
"None",
"i7186",
57,
0.0004156781501654028
],
[
1727819642,
1727819695,
53,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 988 confidence 0.001 feature_proportion 0.14267271014325486 n_clusters 1",
988,
0.001,
0.14267271014325486,
1,
0.8405119123199787,
0,
"None",
"i7186",
49,
0.0008286831289471042
],
[
1727819642,
1727819704,
62,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 355 confidence 0.001 feature_proportion 0.2 n_clusters 1",
355,
0.001,
0.2,
1,
0.8425836201423464,
0,
"None",
"i7186",
57,
0.00036559549806489887
],
[
1727819678,
1727819722,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 981 confidence 0.25 feature_proportion 0.2 n_clusters 3",
981,
0.25,
0.2,
3,
0.8425836201423464,
0,
"None",
"i7186",
41,
0.0006429438069417186
],
[
1727819662,
1727819725,
63,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 349 confidence 0.001 feature_proportion 0.015762747529365115 n_clusters 2",
349,
0.001,
0.015762747529365115,
2,
0.8501353293012999,
0,
"None",
"i7186",
59,
0.00019810109361350695
],
[
1727819682,
1727819732,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 901 confidence 0.005 feature_proportion 0.09105469557596428 n_clusters 2",
901,
0.005,
0.09105469557596428,
2,
0.8396097169779797,
0,
"None",
"i7186",
46,
0.0007454921919198784
],
[
1727819702,
1727819760,
58,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 353 confidence 0.005 feature_proportion 0.1403996769284899 n_clusters 1",
353,
0.005,
0.1403996769284899,
1,
0.8479299629097471,
0,
"None",
"i7186",
55,
0.0002509250496963994
],
[
1727819942,
1727819946,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 333 confidence 0.001 feature_proportion 0 n_clusters 3",
333,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727819948,
1727819952,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 358 confidence 0.001 feature_proportion 0 n_clusters 3",
358,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727819902,
1727819959,
57,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 930 confidence 0.001 feature_proportion 0.2 n_clusters 1",
930,
0.001,
0.2,
1,
0.8402780098239049,
0,
"None",
"i7186",
48,
0.0007759622488796817
],
[
1727819962,
1727819967,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1",
1000,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727819978,
1727819983,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 869 confidence 0.001 feature_proportion 0 n_clusters 1",
869,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727819942,
1727819991,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 921 confidence 0.005 feature_proportion 0.2 n_clusters 3",
921,
0.005,
0.2,
3,
0.8443211815417516,
0,
"None",
"i7186",
45,
0.0005830278966174014
],
[
1727820022,
1727820027,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 713 confidence 0.025 feature_proportion 0 n_clusters 1",
713,
0.025,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820002,
1727820047,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 974 confidence 0.25 feature_proportion 0.12757654327715476 n_clusters 4",
974,
0.25,
0.12757654327715476,
4,
0.8421826444347913,
0,
"None",
"i7186",
41,
0.0006567705554781004
],
[
1727820002,
1727820055,
53,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 920 confidence 0.001 feature_proportion 0.1448081636746829 n_clusters 1",
920,
0.001,
0.1448081636746829,
1,
0.8411467905236074,
0,
"None",
"i7186",
48,
0.000743785185927733
],
[
1727820038,
1727820083,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 899 confidence 0.025 feature_proportion 0.2 n_clusters 4",
899,
0.025,
0.2,
4,
0.843185083703679,
0,
"None",
"i7186",
40,
0.00056387208874929
],
[
1727820022,
1727820098,
76,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 348 confidence 0.001 feature_proportion 0.05548183867963616 n_clusters 4",
348,
0.001,
0.05548183867963616,
4,
0.8427841079961239,
0,
"None",
"i7186",
72,
0.00035470927976023693
],
[
1727820202,
1727820210,
8,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 644 confidence 0.001 feature_proportion 0 n_clusters 1",
644,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820218,
1727820223,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820242,
1727820247,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727820278,
1727820283,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4",
1000,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727820282,
1727820287,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4",
1000,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727820248,
1727820297,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.12094839453286924 n_clusters 2",
1000,
0.001,
0.12094839453286924,
2,
0.8404116683930898,
0,
"None",
"i7186",
45,
0.000771011931502459
],
[
1727820302,
1727820307,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0 n_clusters 4",
1000,
0.05,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727820262,
1727820307,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 690 confidence 0.25 feature_proportion 0.2 n_clusters 4",
690,
0.25,
0.2,
4,
0.8453236208106392,
0,
"None",
"i7186",
41,
0.00037869927935754786
],
[
1727820322,
1727820327,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1",
1000,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820338,
1727820344,
6,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 717 confidence 0.001 feature_proportion 0 n_clusters 1",
717,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820342,
1727820347,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 924 confidence 0.005 feature_proportion 0 n_clusters 1",
924,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820362,
1727820367,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 832 confidence 0.025 feature_proportion 0 n_clusters 1",
832,
0.025,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820562,
1727820572,
10,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4",
1000,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727820578,
1727820584,
6,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0 n_clusters 4",
1000,
0.1,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727820602,
1727820608,
6,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727820608,
1727820613,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 953 confidence 0.001 feature_proportion 0 n_clusters 3",
953,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727820622,
1727820629,
7,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820663,
1727820667,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 523 confidence 0.001 feature_proportion 0 n_clusters 1",
523,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820663,
1727820667,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820639,
1727820683,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.15522572825848885 n_clusters 2",
1000,
0.25,
0.15522572825848885,
2,
0.8408126441006449,
0,
"None",
"i7186",
41,
0.0007291552301075473
],
[
1727820682,
1727820687,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1",
1000,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820699,
1727820703,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4",
1000,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727820723,
1727820727,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 953 confidence 0.001 feature_proportion 0 n_clusters 3",
953,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727820723,
1727820728,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0 n_clusters 4",
1000,
0.05,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727820758,
1727820763,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1",
1000,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820763,
1727820767,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 991 confidence 0.1 feature_proportion 0 n_clusters 3",
991,
0.1,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727820743,
1727820787,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 901 confidence 0.05 feature_proportion 0.007906343953206009 n_clusters 3",
901,
0.05,
0.007906343953206009,
3,
0.8440204497610853,
0,
"None",
"i7186",
41,
0.0005551142187926103
],
[
1727820957,
1727820962,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727820977,
1727820982,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727820997,
1727821001,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 632 confidence 0.001 feature_proportion 0 n_clusters 1",
632,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821017,
1727821022,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821029,
1727821033,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1",
1000,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821037,
1727821041,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 893 confidence 0.005 feature_proportion 0 n_clusters 1",
893,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821057,
1727821062,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821077,
1727821082,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 863 confidence 0.01 feature_proportion 0 n_clusters 1",
863,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821089,
1727821093,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 506 confidence 0.001 feature_proportion 0 n_clusters 1",
506,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821117,
1727821122,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0 n_clusters 4",
1000,
0.1,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727821137,
1727821141,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 643 confidence 0.001 feature_proportion 0 n_clusters 1",
643,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821137,
1727821142,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4",
1000,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727821157,
1727821161,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 538 confidence 0.001 feature_proportion 0 n_clusters 4",
538,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727821097,
1727821175,
78,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 327 confidence 0.001 feature_proportion 0.2 n_clusters 4",
327,
0.001,
0.2,
4,
0.8533431349617402,
0,
"None",
"i7186",
74,
0.00015165106888299972
],
[
1727821177,
1727821181,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 560 confidence 0.001 feature_proportion 0 n_clusters 1",
560,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821397,
1727821402,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821417,
1727821422,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 2",
1000,
0.001,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727821437,
1727821442,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727821449,
1727821454,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4",
1000,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727821477,
1727821482,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 2",
1000,
0.25,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727821457,
1727821500,
43,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 917 confidence 0.1 feature_proportion 0.03949557657328382 n_clusters 1",
917,
0.1,
0.03949557657328382,
1,
0.8446219133224179,
0,
"None",
"i7186",
40,
0.0005357121684270438
],
[
1727821497,
1727821502,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4",
1000,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727821509,
1727821513,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 452 confidence 0.001 feature_proportion 0 n_clusters 1",
452,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821569,
1727821574,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821537,
1727821582,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0.11748289128760803 n_clusters 3",
1000,
0.25,
0.11748289128760803,
3,
0.8408126441006449,
0,
"None",
"i7186",
41,
0.0007291552301075473
],
[
1727821557,
1727821601,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0.2 n_clusters 4",
1000,
0.1,
0.2,
4,
0.8408126441006449,
0,
"None",
"i7186",
40,
0.0007291552301075473
],
[
1727821597,
1727821602,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821597,
1727821602,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727821557,
1727821617,
60,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 359 confidence 0.001 feature_proportion 0.024196096071949932 n_clusters 1",
359,
0.001,
0.024196096071949932,
1,
0.8437531326227152,
0,
"None",
"i7186",
56,
0.0003495171584188189
],
[
1727821617,
1727821661,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0.1183534086970224 n_clusters 4",
1000,
0.1,
0.1183534086970224,
4,
0.8421826444347913,
0,
"None",
"i7186",
40,
0.0006802266467451753
],
[
1727821982,
1727822027,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 995 confidence 0.05 feature_proportion 0.2 n_clusters 1",
995,
0.05,
0.2,
1,
0.8401109366124235,
0,
"None",
"i7186",
42,
0.0007542162118297383
],
[
1727822042,
1727822047,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 895 confidence 0.001 feature_proportion 0 n_clusters 1",
895,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727822002,
1727822051,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 896 confidence 0.005 feature_proportion 0.013358932732360865 n_clusters 1",
896,
0.005,
0.013358932732360865,
1,
0.8371704480903532,
0,
"None",
"i7186",
45,
0.0008296049121828638
],
[
1727822019,
1727822065,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 913 confidence 0.005 feature_proportion 0.2 n_clusters 2",
913,
0.005,
0.2,
2,
0.8458582550873793,
0,
"None",
"i7186",
42,
0.0005123578485425643
],
[
1727822042,
1727822089,
47,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 929 confidence 0.005 feature_proportion 0.2 n_clusters 1",
929,
0.005,
0.2,
1,
0.8424833762154575,
0,
"None",
"i7186",
43,
0.0006464004940758148
],
[
1727822062,
1727822111,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 932 confidence 0.01 feature_proportion 0.2 n_clusters 1",
932,
0.01,
0.2,
1,
0.8403114244662011,
0,
"None",
"i7186",
45,
0.000747055931337684
],
[
1727822079,
1727822143,
64,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 217 confidence 0.001 feature_proportion 0.2 n_clusters 2",
217,
0.001,
0.2,
2,
0.8380058141477595,
0,
"None",
"i7186",
60,
0.0003686218475539157
],
[
1727822102,
1727822152,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 903 confidence 0.005 feature_proportion 0.2 n_clusters 1",
903,
0.005,
0.2,
1,
0.8388077655628696,
0,
"None",
"i7186",
46,
0.0007731456889926408
],
[
1727822122,
1727822169,
47,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 996 confidence 0.05 feature_proportion 0.2 n_clusters 1",
996,
0.05,
0.2,
1,
0.8416480101580512,
0,
"None",
"i7186",
43,
0.0007052876284673654
],
[
1727822183,
1727822188,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 991 confidence 0.005 feature_proportion 0 n_clusters 1",
991,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727822140,
1727822193,
53,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 924 confidence 0.005 feature_proportion 0.2 n_clusters 2",
924,
0.005,
0.2,
2,
0.84201557122331,
0,
"None",
"i7186",
50,
0.0006861935471552205
],
[
1727822142,
1727822201,
59,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 158 confidence 0.001 feature_proportion 0.008219790664827255 n_clusters 1",
158,
0.001,
0.008219790664827255,
1,
0.8374711798710195,
0,
"None",
"i7186",
55,
0.0003712157917599491
],
[
1727822200,
1727822204,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 987 confidence 0.1 feature_proportion 0 n_clusters 4",
987,
0.1,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727822162,
1727822221,
59,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 165 confidence 0.005 feature_proportion 0.14077700879961694 n_clusters 1",
165,
0.005,
0.14077700879961694,
1,
0.8372706920172419,
0,
"None",
"i7186",
55,
0.0003993049754402377
],
[
1727822222,
1727822266,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 986 confidence 0.1 feature_proportion 0.18493090316194113 n_clusters 4",
986,
0.1,
0.18493090316194113,
4,
0.8430848397767902,
0,
"None",
"i7186",
40,
0.0006256603712712428
],
[
1727822582,
1727822586,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 885 confidence 0.005 feature_proportion 0 n_clusters 1",
885,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727822530,
1727822591,
61,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 164 confidence 0.001 feature_proportion 0.08498038392510072 n_clusters 1",
164,
0.001,
0.08498038392510072,
1,
0.8302870317773248,
0,
"None",
"i7186",
57,
0.0005428413818654633
],
[
1727822602,
1727822607,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 874 confidence 0.001 feature_proportion 0 n_clusters 3",
874,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727822560,
1727822619,
59,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 165 confidence 0.005 feature_proportion 0.029829687685756223 n_clusters 1",
165,
0.005,
0.029829687685756223,
1,
0.8372706920172419,
0,
"None",
"i7186",
56,
0.0003993049754402377
],
[
1727822560,
1727822620,
60,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 159 confidence 0.001 feature_proportion 0.12344012246306418 n_clusters 1",
159,
0.001,
0.12344012246306418,
1,
0.8404450830353861,
0,
"None",
"i7186",
56,
0.0003247485548167209
],
[
1727822642,
1727822646,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 723 confidence 0.025 feature_proportion 0 n_clusters 1",
723,
0.025,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727822590,
1727822650,
60,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 168 confidence 0.001 feature_proportion 0.04069245074370684 n_clusters 1",
168,
0.001,
0.04069245074370684,
1,
0.831356300330805,
0,
"None",
"i7186",
56,
0.0005857390237813975
],
[
1727822620,
1727822680,
60,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 175 confidence 0.001 feature_proportion 0.0023391187483766548 n_clusters 1",
175,
0.001,
0.0023391187483766548,
1,
0.8405119123199787,
0,
"None",
"i7186",
56,
0.0003452846370612934
],
[
1727822680,
1727822685,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 861 confidence 0.001 feature_proportion 0 n_clusters 4",
861,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727822710,
1727822714,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 886 confidence 0.005 feature_proportion 0 n_clusters 2",
886,
0.005,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727822662,
1727822719,
57,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 156 confidence 0.005 feature_proportion 0.08356798208769642 n_clusters 1",
156,
0.005,
0.08356798208769642,
1,
0.8380058141477595,
0,
"None",
"i7186",
53,
0.00032254411660967625
],
[
1727822722,
1727822726,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 716 confidence 0.05 feature_proportion 0 n_clusters 2",
716,
0.05,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727822742,
1727822748,
6,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 730 confidence 0.01 feature_proportion 0 n_clusters 1",
730,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727822702,
1727822764,
62,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 169 confidence 0.001 feature_proportion 0.1003320959588364 n_clusters 1",
169,
0.001,
0.1003320959588364,
1,
0.8286497143048084,
0,
"None",
"i7186",
58,
0.0005923504770699614
],
[
1727822762,
1727822807,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 986 confidence 0.1 feature_proportion 0.2 n_clusters 1",
986,
0.1,
0.2,
1,
0.8422160590770875,
0,
"None",
"i7186",
40,
0.000655618326433402
],
[
1727823023,
1727823037,
14,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 873 confidence 0.001 feature_proportion 0 n_clusters 3",
873,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727823023,
1727823037,
14,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 877 confidence 0.01 feature_proportion 0 n_clusters 1",
877,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823042,
1727823047,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 872 confidence 0.005 feature_proportion 0 n_clusters 2",
872,
0.005,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727823070,
1727823074,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 711 confidence 0.001 feature_proportion 0 n_clusters 1",
711,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823023,
1727823080,
57,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 889 confidence 0.005 feature_proportion 0.00867666029408457 n_clusters 3",
889,
0.005,
0.00867666029408457,
3,
0.8437865472650116,
0,
"None",
"i7186",
43,
0.0005626594606014417
],
[
1727823082,
1727823087,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 863 confidence 0.025 feature_proportion 0 n_clusters 1",
863,
0.025,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823023,
1727823093,
70,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 172 confidence 0.001 feature_proportion 0.08489841448496627 n_clusters 1",
172,
0.001,
0.08489841448496627,
1,
0.8343636181374678,
0,
"None",
"i7186",
56,
0.0004884613164761525
],
[
1727823040,
1727823099,
59,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 172 confidence 0.001 feature_proportion 0.08585201327528408 n_clusters 1",
172,
0.001,
0.08585201327528408,
1,
0.8343636181374678,
0,
"None",
"i7186",
55,
0.0004884613164761525
],
[
1727823122,
1727823127,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 875 confidence 0.001 feature_proportion 0 n_clusters 4",
875,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727823130,
1727823134,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 871 confidence 0.01 feature_proportion 0 n_clusters 2",
871,
0.01,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727823142,
1727823147,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 897 confidence 0.001 feature_proportion 0 n_clusters 4",
897,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727823182,
1727823187,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 852 confidence 0.05 feature_proportion 0 n_clusters 1",
852,
0.05,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823203,
1727823207,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 871 confidence 0.025 feature_proportion 0 n_clusters 1",
871,
0.025,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823162,
1727823222,
60,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 171 confidence 0.001 feature_proportion 0.08504167557083986 n_clusters 1",
171,
0.001,
0.08504167557083986,
1,
0.8375714237979083,
0,
"None",
"i7186",
56,
0.00038157365718948357
],
[
1727823422,
1727823427,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 859 confidence 0.001 feature_proportion 0 n_clusters 1",
859,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823460,
1727823465,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 877 confidence 0.01 feature_proportion 0 n_clusters 1",
877,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823430,
1727823475,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 933 confidence 0.1 feature_proportion 0.054333929002806675 n_clusters 1",
933,
0.1,
0.054333929002806675,
1,
0.8436863033381228,
0,
"None",
"i7186",
41,
0.0005847562401844485
],
[
1727823502,
1727823506,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 711 confidence 0.001 feature_proportion 0 n_clusters 1",
711,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823462,
1727823510,
48,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 851 confidence 0.025 feature_proportion 0.040025767910441205 n_clusters 1",
851,
0.025,
0.040025767910441205,
1,
0.8432519129882714,
0,
"None",
"i7186",
44,
0.0005799057275930572
],
[
1727823482,
1727823530,
48,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 831 confidence 0.025 feature_proportion 0.10170955460000078 n_clusters 1",
831,
0.025,
0.10170955460000078,
1,
0.8433855715574565,
0,
"None",
"i7186",
44,
0.0005576068433187425
],
[
1727823542,
1727823547,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 873 confidence 0.005 feature_proportion 0 n_clusters 1",
873,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823562,
1727823567,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 732 confidence 0.01 feature_proportion 0 n_clusters 1",
732,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823520,
1727823568,
48,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 853 confidence 0.025 feature_proportion 0.028619189780432264 n_clusters 1",
853,
0.025,
0.028619189780432264,
1,
0.8409128880275336,
0,
"None",
"i7186",
44,
0.000655358145681373
],
[
1727823602,
1727823607,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 857 confidence 0.05 feature_proportion 0 n_clusters 1",
857,
0.05,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823622,
1727823627,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 859 confidence 0.25 feature_proportion 0 n_clusters 1",
859,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823580,
1727823630,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 847 confidence 0.01 feature_proportion 0.1107572593392558 n_clusters 1",
847,
0.01,
0.1107572593392558,
1,
0.8452567915260467,
0,
"None",
"i7186",
45,
0.0005152322263745005
],
[
1727823640,
1727823645,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 877 confidence 0.001 feature_proportion 0 n_clusters 1",
877,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823851,
1727823855,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 771 confidence 0.25 feature_proportion 0 n_clusters 4",
771,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727823880,
1727823885,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 738 confidence 0.01 feature_proportion 0 n_clusters 1",
738,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823903,
1727823907,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 765 confidence 0.1 feature_proportion 0 n_clusters 3",
765,
0.1,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727823910,
1727823915,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 714 confidence 0.001 feature_proportion 0 n_clusters 1",
714,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823963,
1727823967,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 606 confidence 0.001 feature_proportion 0 n_clusters 1",
606,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823971,
1727823975,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 751 confidence 0.025 feature_proportion 0 n_clusters 2",
751,
0.025,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727823940,
1727823992,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 742 confidence 0.005 feature_proportion 0.05505242440931446 n_clusters 1",
742,
0.005,
0.05505242440931446,
1,
0.8428509372807165,
0,
"None",
"i7186",
47,
0.0005405309783217592
],
[
1727824003,
1727824007,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 733 confidence 0.05 feature_proportion 0 n_clusters 1",
733,
0.05,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727823983,
1727824027,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.25 feature_proportion 0.2 n_clusters 4",
100,
0.25,
0.2,
4,
0.8612289905436562,
0,
"None",
"i7186",
40,
-9.966979214140432e-5
],
[
1727824023,
1727824027,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 719 confidence 0.01 feature_proportion 0 n_clusters 1",
719,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727824083,
1727824087,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 754 confidence 0.05 feature_proportion 0 n_clusters 2",
754,
0.05,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727824043,
1727824088,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 737 confidence 0.025 feature_proportion 0.03815423906635727 n_clusters 1",
737,
0.025,
0.03815423906635727,
1,
0.8462926454372306,
0,
"None",
"i7186",
42,
0.0003930617133269904
],
[
1727824083,
1727824127,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.25 feature_proportion 0.2 n_clusters 3",
100,
0.25,
0.2,
3,
0.8612289905436562,
0,
"None",
"i7186",
40,
-0.00010653100244276169
],
[
1727824334,
1727824339,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 761 confidence 0.05 feature_proportion 0 n_clusters 1",
761,
0.05,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727824361,
1727824365,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 703 confidence 0.001 feature_proportion 0 n_clusters 1",
703,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727824414,
1727824419,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 769 confidence 0.25 feature_proportion 0 n_clusters 4",
769,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727824434,
1727824438,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 434 confidence 0.001 feature_proportion 0 n_clusters 1",
434,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727824391,
1727824451,
60,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 172 confidence 0.001 feature_proportion 0.09044208750598547 n_clusters 1",
172,
0.001,
0.09044208750598547,
1,
0.8343636181374678,
0,
"None",
"i7186",
57,
0.0004884613164761525
],
[
1727824451,
1727824455,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 863 confidence 0.001 feature_proportion 0 n_clusters 1",
863,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727824414,
1727824458,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 760 confidence 0.25 feature_proportion 0.0716036550099831 n_clusters 4",
760,
0.25,
0.0716036550099831,
4,
0.8453236208106392,
0,
"None",
"i7186",
40,
0.0004185623613951845
],
[
1727824474,
1727824478,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 443 confidence 0.001 feature_proportion 0 n_clusters 3",
443,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727824494,
1727824549,
55,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 436 confidence 0.001 feature_proportion 2.9890718061719497e-19 n_clusters 1",
436,
0.001,
3.0e-19,
1,
0.8442543522571591,
0,
"None",
"i7186",
51,
0.00033283604483327737
],
[
1727824514,
1727824558,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 763 confidence 0.1 feature_proportion 0.0352064968381751 n_clusters 3",
763,
0.1,
0.0352064968381751,
3,
0.8499348414475223,
0,
"None",
"i7186",
40,
0.0002972144498982615
],
[
1727824534,
1727824578,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 738 confidence 0.025 feature_proportion 0.03679363967676929 n_clusters 1",
738,
0.025,
0.03679363967676929,
1,
0.8465933772178968,
0,
"None",
"i7186",
41,
0.00038514771909893043
],
[
1727824554,
1727824615,
61,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 422 confidence 0.001 feature_proportion 0.04432804813009403 n_clusters 2",
422,
0.001,
0.04432804813009403,
2,
0.8507702075049286,
0,
"None",
"i7186",
57,
0.00021344455181076686
],
[
1727824751,
1727824755,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 445 confidence 0.001 feature_proportion 0 n_clusters 4",
445,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727824781,
1727824785,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 602 confidence 0.001 feature_proportion 0 n_clusters 1",
602,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727824794,
1727824798,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 576 confidence 0.001 feature_proportion 0 n_clusters 4",
576,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727824834,
1727824838,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 616 confidence 0.001 feature_proportion 0 n_clusters 3",
616,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727824841,
1727824845,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 858 confidence 0.001 feature_proportion 0 n_clusters 1",
858,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727824854,
1727824858,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 572 confidence 0.001 feature_proportion 0 n_clusters 2",
572,
0.001,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727824894,
1727824899,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 842 confidence 0.001 feature_proportion 0 n_clusters 4",
842,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727824914,
1727824918,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 538 confidence 0.001 feature_proportion 0 n_clusters 3",
538,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727824934,
1727824941,
7,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 545 confidence 0.001 feature_proportion 0 n_clusters 4",
545,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727824901,
1727824958,
57,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 597 confidence 0.001 feature_proportion 0.03140882345016759 n_clusters 4",
597,
0.001,
0.03140882345016759,
4,
0.8512714271393724,
0,
"None",
"i7186",
54,
0.00023708484295913686
],
[
1727824954,
1727824959,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 543 confidence 0.001 feature_proportion 0 n_clusters 3",
543,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727825231,
1727825236,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 868 confidence 0.001 feature_proportion 0 n_clusters 1",
868,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825254,
1727825259,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 844 confidence 0.001 feature_proportion 0 n_clusters 4",
844,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727825274,
1727825279,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 859 confidence 0.001 feature_proportion 0 n_clusters 3",
859,
0.001,
0,
3,
"None",
1,
"None",
"i7186"
],
[
1727825314,
1727825318,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 703 confidence 0.001 feature_proportion 0 n_clusters 1",
703,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825292,
1727825338,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 839 confidence 0.005 feature_proportion 0.06855944279162825 n_clusters 4",
839,
0.005,
0.06855944279162825,
4,
0.845824840445083,
0,
"None",
"i7186",
42,
0.0004530632381933289
],
[
1727825334,
1727825339,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 860 confidence 0.001 feature_proportion 0 n_clusters 1",
860,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825351,
1727825355,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 707 confidence 0.001 feature_proportion 0 n_clusters 1",
707,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825411,
1727825415,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 867 confidence 0.001 feature_proportion 0 n_clusters 1",
867,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825374,
1727825420,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 478 confidence 0.25 feature_proportion 0.2 n_clusters 1",
478,
0.25,
0.2,
1,
0.8542453303037391,
0,
"None",
"i7186",
42,
0.00011836712271046008
],
[
1727825394,
1727825443,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 849 confidence 0.005 feature_proportion 0.044349552237808926 n_clusters 3",
849,
0.005,
0.044349552237808926,
3,
0.8439536204764928,
0,
"None",
"i7186",
45,
0.0005398553145988571
],
[
1727825434,
1727825490,
56,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 674 confidence 0.001 feature_proportion 0.009341796367090933 n_clusters 1",
674,
0.001,
0.009341796367090933,
1,
0.8446887426070104,
0,
"None",
"i7186",
52,
0.0004864778804895839
],
[
1727825454,
1727825503,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 841 confidence 0.005 feature_proportion 0.06868930451047947 n_clusters 4",
841,
0.005,
0.06868930451047947,
4,
0.8470611822100444,
0,
"None",
"i7186",
45,
0.0004384406095235776
],
[
1727825474,
1727825521,
47,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 835 confidence 0.01 feature_proportion 0.2 n_clusters 4",
835,
0.01,
0.2,
4,
0.8461589868680456,
0,
"None",
"i7186",
43,
0.00045666677804880756
],
[
1727825494,
1727825546,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 850 confidence 0.001 feature_proportion 0.06744568992838025 n_clusters 4",
850,
0.001,
0.06744568992838025,
4,
0.8446887426070104,
0,
"None",
"i7186",
48,
0.0005168827480201829
],
[
1727825714,
1727825719,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 870 confidence 0.005 feature_proportion 0 n_clusters 1",
870,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825753,
1727825757,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 616 confidence 0.25 feature_proportion 0 n_clusters 1",
616,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825771,
1727825775,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 658 confidence 0.25 feature_proportion 0 n_clusters 1",
658,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825793,
1727825798,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1",
1000,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825831,
1727825835,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 688 confidence 0.25 feature_proportion 0 n_clusters 1",
688,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825853,
1727825857,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 647 confidence 0.25 feature_proportion 0 n_clusters 1",
647,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825813,
1727825866,
53,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 977 confidence 0.001 feature_proportion 0.035353581424803895 n_clusters 1",
977,
0.001,
0.035353581424803895,
1,
0.8441541083302704,
0,
"None",
"i7186",
49,
0.0006829952885354363
],
[
1727825913,
1727825917,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 853 confidence 0.25 feature_proportion 0 n_clusters 1",
853,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825873,
1727825922,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 689 confidence 0.005 feature_proportion 0.08829934311039667 n_clusters 2",
689,
0.005,
0.08829934311039667,
2,
0.846359474721823,
0,
"None",
"i7186",
45,
0.0003717378955458282
],
[
1727825921,
1727825925,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 869 confidence 0.001 feature_proportion 0 n_clusters 1",
869,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727825891,
1727825936,
45,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 625 confidence 0.1 feature_proportion 0.046617598594046954 n_clusters 1",
625,
0.1,
0.046617598594046954,
1,
0.8515053296354462,
0,
"None",
"i7186",
41,
0.00021608135351577722
],
[
1727826131,
1727826136,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1",
1000,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727826158,
1727826163,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 870 confidence 0.001 feature_proportion 0 n_clusters 1",
870,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727826178,
1727826183,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 878 confidence 0.005 feature_proportion 0 n_clusters 1",
878,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727826191,
1727826241,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 997 confidence 0.001 feature_proportion 0.15117589410464183 n_clusters 2",
997,
0.001,
0.15117589410464183,
2,
0.8395763023356835,
0,
"None",
"i7186",
46,
0.000813089629208852
],
[
1727826238,
1727826243,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1",
1000,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727826218,
1727826276,
58,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 172 confidence 0.001 feature_proportion 0.09151838237555115 n_clusters 1",
172,
0.001,
0.09151838237555115,
1,
0.8343636181374678,
0,
"None",
"i7186",
54,
0.0004884613164761525
],
[
1727826278,
1727826282,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 882 confidence 0.01 feature_proportion 0 n_clusters 1",
882,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727826251,
1727826302,
51,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 896 confidence 0.001 feature_proportion 0.06497666709723708 n_clusters 1",
896,
0.001,
0.06497666709723708,
1,
0.8395763023356835,
0,
"None",
"i7186",
47,
0.0007733102931418831
],
[
1727826338,
1727826343,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 860 confidence 0.001 feature_proportion 0 n_clusters 1",
860,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727826298,
1727826356,
58,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 166 confidence 0.01 feature_proportion 0.007916691422013058 n_clusters 2",
166,
0.01,
0.007916691422013058,
2,
0.8547465499381829,
0,
"None",
"i7186",
54,
7.123561104915732e-5
],
[
1727826358,
1727826363,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 870 confidence 0.001 feature_proportion 0 n_clusters 1",
870,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727826371,
1727826376,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 853 confidence 0.25 feature_proportion 0 n_clusters 1",
853,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727826641,
1727826646,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 862 confidence 0.001 feature_proportion 0 n_clusters 1",
862,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727826630,
1727826725,
95,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 871 confidence 0.005 feature_proportion 0 n_clusters 1",
871,
0.005,
0,
1,
"None",
1,
"None",
"i7181"
],
[
1727826631,
1727826725,
94,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 849 confidence 0.25 feature_proportion 0 n_clusters 1",
849,
0.25,
0,
1,
"None",
1,
"None",
"i7181"
],
[
1727826671,
1727826730,
59,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 171 confidence 0.001 feature_proportion 0.08155478991377223 n_clusters 1",
171,
0.001,
0.08155478991377223,
1,
0.8375714237979083,
0,
"None",
"i7186",
55,
0.00038157365718948357
],
[
1727826691,
1727826739,
48,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 847 confidence 0.01 feature_proportion 0.11079647201369916 n_clusters 1",
847,
0.01,
0.11079647201369916,
1,
0.8452567915260467,
0,
"None",
"i7186",
44,
0.0005152322263745005
],
[
1727826701,
1727826753,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 846 confidence 0.005 feature_proportion 0.07348174554325633 n_clusters 1",
846,
0.005,
0.07348174554325633,
1,
0.8452567915260467,
0,
"None",
"i7186",
49,
0.0005507654833658454
],
[
1727826751,
1727826756,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 863 confidence 0.001 feature_proportion 0 n_clusters 1",
863,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727826771,
1727826776,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 951 confidence 0.25 feature_proportion 0 n_clusters 4",
951,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727826731,
1727826779,
48,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 846 confidence 0.01 feature_proportion 0.119762452563735 n_clusters 1",
846,
0.01,
0.119762452563735,
1,
0.8446219133224179,
0,
"None",
"i7186",
44,
0.0005454131936098271
],
[
1727826821,
1727826825,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 859 confidence 0.05 feature_proportion 0 n_clusters 1",
859,
0.05,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727826811,
1727826873,
62,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 474 confidence 0.001 feature_proportion 0.2 n_clusters 4",
474,
0.001,
0.2,
4,
0.8470277675677482,
0,
"None",
"i7186",
58,
0.00028982087705934766
],
[
1727826852,
1727826896,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 823 confidence 0.05 feature_proportion 0.05479532506588878 n_clusters 1",
823,
0.05,
0.05479532506588878,
1,
0.8412804490927924,
0,
"None",
"i7186",
41,
0.0005867218073783464
],
[
1727827071,
1727827075,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 485 confidence 0.001 feature_proportion 0 n_clusters 4",
485,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727827091,
1727827096,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 850 confidence 0.25 feature_proportion 0 n_clusters 1",
850,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727827121,
1727827126,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 817 confidence 0.1 feature_proportion 0 n_clusters 1",
817,
0.1,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727827171,
1727827175,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 865 confidence 0.25 feature_proportion 0 n_clusters 1",
865,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727827151,
1727827197,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 791 confidence 0.025 feature_proportion 0.06168600675493328 n_clusters 1",
791,
0.025,
0.06168600675493328,
1,
0.8443880108263441,
0,
"None",
"i7186",
42,
0.0004811708490660609
],
[
1727827181,
1727827224,
43,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 913 confidence 0.25 feature_proportion 0.2 n_clusters 4",
913,
0.25,
0.2,
4,
0.8412136198082,
0,
"None",
"i7186",
39,
0.0006456571204985898
],
[
1727827211,
1727827257,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 826 confidence 0.1 feature_proportion 0.024479787667490448 n_clusters 1",
826,
0.1,
0.024479787667490448,
1,
0.8445216693955291,
0,
"None",
"i7186",
42,
0.000491391798474327
],
[
1727827231,
1727827274,
43,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 872 confidence 0.1 feature_proportion 0.08745953891277419 n_clusters 1",
872,
0.1,
0.08745953891277419,
1,
0.8448892304607879,
0,
"None",
"i7186",
39,
0.0004951442449354031
],
[
1727827251,
1727827294,
43,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 874 confidence 0.25 feature_proportion 0.14250505343653927 n_clusters 1",
874,
0.25,
0.14250505343653927,
1,
0.8454906940221205,
0,
"None",
"i7186",
39,
0.00047691807641017404
],
[
1727827271,
1727827315,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 906 confidence 0.1 feature_proportion 0.12211180241222151 n_clusters 4",
906,
0.1,
0.12211180241222151,
4,
0.8398436194740535,
0,
"None",
"i7186",
40,
0.0006682928459250843
],
[
1727827501,
1727827505,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 948 confidence 0.25 feature_proportion 0 n_clusters 4",
948,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727827511,
1727827515,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 872 confidence 0.001 feature_proportion 0 n_clusters 2",
872,
0.001,
0,
2,
"None",
1,
"None",
"i7186"
],
[
1727827461,
1727827521,
60,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 170 confidence 0.001 feature_proportion 0.0825113247723356 n_clusters 1",
170,
0.001,
0.0825113247723356,
1,
0.8293180071507334,
0,
"None",
"i7186",
56,
0.0005801996980531414
],
[
1727827561,
1727827565,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 440 confidence 0.25 feature_proportion 0 n_clusters 4",
440,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727827541,
1727827585,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 937 confidence 0.25 feature_proportion 0.032865611685334965 n_clusters 4",
937,
0.25,
0.032865611685334965,
4,
0.843853376549604,
0,
"None",
"i7186",
41,
0.0005791871331350728
],
[
1727827581,
1727827624,
43,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 483 confidence 0.25 feature_proportion 0.13854336801712505 n_clusters 2",
483,
0.25,
0.13854336801712505,
2,
0.8525077689043339,
0,
"None",
"i7186",
39,
0.00014535369398870578
],
[
1727827621,
1727827626,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4",
1000,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727827661,
1727827665,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 958 confidence 0.25 feature_proportion 0 n_clusters 4",
958,
0.25,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727827631,
1727827674,
43,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 917 confidence 0.25 feature_proportion 0.10109944849249929 n_clusters 4",
917,
0.25,
0.10109944849249929,
4,
0.8422160590770875,
0,
"None",
"i7186",
39,
0.0006133203698893114
],
[
1727827681,
1727827725,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 419 confidence 0.25 feature_proportion 0.2 n_clusters 4",
419,
0.25,
0.2,
4,
0.8557824038493668,
0,
"None",
"i7186",
40,
7.893603904767296e-5
],
[
1727827931,
1727827936,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1",
1000,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727827901,
1727827957,
56,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 744 confidence 0.001 feature_proportion 0.1541403332504318 n_clusters 2",
744,
0.001,
0.1541403332504318,
2,
0.8483643532595984,
0,
"None",
"i7186",
51,
0.0003898374934562992
],
[
1727827952,
1727828002,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 995 confidence 0.001 feature_proportion 0.03993680495147095 n_clusters 1",
995,
0.001,
0.03993680495147095,
1,
0.8382397166438333,
0,
"None",
"i7186",
46,
0.0009195709559929166
],
[
1727827961,
1727828011,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 992 confidence 0.001 feature_proportion 0.1457315794670551 n_clusters 2",
992,
0.001,
0.1457315794670551,
2,
0.8366358138136132,
0,
"None",
"i7186",
46,
0.0009108583974090039
],
[
1727828012,
1727828016,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 592 confidence 0.001 feature_proportion 0 n_clusters 1",
592,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727828032,
1727828036,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 578 confidence 0.001 feature_proportion 0 n_clusters 1",
578,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727827991,
1727828040,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 587 confidence 0.001 feature_proportion 0.2 n_clusters 1",
587,
0.001,
0.2,
1,
0.8432853276305677,
0,
"None",
"i7186",
45,
0.00041729448635089583
],
[
1727828072,
1727828120,
48,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 764 confidence 0.001 feature_proportion 0.2 n_clusters 1",
764,
0.001,
0.2,
1,
0.8446553279647141,
0,
"None",
"i7186",
44,
0.00047353321654120304
],
[
1727828092,
1727828144,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 620 confidence 0.001 feature_proportion 0.0596147546024208 n_clusters 1",
620,
0.001,
0.0596147546024208,
1,
0.8420489858656063,
0,
"None",
"i7186",
48,
0.0004917949917448698
],
[
1727828111,
1727828162,
51,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 569 confidence 0.001 feature_proportion 0.07634458182644001 n_clusters 1",
569,
0.001,
0.07634458182644001,
1,
0.8472950847061183,
0,
"None",
"i7186",
47,
0.000331759662798524
],
[
1727828278,
1727828282,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 591 confidence 0.001 feature_proportion 0 n_clusters 1",
591,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727828338,
1727828343,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1",
1000,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727828318,
1727828367,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 553 confidence 0.005 feature_proportion 0.016882991409375016 n_clusters 1",
553,
0.005,
0.016882991409375016,
1,
0.8440204497610853,
0,
"None",
"i7186",
45,
0.0003740987126645852
],
[
1727828378,
1727828382,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 627 confidence 0.005 feature_proportion 0 n_clusters 1",
627,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727828358,
1727828408,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 597 confidence 0.001 feature_proportion 0.13817119243905318 n_clusters 1",
597,
0.001,
0.13817119243905318,
1,
0.8449226451030842,
0,
"None",
"i7186",
46,
0.0003882463200136203
],
[
1727828411,
1727828415,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 482 confidence 0.025 feature_proportion 0 n_clusters 1",
482,
0.025,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727828458,
1727828463,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1",
1000,
0.001,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727828438,
1727828485,
47,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 536 confidence 0.025 feature_proportion 0.09354087318300539 n_clusters 1",
536,
0.025,
0.09354087318300539,
1,
0.8483643532595984,
0,
"None",
"i7186",
43,
0.0002522477898834877
],
[
1727828635,
1727828684,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.19097790993361133 n_clusters 2",
1000,
0.001,
0.19097790993361133,
2,
0.8404116683930898,
0,
"None",
"i7186",
45,
0.000771011931502459
],
[
1727828680,
1727828684,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 901 confidence 0.01 feature_proportion 0 n_clusters 1",
901,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727828660,
1727828712,
52,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.2 n_clusters 1",
1000,
0.001,
0.2,
1,
0.8381728873592408,
0,
"None",
"i7186",
48,
0.0009222441273766169
],
[
1727828740,
1727828745,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1",
1000,
0.25,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727828700,
1727828750,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 970 confidence 0.001 feature_proportion 0.054632609609757 n_clusters 1",
970,
0.001,
0.054632609609757,
1,
0.843452400842049,
0,
"None",
"i7186",
47,
0.0006837149885233559
],
[
1727828760,
1727828765,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 933 confidence 0.001 feature_proportion 0 n_clusters 4",
933,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727828800,
1727828805,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1",
1000,
0.005,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727828820,
1727828825,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0 n_clusters 1",
1000,
0.05,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727828860,
1727828864,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 934 confidence 0.001 feature_proportion 0 n_clusters 4",
934,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727828840,
1727828890,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 901 confidence 0.01 feature_proportion 0.01486375921555323 n_clusters 1",
901,
0.01,
0.01486375921555323,
1,
0.8375045945133157,
0,
"None",
"i7186",
46,
0.000818082621735879
],
[
1727829058,
1727829063,
5,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0 n_clusters 1",
1000,
0.025,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727829131,
1727829135,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 909 confidence 0.01 feature_proportion 0 n_clusters 1",
909,
0.01,
0,
1,
"None",
1,
"None",
"i7186"
],
[
1727829098,
1727829148,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 969 confidence 0.001 feature_proportion 0.04149782591556487 n_clusters 1",
969,
0.001,
0.04149782591556487,
1,
0.8426838640692351,
0,
"None",
"i7186",
46,
0.0006868565360896696
],
[
1727829118,
1727829162,
44,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 886 confidence 0.01 feature_proportion 0.05086849862279977 n_clusters 1",
886,
0.01,
0.05086849862279977,
1,
0.8453570354529355,
0,
"None",
"i7186",
41,
0.0005119985513135729
],
[
1727829191,
1727829195,
4,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 932 confidence 0.001 feature_proportion 0 n_clusters 4",
932,
0.001,
0,
4,
"None",
1,
"None",
"i7186"
],
[
1727829158,
1727829204,
46,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0.08905278286104765 n_clusters 2",
1000,
0.01,
0.08905278286104765,
2,
0.837805326293982,
0,
"None",
"i7186",
42,
0.0008365594374883646
],
[
1727829218,
1727829268,
50,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0.050592622158597444 n_clusters 4",
1000,
0.001,
0.050592622158597444,
4,
0.8385070337822034,
0,
"None",
"i7186",
46,
0.0008415539541278837
],
[
1727829238,
1727829287,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 842 confidence 0.01 feature_proportion 0.11838280663306662 n_clusters 1",
842,
0.01,
0.11838280663306662,
1,
0.8455241086644167,
0,
"None",
"i7186",
45,
0.0005066090928786932
],
[
1727829251,
1727829300,
49,
"module load GCCcore\/10.3.0 Python && source \/data\/horse\/ws\/s4122485-compPerfDD\/benchmark\/venv\/bin\/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 980 confidence 0.001 feature_proportion 0.1300732468762936 n_clusters 2",
980,
0.001,
0.1300732468762936,
2,
0.841079961239015,
0,
"None",
"i7186",
46,
0.0007462603446163444
]
];
var tab_main_worker_cpu_ram_csv_json = [
[
1727815908,
478.8203125,
49.7
],
[
1727815908,
479.04296875,
48.1
],
[
1727815908,
479.04296875,
49.9
],
[
1727815908,
479.04296875,
37.5
],
[
1727815908,
479.04296875,
56.5
],
[
1727815908,
479.04296875,
49.1
],
[
1727815908,
479.04296875,
57.8
],
[
1727815954,
486.43359375,
49.8
],
[
1727815954,
486.43359375,
55.3
],
[
1727815954,
486.43359375,
49.5
],
[
1727815954,
486.43359375,
48.7
],
[
1727815955,
486.43359375,
49.7
],
[
1727815955,
486.43359375,
50
],
[
1727815955,
486.43359375,
50
],
[
1727815955,
486.43359375,
51
],
[
1727815957,
486.43359375,
49.7
],
[
1727815957,
486.43359375,
40
],
[
1727815957,
486.43359375,
52.9
],
[
1727815957,
486.43359375,
40.6
],
[
1727815958,
486.43359375,
49.8
],
[
1727815958,
486.43359375,
55.3
],
[
1727815958,
486.43359375,
49.5
],
[
1727815958,
486.43359375,
41.2
],
[
1727815959,
486.43359375,
49.7
],
[
1727815959,
486.43359375,
54.3
],
[
1727815959,
486.43359375,
49.1
],
[
1727815959,
486.43359375,
52.5
],
[
1727815961,
488.31640625,
49.7
],
[
1727815961,
488.31640625,
54.3
],
[
1727815961,
488.31640625,
48.5
],
[
1727815961,
488.31640625,
51.2
],
[
1727815962,
488.31640625,
49.7
],
[
1727815962,
488.31640625,
54.3
],
[
1727815962,
488.31640625,
49
],
[
1727815962,
488.31640625,
40.6
],
[
1727815964,
488.31640625,
49.8
],
[
1727815964,
488.31640625,
55.3
],
[
1727815964,
488.31640625,
49.1
],
[
1727815964,
488.31640625,
55.6
],
[
1727815965,
488.31640625,
49.7
],
[
1727815965,
488.31640625,
47.5
],
[
1727815965,
488.31640625,
49
],
[
1727815965,
488.31640625,
57.8
],
[
1727815966,
488.31640625,
49.7
],
[
1727815966,
488.31640625,
43.9
],
[
1727815966,
488.31640625,
53.2
],
[
1727815966,
488.31640625,
39.4
],
[
1727815969,
489.234375,
49.9
],
[
1727815969,
489.234375,
54.3
],
[
1727815969,
489.234375,
49.5
],
[
1727815969,
489.234375,
57.8
],
[
1727815972,
489.24609375,
49.9
],
[
1727815972,
489.24609375,
48.8
],
[
1727815972,
489.24609375,
48.1
],
[
1727815972,
489.24609375,
58.7
],
[
1727815975,
489.3203125,
49.9
],
[
1727815975,
489.3203125,
40
],
[
1727815975,
489.3203125,
49.5
],
[
1727815975,
489.3203125,
55.6
],
[
1727815977,
489.3203125,
49.9
],
[
1727815977,
489.3203125,
35.3
],
[
1727815977,
489.3203125,
55.1
],
[
1727815977,
489.3203125,
38.7
],
[
1727815979,
489.3203125,
49.9
],
[
1727815979,
489.3203125,
55.6
],
[
1727815979,
489.3203125,
50
],
[
1727815979,
489.3203125,
38.7
],
[
1727815982,
489.3203125,
49.9
],
[
1727815982,
489.3203125,
56.5
],
[
1727815982,
489.3203125,
50.5
],
[
1727815982,
489.3203125,
40
],
[
1727815984,
489.3203125,
49.9
],
[
1727815984,
489.3203125,
37.1
],
[
1727815984,
489.3203125,
52.5
],
[
1727815984,
489.3203125,
39.4
],
[
1727815987,
489.3984375,
49.8
],
[
1727815987,
489.3984375,
54.3
],
[
1727815987,
489.3984375,
48.1
],
[
1727815987,
489.3984375,
56.2
],
[
1727815989,
489.40234375,
49.9
],
[
1727815989,
489.40234375,
47.6
],
[
1727815989,
489.40234375,
52.4
],
[
1727815989,
489.40234375,
40.6
],
[
1727815992,
489.5625,
49.9
],
[
1727815992,
489.5625,
39.4
],
[
1727815992,
489.5625,
48.6
],
[
1727815992,
489.5625,
58.1
],
[
1727815995,
489.5625,
49.9
],
[
1727815995,
489.5625,
57.4
],
[
1727815995,
489.5625,
47.2
],
[
1727815995,
489.5625,
58.1
],
[
1727815997,
489.609375,
49.9
],
[
1727815997,
489.609375,
56.5
],
[
1727815997,
489.609375,
48.6
],
[
1727815997,
489.609375,
57.8
],
[
1727815999,
489.609375,
49.8
],
[
1727815999,
489.609375,
54.3
],
[
1727815999,
489.609375,
48.6
],
[
1727815999,
489.609375,
52.5
],
[
1727816001,
489.703125,
49.9
],
[
1727816001,
489.703125,
53.3
],
[
1727816001,
489.703125,
47.3
],
[
1727816001,
489.703125,
57.8
],
[
1727816004,
489.70703125,
49.9
],
[
1727816004,
489.70703125,
56.5
],
[
1727816004,
489.70703125,
48.6
],
[
1727816004,
489.70703125,
37.5
],
[
1727816006,
489.73046875,
49.9
],
[
1727816006,
489.73046875,
56.5
],
[
1727816006,
489.73046875,
48.2
],
[
1727816006,
489.73046875,
55
],
[
1727816008,
489.73046875,
49.8
],
[
1727816008,
489.73046875,
58.3
],
[
1727816008,
489.73046875,
45.9
],
[
1727816008,
489.73046875,
58.1
],
[
1727816011,
489.73046875,
49.9
],
[
1727816011,
489.73046875,
53.2
],
[
1727816011,
489.73046875,
46.8
],
[
1727816011,
489.73046875,
55.6
],
[
1727816013,
489.73828125,
49.9
],
[
1727816013,
489.73828125,
56.3
],
[
1727816013,
489.73828125,
46.4
],
[
1727816013,
489.73828125,
56.8
],
[
1727816015,
489.73828125,
49.9
],
[
1727816015,
489.73828125,
44.4
],
[
1727816015,
489.73828125,
52.5
],
[
1727816015,
489.73828125,
43.7
],
[
1727816018,
489.73828125,
49.9
],
[
1727816018,
489.73828125,
56.8
],
[
1727816018,
489.73828125,
49.5
],
[
1727816018,
489.73828125,
56.8
],
[
1727816020,
489.73828125,
49.8
],
[
1727816020,
489.73828125,
55.6
],
[
1727816020,
489.73828125,
45
],
[
1727816020,
489.73828125,
56.9
],
[
1727816022,
489.75,
49.8
],
[
1727816022,
489.75,
55.6
],
[
1727816022,
489.75,
47.2
],
[
1727816022,
489.75,
53.7
],
[
1727816025,
489.75,
49.9
],
[
1727816025,
489.75,
55.6
],
[
1727816025,
489.75,
47.3
],
[
1727816025,
489.75,
56.8
],
[
1727816027,
489.75,
49.8
],
[
1727816027,
489.75,
54.3
],
[
1727816027,
489.75,
46.8
],
[
1727816027,
489.75,
57.8
],
[
1727816029,
489.75,
49.8
],
[
1727816029,
489.75,
54.3
],
[
1727816029,
489.75,
46.4
],
[
1727816029,
489.75,
56.8
],
[
1727816031,
489.75,
49.8
],
[
1727816031,
489.75,
54.2
],
[
1727816031,
489.75,
51.2
],
[
1727816031,
489.75,
38.7
],
[
1727816033,
489.75,
49.9
],
[
1727816033,
489.75,
38.9
],
[
1727816033,
489.75,
52
],
[
1727816033,
489.75,
44.1
],
[
1727816035,
489.75,
49.9
],
[
1727816035,
489.75,
40
],
[
1727816035,
489.75,
52
],
[
1727816035,
489.75,
40.6
],
[
1727816038,
489.75,
49.9
],
[
1727816038,
489.75,
57.8
],
[
1727816038,
489.75,
45.5
],
[
1727816038,
489.75,
58.1
],
[
1727816040,
489.75,
49.9
],
[
1727816040,
489.75,
53.2
],
[
1727816040,
489.75,
51.2
],
[
1727816040,
489.75,
41.9
],
[
1727816042,
489.75,
49.9
],
[
1727816042,
489.75,
37.5
],
[
1727816042,
489.75,
52.4
],
[
1727816042,
489.75,
40
],
[
1727816044,
489.75,
49.9
],
[
1727816044,
489.75,
53.2
],
[
1727816044,
489.75,
49.6
],
[
1727816044,
489.75,
56.8
],
[
1727816046,
489.75,
49.8
],
[
1727816046,
489.75,
53.2
],
[
1727816046,
489.75,
46.4
],
[
1727816046,
489.75,
57.8
],
[
1727816048,
489.75,
49.9
],
[
1727816048,
489.75,
38.2
],
[
1727816048,
489.75,
52
],
[
1727816048,
489.75,
55.8
],
[
1727816050,
489.75,
49.8
],
[
1727816050,
489.75,
55.6
],
[
1727816050,
489.75,
46.4
],
[
1727816050,
489.75,
56.8
],
[
1727816053,
489.84375,
49.9
],
[
1727816053,
489.84375,
39.4
],
[
1727816053,
489.84375,
50
],
[
1727816053,
489.84375,
56.5
],
[
1727816055,
489.84375,
49.9
],
[
1727816055,
489.84375,
39.4
],
[
1727816055,
489.84375,
50.4
],
[
1727816055,
489.84375,
56.8
],
[
1727816057,
489.84375,
49.8
],
[
1727816057,
489.84375,
41.7
],
[
1727816057,
489.84375,
53.6
],
[
1727816057,
489.84375,
38.7
],
[
1727816059,
489.84375,
49.8
],
[
1727816059,
489.84375,
54.9
],
[
1727816059,
489.84375,
47.7
],
[
1727816059,
489.84375,
56.8
],
[
1727816061,
489.84375,
49.8
],
[
1727816061,
489.84375,
55.3
],
[
1727816061,
489.84375,
49.6
],
[
1727816061,
489.84375,
39.4
],
[
1727816063,
489.84375,
49.9
],
[
1727816063,
489.84375,
39.4
],
[
1727816063,
489.84375,
51.2
],
[
1727816063,
489.84375,
40
],
[
1727816066,
489.84375,
49.9
],
[
1727816066,
489.84375,
40
],
[
1727816066,
489.84375,
52
],
[
1727816066,
489.84375,
37.5
],
[
1727816068,
489.84375,
49.9
],
[
1727816068,
489.84375,
37.5
],
[
1727816068,
489.84375,
50.8
],
[
1727816068,
489.84375,
56.5
],
[
1727816070,
489.88671875,
49.9
],
[
1727816070,
489.88671875,
54.3
],
[
1727816070,
489.88671875,
50.8
],
[
1727816070,
489.88671875,
48.7
],
[
1727816073,
489.88671875,
49.9
],
[
1727816073,
489.88671875,
56.5
],
[
1727816073,
489.88671875,
49.4
],
[
1727816073,
489.88671875,
42.4
],
[
1727816075,
489.88671875,
49.9
],
[
1727816075,
489.88671875,
38.9
],
[
1727816075,
489.88671875,
54
],
[
1727816075,
489.88671875,
38.7
],
[
1727816077,
489.88671875,
49.9
],
[
1727816077,
489.88671875,
48.7
],
[
1727816077,
489.88671875,
47.9
],
[
1727816077,
489.88671875,
56.5
],
[
1727816079,
489.88671875,
49.8
],
[
1727816079,
489.88671875,
38.9
],
[
1727816079,
489.88671875,
50.4
],
[
1727816079,
489.88671875,
56.5
],
[
1727816081,
489.88671875,
49.9
],
[
1727816081,
489.88671875,
38.2
],
[
1727816081,
489.88671875,
50.8
],
[
1727816081,
489.88671875,
56.8
],
[
1727816083,
489.88671875,
49.9
],
[
1727816083,
489.88671875,
37.5
],
[
1727816083,
489.88671875,
52.7
],
[
1727816083,
489.88671875,
37.1
],
[
1727816086,
489.88671875,
49.9
],
[
1727816086,
489.88671875,
44.4
],
[
1727816086,
489.88671875,
49
],
[
1727816086,
489.88671875,
58.1
],
[
1727816214,
529.5234375,
50.1
],
[
1727816214,
529.5234375,
53.1
],
[
1727816214,
529.5234375,
52.1
],
[
1727816214,
529.5234375,
38.7
],
[
1727816254,
530.078125,
50.2
],
[
1727816254,
530.078125,
53.2
],
[
1727816254,
530.078125,
51
],
[
1727816254,
530.078125,
36.4
],
[
1727816366,
531.9609375,
50.2
],
[
1727816366,
531.9609375,
53.2
],
[
1727816366,
531.9609375,
49.4
],
[
1727816366,
531.9609375,
50
],
[
1727816472,
534.65234375,
50.2
],
[
1727816472,
534.65234375,
48.9
],
[
1727816472,
534.65234375,
50.3
],
[
1727816472,
534.65234375,
44.1
],
[
1727816605,
535.72265625,
50.2
],
[
1727816605,
535.72265625,
52.7
],
[
1727816605,
535.72265625,
49.7
],
[
1727816605,
535.72265625,
40.6
],
[
1727816713,
538.6640625,
50.2
],
[
1727816713,
538.6640625,
54.3
],
[
1727816713,
538.6640625,
49
],
[
1727816713,
538.6640625,
38.7
],
[
1727816872,
540.56640625,
50.2
],
[
1727816872,
540.56640625,
39.4
],
[
1727816872,
540.56640625,
52.4
],
[
1727816872,
540.56640625,
42.4
],
[
1727817232,
540.9765625,
50.3
],
[
1727817232,
540.9765625,
53.2
],
[
1727817232,
540.9765625,
50.3
],
[
1727817232,
540.9765625,
40.6
],
[
1727817494,
541.3359375,
50.2
],
[
1727817494,
541.3359375,
43.2
],
[
1727817494,
541.3359375,
50
],
[
1727817494,
541.3359375,
52.4
],
[
1727817693,
546.296875,
50.2
],
[
1727817693,
546.296875,
39.4
],
[
1727817693,
546.296875,
50.3
],
[
1727817693,
546.296875,
51.3
],
[
1727817956,
551.16015625,
50.2
],
[
1727817956,
551.16015625,
55.3
],
[
1727817956,
551.16015625,
50
],
[
1727817957,
551.16015625,
48.6
],
[
1727818291,
550.5625,
50.2
],
[
1727818291,
550.5625,
54.2
],
[
1727818291,
550.5625,
49.8
],
[
1727818291,
550.5625,
51.2
],
[
1727818600,
553.140625,
50.2
],
[
1727818600,
553.140625,
36.4
],
[
1727818600,
553.140625,
52.5
],
[
1727818600,
553.140625,
40.6
],
[
1727818954,
551.89453125,
50.2
],
[
1727818954,
551.89453125,
46.2
],
[
1727818954,
551.89453125,
49.1
],
[
1727818954,
551.89453125,
57.8
],
[
1727819285,
555.58203125,
50.2
],
[
1727819285,
555.58203125,
38.2
],
[
1727819285,
555.58203125,
51.6
],
[
1727819285,
555.58203125,
42.4
],
[
1727819695,
556.27734375,
50.2
],
[
1727819695,
556.27734375,
54.3
],
[
1727819695,
556.27734375,
50.4
],
[
1727819695,
556.27734375,
40
],
[
1727820034,
432.87890625,
50.2
],
[
1727820034,
432.87890625,
45
],
[
1727820034,
432.87890625,
51.4
],
[
1727820034,
432.87890625,
44.4
],
[
1727820358,
440.87109375,
50.2
],
[
1727820358,
440.87109375,
36.4
],
[
1727820358,
440.87109375,
51
],
[
1727820358,
440.87109375,
50
],
[
1727820761,
448.55859375,
50.2
],
[
1727820761,
448.55859375,
57.4
],
[
1727820761,
448.55859375,
51.2
],
[
1727820761,
448.55859375,
41.9
],
[
1727821172,
441.4140625,
50.2
],
[
1727821172,
441.4140625,
54.3
],
[
1727821172,
441.4140625,
50.4
],
[
1727821172,
441.4140625,
39.4
],
[
1727821623,
452.89453125,
50.2
],
[
1727821623,
452.89453125,
38.2
],
[
1727821623,
452.89453125,
50.4
],
[
1727821623,
452.89453125,
51
],
[
1727822216,
452.63671875,
50.2
],
[
1727822216,
452.63671875,
55.3
],
[
1727822216,
452.63671875,
48.7
],
[
1727822216,
452.63671875,
58.7
],
[
1727822764,
437.609375,
50.2
],
[
1727822764,
437.609375,
50
],
[
1727822764,
437.609375,
50.4
],
[
1727822764,
437.609375,
42.4
],
[
1727823200,
435.96484375,
50.2
],
[
1727823200,
435.96484375,
38.2
],
[
1727823200,
435.96484375,
51.5
],
[
1727823200,
435.96484375,
40.6
],
[
1727823636,
435.4375,
50.2
],
[
1727823636,
435.4375,
38.2
],
[
1727823636,
435.4375,
51.5
],
[
1727823636,
435.4375,
40.6
],
[
1727824080,
432.55859375,
50.2
],
[
1727824080,
432.55859375,
46.5
],
[
1727824080,
432.55859375,
51.7
],
[
1727824080,
432.55859375,
39.4
],
[
1727824545,
441.23046875,
50.2
],
[
1727824545,
441.23046875,
39.4
],
[
1727824545,
441.23046875,
50.2
],
[
1727824545,
441.23046875,
57.8
],
[
1727824958,
440.6796875,
50.2
],
[
1727824958,
440.6796875,
53.3
],
[
1727824958,
440.6796875,
50.3
],
[
1727824958,
440.6796875,
40.6
],
[
1727825490,
443.74609375,
50.2
],
[
1727825490,
443.74609375,
52.8
],
[
1727825490,
443.74609375,
49.9
],
[
1727825490,
443.74609375,
55.6
],
[
1727825932,
443.5078125,
50.2
],
[
1727825932,
443.5078125,
47.5
],
[
1727825932,
443.5078125,
50.3
],
[
1727825932,
443.5078125,
42.4
],
[
1727826372,
443.40625,
50.1
],
[
1727826372,
443.40625,
51.2
],
[
1727826372,
443.40625,
50.1
],
[
1727826372,
443.40625,
40.6
],
[
1727826843,
446.078125,
50.2
],
[
1727826843,
446.078125,
54.3
],
[
1727826843,
446.078125,
49.3
],
[
1727826843,
446.078125,
58.1
],
[
1727827271,
447.640625,
50.2
],
[
1727827271,
447.640625,
36.4
],
[
1727827271,
447.640625,
51.4
],
[
1727827271,
447.640625,
37.5
],
[
1727827679,
439.05859375,
50.1
],
[
1727827679,
439.05859375,
55.6
],
[
1727827679,
439.05859375,
49.7
],
[
1727827679,
439.05859375,
51.3
],
[
1727828105,
448.30078125,
50.2
],
[
1727828105,
448.30078125,
48.9
],
[
1727828105,
448.30078125,
50.7
],
[
1727828105,
448.30078125,
55.6
],
[
1727828457,
444.8515625,
50.1
],
[
1727828457,
444.8515625,
53.2
],
[
1727828457,
444.8515625,
50.1
],
[
1727828457,
444.8515625,
38.7
],
[
1727828859,
440.9609375,
50.1
],
[
1727828859,
440.9609375,
52.2
],
[
1727828859,
440.9609375,
49.2
],
[
1727828859,
440.9609375,
57.8
],
[
1727829259,
441.6875,
50.1
],
[
1727829259,
441.6875,
52
],
[
1727829308,
441.6796875,
49.8
],
[
1727829308,
441.6796875,
38.9
]
];
var tab_main_worker_cpu_ram_headers_json = [
"timestamp",
"ram_usage_mb",
"cpu_usage_percent"
];
"use strict";
function add_default_layout_data (layout) {
layout["width"] = get_graph_width();
layout["height"] = get_graph_height();
layout["paper_bgcolor"] = 'rgba(0,0,0,0)';
layout["plot_bgcolor"] = 'rgba(0,0,0,0)';
return layout;
}
function get_marker_size() {
return 12;
}
function get_text_color() {
return theme == "dark" ? "white" : "black";
}
function get_font_size() {
return 14;
}
function get_graph_height() {
return 800;
}
function get_font_data() {
return {
size: get_font_size(),
color: get_text_color()
}
}
function get_axis_title_data(name, axis_type = "") {
if(axis_type) {
return {
text: name,
type: axis_type,
font: get_font_data()
};
}
return {
text: name,
font: get_font_data()
};
}
function get_graph_width() {
var width = document.body.clientWidth || window.innerWidth || document.documentElement.clientWidth;
return Math.max(800, Math.floor(width * 0.9));
}
function createTable(data, headers, table_name) {
if (!$("#" + table_name).length) {
console.error("#" + table_name + " not found");
return;
}
new gridjs.Grid({
columns: headers,
data: data,
search: true,
sort: true
}).render(document.getElementById(table_name));
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
colorize_table_entries();
add_colorize_to_gridjs_table();
}
function download_as_file(id, filename) {
var text = $("#" + id).text();
var blob = new Blob([text], {
type: "text/plain"
});
var link = document.createElement("a");
link.href = URL.createObjectURL(blob);
link.download = filename;
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
}
function copy_to_clipboard_from_id (id) {
var text = $("#" + id).text();
copy_to_clipboard(text);
}
function copy_to_clipboard(text) {
if (!navigator.clipboard) {
let textarea = document.createElement("textarea");
textarea.value = text;
document.body.appendChild(textarea);
textarea.select();
try {
document.execCommand("copy");
} catch (err) {
console.error("Copy failed:", err);
}
document.body.removeChild(textarea);
return;
}
navigator.clipboard.writeText(text).then(() => {
console.log("Text copied to clipboard");
}).catch(err => {
console.error("Failed to copy text:", err);
});
}
function filterNonEmptyRows(data) {
var new_data = [];
for (var row_idx = 0; row_idx < data.length; row_idx++) {
var line = data[row_idx];
var line_has_empty_data = false;
for (var col_idx = 0; col_idx < line.length; col_idx++) {
var col_header_name = tab_results_headers_json[col_idx];
var single_data_point = line[col_idx];
if(single_data_point === "" && !special_col_names.includes(col_header_name)) {
line_has_empty_data = true;
continue;
}
}
if(!line_has_empty_data) {
new_data.push(line);
}
}
return new_data;
}
function make_text_in_parallel_plot_nicer() {
$(".parcoords g > g > text").each(function() {
if (theme == "dark") {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "white")
.css("stroke", "black")
.css("stroke-width", "2px")
.css("paint-order", "stroke fill");
} else {
$(this)
.css("text-shadow", "unset")
.css("font-size", "0.9em")
.css("fill", "black")
.css("stroke", "unset")
.css("stroke-width", "unset")
.css("paint-order", "stroke fill");
}
});
}
function createParallelPlot(dataArray, headers, resultNames, ignoreColumns = []) {
if ($("#parallel-plot").data("loaded") == "true") {
return;
}
dataArray = filterNonEmptyRows(dataArray);
const ignoreSet = new Set(ignoreColumns);
const numericalCols = [];
const categoricalCols = [];
const categoryMappings = {};
headers.forEach((header, colIndex) => {
if (ignoreSet.has(header)) return;
const values = dataArray.map(row => row[colIndex]);
if (values.every(val => !isNaN(parseFloat(val)))) {
numericalCols.push({ name: header, index: colIndex });
} else {
categoricalCols.push({ name: header, index: colIndex });
const uniqueValues = [...new Set(values)];
categoryMappings[header] = Object.fromEntries(uniqueValues.map((val, i) => [val, i]));
}
});
const dimensions = [];
numericalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => parseFloat(row[col.index])),
range: [
Math.min(...dataArray.map(row => parseFloat(row[col.index]))),
Math.max(...dataArray.map(row => parseFloat(row[col.index])))
]
});
});
categoricalCols.forEach(col => {
dimensions.push({
label: col.name,
values: dataArray.map(row => categoryMappings[col.name][row[col.index]]),
tickvals: Object.values(categoryMappings[col.name]),
ticktext: Object.keys(categoryMappings[col.name])
});
});
let colorScale = null;
let colorValues = null;
if (resultNames.length > 1) {
let selectBox = '<select id="result-select" style="margin-bottom: 10px;">';
selectBox += '<option value="none">No color</option>';
var k = 0;
resultNames.forEach(resultName => {
var minMax = result_min_max[k];
if(minMax === undefined) {
minMax = "min [automatically chosen]"
}
selectBox += `<option value="${resultName}">${resultName} (${minMax})</option>`;
k = k + 1;
});
selectBox += '</select>';
$("#parallel-plot").before(selectBox);
$("#result-select").change(function() {
const selectedResult = $(this).val();
if (selectedResult === "none") {
colorValues = null;
colorScale = null;
} else {
const resultCol = numericalCols.find(col => col.name.toLowerCase() === selectedResult.toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
let minResult = Math.min(...colorValues);
let maxResult = Math.max(...colorValues);
var _result_min_max_idx = result_names.indexOf(selectedResult);
let invertColor = false;
if (result_min_max.length > _result_min_max_idx) {
invertColor = result_min_max[_result_min_max_idx] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
}
updatePlot();
});
} else {
let invertColor = false;
if (Object.keys(result_min_max).length == 1) {
invertColor = result_min_max[0] === "max";
}
colorScale = invertColor
? [[0, 'red'], [1, 'green']]
: [[0, 'green'], [1, 'red']];
const resultCol = numericalCols.find(col => col.name.toLowerCase() === resultNames[0].toLowerCase());
colorValues = dataArray.map(row => parseFloat(row[resultCol.index]));
}
function updatePlot() {
const trace = {
type: 'parcoords',
dimensions: dimensions,
line: colorValues ? { color: colorValues, colorscale: colorScale } : {},
unselected: {
line: {
color: get_text_color(),
opacity: 0
}
},
};
dimensions.forEach(dim => {
if (!dim.line) {
dim.line = {};
}
if (!dim.line.color) {
dim.line.color = 'rgba(169,169,169, 0.01)';
}
});
Plotly.newPlot('parallel-plot', [trace], add_default_layout_data({}));
make_text_in_parallel_plot_nicer();
}
updatePlot();
$("#parallel-plot").data("loaded", "true");
make_text_in_parallel_plot_nicer();
}
function plotWorkerUsage() {
if($("#workerUsagePlot").data("loaded") == "true") {
return;
}
var data = tab_worker_usage_csv_json;
if (!Array.isArray(data) || data.length === 0) {
console.error("Invalid or empty data provided.");
return;
}
let timestamps = [];
let desiredWorkers = [];
let realWorkers = [];
for (let i = 0; i < data.length; i++) {
let entry = data[i];
if (!Array.isArray(entry) || entry.length < 3) {
console.warn("Skipping invalid entry:", entry);
continue;
}
let unixTime = parseFloat(entry[0]);
let desired = parseInt(entry[1], 10);
let real = parseInt(entry[2], 10);
if (isNaN(unixTime) || isNaN(desired) || isNaN(real)) {
console.warn("Skipping invalid numerical values:", entry);
continue;
}
timestamps.push(new Date(unixTime * 1000).toISOString());
desiredWorkers.push(desired);
realWorkers.push(real);
}
let trace1 = {
x: timestamps,
y: desiredWorkers,
mode: 'lines+markers',
name: 'Desired Workers',
line: {
color: 'blue'
}
};
let trace2 = {
x: timestamps,
y: realWorkers,
mode: 'lines+markers',
name: 'Real Workers',
line: {
color: 'red'
}
};
let layout = {
title: "Worker Usage Over Time",
xaxis: {
title: get_axis_title_data("Time", "date")
},
yaxis: {
title: get_axis_title_data("Number of Workers")
},
legend: {
x: 0,
y: 1
}
};
Plotly.newPlot('workerUsagePlot', [trace1, trace2], add_default_layout_data(layout));
$("#workerUsagePlot").data("loaded", "true");
}
function plotCPUAndRAMUsage() {
if($("#mainWorkerCPURAM").data("loaded") == "true") {
return;
}
var timestamps = tab_main_worker_cpu_ram_csv_json.map(row => new Date(row[0] * 1000));
var ramUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[1]);
var cpuUsage = tab_main_worker_cpu_ram_csv_json.map(row => row[2]);
var trace1 = {
x: timestamps,
y: cpuUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'CPU Usage (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: ramUsage,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'RAM Usage (MB)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'CPU and RAM Usage Over Time',
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
overlaying: 'y',
side: 'right',
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var data = [trace1, trace2];
Plotly.newPlot('mainWorkerCPURAM', data, add_default_layout_data(layout));
$("#mainWorkerCPURAM").data("loaded", "true");
}
function plotScatter2d() {
if ($("#plotScatter2d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter2d");
var minInput = document.getElementById("minValue");
var maxInput = document.getElementById("maxValue");
if (!minInput || !maxInput) {
minInput = document.createElement("input");
minInput.id = "minValue";
minInput.type = "number";
minInput.placeholder = "Min Value";
minInput.step = "any";
maxInput = document.createElement("input");
maxInput.id = "maxValue";
maxInput.type = "number";
maxInput.placeholder = "Max Value";
maxInput.step = "any";
var inputContainer = document.createElement("div");
inputContainer.style.marginBottom = "10px";
inputContainer.appendChild(minInput);
inputContainer.appendChild(maxInput);
plotDiv.appendChild(inputContainer);
}
var resultSelect = document.getElementById("resultSelect");
if (result_names.length > 1 && !resultSelect) {
resultSelect = document.createElement("select");
resultSelect.id = "resultSelect";
resultSelect.style.marginBottom = "10px";
var sortedResults = [...result_names].sort();
sortedResults.forEach(result => {
var option = document.createElement("option");
option.value = result;
option.textContent = result;
resultSelect.appendChild(option);
});
var selectContainer = document.createElement("div");
selectContainer.style.marginBottom = "10px";
selectContainer.appendChild(resultSelect);
plotDiv.appendChild(selectContainer);
}
minInput.addEventListener("input", updatePlots);
maxInput.addEventListener("input", updatePlots);
if (resultSelect) {
resultSelect.addEventListener("change", updatePlots);
}
updatePlots();
async function updatePlots() {
var minValue = parseFloat(minInput.value);
var maxValue = parseFloat(maxInput.value);
if (isNaN(minValue)) minValue = -Infinity;
if (isNaN(maxValue)) maxValue = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var selectedResult = resultSelect ? resultSelect.value : result_names[0];
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue !== -Infinity) minResult = Math.max(minResult, minValue);
if (maxValue !== Infinity) maxResult = Math.min(maxResult, maxValue);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 2) {
console.error("Not enough columns for Scatter-Plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
showlegend: false
};
let subDiv = document.createElement("div");
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
symbol: data.map(d => d.result === null ? 'x' : 'circle'),
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter',
showlegend: false
};
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
$("#plotScatter2d").data("loaded", "true");
}
function plotScatter3d() {
if ($("#plotScatter3d").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotScatter3d");
if (!plotDiv) {
console.error("Div element with id 'plotScatter3d' not found");
return;
}
plotDiv.innerHTML = "";
var minInput3d = document.getElementById("minValue3d");
var maxInput3d = document.getElementById("maxValue3d");
if (!minInput3d || !maxInput3d) {
minInput3d = document.createElement("input");
minInput3d.id = "minValue3d";
minInput3d.type = "number";
minInput3d.placeholder = "Min Value";
minInput3d.step = "any";
maxInput3d = document.createElement("input");
maxInput3d.id = "maxValue3d";
maxInput3d.type = "number";
maxInput3d.placeholder = "Max Value";
maxInput3d.step = "any";
var inputContainer3d = document.createElement("div");
inputContainer3d.style.marginBottom = "10px";
inputContainer3d.appendChild(minInput3d);
inputContainer3d.appendChild(maxInput3d);
plotDiv.appendChild(inputContainer3d);
}
var select3d = document.getElementById("select3dScatter");
if (result_names.length > 1 && !select3d) {
if (!select3d) {
select3d = document.createElement("select");
select3d.id = "select3dScatter";
select3d.style.marginBottom = "10px";
select3d.innerHTML = result_names.map(name => `<option value="${name}">${name}</option>`).join("");
select3d.addEventListener("change", updatePlots3d);
plotDiv.appendChild(select3d);
}
}
minInput3d.addEventListener("input", updatePlots3d);
maxInput3d.addEventListener("input", updatePlots3d);
updatePlots3d();
async function updatePlots3d() {
var selectedResult = select3d ? select3d.value : result_names[0];
var minValue3d = parseFloat(minInput3d.value);
var maxValue3d = parseFloat(maxInput3d.value);
if (isNaN(minValue3d)) minValue3d = -Infinity;
if (isNaN(maxValue3d)) maxValue3d = Infinity;
while (plotDiv.children.length > 2) {
plotDiv.removeChild(plotDiv.lastChild);
}
var resultIndex = tab_results_headers_json.findIndex(header =>
header.toLowerCase() === selectedResult.toLowerCase()
);
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
if (minValue3d !== -Infinity) minResult = Math.max(minResult, minValue3d);
if (maxValue3d !== Infinity) maxResult = Math.min(maxResult, maxValue3d);
var invertColor = result_min_max[result_names.indexOf(selectedResult)] === "max";
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 3) {
console.error("Not enough columns for 3D scatter plots");
return;
}
for (let i = 0; i < numericColumns.length; i++) {
for (let j = i + 1; j < numericColumns.length; j++) {
for (let k = j + 1; k < numericColumns.length; k++) {
let xCol = numericColumns[i];
let yCol = numericColumns[j];
let zCol = numericColumns[k];
let xIndex = tab_results_headers_json.indexOf(xCol);
let yIndex = tab_results_headers_json.indexOf(yCol);
let zIndex = tab_results_headers_json.indexOf(zCol);
let data = tab_results_csv_json.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
z: parseFloat(row[zIndex]),
result: row[resultIndex] !== "" ? parseFloat(row[resultIndex]) : null
}));
data = data.filter(d => d.result >= minResult && d.result <= maxResult);
let layoutTitle = `${xCol} (x) vs ${yCol} (y) vs ${zCol} (z), result: ${selectedResult}`;
let layout = {
title: layoutTitle,
scene: {
xaxis: {
title: get_axis_title_data(xCol)
},
yaxis: {
title: get_axis_title_data(yCol)
},
zaxis: {
title: get_axis_title_data(zCol)
}
},
showlegend: false
};
let spinnerContainer = document.createElement("div");
spinnerContainer.style.display = "flex";
spinnerContainer.style.alignItems = "center";
spinnerContainer.style.justifyContent = "center";
spinnerContainer.style.width = layout.width + "px";
spinnerContainer.style.height = layout.height + "px";
spinnerContainer.style.position = "relative";
let spinner = document.createElement("div");
spinner.className = "spinner";
spinner.style.width = "40px";
spinner.style.height = "40px";
let loadingText = document.createElement("span");
loadingText.innerText = `Loading ${layoutTitle}`;
loadingText.style.marginLeft = "10px";
spinnerContainer.appendChild(spinner);
spinnerContainer.appendChild(loadingText);
plotDiv.appendChild(spinnerContainer);
await new Promise(resolve => setTimeout(resolve, 50));
let colors = data.map(d => {
if (d.result === null) {
return 'rgb(0, 0, 0)';
} else {
let norm = (d.result - minResult) / (maxResult - minResult);
if (invertColor) {
norm = 1 - norm;
}
return `rgb(${Math.round(255 * norm)}, ${Math.round(255 * (1 - norm))}, 0)`;
}
});
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
z: data.map(d => d.z),
mode: 'markers',
marker: {
size: get_marker_size(),
color: data.map(d => d.result !== null ? d.result : null),
colorscale: invertColor ? [
[0, 'red'],
[1, 'green']
] : [
[0, 'green'],
[1, 'red']
],
colorbar: {
title: 'Result',
tickvals: [minResult, maxResult],
ticktext: [`${minResult}`, `${maxResult}`]
},
},
text: data.map(d => d.result !== null ? `Result: ${d.result}` : 'No result'),
type: 'scatter3d',
showlegend: false
};
let subDiv = document.createElement("div");
try {
plotDiv.replaceChild(subDiv, spinnerContainer);
} catch (err) {
//
}
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
}
}
$("#plotScatter3d").data("loaded", "true");
}
async function load_pareto_graph() {
if($("#tab_pareto_fronts").data("loaded") == "true") {
return;
}
var data = pareto_front_data;
if (!data || typeof data !== "object") {
console.error("Invalid data format for pareto_front_data");
return;
}
if (!Object.keys(data).length) {
console.warn("No data found in pareto_front_data");
return;
}
let categories = Object.keys(data);
let allMetrics = new Set();
function extractMetrics(obj, prefix = "") {
let keys = Object.keys(obj);
for (let key of keys) {
let newPrefix = prefix ? `${prefix} -> ${key}` : key;
if (typeof obj[key] === "object" && !Array.isArray(obj[key])) {
extractMetrics(obj[key], newPrefix);
} else {
if (!newPrefix.includes("param_dicts") && !newPrefix.includes(" -> sems -> ") && !newPrefix.includes("absolute_metrics")) {
allMetrics.add(newPrefix);
}
}
}
}
for (let cat of categories) {
extractMetrics(data[cat]);
}
allMetrics = Array.from(allMetrics);
function extractValues(obj, metricPath, values) {
let parts = metricPath.split(" -> ");
let data = obj;
for (let part of parts) {
if (data && typeof data === "object") {
data = data[part];
} else {
return;
}
}
if (Array.isArray(data)) {
values.push(...data);
}
}
let graphContainer = document.getElementById("pareto_front_graphs_container");
graphContainer.classList.add("invert_in_dark_mode");
graphContainer.innerHTML = "";
var already_plotted = [];
for (let i = 0; i < allMetrics.length; i++) {
for (let j = i + 1; j < allMetrics.length; j++) {
let xMetric = allMetrics[i];
let yMetric = allMetrics[j];
let xValues = [];
let yValues = [];
for (let cat of categories) {
let metricData = data[cat];
extractValues(metricData, xMetric, xValues);
extractValues(metricData, yMetric, yValues);
}
xValues = xValues.filter(v => v !== undefined && v !== null);
yValues = yValues.filter(v => v !== undefined && v !== null);
let cleanXMetric = xMetric.replace(/.* -> /g, "");
let cleanYMetric = yMetric.replace(/.* -> /g, "");
let plot_key = `${cleanXMetric}-${cleanYMetric}`;
if (xValues.length > 0 && yValues.length > 0 && xValues.length === yValues.length && !already_plotted.includes(plot_key)) {
let div = document.createElement("div");
div.id = `pareto_front_graph_${i}_${j}`;
div.style.marginBottom = "20px";
graphContainer.appendChild(div);
let layout = {
title: `${cleanXMetric} vs ${cleanYMetric}`,
xaxis: {
title: get_axis_title_data(cleanXMetric)
},
yaxis: {
title: get_axis_title_data(cleanYMetric)
},
hovermode: "closest"
};
let trace = {
x: xValues,
y: yValues,
mode: "markers",
marker: {
size: get_marker_size(),
},
type: "scatter",
name: `${cleanXMetric} vs ${cleanYMetric}`
};
Plotly.newPlot(div.id, [trace], add_default_layout_data(layout));
already_plotted.push(plot_key);
}
}
}
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
$("#tab_pareto_fronts").data("loaded", "true");
}
async function plot_worker_cpu_ram() {
if($("#worker_cpu_ram_pre").data("loaded") == "true") {
return;
}
const logData = $("#worker_cpu_ram_pre").text();
const regex = /^Unix-Timestamp: (\d+), Hostname: ([\w-]+), CPU: ([\d.]+)%, RAM: ([\d.]+) MB \/ ([\d.]+) MB$/;
const hostData = {};
logData.split("\n").forEach(line => {
line = line.trim();
const match = line.match(regex);
if (match) {
const timestamp = new Date(parseInt(match[1]) * 1000);
const hostname = match[2];
const cpu = parseFloat(match[3]);
const ram = parseFloat(match[4]);
if (!hostData[hostname]) {
hostData[hostname] = { timestamps: [], cpuUsage: [], ramUsage: [] };
}
hostData[hostname].timestamps.push(timestamp);
hostData[hostname].cpuUsage.push(cpu);
hostData[hostname].ramUsage.push(ram);
}
});
if (!Object.keys(hostData).length) {
console.log("No valid data found");
return;
}
const container = document.getElementById("cpuRamWorkerChartContainer");
container.innerHTML = "";
var i = 1;
Object.entries(hostData).forEach(([hostname, { timestamps, cpuUsage, ramUsage }], index) => {
const chartId = `workerChart_${index}`;
const chartDiv = document.createElement("div");
chartDiv.id = chartId;
chartDiv.style.marginBottom = "40px";
container.appendChild(chartDiv);
const cpuTrace = {
x: timestamps,
y: cpuUsage,
mode: "lines+markers",
name: "CPU Usage (%)",
yaxis: "y1",
line: {
color: "red"
}
};
const ramTrace = {
x: timestamps,
y: ramUsage,
mode: "lines+markers",
name: "RAM Usage (MB)",
yaxis: "y2",
line: {
color: "blue"
}
};
const layout = {
title: `Worker CPU and RAM Usage - ${hostname}`,
xaxis: {
title: get_axis_title_data("Timestamp", "date")
},
yaxis: {
title: get_axis_title_data("CPU Usage (%)"),
side: "left",
color: "red"
},
yaxis2: {
title: get_axis_title_data("RAM Usage (MB)"),
side: "right",
overlaying: "y",
color: "blue"
},
showlegend: true
};
Plotly.newPlot(chartId, [cpuTrace, ramTrace], add_default_layout_data(layout));
i++;
});
$("#plot_worker_cpu_ram_button").remove();
$("#worker_cpu_ram_pre").data("loaded", "true");
}
function load_log_file(log_nr, filename) {
var pre_id = `single_run_${log_nr}_pre`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}&filename=${filename}`;
fetch(url)
.then(response => response.json())
.then(data => {
if (data.data) {
$("#" + pre_id).html(data.data);
$("#" + pre_id).data("loaded", true);
} else {
log(`No 'data' key found in response.`);
}
$("#spinner_log_" + log_nr).remove();
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#spinner_log_" + log_nr).remove();
});
}
}
function load_debug_log () {
var pre_id = `here_debuglogs_go`;
if (!$("#" + pre_id).data("loaded")) {
const params = new URLSearchParams(window.location.search);
const user_id = params.get('user_id');
const experiment_name = params.get('experiment_name');
const run_nr = params.get('run_nr');
var url = `get_debug_log?user_id=${user_id}&experiment_name=${experiment_name}&run_nr=${run_nr}`;
fetch(url)
.then(response => response.json())
.then(data => {
$("#debug_log_spinner").remove();
if (data.data) {
try {
$("#" + pre_id).html(data.data);
} catch (err) {
$("#" + pre_id).text(`Error loading data: ${err}`);
}
$("#" + pre_id).data("loaded", true);
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
} else {
log(`No 'data' key found in response.`);
}
})
.catch(error => {
log(`Error loading log: ${error}`);
$("#debug_log_spinner").remove();
});
}
}
function plotBoxplot() {
if ($("#plotBoxplot").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough numeric columns for Boxplot");
return;
}
var resultIndex = tab_results_headers_json.findIndex(function(header) {
return result_names.includes(header.toLowerCase());
});
var resultValues = tab_results_csv_json.map(row => row[resultIndex]);
var minResult = Math.min(...resultValues.filter(value => value !== null && value !== ""));
var maxResult = Math.max(...resultValues.filter(value => value !== null && value !== ""));
var plotDiv = document.getElementById("plotBoxplot");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'box',
name: col,
boxmean: 'sd',
marker: {
color: 'rgb(0, 255, 0)'
},
};
});
let layout = {
title: 'Boxplot of Numerical Columns',
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Value")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotBoxplot").data("loaded", "true");
}
function plotHeatmap() {
if ($("#plotHeatmap").data("loaded") === "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col => {
if (special_col_names.includes(col) || result_names.includes(col)) {
return false;
}
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.every(row => {
let value = parseFloat(row[index]);
return !isNaN(value) && isFinite(value);
});
});
if (numericColumns.length < 2) {
console.error("Not enough valid numeric columns for Heatmap");
return;
}
var columnData = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
return tab_results_csv_json.map(row => parseFloat(row[index]));
});
var dataMatrix = numericColumns.map((_, i) =>
numericColumns.map((_, j) => {
let values = columnData[i].map((val, index) => (val + columnData[j][index]) / 2);
return values.reduce((a, b) => a + b, 0) / values.length;
})
);
var trace = {
z: dataMatrix,
x: numericColumns,
y: numericColumns,
colorscale: 'Viridis',
type: 'heatmap'
};
var layout = {
xaxis: {
title: get_axis_title_data("Columns")
},
yaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
var plotDiv = document.getElementById("plotHeatmap");
plotDiv.innerHTML = "";
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotHeatmap").data("loaded", "true");
}
function plotHistogram() {
if ($("#plotHistogram").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Histogram");
return;
}
var plotDiv = document.getElementById("plotHistogram");
plotDiv.innerHTML = "";
const colorPalette = ['#ff9999', '#66b3ff', '#99ff99', '#ffcc99', '#c2c2f0', '#ffb3e6'];
let traces = numericColumns.map((col, index) => {
let data = tab_results_csv_json.map(row => parseFloat(row[tab_results_headers_json.indexOf(col)]));
return {
x: data,
type: 'histogram',
name: col,
opacity: 0.7,
marker: {
color: colorPalette[index % colorPalette.length]
},
autobinx: true
};
});
let layout = {
title: 'Histogram of Numerical Columns',
xaxis: {
title: get_axis_title_data("Value")
},
yaxis: {
title: get_axis_title_data("Frequency")
},
showlegend: true,
barmode: 'overlay'
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotHistogram").data("loaded", "true");
}
function plotViolin() {
if ($("#plotViolin").data("loaded") == "true") {
return;
}
var numericColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !result_names.includes(col) &&
tab_results_csv_json.every(row => !isNaN(parseFloat(row[tab_results_headers_json.indexOf(col)])))
);
if (numericColumns.length < 1) {
console.error("Not enough columns for Violin Plot");
return;
}
var plotDiv = document.getElementById("plotViolin");
plotDiv.innerHTML = "";
let traces = numericColumns.map(col => {
let index = tab_results_headers_json.indexOf(col);
let data = tab_results_csv_json.map(row => parseFloat(row[index]));
return {
y: data,
type: 'violin',
name: col,
box: {
visible: true
},
line: {
color: 'rgb(0, 255, 0)'
},
marker: {
color: 'rgb(0, 255, 0)'
},
meanline: {
visible: true
},
};
});
let layout = {
title: 'Violin Plot of Numerical Columns',
yaxis: {
title: get_axis_title_data("Value")
},
xaxis: {
title: get_axis_title_data("Columns")
},
showlegend: false
};
Plotly.newPlot(plotDiv, traces, add_default_layout_data(layout));
$("#plotViolin").data("loaded", "true");
}
function plotExitCodesPieChart() {
if ($("#plotExitCodesPieChart").data("loaded") == "true") {
return;
}
var exitCodes = tab_job_infos_csv_json.map(row => row[tab_job_infos_headers_json.indexOf("exit_code")]);
var exitCodeCounts = exitCodes.reduce(function(counts, exitCode) {
counts[exitCode] = (counts[exitCode] || 0) + 1;
return counts;
}, {});
var labels = Object.keys(exitCodeCounts);
var values = Object.values(exitCodeCounts);
var plotDiv = document.getElementById("plotExitCodesPieChart");
plotDiv.innerHTML = "";
var trace = {
labels: labels,
values: values,
type: 'pie',
hoverinfo: 'label+percent',
textinfo: 'label+value',
marker: {
colors: ['#ff9999','#66b3ff','#99ff99','#ffcc99','#c2c2f0']
}
};
var layout = {
title: 'Exit Code Distribution',
showlegend: true
};
Plotly.newPlot(plotDiv, [trace], add_default_layout_data(layout));
$("#plotExitCodesPieChart").data("loaded", "true");
}
function plotResultEvolution() {
if ($("#plotResultEvolution").data("loaded") == "true") {
return;
}
result_names.forEach(resultName => {
var relevantColumns = tab_results_headers_json.filter(col =>
!special_col_names.includes(col) && !col.startsWith("OO_Info") && col.toLowerCase() !== resultName.toLowerCase()
);
var xColumnIndex = tab_results_headers_json.indexOf("trial_index");
var resultIndex = tab_results_headers_json.indexOf(resultName);
let data = tab_results_csv_json.map(row => ({
x: row[xColumnIndex],
y: parseFloat(row[resultIndex])
}));
data.sort((a, b) => a.x - b.x);
let xData = data.map(item => item.x);
let yData = data.map(item => item.y);
let trace = {
x: xData,
y: yData,
mode: 'lines+markers',
name: resultName,
line: {
shape: 'linear'
},
marker: {
size: get_marker_size()
}
};
let layout = {
title: `Evolution of ${resultName} over time`,
xaxis: {
title: get_axis_title_data("Trial-Index")
},
yaxis: {
title: get_axis_title_data(resultName)
},
showlegend: true
};
let subDiv = document.createElement("div");
document.getElementById("plotResultEvolution").appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
});
$("#plotResultEvolution").data("loaded", "true");
}
function plotResultPairs() {
if ($("#plotResultPairs").data("loaded") == "true") {
return;
}
var plotDiv = document.getElementById("plotResultPairs");
plotDiv.innerHTML = "";
for (let i = 0; i < result_names.length; i++) {
for (let j = i + 1; j < result_names.length; j++) {
let xName = result_names[i];
let yName = result_names[j];
let xIndex = tab_results_headers_json.indexOf(xName);
let yIndex = tab_results_headers_json.indexOf(yName);
let data = tab_results_csv_json
.filter(row => row[xIndex] !== "" && row[yIndex] !== "")
.map(row => ({
x: parseFloat(row[xIndex]),
y: parseFloat(row[yIndex]),
status: row[tab_results_headers_json.indexOf("trial_status")]
}));
let colors = data.map(d => d.status === "COMPLETED" ? 'green' : (d.status === "FAILED" ? 'red' : 'gray'));
let trace = {
x: data.map(d => d.x),
y: data.map(d => d.y),
mode: 'markers',
marker: {
size: get_marker_size(),
color: colors
},
text: data.map(d => `Status: ${d.status}`),
type: 'scatter',
showlegend: false
};
let layout = {
xaxis: {
title: get_axis_title_data(xName)
},
yaxis: {
title: get_axis_title_data(yName)
},
showlegend: false
};
let subDiv = document.createElement("div");
plotDiv.appendChild(subDiv);
Plotly.newPlot(subDiv, [trace], add_default_layout_data(layout));
}
}
$("#plotResultPairs").data("loaded", "true");
}
function add_up_down_arrows_for_scrolling () {
const upArrow = document.createElement('div');
const downArrow = document.createElement('div');
const style = document.createElement('style');
style.innerHTML = `
.scroll-arrow {
position: fixed;
right: 10px;
z-index: 100;
cursor: pointer;
font-size: 25px;
display: none;
background-color: green;
color: white;
padding: 5px;
outline: 2px solid white;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.5);
transition: background-color 0.3s, transform 0.3s;
}
.scroll-arrow:hover {
background-color: darkgreen;
transform: scale(1.1);
}
#up-arrow {
top: 10px;
}
#down-arrow {
bottom: 10px;
}
`;
document.head.appendChild(style);
upArrow.id = "up-arrow";
upArrow.classList.add("scroll-arrow");
upArrow.classList.add("invert_in_dark_mode");
upArrow.innerHTML = "↑";
downArrow.id = "down-arrow";
downArrow.classList.add("scroll-arrow");
downArrow.classList.add("invert_in_dark_mode");
downArrow.innerHTML = "↓";
document.body.appendChild(upArrow);
document.body.appendChild(downArrow);
function checkScrollPosition() {
const scrollPosition = window.scrollY;
const pageHeight = document.documentElement.scrollHeight;
const windowHeight = window.innerHeight;
if (scrollPosition > 0) {
upArrow.style.display = "block";
} else {
upArrow.style.display = "none";
}
if (scrollPosition + windowHeight < pageHeight) {
downArrow.style.display = "block";
} else {
downArrow.style.display = "none";
}
}
window.addEventListener("scroll", checkScrollPosition);
upArrow.addEventListener("click", function () {
window.scrollTo({ top: 0, behavior: 'smooth' });
});
downArrow.addEventListener("click", function () {
window.scrollTo({ top: document.documentElement.scrollHeight, behavior: 'smooth' });
});
checkScrollPosition();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
function plotGPUUsage() {
if ($("#tab_gpu_usage").data("loaded") === "true") {
return;
}
Object.keys(gpu_usage).forEach(node => {
const nodeData = gpu_usage[node];
var timestamps = [];
var gpuUtilizations = [];
var temperatures = [];
nodeData.forEach(entry => {
try {
var timestamp = new Date(entry[0]* 1000);
var utilization = parseFloat(entry[1]);
var temperature = parseFloat(entry[2]);
if (!isNaN(timestamp) && !isNaN(utilization) && !isNaN(temperature)) {
timestamps.push(timestamp);
gpuUtilizations.push(utilization);
temperatures.push(temperature);
} else {
console.warn("Invalid data point:", entry);
}
} catch (error) {
console.error("Error processing GPU data entry:", error, entry);
}
});
var trace1 = {
x: timestamps,
y: gpuUtilizations,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Utilization (%)',
type: 'scatter',
yaxis: 'y1'
};
var trace2 = {
x: timestamps,
y: temperatures,
mode: 'lines+markers',
marker: {
size: get_marker_size(),
},
name: 'GPU Temperature (°C)',
type: 'scatter',
yaxis: 'y2'
};
var layout = {
title: 'GPU Usage Over Time - ' + node,
xaxis: {
title: get_axis_title_data("Timestamp", "date"),
tickmode: 'array',
tickvals: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0),
ticktext: timestamps.filter((_, index) => index % Math.max(Math.floor(timestamps.length / 10), 1) === 0).map(t => t.toLocaleString()),
tickangle: -45
},
yaxis: {
title: get_axis_title_data("GPU Utilization (%)"),
overlaying: 'y',
rangemode: 'tozero'
},
yaxis2: {
title: get_axis_title_data("GPU Temperature (°C)"),
overlaying: 'y',
side: 'right',
position: 0.85,
rangemode: 'tozero'
},
legend: {
x: 0.1,
y: 0.9
}
};
var divId = 'gpu_usage_plot_' + node;
if (!document.getElementById(divId)) {
var div = document.createElement('div');
div.id = divId;
div.className = 'gpu-usage-plot';
document.getElementById('tab_gpu_usage').appendChild(div);
}
var plotData = [trace1, trace2];
Plotly.newPlot(divId, plotData, add_default_layout_data(layout));
});
$("#tab_gpu_usage").data("loaded", "true");
}
function plotResultsDistributionByGenerationMethod() {
if ("true" === $("#plotResultsDistributionByGenerationMethod").data("loaded")) {
return;
}
var res_col = result_names[0];
var gen_method_col = "generation_method";
var data = {};
tab_results_csv_json.forEach(row => {
var gen_method = row[tab_results_headers_json.indexOf(gen_method_col)];
var result = row[tab_results_headers_json.indexOf(res_col)];
if (!data[gen_method]) {
data[gen_method] = [];
}
data[gen_method].push(result);
});
var traces = Object.keys(data).map(method => {
return {
y: data[method],
type: 'box',
name: method,
boxpoints: 'outliers', // Zeigt nur Ausreißer außerhalb der Whiskers
jitter: 0.5, // Erhöht die Streuung der Punkte für bessere Sichtbarkeit
pointpos: 0 // Position der Punkte innerhalb der Box
};
});
var layout = {
title: 'Distribution of Results by Generation Method',
yaxis: {
title: get_axis_title_data(res_col)
},
xaxis: {
title: "Generation Method"
},
boxmode: 'group' // Gruppiert die Boxplots nach Generation Method
};
Plotly.newPlot("plotResultsDistributionByGenerationMethod", traces, add_default_layout_data(layout));
$("#plotResultsDistributionByGenerationMethod").data("loaded", "true");
}
function plotJobStatusDistribution() {
if ($("#plotJobStatusDistribution").data("loaded") === "true") {
return;
}
var status_col = "trial_status";
var status_counts = {};
tab_results_csv_json.forEach(row => {
var status = row[tab_results_headers_json.indexOf(status_col)];
if (status) {
status_counts[status] = (status_counts[status] || 0) + 1;
}
});
var statuses = Object.keys(status_counts);
var counts = Object.values(status_counts);
var colors = statuses.map((status, i) =>
status === "FAILED" ? "#FF0000" : `hsl(${30 + ((i * 137) % 330)}, 70%, 50%)`
);
var trace = {
x: statuses,
y: counts,
type: 'bar',
marker: { color: colors }
};
var layout = {
title: 'Distribution of Job Status',
xaxis: { title: 'Trial Status' },
yaxis: { title: 'Nr. of jobs' }
};
Plotly.newPlot("plotJobStatusDistribution", [trace], add_default_layout_data(layout));
$("#plotJobStatusDistribution").data("loaded", "true");
}
function _colorize_table_entries_by_generation_method () {
document.querySelectorAll('[data-column-id="generation_method"]').forEach(el => {
let color = el.textContent.includes("Manual") ? "green" :
el.textContent.includes("Sobol") ? "orange" :
el.textContent.includes("SAASBO") ? "pink" :
el.textContent.includes("Uniform") ? "lightblue" :
el.textContent.includes("Legacy_GPEI") ? "Sienna" :
el.textContent.includes("BO_MIXED") ? "Aqua" :
el.textContent.includes("RANDOMFOREST") ? "DarkSeaGreen" :
el.textContent.includes("EXTERNAL_GENERATOR") ? "Purple" :
el.textContent.includes("BoTorch") ? "yellow" : "";
if (color) el.style.backgroundColor = color;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_trial_status () {
document.querySelectorAll('[data-column-id="trial_status"]').forEach(el => {
let color = el.textContent.includes("COMPLETED") ? "lightgreen" :
el.textContent.includes("RUNNING") ? "orange" :
el.textContent.includes("FAILED") ? "red" : "";
if (color) el.style.backgroundColor = color;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_run_time() {
let cells = [...document.querySelectorAll('[data-column-id="run_time"]')];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => !isNaN(v));
if (values.length === 0) return;
let min = Math.min(...values);
let max = Math.max(...values);
let range = max - min || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value)) return;
let ratio = (value - min) / range;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
}
function _colorize_table_entries_by_results() {
result_names.forEach((name, index) => {
let minMax = result_min_max[index];
let selector_query = `[data-column-id="${name}"]`;
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let values = cells.map(el => parseFloat(el.textContent)).filter(v => v > 0 && !isNaN(v));
if (values.length === 0) return;
let logValues = values.map(v => Math.log(v));
let logMin = Math.min(...logValues);
let logMax = Math.max(...logValues);
let logRange = logMax - logMin || 1;
cells.forEach(el => {
let value = parseFloat(el.textContent);
if (isNaN(value) || value <= 0) return;
let logValue = Math.log(value);
let ratio = (logValue - logMin) / logRange;
if (minMax === "max") ratio = 1 - ratio;
let red = Math.round(255 * ratio);
let green = Math.round(255 * (1 - ratio));
el.style.backgroundColor = `rgb(${red}, ${green}, 0)`;
el.classList.add("invert_in_dark_mode");
});
});
}
function _colorize_table_entries_by_generation_node_or_hostname() {
["hostname", "generation_node"].forEach(element => {
let selector_query = '[data-column-id="' + element + '"]:not(.gridjs-th)';
let cells = [...document.querySelectorAll(selector_query)];
if (cells.length === 0) return;
let uniqueValues = [...new Set(cells.map(el => el.textContent.trim()))];
let colorMap = {};
uniqueValues.forEach((value, index) => {
let hue = Math.round((360 / uniqueValues.length) * index);
colorMap[value] = `hsl(${hue}, 70%, 60%)`;
});
cells.forEach(el => {
let value = el.textContent.trim();
if (colorMap[value]) {
el.style.backgroundColor = colorMap[value];
el.classList.add("invert_in_dark_mode");
}
});
});
}
function colorize_table_entries () {
setTimeout(() => {
if (typeof result_names !== "undefined" && Array.isArray(result_names) && result_names.length > 0) {
_colorize_table_entries_by_trial_status();
_colorize_table_entries_by_results();
_colorize_table_entries_by_run_time();
_colorize_table_entries_by_generation_method();
_colorize_table_entries_by_generation_node_or_hostname();
if (typeof apply_theme_based_on_system_preferences === 'function') {
apply_theme_based_on_system_preferences();
}
}
}, 300);
}
function add_colorize_to_gridjs_table () {
let searchInput = document.querySelector(".gridjs-search-input");
if (searchInput) {
searchInput.addEventListener("input", colorize_table_entries);
}
}
function updatePreWidths() {
var width = window.innerWidth * 0.95;
var pres = document.getElementsByTagName('pre');
for (var i = 0; i < pres.length; i++) {
pres[i].style.width = width + 'px';
}
}
window.addEventListener('load', updatePreWidths);
window.addEventListener('resize', updatePreWidths);
$(document).ready(function() {
colorize_table_entries();
add_up_down_arrows_for_scrolling();
add_colorize_to_gridjs_table();
});
$(document).ready(function() {
colorize_table_entries();;
plotCPUAndRAMUsage();;
createParallelPlot(tab_results_csv_json, tab_results_headers_json, result_names, special_col_names);;
plotJobStatusDistribution();;
plotBoxplot();;
plotViolin();;
plotHistogram();;
plotHeatmap();;
plotExitCodesPieChart();
colorize_table_entries();
});
</script>
<h1> Overview</h1>
<h2>Best parameter (total: 0, failed: 263): </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> n_samples</th><th>confidence</th><th>feature_proportion</th><th>n_clusters</th><th>result </th></tr></thead><tbody><tr><td> 169</td><td>0.001</td><td>0.100332</td><td>1</td><td>0.828650 </td></tr></tbody></table><h2>Experiment parameters: </h2><table cellspacing="0" cellpadding="5"><thead><tr><th> Name</th><th>Type</th><th>Lower bound</th><th>Upper bound</th><th>Values</th><th>Type </th></tr></thead><tbody><tr><td> n_samples</td><td>range</td><td>100</td><td>1000</td><td></td><td>int </td></tr><tr><td> confidence</td><td>choice</td><td></td><td></td><td>0.001, 0.005,</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>0.01, 0.025,</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>0.05, 0.1,</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>0.25</td><td></td></tr><tr><td> feature_propo…</td><td>range</td><td>0</td><td>0.2</td><td></td><td>float </td></tr><tr><td> n_clusters</td><td>range</td><td>1</td><td>4</td><td></td><td>int </td></tr></tbody></table><br><h2>Number of evaluations:</h2>
<table>
<tbody>
<tr>
<th>Failed</th>
<th>Succeeded</th>
<th>Running</th>
<th>Total</th>
</tr>
<tr>
<td>263</td>
<td>228</td>
<td>11</td>
<td>502</td>
</tr>
</tbody>
</table>
<h1> Results</h1>
<div id='tab_results_csv_table'></div>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<pre id='tab_results_csv_table_pre'>trial_index,arm_name,trial_status,generation_method,result,n_samples,confidence,feature_proportion,n_clusters
0,0_0,COMPLETED,Sobol,0.841681424800347466330663337430,697,0.010000000000000000208166817117,0.054493993520736694335937500000,2
1,1_0,COMPLETED,Sobol,0.851505329635446228664363843563,531,0.050000000000000002775557561563,0.089709608070552351866133733438,3
2,2_0,COMPLETED,Sobol,0.848598255755672159494906736654,165,0.050000000000000002775557561563,0.133431331813335413150056751874,1
3,3_0,COMPLETED,Sobol,0.841714839442643802946975029045,970,0.005000000000000000104083408559,0.180374011769890790768400279376,1
4,4_0,COMPLETED,Sobol,0.841848498011828816345314407954,164,0.001000000000000000020816681712,0.050916207581758500533286593281,2
5,5_0,COMPLETED,Sobol,0.844855815818491673319101664674,880,0.250000000000000000000000000000,0.032522250898182392120361328125,4
6,6_0,COMPLETED,Sobol,0.841013131954422399338966442883,156,0.010000000000000000208166817117,0.064752514474093914031982421875,1
7,7_0,COMPLETED,Sobol,0.849333377886189788696924551914,743,0.005000000000000000104083408559,0.050803099945187571440108342813,4
8,8_0,COMPLETED,Sobol,0.847562401844488277902200934477,401,0.010000000000000000208166817117,0.017815119586884975433349609375,3
9,9_0,COMPLETED,Sobol,0.849433621813078465478952239209,612,0.050000000000000002775557561563,0.028564392961561681921756061797,4
10,10_0,COMPLETED,Sobol,0.861228990543656203193734199886,267,0.050000000000000002775557561563,0.136976843513548385278255636877,3
11,11_0,COMPLETED,Sobol,0.842483376215457546720699610887,903,0.001000000000000000020816681712,0.168821467645466349871696820628,4
12,12_0,COMPLETED,Sobol,0.841982156581013829743653786863,545,0.010000000000000000208166817117,0.014081121794879436839864617070,1
13,13_0,COMPLETED,Sobol,0.850736792862632373868336799205,129,0.005000000000000000104083408559,0.124128070846199992094405217813,4
14,14_0,COMPLETED,Sobol,0.848330938617302132698227978835,269,0.005000000000000000104083408559,0.022765718959271909194175265156,3
15,15_0,COMPLETED,Sobol,0.838941424132054636153554838529,218,0.001000000000000000020816681712,0.153062728978693496362240011877,1
16,16_0,COMPLETED,Sobol,0.843151669061382724734698967950,916,0.050000000000000002775557561563,0.003580087795853614807128906250,3
17,17_0,COMPLETED,Sobol,0.843218498345975175922717426147,701,0.010000000000000000208166817117,0.053518407605588437514487765156,2
18,18_0,COMPLETED,Sobol,0.848097036121228331495558450115,187,0.010000000000000000208166817117,0.168143008649349223748714621252,4
19,19_0,COMPLETED,Sobol,0.844388010826344070913762607233,856,0.005000000000000000104083408559,0.150274576433002959863216574377,2
20,20_0,COMPLETED,BoTorch,0.842048985865606280931672245060,281,0.001000000000000000020816681712,0.095511931688158177577996355012,1
21,21_0,COMPLETED,BoTorch,0.843920205834196579530726012308,462,0.001000000000000000020816681712,0.168500437375803557848996661050,1
22,22_0,COMPLETED,BoTorch,0.850436061081966121477648812288,100,0.001000000000000000020816681712,0.116121120229294508274797692593,1
23,23_0,COMPLETED,BoTorch,0.850436061081966121477648812288,100,0.001000000000000000020816681712,0.049297150296263164692689429103,1
24,24_0,COMPLETED,BoTorch,0.850436061081966121477648812288,100,0.001000000000000000020816681712,0.196277381682319645994638790398,1
25,25_0,COMPLETED,BoTorch,0.846125572225749356114476995572,514,0.001000000000000000020816681712,0.111283680291679329399379128063,1
26,26_0,FAILED,BoTorch,,1000,0.100000000000000005551115123126,0.000000000000000000000000000000,1
27,27_0,COMPLETED,BoTorch,0.838172887359240781357527794171,1000,0.001000000000000000020816681712,0.078333816082492915833235258560,1
28,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
29,29_0,FAILED,BoTorch,,100,0.001000000000000000020816681712,0.000000000000000000000000000000,1
30,30_0,COMPLETED,BoTorch,0.844454840110936633124083527946,411,0.001000000000000000020816681712,0.200000000000000011102230246252,1
31,31_0,COMPLETED,BoTorch,0.842483376215457546720699610887,1000,0.025000000000000001387778780781,0.082678555004395748451173631111,1
32,32_0,FAILED,BoTorch,,543,0.250000000000000000000000000000,0.000000000000000000000000000000,1
33,33_0,COMPLETED,BoTorch,0.836101179536873018172116189817,1000,0.050000000000000002775557561563,0.200000000000000011102230246252,1
34,34_0,COMPLETED,BoTorch,0.845290206168342939108129030501,100,0.001000000000000000020816681712,0.200000000000000011102230246252,2
35,35_0,COMPLETED,BoTorch,0.842884351923012697938020210131,1000,0.250000000000000000000000000000,0.116724986725779869556340884174,1
36,36_0,COMPLETED,BoTorch,0.844621913322417872116432135954,917,0.100000000000000005551115123126,0.039491857602488959766429132969,1
37,37_0,COMPLETED,BoTorch,0.840411668393089783535288006533,1000,0.001000000000000000020816681712,0.022693055889432149629936219526,2
38,38_0,FAILED,BoTorch,,100,0.100000000000000005551115123126,0.000000000000000000000000000000,1
39,39_0,COMPLETED,BoTorch,0.846559962575600621903504361399,491,0.001000000000000000020816681712,0.134851359300241835370570697705,1
40,40_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,2
41,41_0,COMPLETED,BoTorch,0.842249473719383856540332544682,391,0.001000000000000000020816681712,0.088530554386544446643370065431,1
42,42_0,FAILED,BoTorch,,626,0.250000000000000000000000000000,0.000000000000000000000000000000,1
43,29_0,FAILED,BoTorch,,100,0.001000000000000000020816681712,0.000000000000000000000000000000,1
44,44_0,COMPLETED,BoTorch,0.836836301667390647374134005076,988,0.050000000000000002775557561563,0.200000000000000011102230246252,2
45,45_0,COMPLETED,BoTorch,0.850135329301299869086960825371,236,0.005000000000000000104083408559,0.163511983093401397360011628734,1
46,46_0,COMPLETED,BoTorch,0.843118254419086499140689738852,947,0.001000000000000000020816681712,0.044674076127555001347602114947,1
47,47_0,COMPLETED,BoTorch,0.840612156246867359143948306155,1000,0.001000000000000000020816681712,0.150188058050470196747028239770,2
48,48_0,COMPLETED,BoTorch,0.842483376215457546720699610887,1000,0.025000000000000001387778780781,0.200000000000000011102230246252,1
49,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
50,50_0,COMPLETED,BoTorch,0.837972399505463316771169957065,1000,0.100000000000000005551115123126,0.200000000000000011102230246252,1
51,51_0,COMPLETED,BoTorch,0.843886791191900353936716783210,938,0.050000000000000002775557561563,0.200000000000000011102230246252,1
52,52_0,COMPLETED,BoTorch,0.842349717646272644344662694493,239,0.001000000000000000020816681712,0.196681510834082223793117805144,2
53,53_0,COMPLETED,BoTorch,0.847094596852340675496861877036,948,0.100000000000000005551115123126,0.200000000000000011102230246252,1
54,54_0,COMPLETED,BoTorch,0.837972399505463316771169957065,1000,0.100000000000000005551115123126,0.161267362247732248814457989283,1
55,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
56,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
57,57_0,COMPLETED,BoTorch,0.841948741938717493127342095249,1000,0.010000000000000000208166817117,0.122306006176385206885015577427,3
58,58_0,COMPLETED,BoTorch,0.838172887359240781357527794171,1000,0.001000000000000000020816681712,0.164751269798091320994970487845,1
59,59_0,COMPLETED,BoTorch,0.838039228790055767959188415261,1000,0.001000000000000000020816681712,0.200000000000000011102230246252,3
60,60_0,COMPLETED,BoTorch,0.849299963243893452080612860300,219,0.005000000000000000104083408559,0.093164711561329383027185713217,1
61,61_0,COMPLETED,BoTorch,0.841414107661977439533984579612,929,0.001000000000000000020816681712,0.001804314210812638617775771621,1
62,62_0,FAILED,BoTorch,,922,0.001000000000000000020816681712,0.000000000000000000000000000000,1
63,63_0,FAILED,BoTorch,,680,0.010000000000000000208166817117,0.000000000000000000000000000000,1
64,64_0,COMPLETED,BoTorch,0.840511912319978682361920618860,1000,0.005000000000000000104083408559,0.199963376911347967546106474401,3
65,65_0,COMPLETED,BoTorch,0.844822401176195447725092435576,1000,0.050000000000000002775557561563,0.136985669248943897624570809057,2
66,66_0,COMPLETED,BoTorch,0.842717278711531347923369139608,1000,0.100000000000000005551115123126,0.200000000000000011102230246252,3
67,67_0,COMPLETED,BoTorch,0.839877034116349729941930490895,1000,0.010000000000000000208166817117,0.120525135066867267186196954754,2
68,68_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.200000000000000011102230246252,2
69,69_0,COMPLETED,BoTorch,0.841514351588866227338314729423,1000,0.025000000000000001387778780781,0.196387355196368795784422900397,2
70,70_0,COMPLETED,BoTorch,0.839877034116349729941930490895,1000,0.010000000000000000208166817117,0.036178118103656724258154753215,2
71,71_0,COMPLETED,BoTorch,0.837671667724797064380481970147,1000,0.001000000000000000020816681712,0.041099193598007593974941187298,3
72,72_0,COMPLETED,BoTorch,0.841480936946570001744305500324,1000,0.025000000000000001387778780781,0.200000000000000011102230246252,3
73,73_0,COMPLETED,BoTorch,0.842550205500050108931020531600,1000,0.050000000000000002775557561563,0.137913496287657311167862417278,3
74,74_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.156104640761024149320235210325,3
75,75_0,FAILED,BoTorch,,759,0.001000000000000000020816681712,0.000000000000000000000000000000,1
76,76_0,COMPLETED,BoTorch,0.842683864069235122329359910509,1000,0.100000000000000005551115123126,0.132336088654343403403501611137,2
77,77_0,FAILED,BoTorch,,798,0.001000000000000000020816681712,0.000000000000000000000000000000,2
78,78_0,COMPLETED,BoTorch,0.840411668393089783535288006533,1000,0.001000000000000000020816681712,0.200000000000000011102230246252,2
79,79_0,COMPLETED,BoTorch,0.838172887359240781357527794171,1000,0.001000000000000000020816681712,0.200000000000000011102230246252,1
80,80_0,FAILED,BoTorch,,613,0.001000000000000000020816681712,0.000000000000000000000000000000,1
81,81_0,COMPLETED,BoTorch,0.840612156246867359143948306155,1000,0.001000000000000000020816681712,0.095136665646274654051239849650,2
82,82_0,FAILED,BoTorch,,643,0.050000000000000002775557561563,0.000000000000000000000000000000,1
83,83_0,COMPLETED,BoTorch,0.842216059077087519924020853068,1000,0.025000000000000001387778780781,0.200000000000000011102230246252,4
84,84_0,COMPLETED,BoTorch,0.842149229792495068736002394871,853,0.001000000000000000020816681712,0.200000000000000011102230246252,2
85,85_0,FAILED,BoTorch,,1000,0.010000000000000000208166817117,0.000000000000000000000000000000,1
86,86_0,COMPLETED,BoTorch,0.839542887693387251957233274879,1000,0.005000000000000000104083408559,0.125480464875883351849594760097,1
87,87_0,COMPLETED,BoTorch,0.838172887359240781357527794171,1000,0.001000000000000000020816681712,0.120728018491730412775631009481,1
88,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
89,89_0,COMPLETED,BoTorch,0.839108497343535875145903446537,1000,0.001000000000000000020816681712,0.111585437177154703225490095519,3
90,90_0,FAILED,BoTorch,,736,0.001000000000000000020816681712,0.000000000000000000000000000000,1
91,91_0,FAILED,BoTorch,,742,0.025000000000000001387778780781,0.000000000000000000000000000000,1
92,92_0,COMPLETED,BoTorch,0.840946302669829948150947984686,1000,0.001000000000000000020816681712,0.102829485131717024426478701571,4
93,93_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,3
94,94_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,2
95,95_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,3
96,96_0,COMPLETED,BoTorch,0.840612156246867359143948306155,1000,0.001000000000000000020816681712,0.200000000000000011102230246252,4
97,97_0,FAILED,BoTorch,,639,0.001000000000000000020816681712,0.000000000000000000000000000000,1
98,98_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,4
99,99_0,COMPLETED,BoTorch,0.836869716309686872968143234175,1000,0.001000000000000000020816681712,0.157408464426212507669688989154,4
100,100_0,COMPLETED,BoTorch,0.841915327296421267533332866151,1000,0.025000000000000001387778780781,0.121584838410418255572054135882,4
101,101_0,RUNNING,BoTorch,,990,0.050000000000000002775557561563,0.200000000000000011102230246252,1
102,102_0,COMPLETED,BoTorch,0.842416546930865095532681152690,977,0.050000000000000002775557561563,0.200000000000000011102230246252,2
103,103_0,COMPLETED,BoTorch,0.842282888361680082134341773781,978,0.025000000000000001387778780781,0.200000000000000011102230246252,2
104,104_0,COMPLETED,BoTorch,0.841881912654125041939323637052,977,0.050000000000000002775557561563,0.200000000000000011102230246252,3
105,105_0,FAILED,BoTorch,,987,0.001000000000000000020816681712,0.000000000000000000000000000000,3
106,106_0,COMPLETED,BoTorch,0.846727035787081860895852969406,985,0.001000000000000000020816681712,0.200000000000000011102230246252,4
107,107_0,COMPLETED,BoTorch,0.837671667724797064380481970147,987,0.050000000000000002775557561563,0.200000000000000011102230246252,1
108,108_0,COMPLETED,BoTorch,0.845256791526046713514119801403,974,0.010000000000000000208166817117,0.035122731151610186994815876460,2
109,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
110,110_0,COMPLETED,BoTorch,0.839977278043238517746260640706,978,0.100000000000000005551115123126,0.200000000000000011102230246252,2
111,111_0,COMPLETED,BoTorch,0.844488254753232858718092757044,974,0.025000000000000001387778780781,0.112830492604275980927930334019,3
112,112_0,COMPLETED,BoTorch,0.844755571891602885514771514863,981,0.001000000000000000020816681712,0.200000000000000011102230246252,3
113,113_0,COMPLETED,BoTorch,0.852507768904333884663060416642,670,0.010000000000000000208166817117,0.065467168958601135164698803237,2
114,114_0,COMPLETED,BoTorch,0.849868012162929842290282067552,973,0.005000000000000000104083408559,0.200000000000000011102230246252,3
115,115_0,COMPLETED,BoTorch,0.847061182210044449902852647938,677,0.010000000000000000208166817117,0.064885476415393231186534706012,1
116,116_0,COMPLETED,BoTorch,0.842015571223310055337663015962,202,0.001000000000000000020816681712,0.200000000000000011102230246252,1
117,117_0,COMPLETED,BoTorch,0.837170448090353236381133683608,899,0.001000000000000000020816681712,0.145199366594284118292534913053,1
118,118_0,COMPLETED,BoTorch,0.840779229458348709158599376678,332,0.001000000000000000020816681712,0.101228831414884881678695194296,1
119,98_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,4
120,120_0,COMPLETED,BoTorch,0.842850937280716472344010981033,909,0.010000000000000000208166817117,0.104310504741430179476147088735,1
121,121_0,COMPLETED,BoTorch,0.838774350920573397161206230521,889,0.001000000000000000020816681712,0.009651100271967950894325127820,1
122,122_0,COMPLETED,BoTorch,0.842282888361680082134341773781,662,0.001000000000000000020816681712,0.083601222593334148514010450981,1
123,123_0,FAILED,BoTorch,,573,0.001000000000000000020816681712,0.000000000000000000000000000000,1
124,124_0,FAILED,BoTorch,,902,0.005000000000000000104083408559,0.000000000000000000000000000000,4
125,125_0,FAILED,BoTorch,,900,0.010000000000000000208166817117,0.000000000000000000000000000000,1
126,126_0,COMPLETED,BoTorch,0.851572158920038790874684764276,680,0.005000000000000000104083408559,0.200000000000000011102230246252,1
127,127_0,COMPLETED,BoTorch,0.838540448424499595958536701801,920,0.005000000000000000104083408559,0.200000000000000011102230246252,1
128,128_0,COMPLETED,BoTorch,0.845925084371971780505816695950,319,0.001000000000000000020816681712,0.200000000000000011102230246252,1
129,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
130,130_0,COMPLETED,BoTorch,0.838607277709092158168857622513,1000,0.001000000000000000020816681712,0.050536297826837009439238102004,4
131,131_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.200000000000000011102230246252,4
132,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
133,133_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.082610991424067137245401681866,4
134,134_0,FAILED,BoTorch,,682,0.001000000000000000020816681712,0.000000000000000000000000000000,1
135,135_0,FAILED,BoTorch,,1000,0.010000000000000000208166817117,0.000000000000000000000000000000,4
136,136_0,COMPLETED,BoTorch,0.842884351923012697938020210131,1000,0.250000000000000000000000000000,0.200000000000000011102230246252,1
137,137_0,FAILED,BoTorch,,653,0.250000000000000000000000000000,0.000000000000000000000000000000,1
138,131_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.200000000000000011102230246252,4
139,139_0,FAILED,BoTorch,,412,0.001000000000000000020816681712,0.000000000000000000000000000000,1
140,140_0,COMPLETED,BoTorch,0.845524108664416740310798559221,800,0.001000000000000000020816681712,0.031895402522216786955766565370,1
141,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
142,142_0,FAILED,BoTorch,,648,0.001000000000000000020816681712,0.000000000000000000000000000000,1
143,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
144,144_0,FAILED,BoTorch,,744,0.001000000000000000020816681712,0.000000000000000000000000000000,1
145,145_0,FAILED,BoTorch,,944,0.001000000000000000020816681712,0.000000000000000000000000000000,3
146,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
147,147_0,COMPLETED,BoTorch,0.843385571557456525937368496670,827,0.250000000000000000000000000000,0.200000000000000011102230246252,4
148,135_0,FAILED,BoTorch,,1000,0.010000000000000000208166817117,0.000000000000000000000000000000,4
149,149_0,FAILED,BoTorch,,483,0.001000000000000000020816681712,0.000000000000000000000000000000,1
150,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
151,95_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,3
152,152_0,FAILED,BoTorch,,421,0.001000000000000000020816681712,0.000000000000000000000000000000,1
153,153_0,FAILED,BoTorch,,852,0.001000000000000000020816681712,0.000000000000000000000000000000,2
154,154_0,FAILED,BoTorch,,679,0.250000000000000000000000000000,0.000000000000000000000000000000,1
155,155_0,FAILED,BoTorch,,490,0.250000000000000000000000000000,0.000000000000000000000000000000,1
156,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
157,157_0,FAILED,BoTorch,,419,0.001000000000000000020816681712,0.000000000000000000000000000000,1
158,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
159,135_0,FAILED,BoTorch,,1000,0.010000000000000000208166817117,0.000000000000000000000000000000,4
160,160_0,COMPLETED,BoTorch,0.838674106993684609356876080710,1000,0.001000000000000000020816681712,0.079668850794297974005075957393,3
161,161_0,COMPLETED,BoTorch,0.843218498345975175922717426147,1000,0.005000000000000000104083408559,0.031497912163918916073068743344,4
162,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
163,163_0,FAILED,BoTorch,,454,0.001000000000000000020816681712,0.000000000000000000000000000000,2
164,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
165,165_0,RUNNING,BoTorch,,1000,0.250000000000000000000000000000,0.140743753073893668181781890780,4
166,166_0,FAILED,BoTorch,,965,0.025000000000000001387778780781,0.000000000000000000000000000000,3
167,93_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,3
168,168_0,FAILED,BoTorch,,1000,0.025000000000000001387778780781,0.000000000000000000000000000000,4
169,135_0,FAILED,BoTorch,,1000,0.010000000000000000208166817117,0.000000000000000000000000000000,4
170,95_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,3
171,98_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,4
172,172_0,COMPLETED,BoTorch,0.843719717980419003922065712686,1000,0.010000000000000000208166817117,0.072570910156620455078169129592,4
173,173_0,COMPLETED,BoTorch,0.842683864069235122329359910509,1000,0.010000000000000000208166817117,0.200000000000000011102230246252,1
174,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
175,152_0,FAILED,BoTorch,,421,0.001000000000000000020816681712,0.000000000000000000000000000000,1
176,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
177,177_0,FAILED,BoTorch,,100,0.250000000000000000000000000000,0.000000000000000000000000000000,1
178,95_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,3
179,179_0,FAILED,BoTorch,,640,0.250000000000000000000000000000,0.000000000000000000000000000000,1
180,180_0,FAILED,BoTorch,,510,0.001000000000000000020816681712,0.000000000000000000000000000000,1
181,181_0,COMPLETED,BoTorch,0.838172887359240781357527794171,1000,0.001000000000000000020816681712,0.145277293813302343927773563337,1
182,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
183,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
184,184_0,COMPLETED,BoTorch,0.840612156246867359143948306155,1000,0.001000000000000000020816681712,0.079814653597244183957926111361,2
185,185_0,FAILED,BoTorch,,465,0.250000000000000000000000000000,0.000000000000000000000000000000,1
186,186_0,FAILED,BoTorch,,224,0.250000000000000000000000000000,0.000000000000000000000000000000,1
187,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
188,188_0,COMPLETED,BoTorch,0.841748254084940028540984258143,1000,0.001000000000000000020816681712,0.058638395449828718819507145099,4
189,189_0,FAILED,BoTorch,,246,0.250000000000000000000000000000,0.000000000000000000000000000000,1
190,190_0,FAILED,BoTorch,,408,0.001000000000000000020816681712,0.000000000000000000000000000000,1
191,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
192,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
193,193_0,FAILED,BoTorch,,670,0.250000000000000000000000000000,0.000000000000000000000000000000,1
194,194_0,FAILED,BoTorch,,455,0.001000000000000000020816681712,0.000000000000000000000000000000,1
195,28_0,RUNNING,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
196,196_0,FAILED,BoTorch,,559,0.001000000000000000020816681712,0.000000000000000000000000000000,1
197,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
198,198_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,3
199,95_0,RUNNING,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,3
200,200_0,FAILED,BoTorch,,424,0.001000000000000000020816681712,0.000000000000000000000000000000,1
201,177_0,FAILED,BoTorch,,100,0.250000000000000000000000000000,0.000000000000000000000000000000,1
202,40_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,2
203,85_0,FAILED,BoTorch,,1000,0.010000000000000000208166817117,0.000000000000000000000000000000,1
204,204_0,FAILED,BoTorch,,353,0.001000000000000000020816681712,0.000000000000000000000000000000,1
205,205_0,COMPLETED,BoTorch,0.858522404517659598610634930083,356,0.250000000000000000000000000000,0.010170518095815836087658645681,1
206,206_0,FAILED,BoTorch,,407,0.250000000000000000000000000000,0.000000000000000000000000000000,1
207,207_0,FAILED,BoTorch,,403,0.001000000000000000020816681712,0.000000000000000000000000000000,1
208,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
209,209_0,FAILED,BoTorch,,416,0.001000000000000000020816681712,0.000000000000000000000000000000,1
210,95_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,3
211,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
212,198_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,3
213,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
214,214_0,FAILED,BoTorch,,1000,0.050000000000000002775557561563,0.000000000000000000000000000000,1
215,215_0,FAILED,BoTorch,,719,0.250000000000000000000000000000,0.000000000000000000000000000000,1
216,216_0,COMPLETED,BoTorch,0.846626791860193073091522819595,812,0.250000000000000000000000000000,0.200000000000000011102230246252,1
217,217_0,FAILED,BoTorch,,806,0.250000000000000000000000000000,0.000000000000000000000000000000,1
218,218_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,2
219,219_0,COMPLETED,BoTorch,0.846125572225749356114476995572,551,0.010000000000000000208166817117,0.021834769656869645881869246296,1
220,220_0,COMPLETED,BoTorch,0.845423864737527952506468409410,742,0.250000000000000000000000000000,0.148382318208447216978385085895,1
221,221_0,COMPLETED,BoTorch,0.839977278043238517746260640706,911,0.001000000000000000020816681712,0.190363033361253264352797032188,1
222,222_0,COMPLETED,BoTorch,0.840278009823904881159251090139,904,0.001000000000000000020816681712,0.072089437293909916504297541451,2
223,223_0,COMPLETED,BoTorch,0.842683864069235122329359910509,888,0.001000000000000000020816681712,0.200000000000000011102230246252,1
224,224_0,COMPLETED,BoTorch,0.839442643766498464152903125068,904,0.001000000000000000020816681712,0.049333454538326923510815902318,1
225,225_0,COMPLETED,BoTorch,0.842784107996123910133690060320,893,0.001000000000000000020816681712,0.200000000000000011102230246252,2
226,226_0,COMPLETED,BoTorch,0.838440204497610919176509014505,915,0.001000000000000000020816681712,0.200000000000000011102230246252,2
227,227_0,COMPLETED,BoTorch,0.840445083035386120151599698147,354,0.001000000000000000020816681712,0.022174112886802592459201122210,1
228,228_0,COMPLETED,BoTorch,0.842583620142346445547332223214,355,0.001000000000000000020816681712,0.200000000000000011102230246252,1
229,229_0,COMPLETED,BoTorch,0.840511912319978682361920618860,988,0.001000000000000000020816681712,0.142672710143254860559736130199,1
230,230_0,COMPLETED,BoTorch,0.850135329301299869086960825371,349,0.001000000000000000020816681712,0.015762747529365114806942926862,2
231,231_0,COMPLETED,BoTorch,0.842583620142346445547332223214,981,0.250000000000000000000000000000,0.200000000000000011102230246252,3
232,232_0,COMPLETED,BoTorch,0.839609716977979703145251733076,901,0.005000000000000000104083408559,0.091054695575964281206715611461,2
233,233_0,COMPLETED,BoTorch,0.847929962909747092503209842107,353,0.005000000000000000104083408559,0.140399676928489897109741946224,1
234,234_0,COMPLETED,BoTorch,0.840278009823904881159251090139,930,0.001000000000000000020816681712,0.200000000000000011102230246252,1
235,235_0,FAILED,BoTorch,,333,0.001000000000000000020816681712,0.000000000000000000000000000000,3
236,236_0,COMPLETED,BoTorch,0.844321181541751619725744149036,921,0.005000000000000000104083408559,0.200000000000000011102230246252,3
237,237_0,FAILED,BoTorch,,358,0.001000000000000000020816681712,0.000000000000000000000000000000,3
238,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
239,239_0,FAILED,BoTorch,,869,0.001000000000000000020816681712,0.000000000000000000000000000000,1
240,240_0,COMPLETED,BoTorch,0.842182644434791294330011623970,974,0.250000000000000000000000000000,0.127576543277154758060376593676,4
241,241_0,COMPLETED,BoTorch,0.841146790523607412737305821793,920,0.001000000000000000020816681712,0.144808163674682910393443080466,1
242,242_0,FAILED,BoTorch,,713,0.025000000000000001387778780781,0.000000000000000000000000000000,1
243,243_0,COMPLETED,BoTorch,0.842784107996123910133690060320,348,0.001000000000000000020816681712,0.055481838679636158451202732067,4
244,244_0,COMPLETED,BoTorch,0.843185083703678950328708197048,899,0.025000000000000001387778780781,0.200000000000000011102230246252,4
245,245_0,FAILED,BoTorch,,644,0.001000000000000000020816681712,0.000000000000000000000000000000,1
246,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
247,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
248,248_0,COMPLETED,BoTorch,0.840411668393089783535288006533,1000,0.001000000000000000020816681712,0.120948394532869235584726652633,2
249,249_0,COMPLETED,BoTorch,0.845323620810639164702138259599,690,0.250000000000000000000000000000,0.200000000000000011102230246252,4
250,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
251,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
252,252_0,FAILED,BoTorch,,1000,0.050000000000000002775557561563,0.000000000000000000000000000000,4
253,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
254,254_0,FAILED,BoTorch,,717,0.001000000000000000020816681712,0.000000000000000000000000000000,1
255,255_0,FAILED,BoTorch,,924,0.005000000000000000104083408559,0.000000000000000000000000000000,1
256,256_0,FAILED,BoTorch,,832,0.025000000000000001387778780781,0.000000000000000000000000000000,1
257,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
258,258_0,FAILED,BoTorch,,1000,0.100000000000000005551115123126,0.000000000000000000000000000000,4
259,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
260,260_0,FAILED,BoTorch,,953,0.001000000000000000020816681712,0.000000000000000000000000000000,3
261,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
262,262_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.155225728258488848698704032358,2
263,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
264,264_0,FAILED,BoTorch,,523,0.001000000000000000020816681712,0.000000000000000000000000000000,1
265,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
266,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
267,252_0,FAILED,BoTorch,,1000,0.050000000000000002775557561563,0.000000000000000000000000000000,4
268,260_0,FAILED,BoTorch,,953,0.001000000000000000020816681712,0.000000000000000000000000000000,3
269,269_0,COMPLETED,BoTorch,0.844020449761085256312753699603,901,0.050000000000000002775557561563,0.007906343953206008620671063625,3
270,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
271,271_0,FAILED,BoTorch,,991,0.100000000000000005551115123126,0.000000000000000000000000000000,3
272,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
273,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
274,274_0,FAILED,BoTorch,,632,0.001000000000000000020816681712,0.000000000000000000000000000000,1
275,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
276,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
277,277_0,FAILED,BoTorch,,893,0.005000000000000000104083408559,0.000000000000000000000000000000,1
278,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
279,279_0,FAILED,BoTorch,,863,0.010000000000000000208166817117,0.000000000000000000000000000000,1
280,280_0,FAILED,BoTorch,,506,0.001000000000000000020816681712,0.000000000000000000000000000000,1
281,281_0,COMPLETED,BoTorch,0.853343134961740190647105919197,327,0.001000000000000000020816681712,0.200000000000000011102230246252,4
282,258_0,FAILED,BoTorch,,1000,0.100000000000000005551115123126,0.000000000000000000000000000000,4
283,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
284,284_0,FAILED,BoTorch,,643,0.001000000000000000020816681712,0.000000000000000000000000000000,1
285,285_0,FAILED,BoTorch,,538,0.001000000000000000020816681712,0.000000000000000000000000000000,4
286,286_0,FAILED,BoTorch,,560,0.001000000000000000020816681712,0.000000000000000000000000000000,1
287,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
288,218_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,2
289,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
290,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
291,291_0,COMPLETED,BoTorch,0.844621913322417872116432135954,917,0.100000000000000005551115123126,0.039495576573283820709381330971,1
292,40_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,2
293,88_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,4
294,294_0,FAILED,BoTorch,,452,0.001000000000000000020816681712,0.000000000000000000000000000000,1
295,295_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.250000000000000000000000000000,0.117482891287608026686939410865,3
296,296_0,COMPLETED,BoTorch,0.840812644100644934752608605777,1000,0.100000000000000005551115123126,0.200000000000000011102230246252,4
297,297_0,COMPLETED,BoTorch,0.843753132622715229516074941785,359,0.001000000000000000020816681712,0.024196096071949932393430060529,1
298,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
299,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
300,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
301,301_0,COMPLETED,BoTorch,0.842182644434791294330011623970,1000,0.100000000000000005551115123126,0.118353408697022405293708402496,4
302,302_0,COMPLETED,BoTorch,0.840110936612423531144600019616,995,0.050000000000000002775557561563,0.200000000000000011102230246252,1
303,303_0,COMPLETED,BoTorch,0.837170448090353236381133683608,896,0.005000000000000000104083408559,0.013358932732360865106024938598,1
304,304_0,COMPLETED,BoTorch,0.845858255087379329317798237753,913,0.005000000000000000104083408559,0.200000000000000011102230246252,2
305,305_0,FAILED,BoTorch,,895,0.001000000000000000020816681712,0.000000000000000000000000000000,1
306,306_0,COMPLETED,BoTorch,0.842483376215457546720699610887,929,0.005000000000000000104083408559,0.200000000000000011102230246252,1
307,307_0,COMPLETED,BoTorch,0.840311424466201106753260319238,932,0.010000000000000000208166817117,0.200000000000000011102230246252,1
308,308_0,COMPLETED,BoTorch,0.838005814147759542365179186163,217,0.001000000000000000020816681712,0.200000000000000011102230246252,2
309,309_0,COMPLETED,BoTorch,0.838807765562869622755215459620,903,0.005000000000000000104083408559,0.200000000000000011102230246252,1
310,310_0,COMPLETED,BoTorch,0.841648010158051240736654108332,996,0.050000000000000002775557561563,0.200000000000000011102230246252,1
311,311_0,COMPLETED,BoTorch,0.842015571223310055337663015962,924,0.005000000000000000104083408559,0.200000000000000011102230246252,2
312,312_0,COMPLETED,BoTorch,0.837471179871019488771821670525,158,0.001000000000000000020816681712,0.008219790664827255136093420163,1
313,313_0,COMPLETED,BoTorch,0.837270692017241913163161370903,165,0.005000000000000000104083408559,0.140777008799616937251286685751,1
314,314_0,FAILED,BoTorch,,991,0.005000000000000000104083408559,0.000000000000000000000000000000,1
315,315_0,FAILED,BoTorch,,987,0.100000000000000005551115123126,0.000000000000000000000000000000,4
316,316_0,COMPLETED,BoTorch,0.843084839776790162524378047237,986,0.100000000000000005551115123126,0.184930903161941134760226645994,4
317,317_0,COMPLETED,BoTorch,0.830287031777324768810899513483,164,0.001000000000000000020816681712,0.084980383925100724806789287413,1
318,318_0,RUNNING,BoTorch,,165,0.005000000000000000104083408559,0.029829687685756223203270565136,1
319,319_0,COMPLETED,BoTorch,0.840445083035386120151599698147,159,0.001000000000000000020816681712,0.123440122463064183566672227244,1
320,320_0,FAILED,BoTorch,,885,0.005000000000000000104083408559,0.000000000000000000000000000000,1
321,321_0,COMPLETED,BoTorch,0.831356300330804987019917007274,168,0.001000000000000000020816681712,0.040692450743706837235080797655,1
322,322_0,FAILED,BoTorch,,874,0.001000000000000000020816681712,0.000000000000000000000000000000,3
323,323_0,COMPLETED,BoTorch,0.840511912319978682361920618860,175,0.001000000000000000020816681712,0.002339118748376654757098469517,1
324,324_0,FAILED,BoTorch,,723,0.025000000000000001387778780781,0.000000000000000000000000000000,1
325,325_0,COMPLETED,BoTorch,0.838005814147759542365179186163,156,0.005000000000000000104083408559,0.083567982087696418558309119362,1
326,326_0,FAILED,BoTorch,,861,0.001000000000000000020816681712,0.000000000000000000000000000000,4
327,327_0,COMPLETED,BoTorch,0.828649714304808382436817737471,169,0.001000000000000000020816681712,0.100332095958836395310775913003,1
328,328_0,FAILED,BoTorch,,886,0.005000000000000000104083408559,0.000000000000000000000000000000,2
329,329_0,FAILED,BoTorch,,716,0.050000000000000002775557561563,0.000000000000000000000000000000,2
330,330_0,FAILED,BoTorch,,730,0.010000000000000000208166817117,0.000000000000000000000000000000,1
331,331_0,COMPLETED,BoTorch,0.842216059077087519924020853068,986,0.100000000000000005551115123126,0.200000000000000011102230246252,1
332,332_0,FAILED,BoTorch,,877,0.010000000000000000208166817117,0.000000000000000000000000000000,1
333,333_0,COMPLETED,BoTorch,0.834363618137467843993704263994,172,0.001000000000000000020816681712,0.084898414484966266968513082247,1
334,334_0,FAILED,BoTorch,,873,0.001000000000000000020816681712,0.000000000000000000000000000000,3
335,335_0,COMPLETED,BoTorch,0.843786547265011566132386633399,889,0.005000000000000000104083408559,0.008676660294084570165806802322,3
336,336_0,COMPLETED,BoTorch,0.834363618137467843993704263994,172,0.001000000000000000020816681712,0.085852013275284078108740004609,1
337,337_0,FAILED,BoTorch,,872,0.005000000000000000104083408559,0.000000000000000000000000000000,2
338,338_0,FAILED,BoTorch,,711,0.001000000000000000020816681712,0.000000000000000000000000000000,1
339,339_0,FAILED,BoTorch,,863,0.025000000000000001387778780781,0.000000000000000000000000000000,1
340,340_0,FAILED,BoTorch,,875,0.001000000000000000020816681712,0.000000000000000000000000000000,4
341,341_0,FAILED,BoTorch,,871,0.010000000000000000208166817117,0.000000000000000000000000000000,2
342,342_0,FAILED,BoTorch,,897,0.001000000000000000020816681712,0.000000000000000000000000000000,4
343,343_0,COMPLETED,BoTorch,0.837571423797908276576151820336,171,0.001000000000000000020816681712,0.085041675570839858622207430017,1
344,344_0,FAILED,BoTorch,,852,0.050000000000000002775557561563,0.000000000000000000000000000000,1
345,345_0,FAILED,BoTorch,,871,0.025000000000000001387778780781,0.000000000000000000000000000000,1
346,346_0,FAILED,BoTorch,,859,0.001000000000000000020816681712,0.000000000000000000000000000000,1
347,347_0,COMPLETED,BoTorch,0.843686303338122778328056483588,933,0.100000000000000005551115123126,0.054333929002806674590786428780,1
348,332_0,FAILED,BoTorch,,877,0.010000000000000000208166817117,0.000000000000000000000000000000,1
349,349_0,COMPLETED,BoTorch,0.843251912988271401516726655245,851,0.025000000000000001387778780781,0.040025767910441205355009941513,1
350,350_0,COMPLETED,BoTorch,0.843385571557456525937368496670,831,0.025000000000000001387778780781,0.101709554600000778856738747891,1
351,338_0,FAILED,BoTorch,,711,0.001000000000000000020816681712,0.000000000000000000000000000000,1
352,352_0,COMPLETED,BoTorch,0.840912888027533611534636293072,853,0.025000000000000001387778780781,0.028619189780432263692233618713,1
353,353_0,FAILED,BoTorch,,873,0.005000000000000000104083408559,0.000000000000000000000000000000,1
354,354_0,FAILED,BoTorch,,732,0.010000000000000000208166817117,0.000000000000000000000000000000,1
355,355_0,RUNNING,BoTorch,,847,0.010000000000000000208166817117,0.110757259339255800800749796053,1
356,356_0,FAILED,BoTorch,,857,0.050000000000000002775557561563,0.000000000000000000000000000000,1
357,357_0,FAILED,BoTorch,,859,0.250000000000000000000000000000,0.000000000000000000000000000000,1
358,358_0,FAILED,BoTorch,,877,0.001000000000000000020816681712,0.000000000000000000000000000000,1
359,359_0,FAILED,BoTorch,,771,0.250000000000000000000000000000,0.000000000000000000000000000000,4
360,360_0,FAILED,BoTorch,,738,0.010000000000000000208166817117,0.000000000000000000000000000000,1
361,361_0,FAILED,BoTorch,,765,0.100000000000000005551115123126,0.000000000000000000000000000000,3
362,362_0,FAILED,BoTorch,,714,0.001000000000000000020816681712,0.000000000000000000000000000000,1
363,363_0,COMPLETED,BoTorch,0.842850937280716472344010981033,742,0.005000000000000000104083408559,0.055052424409314459907704986108,1
364,364_0,FAILED,BoTorch,,606,0.001000000000000000020816681712,0.000000000000000000000000000000,1
365,365_0,FAILED,BoTorch,,751,0.025000000000000001387778780781,0.000000000000000000000000000000,2
366,366_0,COMPLETED,BoTorch,0.861228990543656203193734199886,100,0.250000000000000000000000000000,0.200000000000000011102230246252,4
367,367_0,FAILED,BoTorch,,733,0.050000000000000002775557561563,0.000000000000000000000000000000,1
368,368_0,FAILED,BoTorch,,719,0.010000000000000000208166817117,0.000000000000000000000000000000,1
369,369_0,COMPLETED,BoTorch,0.846292645437230595106825603580,737,0.025000000000000001387778780781,0.038154239066357273357787960322,1
370,370_0,FAILED,BoTorch,,754,0.050000000000000002775557561563,0.000000000000000000000000000000,2
371,371_0,COMPLETED,BoTorch,0.861228990543656203193734199886,100,0.250000000000000000000000000000,0.200000000000000011102230246252,3
372,372_0,FAILED,BoTorch,,761,0.050000000000000002775557561563,0.000000000000000000000000000000,1
373,373_0,FAILED,BoTorch,,703,0.001000000000000000020816681712,0.000000000000000000000000000000,1
374,374_0,COMPLETED,BoTorch,0.834363618137467843993704263994,172,0.001000000000000000020816681712,0.090442087505985466200364442102,1
375,375_0,FAILED,BoTorch,,769,0.250000000000000000000000000000,0.000000000000000000000000000000,4
376,376_0,COMPLETED,BoTorch,0.845323620810639164702138259599,760,0.250000000000000000000000000000,0.071603655009983099843928755490,4
377,377_0,FAILED,BoTorch,,434,0.001000000000000000020816681712,0.000000000000000000000000000000,1
378,378_0,FAILED,BoTorch,,863,0.001000000000000000020816681712,0.000000000000000000000000000000,1
379,379_0,FAILED,BoTorch,,443,0.001000000000000000020816681712,0.000000000000000000000000000000,3
380,380_0,COMPLETED,BoTorch,0.844254352257159057515423228324,436,0.001000000000000000020816681712,0.000000000000000000298907180617,1
381,381_0,COMPLETED,BoTorch,0.849934841447522293478300525749,763,0.100000000000000005551115123126,0.035206496838175102559453932827,3
382,382_0,COMPLETED,BoTorch,0.846593377217896847497513590497,738,0.025000000000000001387778780781,0.036793639676769289426072617744,1
383,383_0,COMPLETED,BoTorch,0.850770207504928599462346028304,422,0.001000000000000000020816681712,0.044328048130094027667880141053,2
384,384_0,FAILED,BoTorch,,445,0.001000000000000000020816681712,0.000000000000000000000000000000,4
385,385_0,FAILED,BoTorch,,602,0.001000000000000000020816681712,0.000000000000000000000000000000,1
386,386_0,FAILED,BoTorch,,576,0.001000000000000000020816681712,0.000000000000000000000000000000,4
387,387_0,FAILED,BoTorch,,616,0.001000000000000000020816681712,0.000000000000000000000000000000,3
388,388_0,FAILED,BoTorch,,858,0.001000000000000000020816681712,0.000000000000000000000000000000,1
389,389_0,FAILED,BoTorch,,572,0.001000000000000000020816681712,0.000000000000000000000000000000,2
390,390_0,FAILED,BoTorch,,842,0.001000000000000000020816681712,0.000000000000000000000000000000,4
391,391_0,COMPLETED,BoTorch,0.851271427139372427461694314843,597,0.001000000000000000020816681712,0.031408823450167593083204309323,4
392,392_0,FAILED,BoTorch,,538,0.001000000000000000020816681712,0.000000000000000000000000000000,3
393,393_0,FAILED,BoTorch,,545,0.001000000000000000020816681712,0.000000000000000000000000000000,4
394,394_0,FAILED,BoTorch,,543,0.001000000000000000020816681712,0.000000000000000000000000000000,3
395,395_0,FAILED,BoTorch,,868,0.001000000000000000020816681712,0.000000000000000000000000000000,1
396,396_0,FAILED,BoTorch,,844,0.001000000000000000020816681712,0.000000000000000000000000000000,4
397,397_0,FAILED,BoTorch,,859,0.001000000000000000020816681712,0.000000000000000000000000000000,3
398,398_0,COMPLETED,BoTorch,0.845824840445082992701486546139,839,0.005000000000000000104083408559,0.068559442791628247282353925129,4
399,373_0,FAILED,BoTorch,,703,0.001000000000000000020816681712,0.000000000000000000000000000000,1
400,400_0,FAILED,BoTorch,,860,0.001000000000000000020816681712,0.000000000000000000000000000000,1
401,401_0,FAILED,BoTorch,,707,0.001000000000000000020816681712,0.000000000000000000000000000000,1
402,402_0,COMPLETED,BoTorch,0.854245330303739058841472342465,478,0.250000000000000000000000000000,0.200000000000000011102230246252,1
403,403_0,COMPLETED,BoTorch,0.843953620476492805124735241407,849,0.005000000000000000104083408559,0.044349552237808925747586386024,3
404,404_0,FAILED,BoTorch,,867,0.001000000000000000020816681712,0.000000000000000000000000000000,1
405,405_0,COMPLETED,BoTorch,0.844688742607010434326753056666,674,0.001000000000000000020816681712,0.009341796367090933472798752746,1
406,406_0,COMPLETED,BoTorch,0.847061182210044449902852647938,841,0.005000000000000000104083408559,0.068689304510479470833317350298,4
407,407_0,COMPLETED,BoTorch,0.846158986868045581708486224670,835,0.010000000000000000208166817117,0.200000000000000011102230246252,4
408,408_0,COMPLETED,BoTorch,0.844688742607010434326753056666,850,0.001000000000000000020816681712,0.067445689928380250788286787156,4
409,409_0,FAILED,BoTorch,,870,0.005000000000000000104083408559,0.000000000000000000000000000000,1
410,410_0,FAILED,BoTorch,,616,0.250000000000000000000000000000,0.000000000000000000000000000000,1
411,411_0,FAILED,BoTorch,,658,0.250000000000000000000000000000,0.000000000000000000000000000000,1
412,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
413,413_0,RUNNING,BoTorch,,977,0.001000000000000000020816681712,0.035353581424803895427722011391,1
414,414_0,FAILED,BoTorch,,688,0.250000000000000000000000000000,0.000000000000000000000000000000,1
415,415_0,FAILED,BoTorch,,647,0.250000000000000000000000000000,0.000000000000000000000000000000,1
416,416_0,RUNNING,BoTorch,,689,0.005000000000000000104083408559,0.088299343110396666389760866878,2
417,417_0,COMPLETED,BoTorch,0.851505329635446228664363843563,625,0.100000000000000005551115123126,0.046617598594046953663916355026,1
418,418_0,FAILED,BoTorch,,853,0.250000000000000000000000000000,0.000000000000000000000000000000,1
419,239_0,FAILED,BoTorch,,869,0.001000000000000000020816681712,0.000000000000000000000000000000,1
420,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
421,421_0,FAILED,BoTorch,,870,0.001000000000000000020816681712,0.000000000000000000000000000000,1
422,422_0,FAILED,BoTorch,,878,0.005000000000000000104083408559,0.000000000000000000000000000000,1
423,423_0,COMPLETED,BoTorch,0.839576302335683477551242503978,997,0.001000000000000000020816681712,0.151175894104641828086244004226,2
424,424_0,COMPLETED,BoTorch,0.834363618137467843993704263994,172,0.001000000000000000020816681712,0.091518382375551154961357269713,1
425,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
426,426_0,COMPLETED,BoTorch,0.839576302335683477551242503978,896,0.001000000000000000020816681712,0.064976667097237081338612085801,1
427,427_0,FAILED,BoTorch,,882,0.010000000000000000208166817117,0.000000000000000000000000000000,1
428,428_0,COMPLETED,BoTorch,0.854746549938182886840820629004,166,0.010000000000000000208166817117,0.007916691422013058185291889401,2
429,400_0,FAILED,BoTorch,,860,0.001000000000000000020816681712,0.000000000000000000000000000000,1
430,421_0,FAILED,BoTorch,,870,0.001000000000000000020816681712,0.000000000000000000000000000000,1
431,418_0,FAILED,BoTorch,,853,0.250000000000000000000000000000,0.000000000000000000000000000000,1
432,432_0,FAILED,BoTorch,,871,0.005000000000000000104083408559,0.000000000000000000000000000000,1
433,433_0,FAILED,BoTorch,,849,0.250000000000000000000000000000,0.000000000000000000000000000000,1
434,434_0,FAILED,BoTorch,,862,0.001000000000000000020816681712,0.000000000000000000000000000000,1
435,435_0,COMPLETED,BoTorch,0.837571423797908276576151820336,171,0.001000000000000000020816681712,0.081554789913772227083477162068,1
436,436_0,COMPLETED,BoTorch,0.845256791526046713514119801403,847,0.010000000000000000208166817117,0.110796472013699159875343980275,1
437,437_0,COMPLETED,BoTorch,0.845256791526046713514119801403,846,0.005000000000000000104083408559,0.073481745543256329900039247605,1
438,438_0,COMPLETED,BoTorch,0.844621913322417872116432135954,846,0.010000000000000000208166817117,0.119762452563734994592792304502,1
439,378_0,FAILED,BoTorch,,863,0.001000000000000000020816681712,0.000000000000000000000000000000,1
440,440_0,FAILED,BoTorch,,951,0.250000000000000000000000000000,0.000000000000000000000000000000,4
441,441_0,COMPLETED,BoTorch,0.847027767567748224308843418839,474,0.001000000000000000020816681712,0.200000000000000011102230246252,4
442,442_0,FAILED,BoTorch,,859,0.050000000000000002775557561563,0.000000000000000000000000000000,1
443,443_0,COMPLETED,BoTorch,0.841280449092792426135645200702,823,0.050000000000000002775557561563,0.054795325065888779436651390142,1
444,444_0,FAILED,BoTorch,,485,0.001000000000000000020816681712,0.000000000000000000000000000000,4
445,445_0,FAILED,BoTorch,,850,0.250000000000000000000000000000,0.000000000000000000000000000000,1
446,446_0,FAILED,BoTorch,,817,0.100000000000000005551115123126,0.000000000000000000000000000000,1
447,447_0,COMPLETED,BoTorch,0.844388010826344070913762607233,791,0.025000000000000001387778780781,0.061686006754933277174135497489,1
448,448_0,FAILED,BoTorch,,865,0.250000000000000000000000000000,0.000000000000000000000000000000,1
449,449_0,COMPLETED,BoTorch,0.841213619808199974947626742505,913,0.250000000000000000000000000000,0.200000000000000011102230246252,4
450,450_0,COMPLETED,BoTorch,0.844521669395529084312101986143,826,0.100000000000000005551115123126,0.024479787667490447711227119498,1
451,451_0,COMPLETED,BoTorch,0.844889230460787898913110893773,872,0.100000000000000005551115123126,0.087459538912774192898069713920,1
452,452_0,COMPLETED,BoTorch,0.845490694022120514716789330123,874,0.250000000000000000000000000000,0.142505053436539269595684231717,1
453,453_0,COMPLETED,BoTorch,0.839843619474053504347921261797,906,0.100000000000000005551115123126,0.122111802412221512326162553563,4
454,454_0,COMPLETED,BoTorch,0.829318007150733449428514632018,170,0.001000000000000000020816681712,0.082511324772335595256755880200,1
455,455_0,FAILED,BoTorch,,948,0.250000000000000000000000000000,0.000000000000000000000000000000,4
456,456_0,FAILED,BoTorch,,872,0.001000000000000000020816681712,0.000000000000000000000000000000,2
457,457_0,COMPLETED,BoTorch,0.843853376549604017320405091596,937,0.250000000000000000000000000000,0.032865611685334965297311526911,4
458,458_0,FAILED,BoTorch,,440,0.250000000000000000000000000000,0.000000000000000000000000000000,4
459,459_0,COMPLETED,BoTorch,0.852507768904333884663060416642,483,0.250000000000000000000000000000,0.138543368017125051450122441565,2
460,132_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,4
461,461_0,RUNNING,BoTorch,,917,0.250000000000000000000000000000,0.101099448492499285889856253107,4
462,462_0,FAILED,BoTorch,,958,0.250000000000000000000000000000,0.000000000000000000000000000000,4
463,463_0,COMPLETED,BoTorch,0.855782403849366768433526431181,419,0.250000000000000000000000000000,0.200000000000000011102230246252,4
464,464_0,COMPLETED,BoTorch,0.848364353259598358292237207934,744,0.001000000000000000020816681712,0.154140333250431804668068025421,2
465,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
466,466_0,COMPLETED,BoTorch,0.838239716643833343567848714883,995,0.001000000000000000020816681712,0.039936804951470949998082460297,1
467,467_0,COMPLETED,BoTorch,0.836635813813613182787776167970,992,0.001000000000000000020816681712,0.145731579467055089027738290497,2
468,468_0,COMPLETED,BoTorch,0.843285327630567738133038346859,587,0.001000000000000000020816681712,0.200000000000000011102230246252,1
469,469_0,FAILED,BoTorch,,592,0.001000000000000000020816681712,0.000000000000000000000000000000,1
470,470_0,FAILED,BoTorch,,578,0.001000000000000000020816681712,0.000000000000000000000000000000,1
471,471_0,COMPLETED,BoTorch,0.844655327964714097710441365052,764,0.001000000000000000020816681712,0.200000000000000011102230246252,1
472,472_0,COMPLETED,BoTorch,0.842048985865606280931672245060,620,0.001000000000000000020816681712,0.059614754602420799711737231519,1
473,473_0,COMPLETED,BoTorch,0.847295084706118251105522176658,569,0.001000000000000000020816681712,0.076344581826440008343048759798,1
474,474_0,FAILED,BoTorch,,591,0.001000000000000000020816681712,0.000000000000000000000000000000,1
475,475_0,COMPLETED,BoTorch,0.844020449761085256312753699603,553,0.005000000000000000104083408559,0.016882991409375016494953669621,1
476,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
477,477_0,COMPLETED,BoTorch,0.844922645103084235529422585387,597,0.001000000000000000020816681712,0.138171192439053180933683506737,1
478,478_0,FAILED,BoTorch,,627,0.005000000000000000104083408559,0.000000000000000000000000000000,1
479,479_0,FAILED,BoTorch,,482,0.025000000000000001387778780781,0.000000000000000000000000000000,1
480,480_0,COMPLETED,BoTorch,0.848364353259598358292237207934,536,0.025000000000000001387778780781,0.093540873183005385227417605165,1
481,28_0,FAILED,BoTorch,,1000,0.001000000000000000020816681712,0.000000000000000000000000000000,1
482,482_0,COMPLETED,BoTorch,0.840411668393089783535288006533,1000,0.001000000000000000020816681712,0.190977909933611328385794081441,2
483,79_0,COMPLETED,BoTorch,0.838172887359240781357527794171,1000,0.001000000000000000020816681712,0.200000000000000011102230246252,1
484,484_0,FAILED,BoTorch,,901,0.010000000000000000208166817117,0.000000000000000000000000000000,1
485,485_0,COMPLETED,BoTorch,0.843452400842048977125386954867,970,0.001000000000000000020816681712,0.054632609609757000479479671640,1
486,143_0,FAILED,BoTorch,,1000,0.250000000000000000000000000000,0.000000000000000000000000000000,1
487,487_0,FAILED,BoTorch,,933,0.001000000000000000020816681712,0.000000000000000000000000000000,4
488,56_0,FAILED,BoTorch,,1000,0.005000000000000000104083408559,0.000000000000000000000000000000,1
489,214_0,FAILED,BoTorch,,1000,0.050000000000000002775557561563,0.000000000000000000000000000000,1
490,490_0,COMPLETED,BoTorch,0.837504594513315714365830899624,901,0.010000000000000000208166817117,0.014863759215553230472184331745,1
491,491_0,FAILED,BoTorch,,934,0.001000000000000000020816681712,0.000000000000000000000000000000,4
492,492_0,FAILED,BoTorch,,1000,0.025000000000000001387778780781,0.000000000000000000000000000000,1
493,493_0,COMPLETED,BoTorch,0.842683864069235122329359910509,969,0.001000000000000000020816681712,0.041497825915564869048157703446,1
494,494_0,COMPLETED,BoTorch,0.845357035452935501318449951214,886,0.010000000000000000208166817117,0.050868498622799768194013836364,1
495,495_0,FAILED,BoTorch,,909,0.010000000000000000208166817117,0.000000000000000000000000000000,1
496,496_0,RUNNING,BoTorch,,1000,0.010000000000000000208166817117,0.089052782861047646845165104423,2
497,497_0,FAILED,BoTorch,,932,0.001000000000000000020816681712,0.000000000000000000000000000000,4
498,498_0,COMPLETED,BoTorch,0.838507033782203370364527472702,1000,0.001000000000000000020816681712,0.050592622158597444492755812462,4
499,499_0,COMPLETED,BoTorch,0.845524108664416740310798559221,842,0.010000000000000000208166817117,0.118382806633066620105587674061,1
500,500_0,COMPLETED,BoTorch,0.841079961239014961549287363596,980,0.001000000000000000020816681712,0.130073246876293596718809908452,2
501,501_0,RUNNING,BoTorch,,980,0.001000000000000000020816681712,0.130061492637200015742848790978,2
</pre>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("tab_results_csv_table_pre")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("tab_results_csv_table_pre", "results.csv")'> Download »results.csv« as file</button>
<script>
createTable(tab_results_csv_json, tab_results_headers_json, 'tab_results_csv_table');</script>
<h1> Errors</h1>
<button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_errors")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_errors", "oo_errors.txt")'> Download »oo_errors.txt« as file</button>
<pre id='simple_pre_tab_tab_errors'><span style="background-color: black; color: white">
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328959/2328959_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328961/2328961_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328962/2328962_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(100, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328965/2328965_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 543 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(543, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328971/2328971_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.1 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(100, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328973/2328973_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328975/2328975_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 626 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(626, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328976/2328976_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(100, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328982/2328982_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328988/2328988_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328989/2328989_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328995/2328995_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 922 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(922, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2328996/2328996_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 680 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(680, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329009/2329009_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 759 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(759, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329011/2329011_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 798 confidence 0.001 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(798, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329014/2329014_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 613 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(613, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329016/2329016_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 643 confidence 0.05 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(643, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329019/2329019_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329026/2329026_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329034/2329034_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 736 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(736, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329037/2329037_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 742 confidence 0.025 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(742, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329039/2329039_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329040/2329040_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329048/2329048_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329056/2329056_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 639 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(639, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329062/2329062_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329099/2329099_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 987 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(987, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329103/2329103_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329113/2329113_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329117/2329117_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 573 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(573, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329118/2329118_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 902 confidence 0.005 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(902, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329119/2329119_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 900 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(900, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329123/2329123_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329126/2329126_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329128/2329128_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 682 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(682, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329129/2329129_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329131/2329131_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 653 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(653, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329133/2329133_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 412 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(412, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329135/2329135_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329136/2329136_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 648 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(648, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329137/2329137_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329138/2329138_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 744 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(744, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329139/2329139_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 944 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(944, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329140/2329140_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329142/2329142_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329143/2329143_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 483 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(483, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329144/2329144_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329145/2329145_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329146/2329146_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 421 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(421, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329148/2329148_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 679 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(679, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329147/2329147_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 852 confidence 0.001 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(852, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329149/2329149_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 490 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(490, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329150/2329150_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329151/2329151_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 419 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(419, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329152/2329152_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329153/2329153_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329156/2329156_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329157/2329157_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 454 confidence 0.001 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(454, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329158/2329158_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329160/2329160_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 965 confidence 0.025 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(965, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329161/2329161_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329163/2329163_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329164/2329164_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329165/2329165_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329166/2329166_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329169/2329169_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329170/2329170_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 421 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(421, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329171/2329171_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329172/2329172_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(100, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329173/2329173_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329174/2329174_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 640 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(640, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329175/2329175_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 510 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(510, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329177/2329177_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329178/2329178_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329180/2329180_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 465 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(465, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329181/2329181_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 224 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(224, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329182/2329182_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329184/2329184_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 246 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(246, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329185/2329185_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 408 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(408, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329186/2329186_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329187/2329187_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329188/2329188_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 670 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(670, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329189/2329189_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 455 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(455, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329191/2329191_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 559 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(559, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329192/2329192_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329193/2329193_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329195/2329195_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 424 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(424, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329196/2329196_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 100 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(100, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329197/2329197_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329198/2329198_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329199/2329199_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 353 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(353, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329201/2329201_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 407 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(407, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329202/2329202_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 403 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(403, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329203/2329203_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329204/2329204_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 416 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(416, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329205/2329205_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329206/2329206_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329207/2329207_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329208/2329208_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329209/2329209_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329210/2329210_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 719 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(719, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329212/2329212_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 806 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(806, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329213/2329213_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329230/2329230_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 333 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(333, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329232/2329232_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 358 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(358, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329233/2329233_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329234/2329234_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 869 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(869, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329237/2329237_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 713 confidence 0.025 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(713, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329241/2329241_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 644 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(644, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329242/2329242_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329243/2329243_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329246/2329246_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329247/2329247_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329248/2329248_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329249/2329249_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329250/2329250_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 717 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(717, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329251/2329251_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 924 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(924, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329252/2329252_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 832 confidence 0.025 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(832, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329253/2329253_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329254/2329254_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329255/2329255_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329256/2329256_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 953 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(953, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329257/2329257_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329259/2329259_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329260/2329260_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 523 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(523, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329261/2329261_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329262/2329262_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329263/2329263_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329264/2329264_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 953 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(953, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329266/2329266_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329267/2329267_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 991 confidence 0.1 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(991, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329268/2329268_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329269/2329269_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329270/2329270_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 632 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(632, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329271/2329271_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329272/2329272_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329273/2329273_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 893 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(893, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329274/2329274_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329275/2329275_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 863 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(863, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329276/2329276_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 506 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(506, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329278/2329278_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.1 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329279/2329279_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329280/2329280_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 643 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(643, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329281/2329281_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 538 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(538, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329282/2329282_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 560 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(560, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329283/2329283_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329284/2329284_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329285/2329285_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329286/2329286_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329288/2329288_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329289/2329289_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329290/2329290_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 452 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(452, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329294/2329294_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329295/2329295_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329296/2329296_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329301/2329301_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 895 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(895, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329310/2329310_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 991 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(991, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329311/2329311_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 987 confidence 0.1 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(987, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329316/2329316_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 885 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(885, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329318/2329318_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 874 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(874, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329320/2329320_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 723 confidence 0.025 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(723, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329322/2329322_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 861 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(861, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329324/2329324_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 886 confidence 0.005 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(886, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329325/2329325_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 716 confidence 0.05 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(716, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329326/2329326_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 730 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(730, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329328/2329328_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 877 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(877, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329330/2329330_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 873 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(873, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329333/2329333_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 872 confidence 0.005 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(872, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329334/2329334_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 711 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(711, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329335/2329335_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 863 confidence 0.025 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(863, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329336/2329336_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 875 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(875, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329337/2329337_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 871 confidence 0.01 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(871, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329338/2329338_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 897 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(897, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329340/2329340_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 852 confidence 0.05 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(852, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329341/2329341_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 871 confidence 0.025 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(871, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329342/2329342_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 859 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(859, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329344/2329344_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 877 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(877, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329347/2329347_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 711 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(711, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329349/2329349_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 873 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(873, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329350/2329350_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 732 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(732, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329352/2329352_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 857 confidence 0.05 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(857, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329353/2329353_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 859 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(859, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329354/2329354_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 877 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(877, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329355/2329355_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 771 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(771, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329356/2329356_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 738 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(738, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329357/2329357_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 765 confidence 0.1 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(765, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329358/2329358_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 714 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(714, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329360/2329360_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 606 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(606, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329361/2329361_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 751 confidence 0.025 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(751, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329363/2329363_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 733 confidence 0.05 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(733, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329364/2329364_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 719 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(719, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329366/2329366_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 754 confidence 0.05 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(754, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329368/2329368_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 761 confidence 0.05 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(761, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329369/2329369_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 703 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(703, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329371/2329371_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 769 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(769, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329373/2329373_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 434 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(434, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329374/2329374_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 863 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(863, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329375/2329375_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 443 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(443, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329380/2329380_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 445 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(445, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329381/2329381_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 602 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(602, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329382/2329382_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 576 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(576, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329383/2329383_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 616 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(616, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329384/2329384_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 858 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(858, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329385/2329385_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 572 confidence 0.001 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(572, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329386/2329386_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 842 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(842, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329388/2329388_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 538 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(538, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329389/2329389_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 545 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(545, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329390/2329390_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 543 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(543, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329391/2329391_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 868 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(868, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329392/2329392_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 844 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(844, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329393/2329393_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 859 confidence 0.001 feature_proportion 0 n_clusters 3
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(859, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329395/2329395_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 703 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(703, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329396/2329396_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 860 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(860, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329397/2329397_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 707 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(707, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329400/2329400_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 867 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(867, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329405/2329405_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 870 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(870, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329406/2329406_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 616 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(616, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329407/2329407_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 658 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(658, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329408/2329408_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329410/2329410_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 688 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(688, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329411/2329411_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 647 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(647, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329414/2329414_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 853 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(853, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329415/2329415_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 869 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(869, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329416/2329416_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329417/2329417_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 870 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(870, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329418/2329418_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 878 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(878, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329421/2329421_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329423/2329423_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 882 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(882, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329425/2329425_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 860 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(860, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329426/2329426_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 870 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(870, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329427/2329427_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 853 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(853, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329548/2329548_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 862 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(862, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329525/2329525_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 871 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(871, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329536/2329536_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 849 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(849, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329595/2329595_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 863 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(863, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329596/2329596_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 951 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(951, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329598/2329598_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 859 confidence 0.05 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(859, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329600/2329600_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 485 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(485, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329601/2329601_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 850 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(850, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329602/2329602_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 817 confidence 0.1 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(817, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329604/2329604_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 865 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(865, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329611/2329611_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 948 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(948, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329612/2329612_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 872 confidence 0.001 feature_proportion 0 n_clusters 2
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(872, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329614/2329614_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 440 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(440, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329616/2329616_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329618/2329618_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 958 confidence 0.25 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(958, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329621/2329621_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329625/2329625_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 592 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(592, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329626/2329626_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 578 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(578, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329630/2329630_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 591 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(591, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329632/2329632_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329634/2329634_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 627 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(627, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329635/2329635_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 482 confidence 0.025 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(482, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329637/2329637_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.001 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329640/2329640_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 901 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(901, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329642/2329642_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.25 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329643/2329643_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 933 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(933, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329644/2329644_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.005 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329645/2329645_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.05 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329647/2329647_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 934 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(934, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329648/2329648_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 1000 confidence 0.025 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(1000, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329651/2329651_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 909 confidence 0.01 feature_proportion 0 n_clusters 1
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(909, 0)) while a minimum of 1
Out file /data/horse/ws/s4122485-compPerfDD/benchmark/dfki/unsupervised-concept-drift-detection-main/runs/ClusteredStatisticalTestDriftDetectionMethod_Powersupply/0/single_runs/2329653/2329653_0_log.out contains potential errors:
Program-Code: module load GCCcore/10.3.0 Python && source /data/horse/ws/s4122485-compPerfDD/benchmark/venv/bin/activate && python main_omniopt.py Powersupply 1000 ClusteredStatisticalTestDriftDetectionMethod n_samples 932 confidence 0.001 feature_proportion 0 n_clusters 4
- Got no result.
- Non-zero exit-code detected: 1
- raise ValueError(ValueError: Found array with 0 feature(s) (shape=(932, 0)) while a minimum of 1
</span></pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("simple_pre_tab_tab_errors")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("simple_pre_tab_tab_errors", "oo_errors.txt")'> Download »oo_errors.txt« as file</button>
<h1> CPU/RAM-Usage (main)</h1>
<div class='invert_in_dark_mode' id='mainWorkerCPURAM'></div><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<pre id="pre_tab_main_worker_cpu_ram">timestamp,ram_usage_mb,cpu_usage_percent
1727815908,478.8203125,49.7
1727815908,479.04296875,48.1
1727815908,479.04296875,49.9
1727815908,479.04296875,37.5
1727815908,479.04296875,56.5
1727815908,479.04296875,49.1
1727815908,479.04296875,57.8
1727815954,486.43359375,49.8
1727815954,486.43359375,55.3
1727815954,486.43359375,49.5
1727815954,486.43359375,48.7
1727815955,486.43359375,49.7
1727815955,486.43359375,50.0
1727815955,486.43359375,50.0
1727815955,486.43359375,51.0
1727815957,486.43359375,49.7
1727815957,486.43359375,40.0
1727815957,486.43359375,52.9
1727815957,486.43359375,40.6
1727815958,486.43359375,49.8
1727815958,486.43359375,55.3
1727815958,486.43359375,49.5
1727815958,486.43359375,41.2
1727815959,486.43359375,49.7
1727815959,486.43359375,54.3
1727815959,486.43359375,49.1
1727815959,486.43359375,52.5
1727815961,488.31640625,49.7
1727815961,488.31640625,54.3
1727815961,488.31640625,48.5
1727815961,488.31640625,51.2
1727815962,488.31640625,49.7
1727815962,488.31640625,54.3
1727815962,488.31640625,49.0
1727815962,488.31640625,40.6
1727815964,488.31640625,49.8
1727815964,488.31640625,55.3
1727815964,488.31640625,49.1
1727815964,488.31640625,55.6
1727815965,488.31640625,49.7
1727815965,488.31640625,47.5
1727815965,488.31640625,49.0
1727815965,488.31640625,57.8
1727815966,488.31640625,49.7
1727815966,488.31640625,43.9
1727815966,488.31640625,53.2
1727815966,488.31640625,39.4
1727815969,489.234375,49.9
1727815969,489.234375,54.3
1727815969,489.234375,49.5
1727815969,489.234375,57.8
1727815972,489.24609375,49.9
1727815972,489.24609375,48.8
1727815972,489.24609375,48.1
1727815972,489.24609375,58.7
1727815975,489.3203125,49.9
1727815975,489.3203125,40.0
1727815975,489.3203125,49.5
1727815975,489.3203125,55.6
1727815977,489.3203125,49.9
1727815977,489.3203125,35.3
1727815977,489.3203125,55.1
1727815977,489.3203125,38.7
1727815979,489.3203125,49.9
1727815979,489.3203125,55.6
1727815979,489.3203125,50.0
1727815979,489.3203125,38.7
1727815982,489.3203125,49.9
1727815982,489.3203125,56.5
1727815982,489.3203125,50.5
1727815982,489.3203125,40.0
1727815984,489.3203125,49.9
1727815984,489.3203125,37.1
1727815984,489.3203125,52.5
1727815984,489.3203125,39.4
1727815987,489.3984375,49.8
1727815987,489.3984375,54.3
1727815987,489.3984375,48.1
1727815987,489.3984375,56.2
1727815989,489.40234375,49.9
1727815989,489.40234375,47.6
1727815989,489.40234375,52.4
1727815989,489.40234375,40.6
1727815992,489.5625,49.9
1727815992,489.5625,39.4
1727815992,489.5625,48.6
1727815992,489.5625,58.1
1727815995,489.5625,49.9
1727815995,489.5625,57.4
1727815995,489.5625,47.2
1727815995,489.5625,58.1
1727815997,489.609375,49.9
1727815997,489.609375,56.5
1727815997,489.609375,48.6
1727815997,489.609375,57.8
1727815999,489.609375,49.8
1727815999,489.609375,54.3
1727815999,489.609375,48.6
1727815999,489.609375,52.5
1727816001,489.703125,49.9
1727816001,489.703125,53.3
1727816001,489.703125,47.3
1727816001,489.703125,57.8
1727816004,489.70703125,49.9
1727816004,489.70703125,56.5
1727816004,489.70703125,48.6
1727816004,489.70703125,37.5
1727816006,489.73046875,49.9
1727816006,489.73046875,56.5
1727816006,489.73046875,48.2
1727816006,489.73046875,55.0
1727816008,489.73046875,49.8
1727816008,489.73046875,58.3
1727816008,489.73046875,45.9
1727816008,489.73046875,58.1
1727816011,489.73046875,49.9
1727816011,489.73046875,53.2
1727816011,489.73046875,46.8
1727816011,489.73046875,55.6
1727816013,489.73828125,49.9
1727816013,489.73828125,56.3
1727816013,489.73828125,46.4
1727816013,489.73828125,56.8
1727816015,489.73828125,49.9
1727816015,489.73828125,44.4
1727816015,489.73828125,52.5
1727816015,489.73828125,43.7
1727816018,489.73828125,49.9
1727816018,489.73828125,56.8
1727816018,489.73828125,49.5
1727816018,489.73828125,56.8
1727816020,489.73828125,49.8
1727816020,489.73828125,55.6
1727816020,489.73828125,45.0
1727816020,489.73828125,56.9
1727816022,489.75,49.8
1727816022,489.75,55.6
1727816022,489.75,47.2
1727816022,489.75,53.7
1727816025,489.75,49.9
1727816025,489.75,55.6
1727816025,489.75,47.3
1727816025,489.75,56.8
1727816027,489.75,49.8
1727816027,489.75,54.3
1727816027,489.75,46.8
1727816027,489.75,57.8
1727816029,489.75,49.8
1727816029,489.75,54.3
1727816029,489.75,46.4
1727816029,489.75,56.8
1727816031,489.75,49.8
1727816031,489.75,54.2
1727816031,489.75,51.2
1727816031,489.75,38.7
1727816033,489.75,49.9
1727816033,489.75,38.9
1727816033,489.75,52.0
1727816033,489.75,44.1
1727816035,489.75,49.9
1727816035,489.75,40.0
1727816035,489.75,52.0
1727816035,489.75,40.6
1727816038,489.75,49.9
1727816038,489.75,57.8
1727816038,489.75,45.5
1727816038,489.75,58.1
1727816040,489.75,49.9
1727816040,489.75,53.2
1727816040,489.75,51.2
1727816040,489.75,41.9
1727816042,489.75,49.9
1727816042,489.75,37.5
1727816042,489.75,52.4
1727816042,489.75,40.0
1727816044,489.75,49.9
1727816044,489.75,53.2
1727816044,489.75,49.6
1727816044,489.75,56.8
1727816046,489.75,49.8
1727816046,489.75,53.2
1727816046,489.75,46.4
1727816046,489.75,57.8
1727816048,489.75,49.9
1727816048,489.75,38.2
1727816048,489.75,52.0
1727816048,489.75,55.8
1727816050,489.75,49.8
1727816050,489.75,55.6
1727816050,489.75,46.4
1727816050,489.75,56.8
1727816053,489.84375,49.9
1727816053,489.84375,39.4
1727816053,489.84375,50.0
1727816053,489.84375,56.5
1727816055,489.84375,49.9
1727816055,489.84375,39.4
1727816055,489.84375,50.4
1727816055,489.84375,56.8
1727816057,489.84375,49.8
1727816057,489.84375,41.7
1727816057,489.84375,53.6
1727816057,489.84375,38.7
1727816059,489.84375,49.8
1727816059,489.84375,54.9
1727816059,489.84375,47.7
1727816059,489.84375,56.8
1727816061,489.84375,49.8
1727816061,489.84375,55.3
1727816061,489.84375,49.6
1727816061,489.84375,39.4
1727816063,489.84375,49.9
1727816063,489.84375,39.4
1727816063,489.84375,51.2
1727816063,489.84375,40.0
1727816066,489.84375,49.9
1727816066,489.84375,40.0
1727816066,489.84375,52.0
1727816066,489.84375,37.5
1727816068,489.84375,49.9
1727816068,489.84375,37.5
1727816068,489.84375,50.8
1727816068,489.84375,56.5
1727816070,489.88671875,49.9
1727816070,489.88671875,54.3
1727816070,489.88671875,50.8
1727816070,489.88671875,48.7
1727816073,489.88671875,49.9
1727816073,489.88671875,56.5
1727816073,489.88671875,49.4
1727816073,489.88671875,42.4
1727816075,489.88671875,49.9
1727816075,489.88671875,38.9
1727816075,489.88671875,54.0
1727816075,489.88671875,38.7
1727816077,489.88671875,49.9
1727816077,489.88671875,48.7
1727816077,489.88671875,47.9
1727816077,489.88671875,56.5
1727816079,489.88671875,49.8
1727816079,489.88671875,38.9
1727816079,489.88671875,50.4
1727816079,489.88671875,56.5
1727816081,489.88671875,49.9
1727816081,489.88671875,38.2
1727816081,489.88671875,50.8
1727816081,489.88671875,56.8
1727816083,489.88671875,49.9
1727816083,489.88671875,37.5
1727816083,489.88671875,52.7
1727816083,489.88671875,37.1
1727816086,489.88671875,49.9
1727816086,489.88671875,44.4
1727816086,489.88671875,49.0
1727816086,489.88671875,58.1
1727816214,529.5234375,50.1
1727816214,529.5234375,53.1
1727816214,529.5234375,52.1
1727816214,529.5234375,38.7
1727816254,530.078125,50.2
1727816254,530.078125,53.2
1727816254,530.078125,51.0
1727816254,530.078125,36.4
1727816366,531.9609375,50.2
1727816366,531.9609375,53.2
1727816366,531.9609375,49.4
1727816366,531.9609375,50.0
1727816472,534.65234375,50.2
1727816472,534.65234375,48.9
1727816472,534.65234375,50.3
1727816472,534.65234375,44.1
1727816605,535.72265625,50.2
1727816605,535.72265625,52.7
1727816605,535.72265625,49.7
1727816605,535.72265625,40.6
1727816713,538.6640625,50.2
1727816713,538.6640625,54.3
1727816713,538.6640625,49.0
1727816713,538.6640625,38.7
1727816872,540.56640625,50.2
1727816872,540.56640625,39.4
1727816872,540.56640625,52.4
1727816872,540.56640625,42.4
1727817232,540.9765625,50.3
1727817232,540.9765625,53.2
1727817232,540.9765625,50.3
1727817232,540.9765625,40.6
1727817494,541.3359375,50.2
1727817494,541.3359375,43.2
1727817494,541.3359375,50.0
1727817494,541.3359375,52.4
1727817693,546.296875,50.2
1727817693,546.296875,39.4
1727817693,546.296875,50.3
1727817693,546.296875,51.3
1727817956,551.16015625,50.2
1727817956,551.16015625,55.3
1727817956,551.16015625,50.0
1727817957,551.16015625,48.6
1727818291,550.5625,50.2
1727818291,550.5625,54.2
1727818291,550.5625,49.8
1727818291,550.5625,51.2
1727818600,553.140625,50.2
1727818600,553.140625,36.4
1727818600,553.140625,52.5
1727818600,553.140625,40.6
1727818954,551.89453125,50.2
1727818954,551.89453125,46.2
1727818954,551.89453125,49.1
1727818954,551.89453125,57.8
1727819285,555.58203125,50.2
1727819285,555.58203125,38.2
1727819285,555.58203125,51.6
1727819285,555.58203125,42.4
1727819695,556.27734375,50.2
1727819695,556.27734375,54.3
1727819695,556.27734375,50.4
1727819695,556.27734375,40.0
1727820034,432.87890625,50.2
1727820034,432.87890625,45.0
1727820034,432.87890625,51.4
1727820034,432.87890625,44.4
1727820358,440.87109375,50.2
1727820358,440.87109375,36.4
1727820358,440.87109375,51.0
1727820358,440.87109375,50.0
1727820761,448.55859375,50.2
1727820761,448.55859375,57.4
1727820761,448.55859375,51.2
1727820761,448.55859375,41.9
1727821172,441.4140625,50.2
1727821172,441.4140625,54.3
1727821172,441.4140625,50.4
1727821172,441.4140625,39.4
1727821623,452.89453125,50.2
1727821623,452.89453125,38.2
1727821623,452.89453125,50.4
1727821623,452.89453125,51.0
1727822216,452.63671875,50.2
1727822216,452.63671875,55.3
1727822216,452.63671875,48.7
1727822216,452.63671875,58.7
1727822764,437.609375,50.2
1727822764,437.609375,50.0
1727822764,437.609375,50.4
1727822764,437.609375,42.4
1727823200,435.96484375,50.2
1727823200,435.96484375,38.2
1727823200,435.96484375,51.5
1727823200,435.96484375,40.6
1727823636,435.4375,50.2
1727823636,435.4375,38.2
1727823636,435.4375,51.5
1727823636,435.4375,40.6
1727824080,432.55859375,50.2
1727824080,432.55859375,46.5
1727824080,432.55859375,51.7
1727824080,432.55859375,39.4
1727824545,441.23046875,50.2
1727824545,441.23046875,39.4
1727824545,441.23046875,50.2
1727824545,441.23046875,57.8
1727824958,440.6796875,50.2
1727824958,440.6796875,53.3
1727824958,440.6796875,50.3
1727824958,440.6796875,40.6
1727825490,443.74609375,50.2
1727825490,443.74609375,52.8
1727825490,443.74609375,49.9
1727825490,443.74609375,55.6
1727825932,443.5078125,50.2
1727825932,443.5078125,47.5
1727825932,443.5078125,50.3
1727825932,443.5078125,42.4
1727826372,443.40625,50.1
1727826372,443.40625,51.2
1727826372,443.40625,50.1
1727826372,443.40625,40.6
1727826843,446.078125,50.2
1727826843,446.078125,54.3
1727826843,446.078125,49.3
1727826843,446.078125,58.1
1727827271,447.640625,50.2
1727827271,447.640625,36.4
1727827271,447.640625,51.4
1727827271,447.640625,37.5
1727827679,439.05859375,50.1
1727827679,439.05859375,55.6
1727827679,439.05859375,49.7
1727827679,439.05859375,51.3
1727828105,448.30078125,50.2
1727828105,448.30078125,48.9
1727828105,448.30078125,50.7
1727828105,448.30078125,55.6
1727828457,444.8515625,50.1
1727828457,444.8515625,53.2
1727828457,444.8515625,50.1
1727828457,444.8515625,38.7
1727828859,440.9609375,50.1
1727828859,440.9609375,52.2
1727828859,440.9609375,49.2
1727828859,440.9609375,57.8
1727829259,441.6875,50.1
1727829259,441.6875,52.0
1727829308,441.6796875,49.8
1727829308,441.6796875,38.9
</pre><button class='copy_clipboard_button' onclick='copy_to_clipboard_from_id("pre_tab_main_worker_cpu_ram")'> Copy raw data to clipboard</button>
<button onclick='download_as_file("pre_tab_main_worker_cpu_ram", "cpu_ram_usage.csv")'> Download »cpu_ram_usage.csv« as file</button>
<h1> Parallel Plot</h1>
<div class="invert_in_dark_mode" id="parallel-plot"></div>
<h1> Job Status Distribution</h1>
<div class="invert_in_dark_mode" id="plotJobStatusDistribution"></div>
<h1> Boxplots</h1>
<div class="invert_in_dark_mode" id="plotBoxplot"></div>
<h1> Violin</h1>
<div class="invert_in_dark_mode" id="plotViolin"></div>
<h1> Histogram</h1>
<div class="invert_in_dark_mode" id="plotHistogram"></div>
<h1> Heatmap</h1>
<div class="invert_in_dark_mode" id="plotHeatmap"></div><br>
<h1>Correlation Heatmap Explanation</h1>
<p>
This is a heatmap that visualizes the correlation between numerical columns in a dataset. The values represented in the heatmap show the strength and direction of relationships between different variables.
</p>
<h2>How It Works</h2>
<p>
The heatmap uses a matrix to represent correlations between each pair of numerical columns. The calculation behind this is based on the concept of "correlation," which measures how strongly two variables are related. A correlation can be positive, negative, or zero:
</p>
<ul>
<li><strong>Positive correlation</strong>: Both variables increase or decrease together (e.g., if the temperature rises, ice cream sales increase).</li>
<li><strong>Negative correlation</strong>: As one variable increases, the other decreases (e.g., as the price of a product rises, the demand for it decreases).</li>
<li><strong>Zero correlation</strong>: There is no relationship between the two variables (e.g., height and shoe size might show zero correlation in some contexts).</li>
</ul>
<h2>Color Scale: Yellow to Purple (Viridis)</h2>
<p>
The heatmap uses a color scale called "Viridis," which ranges from yellow to purple. Here's what the colors represent:
</p>
<ul>
<li><strong>Yellow (brightest)</strong>: A strong positive correlation (close to +1). This indicates that as one variable increases, the other increases in a very predictable manner.</li>
<li><strong>Green</strong>: A moderate positive correlation. Variables are still positively related, but the relationship is not as strong.</li>
<li><strong>Blue</strong>: A weak or near-zero correlation. There is a small or no discernible relationship between the variables.</li>
<li><strong>Purple (darkest)</strong>: A strong negative correlation (close to -1). This indicates that as one variable increases, the other decreases in a very predictable manner.</li>
</ul>
<h2>What the Heatmap Shows</h2>
<p>
In the heatmap, each cell represents the correlation between two numerical columns. The color of the cell is determined by the correlation coefficient: from yellow for strong positive correlations, through green and blue for weaker correlations, to purple for strong negative correlations.
</p>
<h1> Exit-Codes</h1>
<div class="invert_in_dark_mode" id="plotExitCodesPieChart"></div>
</body>
</html>
Copy raw data to clipboard
Download »export.html« as file